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Introduction

Actuality of the research

During the last decades, the application of medium and large-scale network
computing systems (clusters, grids) has become widespread in different areas (research,
economics, social, etc.). Parallel to their dissemination, the construction of optimal network
structures has become actual among the network nodes to ensure fast information exchange.
For their investigation, new approaches have been developed based on discrete mathematics,
the graph theory, parallel programming and the probability theory.

The previous century was revolutionary in the development of communication facilities
([1])- We become able to ensure an efficient communication at very long distances, which in
turn had its crucial impact on the way we live currently. The development of reliable and
high-performance large communication networks, such as the telephone networks and the
Internet, were the driving power of this revolution. The main goal when constructing these
network was the need of providing efficient communication using the given available
resources. Apart from these networks, we can observe in recent decades a big interest in
different types of large networks, such as sensor networks, peer-to-peer (P2P) networks,
mobile ad-hoc networks, and social networks, where the main goal is not that of providing
efficient communication between any two components.

As a good example of such networks can serve a sensor network, which consists of a
large number of unreliable, low cost, wireless sensors and, generally, is used for the purpose
of ‘detecting’ and ‘monitoring’ certain events. For instance, smoke sensors with wireless
transmission support deployed in a large building, or a set of interconnected wireless sensors
deployed for surveillance in a secure facility.

The peer-to-peer networks made by connecting big number of participants of
different nature (e.g., computers or handheld devices) over an already existing network such

as the Internet, are another good example of current generation networks. Usually such



networks require minimal infrastructural support, since they operate over already existing
networks and, as a result, a significant benefit arises in cases like information dissemination.
For example, usually Internet content provider needs to maintain servers with high bandwidth
streaming support to be able to broadcast a popular TV show to a multiple users
simultaneously in case of there is no supporting P2P network. Contrary, in the presence of
a P2P network there is a big possibility that a user will obtain popular content from the
nearby peer. Thus, P2P based architectures for content dissemination tend to reduce the
cost for a content provider (e.g., see [2], [3]).

The research of possible applications of mobile ad-hoc network gain big popularity
recently. These researches include such topics as smart cars traveling on road without human
interaction, or hundreds of unmanned aerial vehicles deployed for various observations. The
networks of this kind need algorithms for the purpose of coordination or consensus of the
operation of their various components (e.g., see [4], [3]).

Finally, with the recent activity in the development of “social network applications”, it
is obvious the appearance of massive social networks between individuals connected over a
networks of various types. These online applications increased the number of connections
the social network of an individual could possibly include drastically. Furthermore, the daily
increasing usage of handheld devices like smartphones or smartwatches brings the possibility
to construct such social networks on top of P2P networks formed by these devices in the
near future (e.g., see [6], [7]).

The arrival of sensor, wireless ad-hoc and peer-to-peer networks made the design of
asynchronous, distributed and fault-tolerant computation and information exchange
algorithms a necessity. This is mainly because such networks are constrained by the following
operational characteristics:

e usually they do not have a centralized entity for facilitating computation,

communication and time synchronization



e typically the nodes of the network have only “local” knowledge about the network

topology

e nodes may join or leave the network (even expire), so that the network topology itself

is dynamic

e in the case of sensor networks, there is a limit on the the computational power and

energy resources.

These constraints motivate the design of simple asynchronous decentralized algorithms
for computation where each node exchanges information with only a few of its immediate
neighbors in a time instance (or, a round). The goal in this setting is to design algorithms so
that the desired computation and communication is done as quickly and efficiently as
possible.

Our study of distributed asynchronous algorithms, also known as gossip algorithms,
is motivated by applications to sensor, peer-to-peer and ad hoc networks for computation
and information exchange in an arbitrarily connected network of nodes. Usually, in such
network nodes operate under limited computational, communication and energy resources.
These constraints naturally give rise to "gossip" algorithms: schemes which distribute the
computational burden and in which a node communicates with only some subset of the
remaining nodes and there is no any single point of coordination.

One interesting observation is that unlike the telephone network or the Internet, the
main purpose of the many of the next generation networks is not providing an efficient
communication between various networked entities. The above stated can be confirmed by,
for instance, sensor networks, peer-to-peer networks, mobile networks of vehicles and social
networks. Indeed, these networks of the new generation do require algorithms for
communication, computation, or merely spreading information. For example, a sensor
network do require an estimation algorithm for event detection given the sensor
observations, a P2P network may require a dissemination algorithm using peer information,

a network of aerial vehicles may need an algorithm to reach consensus to co-ordinate their



surveillance efforts, or viral advertising in a social network. Usually this kind of networks lack
any defined infrastructure; they show unpredictable dynamics and face resource constraints
in the environments that they operate in. Therefore, algorithms operating within them need
to be really simple, distributed, robust against networks dynamics, with good resource
utilization and without any single point of failure. Gossip/broadcast algorithms, as the name
suggests, are built as an unreliable, asynchronous information exchange protocol. Taking
into consideration their immense simplicity and wide applicability, this class of algorithms
has become a favorable choice as a canonical architectural solution for the next generation
networks.

Now let us concentrate on the definition of gossip protocol and bring here the most

widely accepted definition ( [8]):

““A gossip protocol is a style of computer-to-computer communication protocol inspired by
the form of gossip seen in social networks. Modern distributed systems often use gossip
protocols to solve problems that might be difficult to solve in other ways, either because the
underlying network has an inconvenient structure, is extremely large, or because gossip

solutions are the most efficient ones available.

The term epidemic protocol is sometimes used as a synonym for a gossip protocol, because
gossip spreads information in a manner similar to the spread of a virus in a biological

community.”

The concept of gossip communication can be shown by making parallels with the office
situation where workers spreading rumors. Suppose each hour the random pair of office
employees meet near the coffee machine to have a quick chat (along with some coffee or
tea). They share a latest rumor for that day, say Emily tells Mike she believes a new general

manager of the company will be Tom. At the next meeting Mike tells about this to John, while
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Emily repeats the same thing to Arthur. After each coffee-break the number of informed

employees roughly double. But there also can be cases when the rumor repeats, say Emily

tells he same thing to Dave, who already have heard about that. This kind of communication

protocol was implemented in various computer systems, where each machine or peer picks

another one at random with given frequency and shares any hot rumors known to him at

that moment.

One of the benefits of such a protocol is its robustness - even if Arthur fails to

understand Emily, there is a big chance that he’ll hear the same thing from another

colleague. In more technical words, the gossip protocol satisfies the following conditions:

it is based on periodic, peer-to-peer inter-process communications

the size of the exchanged information during the communications is bounded

there might be faults in communication process

there is some randomness in the peer selection process. Peers might be selected also
from small set of neighbors (nodes that are close to the given node)

after interaction of the two agents they both come to some equivalent state

there is some implicit redundancy of the delivered information based on the

replication

There are several types of implementation/application of gossip protocol, some of which are:

Dissemination protocols. They use gossip to spread information, as an example can
be considered Background data dissemination protocols, that continuously gossip
about information associated with the nodes. In these applications typically
propagation latency does not have much importance, this is because of rare state
changes or not critical requirements to operate always on most uptodate data
Anty-entropy protocols. For repairing replicated data, which operate by comparing
replicas and fixing differences.

Aggregation protocols. These compute the aggregate value for the whole network by

sampling the values of some measurement nodes are making (like sensed data in case



of sensors) and result in some value that describes the whole network (which can be
composed of multiple thousands nodes). The key requirement here is that the
aggregate must be computable by bounded pairwise information exchanges.

Let us assume that we want to find the object that most closely matches given search
pattern, where the network is of unknown size, but where the machines are connected to
each other and where each machine is running a small agent program that implements a
gossip protocol.

e A user would trigger a search by making the local agent starting gossipping about the
search keyword. (The assumption is that agents either have some knowledge about
their local environment, i.e. list of neighbour peers, or retrieve this information from
some kind of a shared store.)

e Periodically, at some rate (let's say ten times per second, for simplicity), each agent
program picks some other agent at random, and initiates a gossip with it. Search
strings known to A will now also be known to B, and vice versa. In the next "round"
of gossip A and B will pick additional random peers, maybe C and D. This approach
of round-by-round doubling makes the protocol very robust, even if some
communications fail or some of the selected peers already know the given search
pattern.

e Each agent only can check its local machine for the given search pattern, immediately
upon receival of search pattern.

e Agents also gossip about the best match, to date. Thus, if A gossips with B, after the
interaction, A will know of the best matches known to B, and vice versa. This way the
best matches will "spread" through the network.

The messages might get large by time(for example, if many searches are active all at the

same time), that is why a size limit should be introduced. Also, searches should "age out" of

the network.



It follows that with high probability within logarithmic time in the size of the network (the
number of nodes/agents), any new search string will have reached all the agents. Within
almost the same approximate length of an additional delay, every agent will learn about the
best matches that was found among all the nodes. In particular, the agent that started the
search will have found the best match.

For example, in a network with 25,000 machines, we can find the best match after about
30 rounds of gossip: 15 to spread the search string and 15 more to discover the best match.
Assuming that a gossip exchange could occur as often as once every tenth of a second, hence
this form of network search could search a big data center in about 3 seconds.

In this scenario, searches usually have age and might age out of the network after, say, 10
seconds from being initiated. By then, the initiator almost certainly knows the answer and
there is no point to continue the further gossip about that keyword.

Gossip protocols have actually been used to achieve various goals, such like for
achieving and maintaining distributed database consistency, counting the number of nodes
in a network of unknown size, robustly spreading news through the network, organizing
nodes according to some structuring policy, building so-called overlay networks, computing
aggregates, sorting the nodes in a network, electing leaders, etc.

There are also some real world software implementation of the gossip protocol to
discover nodes in peer-to-peer networks, some of which are Apache Gossip ( [9]), gossip-
python ( [10]) and Smudge ( [11]).

The above described is a purely random peer-selection scheme for gossip: when an
agent A decides to run a gossip round, it picks some peer B uniformly and at random within
the whole network (or launches a message on a random walk that will terminate at a random
agent). But usually, in the design of the gossip algorithms there is a concept of “neighbour”
and the agents choose these neighbours for interaction rather then random node in a
network that can be far away (in terms of network delay). These biased gossip protocols need

to ensure a sufficient degree of connectivity to avoid the risk of complete disconnection of
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one side of a network from the other, but if care is taken, can be faster and more efficient
than protocols that are purely random.

As already was stated one of the main challenges of efficient operation of today’s
typical computer networks (internet, cloud, cluster, grid) is the organization of fault-tolerant
and efficient transfer of the information/data among the entities forming the network. In this
context, the scientific work done in the sphere of stochastic and quasi stochastic information
exchange/dissemination processes have crucial importance.

On the other hand, one of the most important problems in discrete mathematics and
informatics is the construction and investigation of the behaviour of the models of distributed
computing systems. The crucial challenge in the construction of multicomputer systems with
multiprocessors (cloud, cluster, grid) is the construction of optimal topology/schema that will
also guarantee the required level of fault-tolerance for the system. One of the common
choices as a network topology to achieve this goal are Knodel graphs ( [12]) or the schemes
derived from them by various modifications.

In order to obtain optimal values of the main characteristics (execution time, number
of channels, number of calls, etc.) of the full information exchange network it is common
and actual the research of the deterministic information exchange processes that are being
executed on the top of such networks. The investigation of the characteristics and attributes
of constructed networks, the construction of corresponding algorithms and theorems will
also have positive impact on the migration to models described by stochastic processes and
their further investigation.

The information exchange problems are formally divided into 2 categories - full duplex
(gossip) and half-duplex (broadcast). The initial problem definition that was proposed is the
minimal telephone call problem that was solved in a different ways by Tijdeman [13], Baker
and Shostak [14] and the number of minimum required calls is equal to 2n-4, n>3 (n is the
number of participants). However, for the practical applications this definition was modified,

new properties were added and some of the proposed categories of problem definitions are
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e what is the minimal execution time (number of rounds) of complete gossip/broadcast
graphs, assuming that the number of calls is the minimal
e what is the minimal number of lines of complete gossip/broadcast graphs, assuming

that the gossiping time is the minimal

The first problem was addressed by Nieminen ( [15]), but his results were partially
refuted by Labahn ( [16]). He formulated the exact results for the minimum time - T =
2[log, n| — 3, refuted the claim about uniqueness of such graphs and constructed the
example of such a graphs based on the NOHO graphs described by West ( [17]). The research
that has been done and some obtained results give us a base to not only extend, but also
describe the class of all possible solutions regarding this problem.

The second category of problems are generally considered to be NP hard and was
solved only for some particular definitions.

The broadcasting/gossiping type of network communication also often occur in
distributed computing, e.g., in global processor synchronization and updating distributed
databases. There is also an implicit use of such communication tasks in many parallel
computing problems, where the source data is distributed among various processors (in
matrix multiplication, parallel solving of linear systems, or parallel sorting).

In the phase of practical applications of the obtained optimal gossip/broadcast
schemes a new challenge has occurred: the guarantee of the required level of fault-tolerance
of the proposed schemas.

There is a strict distinction between the bounded and probabilistic models of
communication in fault-tolerant gossiping/broadcasting. This distinction enforce differences
in algorithm design and final goals. This domain of fault-tolerant broadcasting/gossiping is
very large area of research and can vary depending on communication and fault models.

There can be various communication modes here. But all of them consists of a call,

that takes place between two adjacent nodes of the network and lasts 1 unit of time. The
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communication mode specifies which calls can take place simultaneously during 1 unit of time
and the amount of messages that can be transferred in 1 call. There are two widely studied
modes of communication in such a networks - shouting and whispering. In the first mode
each node can call all its neighbours during a single unit of time, while in the second mode
the communication is limited by only one neighbour at a time. There is also a full-duplex
(gossip) and half-duplex (broadcast) notations that appear in literature regarding the
communication modes. The first one assumes that the communication link between nodes is
bi-directional and messages can traverse in both direction, while the second mode assumes
that node can only send or receive an information in a given call. Full-duplex mode
corresponds to telephone conversations, while half-duplex is used in messaging. In the
current study mainly focus on the bounded, full-duplex, whispering communication modes
of fault-tolerant gossiping.

There is also a notion of the packet size in this communication, that has significant
impact on the performance of underlying algorithms. This is the amount of the information
that can be transmitted between nodes (in one direction) in one call. This parameter can
noticeably change the performance of gossiping algorithms, since the large packet values
allow us to transmit all the accumulated info in a single call. The typical size of the packets
can vary from the single unit that is equal to the initial information of the node, to a potentially
unbounded value that can contain all the informations that exist in the network. Since in
practice we usually can achieve large bandwidth (especially optical networks) the potentially
unbounded packet size is considered in our study.

Faults can also be classified into different categories which impacts the communication
protocol drastically. There can be several failure types in communication - only links, only
nodes or both links and nodes. Also the nature of faults can vary, it can be crash or Byzantine
faults. The first one assumes that the faulty component does not take part in the

communication process at all, which means the information can be lost but not changed.
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This is not the case of Byzantine faults, where in the worst-case scenario the faulty
components can have arbitrary behaviour, sometimes even maliciously.

Another important characteristic of faults is their duration - permanent (the status of
component is not changed) or transient (the status of the communication component may
change in arbitrary time). The first one is typically associated with the hardware failures while
the second can correspond to communication failures with temporary reasons.

In our study we consider the only links, crash and permanent fault models.

As noted above the crucial role here plays the distribution of faults - is it probabilistic
or bounded. In a bounded model we have an upper limit k on the number of faults that can
possibly occur in the system, the location of faults is usually not being specified - which means
the worst possible option is assumed. In the probabilistic models the probability is given for
the failure of each communication component (node or link). In the bounded gossiping mode
all the fault-free nodes should exchange their information, provided that there are at most k
faulty components. In the probabilistic model the communication is said to be only almost
safe (since it does not make sense to speak 100% fault tolerant communications here) with
the given probability.

We study only bounded model of fault distribution, though recent surveys show the
increasing interest in the probabilistic model.

The one last thing to say about the fault tolerant communication models is about the
adaptiveness of the algorithm/model. The broadcasting/gossiping algorithms or models of
communication can either be non-adoptive, where the communication flow (or calls between
nodes) is scheduled in advance and does not change during the execution and adaptive,
where every node has a local knowledge of the outcome of the attempts of communication it
has made so far (faulty/successful) and thus it can choose to execute different calls based on
this knowledge. Since the local memory and computational power of each processor have
been increased, the adaptive algorithms become more realistic to implement. But in the

current study we focus mainly on non-adaptive gossiping models.
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Considering the emerging need of fault-tolerant schemas the new classes of open
problems were proposed: construct schemas that will be able to perform k-fault-tolerant
gossipping and satisfy the following conditions

e have minimal possible number of calls

e have minimal possible time

e complete in minimal possible time (number of rounds), and have minimal possible
number of calls under mentioned condition

e have minimal possible number of calls, and complete in a minimal possible time

(number of rounds) under that condition
It is also being considered to extend this classes with the additional condition of minimal
possible number of lines.

In this work the main focus is on constructing and presenting gossip schemes with
optimal gossipping properties (number of rounds) as well as constructing a new fault-tolerant
gossip scheme that has improved the known upper bound on the minimum number of calls.
It is also introduced in this work the operation of “local interchange” on the gossip graphs.
The application of this operation on the gossip graph tends to change the structure/topology
of a graph to obtain a new graph (not isomorphic to initial one) that has the same gossipping
properties as the initial one. We show multiple application cases of this operation to obtain
various results.

On the other hand, we have developed a software tool called “Graph Plotter” the main
intention of which was to provide a researchers of this topic with possibility to construct
graphs and verify their hypothesis before going into details of theoretical analysis. This tool
has multiple working modes and can be useful on analysis of simple gossip graphs, fault-
tolerant gossipping, as well as Messy gossip models.

The chapter 1 of this work discusses various gossipping models, definitions and
formulations of the entities we are going to deal with throughout the work, known results in

the area of gossip and fault-tolerant gossip problems, the comparisonal analysis of these
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results, the problems that are still open here. This chapter tends to give to reader a brief
overview of the research that has been done in this sphere by various authors, as well as
introduce to the main concepts and properties that are of big interest in this type of
problems. The comparative analysis of the known and obtained results should give a reader
enough level of understanding about the values of the theoretical results that was obtained
by us with regards to the various types of problems in the area of gossip networks.

In chapter 2 we will be focusing on the main theoretical results obtained during our
research and their analytical justifications. This chapter will be denoted to the “method of
local interchange” that was defined as a specific case of [13] and was given more general
interpretation by us in [18] and to the applications of this operation. This chapter also
discusses the fault-tolerant gossipping and our input on this specific problem area - several
new constructions had been suggested that tend to improve some of the most definitive
properties of these kind of problems.

In the last chapter our main focus will be around the software package that was
developed by us using the visualization libraries offered by Wolfram Mathematica and C++.
The main purpose of this tool is to provide convenient way for researchers to be able to
investigate gossip problem, verify their hypothesis as well as to provide visualization tools for
these problems (for the sake of better presentation and visual understanding purposes).
Besides from the convenient visualization tools, it has a variety of working modes for different
specifications of the general gossip problem (such as NOHO, NODUP, Fault-tolerant, Messy)

as well as support for generating Knodel graphs with the highlitening of all the folded paths.

The aim of the research

The aim of this research is to provide network structures for gossip communication
that will have optimal or near optimal values for the main properties of gossiping process
(number of calls, number of channels and gossiping time). For this purpose it was proposed

and solved the following problems:
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e construct a method with the help of which it will be possible to obtain new gossiping
topologies — not isomorphic to the known ones, that will be equivalent in terms of the
main properties of the gossiping process (number of calls and gossiping time) to the
known models and would be more suitable for the given requirements

e construct the fault-tolerant gossip schemes satisfying the proposed level of fault-
tolerance that will insure full information exchange between the nodes of the system
with the minimum known number of calls and communication rounds

o develop a software package, that will allow to model any gossip scheme and by using
them as a source, obtain new topologies, that will be more optimal for satisfying the

proposed structural requirements

The practical significance of the research

The results obtained in this research, particularly, minimum gossip graphs are
applicable as an underlying communication topology for the distributed systems of large
scale and can provide optimal communication between the various components of such
systems. From this perspective it is also worth mentioning fault-tolerant gossip schemas that
can be applicable in a multicomponent decentralized systems operating in a non-stable
environment.

On the other hand the designed Graph Plotter software package has a practical value
in terms of the modeling of the above mentioned schemas. It allows us to construct such
networks (for small number of vertices), make some structural changes to them, verify the

level of fault-tolerance, etc.
The scientific novelty of the research

1 The new construction method of the minimum gossip graphs for some subsets of the

number of vertices of the system was obtained.
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New method of the proof of minimum possible number of the calls for performing
complete gossiping among n participants was obtained, using the method of “local
interchange”.

New method of construction of the NOHO gossiping schemes that allow to perform
complete information exchange between its nodes (gossiping) in the minimum
possible time.

New method of the construction of k-fault-tolerant gossip graphs based on the Wheel
graphs.

It was proofed the resistance of the gossiping properties of the Knodel graph against
the cyclic permutation of the weights of its edges.

New hypothesis about the upper bound value of the minimum possible number of
calls of a k-fault-tolerant gossiping scheme and the minimum possible k-fault-tolerant

gossiping time were proposed and verified experimentally.

The practical application of the results

The obtained minimum gossip schemes were applied in the new software project of

the “Effortis” Inc. The project is a multi-agent distributed system designed for storing and

serving data in a P2P networks. It was implemented based on Apache Gossip open source

library and as a communication topology between various nodes forming the P2P network

was chosen the MGG proposed by us. As a result, the application is able to accomplish the

synchronization of an internal state of the network within optimal time and minimum number

of remote procedure calls.

The main results proposed for defense

1 New method of construction of the minimum gossip graphs for some subsets of

the number of nodes of the system.
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2 New NOHO gossip schemes, that allow full information exchange in minimum
possible time.

3 New fault-tolerant gossip schemes based on Wheel graphs with near-optimal
number of calls for the relatively small level of required fault-tolerance, as well as
new method of construction of optimal fault-tolerant gossip graphs based on
Knodel graphs.

4 Software package that allows to model any gossip scheme and obtain new
topologies with better structural correspondence with the given requirements and
equivalent gossiping properties, as well as to verify experimentally the gossiping

properties of the constructed schemes and the level of fault-tolerance

The reports of the results of research
e International conference: “Computer Science and Information Technology’ (CSIT-
2013), Yerevan, Armenia, 2013 fe. (2 reports)
e International conference: “Computer Science and Information Technology’ (CSIT-
2015), Yerevan, Armenia, 2015 .
e International conference: “Computer Science and Information Technology’ (CSIT-

2017), Yerevan, Armenia, 2017 .

Publications
The main results of the research were published in 8 scientific articles: [18], [19],

[20], [21], [22], [23], [24], [25].

The structure and volume of the research
This research includes an introduction, 3 chapters, conclusion, and the list of
literature with 85 references. The total size of this work is 107 pages, which includes 26

figures.
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Specification and main issues related to information
dissemination process in various networks, that can be
modeled as gossip process

1.1 The comparison analysis of the known results about gossip

schemes

Gossiping is one of the basic problems of information dissemination in communication
networks (along with broadcasting).

In 1950, Bavelas [26] studied various communication patterns that can help small
people groups solve common tasks. Typically he was studying the following task: each of the
persons was given five playing cards; these cards should remain with their initial owners, but
the owners can communicate with each other following the rules of given communication
pattern by written messages; the task was considered completed when each of the players
selects one of their cards in a way that the selected cards make the highest-ranking poker
hand that can be possibly made by selecting a card from each player. He considered such
metrics as the number of messages and the required time to complete the task and showed
that for the communication pattern (that were under his consideration) among n people, 2(n-
1) messages were required for this task. Also he showed that, in case each message takes a
unit of time and any communication pattern is allowed, then the required time to complete
the task is no more than [log, n] time units.

Shimbel (in 1951, [27]) proposed the following problem in group communication: each
of the n members of the group initially knowns to whom they can communicate with, but has
no any knowledge about the same for other members. The goal of the communication pattern
was for the whole group to learn “the complete structure of their communication system”.

Shimbel raised several questions: what are the communication patterns that allow to solve
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the problem? What is the connection between the number of channels and the time
required?; etc.

Landau (in 1954, [28]) studied task-oriented groups in which the initial information of
each individual has to be transmitted to all the others for the task to be completed. Each
individual also sends all the information that has been known to him during the
communication to one another individual. He considered this typical task: “each individual is
given a set of colored marbles, only one color being common to all the group. The members
of the group must exchange messages about their own colors and what they have learned
about the colors of the others, until finally everybody knows the common color. Messages
are sent only after everyone has indicated readiness to transmit; the transmissions then take
place simultaneously, each individual sending to just one of their possible recipients. Each
member of the group knows initially to whom they can send messages, but has no knowledge
to whom others can send”. The major condition put on communication pattern by Landau
was that each individual picks a recipient at random from the list of permitted recipients with
equal probability. He has determined the time required for completion of such a task for
various communication patterns among 3 or 4 people.

The gossip problem (also known as a telephone problem) is attributed to A. Boyd (see
[29] for review), although to the best knowledge of the reviewers, it was first formulated by
R. Chesters and S. Silverman (Univ. of Witwatersrand, unpublished, 1970). The simple
definition is as follows:

“Consider a set of n persons (nodes) each of which initially knows some unique piece
of information that is unknown to the others, and they can make a sequence of telephone
calls to spread the information. During a call between the given two nodes, they exchange
the whole information known to them at that moment. The problem is to find a sequence of
calls with minimum length (minimal gossip scheme), by which all the nodes will know all

pieces of a information (complete gossiping)”.
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We are now going to review the history of the Gossip Problem, the papers in which
the minimum number of calls in a complete gossip graphs with n nodes (persons) were
determined. Then we will focus on some known variations of the gossip problem and known
results here. We will conclude this section with complete overview of fault-tolerant gossipping
problem and corresponding results.

Let f(n) be the minimum number of calls that is required to complete gossipping
among n people in a classical gossiping model. It has been shown in numerous works ( [14],
[30], [29], [13]) that

f) =0 f2)=1f3) =3,
f(n) = 2n—4, forn>=4

Each of the papers above provided varying approach to prove the above result, some
of which we will discuss below.

In the proof provided by Tijdeman ( [13]) the following 2 statements were used to
determine the f(n):

1. If two people in a complete calling sequence L are interchanged at a point in time
when they have precisely the same information, the new calling sequence L’ is also

complete.

2. If in a sequence of calls L, persons A and B were identified (merged) in order for
form a new calling sequence L’, then at any point in L’ the person AB knows at least
all the information known to A and B at the corresponding point in L, which is also

true about the amount of information known to other persons in L’ and
corresponding person in L.

Apart from these statements in Tijdemans’ work it was proved that the reverse of
complete gossiping calling sequence is also complete.

The proof presented by Baker and Shostak ( [14]) was very short, but this paper was

the first one that considered also the amount of duplication of the information that is being
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transmitted during calling sequence. They introduced the idea that the calls can be made in
a way that no one hears his own (NOHO) information from another member.

Additionally, TijJdeman and Hajnal, Milner and Szemeredi ( [29]) were the first who

noticed that f(n) satisfies the following recursive relation:
fmn+1) < f(n)+ 2, forn= 4.

This was conducted based on the obvious observation that in case we have a new
member g join our initial group of n persons. If this member will call to one of the remaining
members first, then this additional information will be transmitted in f(n) calls among the n
initial gossips. In the end we will need one additional call for g to obtain all the information.

Since then many variations of gossip problem have been introduced and investigated
(see e.g. [31], [32], [16], [26], [33], [34], [35], [36], [37]])

One of the variations of the Gossip Problem that was studied was formulated by
restricting the communication pattern between people. This restriction was considered in
the studies of Harary and Schwenk [38] and Golumbic [39]. They considered a situation
when an individual can only possibly call to some subset of all the persons taking part in
communication. According to the original Gossip Problem definition there were no any
restriction on possible calls between individuals (i.e. underlying communication graph is
complete), which is not the case here. By placing such a restriction on communication graph
the following result was obtained:

If the gossip graph among a set of n people is a tree, then f(n) = 2n — 3, forn > 2.

The following important results were obtained in the mentioned papers (each of
them):

For any connected gossip graph with n vertices, 2n — 4 < f(n) < 2n—3,for n > 4.

For any connected gossip graph with n vertices which contains a cycle of length 4,

f(n) = 2n—4,forn = 4.
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So, based on the above statements the conjecture was made in both papers that if the
graph (connected) is not containing a 4-cycle then f(n)=2n-3. This was proved by Bumby [30]
later, which means
For any connected gossip graph G with n vertices, f (n) = 2n — 4 only if G contains a cycle

of the length 4.

Another known variation of the Gossip Problem that has been of interest for
researchers is the gossipping in Grid graphs. These kind of graphs are very popular and
have variety of applications, such as to model network of the streets of the city, telephone
networks, matrix manipulations and parallel computing architectures. Thus the challenge of
transmitting the information between nodes of the grid was the topic of a lot of studies ( [40],
[41]). The following 3 metrics were particularly of interest in these studies:

e T(G): the minimum time required to complete full-duplex gossiping in a graph G;
e M(G): the minimum number of calls required to complete gossiping in a graph G;
e N(G): the minimum number of calls necessary to complete gossiping in the minimum

amount of time in a graph G.

The following results regarding these functions were obtained for any grid G, ,,:
- T(Gmpy) = the diameter of G, ,
- N(Gpn) = 2mn-4, in case m and n are even

- M(Gy,) = 2mn-4, follows from [38]

Some other assumption that results to another class of generalization of the Gossip
Problem is that the information is transmitted by conference calls that include exactly k
vertices. This means that on each round there are k individuals involved in a call and after
that call all the information between them is exchanged. In such case as an underlying
communication graph was considered a k-uniform hypergraph with n vertices. In this

circumstances the following questions naturally become of interest:
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- what is the minimum number of calls (denoted f(n,k)) required to complete gossipping
in a k-uniform hypergraph with n vertices?

- what are the corresponding connected hypergraphs that allow gossipping in f(n,k)
calls?

- how many calls (f(H)) are required to perform complete gossipping in an arbitrary
connected k-uniform hypergraph?
The first question was answered by multiple authors ( [42], [43], [44]) and the

following values for f(n,k) were proposed:

ﬂmm=[%}ﬂ+hUHJSnSk2

n—kl 2
Kk—11'" "

The 3rd question was partially answered by Liestman in 1984 ( [45]). The following

k) = 2|

was conducted for f(H):
fink) < f(H) <2n-2k +1.

They also considered 2nd question and give the solution/class of solutions for it
(depending on the result of f(n,k) mod 2).

Another topic for the research is gossiping in directed graphs. It was considered by
Harary and Schwenk (in [38]), i.e. in this model the communication is one-way (half-duplex)
and thus the communication graph is directed. The following observation was made:

For any strongly connected communication graph with n vertices, f (n) = 2n — 2.

The topic was also of interest for Golumbic ( [39]), but he was mainly concentrated
on weakly connected digraphs with k strong components.

Some new variations of initial Gossip Problem definition was obtained (and also was
considered by us in our works [18]) by placing restriction on the amount of repeating

information that one can hear during the calling sequence.
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Particularly Cot ( [46]) was interested in gossip schemes that permit gossiping with
2n-4 calls and are “a-redundant” - neither of its vertices known all the information before
the final calls made by them. He found schemes that allow this for n=4 and n=8 cases.

Other similar class of gossip problems can be obtained by requiring that no one hears
their own initial information from the other (Baker and Shostak [14]). The term “NOHOQO” (No
Own Hears Own) was introduced to refer to these kind of problems/graphs. West studied
this kind of graphs (in 1982, [17]) and showed that

NOHO gossip schemas with 2n — 4 calls exist for any even n > 4 (such schemas do
not exist for oddn > 1).

A more strict restriction on the gossipping model is that duplicate transmissions
should not exist in a calling sequence at all. This class of problems has been widely known
as NODUP (NO DUPIlication) gossip problem. It was first studied by Lenstra et al. ( [47]) who
showed the existence of such NODUP gossip schemes for all n divisible by 4 and that the
number of required calls satisfies

f(n) < %n *log,n + 0(1), for 4|n.

West ( [17], [48]) found the following lower bound for f(n) and the following upper
bound (by construction):

f(n) = 2n — 3,forn > 8,
f(n) <9n/4 — 6,for 4|n
Seress ( [49], [50]) showed that:

NODUP schemes exist for all even n with the exception of 6, 10, 14, 18.
9n 9n
i 45 < f(n) < 7 3.5 forn = 2(mod 4),n > 22

In
f(n) =7~ 6 for 4ln,n =8

For both results Seress provided also construction of corresponding graph satisfying
the conditions. Apart from this Seress was interested in NODUP gossiping by conference

calls with k person involved ( [51]). He found the values of n and k for which such schemes

26



exist. Additionally, Seress observed that it is not possible to implement NOHO or NODUP
gossipping on top of directed graph (one-way calls), since if initially first individual calls
second, he will learn his own information in some of the following call along with seconds
information.

Another common variant of investigation of the gossip problem is to find the minimum
amount of time required for the gossiping among n individuals to be completed assuming
that each call takes exactly one time unit and may involve k > 2 people. The metrics of
interest here was denoted by t,(n, k) and was obtained by many researchers ( [26], [33] and
[52]) for k = 2 case and by Schmitt ( [53]) for k > 2 as follows:

to(n, 2) = [log, n], for n even
to(n,2) = [logy n] + 1, for n odd
to(n, k) = [logy n], for k|n
to(n, k) = [logy(n/(k—1))] + 1, otherwise

The above results were obtained assuming the underlying communication model has
no any restriction on the possible pairs of calling sequence (complete graph). Labahn (in
1986, [54]) considered the same in a scope of connected trees with n vertices. In case t; (T)
is the time required for complete gossiping when the underlying structure is a tree T he
showed that:

2[log,n] —1<t,(T) <2n-3,
and managed to describe such trees with 2[log, n] —1 time and calling sequence with
minimum possible time.

Landau ( [52]) was researching the one-way gossiping, where during each call an
individual could have sent own information to up to k receivers. So the metrics of interest
here was the same minimum time required to complete such a gossiping process, which was
shown to be

ty(n) = [logysqnl.
Several other researchs about the minimum time were performed by Shimbel ( [27])

and Entringer and Slater ( [55]). Their work and results was about the minimum time
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required in gossip schemes under various constraints in digraphs. For the time required to
gossip in hypergraphs with n vertices and each edge containing less than or equal k vertices
(note, not necessarily k-uniform) Schmitt ( [53]) proved that:
t(n, k) = [logg nl, if kln
t(n, k) = [logk (&)] + 1, otherwise.

Among other variations of Gossip Problem (which are much more) we think also worth
mentioning the work done by Cot (in [46]) and Richards and Liestman (in [45]). Cot
considered a model in which each call is being made by some cost that depends on the
distance between the two vertices or the number of exchanged messages. The goal was to
find a calling sequence that minimizes overall gossiping cost. While Richards and Liestman
was interested in finding the number of calls required for each individual to learn at least k
pieces of the information in a gossip graph with n vertices. They found a possible solution
for some of the values of n and k. For k < 3 they have found an exact solution and found
upper bound (by construction) for k > 4.

This section was a brief overview of all the work and obtained results that are of
interest for us in Gossip Problem. In the next section we will consider another variation of
the gossip problem - fault-tolerant gossiping, since this topic is especially important in the

context of work done during our research.

1.2 Fault-tolerant gossiping and the known results

One of the natural generalizations of this problem is the k-fault-tolerant gossip
problem, which assumes that some of the components (nodes or calls) in the communication
scheme can fail to function properly and the communication flows that include these

components will be disturbed. There is a wide range of fault classifications in a full-duplex
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whispering (and shouting) mode of gossiping (see the introduction of this work or [56] for a
complete reference) which is a direct consequence of the popularity and actuality of this
issue, but we are going to focus only on bounded, crash type, non-adaptive permanent call
faults. Some of the work done in this specific area ( [34]- [37]) serve as a solid baseline for
our research. So in our model there are only links (calls) that might be faulty and the nodes
cannot change the sequence of their future calls depending on the current failed calls. Here
the aim is to find a minimal gossip scheme, which guarantees the full exchange of the
information in the case of at most k arbitrary fails, regardless of which of the calls failed.
The gossip schemes, which provide k-fault-tolerance, are called k-fault-tolerant gossip
schemes and are typically expressed as multigraphs with the nodes representing
commonicating individuals and the edges - the calls made between them. Denote the minimal
number of calls in the k-fault-tolerant minimal gossip scheme by 7(n, k).

Berman and Hawrylycz [35] obtained the lower and upper bounds for t(n, k):

[k+4

> (n—1)]—2[\/ﬁl+1 <t(nk) < (k+;)(n—1)

fork < n — 2, and

V+3
2

3
(n= 1| -2[val < 10 k) < |k + 50— )|
for k 2 n - 2. They have also conjectured that the exact value of the seeking property is very
close to the upper bound and differs only with some constant expression: t(n, k) = (k +
3)n/2 — const. But this conjecture was disproved letter in [37].

Afterwards, Hadded, Roy and Schaffer [37] proved that
n—1
2r -1

t(n k) < (g +2p)(n—1+ + 2P)
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where p is any integer between 1 and log, n inclusive. By choosing p appropriately, this result
improves the upper bounds obtained by Berman and Hawrylycz for almost al k. Particularly,
by choosing p = [log, n /2], the following bound is obtained: t(n, k) < nk/2 + O(kvn +
nlog, n). They also conducted that the gossiping time of the their scheme differs from the
optimal one just with small multiplicative factor.

For the special case when n = 2P for some integer p, Haddad, Roy and Schaffer [37]

([ k+1 ] n 1)nlog2n’
log,n 2

(l ol J + 1)7”()2& + ((k + 1) mod log, n)(Zn —4) .

log, n

also showed that

t(n, k) < min

Thus, t(n, k) <nk/2 + 0(nlog, n), when n is a power of 2.
Later on, Ho and Shigeno [34] showed that

20 < k) < 200 ]

Thus, it holds that nk/2 + 0(n) < t(n, k) < nk/2 + 0(n?). These bounds improve
the previous bounds for small n and sufficiently large k.

Recently, Hasunama and Nagamochi [36] showed that

nlog,n nk

+—=, if nis apower of 2
k) <{ ? S
2nllog, n] +n [ > ] , otherwise
And
3n—5 1 n+1
t(n, k) = [ > ] + [E (nk + lT — |log, nj)l

Their results were based on constructions of gossip schemes using Hypercubes and
Circulant graphs as an underlying network topology. From their results it holds that 7(n, k) <

nk/2 + O0(nlog, n). Particularly, their upper bound improves the upper bound by Hou and
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Shigeno for all n > 13. They also improve the upper bound by Haddad et al. by showing that
the factor (k/2 + 2p) in their upper bound can be replaced with a smaller factor k/2 + p:

T(n,k)s(§+p)(n—1+

n—1
2P—-1

+127),

where p is any integer between 1 and log, n inclusive. They have also improved the lower
bound suggested by Berman and Paul for kK > n/2 and Ho and Shigeno’s lower bound when
n = 5.

In our work we construct two classes of k-fault-tolerant gossip schemes based on
Knodel graphs( [20], [57]) and wheel graph [21], which improve the previously known results
on the upper bound for the number of calls. The obtained expressions for n and k are:

t(n, k) <n/2[log, n|l + nk/2,

for even n, and

—
~
~
[u—

)k +3(n—1), if (kmod 3) =0,
: )(k—1)+%(n—1). if (k mod 3) =1,
(n—1)(k—2)+4(n—-1), if (kmod 3) = 2,

T(n, k) <

o Wi Wi
—
~
~
ek

w

for odd n. Particularly, for large odd n we have the below result which improved upper

bounds for some large values of n and small values of k

t(n, k) < %nk + 0(n).

For the even n, our result is a generalization of the one obtained by Hasunama and
Nagamochi for hypercubes and is based on the construction on Knodel graphs. As a side
effect our construction based on Knodel graphs also yields the minimal gossiping and

broadcasting time of the fault-tolerant gossip/broadcast scheme to be equal T(n k) =

[logzn] + k (the problem proposed by Gargano in [58] ).
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1.3 Open problems in the gossip/broadcast schemas

In the current section we are going to give brief overview of the current state of the
research in the specific area of deterministic type of gossiping/broadcasting problems and
are of interest for us. Some of these problems were already addressed in our study and
some complete solutions or bounds were obtained, while the others were raised by us (see
[22] for reference).

Problem 1. First, speaking of broadcasting in any connected graph G. As was
mentioned above the process of broadcasting can be viewed as an a bit simple variation of
gossiping, where instead of all-to-all information exchange we consider the one-to-all
information broadcasting. The broadcasting from any vertex u in G determines the spanning
tree rooted at u and the minimum time required to complete broadcasting is denoted by

b(u). The broadcast time of any graph G is defined as follows: b(G) = max {b(u) |u €
V(G)}. It is obvious that the lower bound for b(G) is [logzn] and the graphs that can perform
broadcasting in minimum time are called broadcast graphs. The complete graph K, satisfies
the following: b(K,) = [logzn], thus is a broadcast graph. But the research is interested
more on the graphs with minimal possible number of edges that are still broadcast graphs.
These kind of graphs are called minimum broadcast graphs. Speaking more formally these
are graphs G (|G|=n) for which b(G) = [logzn] and for every spanning subgraph G’ c G,

b(G") > [logzn]. The number of edges in minimum broadcast graphs is denoted by B(n).
There is no much knowledge about B(n), particularly the research that was carried out on
this ( [59], [60] and [61]) yield results for B(n) only for some particular values of n (n < 18
in general). Later Peleg ( [62]) showed that B(n) € @(L(n — 1)n), where L(k) denotes the

exact number of consecutive leading 1’s in the binary representation of k. Only this much is
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known about the behaviour of B(n) and we find it one of the most important topics to
investigate.

Problem 2. Another problem of big interest ( [63], [64]) is identifying the minimum
number of rounds (or minimum time) of the optimal broadcast and gossip (both directed
and undirected modes) algorithm, which is denoted by T(G). There are only lower and upper
bounds known for this entity. For example for deBruijn network of the size n the known
results are 1.3171n < T(G) < 1.5n + 1.5. The most recent survey by Perennes ( [65]) gives
a complete overview of the most recent obtained bounds for T(G) (that improve the one
provided above).

Problem 3. According to definition proposed by R. Labahn a graph G=(V,E) with |V|=n

even is considered to be minimum gossip graph (n-mgg) iff it is possible to complete

gossiping in [logzn] rounds using G as a communication graph and |E| has the smallest
possible value G(n) among all such graphs with n vertices. Considering the above said he
proposed the following problem that is still actual: the value of G(n) is known for n = 2P .n =
2P — 2 and n = 2P — 4. Determine the value of G(n) for all the other or (at least) suggest
lower/upper bounds.

Problem 4. There were a lot of work done by West ( [17], [66], [67], [48]) and Seress
( [49], [50]) in the specific area of NOHO and NODUP gossip schemes. Particularly they
were interested in finding such schemes for broadcasting and gossiping with minimum

possible number of calls and minimum time required to gossip. Let T(n) be the minimum
time required to gossip on any graph G with n vertices. Thus T(n) = [logzn] for any even n

and T(n) = [logzn] + 1 for odd n. However, the NOHO and NODUP restrictions generally
were not applied (or considered) when proving the above results. So, the following questions
were naturally raised by these authors (and many others):

e how does NOHO/NODUP restriction change the above results?

e what is the minimum time required to complete NOHO/NODUP gossiping on

the graph with n vertices?
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e what are the values of n permitting NOHO/NODUP gossiping in minimum time
and what are the corresponding graphs?

Problem 5. This problem is very actual and we had a chance to visit this topic already
in this current study. It was raised one more time by Douglas West in [68] and is about
“fault-tolerant” gossiping. As already was discussed in section 1.2 of the current study the
problem of finding the minimum number of edges in a fault-tolerant gossip multigraph is
still open. Haddad, Roy and Schaffer come up with the constructions that are asymptotic to
the lower bound in case of k being a growing function of n. But in practice we often need
the network to have some fixed small level of edge fault-tolerance, even if the number of
vertices can be comparably big. And in practice, there is no known construction that can

yield fault-tolerant gossip scheme with the number of vertices close to the known lower bound

of lnk/ZJ + @(n). Additionally very little is known in the sphere of vertex fault-tolerant
gossiping where the remaining part of the communication network should be able to
communicate in case of at most k vertices fail to transfer any information. As a side note,
West offered to focus also on bounded maximum degree graphs, i.e. how many edges are
needed for k fault-tolerant gossiping in case we bound the maximum degree of a
communication graph by some function f(n). This additional restriction tends to limit the
number of required lines in communication model, so that the vertices will reuse an existing
infrastructure as much as possible and the cost overall communication topology can be
reduced.

Problem 6. Let By(n)be the k-tolerant broadcast function that was defined and
studied first in [69]. This number is the minimum number of links in a network supporting
k-tolerant broadcasting in minimum possible time T. Note in this model we consider not call
failures but link failures, i.e. no call using the failed communication channel can be
accomplished. The first results regarding the functions T and B, (n) was obtained in [69]

for some particular values of n and k and are the followings:

T=[logzn]+1,k= landn > 2,
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T = [logzn]+ 2, k=2n>4andn# 2" -1,
T = [logzn]+ 3,k=2n>6andn=2"—1,
Bi(n) < [nlogzn] -n/2,n=2M,
B;(n) < [nlogzn] —-n,n=2Mm+ oliogen!
B;(n) = [nlo gzn], otherwise.
After that a lot of research was done towards obtaining the values T and By (n) (see

[61], [70], [71] and [72] for complete overview). The current state of the research for the
exact values of T had been established in case n = 2™ and the bounds had been proposed
for other values of n (suppose m = llogsz and n = 2™ +j):
T = [logzn] +k,if k<n-log,n — land,
T=[log2n1+k + lLifn—log, n <ks<n-2
T<m+k+1+lk/an—=liog,jl-Dlifk<om—m-1,
T<m+k+2+ltk-1)/m-logjl-nlifem—m-1<r<om-2.

The tightness of these bounds depends on the values of k and |, for small j when n is
close to 2L©092nland small values of k the upper bound is quite tight to log,n + k. This is not
true for large values of | and the obtained result is far from lower bound when k is large.
The exact values for T for arbitrary n and k remained unknown and are subject for our future
research.

The exact values for B, (n)were obtained only for some particular values of n and k.
Particularly, it was shown that (see [73], [58])

B,(2™m—-2) = m2m 1 -1,
B,(2™ —6) = (m—1)(2™ — 6)/2, when m is even
B,(2™) = (m+ k)2™/2
Also in [71] the construction has been proposed that supports k-tolerant broadcasting

in minimum time, and there is only a constant factor difference between the number of links
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of those schemes and the minimum value of By (n)for small values of k (k < [logsz ). The
exact value of By (n) is still open problem to solve for the researchers.

The next two problems had been raised by us throughout various stages of our
research. They both are connected with the applications of the “method of local interchange”
defined in the section 2.1 .

Open Problem 1. What are the sufficient and necessary conditions for the application
of the methods of local interchange on the k fault-tolerant gossip graph to not affect the level
of the fault-tolerance of the graph.

Remark 1: We have shown in [57] that in the case of k = O (complete gossip graph)
the application of this method on the graph still yields another gossip graph. On the other
side by using software tool designed by us and described in [23] we have noted that it often
does not affect the level of fault- tolerance of Knodel based k fault-tolerant graph. But it does
affect the level of fault-tolerance of the fault-tolerant graphs that are constructed by graph
combination method (see [20]). So we find this problem the problem of interest as it would
yield different variations for the structure of fault-tolerant gossip graph.

Open Problem 2: Is it possible to use the method of local interchange to obtain k fault-
tolerant minimal broadcast schemes.

Remark 2: With the help of Graph Plotter (see [23]) we have noted that the application

of A,” onthe G = W + W, n(see the sections 1.4 and 2.1 for definitions of mentioned

logzn],n
operations) yields minimal broadcast 1 fault-tolerant scheme with T = [logzn] + 1.

Assuming that the calls between non-overlapping pairs of nodes can take place
simultaneously, the minimum amount of time T (n) required to complete gossiping is [logzn]
for even n and [logzn] + 1 for odd n. As it is shown in [32], any gossip scheme on n > 4

vertices with 2n — 4 calls has at least 2[l0g2n] — 3 rounds.
Open Problem 3: Is it possible by the help of the method of local interchange find the

minimum number of calls of a gossip scheme with time (rounds) T(n).
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1.4 Some common definitions and notations of gossip problem

In the current section we are going to focus on providing the definitions of the entities
that are of importance for the our study. We are going to refer to the definitions and
notations of this section from the rest of the work. This section is also somehow complements
the definitions that were already presented throughout the work. Let us start with the basics,

the first thing we want to focus is the gossip graph definition.

Definition. A gossip scheme (a sequence of calls between n nodes) can be
represented by an undirected edge-labeled graph G = (V,E) with n vertices (|V| = |[V(G)| =
n). The vertices and edges of G represent correspondingly the nodes and the calls between
the pairs of nodes of a gossip scheme. An edge-labeling of G is a mapping tg:E(G) - Z,.
The label t; (e) of the given edge e € E(G) represents the moment of the time, when the

corresponding call was occurred.

A sequence P = (vy, €1, V4, €3, Vs, ..., €, V) With vertices v; € V(G) for 0 <i <k and
edges e; € E(G) for 1 < i < k is called a walk from a vertex v, to a vertex v, in G with length
k, if each edge e; joins two vertices v;_; and v; for 1 < i < k. A walk, in which all the vertices
are distinct is called a path. If t;(ei) < t;(ej) for 1 <i <j <k, then P is an ascending path
from v, to v, in G. Given two vertices u and v, if there is an ascending path from u to v,
then v receives the information of u. Note that two different edges can have the same label
only in case they are not adjacent. Since we consider only (strictly) ascending paths, then
such edges (i.e. calls) are independent, which means that the edges with the same label can
be reordered arbitrarily but for any t; < t, all the edges with the label t; are ordered before

any of the edges with the label t,.
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Definition. Let P = (ey,e,,...,e) be a path with edges e; e E(G) for 1 < i<k ina
labeled graph G. If P is divided into s+ 1 subpaths Py = (ej,ez...,ep,), Pp) =
(ep,+1s-+-1€p,)s -y Pisi1y = (€p,41,---,€x), then we write P = Py © P@ © O P+
1), where © is the concatenation operation on two paths for which the last vertex of one path
is the first vertex of the other. If P = Py © P@ O O Pi+1) such that Py is an
ascending path for 1 < j <s+1 and Py © P41y is not an ascending path for 1 <j <s,
then P is a s-folded ascending path in G. For an s-folded ascending path P, the folded number

of P is defined to be s.

Definition. Consider two graphs G; = (V,E;) and G, = (V,E,) with the same set of
vertices IV and labeled edge sets E; and E;, respectively. The edge sum of these graphs is a

graph G; + G, = G = (V,E) with E = E1 U E2, whose edges e € E are labeled by the following

rules:
te, (e), ife€E;
te(e) = {th (e) + max tg,(e"), ife€E,’
The edge sum G, + G, + -+ + Gy, of h identical graphs (G; = G, = ... = G, = G) is

denoted by hG. Each set E(G;) in hG is denoted by E;(hG), i.e. E(hG) = Uq<i<h Ei(hg) .
Note that the labels of the edges in E;(hG) are greater than the corresponding edges in E(G)
by (i — 1) * max .o t;(e). Given a subset of edges A € E(G), denote its copy in the set
E;(hG) by A;. By this analogy, a path P in G as a subset of E(G) has a copy in E;(hG), which
we denote by P;.

The Knodel graphs along with Hypercube and Circulant graph is one of the most
popular network topologies for implementing gossip problem. They have been introduced
about 43 years ago ( [33]) and are defined only for even order n and for some degree 1 <

A < |log, n]. More formally the family of Knodel graphs were defined They have been very
widely studied as an interconnection network, because of their good properties in terms of

broadcasting and gossiping. Particularly, the Knodel graph of order 2* and the degree k are
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equally popular interconnection networks in the literature as the hypercube H) and the
recursive circulant graph G(2%,4), since all of them can perform gossiping (also
broadcasting) in minimum possible time. We think we should denote an emphasized attention

to these graphs since we use them a lot in our studies.

Definition. The Knodel graph on n > 2 vertices (n even) and of degree A> 1 is
denoted by W, ,,. The vertices of W), are the pairs (i,j) withi = 1,2and 0 < j < n/2 —
1.Foreveryj,0 < j <n/2 —1land!l = 1,...,A, there is an edge with the label [ between
the vertex (1,j) and (2, (j + 2171 — 1) mod n/2).

An example of Knodel graph is shown in Flg. 1. Note that W, , consists of n/2

disconnected edges. For A > 1, W,, is connected.

(1,0) (1,1) (1,2) (1,3) (1,4)
AN - ‘:‘_\ - 1
\\ o \.\";.: 2 —————-
,""SE — - ’__:-‘:\--\ Tearl N 3 ______________
(2,0) (2,1) (2,2) (2,3) (2,4)

Fig. 1) The Knodel graph W3,10 with a number of vertices n = 10 and degree A = 3.

The solid, dashed and dotted edges are labeled correspondingly 1, 2 and 3 in the above

graph.

Definition. The interval between two vertices (a, ) and (y, d) in the Knodel graph

Wilog2 nj,n is defined to be
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( 6 —p, if 6 =2 fand x=1,
g—w—m, if 6<pand o=1,
RUB: 0) =" |5_p,  if5<pand x=2,

n
ki—(c?—ﬁ), if 6§ >pBand «x= 2.

Throughout the study we often refer to the concept of the isomorphism of the gossip
graphs. Since these are weighted graphs and there is no commonly accepted definition of
this concept for weighted graphs, we will bring the definition here and will refer to it when

using this concept.

Definition. Two weighted graphs G and H with the order n are considered to be
isomorphic to each other, if and only if there exists a bijection between the vertex set of these
graphs - f: V(G) = V(H), so that if the vertices u and v are adjacent in G then the vertices

f(u) and f(v) are also adjacent in H and tg(u,v) = ty(f(u), f(v)).

Further let us focus on the definition of fault-tolerance in communication graphs,

since we are going to (and already did) refer to this concept a lot throughout this study.

Definition. The communication between two vertices of G is called k-failure safe if an
ascending path between them remains, even if arbitrary k edges of G are deleted (the
corresponding calls are failed). The graph G is called a k-fault-tolerant gossip graph if the

communication between all the pairs of its vertices is k-failure safe.

From the Menger theorem [74] about edge connectivity between nodes, it follows that

a k-fault-tolerant gossip graph is a graph whose edges are labeled in such a way that there
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are at least k + 1 edge-disjoint ascending paths between two arbitrary vertices. A O-fault-
tolerant gossip graph is simply called a gossip graph.

One important note, since we speak about multigraphs in case of fault-tolerant
gossiping/broadcasting, we should make clear distinction between the edges and links of the
graph. The link is a communication channel that connects two vertices to each other, while
the edge of the fault-tolerant graph only represents the one single communication event
between the two vertices. From the above said, we can conclude that the link can contain
multiple edges and we should refer to the terms “minimum number of edges” and “minimum
number of links” as a subject of different discussions.

Now that we have provided definitions for some common terms used in our study we
can proceed with the next sections in this chapter, where our main focus will be on listing

the theoretical results obtained by us with corresponding analytical proofs.
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Construction and investigation of the optimal gossip and

fault-tolerant gossip schemes

2.1 Description of the method of local interchange

As we have already mentioned, the gossip process can be easily modeled as a graph,
whose vertices represent people in gossip scheme and edges represent calls between them
(each of them has weight which represents the moment when communication took place). So
the graph is called a complete gossip graph if there are ascending paths between all pairs of
vertices of this graph.

In the current section we are going to define the method of local interchange which
we use throughout our research extensively.

Denote the set of edges adjacent to a given vertex v by E,(G) . Given an edge e and
one of its two endpoints v, we consider the following two subsets of the set E, (G) :

p, (e,G) = {e'€ E,(G)|ts(e) =ts(e)},
p, (e,G) = {e'€ E,(G) | ts(e) <ts(e)}

Sometimes we omit the argument G in notations.

Definition. An identification of two vertices v; and v, [13] in a gossip graph G is a
gossip graph G’ , which is defined as follows: The edges between the vertices v; and v, are

deleted and these two vertices are replaced by a vertex u, whose set of incident edges is

Eu(G’) = Evl (G)u Evz (G).

An interchange of two vertices in a calling scheme is defined as follows: started from
the indicated moment of a time to the end of the calling scheme two vertices (and the edges
adjacent to them) are replaced by each other. In this work we leverage the concept of local

interchange, i.e. an interchange that is defined only for adjacent vertices.
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Definition. The permute higher operation P*(e) on a selected edge e€
E(G)connecting vertices u and v is called a modification of G, which moves the edges of G

adjacent to e as follows:

E (P (e)G) = pu (e,G) U pv+(e' G),
EV(P+(e)G) =py (6,G) Up,* (e G).
Correspondingly, the permute lower operation P~(e) moves the edges of G adjacent

to e as follows:

E,(P~()6) = pu*(e,6) U p,~ (e, 6),
E,(P~(e)G) = p,*(e,6) U p,~ (e, 6.

The operators P*and P~are called the operators of local interchange.

Lemma. The result of the application of the operators of local interchange on a

complete gossip graph is also a complete gossip graph.

Proof. Actually, if a call between two participants takes place at the moment ¢t,, started from
that point they both have the same information and are equivalent in the context of gossiping.
Hence, if we interchange all the calls that were initiated or participated by these two vertices
afterwards (permute higher), our new gossip scheme would also be complete. At the same
time neither the number of edges, nor the number of rounds required to perform gossiping
were changed. The same assumptions could be made in case of permute lower operation.

Let us define an operation on gossip graphs A" = P*(e;)P*(ey)...P*(ey) (A™ =

P~(e1)P~(ez)...P~(ep)) is the sequence of permute higher (lower) operations on edges

el-,i = 1,...,p.

Lemma. The result of the operation A*(A~) does not depend on the order of the edges

e;.

43



Proof. Without loss of generality we can only consider the permute higher operation A* with
p = 2. Assume that t;(e;) < t;(e;), where t; is edge-ordering of gossip graph G. There are
two possible cases:

1) Edges e; and e, are adjacent. In this case, if A* = P*(e;)P*(e,) after P*(e,) all the
edges which are adjacent to e; including e,) will change their endpoint from one endpoint
of e, to another and after P*(e;) all the edges e for which t;(e) > t;(e;) also will be
permuted. If AT = P*(e,)P*(e;), then after the first phase of A* all the edges with t;(e) >
tc(e;) will be permuted and after the second phase all the edges which are adjacent to e;
and have t;(e) > tg(e;) (including e,) will also be permuted. These operations are
demonstrated in the following figure. It is obvious that the result of these two variations of
A" is the same.

2) Edges e; and e, are not adjacent. This is a simpler case in which the operation
P*(e) on one of them does not affect directly the other. So, it is obvious that all the variations
of A* are equivalent. [

2 2
1/T 1, 3/.
L
2
. e

Fig. 2) Equivalence of different variations of A*
So, in this section the operations of local interchange and their main properties were

described. In the next section we give some application of the operations described here.
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2.1.1 Application of the method of local interchange in determination

of minimum number of calls of gossip graphs

Theorem. The minimum required number of calls in complete gossip schemes is

2n—-4,n = 4.
Proof. As already mentioned in the introduction it has been shown in numerous works ( [14],
[13], [30], [29]) that the minimal number of calls in gossip schemes is 2n-4, where n is the
number of vertices. In this section we will prove this statement in a completely new way,
which is based on the operations of local interchange.

Let us denote by f(n) the minimum number of edges required to construct a gossip
graph on n vertices. There are many solutions of this problem that give the number of edges
(calls) equal to 2n - 4. Therefore, f(n) < 2n — 4is valid. So, the important part is to prove
that f(n) = 2n — 4 also.

Consider a gossip graph with n vertices and the number of edges equal to f(n) . Our
goal is to prove that f(n) > f(n — 1) + 2. After that, taking into account that f(4) = 4 we will
get that f(n) > 2n —4.

Suppose we have a graph G with f(n) calls. There are 3 possible kinds of graphs
depending on the repetition of information.

1) It contains a cycle. Suppose a C = (ey,e5,...,e,)is a cycle with length p and the

edges e; and e, are adjacent to the vertex v (see below).

1

Ay
Ly
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Fig. 3) Cycle C in gossip graph

The simplest case is if p = 2. If this holds, we can apply an operation of the
identification of two vertices connected by this multiple edge which is described in the section
above. Obviously, after this operation on complete gossip graphs, the obtained new gossip
graphs are also complete (it does not affect on ascending paths between the pairs of vertices).
Hence, our new graph G’ with n - 1 vertices has |E(G")| = f(n — 1) edges. On the other
hand G, is obtained from G by removing two edges and merging two vertices, thus |E(G")| =
f(n) — 2. Hence, we obtain f(n) > f(n — 1) + 2.

Now consider the case of p # 2and an operation A~ = (P~ (e;), P™(e3)... P~ (ep-1))-
As it was proved in the previous section the result of application of this operation on a
complete gossip graph is also a complete gossip graph. In the result the edges e;and e,will
join and form a double-edge. Thus, we came to the case of p = 2. Further steps are described
above.

2) There are no cycles (NOHO graphs). In this case we can refer to [17], [66], but let
us also consider this case. Let L; = (eq, e,,...,e,) and L, = (I4,L,,...,1,,) be ascending paths
from the vertex v to the vertex u.

Let us define the operations

A, = (P (ex)P™(e3)...P (en-1))
A =P (L)P(3)...P  (Lin—1))

on gossip graph. After the application of these operations we will obtain a tetragon which
involves the vertices u and v and the edges ey, 4, e,,, l,,. Then we choose the greatest from
the pair e;, [, and apply "permute lower" operation on it. We will obtain a triangle that is also

a cycle (case 1) . This process is demonstrated in the following figure.
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Fig. 4) Ascending paths in gossip graphs
3) There are no duplicates of information (NODUP graphs). In this case there is
exactly one ascending path between any pair of vertices. It has been shown in [21], that in
this case f'(n) = 2.25n — 6,n = 4k, k > 2, where f'(n) is the minimum number of edges of
NODUP graph and it intersects with 2n-4 only when n = 8. So, if it is a NODUP graph, it
always has more edges than 2n - 4 and the only exception is the case when n = 8. Case of n

= 4 was not considered in [50], but in this case f(n) and f'(n) also coincide.

2.2 NOHO graphs based on Knodel graphs

In [68] it was mentioned that the minimum time needed to complete gossiping is [logzn]. In
[75] a problem of finding minimum time of gossiping in case of NOHO graphs (see “Open
Problems” section) was raised. In this section we will show a new method of construction of
NOHO graphs with minimum gossiping time by applying an operation of local interchange
on Knodel graphs ( [12]).

As per definition brought in previous chapter the Knodel graph is connected only if 4 > 2.We

will consider Knodel graphs with 4 = [logzn].
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Fig. 5) Gossip graphs constructed based on Knodel graphs (G = Wog,n1n + Win)

It is common knowledge (for example proof see [57]) that the combination of two Knodel

graphs with 4; = [logzn] and 4, = 1 is a complete gossip graph (see Fig. 5 above). Let us
define the operation 4;,” = {P~(e)|t;(e) <!} as an operation of permutation of all edges
that have lower weight value (or label) then I. After application of 4, on Knodel graphs all

edges with label 1 will be permuted (see Fig. 6 below).

P al

Fig. 6) NOHO graph based on Knodel graph

Lemma: The result of application of 4, on complete gossip graph based on

Knodel graph is a NOHO gossip graph with minimum gossiping time T = [logzn].

Proof. Without loss of generality we can consider only the permutation of an edge
that connects vertices (1, 0) and (2, 0). This edge has two adjacent edges with label 2, hence,
after A, it will change its position twice. So, after this operation the vertices that connect
this edge are (2, 1) and (1, n/2 - 1). These vertices were not connected in our initial graph

(according to the definition of Knodel graph), hence, after A, there will be no duplicate
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edges. On the other hand, here we apply an inverse operation of the operation described in
the previous section of case 2. Really, after permutation of this edge the vertices (1, 0), (2,
0), (2, 1) and (1, n/2 - 1) and edges with labels t;(e;) =1 , ts(e;) =2, ts(e3) =2 and
ts(es) = [logzn] will form a tetragon which is not a cycle. Thus, we exclude the possibility of
existence of cycles after this operation. Hence, after application of 4,~ we obtain a NOHO

graph which is equivalent to our initial complete gossip graph. Moreover, the gossiping time

of the obtained graph is obviously [logzn], which is the smallest possible gossiping time
among all the types of gossip graph, thus the NOHO restriction had no impact on this

property.

2.3 Minimum gossip graphs

In the current section the method of construction of Gossip graphs providing a full
information exchange with minimal number of calls (2n-4) in minimum possible time is
described. The basis for the graphs of the presented class is the subgraph of canonical form
obtained from NOHO graphs by applying the operation of local interchange on them (that
was already describe in previous sections).

In [66] the class of NOHO graphs was described, which were gossip graphs with n
vertices and 2n-4 calls, where no one from participates listens to its own information.
Further, in [15], this problem was considered and a wrong inference was made about the
structure of the minimum gossip scheme. According to it, all minimum gossip schemes
consist of a cube and eight minimum broadcast trees attached to its corner points. Later in
[32], this statement was negated and it was shown that the proposed schema was only a
particular case of the structure of minimum gossip graphs. In general, the inner kernel of
the gossip graph with 2n-4 calls, which were presented in [32] as a poset of the edges of

graph and represents their relations (lateral graph) , could be isomorphic to cube, "twisted"
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cube and p-grid-kernel. In the current section we are going to present different ways of
construction of the minimum gossip schemes. In [15] and [32] it was shown that the time

required to perform gossiping with minimum number of calls and minimum time (in other

words - with minimum number of rounds) is at least 2[log2n] — 3. The methods that allow to
construct minimum gossip schemes were also considered that have an underlying basis (a
minimum gossip graph) for gossiping, and new vertices participate in gossiping by forming
attached trees which are connected to basis. It is obvious, that if the basis has a minimum
number of edges, then the full graph would also have the same. Hence, the main problem
here is to perform gossiping in minimum time. In other words, the time in which the basis
performs gossiping should be minimal and the corresponding attached trees should not
affect it. So, our goal is to construct such gossip schemes with variety of size of the basis.
As was mentioned above, we will start from the application of operation A* defined in
[18] (and described in the previous sections of this chapter) on the NOHO graphs. Let us

bring the definition of this operation again.
Definition. Let us define an operation on gossip graphs A" (e e,,...,e,) =

(P*(e1)P*(ez)...P*(ep)), A (e1, €z ...,€p) = (P~ (e1)P~(ez)...P(ep)), is the sequence of

permute higher (lower) operations on edges e;,i = 1,...,p.

/e ° : * ) °
5 1
| 5 /
(2 ] 5 Q@ . Q

Fig. 7) NOHO graph

e

w
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An application of the operations A*(ey,e,,...,e,) and A* (e, e;’,...,e,") on NOHO
graphs (see Fig. 7 above) gives as new "canonical" form of minimum gossip graph, which is
a more convenient form of basis (see Fig. 8 below) for our constructions. Here p = 3 and
the edges eq, e,,e3 (e1,e3’,e3") are highlighted in red.

After this transformation the obtained graph will be used as a basis with size k = n'/2,
where n’ is the number of vertices of the basis. Now consider the new set of vertices with
the same size that communicates with the given set by incoming and outgoing calls. Let the

number of rounds by which such communication takes place be denoted by r.

o
2 3 4 5
o 5] o 1° ]
1
(1, 51 i1, 51 (1, 51
1
2] Qo o o

Fig. 8) Minimum gossip graph in “canonical” form
Obviously, the number of rounds to perform gossiping will be at least 2r + k. This
estimate will be reached only if the attached trees would not affect gossiping process of the
basis. It means, that the process of involving new vertices in gossiping should be in parallel

with the main gossiping process of the basis.
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Fig. 9) Minimum gossip graph (n=24, k=3, r=2)

Hence, we have to modify the form of the basis such that we could make in-calls and
out-calls with the attached trees in process of gossiping of the basis. For that, we should
reorder the calls of the basis, in such a way that it will be possible to make such in-calls and
out-calls. In other words, the calls between two parts of gossip scheme should have an
increasing and decreasing order. An additional note is that depending on r the number of
attached vertices increases exponentially. Such gossiping process for n = 24 is demonstrated
in the above figure, where r = 2 and k = 3.

Obviously, the number of rounds required to perform gossiping is T' = 2r + k which
coincides with the minimum possible number of rounds for some values of n, but this scheme
is not the only possible one to perform gossiping in minimum time. By changing the size of
the basis (k) and number of rounds of the "batch" calls (r) a new minimum gossiping scheme

will be obtained (see the Fig. 10 below).

52



B
(1]
® D
2 3 4 s g 742,61
{1, 7} 1, 7} {1, 7}
(2] © 9 Q 16 7]
1
{1, 7} {2, 6} {3, 5} {2, 6} {1, 7}
1
1] ® & ® L0} (5 ]
1,7} 11,7} {1, 7}
ok T & 5 4 3 2
(5]
b1}
{1,7}
D

Fig. 10) Minimum gossip graph (n=24, k=7, r=0)

From these examples it is obvious that in each round new vertices are included in
communication, but the number of these vertices is limited. So, taking these into account the

following lemma could be formulated.

Lemma: The number of vertices in minimum gossip graph with the size of basis

k and the number of rounds of the "batch” calls r is limited by the following estimates:
n < 2K2+TH1 £ | is even,
n < 3 20"V/247 i £k is odd.

Proof. To prove these estimates let us consider the process of gossiping more
detailed. Let us divide the number of vertices that could be involved in gossiping into two
components n, and n,, where n, is the number of vertices which are involved in gossiping
process via "batch" calls and n, is the amount of vertices involved in gossiping through the
attached trees. The dependency between the number of rounds of the "batch" calls  and
the n; number of vertices is obvious - n; < 2" * 2k. On the other side, it is easy to note that

the number of vertices involved in the attached trees is n, = 27 * (2 Zifﬁ/zy_l(k — 20)2172)
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and it also depends on r in exponential rule. Altogether, by considering that n = n; + n, for
the number of vertices of the minimum gossip graph we get the following estimate:
n <2 %2k + 22 Nk - 20)2i72).

So, from this expression the estimates mentioned in lemma immediately follow.

(]

However, in case of even k it is possible by changing the structure and gossiping time
of basis to reach more vertices involved in gossiping. The example given in figure below
demonstrates this for k = 8. According to lemma the number of vertices in this case is n <
32, but we increase the number of rounds of basis by one and change the direction of the
"middle" calls and it gives us the opportunity to involve 8 new vertices in this modified
“twisted” gossiping scheme. In fact, our modification has changed the structure of the
standard p-grid-kernel to one of its linear extension (see. [32]) and the number of new
vertices involved in gossiping process after this modification is 2k/2+7-1,

Now let us consider the number of rounds which are necessary to perform gossiping

with minimum number of calls. Let it be denoted by T. As it was already mentioned T =

Zflogzn]— 3. Our goal is to show the dependency between T and n depending on the
construction of gossiping scheme. In other words, we offer the method of construction of
minimum gossip graphs for the particular values of n, where the values of k and r can vary.
Let T' be the minimum number of rounds of the gossip scheme with 2n — 4 calls, the size of

the basis k and the number of rounds of "batch" calls r.
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Fig. 11) Minimum gossip graph (n=40, k=8, r=0)

Theorem: In gossiping scheme with the size of the basis k and the number of
rounds of the "batch"” calls r the number of rounds necessary to complete gossiping
among n nodes is:

T' = 2[log2n] —2,if k is even,

n
T = 2[log2§] +1,if kis odd.
k T
Proof. In case of even k we have n < 2z7"*! = 22%! since T’ = 2r + k, it follows that

k-1
when n has the form as above then T’ = 2[log2n] —2.Whenkisoddn<3%2z 7 =3x

Tr-1
"2, hence T' = 2[log2§]+1. Moreover, by considering the "extended" values of n

k k
obtained after modification described above (when it is even) we have n < 22" 4 22*771,
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Since, hereT'=k+1+2randT' = 2[log2 %] + 3 follows immediately. It is obvious, that for

some values of n, T’ coincides with minimum possible number of rounds 2[log2n] — 3. Hence,
in these ranges of n the values of k and r can vary and give different construction options
of minimum gossip graphs. In the below figure some of these ranges are demonstrated, the
construction is minimum in the following ranges ranges: {[5-6], [9-12], [17-24], [33-48], [65-
96],[129-192], [257-384], [513-768], ...}.

2.4 Gossiping properties of the edge-permuted Knodel Graphs

In this section we are discussing the Knodel graphs and their main gossiping
properties. As it is known, the Knodel graphs of order 2%, and degree k, are one of the three
most known families of the interconnection networks, along with the hypercube of dimension
k, Hi( [76]), and the recursive circulate graph G(2%, k) ( [77]). These 3 kind of networks are
commonly used as an underlying topology for computer networks, and are similar because
of the same number of vertices and degree. However, in this section we are also going to
present gossiping properties of Knodel graphs with the order other than 2%

Here we first survey a graph-theoretical results known about the Knodel graphs, then
we focus on gossiping and broadcasting properties of these graphs. In the next subsections
we are trying to present our research regarding the gossiping properties of the so-called
“edge-permuted” Knodel graphs. As the name suggests, these are the modification of the
Knodel graphs that result to a cyclic permutation of the edge weights. It appears that these
graphs also have interesting properties in terms of gossiping.

Knodel graphs have been first introduced in 1975 in [33], where they were used for
time optimal gossip graph construction. As a graph family they were introduced about 20
years later by Fraigniaud and Peters in [78]. As already was defined, these graphs are

regular, symmetric graphs of even order n and degree 1 < A< |log, n|. It is known that for
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any 1 < A< |log,n] Knodel graph W,, is a vertex-transitive, edge-transitive (and, thus,
symmetric) and for any even n and 1 < A< |log, n|

o edge-connectivity of Wy, is A(Wy,,) = A,

e vertex-connectivity of Wy, is 2A/3 < k(W) < A.

It is also known that Knodel graphs have minimum possible broadcasting and
gossiping time:

b(Wiiog, nin) = 9(Witog, nin) = l10g2nl.

As we have already mentioned in this work we consider only the unit cost gossiping
model, where each call takes exactly 1 unit of time. But the Knodel graphs themselves serve
as an optimal topology for liner-cost gossip as well. In this mode the time that the
communication between two u and v vertices consists of two parts: fixed start-up time g and
a propagation time L,. Later is proportional to the length L of the message exchanged.

In the following table we are summarizing the known gossiping and broadcasting

properties of various Knodel graphs, both in a linear-cost and unit-cost modes:

W ok Minimum Time Broadcast Graph
Minimum Time Gossip Graph

Minimum Time Linear Gossip Graph

W12k Minimum Time Broadcast Graph
Minimum Time Gossip Graph

Minimum Time Linear Gossip Graph

W1k g Minimum Time Gossip Graph

Minimum Time Linear Gossip Graph

Wi _12k_g Minimum Time Linear Gossip Graph
Wi—2n Broadcast Graph
2t +2<n<3%22 -4 Linear Gossip Graph
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Gossip Graph

Wi-1,n Broadcast Graph
3x2K2—4<n<2"-2 Linear Gossip Graph

Gossip Graph

One important note here, when referring to the phrase “Minimum Time” in the above

table we intend to refer to graphs with the minimum possible gossiping and broadcasting

times and, in the same time ([logzn]), with minimum possible number of edges under the
previous condition.

Additionally, apart from the above results where were only considered undirected
Knodel graphs, there are also known results that proof the optimal characters of the directed
Knodel graphs as an underlying gossip/broadcast topology. Remember that in this mode the
links between the vertices are only one-way (half-duplex mode) and the information can only
flow in one direction.

As already was mentioned our study is all about the edge-permuted Knodel graphs.
In case of these graph the dimensions of the edges are used in a different way, thus let us

bring here the definition of these graphs.

Definition. The edge-permuted Knodel graph with even number of vertices n and the

degree 1 < A< llogsz is denoted by M, , (p). The vertices of M,,(p) are pairs (i,j); i =
1,2; 0 <j<n/2—1, where for each j and [ = 1, ..., A there exists an edge in dimension [
between the vertices (1,)) and (2, (j + 2P*'"1 — 1) mod n/2), where p is any integer in the
range p € [0,A —1].

In the following subsections we will consider 3 different cases based on the number
of vertices. We are going to present a new method of proof regarding the gossiping
properties of these graphs for some of these cases (since they were already discussed in

[73]), as well as provide the complete proof for general even number of vertices.
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2.4.1 Edge-permuted Knodel Graphs with n = 2¥- 2 Vertices

In this section we are going to consider the modified Knodel graphs with the number
of vertices equal to n = 2¥-2, where k is any integer k > 3. According to the definition of

modified Knodel graphs, there exist A —1 modifications for each W,,. As already was

mentioned in this research we consider only the case when A= llogsz , and this value is

assumed for all references of A onwards.

Defnition. Consider two graphs G; = (V; E;)and G, = (V; E,) with the same set of
vertices V and labeled edge sets E; and E,, respectively. The edge sum of these graphs is a
graph G;+ G, =G=(V; E) with E=E; UE,, whose edges e € E are labeled by the

following rules:

tG1 (e)' lf e€ El
te (e) = {th (e) + max te, (6’). if e €E,
el€EE,

where t;(e) is tha label of the edge e in the resulting graph G.

It is known that if G = W,,, + W,,, then G is a complete gossip graph. Let us first

consider the graph G' = My ,(p) + M1 ,(p), p =A—1and n = 2% — 2.
Theorem. The graph G' is a complete gossip graph.

Proof. Since this graph is symmetric, it is enough to show that there exists an ascending path
from any other vertex to the vertex (0, 1). Let us consider the subgraph of G', SUB,, which
includes the vertices (i,j), where i = 1,2 and 1 < j < A. Let us particularly focus on an edge
in dimension 1 between these and (1,;) vertices, where 22 < j' <n/2. The same is true
about the vertices (1,j) and (0,j"), where 1 <j <22 and 2% <’ <n/2. It is obvious that

these edges connect all the remaining 2% — 2 — 24 = 24%1 — 24 _ 2 = 28 _ 2 vertices to the
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SUBg,. On the other hand, we have that SUB;, is a tree rooted at the vertex (0,1). Thus,
there exist ascending paths between every vertex of SUB;, and the vertex (0,1). Considering
the fact that each edge in the SUB;, has dimensions greater than 1, it follows that there exists
an ascending path between any other vertex and the vertex (0,1). The two facts that the
choice of the vertex (0, 1) was arbitrary, also the modified Knodel graph being symmetric by

construction, point out to complete gossiping of G'.

Corollary. The graph G = M,,(p) + My ,(p), 0<p<A—1 and n=2%—2 is a gossip

graph.

Proof. It is an easy exercise to verify that M, ,, (llo gsz — 1) is isomorphic to W, ,, (for detailed
proof refer to [73]). Thus it is obvious that G is isomorphic to Wy, + W, ,,. Hence, we can
repeat this procedure, and each time we will obtain a new M, ,,(p) + M1 ,,(p), p =A—1,A -

2, ..., 1, that are isomorphic to each other and to initial W, , + W, ,,, in case n = 2% — 2.
2.4.2 Edge-permuted Knodel Graphs with n = 2* Vertices

In this section we consider modified Knodel graphs with 2% vertices. Knodel graphs with 2%
vertices are diferent in terms of gossiping since W, is actually a gossip graph. Hence, in
this case there is no need to add W, ,, to get a complete gossip graph. To start with, let us

consider M, ,(2).
Theorem. The graph M, ,,(2) is a complete gossip graph.

Proof. Let us start the proof by applying the following transformation on the vertex set of

this graph V. The elements of this set are the pairs (i,j). In case of i = 1, if j is odd, then
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Jnew = /2] and jpey, = g + |j/2], otherwise. If i = 2, the rules are as follows: j,.,, =j/2 in
case j is even, and jpe,, = = + /2] in case of odd j.

We obtain two components that are Knodel graphs with the number of vertices equal
to n/2, and these components are connected by the edge of label A. Therefore, if we simply
remove these edges, then there will be two disjoint components which are Knodel graphs by
themselves. And there is a one-to-one call mapping between the vertices of these two
components with the calls labeled by log, n (highest labeled edges). Obviously, this graph is

a complete gossip graph.
Theorem. The graph M, ,,(p), where p + 2, is not a gossip graph.

Proof. To start with the proof, let us recall our method for modifying gossip graphs (method
of local interchange [18]). The operations permute higher and permute lower were
introduced to modify the topology of the graph without changing its main gossiping
properties (number of edges, number of rounds, etc.).

Let us denote the subset of the edge set of graph M with the weight wy;, = log, n —
i+2byE', and its elements by ¢,’, where [ = 1,2,...,n/2. The operation A;l, should apply
the “permute lower” operation on all the edges of E’ resulting in a completely new graph.
There would obviously be duplicate (double) edges in this graph, since the edges with weights
Wrix — 1 and wy;, + 1 would connect the same vertices. Hence, taking into consideration the
fact that gossiping time, i.e., the number of rounds required to complete gossiping in Wy ,,
was log, n (which is the most optimal possible value of this property), the graph M, ,,(p) is

proved to be a non-gossip graph.

2.4.3 General case of edge-permuted Knodel Graphs with n

not equal 2
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In this section we are going to focus on the general case of the number of vertices
being not equal to 2¥. We are going to show that, generally, the modified Knodel graphs
show the same gossiping properties as the initial Knodel graphs, although in general they
are not isomorphic graphs. Additionally, the results obtained in this section will let us to
construct edge-disjoint ascending (sometimes, with folds) paths between any pairs of vertices
in the Knodel graph.

First, let as recall some of the important definitions that were already presented in
the work here, as well as give several new definitions.

Definition. A path P = (u, eq,v4, e,,v,,..., e, V) between vertices u and v in a weighted graph
is said to be ascending if for each e; and e; t;(e;) < tg(e) for 1 <i<j<k.

It is known that if G = W, ,, + W, ,, then G is a complete gossip graph.

From now on, when mentioning the vertex u = (i, j;), we assume that i; = 1 and j; =
0. Since the Knodel graphs are symmetric, the same assumptions or statements are true for
every other vertex u’ = (1,/").

Definition. The distance from the vertex u = (iy,j;) to the vertex v = (i,,j,) of the
Knodel graph where (j; + 2!'°82™Ymod n/2 > j, can be calculated by the following formula:
Dyy = iy = iz| + |j1 = J2l

It is obvious that for each vertex u of the graph there exist two vertices v, = (i, j;)
and v, = (i3, J), such that D, ,, =D, ,, and i; # i,. Let us consider the vertices v; and v,
to be “clones” of each other. As we have already introduced the modified Knodel graph and
the distance between its vertices, we can now define a “base” for this graph.

Definition. The “base” of the modified Knodel graph, relative to the vertex u =
(i1,j1), are all the vertices v, such that 0 < D, ,, < [log, n].

Let the vertex u be called the “root” of the base.

Let us now consider the path between the vertex u and some vertex v that belongs to

the “base” of the modified Knodel graph relative to the vertex u, in the original Knodel
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graph. For that purpose, first we represent the distance defined above in the base-two
system.

Next, we transform the base-two representation of the distance into a sum that will
result to the original distance (in base-ten system), also to a path representation between two

vertices.

Definition. Let Path,,,, be equal to the sum resulting in D, ,,, the terms of which are
represented by different powers of two:
Path,,, = Zf:o sp* (241 =2h),

where k = D,,,, and s5; = 0 or 1, depending on the base-two representation of the D, ,,.

By simplifying the above expression, we get a new expression for the Path, as follows:
Path,,, = 2k*1 — 2k 4+ 2k=1 4+ 2°. Note, that it can appear that the Path,, presents the
path between the vertex u and the clone of the vertex v. Will come back to this case and
discuss it separately.

Let us now define the transformation on the Path,, ,, that will result in a completely
new Path,, ,, which will show the ascending path between any pairs of vertices u’ and v, where
u' is the vertex different from the original destination vertex u and is located inside the

"base” of the edge-permuted Knodel graph.

Definition. The operation T(Pathy,) = T(2k*1 — 2k 4 2k-1 4+ 2m) =
Pathyq,2my,, = (Path,, — 2™), where Path,,, — 2™ is a new path obtained as a result of the
transformation T on the Path,, ,, M(u,2™) is a new vertex such that D, v .m) = 2™, where

m is the exponent of the smallest member of the Path,, ,,.
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The figure below illustrates the result of the application of the operation T on the
highlighted path of the edge permuted Knodel graph that results in a new path between the

vertices 1 and 6.

Fig. 12) Path transformation

We will apply the transformation T on the 1-folded ascending path 6 - 1 (original
definition is as follows: Path, ¢ = (23 — 2%) + (2! — 2°) in order to find a new path that will
have no folds at all. Since T(Path,g) = Path,e = 23 — 22 421 — 20— 20 =123 - 22  the
obtained path has no folds in the edge-permuted graph, and presents the path between the
vertices 6 and 2 (colored black in the above figure). Obviously, there exists an ascending
path in the “base” of the edge permuted Knodel graph that connects the vertices 2 and 1
and has higher weights than that of the edges of the path 6 — 2. Thus, we can insist that the
concatenation of these two paths is an ascending path between the vertices 6 and 1.

As already was mentioned, here we consider the edge-permuted Knodel graphs (or
the Modified Knodel graphs) and show that the gossiping properties of these graphs remain
the same after the edge permutation. The main goal here is to show that if there is an
ascending path between the given two vertices in the original Knodel graph, then there
should be such a path in the edge-permuted version of that graph. This is obtained by
showing that there exists at most 1-folded ascending path from every vertex to a given vertex

(1, 0) in the edge-permuted Knodel graph.
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Lemma. There exists an ascending path between any two vertices u and v (v - u) of

the Knodel graph, in case D,,,, < 2!"°92™,

Proof. It is known that Knodel graphs have descending tree rooted at each node u = (iy,j;)
and containing each node v = (i, j,), where (j; + 211082 "J)modg > j,. Since D, ,, < 2110827l
it follows that the vertex v belongs to a descending tree rooted at u, and hence, there exists

an ascending path from v to u.

Lemma. There exists at most 1-folded ascending path between any two u = (i, j,) and
v = (i, j,) vertices (v —u) of the edge-permuted Knodel graph in case (j;+

2llog2 "J)modg > j.

Proof. There exists a path in the edge-permuted Knodel graph between any pairs of vertices
u = (iy,j1) and v = (iz,j,) (v - u) in case (j; + ZUOgZ"J)modg > j,, which is either 0 or 1
folded, depending on the position of the vertex v. Note, the path is the same as in the original
Knodel graph, only the weights of edges are different. Since we have increasing order in the
new “base” of the edge-permuted Knodel graph, we also have O folded ascending path
between any vertex of the “base” and the vertex u. If the vertex v is located outside the new
“base” of the edge-permuted Knodel graph, but at the same time, (j; + 2!'°82™)mod > > j,,
then there exists at most 1-folded ascending path connecting the vertices v and u. The folding
point of this path is located outside the “base” of the edge-permuted Knodel graph, but
inside the range (j;, (j; + 21"°%2™) mod g). Indeed, in case we have 1-folded ascending path,
we can classify the edges of this path into two groups:

1) the weights of the edges belong to the “base” of the graph,

2) otherwise.
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Obviously, the point where the two sub-paths of the initial path are joined is also a
folding point for the whole path. In the example below, the vertex 15 is the folding point for
the path 6 — 1. Finally, by applying the transformation T to the path, we will be able to find

a corresponding ascending path (without any folds) between these two vertices.

Fig. 13) Folding point of the path 6 - 1

Lemma. There exists an ascending path from any vertex in the base to the root vertex.

Proof. The above lemma follows from the fact that we have an ascending edge order in the
scope of the “base” (like in the original Knodel graph), so there exists an ascending tree
rooted at the root vertex of the base and containing all the vertices of the base.

Let us now return to the Path defined in the previous section and give the modification
that will make it possible to transform the Path in a way to obtain the path to the “clone”
vertex of the source vertex (since in this scope we consider descending paths). Let us denote
the result of this modification by Path’. We can assume that Path presents a descending
path from the vertex u to the vertex v;, so from the notation above, Path,,, = Path’,,,,
where D, =D,,,. Firstly, assume that Path,, has the following form: 2k+* — 2k 4

2k=1 4 2m,

Lemma. Path,,,, = Path,, + (2™ —2™) shows the descending path from the vertex u

to the vertex v,.
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Proof. The above lemma is obvious, since after applying the modification described, the last
component of the Path,, ,,, gets an inverse sign, comparing with that of Path,,, , hence the
last vertex is in the opposite side of the obtained bipartite graph, also the absolute values
Path,,, and Path,,,, are equal, and therefore, the distances of v, and v, from the vertex u

are also equal.

Theorem. The graph G = M,(p) + M1,(p), 0<p <A—1 and n + 2¥, is a gossip

graph.

Proof. From the lemmas above it follows that there exists an ascending path between any two
vertices u = (iy,j;) and v = (ip,j,) in the edge-permuted Knodel graph in case
(ju + 2082 )mod = > j,. The only case, left out from the consideration, is when the
expression (j; + 2!1°82™)mod = > j, does not hold true. For those cases we should consider
the graph M, ,(p) and the vertex u' = (i;',j;"), which is connected to the vertex u by the

edge e' € E(Mln(p)) Since tMA,n(p)+M1,n(p)(e’) > tMA,n(P)"‘MLn(P) (e),e € E(MA'n(p)), it follows
that e’ is the final edge (call) of all the ascending paths going to u through the vertex u'. In
the similar fashion as we showed above, it can be shown the existence of an ascending paths

from every vertex for which (j; + 2!1°8z ”J)modg < j, to the vertex u’. All of these paths then

will end in the vertex u through the final edge e'.

2.5 Fault-tolerant gossip graphs based on Wheel graphs

In the current section we are going to focus on fault-tolerant gossip problem. We are
going to present a new method of construction of fault-tolerant gossip graphs based on so-

called Wheel graphs.
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We have already brought the definitions of path, ascending path, edge sum and
several other concepts in the section 1.4 of this study. We also did compressional analysis of
currently known results in the sphere of fault-tolerant gossiping in section 1.3. Here we will
give several definitions regarding fault-tolerance and concepts used in this particular

research area.

Definition. The communication between two vertices of G is called k-failure safe if an
ascending path between them remains, even if arbitrary k edges of G are deleted (the
corresponding calls fail). The graph G is called a k-fault-tolerant gossip graph if the

communication between all the pairs of its vertices is k-failure safe.

From the Menger theorem it follows that a k-fault-tolerant gossip graph is a graph
whose edges are labeled in such a way that there are at least k+1 edge-disjoint ascending
paths between two arbitrary vertices. A O-fault-tolerant gossip graph is simply called a gossip
graph.

To describe the construction of k-fault-tolerant gossip graphs (schemes), we use some
of the important definitions and propositions given in the section 1.4 and in the works [37],
[36]. In order to simplify the discussion for edge-disjoint paths, we often omit the vertices
(or edges) in the description of a path in case there is no confusion.

Let consider the multigraph hG (defined in the section 1.4). Let P = P O P@ ©
... PG*D be an s-folded ascending path from a vertex u to a vertex v in G, where PU) is an
ascending sub-path for 1 <j < s+ 1. Then, P; is also an s-folded ascending path and P; =
PP O PP O ..0P™ for 1 <i<h. Now consider the path P(k) = P¥ © PP O ..O

Pk(i’;l) in hG. Then, P (k) is an ascending path from u to v for 1 < k < h — s such that P(k)
and P (k") are edge-disjoint if k # k. Thus, based on P, we can construct (h —s) edge-
disjoint ascending paths from u to v in hG. Similarly, based on another s-folded ascending

path P’ from u to v, we can construct (h — s) edge-disjoint ascending paths P’(k) from u to
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vfor 1<k <h-s.If Pand P’ are edge-disjoint, then all the paths P(1),...,P(h —s) and
P'(1),..,P'(h—s) are pairwise edge-disjoint by construction. Therefore, the following

lemma holds (see [37], [36]).

Lemma. Let u and v be vertices in a labeled graph G. If there are p edge-disjoint s-folded
ascending paths from u to v in G, then there are p(h — s) edge-disjoint ascending paths

from u to v in hG for any integer h > s.

From this lemma, if there are p edge-disjoint s-folded ascending paths from u to v in

G, then there are k + 1 edge-disjoint ascending paths from u to v in (s + [%])G.

Thus, the following corollary is obtained (see [37]).
Corollary. Let G be a graph with n vertices and m edges. If there are p edge-disjoint s-folded

ascending paths between every pair of vertices in a labeled graph G, then 7(n, k) < (s +

.

e
p
In order to improve this estimation of the upper bound, a stronger proposition is

formulated and proved in [36], which we will call throughout this work as “the theorem of

fault tolerance”.

Theorem. Let G be a labeled graph with n vertices. Suppose that

e E(G) can be decomposed into I subsets F(O, F(D, . F(t=1 gych that for any two edges
e€F® and e € FU), t (e) < tg(e') ifi <],

o for any two vertices u and v, there are p edge-disjoint paths from u to v such that the
sum of their folded numbers is at most g, and the last edges of r; paths are in F® for
0<i<i-1.

Then, the minimal number of edges in a k-fault-tolerant gossip graph is bounded
t(n, k) < d(n, k),

with d(n, k) defined by the expression
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d(n, k) = Yosisw |F(i mod l)la
where w is an integer satisfying

Zosiswrimodl =k + q + 1.

During the proof, the graph G = hG + G’ with h = lﬂ and G’ = (V, Up<icw—r F®) is
constructed, and showed that it is a k-fault-tolerant gossip graph. The number of edges of
this graph is |[E(G)| = Tosicw [FE™4 D).

Now we are going to apply the above theorem on the Wheel graphs to improve the
known estimations of the upper bounds for 7(n, k).

Consider the graph G = (V, E) with an odd number of vertices n, whose vertices and
edges are labeled by the following rules: the label of the central vertex is u, the remaining
vertices (which are located on the circle) are labeled consequently vy, vy, vy, v3, ..., Vi, Vi,
where n = 2m + 1. Since the periodic boundary conditions are assumed, we identify the
vertices v, = v; and vy, = v;' fori = 1,2,...,m. The set of edges consists of three subsets

E(G)=F®OuyF®yr®
with
FO = {(vi,vi’): tG((vi,vi’)) =1,i =12, ...,m},
FO® = ((v/u): ts((vi',w) = 2,i = 1,2,..,m},
FOP) = ((v,u): ts((vpw) = 3,i = 1,2,..,m},
FO = pQa y gp@b)
FO ={(w},vi11): te(W],vi41)) =4, i =12,...,m}.

The figure below illustrates the wheel graph G for n = 11 vertices. Then we apply the
theorem of fault-tolerance to this graph. For all pairs of vertices in G, we first construct 3
edge-disjoint folded paths from the first vertex to the second one. For i,j = 1,2,...,m and
j#i,i—1,i+1,i + 2 we have

e from v; tou

3
o vi—-ou
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Fig. 14) Wheel graph for odd n (here n=11)

e from u to v;

o

o

©)

2 !
u-v;

3 1,
U—>v; >,

3 4
U2 Vip1 2V

o from v; to v;

o

©)

o

3 —
VDU Vg DV

1 ,2 3 4 ’1
vi—>vi—>u—>vj+1—>vj - Uj
4 2 3

Vi DV DU

e from v; to v
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1 2 3

O VDV DUV oV

4 2 3
o VoV

o from v; to v;

2 3 4

! !
i-1 U2 Vi1 2

1
J
4
J

1
O VDU Vjy DV DV,

1 3 2
1

O VDV DU Y

4 1

-1
, , 2 3
O Vi 2Vit1 P Vip1 2UDY;

o from v; to v;

L2 3 1,
o VDUV DV

1 3 2
SV DU

4 1

] J

4
-

2 3 4

! !
i 2 Vi41 P Vi P2 U Vjp1 2

The edge-disjoint folded paths for j =i,i —1,i + 1,i + 2 are shorter, they have less

or equal folded numbers and are easier to construct. Therefore, they are not presented here

in order to avoid an artificial growth of the text. Finally, we have

|[FO|=mn-1)/2,
p=3,

from which we obtain w > k +

k+3

zlp(imodg)l _ ]

i=0

|[FO|=n-1, |[F@|=m-1)/2,
To=1 =1, =1, q=3,
3 and

(2 5 _
§(n—1)k+§(n—1),1f(kmod 3) =0

;(n—1)(k—1)+;(n—1),if(kmod3) =1

é("— Dk —-2)+4(n—1),if (kmod3) =2
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Fig. 15) the illustration of two arbitrary fixed vertices in the wheel graph.

For even n, we modify the wheel graph by adding a new vertex v’ and transforming the edge
set to the following expression
E(G)=FOuUF®Oyfr®
with
F©)

{(wiv): te((wyv)) = 1,i = 1,2,...,m},
FA9 = ((v/ u): te((viw) = 2,i = 1,2,...,m},
ea = (wu), ts(eq) =3,

FOD = ((v,u): te((vpu)) = 4,i = 1,2,...,m},
ep = (wu'), ts(ep) =5,

FO = Faoy pab) yle, e},

FO = {(v},vi11): te((W],vi41)) =6, i =1,2,...,m}.
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Fig. 16) Wheel graph for even n (here n=12)

Here the vertices u and u’ are connected by two edges e, and e;,. The graph G for n = 12

vertices is shown in the above figure. Constructing the edge-disjoint folded paths, one obtains

[FO] = (n-2)/2,
p =3,
Which results w > k + 3 and

k+3

Z|F(imod3)| -y
i=0

From the equation for odd n an

(

[F®O] =n, |F@| = (n-2)/2,

rnn=r=rn=1, q=3,

1 5

§(2n—1)k+§n—4, if (kmod3)=0
1 7
§(2n—1)(k—1)+zn—5,if(kmod3) =1
1

L§(2n—1)(k—2)+4n—5,if(kmod3) =2

d for even n the following theorem holds.
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Theorem. In k fault-tolerant gossip schemes the upper bound of t(n,k) minimum

needed calls satisfies the following condition:

T(n k) < gnk + 0(n).

2.6 Fault-tolerant gossip graphs based on the combination of

basic graphs

In this section we are going to present a new method of constructing fault-tolerant
gossip graphs which is based on the unification of several graphs. This method of
constructing is preferable when k << n and holds for all graphs with n > 5 vertices. Let's
denote G = (V,E) as a k fault-tolerant gossip graph with the vertex set V and the edge set
E. We will present it as a combination of several graphs G = H, + H, + H;. Let's denote as
p(G) linear ordering of edges in G.

At first let's consider cases when n is odd and k is even. In constructing of H; we have
to make successive calls including all vertices. If we number all vertices from 1 to n , then we
have to make new edges from i toi + 1 vertex wherei = 1,2,...,n — 1. After making these
edges we have to make one more edge which will connect the 1-st and (n — 1)-th vertices.
After constructing H, we have to construct a new graph(H,). The construction of H, should
be in the following way: its edges should connect the n-th vertex to all the other vertices in
the following sequence: (n -3, n—-5,n—-7,...,n—1,n—4,n—6,n—8,...,n—2).

The last step of constructing G is the construction of H;. In this step we have to make
new successive edges that will connect the i-th and (i — 1)-th vertices (i=n — 1,n —

2,...,2).
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Fig. 17) H;, H, and H; graphs

After these 3 steps we will obtain k = 2 fault-tolerant gossip graph.

Suppose we have to construct a k fault-tolerant gossip graph with n vertices where k
is even and n is odd. To achieve our target at first we should construct a 2 fault-tolerant
gossip graph and then increase the level of fault-tolerance to k. For this we need to add new
H, and H; graphs to G, but with one difference - the edges of new H, must connect the n-
th vertex to other vertices in the following sequence: (n—5,n—-7,...,n—1,n—4,n—
6,n—38,...,n—2). So, repeating this action every time we increase the level of fault-
tolerance with two until it reaches to k.

In case when n is even we have to change only the edge sequence in H, into the
following: (n—3,n—-5n-7,....n—2,n—4n—-6n-238,...,n—1).

Let us count how many edges we have when k was even. In H; we made (n — 1) + 1
edges, in H, graphs we made all together k(n — 2)/2 + 1 edges and in H; graphs we made
k(n — 2)/2 edges. So, for general cases when k is even we obtain the following result:

Tk) SMm-2)+2+kMm—2)/2+1+k(n—2)/2 = (k+1)(n—2)+ 3.
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Fig. 18) k=4 fault-tolerant gossip graph

Now consider cases when k is odd (k = 3). In such cases we recommend to construct a 3
fault-tolerant gossip graph and then increase the level of fault-tolerance until achieving k.
The deviation from cases when k is even is the following: after obtaining the graph H; + H,
we have to add a new H, graph, whose edges must connect the n-th vertex with all others in
the following sequence: (n —3,n—-5n—-7,....n—1,n—4,n—-6n—-38,...,n—2) in case n
is odd and in the following: (n—3,n—-5n—-7,...,.n—2,n—4n—-6n-38,...,n—1) for
even n. After this step the H; graph must be added and all together they will form a 3 fault-
tolerant gossip graph. So, repeating adding new H, and H; graphs every time we increase
the level of fault-tolerance with two until it reaches k. Note, that in repeating action the H,
graph must change it’s edge sequence into(n —5,n—7,...,.n—1,n—-4n—-6n-38,...,n—

2)ifnisoddandinto(n—5n—-7,...,n—2,n—4,n—6,n—8,..,n— 1) in case if n is even.
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Fig. 19) k=5 fault-tolerant gossip graph

Let us count the number of edges of G in case when k is odd. In H; there are (n —
1) + 1 edges and the sum of edges of all H, and H; graphs is k(n — 2) + 2. So, for odd k
our result is (n—2)+2+n—-2)k+2 = (k+1)(n—2) + 4. Consider any two distinct
vertices v; and v; in communication network G. It is an easy exercise for the reader to verify
that there exist k + 1 pairwise edge disjoint ascending paths from v; to v;.

At the end let's consider cases when k = 1 and k = 2. In these cases the construction
of a graph becomes more simple. We will present it here without considering details. Just

note, that 7(n,1) <2n -3 + BJ and t(n,2) < 2n — 3 + n. So, as we can see, it confirms the

assumption of Hasunuma and Nagamochi 7(n, k) < nk/2 + 0(n).
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Fig. 20) k=1 fault-tolerant gossip graph

2.7 Fault-tolerant gossip graphs based on the Knodel graphs

In this section we will present a new way of fault-tolerant construction, which is based
on the Knodel graphs as an underlying communication topology. Since the definition of

Knodel graphs was already presented (see section 1.4), here we will bring several new

definitions regarding the various concepts in Knodel graphs and fault-tolerant gossiping.

Definition. The interval between two vertices (e, ) and (y,6) in Knodel graph
Wiiog, njn 1S defined to be

6—p, if 6§ = pfand x=1,

g—l6—ﬁl' if §<pBand x=1,
RIP: )=\ \5_p,  ifs<pand =2,

g—(a—,@), if 8> B and x=2.

Given two arbitrary vertices («,f$) and (y,6) in the Knodel graph Wjjoq, njn, the
ascending path from the vertex (y, §) to the vertex (e, ) exists only if
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R((e, B); (1, 8)) < 2llogzmi=1 _ 1,
The explicit expression for the ascending path from the vertex (y,d) to («,f) is

described via 3 sequences {a;}, {b;} and {f;} defined reclusively by the following way:

B {1, if =2, B {1, if i, =2,
M2, if x=1, “E2, ifa, =1,

( 2Mog2(6-B+DI _ 1 if § > pand x=1,

! ollog2G-16-F1+D] _ 1 i 5 < pand =1,
LT ) oMom0s-BI _ 1, ifs<pBand x=2,

| o[log2G--pr+1)] _ 1, if§>pand x=2.

(B + fi)mod n/2, if «=1,
b, ={/m
1 {(§+ B —fl) mod n/2, if «=2.

n
z[logz(g—(bi—1—5)+1)] -1, if bj_,=06anda;_, =1,

2Mog2(lbis=6+DI — 1 jf b, , < Sanda;_, = 1,
fi = [logz(b;—1—6+1)] i > =
I 2 -1, lf bi—l > and a_1 = 2,
n
\ 2lloesG-lbia=0e] _ g e < Sanda,, =2

. !f <ﬁ + Zj’zl('_l)j_lf}) mod n/2, if «=1,

L(%H; —zl (—1)1'-1f,-> mod n/2, if «x=2.

j=1
The sequence {a;}, {b;} and {f;} stop on the minimal index i = L, for which a; =y
and b, =6. Then ((a;, b.),(a,_1,b;-1), .., (a1, b1), (e, B)) is an ascending path from the
vertex (y, &) to the vertex (e, 8). For example, the ascending path from the vertex (2, 2) to
(1,0) is
1 2 3
(2,2) > (1,2)>(2,3) > (1,0),

where the numbers on arrows are the labels of the corresponding edges.
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Fig. 21) The edge sum of two graphs: W5 1o + W; ;.

Each of the vertical (solid) lines in the above graph consists of two edges with labels 1
and 4. The dashed and dotted edges are labeled correspondingly 2 and 3. This graph is a
gossip graph with n = 10 nodes (O-fault-tolerant gossip graph based on Knodel graphs).

The following lemma is about gossiping properties of the Knodel graph. Although this
topic was investigated very widely, we will formulate the lemma and proof it once more, since

we use this concept throughout our research.

Lemma. The graph W o4, njn + W1, is a gossip graph (n is even). Moreover, if n is a

power of 2, then W,,,, ., itself is a gossip graph.

Proof. Consider the graph G = Wjog,njn + Wi, Let us fix an arbitrary vertex (1,5) €
V(G), 0 < B <n/2— 1. The set of vertices from which there are ascending paths in Wj;g, njn

to the vertex (1,p) is
Vg = {(y (B+6)modZ):y =12; § = 0,1,.., 20081 1}.
Similarly, the set of vertices from which there are ascending paths in W|jo, | to the vertex
(LB EV(G),0 <B<n/2-1is
Vg ={(v. (B =6 +n/2)mod?):y =12; § =0,1,..., 2008n-1 — 1}
If n is a power of 2 (n = 2™), for we have V(; gy = V(3 5y = V(Wiog, nn)- Therefore, Wig, nn

is a gossip graph.
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For the case, when n # 2™, the addition of the graph W, , to the graph Wjjoq,n|n
connects the vertices (1, 8) and (2, #) with a new edge with a label [log, n| + 1. This label is
bigger than the labels in W);,q, ) (by construction), therefore this edge (call) exchanges the
full information of the nodes (1,B8) and (2,B) collected during the calls in Wjjog, njn-
Therefore, after all calls the pieces of information known by nodes (1, 8) and (2, 8) coincide
and are nothing but the following union of sets:

Vs = Vap YUVep:
Note that, here (when A= |log, n|) V,E = V(G) for any . Therefore, Wjog, njn + Win

is a gossip graph.

Consider the problem to find the minimal number of calls t(n, k) in a k-fault-tolerant
gossip scheme with n nodes. For the special case, when n is a power of 2 (n = 2™)
Hasunama and Nagamochi constructed k-fault-tolerant gossip graphs based on hypercube
and found t(n, k) < glog2 n+ nz—k Here we will generalize this result for general n nodes.
The following lemma is an important step towards achieving this goal. Note, in the end we
will come up with only hypothesis (which was verified experimentally), but we will try to

formulate several lemmas that we believe are important for the final proof of this hypothesis.

Hypothesis. Consider two arbitrary vertices (e, 8) and (y,6) in the Knodel graph
Wilog, njn With <,y = 1,2; 3,6 = 0,1,2, % — 1. There are p = |log, n] edge-disjoint folded
ascending paths from the vertex (y,d) to the vertex (c«,8) and the sum of their folded

numbers is at most g = |log, n].

Here are our observations in this regards that, we believe, can spread a bit of clarity on the

bases of above hypothesis.
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Since the graph Wjjg, n)n Is symmetric, then without loss of generality it is enough to
consider the vertex («, ) = (1,0). Consider the following pairwise non-intersecting sets of
vertices

V(1) ={(2,0)3,
V() ={(,2%2+):i=12j=0,1,..,222 =1}, A=2,3,...,[log, 1.

From the above it follows that there exist an ascending path from every vertex in V' (4),
1 < A< |log, n] to the vertex (1,0), which is described by the sequences {a;}, {b;} and {f;}.
Moreover, all the endpoints of the edges of this path, except the last vertex of the last edge
(vertex (1,0)), are in V(A).

In [12] it was shown that Knodel graph can be defined as a Cayley graph, hence is
vertex transitive and has edge-connectivity equal to A. Hence, there are A= |log, n] edge-
disjoint paths between two arbitrary vertices of Knodel graph. In case of the colored Knodel
graphs which we consider here, these paths can be either ascending or s-folded ascending
paths.

Consider the case of n = 2™ — 2. It can be verified that there exists an ascending path
or 1-folded ascending path from the vertex (y, §) to the one of the vertices in V(A) for any
1 < A< |log, n].

Therefore, there are |log, n| folded edge-disjoint ascending paths from (y, §) to (1, 0)
with folded numbers presumably being equal to 0, 1 or 2.

Depending on the given vertex (y, §) there are 2 possible cases:

Case 1: R((1,0); (y,68)) > 2l°&2nl_|n this case, all paths are 1-folded. Each of the paths
consists of two parts, which are themselves ascending paths. The first path starts from (y, §)
and comes to one of the vertices of the sets V(A), (1 < A< |log, n]). The second path goes
from that vertex up to the vertex (1; 0). Since there are |log, n| edge-disjoint folded paths
between two vertices, thus the sum of folded numbers of all paths is |log, n].

Case 2: R((1,0); (7,6)) < 2ll°&2nl_|n this case, there is an ascending path from (y, §)

to (1; 0). On the other hand, there is an ascending path started from the given vertex (y, §),
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whose single edge has a label |log, n] and finishes outside of any V(A), (1 < A< |log, n)).
Therefore, the folding number of a folded ascending path containing this path is 2. The
remaining folded ascending paths from (y, §) to (1,0) are similar as in the Case 1 and are 1-
folded. Therefore, the sum of folded numbers of all folded ascending paths from (y, ) to
(1,0) is [log, n].

For the case of n # 2™ — 2 there exist vertices (y,8) with R((1,0); (y,8)) < 2llogznl
such that paths from them to the vertex (1, 0) will be as follows: one ascending path (folded
number is 0) and the remaining |log, n|] — 1 1-folded ascending paths. Hence, the sum of
folded numbers of all paths will be |log, n] — 1 for these vertices. All the adjacent vertices of
this kind of vertices have R((1,0); (e, 8)) < 2ll°827!which was not possible in case of n =
2™ — 2. The number of these vertices will be maximum when n = 2™ + 2 (since |log, n| = m
and the graph is the “dense” in this case), but this is not important, since there always exist
vertices with R((1,0); (y,8)) > 2U°&7 hence the sum of the folded numbers of the paths
started from these vertices is [log, n|. Since, the sum of the folded numbers for the graph
is the maximum of all possible values for all the pairs of vertices, thus nothing will differ for
n # 2™ — 2. Thus q = |log, n| for all the cases.

We believe, that the above said may contains some ambiguous statements and
decisions, thus we formulate only the hypothesis regarding the fault-tolerant gossiping
properties of the Knodel graph. For stricter claims we would need to construct actual folded
ascending paths between any pairs of vertices (corresponding to the above said) and show

that they are pairwise edge-disjoint.

Hypothesis. The minimal number of calls (edges) in a k-fault-tolerant gossip graphs

has the following bound for any even n:
t(n k) < g[logz n| + n?k
This bound follows by construction, considering the previous hypothesis. Well, to

construct k-fault-tolerant gossip graph we take as base graph G = Wjjog,n)» and apply the
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theorem of fault-tolerance. The edge set E(G) of G is divided into the following [ = [log, n|
subsets:
EG)=F®OuyuFW®y . yfFllogzn-1)
where
FO ={e:e€qG; tg(e)=i+1}; i=0,1,2,..,|log,n| — 1.

The number of edges in F© is |[FO| =n/2 for any i =0,1,2, ..., |log, n] — 1. Each
vertex in G has |log,n| incident edges with one edge in each of the sets F( for i =
0,1,2,...,|log, n] — 1. According to the previous hypothesis and the discussion immediately
followed it, there are p = |log, n] edge-disjoint folded ascending paths between any two
vertices of Knodel graph, and the sum of their folded numbers is at most q = |log, n|.
Therefore r; =1 for any i =0,1,2,...,[log,n| — 1, and w is any integer satisfying the

inequality w = k + q. From this result, the value of d(n, k), is
o k) =2 (w+1) =2[log, n] + =,
which concludes the above hypothesis for even n.

Additionally, let us note that the construction described in this section holds [log, n] +
k upper bound on the minimum possible time of complete fault-tolerant gossiping.
Considering the fact that this result was shown to be a lower bound as well (see [37] and
[58]) we can claim (as a corollary from the above hypothesis) that the minimum time required

to complete k-fault-tolerant gossiping is:

T(n, k) = [log, n] + k.
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2.8 Conclusion

In this chapter we presented the results of our research about various aspects of the
gossiping process. First, we have introduced a method of the modification of gossip graphs,
which we use extensively throughout our study to construct various new gossip topologies
and obtain some theoretical results. We used this method to construct a new proof for the
minimum number of calls in a complete gossip scheme being equal to 2n-4, where n is the
number of vertices. Further, with the help of above mentioned method we have constructed
NOHO gossip graphs, that can perform complete gossiping process in a minimum possible
time ([log, n| for any even n). Another application of this method was useful when providing
a new construction method for minimum gossip graphs, that have the number of calls equal
to 2n-4 and can perform complete gossiping in the minimum possible time, given the above
constrain.

Our further analysis were focused on the Knodel graphs and their gossiping
properties. We have showed that the cyclic permutation of the weights of the edges of Knodel
graph, in general, does not affect its gossiping properties. This is an important also for
describing edge-disjoint folded ascending paths between any pairs of vertices in Knodel
graphs, which can be crucial for verifying our hypothesis about the upper bound value of
the minimum number of calls and minimum time of fault-tolerant gossiping.

The last 3 sections are focused on fault-tolerant gossiping and finding optimal
structures for it (as base topologies). We suggest 3 different ways of construction of fault
tolerant gossip graphs (1 in the form of hypothesis) that also improve the known upper
bounds for some values of the number of vertices or the level of fault-tolerance (by

construction).
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Construction of the software tool (Graph

Plotter) for the investigation of gossip problems

3.1 The organization of the software tool Graph Plotter

The whole chapter 3 is denoted to the description of a software package called Graph
Plotter. Graph Plotter is a software package designed for the construction of gossip graphs,
verification of the gossiping properties of the constructed graphs, such as verifying weather
the graph is complete gossip graph and the level of fault-tolerance of the graph. The main
purpose of the tool is to check for a given input graph whether it satisfies the given level of
fault-tolerance. In addition, it is possible to check whether the input graph satisfies the NOHO
(No One Hears Own) or a NODUP conditions. The NOHO graphs are graphs, which do not
contain any node that listens to its own information, or equivalently, do not contain a cycle.
The NODUP graphs are defined as the graphs, whose nodes listen to each piece of
information exactly once. It means that there is exactly one increasing path between two
arbitrary vertices.

In addition, the system provides a convenient means of working with graphs, such as,
for example, auto numbering of vertices and edges of the graph, in order to show the paths
between two vertices it is possible to paint vertices and edges with any color, if necessary,
add a new edge with proper weight or sort weights of all edges with integer values, to color
the paths between any two vertices of Knodel graph, color the graphs correspondingly to
various Messy broadcast modes, etc. Apart from all this, the system makes it possible to
change the position of vertices adjacent to the current edge, also to permute all edges which
are adjacent to the current edge and have bigger (or smaller) weights.

The meaning of this action lies in the fact that if there has been a call between two

arbitrary vertices at time t since then these two have exactly the same information, so nothing
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will be changed if from that moment onwards all the nodes that will connect to these two will
change their calls direction from one vertex to another, if the considered graph is symmetric.
This function might be useful if you need to disperse or collect edges into one channel, since
in some modifications of Gossip problem the number of edges in one channel is limited. This
feature can serve as a useful tool for the designers of such networks to ensure the
correspondence of their networking topology with the constraints put on them (by
environment, cost, etc.).

The system also has certain restrictions regarding the maximum number of vertices
(999), which is connected to the measures of the vertices and the complexity (exponential)
of gossip verification calculations.

It should be noted that the system does not have a sample or an analogue, at least in
the field of universal access, and the main reason is that the system can be useful only in a
narrow range of problems, so it can be used only for scientific research. Prior to this,
exclusively a mathematical approach was used in solving problems of gossiping and the
hardware/software model of calculations was not considered.

Graph Plotter was developed in Wolfram Mathematica environment and is easily
extensible tool. Since Gossip test, NOHO and NODUP modules are written in C++ language
and are separate processes in relation to the main process, new modules can be integrated
with this software tool very easily.

It is expected to involve such technologies of parallel computing as MPI, OpenMP and
CUDA, since it will let us to increase the performance of the tool, which is very important for

the investigation of the graphs with relatively large number of vertices.
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3.1.1 The choice of the software components

The software package consists of the main component that is responsible for the
interactive Ul and several functional flows and can be easily extended by various other
components using IPC (inter-process communication). The main component of this tool was
developed in Wolfram Mathematica environment and supports all the interactive Ul and some
of the functional flows.

Wolfram Mathematica (usually called Mathematica) is a modern software system that
was designed for the researchers of all the areas of technical computing - including, but not
limited to neural networks, machine learning, image processing, geometry, data science,
visualizations. The software is used by the researchers of many technical, scientific,
engineering, mathematical, and computing fields. It was proposed by Stephen Wolfram and
is developed by Wolfram Research of Champaign, Illinois ( [79]). Mathematica has its own
programming language called the Wolfram Language.

The Wolfram Mathematica package includes features such as:

e Mathematical functions libraries

e Matrix manipulation possibilities

e Possibility to work with complex numbers, interval arithmetic, etc.

e Various numeric tools for discrete and continuous calculations

e Various tools for text mining, data mining, pattern matching, etc.

o Digital signal processing libraries

e Tools for graph visualization and analysis

e Tools for automated theorem proving

e Tools for combinatory problems

e Tools for connection with dynamic-link libraries (DLL), C++, SQL, Java, .Net, etc.

This was only small subset of its possibilities.
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Wolfram Mathematica consists of two parts, the kernel part and the front end. The
kernel is responsible for the interpretation of Wolfram Language and all the calculations.
The GUI allows the creation and editing of program code with syntax highlighting and support
for standard word processing.

The communication between Wolfram kernel and front-end, as well as between
Wolfram kernel and other external applications is taken care with the help of protocol called
Wolfram Symbolic Transfer Protocol (WSTP). For each of the supported programming
languages it provides means for linking developer kit for linking the applications written in
corresponding langue to the kernel through WSTP.

The second component of the system is a bunch of various tools, that were designed
for performing various processing on top of gossip graphs and returning some results about
its gossiping properties. These tools were developed in C++ and are integrated with the main
component using WSTP and corresponding library provided for C language. The integration
part was implemented as method calls from Mathematica kernel to methods contained in
corresponding .dll libraries. The choice of C++ is based on the facts that it is easy to integrate
it with OpenMP for further extension on multiprocessor calculations (for large number of
vertices) and, also, it gives us convenient environment for developing multithreaded

applications and improving performance.

3.1.2 The working modes of the tool

In the current section we are going to present a working modes of the software tool.
As already was noted, this tool was designed mainly to serve researchers of this topic with
the goal of helping them particularly with verification of their hypothesis.

The idea is to construct a model of a given network structure and verify their gossiping

properties, such us the level of fault-tolerance, weather they satisfy NOHO or NODUP

91



conditions, how is it possible to perform Messy broadcasting using this graph. In what follows

let us go through each of this points in a bit detailed way.

For the simple gossip check and fault-tolerance check we use an input box to give
a level of fault tolerance. The result of the execution of this module is either OK,
which means that the constructed graph satisfies given level of fault-tolerance or
it shows the pairs of vertices that do not satisfy the required conditions. During
the execution of gossip test module it performs the followings
o constructs the incidents matrix of the graph, with each element being a
vector containing all the weights of the edges connecting given two vertices
o for each pair of vertices application tries to find k+1 edge-disjoint ascending
paths going from the one vertex to the other
For the NOHO (Find Cycles) check the module reuses the above described
functionality and has one more addition: for each of the path between given 2
vertices it checks the first and last vertices of the path and their equality. If they
are the same it interrupts its execution and returns that path, which then is being
displayed by the system.
For the NODUP check the module reuses simple gossip verification functionality
as well. It counts all the pairs of vertices that have more than 1 ascending paths
between them. In the end it returns all such pairs and this data is being displayed
as output. In case there are no duplicates the output will be the string “OK”.
For the Messy broadcast models we have tools for generating messy broadcast
scheme on top of the given graph. The aim of these tools is to randomly generate
coloring of the edges of constructed graphs, that will correspond to a given Messy
model (M, M,, M3). By generating a lot of such samples we can try to find an upper
bound on the minimum possible Messy broadcasting time for a given number of

vertices.

92



e For the “Folded Paths” mode the application tries to generate all the folded paths
between given 2 vertices, that correspond to a given fold number. This is very
useful tool for the fault-tolerant gossip research. The number of edge-disjoint
folded paths and the maximum among the sum of the fold numbers of these edge-
disjoint paths between any two vertices are important to decide the
correspondence of given network topology as a base for fault-tolerant

construction.
3.2 The implementation details of the tools

In the current section (and its corresponding subsections) we are going to present
some insights about the implementation details of the various tools that we have developed
throughout this research. The main goal of this section and its 4 subsections is to give
algorithmic description of the gossip verification, NOHO, NODUP, Messy Broadcast tools

and, in some cases, also describe the mentioned models more precisely.
3.2.1 NOHO gossiping test implementation

NOHO stands for No Own Hears Own. This is an additional restriction put on the
gossiping process to make sure that no own from the participants can hear his own
information from the other participant. In the terms of graphs, this require that there is no
any ascending path in the gossip graph the first and last vertices of which are the same. This
condition comes to ensure that there is no much duplicate information flows in the gossiping

network.
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We have developed a tool in the Graph Plotter that allowed us to check whether the
constructed graph satisfies NOHO gossiping requirement or not. The algorithm behind that

requirement is to check that there is no any cycle in the graph (0(n?) complexity).

i=0,...,n-1
j=0,...,n-1
s=0,...m([i,j].size()

PathsSetJoint += vector<TEdge> (TEdge (i, J, m[i][J][s])))

A—

p=0,...,PathsSetJoint.size()-1

PathLastVertex:=curr.back().v2
PathLastWeight:=curr.back().weight Gm—

curr := PathsSetJoint[p]

j:=0,...,m.size()-1
s:=0,...,m[PathLastVertex][j].size()-1

curr.front().vl==
curr.back().v2

PathLastWeight<
m[PathLastVerte

X][ilis]-

return curr,
PathsSetJoint.push_back(curr)

curr.push_back(TEdge(PathLastVertex,j,m[PathLastVertex][j][s])

g NOHO test implementation algori

In the scheme above it is shown the algorithm for determination of duplicate paths. The
variable m is 3 dimensional vector containing the list of all the edges with their weights

connecting any two vertices of the graph. The algorithm first tries to collect all the possible
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paths between given two vertices in the set PathsSetJoint variable. During this process it

checks for the existence of cycles and interrupts its execution in case finds one.
3.2.2 NODUP gossiping test implementation

This section, in some sense, is the continuation of the previous one, because the restriction
put on gossip schemes by NODUP (No Duplicates) term is that there should not be any kind
of information heard by any participate more than once. In terms of gossip graph this
restriction means that the number of ascending paths between any pair of vertices should

be equal to exactly one.

2 ] 4 ©

Fig. 24) NODUP graph (n=12)
The NODUP requirement comes in sight when there are some restrictions on the
throughput of the channel that transmits the information between participates or the network
was designed to perform some aggregation operation (in the form of gossiping) and it is not

acceptable to count any part of the total aggregate more than once.
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The NODUP verification algorithm is pretty much similar to the one of NOHO (see
previous subsection). First, it tries to construct all the ascending paths between all the pairs
of vertices and then checks for duplicated paths. All the duplicate paths are being collected

and returned to Mathematica.
3.2.3 Fault Tolerant gossiping test implementation

The fault-tolerant gossiping verification tool was designed to give an answer to the
question whether the constructed graph satisfies to a given level of fault-tolerance. This tool
has played a crucial role in our research of fault-tolerant gossiping topologies. Especially, it
was used when researching fault-tolerant gossip graphs based on the Knodel graph. With
the help of this tool, we have experimentally verified that these graphs can serve as an
excellent base topologies for fault-tolerant gossiping and yield an upper bound for the
number of calls of the k-fault-tolerant gossip graph, that improves the previously known
results for even n (in general).

As already was said the construction graph is passed from Wolfram to corresponding
module developed in C++ in the form of 3 dimensional matrix. The main idea behind the
implementation is the following:

1. Construct the ascending paths between any two vertices of the graph by traversing

the given matrix using multiple nested cycles

2. After the above step, we perform grouping of the constructed paths into multiple

groups and associate them with their start and end points (vertices)

3. In the end we check for the equality of the elements (paths) of the above generated

sets. In case we count k+1 different elements in that set we return success.

Since the above describe algorithm is iterative and there is no direct dependency

between its iterations, we can perform the iterations in a different threads.
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3.2.4 Messy broadcasting implementation

Broadcasting differs from gossiping, since here the originator of the process
is only one node and the “mission” of this node is to broadcast its information to every
other node in the network. As already was discussed Messy broadcast models
becoming actual when there is no common knowledge about the network structure,
no any coordinating point that will tell each of the participates when to make each call
and to which neighbor. In this situation every node has only some local knowledge
about the topology of the system and the state of broadcasting process. With regards
to the last (the level of ambiguity of each participate), there are 3 models defined in
literature that are called Messy broadcasting models:

e M; - in this model in any unit of time every participate knowns the states
of its neighbors. This model require that in any unit of communication time
each of the informed vertices sends its information to own of its uninformed
neighbors

e M, - in this model the node has no knowledge about the state of its
neighbors that had no any contact with him before. This means that in any
given time unit each of the nodes send his information to one of its
neighbors with whom he did not have any contact (send/receive of
information) before

e M; - in this model the requirement is that in any unit of time every informed
participant sends its information to one of those neighbors that did not
received the information from the itself before.

The Messy broadcast models are especially actual when there are some limitations of memory
resources in the network. There might be cases when the node can’t just remember from

whom it received the information before, thus is forced to broadcast with M; model.
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Note, that in all 3 models in any unit of time a node can receive information from
different neighbors simultaneously, but can transmit to only one of its neighbors.

In Graph Plotter we have developed a tool, that allows us to construct Messy broadcast
coloring of the constructed graph edges (if possible) that corresponds to corresponding
model. The idea behinds this tool is to generate minimum time calling sequence that will
allow Messy broadcasting or at least to find tighter upper bound on the minimum time Messy
broadcasting. Currently, it is only known an upper bound for the minimum Messy
broadcasting time for the models M, (t(n) < 1.891log, n) and M; (7(n) < 2.5log, n) for
sufficiently large n ( [80]).

Below we present one example coloring performed by this tool on the provided known
topology for Messy broadcasting. The edges of the same weight are colored in the same color

and the broadcast originator is the vertex 1.

\4“
s/
A

6

&

Fig. 25) Messy broadcast model M,
From the above model it follows that the time required to complete broadcasting is

12. This is not the only possible solution that can be generated by the tool.

3.3 The description of the “Folded paths” mode
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This functionality was designed for generating all the ascending folded paths between
two given vertices of the graph. This is very useful tool, since it allows us to obtain a folded
number of the total graph (the maximum among all the sums of all the folded numbers of
edge-disjoint paths between any two vertices). This metrics is very important in the research
of fault-tolerant gossiping, since it serves as one of the main metrics that determines the

level of propriety of the suggested graph as a base for fault-tolerant gossiping.

s
>

=

/
\

Gossip tester I Folded paths

Nothing is selected Current Vertex Color . Folds First vertex  Last vertex

‘Generate’ 2 P 1
Current Edge Color .

Next Weight Value 1

. {4-511,1152,252,258,8-51}, 457,727,751}
Increment of Weights |1

Fig. 26) “Folded Paths” from the vertex 4 to 1 (consists of 2 ascending components)

As we can see from the above figure, this tools accepts the numbers of first and last vertices
of the seeking path, as well as the required number of folds. The number 2 (Folds) in the
picture above means that folded ascending path between given two vertices should consists
of 2 components, each of which is monotonically ascending. As we can see the output is a

list of such paths, which also contain the exact folded points (2 for first path and 7 for the

second).



3.4 Conclusion

In this chapter we presented the software package, called Graph Plotter and its
various components. The package was designed for the researchers of
gossiping/broadcasting processes and the main purpose of this tool is to model these
processes, verify various hypothesis regarding the gossiping properties of constructed
models and perform various modifications with the structure of constructed models. This
modifications can be served for the adjustment of constructed networks to the requirements
and restrictions that we have in the environment where these network should operate. These
modifications allow us to change the structure of certain components of the constructed
gossip graphs without modifying the main gossiping properties of the graph.

Graph Plotter was enhanced with more and more functionalities throughout our
research. It helped us to obtain and verify our main theoretical results, such us the suggested
NOHO graphs, Minimum Gossip Graphs, as well as to verify the fault-tolerance properties of
the Knodel graphs. As already was mentioned in the first section of this chapter, the tool was
designed to be easily extensible with the new functionalities.

The tool is available for downloading and using for any purposes from drive clouds
storage ( [81]). Note that, the prerequisite for this package is Wolfram Mathematica 10 or
higher.
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Conclusion

The main results of the work are the following:

A new method of construction of minimum gossip graphs for some subsets of the
number of vertices was obtained ({[{5-6], [9-12], [17-24], [33-48], [65-96], [129-
192], [257-384], [513-768], ...}). The proposed construction methods allows the
tradeoff between the size of the “base” of the graph and the number of so-called
“batch” in- and out-calls.

A new method of construction of NOHO gossip schemas with minimum possible
gossiping time. The proposed construction method was based on the application
of the method of local interchange on the Knodel graphs and yields a NOHO gossip
graph with gossiping time equal to [log, n], which is the minimum possible time.
This addresses the open problem proposed by many authors and proves that
NOHO restriction does not affect the minimum gossiping time of the graph (see
Problem 4 of section 1.3 of the current study).

A proof for the Knodel graphs preserving their gossiping properties even after a
cyclic permutation of the weights of its edges. This was also an open problem and
was proved only in case when the number of vertices is in the form of n =
2m—2.

The new fault-tolerant gossip schemas based on the graph combination method
and Wheel graphs.

Hypothesis (verified experimentally) on the upper bound value for the minimum
number of calls and minimum possible gossiping time value in fault-tolerant gossip
schemes that are based on the construction using Knodel graphs.

A software package for modeling gossip schemes, obtaining new topologies (more

optimal for the given requirements) with the help of various tools, as well as to
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experimentally verify their gossiping properties, the level of fault-tolerance, NOHO
and NODUP requirements and to construct the folded ascending paths between

any pair of vertices.
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