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0.1 Introduction

All papers [1–3] that form the basis of this thesis are located on a crossroad between the fields

of supersymmetric field theories, gauge field theories and instanton calculus. Supersymmetry is

a space-time symmetry discovered (rediscovered) in the 1970’s independently by Gervais and B.

Sakita (in 1971) [4], Golfand and Likhtman (also in 1971) [5], and Volkov and Akulov (1972) [6].

Its existence in nature is neither proved nor disproved nevertheless it plays a major role in

theoretical physics. One of the reasons of its popularity is the Coleman-Mandula theorem [7]

which elevates supersymmetry to the status of the single possible extension of the Poincare

group, assuming some natural constraints. The existence of the conformal symmetry as an

extension of the Poincare group is a loophole, where all particles are massless.

Gauge symmetry was first present in Maxwell’s famous work on electrodynamics ”A

Dynamical Theory of the Electromagnetic Field” in 1864-65 [8], the more modern formulation

was popularized by Pauli in 1941 [9]. Nowadays gauge fields are used to describe three of

four fundamental forces, one would hardly need any other reasons to study them, furthermore

they are present in broad areas of pure mathematics and theoretical physics such as differential

geometries and Gravity.

Instantons are a more specific area of research and occur in various situations and contexts

like in the calculation of tunneling effects of vacuum states in quantum field theories or in

calculations of path integrals in the semiclassical limit [10]. The rest of our introduction is

dedicated to the structure of this thesis.

The thesis is divided in to four chapters, the first chapter illustrates some of the back-

ground knowledge needed to understand the other chapters. We had to cherry pick the material

out of the vast amount of necessary prerequisites, therefore we had to sacrifice consistency for

the sake of having a brief summary. For a more broad understanding we urge the reader to

have a look at the references. The other three chapters are dedicated to the works on which

the thesis is based.

4



Chapter 1 starts with a short introduction of conformal symmetry(1.1). Hear the im-

portance of the symmetry are highlighted, continued by the geometric and formal definitions.

Followed by the derivation of the the algebra generators with space-time dimensions bigger then

two. The generators are explained and paired with the corresponding group members. After-

wards the Witt and Virasoro algebras are introduced. Then a quick outline of the differences

between different space time dimensions is given, followed by the necessary references for this

part.

Because our main interest is in the application of instantons in gauge theories at the

beginning of section 1.2 a short overview of path integrals and their connection with Feynman

diagrams and non-perturbative effects is given. Further the definition of instanton is mentioned,

with the deliberate choice of Euclidean metrics. The process of changing to Euclidean metric

is also explained. In section 1.2.1 the system of a double well potential is discussed. The main

goal here is to illustrate a situation where instantons arise in a well-known system. Then, it is

argued that the shift in vacuum states is described by instantons, also by explicit calculations

this effect is clarified. In the end the tunneling amplitude is written which operates as expected.

In section 1.2.2 an introduction of instantons in Yang-Mills theories is given, by presenting

the action, equations of motion and the Bianchi identities, which makes possible to properly

define instantons and and anti-instantons. Also a discus of the benefits of Wick rotation and its

practicality and the differences between Euclidean space-time over Minkowski space-time in this

setting is given, which in itself is a reacquiring theme in supersymmetry. Then the instanton

number and the Chern character are defined, it is also indicated that instanton solutions are

an essential part in approximations of path integrals and non-perturbative effects.

The section 1.2.3 is devoted to the Clifford algebra and its representations. The definition

of Clifford algebra in Euclidean and Minkowski spaces are given continued by representations

of the algebra for two dimensions, four dimensions (which are the Dirac gamma matrices) and

in six dimensions (these are the famous t’ Hooft symbols [11]), the representations are given

in both Minkowski and Euclidean spaces. At the end a scheme for construction of arbitrary

dimensional representations in Euclidean space is illustrated.
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In 1.2.4 the connection between Young diagrams to partitions is given. Euler’s famous

equation is also mentioned, with a hint on how to proof it. This section is a tribute to actual

calculations done in [1, 3].

Next, in section 1.2.5, the ADHM construction [12] is introduced, which is a method for

constructing a self-dual field strength. Also, the moduli space for instantons with instanton

number k is defined, and its dimension is indicated. By a straight check the correctness of

ADHM is confirmed. At the end of this section the BPST [13] instanton is introduced by

showing that it is a special case of the ADHM construction.

In section 1.3 the Lorentz algebra and its representations are discussed. The algebra

of Lorentz transformations is given, the more familiar space rotations and boosts are also

defined. The definitions of representations and equivalent representations are given. Also the

notion of irreducible representations is highlighted. Then the direct sum and direct product,

as methods to construct higher dimensional representations, are reviewed. As an example

the 4 ⊗ 4′ representation and its reduction to a direct sum of irreducible representations is

illustrated. In an simplistic fashion the notions of Hodge dual, tensor representations and

spinor representation are discussed. At the end, the construction of irreducible representation

via the SU(2)⊗ SU(2) covering group is shown.

1.3.1 is devoted to Majorana spinors. This review is meaningfully divided into two, first

the simple connection between the Dirac equation and Majorana spinors is described. The

second part is devoted to the formally correct illustration of Majorana spinors. A basis for

4× 4 matrices is constructed out of the gamma matrices. The γ5 matrix and with it the Weyl

spinors are defined. Then by the construction of some auxiliary operators the Majorana spinors

are defined. A proof of the contradiction of the Weyl and Majorana conditions is derived.

Supersymmetry has a central role in theoretical physics. One way to see its importance

and give a introduction to it is to look at the Coleman-Mandula theorem. In section 1.4.1

the Coleman-Mandula theorem is given and its implications are explored by a simple thought

experiment. Then in a toy theory of two scalar fields it is argued that additional generators of

internal symmetries must be Lorentz scalars. Then by adding a fermion field with interaction
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it is argued that the only extension of Poincar algebra is a spin one half conserved current,

which are the generators of supersymmetry.

Next in 1.4.2 the superspace is introduced as the natural upgrade of Minkowski space

with Grassmann coordinates. Necessary differential and integral relations are given.

In the following section (1.4.3) the superfield is introduced as a field on superspace. By

expanding the superfield in Grassmann coordinates a connection is established between super-

fields and usual field on Minkowski space. The distinction of fermionic and bosonic superfields

is established. The notions superderivatives and supercharges is also reviewed with their corre-

sponding anticommutative and commutation rules. Then the chiral and vector superfields are

introduced, the gauge superfield is illustrated as a natural sub case of the vector superfield. By

gauge fixing the Wess-Zumino field is detached.

Chapter 2. Linear quiver N = 1 5D gauge theory in Ω background is considered. It

is shown that under certain restrictions on the VEV’s of the adjoint scalar field corresponding

to the first node, only the array of Young diagrams, such that the first diagram has a single

column only the others are empty, contribute to the partition function. Furthermore it is

proved that this partition function in a simple way is related to the expectation values of

Baxter’s Q operator (at specific discrete values of the spectral parameter) in the gauge theory

with the special node removed. Using known expression of the partition function in the U(1)

quiver, Baxter’s T-Q difference equations are established and explicit expressions for the VEV

of the Q operator in terms of generalized q-deformed Appel’s functions is fond. Finally the

corresponding expressions for the 4D limit are derived.

The chapter is organized as follows.

In section 2.2 a short review of 5d linear quiver gauge theory: the Nekrasov partition function

and important observables Q, y are introduced.

In section 2.3 an extended quiver with specific parameters at the extra nod is introduced and

its relation to the Q-observable is analyzed.

Section 2.4 specializes to the case of U(1)r theory. Difference equations Q-observable are

derived. Explicit expressions for the Q observable in terms of generalized Appel and hyperge-
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ometric functions are found.

In section 2.5 through dimensional reduction, corresponding difference equations and their so-

lutions for the 4d theory are found.

In sections 2.6, 2.7, 2.8 some technical details, used in the main text, are presented.

Chapter 3. In this short notes using AGT correspondence we express simplest fully

degenerate primary fields of Toda field theory in terms an analogue of Baxter’s Q-operator nat-

urally emerging in N = 2 gauge theory side. This quantity can be considered as a generating

function of simple trace chiral operators constructed from the scalars of the N = 2 vector mul-

tiplets. In the special case of Liouville theory, exploring the second order differential equation

satisfied by conformal blocks including a degenerate at the second level primary field (BPZ

equation) we derive a mixed difference-differential relation for Q-operator. Thus we generalize

the T -Q difference equation known in Nekrasov-Shatashvili limit of the Ω-background to the

generic case.

In Section 3.2 we show that an appropriate choice of parameters [14] in Ar+1 linear

quiver theory with U(n) gauge groups is equivalent to insertion of the analoge of Baxters Q-

operator into the partition function of a theory with one gauge node less Ar theory with generic

parameters. In the 2d CFT side such special choice corresponds to insertion of a degenerated

primary field in the conformal block [14].

In Section 3.3 restricting to the case of Liouville theory, starting from the second order

differential equation satisfied by the multi-points conformal blocks including a degenerate field

V−b/2 [15] we derive the analogues equation satisfied by the gauge theory partition function

with Q operator insertion. Then we show that this equation leads to a mixed linear difference-

differential equation for Q operators which is a direct generalization of the T −Q equation from

NS limit to the case of generic Ω-Background. Finally we summarize our results and discuss a

couple of further directions which we think are worth pursuing.

Chapter 4. We specify Gaiotto’s proposal for the RG domain wall between some coset

CFT models to the case of two minimal N=1 SCFT models SMp and SMp−2 related by the

RG flow initiated by the top component of the Neveu-Schwarz superfield Φ1,3 . We explicitly
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calculate the mixing coefficients for several classes of fields and compare the results with the

already known in literature results obtained through perturbative analysis. Our results exactly

match with both leading and next to leading order perturbative calculations.

The chapter is organized as follows:

Section 4.2 is a brief review of the 2d N = 1 superconformal filed theories.

Section 4.3 is devoted to the description of the coset construction of N = 1 SCFT. Of course

everything here is well known; our purpose here is to fix notations and list the relevant formulae

in a form, most convenient for the further calculations.

In Section 4.4 we formulate Gaiotto’s general proposal for a class of coset CFT models.

Section 4.5 is the main part of our paper. We explicitly calculate the mixing coefficients for

the several classes of local fields in the case of the supersymmetric RG flow discussed above

using RG domain wall proposal. Then we compare this with the perturbation theory results

available in the literature finding a complete agreement.
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Chapter 1

Preliminary ideas and concepts

1.1 Introduction to conformal symmetry

Before we start to introduce the symmetry itself we want discus one of its main applications,

the Conformal Field theory (CFT). CFT is a field theory as the name suggests with an ad-

ditional symmetry the conformal symmetry. CFT’s are QFT’s but because of the additional

symmetry the approach can be somewhat different. In a standard QFT the goal is to calculate

all correlation functions at least to some precision, which usually involves the Lagrangian or

partition function. In contrast if our theory has a bigger (bigger then the standard Poincar

group) symmetry it can be used to get some information about the correlation functions with-

out actually solving or even knowing the full Lagrangian. The extreme of this situation arises

in 2 dimensions where the conformal group is infinite dimensional. In this short overview we

define some of the core definitions and relations in conformal symmetry.

Conformal transformations are transformations that conserve the angle between two in-

tersecting lines at the point of intersection. The more abstract definition states that if we have

a map ϕ from a metric space M1 to a metric space M2 then the map conserves the metric up

to a function

g′ρσ(x′)
∂x′ρ

∂xµ
∂x′σ

∂xν
= Λ(x)gµν(x) . (1.1)
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Figure 1.1: The conformal map of the complex mapping z → 1
z
, where the blue contours are

the real part, the orange contours the imaginary. Notice that at the intersections the angle is
π
2
.

We use Einsteins convention [16] by assuming a sum over all repeating indexes. From now on,

for convenience, we take M1 = M2 = M and, furthermore, that M is a flat Minkowski space

with signature (−, ...,−,+, ...,+), we denote this metric by η. The condition of conformality

has this simplified form:

ηρσ
∂x′ρ

∂xµ
∂x′σ

∂xν
= Λ(x)ηµν . (1.2)

If Λ(x) is 1 than we get the condition for Poincar transformations, which implies that the

Poincare transformations are a sub-case of the more general conformal transformations.

To study a symmetry it is nearly always a good idea to study its Lie algebra: the in-

finitesimal expansion near the identity. These objects have an additional structure, besides the

product operation that they inherit from the group, they also have a summation operation.

Nevertheless they are sufficiently general(at least for our case), by which we insist that there is

a ”reverse expansion” from the Lie algebra to the group.

11



Infinitesimal coordinate transformations have this general form:

x′ρ = xρ + ερ +O(ε2) . (1.3)

To select only the conformal transformations out of all transformations we demand eq 1.2 to

be true.

ηρσ
∂x′ρ

∂xµ
∂x′σ

∂xν
= ηρσ

(
δρµ +

∂ερ

∂xµ
+O(ε2)

)(
δσν +

∂εσ

∂xν
+O(ε2)

)
= ρµν + ηµσ

∂εσ

∂xν
+ ηρν

∂ερ

∂xµ
+O(ε2)

= ηµν +
( ∂εµ
∂xν

+
∂εν
∂xµ

)
+O(ε2) . (1.4)

From here we can conclude

∂µεν + ∂νεµ = K(x)ηµν , (1.5)

where K(x) is derived from the expansion of Λ(x), and can be calculated by taking the trace

of eq 1.5

K(x) =
2

d
(∂µεµ) , (1.6)

where d is the dimension of our space. So we get the conformality condition on the parameter

of coordinate transformations εµ.

∂µεν + ∂νεµ =
2

d
(∂µεµ)ηµν . (1.7)
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This (1.7) can be used to construct higher derivative conditions namely:

(ηµν� + (d− 2)∂µ∂ν)(∂ · ε) = 0 , (1.8)

(d− 1)�(∂ · ε) = 0 , (1.9)

∂µ∂νερ =
1

d
(ηρµ∂ν + ηρν∂µ − ηµν∂ρ)(∂ · ε) = 0 . (1.10)

Note that 1.8 and 1.9 make it clear that d = 1 and d = 2 are special. So we first look at the

case where d ≥ 3. From equations 1.8 an 1.9 follows:

∂µ∂ν(∂ · ε) = 0 . (1.11)

which means (∂ · ε) is at most linear in x, so by expanding ε in powers of x we get:

εµ = aµ + bµνx
ν + cµνλx

νxλ , (1.12)

where aµ, bµν and cµνλ are infinitesimal small constants. All this constants stand for various

transformations and in general any conformal transformation is a sequence of them.

aµ stands for space-time translations. bµν can be divided (like every matrix) into a sum

of a symmetric and an antisymmetric parts, from equation 1.5 we see that the symmetric part

is proportional to the metric.

bµν = αηµν +mµν , (1.13)

hear α represents dilatations and mµν represents rotations. Using eq 1.10 we can reduce the

number of independent components of cµνλ, by doing so we get:

cµνλ = ηµλbλ + ηµνbλ − ηνλbµ, where bµ =
1

d
cρρµ . (1.14)

cµνλ stands for the special conformal transformations(SCT). By exponentiation the generators
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Name Transformation Generator

translation xµ → xµ + aµ Pµ = −i∂mu
dilation xµ → αxµ D = −ixµ∂µ
rotation xµ →Mµ

ν x
ν Lµν = i(xµ∂ν − xν∂µ)

SCT xµ → xµ−(x·x)bµ

1−2(b·x)+(b·b)(x·x)
Kmu = −i(2xµxν∂ν − (x · x)∂µ)

Table 1.1: Conformal transformation and their generators for d > 2

of the infinitesimal transformations one can recover the finite (aka group) transformations( see

table 1.1).

For two dimensional space-time its customary to use complex coordinates.

z = x0 + ix1, z̄ = x0 − ix1. (1.15)

the bar denotes complex conjugation, then the infinitesimal transformations

z → z + ε(z) =
∑
n∈Z

εn(−zn+1) ,

z̄ → z̄ + ε̄(z̄) =
∑
n∈Z

ε̄n(−z̄n+1) ,

correspond to the algebra of the conformal group, denoted l and l̄, the generators ln and l̄n

form the de Witt algebra.

[lm, ln] = (m− n)lm+n ,

[l̄m, l̄n] = (m− n)l̄m+n ,

[lm, l̄n] = 0 . (1.16)

This algebra has a central extension, with central charge c, the Virasoro algebra

[Lm, Ln] = (m− n)Lm+n =
c

12
(m3 −m)δm+n,0 , (1.17)
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the L’s are the Virasoro generators. Both the de Witt and Virasoro algebras are infinite dimen-

sional which makes them entirely different from the four dimensional algebra. This remarkable

property has an important role in string theory and some integrable models. There are some

excellent books and lecture notes on this topic, for a broader discussion or the continuation of

it see [17–19] .

1.2 Introduction to Instantons

In quantum field theories correlators contain all the information about the observables of the

system. The path integral approach enables us to calculate the correlations in QFT’s. Histor-

ically this approach was created to calculate Feynman diagrams for perturbative phenomena,

but now it is believed that the path integrals, even for small coupling constants, can describe

non-perturbative effects. The path integrals are notoriously hard to calculate, to counter this

hardship a number of approaches were developed. One of the more consistent approaches is to

look at path integrals as limits of integrals over fields on latices.

〈∏
i

O(xi, ti)
〉

=

∫
Dφ
∏
i

O(xi, ti)e
i
~S(φ) . (1.18)

Where S is the action, in particular for gauge theories

S = − 1

4g2

∫
d4F a

µνF
aµν . (1.19)

We always assume the Einstein summation convention if not explicitly stated otherwise. In the

classical limit ~→ 0 the integral 1.18 is dominated by the extreme δS = 0 point which can be

a maximum, minimum or a saddle point. It is convenient to take the analytic continuation:

tE = it , (1.20)
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we change to a Euclidean space time.

iS = − 1

4g2

∫
dtEd

3xF a
ijF

a
ij + ... = −SE . (1.21)

Here we have the advantage of having a positive defined action. The correlation functions

are dominated by the minimum of SE(φ) these can be vacuum minimum or solutions to the

equation of motion. Instantons are solutions to the Euclidean equation of motion. If the theory

has a small coupling constant g2 we are enabled to calculate the usual vacuum bubble diagrams

and perturbations around the instanton solutions. Besides, the role in calculating path integrals

instantons have many other uses. One such situation arises when the tunneling between two

vacuum states are calculated.

1.2.1 Instantons in Quantum Tunneling

Instantons can be used to calculate tunneling effects between two vacuum states. To see this

lets look at a particle in a double well potential

V (x) = V0

(
1− x2

x2
0

)2

. (1.22)

V0 is the height of the barrier between the two sectors, and in case if V0 >> 1 the solutions

of the Schrdinger equation gives rise to a spectrum similar to the harmonic oscillator with

corrections

En = (n+
1

2
± 1

2
∆n)ω0 , (1.23)

where

∆n ∼ e−
2V0ω0

3 , ω2
0 =

8V0

x2
0

. (1.24)
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V0

-x0 x0

Figure 1.2: The double-well potential

This corrections are a result of the tunneling effect between the two sectors, and as expected

the corrections get exponentially smaller when we rise the barrier. To see this let us compute

the probability of a particle shifting from x = −x0 to x = x0 in δt time

〈x0|e−Hδt| − x0〉 =

∫
Dx(t)exp

(
−
∫ δt

0

dtE
[ ẋ2

2
+ VE(x)

])
. (1.25)

where

VE = −V (x) . (1.26)

The transition to Euclidean space-time has the effect of changing the usual Lagrangian like in

equation 1.18 by the Hamiltonian with the Euclidean potential VE. The equation of motion for

the double well potential are

ẍ = −V ′E(x) , (1.27)
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and its solution

ẋ =
√
−2VE(x) =

√
2V0

x2
0

(x2 − x2
0) , (1.28)

x = x0tanh tE

√
2V0

x2
0

. (1.29)

Inserting these into the Euclidean action one finds

S =

∫ ∞
−infty

dtE[
ẋ2

2
− VE] =

∫ ∞
−infty

dtEẋ
2 =

2V0

3

√
8x2

0

V0

. (1.30)

The first approximation to the tunneling effect are instanton solutions

A ∼ e−SE ∼ exp
(
− 2V0

3

√
8x2

0

V0

)
. (1.31)

for the proper factor in front of 1.31 one needs to calculate the fluctuations around the instanton

solutions.

1.2.2 Instantons in Gauge Theories

Instantons are solutions to the Euclidean Yang-Mills equation of motion. The Euclidean Yang-

Mills action has this form

SE =
Imτ

8π

∫
d4xTrFijFij − i

Reτ

8π

∫
d4xTrFijF̃ij , (1.32)

with

Fij = ∂iAj − ∂jAi + [Ai, Aj] , (1.33)

F̃ij =
1

2
εijklFkl . (1.34)
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The field with the tilde is the dual field, it naturally obeys the Bianchi identity, which can be

demonstrated by a simple insertion:

DiF̃ij = ∂iF̃ij + [Ai, F̃ij]

=
1

2
εijkl(2∂i∂kAl + ∂i[Ak, Al] + 2[Ai, ∂kAl] + [Ai, [Ak, Al]])

= 0 ,

where the first three terms in the last equation vanish because of the fully antisymmetric tensor

or cancel themselves out, the last term vanishes because of the Jacobi identity.

The Yang-Mills equation of motion:

DiFij = ∂iFij + [Ai, Fij] = 0 , (1.35)

has the same form as the Bianchi identity for the dual field. This suggests a solution for the

Yang-Mills equation, where the field is proportional to the dual field

F = cF̃ . (1.36)

From ˜̃F = F we conclude that c = ±1. This condition is valid only for the Euclidean space

time. In contrast for Minkowski space-time the corresponding condition ˜̃F = −F differs by a

minus sign. This minus sign is a consequence of the determinant of the metric in the definition

of Levi-Civita tensors, so for the Minkowski space-time we get c = ±i. This definitions and

identities can be written in the language of forms, where they have a simpler look:

F =
1

2
Fijdx

idxj , ∗F =
1

2
F̃ijdx

idxj , (1.37)
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with

F = DA = dA+ A ∧ A . (1.38)

The equation and motion

D ∗ F = d ∗ F + [A, ∗F ] = 0 (1.39)

The Bianchi identities for the dual field

DF = dF + [A,F ] = 2dAA+ 2AdA+ AA2 − A2A = 0 . (1.40)

As mentioned for the Euclidean case in equation 1.36 we have c = ±1. An instanton with

the plus sign is called Yang-Mills instanton and for the minus sign anti-instanton. We classify

instantons by the topological integer k.

k = − 1

16π2

∫
d4xtr(FmnF̃mn) = − 1

8π2

∫
d4xtr(F ∧ F ) . (1.41)

k is also called the instanton number. The Chern character and Chern numbers are defined as:

ch(F ) =
∑
i

chi(F ) = exp
(iF

2π

)
. (1.42)

The instanton number is the second Chern number. To show that for a fixed instanton number

instantons minimize the action in the space of gauge connections we start with this trivial

inequality:

∫
d4xtr(F ± F̃ )2 ≥ 0 , (1.43)
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then we open the parentheses and and use trF 2 = trF̃ 2 , which is a direct consequence of

equation 1.36, we get:

∫
d4xtrF 2 ≥

∣∣ ∫ d4xtrFF̃
∣∣ = 16π2|k| , (1.44)

for the plus sign in 1.43 the inequality 1.44 saturates for anti-instantons, the same is also true

for the minus sign and instantons. After inserting this in the Yang-Mills action we conclude

that for instantons:

−Sinst = 2πikτ , (1.45)

or for anti-instantons

−Sinst = 2πikτ ∗ . (1.46)

Instanton corrections of the correlators take this form:

〈O〉 =

∫
DAe−SO =

∑
ckd

k +
∞∑
k=1

hke
− 8π2k

g2 . (1.47)

Correlators in Yang-Mills theories are computed by path integrals which can be approximated

by the contribution of the saddle point solutions and the fluctuations around them. The

Euclidean saddle point solutions are known as instantons.

1.2.3 Representations of Clifford algebra and construction in higher

dimensions

Because of the heavy use of spinors and their properties we will introduce the Clifford algebra.

Also we’ll construct the representations in higher dimensions for both Minkowski and Euclidean

spaces. For the Minkowski space as before we choose the metric as ηµν = diag(−,+, ...,+). The

general d dimensional Clifford algebra in Minkowski space is defined by generators Γµ where µ
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goes from 0 to d − 1. The generators are also defined in Euclidean space, we denote them as

Γm, where m goes from 1 to d. For the sake of clarity we will use Greek letters for Minkowski

space indexes and Latin letters for Euclidean space indexes. The generators obey the following

constraints.

For Minkowski space:

{Γµ,Γν} = 2ηµν . (1.48)

For the Euclidean space

{Γm,Γn} = 2δmn , (1.49)

where δmn = 1 if m = n otherwise δmn = 0. We will directly introduce the Clifford algebra

for a number of even dimensions and review a scheme to construct them for arbitrary even

dimensions. We always choose a representation where the additional generator is given as:

Γd+1 =

 1 0

0 −1

 .

d = 2 for Minkovski space

Γ0 =

 0 1

−1 0

 , Γ1 =

0 1

1 0

 .

d = 2 for Euclidean space

Γ1 =

0 −i

i 0

 , Γ2 =

0 1

1 0

 .
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In d = 4 we have the famous gamma matrices, for the Euclidean case

γn =

 0 −iσn

iσn 0

 ,

where σn = (i~τ , 1) and ~τ are the usual Pauli matrices

τ1 =

0 1

1 0

 , τ2 =

0 −i

i 0

 , τ3 =

1 0

0 −1

 .

The gamma matrices for Minkowski space

γν =

 0 σν

−σν 0

 ,

where σν = (−1, ~τ). For further uses we also define the self-dual σmn and anti-self-dual σ̄mn

quantities in Euclidean space. The self-duality and anti self duality will play a central role in

building the solution for self-dual and anti-self-dual Yang-Mills equations of motion.

σnm =
1

4
(σnσ̄m − σmσ̄n) , (1.50)

σ̄nm =
1

4
(σ̄nσm − σ̄mσn) . (1.51)

The bar notation denotes the Hermitian adjoin (Hermitian conjugate). Now we will discuss the

six dimensional case. For the Euclidean case we have

Γm =

 0 Σm

Σ̄m 0

 ,
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with

Σm = (η3, iη̄3, η2, iη̄2, η, iη̄) , (1.52)

Σ̄m = (−η3, iη̄3,−η2, iη̄2,−η, iη̄) , (1.53)

where the η-s are three 4x4 matrices known as t’ Hooft symbols.

η̄mAB = ηmAB = εmAB , (1.54)

η̄m4A = ηmA4 = δmA , (1.55)

ηmAB = −ηmBA, η̄mAB = −η̄mBA . (1.56)

indexes m,A and B run from 1 to 3. In Minkowski space the relation between Γ and Σ stay

the same but with diferent Σ’s.

Σµ = (iη3, iη̄3, η2, iη̄2, η, iη̄) , (1.57)

Σ̄µ = (−iη3, iη̄3,−η2, iη̄2,−η, iη̄) . (1.58)

Now suppose we have two representations in Euclidean space, one with dimension d1 and an

another with dimension d2. The generators are written as Γ
(d1)
n and Γ

(d2)
m respectively, n runs

from 1 to d1 and m runs from 1 to d2. Then a representation with dimension D = d1 + d2, also

in Euclidean space, can be constructed out of the formal representations.

Γk = {Γ(d1)
n ⊗ 1,Γ

(d1)
d1+1 ⊗ Γ(d2)

m } , (1.59)

here k goes from 1 to D.
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4

3 + 1

2 + 2

2 + 1 + 1

1 + 1 + 1 + 1.

(1.60)

Figure 1.3: The partitions of the number four.

Figure 1.4: All Young diagrams with four boxes.

1.2.4 Young diagrams and partition of numbers

The partition of a natural number n is the process of writing n as a sum of positive integers,

where the order of summands is neglected. So lets look at the example of the number 4. There

are a total of five distinct partitions:

In contrast Young diagrams are diagrams of ordered rows of boxes where the number of

boxes in a row newer decreases. There is a one to one correspondence between Young diagrams

and the partitions of natural numbers. To see this look at the figure 1.3 and 1.4 the diagrams

and partitions are corresponding. We denote the number of partitions by p(n), for our example

p(4) = 5. Here are the partition numbers for 0 to 9

1, 1, 2, 3, 5, 7, 11, 15, 22, 30. (1.61)

The partition number has a famous generating function discovered by Euler.

∞∑
n=0

p(n)xn =
∞∏
n=1

( 1

1− xn
)
. (1.62)

The later in fact is a special case of the q-Pochhammer symbol which we will discuss later. The

25



fact that equation 1.62 is correct can be seen when one notices that the r.h.s has the form of

a product of sums over infinite geometric series. The connection between Young diagrams and

partitions is heavily used in calculations in(cite my last 2 pps)

1.2.5 ADHM construction

In mathematical physics, the ADHM construction is the construction of all instantons in YM

theories by Atiyah, Drinfeld, Hitchin and Manin in their paper ”Construction of Instantons”

[12]. In this section we will introduce the ADHM construction for R4. The ADHM constriction

is a method to construct solutions for eq. 1.36. We consider only the instanton aka c = 1 case.

First we will look at an ansatz and then proof that it really constitutes self-dual instantons.

The first observation is that if

Fmn ∼ σmn , (1.63)

then the field strength is an instanton. We start with an ansatz matrix ∆ of dimensions

(N + 2k)× 2k of a peculiar form

∆(x) = a + xnbn =

ωu,iα̇

aiα,jα̇

+ xn

 0

σnαα̇δi,j

 . (1.64)

The indexes can be a little confusing but to make it bearable we will hold to this notations:

i, j go from 1 to k, u, c go from 1 to N , µ, λ go from 1 to N + 2k, α, β, α̇, β̇ are spinor

indexes and are 1 or 2. For example a quantity with indexes u, iα is a (N × 2k) matrix. The

moduli space can be divided into sectors of different instanton numbers k, and are denoted as

Mk. To avoid cumbersome factors we think of the moduli space as already factorized by local

gauge transformations. The a and b matrices are parametrising the moduli space of instanton
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solutions. We also need the Hermitian conjugate of ∆:

∆λiα̇(x) = aλiα̇ + bαiλxαα̇, ∆̄λα̇
i (x) = āλα̇i + b̄λiαx̄

αα̇. (1.65)

Hear we used the quaternion form of the coordinate x, as one can see this definition is broader

then in eq. 1.64 .The reason is that the a and b matrices are not uniquely fixed by ADHM. By

rotating ∆ and U .

∆→ Λ∆Γ−1, U → ΛU , (1.66)

we conserve the ADHM constraints, where Λ ∈ U(N + 2k), Γ ∈ Gl(k,C). We’ll make use

of the already ”fixed” matrices defined in eq. 1.64. One of the requirements of ADHM is

that ∆α̇(x) : Ck → C
N+k is injective and ∆̄α̇ is surjective. Furthermore we will see that the

parameter k is the instanton charge introduced in section 1.2.2. We also need the normalized

kernel of ∆, denoted as U . U is a (N + 2k)×N dimensional complex valued matrix, which as

expected is also coordinate dependent.

∆̄U = 0 = Ū∆, UŪ = ŪU = 1N×N . (1.67)

The U matrices play an important role in constructing the ansatz gauge connections.

Am = Ū∂mU , (1.68)

for the k = 0 instantons we recovers the pure gauge. Because for a pure gauge the field strength

vanishes it naturally obeys the self-duality constraint. The ADHM constructions works for

arbitrary instanton number. The ADHM construction also requires that:

∆̄α̇λ
i ∆λjβ̇ = f−1

ij δ
α̇
β̇
, (1.69)
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the non-degeneracy condition was employed to guaranty the existence of f−1. Here f is a

arbitrary k × k Hermitian matrix dependent on space coordinates. The ∆’s are dependent on

the a and b, by inserting the definitions we get this eq. in its components.

ω̄τ cω − iη̄vmn[am, an] = 0 . (1.70)

The η’s are t’Hooft symbols which we defined earlier, and am is connected to a a by aα̇α = amσ
m
α̇α.

We repress some indexes now and then to make the equations more readable, but often only the

spinor indexes are important to be followed. For consistency we want a completeness relation

UλuŪ
µu = δµλ −∆λijf

ij∆̄α̇µ
j , (1.71)

this relation enables us to convert U sums with ∆ sums a trick used extensively in ADHM

calculus. By calculating the dimensions of the moduli space , which involves counting.the

number of freedom in ADHM and subtracting the number of symmetries, one gets

dimRMk = 4kN . (1.72)

Now after the illustration of the ADHM construct we are able to proof its preposition. To proof

that the field strength is self dual we start with the definition of Fmn and insert the ansatz

gauge field

Fmn = ∂mAn − ∂nAm − [Am, An]

= ∂[m(Ū∂n]U) + (Ū∂[mU)(Ū∂n]U) = ∂[mŪ(1− ŪU)∂n]U = ∂[mŪ(∆f∆̄)∂n]U

= Ū∂[m∆f∂n]∆̄U = Ūbσ[mfσ̄n]b̄U = Ūbσ[mfσmnb̄U , (1.73)

here we used eq. 1.67 and eq. 1.71. The matrices σmn are defined in section 1.2.3. So, we see

that Fmn is proportional to σmn which insures the self duality, this concludes the proof, before

we conclude this chapter we present some explicit forms and remarks. As we can see we didn’t
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use the special form of b, if we use it we’ll get:

Fmn = 4Ū

0 0

0 σmn ⊗ f[k×k]

U ∼ σmn . (1.74)

To wind up this chapter lets look at a special case the BPST instanton [13]. BPST stands

for Belavin, Polyakov, Schwarz and Tyupkin who found this solution. The BPST is the N =

2, k = 1, and aαα̇ = 0 case. By simple insertions we find:

Am =
2xnσmn
x2 + ρ2

, Fmn = 4Ū

0 0

0 σmn
ρ2+r2

U =
4ρ2σmn

(ρ2 + r2)2
, (1.75)

∆ =

 ρ1[2×2]

x+ 2× 2

 , Ū =
1

(ρ2 + r2)
1
2

(
− x[2×2]ρ1[2×2]

)
,

∆̄∆ = (ρ2 + r2)1[2×2] ⇒ f =
1

ρ2 + r2
, r2 = xmxm . (1.76)

Before we continue to the next section we’ll give a short list of references for the various subjects

discussed here. For instantons and instantons in gauge theories look [10,20]. For Clifford algebra

see [21].

1.3 Lorentz Algebra and its Representations

In this section well introduce the Lorentz algebra. As already mentioned supersymmetry is

an extension of the Poincar group. In it self the Poincar algebra is the Lorentz algebra with

the addition of space-time translations. Lorentz algebra generators in four dimensional(d = 4)

Minkowski space [21]:

i[Jµν , Jλρ] = ηνρJµσ − ηµρJνσ − ηνσJµρ + ηµσJνρ , (1.77)
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where µ, ν go from zero to three, Jµν is antisymmetric and contains the generators of space

rotations(J) and boosts (P ).

J i =
1

2
εijkJ

jk , (1.78)

P i = J i0 , (1.79)

here i, j and k go from one to three. η is the Minkowski metric with signature (−,+ + +) and ε

is the the Levi-Civita symbol for d = 3 Euclidean space. Because we want our laws of nature to

behave in a predictable manner under the Lorentz transformations, we classify our field under

the finite representations of the Lorentz group. First of all a representation is a set of matrices

M(g) , where g is the group element, which obey the following constraints:

M(e) = I, M(g1g2) = M(g1)M(g2), (1.80)

where e is the identity in the group and I is a unit matrix. For Lie groups the Lie algebra(Λ)

can be expressed as an infinitesimal deviation from the identity:

Λµ
ν = δµν + ηµρωρν , (1.81)

ω is a infinitesimal and antisymmetric parameter. The fields are transforming under the n

dimensional representation by this formula

δφi =
i

2
ωµν(J µν)ij φ

j (1.82)

where i, j go from one to n and J µν is a n dimensional representation of Lorentz algebra.

This formula can be shortened if we think of the various fields as n-tuples and assume matrix

multiplication:

δφ =
i

2
ωµνJ µνφ . (1.83)
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The corresponding finite transformation for Lie algebras coincides with the exponentiation of

the small transformation:

φ→ D(ω)φ = exp(
i

2
ωµνJ µν)φ. (1.84)

For compact groups any dimensional representation has a equivalent unitary representation so

their generators are Hermitian [22]. But the same is not true for non-compact groups. The

Lorentz group is in fact non compact , the rotation generators are Hermitian but the boosts

are anti-hermitian:

(J ij)† = J ij , (J 0j)† = −J 0j. (1.85)

From a finite dimensional representation one can construct other representations by sandwich-

ing them in by a unitary matrix and its inverse. A simple check can verify that the new

representation U−1J µνU is obeying the necessary constants of 1.80. Any two representations

that are connected by the mentioned procedure are called equivalent. The name ”equivalent” is

chosen correctly because it constitutes a equivalence relation [23]. If the representation matri-

ces have a invariant subspace smaller than the dimension of the space where the representation

acts, then a suitable equivalent representation can be chosen that has a block diagonal form.

This kind of representation are know as reducible representations. If there not reducible they

are irreducible. Irreducible representations play a central role in group theory and are used to

decompose reducible representations and to construct new. For clarity we will write the di-

mension of the particular representation of the group in boldface, two different representations

of the same dimension are differentiated by a prime e.g. m and m′. There are two usual ways

to construct higher dimensional representations one to take the direct sum and the other the

direct product.

1. direct sum.

In the direct sum we concatenate two fields into a field with higher dimension, the new repre-
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sentation has a block diagonal form.

φm⊕n =

φm

φn

 , Jm⊕n
µν =

Jm
µν 0

0 J n
µν

 . (1.86)

This is one reason of why we only need to occupy ourselves with irreducible representations.

2. direct product

Another way of constructing representations with higher dimensions is to take the direct product

also known as the tensor product. It is defined by the following:

φm⊗n
ij = φm

i φ
n
j , (Jm⊗n

µν )ijkl = (Jm
µν )ikδ

j
l + (J n

µν)
j
l δ
j
k . (1.87)

where i, k are indexes of the m dimensional representation and j, l of the n dimensional repre-

sentation. This occurs when adding angular momentum in quantum mechanics.

m⊗ n = (m− n + 1)⊕ · · · ⊕ (m + n− 1) . (1.88)

Now we want to address the question of how to construct tensor and spinor fields. To construct

a rank n tensor field we take the tensor product of n vector fields. These fields do not correspond

to irreducible representations. But they can be decomposed to irreducible representations by

looking at tensors with fixed symmetric and antisymmetric indexes. This procedure in fact is

similar to finding irreducible representations for the symmetric group. As for the symmetric

group the irreducible representations can be constructed by looking at Young tableau with n

boxes. For an other place where Young tableau emerge see section 1.2.4. For example lets look

at the product representation of 1⊗ 1′ (for the Young tableau see table 1.5). By dividing the

direct product into two different parts.

1⊗ 1′ = (1⊗S 1′)⊕ (1⊗A 1′) , (1.89)
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,

Figure 1.5: Young tableau with two boxes.

where ⊗A and ⊗S are defined by

(φ1⊗S1′)ij = (φ1)i(φ
1′)j + (φ1)j(φ

1′)i , (1.90)

(φ1⊗A1′)ij = (φ1)i(φ
1′)j − (φ1)j(φ

1′)i , (1.91)

both are not yet irreducible representations and accordingly correspond to the Young tableau

the symmetric representation has n(n+1)
2

terms for 1 we have 10 terms. To have a irreducible

representation we also need to separate the trace.

φT{µν} = φ{µν} −
1

4
ηµν(η

λρφ{λρ}) , (1.92)

the {} brackets stand for symmetrization and the [] for antisymmetrization. So in short we

have 4⊗S 4 = 9⊕1. The antisymmetric part is also reducible. To see this we need to introduce

the Hodge dual tensor. The Hodge dual tensor is a the tensor contracted with the invariant

Levi-Civita symbol. The Levi-Civita symbol in four dimensional Minkowski space is a fully

antisymmetric four tensor. defined by the equality

ε0123 = 1 = −ε0123 . (1.93)

The Hodge dual tensor for the antisymmetric two tensor is defined as:

φ∗[µν] =
i

2
εµνλρφ

[λρ] . (1.94)

The Hodge dual tensor has the property of (φ∗)∗ = φ. For this case the dual tensor is a

antisymmetric two tensor. In fact here the dual tensor is proportional to the antisymmetric
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tensor.

φ∗[µν] = ±φ[µν] , (1.95)

here if considered a generic constant the equation would contradict the φ∗∗ = φ constraint. The

two options are known as self dual and anti self dual representations for +1 and -1 correspond-

ingly. They are three dimensional and are denoted as 3+ and 3−. In a simpler notation we got

4⊗A 4 = 3+ ⊕ 3−. So we showed all the irreducible representations of the tensor field. So we

got 9 terms from the traceless symmetric, 1 from the invariant trace, 3 from the self dual and 3

from the anti self dual representations in total we have 4×4 = 16 terms which was expected and

correct. We want to note that this is only a illustration not a proof. The tensor representations

are not the only one, there are also the spinor representations. The spinor representations are

associated with the covering group SU(2)×SU(2). The spinor representation has a advantage

of being a construction block for tensor representations and in general if we take the product

of even number of spin representations we’ll get tensor representations so in the following part

of this section the already discussed tensor representations will be seen as products of spinor

representations. We start with the four dimensional representation of the Clifford algebra (for

more details look up section 1.2.3)

{γµγν} = 2ηµν . (1.96)

From tease we can construct the generators of the Lorentz algebra :

J µν = − i
4

[γµ, γν ] , (1.97)

this is easily checked by substituting 1.97 into 1.77 . There is a simple way to construct spin
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Name Field dimension (m,n)

scalar φ 1 (0, 0)
left-handed spinor ψL 2L (1

2
, 0)

right-handed spinor ψR 2R (0, 1
2
)

vector φµ 4 (1
2
, 1

2
)

self dual antisymmetric φ+
[µν] 3+ (1, 0)

anti self dual antisymmetric φ−[µν] 3− (0, 1)

traceless symmetric φ{µν} 9 (1, 1)

Table 1.2: Some of the irreducible representations of Lorentz algebra

representations. One needs to look at the operators:

Li =
1

2
(Ji + iPi) , Ri =

1

2
(Ji − iPi) (1.98)

Ji and Pi are the rotation and boost operators defined in the beginning of this chapter. The

commutation relations of L and R

[Li, Lj] = iεijkLk , [Ri, Rj] = iεijkRk , [Ri, Lj] = 0 , (1.99)

reveal that the Lorentz group has a covering group of SU(2)×SU(2). The representations of the

two SU(2)’s are distinguished by the subscripts R and L. Now we can present the irreducible

representation as combination of irreducible representations of SU(2), denoted (n,m)(see table

1.2).

1.3.1 Majorana spinors

Majorana spinors are different then the more familiar Dirac spinors in a number of ways

and mixing them can create unexpected complications. So, because we need Majorana spinors

for describing supersymmetry we’ll give a short introduction of their properties. The ”spinor”
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part in Majorana spinors means that they are functions of energy and momentum and when

multiplied by eipx or e−ipx become solutions to the Dirac equation [24], therefore they are a

special case of the Dirac spinor. The Dirac equation:

(iγµ∂µ −m)Ψ = 0 , (1.100)

which can be understood as Schrdinger’s equation

i
∂Ψ

∂t
= HΨ , (1.101)

with the Hamiltonian:

H = γ0(γipi +m) , (1.102)

the γ symbols are defined in section 1.2.3. The Dirac equation can be formulated as a Euler-

Lagrange equation of a system with Lagrangian:

L = Ψ̄(iγµ∂µ −m)Ψ , (1.103)

bar notation refers to Hermitian conjugate times γ0. Now we want to look at the real solutions

of the Dirac equations. To have real solutions we need the equation also to be real so the task

is to find gamma matrices that are imaginary. One such possible solution is this:

γ̃0 =

 0 σ2

σ2 0

 , γ̃1 =

iσ1 0

0 iσ1



γ̃2 =

 0 σ2

−σ2 0

 , γ̃3 =

iσ3 0

0 iσ3

 .
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the σ’s are Pauli matrices. This observation has been done by Majorana. Because σ2 is

imaginary and σ1 , σ3 are real as proposed we have

γ̃∗µ = −γ̃µ. (1.104)

The reality conditions of the equation should make it possible to find real solutions for equation

1.100. The now found representation of the gamma matrices not unique, as we know gamma

matrices in general are not unique and can be redefined by a unitary matrix, the same situation

is also true for us with an additional constraint that the redefinition should not violate the reality

condition. So, we have

γ̃µ → Uγ̃µU † , (1.105)

with the correspondent transformation for the field

Ψ→ UΨ , (1.106)

here U is a unitary matrix, and a straightforward check shows that equation 1.100 still hold

true. The reality condition:

Ψ̃ = Ψ̃∗ , (1.107)

implies that

U †Ψ = (U †Ψ)∗ (1.108)

or

Ψ = UUTΨ∗ (1.109)
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This part illustrated the connection between Dirac spinors and Majorana spinors. Now we

discus the connection between the Weyl spinor and Majorana spinor. First we have to return

to the general setting of gamma matrices, without fixing their form. One can construct all the

possible combinations of the gamma matrices,

γµ , γµγν , γµγνγλ , γµγνγλγρ , . . . . (1.110)

Fortunately the independent terms in this list are finite. First we want to note that any ordered

list of indexes can be decomposed into lists with fixed symmetrization and antisymmetrization.

The Clifford algebra (1.96) lowers the number of gamma matrices with symmetric indexes so

we are left with a subset of possibly independent combinations.

γµ , γ[µγν] , γ[µγνγλ] , γ[µγνγλγρ] , . . . . (1.111)

But we know that there is only one four tensor with fully antisymmetrized indexes the Levi-

Civita symbol. So we have:

γ[µγνγλγρ] ∼ εµνλρ . (1.112)

The relative constant is a 4! because we define symmetrization and antisymmetrization without

the 1
k!

, and an i for convenience. This enables us to discard all entries in 1.111 that have five

or more indexes. For we clarity use the dual vector of the third entry in 1.111.

γ[µγνγλγρ] = i4!εµνλργ5 , γ[µγνγλ] = i3!εµνλργργ5 . (1.113)

γ5 gets fixed by equations 1.113:

γ5 = −iγ0γ1γ2γ3 . (1.114)
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the set of independent combinations of gamma matrices M = {1, γµ, γ[µγν], γµγ5, γ5} are a basis

for 4× 4 matrices. There are 16 matrices in M . γ5 has some nice properties:

{γ5, γµ} = 0 , (γ5)2 = 1 , γ5 = γ†5 , [Jµν , γ5] = 0 . (1.115)

the second property restricts the eigenvectors of γ5 to ±1, from the last property we can

conclude that by diagonalizing γ5 the Lorentz operators obtain a block diagonal form of two

2×2 matrices. The corresponding spinors also get divided into two kinds, spinors that have +1

as eigenvalue and spinors that have −1 as eigenvalue of γ5, denote them as left(L) and right(R)

correspondingly.

ψL = γ5ψL , ψR = −γ5ψR . (1.116)

The corresponding projection operators are known as chirality operators.

P± =
1

2
(1± γ5) . (1.117)

In the basis where γ5 is diagonal the projection operators P± take the down half or the top half

of a 4 spinor respectively, tease 2 spinors are known as Weyl spinors. Note that the R spinors

correspond to the minus sign in the projection.

Now lets observe the fact that (±γµ)T and ±γµ† obey the Clifford algebra 1.96, T stands

for the transpose of a matrix. The Clifford algebra only has one four dimensional representation

therefore these representation are connected by a similarity transformation.

βγµβ−1 = −γµ† , (1.118)

CγµC−1 = −γµT , (1.119)

β is made from γ0 by multiplying with i. C is know as the charge conjugate matrix. With the

help of these we can construct the complex conjugate matrix and as before define Majorana
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spinors. Majorana spinors are Dirac spinors who obey this reality condition

ψ∗ = βCψ , (1.120)

like with the Weyl spinors the Dirac spinor can be broken up into two Majorana spinors

ψ+ =
1

2
(ψ + βCψ∗) , ψ− = −i1

2
(ψ − βCψ∗) . (1.121)

Majorana spinors and Weyl spinors cant be combined. If we try to impose both conditions we

get the trivial zero as solutions. Here we use left Weyl and Majorana conditions (eqs. 1.120

and 1.116).

ψ∗ = βCψ = βCγ5ψ = −γ5βCψ = −γ5ψ
∗ = −(γ5ψ)∗ = −ψ∗ . (1.122)

1.4 Supersymmetry

In this section we try to introduce the reader with supersymmetry. In the first subsection we

combine the introduction to supersymmetry with the question ” why supersymmetry?”.

1.4.1 Why supersymmetry?

The answer to this question lies in the Coleman-Mandula theorem. The theorem states that

every quantum theory in d > 2 that has this three natural properties [7]

1. The spectra is restricted from below.

2. The S matrix has non-trivial scattering for two body scattering.

3. The amplitude of an elastic scattering is an analytical function of the scattering angle.

Then all internal symmetry generators are Lorentz scalars. A basic understanding can be gained

from this thought experiment: if there are conservation laws other then the conservation of the

energy-momentum and the angular momentum in an elastic two body scattering then the
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scattering angle is non-vanishing only in finite angles, and from condition 3 we conclude that

the amplitude is zero everywhere. To describe this situation in terms of symmetries and their

generators lets look at a simple system of two real scalar fields. The Lagrangian:

L = −1

2
(∂ψ1)2 − 1

2
(∂ψ2)2 . (1.123)

From the Euler-Lagrange equations we get the equation of motions:

�φ1 = 0 , �φ2 = 0 . (1.124)

where the d’Alembert operator is defined by � = ∂µ∂µ . From these equations one can construct

an infinite amount of conserving currents:

Jµ = (∂µφ1)φ2 + φ1∂µφ2 , (1.125)

Jµρ = (∂µ∂ρφ1)φ2 + ∂ρφ1∂µφ2 , (1.126)

Jµνρ = (∂µ∂ρφ1)∂νφ2 + ∂ρφ1∂µ∂νφ2 , (1.127)

. . . . . . . . .

The fact that all currents are conserving can be shown directly by calculating the derivative

with the index µ. The theorem does not apply here because we have no interactions, and

therefore have a trivial two particle scattering contradicting point 2 of the theorem. If we add

an interaction of the form V (φ2
1 + φ2

2) only Jµ remains a conserved current. In this setting the

Coleman-Mandula theorem states that there cant be any form of Lorentz invariant interaction

that conserves currents of higher rank then the charge four-current , even there can’t be any rank

two conserving current for any kind of Lorentz invariant interaction. This situation changes

when we add a fermion.

L = −1

2
(∂ψ1)2 − 1

2
(∂ψ2)2 − 1

2
ψ̄γµ∂µψ (1.128)
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This is the Lagrangian of two real scalars and a Majorana spinor. With equations of motion:

�φ1 = 0 , �φ2 = 0 . γµ∂µψ = 0 (1.129)

as before we can tailor an infinite amount of conserved currents

Sµα = ∂ρ(ψ1 − iψ2)(γργµψ)α , (1.130)

Sµαβ = ∂ρ(ψ1 − iψ2)(γργµ∂βψ)α , (1.131)

Sµαβτ = ∂ρ(ψ1 − iψ2)(γργµ∂β∂τψ)α , (1.132)

. . . . . . . . .

To check, one needs to use the equations of motion, the Clifford algebra for gamma matrices

and the commutativity of partial derivatives. They give rise to conserved charges:

Qα =

∫
dx3S0α , Qαβ =

∫
dx3S0αβ , . . . (1.133)

An analogue situation arises wen we add interaction term to the Lagrangian.

L = Lfree − V (1.134)

where an example of V is:

V = gψ̄(φ1 + iγ5φ2)ψ +
1

2
g2(ψ2

1 + ψ2
2)2 (1.135)

The Coleman-Mandula theorem states that after adding an Lorentz invariant interaction only

Sµα will stay a conserved current even if ones try to change the form of the other currents. Note

tat if there was a conserved current Sµαβ one could construct a spin three symmetry generator
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out of it. But a spin half current Sµα gives rise to a spin one generator:

{Q, Q̄} = 2γµPµ , (1.136)

[Q,P ] = 0 (1.137)

This is known as the N = 1 d = 4 superalgebra. Because this type of algebra was the only

possible construction to build it retains the position of the natural extension of Poincar algebra.

1.4.2 Superspace

The superspace is an extension of the familiar Minkowski space. Space time coordinates xµ are

supplemented with the coordinates θ1,2 , which in essence are complex Grassmann numbers.

Its also customary to think of them as Weyl spinors, the reason is that Grassmann numbers

anticommute, and we need two of them so we could just take Weyl spinors instead. To work

with Grassmann numbers we need to know how to commute with space-time coordinates, how

to differentiate and how to integrate them. The first question is just a matter of definitions

[xµ, θ1,2] = [xµ, θ̄1,2] = 0 . (1.138)

additionally the Grassmann numbers anticommute like spinors, so, two different Grassmann

numbers anticommute and the square of a Grassmann number is zero. The derivative is all but

usual.

∂

∂θ
θθ̄ = θ̄ ,

∂

∂θ
θ̄θ = −θ̄ , ∂

∂θ1

θ1θ2 = θ2 ,
∂

∂θ1

θ2θ1 = −θ2 . (1.139)

To define integration we need a scalar measure. There are three to choose from:

d2θ = dθ1dθ2 , d2θ̄ = dθ̄1dθ̄2 , d4θ = d2θd2θ̄ . (1.140)
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The integration rules

∫
d2θ θ2θ1 =

∫
d2θ̄ θ̄2θ̄1 =

∫
d4θ θ̄2θ̄1θ2θ1 = 1 . (1.141)

These formula can be compressed into this simple anticommutativity expressions:

{ ∂

∂θα
, θβ

}
=

∫
dθα θβ = δα,β . (1.142)

This shows us that differentiation and integration for Grassmann numbers are roughly the

same. The superderivatives are defines as:

Dα =
∂

∂θα
+ iσµαα̇θ̄

α̇∂µ (1.143)

D̄α̇ = − ∂

∂θ̄α̇
− iσµαα̇θα∂µ (1.144)

1.4.3 Superfields

Now we’re able to define superfields. Superfields are fields in superspace. It is sometimes

convenient to look at the expansion of the field in their Grassmann coordinates. The expansion

yields a finite number of terms because the square of a Grassmann number is always zero.

S(x, θ, θ̄) = φ(x) + θψ(x) + θ̄ξ̄(x) + θ̄σ̄µθAµ(x) + θθf(x) + θ̄θ̄g∗(x)

+iθθθ̄λ̄+ iθ̄θ̄θρ(x) + θθθ̄θ̄D(x) , (1.145)

we suppress the indexes of θ and θ̄ when we think it wont cause confusion or increase readability.

We classify , as always, the fields as bosonic or fermionic depending on their commutation or

anticommutation relations. Bosonic fields commute with Grassmann numbers fermionic fields
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anticommute.

[Sb, θ] = [Sb, θ̄] = 0 , (1.146)

{Sf , θ} = {Sf , θ̄} = 0 (1.147)

To restrict the general field to a fixed statistics we restrict the component in the expansion

(1.145). For a bosonic superfield we expect to have even numbers of Grassmann coordinates,

therefore ψ(x) , Aµ(x) , f(x) , g(x) , and D(x) are bosonic field in Minkowski space the others

are fermions. For a fermionic superfield the roles are switched ψ(x) , ξ̄(x) , λ̄(x) and ρ(x) are

bosonic the others fermionic. The superfields are classified under the algebra of all isometries of

the superspace. We saw that the fields can be categorized under the categories of formions and

bosons this is a consequence of the Z2 graded algebra. We denote the grading of the algebra A

as π(A). The distribution law for superderivatives are dependent of the grade of the fields:

D(AB) = (DA)B + (−)π(A)π(B)A(DB) , (1.148)

D̄(AB) = (D̄A)B + (−)π(A)π(B)A(D̄B) . (1.149)

This mechanism is in essence the same that we have encountered in eq. 1.139.

Now well discus the supersymmetry generators and their algebra. The supersymmetry

generator act linearly on the superfields this stand in full analogue, with the Poincar algebra.

For Poincar translations we have:

δτφ(x) = iτµPµφ(x) , (1.150)

where Pµ = i∂µ. For the superalgebra

δχS = (χQ+ χ̄Q̄)S , (1.151)
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where Q and Q̄ are the supercharges, which are also operators:

Qα =
∂

∂θα
− iσµαα̇θ̄α̇∂µ , (1.152)

Q̄α̇ = − ∂

∂θ̄α̇
+ iσµαα̇θ

α∂µ . (1.153)

They obey the following anticommutation relations:

{Q, Q̄} = 2σµPµ , {D, D̄} = −2σµPµ , (1.154)

all the other anticommutation rules which mix D , D̄ and Q, Q̄ are zero.

The superfields that we constructed belong to a representation of the superalgebra but the

representation is not an irreducible representation as with φµν in section 1.3 we will construct

the irreducible representations out of these although without proof.

1. The chiral superfield. One can get a chiral superfield by imposing this property:

D̄Sc = 0 , (1.155)

or for the anti-chiral superfield DS†c=0. Note that these restrictions don’t change the super-

charge. These equations can be solved by trivially expanding the superderivative and the

superfields then writing a set of equations, that will restrict the form of the general superfield.

An equivalent but fare more short solution is to notice that for:

x± = x± iθσσ̄ , (1.156)

the following equations hold true:

Dx− = 0 , D̄x+ = 0 . (1.157)
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Therefore fields constructed out of them are also obeying these equations.

Sc(x, θ, θ̄) = φ(x+) + θψ(x+) + θθF (x+) , (1.158)

S†c(x, θ, θ̄) = φ∗(x−) + θ̄ψ̄(x−) + θ̄θ̄F ∗(x−) . (1.159)

here φ is a scalar, ψ is a left spinor and F is a auxiliary field with no dynamics.

2. the vector superfield. A vector superfield is a superfield that obeys this condition:

Sc = S†c , (1.160)

this restriction identifies (in 1.145) ψ with ξ, f with g and λ̄ with ρ, so we can write:

Sv(x, θ, θ̄) = φ(x) + θψ(x) + θ̄ψ̄(x) + θ̄σ̄µθAµ(x) + θθf(x) + θ̄θ̄f ∗(x)

+iθθθ̄λ̄+ iθ̄θ̄θλ(x) +
1

2
θθθ̄θ̄D(x) , (1.161)

if the vector superfield is a gauge field with a gauge transformation

Sv → Sv + iΛ− iΛ† , (1.162)

where Λ is a chiral superfield. Note that the gauge transformation conserves the condition

1.160. It is customary and convenient to write the gauge superfield in this way:

Sgauge(x, θ, θ̄) = φ(x) + θψ(x) + θ̄ψ̄(x) + θ̄σ̄µθAµ(x) + θθf(x) + θ̄θ̄f ∗(x)

+iθθθ̄(λ̄+
1

2
σ̄∂ψ(x))− iθ̄θ̄θ(λ(x) +

1

2
σ∂ ¯ψ(x)) +

1

2
θθθ̄θ̄(D(x) +

1

2
∂∂v(x)) , (1.163)
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the gauge transformations of the fields v, ψ and f are pure algebraic:

v → v + iφ− iφ∗ , (1.164)

ψ → ψ + i
√

2ξ , (1.165)

f → f + iF , (1.166)

the Aµ transforms in a familiar way:

Aµ → Aµ + ∂µ(φ+ φ∗) . (1.167)

Doing calculations in gauge theories it is frequently advantageous to use a gauge, one such

gauge is the Wess-Zumino gauge where the fields v, ψ and f vanish. In this gauge the gauge

superfield has this convenient form:

SW−S(x, θ, θ̄) = θ̄σ̄µθAµ(x) + iθθθ̄λ̄(x)− iθ̄θ̄θλ(x) +
1

2
θθθ̄θ̄D(x) . (1.168)

For a more comprehensive review of the topic see [25–27]
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Chapter 2

VEV of Q-operator in linear quiver 5d

U(1) gauge theories

2.1 Introduction

The 4d N = 2 gauge theories have natural uplift to the 5 dimensions. Embedding N = 2

gauge theory in Ω-background was instrumental in all developments related to the instanton

counting with the help of equivariant localization technics. In fact the geometric meaning of Ω-

background is more transparent in 5d theory compactified on a circle. One simply considers a 5d

geometry fibered over a circle of circumference L so that the complex coordinates (z1, z2) of the

(four real dimensional) fiber get rotated along the circle as: z1 → exp(iLε1), z2 → exp(iLε2)

accompanied with suitable R-symmetry and gauge rotations [28, 29]. ε1,2 are the Omega-

background parameters. In 5d setting we’ll use the notation T1,2 = exp(−βε1,2), where β = iL

and for technical reasons it will be assumed that β has a tiny real positive part. The initial 4d

theory is recovered by sending R → 0. Furthermore, sending both Ω-background parameters

ε1,2 to 0, one gets the standard Seiberg-Witten theory [30, 31]. It is interesting that even the

case of U(1) gauge group, in contrast to the case without Ω-background, the theory is non-

trivial. A characteristic feature of this case, is that the instanton sums become tractable, and for

Nekrasov partition function one obtains closed formulae. In this paper it is shown that not only
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the partition function, but also a more refined quantity, namely the expectation value of the

Q-observable can be computed in closed form. It was shown in [32] that the analog of Baxters Q

operator in purely gauge theory context naturally emerges in Necrasov-Shatashvili limit (ε2 = 0)

[33] as an entire function whose zeros are given in terms of an array of ”critical” Young diagrams,

namely those, that determine the most important instanton configuration contributing to the

partition function. This observable encodes perfectly not only information about partition

function (which is simply related to the total sum of column lengths of Young diagrams) but

also the entire chiral ring [34] constructed from 〈ΦJ〉, J = 0, 1, 2, . . . (Φ is the scalar of vector

multiplet) which can be expressed in terms of power sum symmetric functions of the column

lengths. This is why it is not surprising that the logarithmic differential of (shifted) ratio

y(x) ∼ Q(x)/Q(x+ ε1) is the direct analog of Seiberg-Witten differential: xd log(y(x)) ∼ ωSW .

Subsequently Q and y observables have been extended for theories with various matter and

gauge contents [32, 35–37]. In particular [37] interprets the equations satisfied by y(x) as

deformed character relations and also considers the 5d setup, while in [38] a relation between

the T − Q difference equation and the AGT dual [39, 40] (quasi-classical) 2d Toda conformal

blocks with a fully degenerate insertion is found. The next step, namely extension to the case of

generic Ω-background has been achieved in [41] and [42], where Dyson-Shwinger type equations

(called qq-character relations) for y-observable are derived. For recent developments see also

the series of papers by Nekrasov [41,43–46].

In [1] the already mentioned link between Q observable and Toda conformal blocks with

a degenerate field insertion remains valid for the case of generic Ω-background and, in AGT

dual 2d CFT side, fully quantum conformal blocks as well. The case of the gauge group

SU(2) corresponding to the Liouville theory was analyzed in much details and starting from

second order the BPZ differential equation [15] a difference-differential equation, generalizing

conventional Baxters T −Q relation [?] was derived. In present paper simpler U(1) case in 5d

setting is analyzed. The corresponding T −Q difference equations as well as their solutions in

closed form are found. The solution is expressed in terms of generalized Appel’s function.
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2.2 5d linear quiver theory

2.2.1 The partition function

The (instanton part of) partition function of the 5d, Ar+1 linear quiver theory with gauge group

U(n) is given by (see Fig.2.1 where the setup and the notations are briefly described)

Z =
∑

(~Y1,...,~Yr)

ZYq
|~Y1|
1 . . . q|

~Yr|
r (2.1)

The sum in (2.1) is over all possible r-tuples of arrays of n Young diagrams. |~Yk| is the total

number of boxes in the k-th array of n Young diagrams and ZY is defined as:

ZY = Z~Y1,...,~Yr
(~a0,~a1, . . . ,~ar+1) =

n∏
u,v=1

Zbf (ø, a0,u|Y1,v, a1,v)Zbf (Y1,u, a1,u|Y2,v, a2,v) . . . Zbf (Yr,u, ar,u|ø, ar+1,v)

Zbf (Y1,u, a1,u|Y1,v, a1,v) . . . Zbf (Yr,u, ar,u|Yr,v, ar,v)
(2.2)

For a pair of Young diagrams λ, µ the bifundamental contribution is given by [47,48]

Zbf (λ, a|µ, b) =
∏
s∈λ

(
1− a

b
T
−Lµ(s)
1 T

1+Aλ(s)
2

)∏
s∈µ

(
1− a

b
T

1+Lλ(s)
1 T

−Aµ(s)
2

)
(2.3)

Aλ and Lλ, known as the arm and leg lengths respectively, are defined as: if s is a box with

coordinates (i, j) and λi (λ′j) is the length of i-th (j-th) column (row), then:

Lλ(s) = λ′j − i , Aλ(s) = λi − j (2.4)
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~a0

ø

U(n)

~a1

~Y1

q1

U(n)

~a2

~Y2

q2

~ar

~Yr

qr

U(n)

~ar+1

ø

Figure 2.1: The linear quiver U(n) gauge theory: r circles stand for gauge multiplets; two
squares represent n anti-fundamental (on the left edge) and n fundamental (the right edge) mat-
ter multiplets while the line segments connecting adjacent circles represent the bi-fundamentals.
q1, . . . , qr are the exponentiated gauge couplings, the n-dimensional vectors ~a0, . . . ,~ar+1 encode
respective (exponentiated) masses/VEV’s and ~Y0, . . . , ~Yr+1 are n-tuples of young diagrams spec-
ifying fixed (ideal) instanton configurations.

2.2.2 Important observables

The important observable of main interest in this paper, the Q-observable, is defined as

Q(x, λ) =
∏

(i,j)∈λ

x− T i1T
j−1
2

x− T i−1
1 T j−1

2

(2.5)

Of course an analogous observable with the roles of T1 and T2 exchanged can be introduced

as well. In 4d case β → 0 and in Nekrasov-Shatashvili limit ε1 → 0 this observable satisfies

Baxter’s T-Q equation [32]: a difference equation introduced by Baxter in context of lattice

integrable models [?]. Generalization for the case of generic Ω background (in both 4d and 5d

cases) is due to [41].

An important role is played also by the observable

y(x, λ) =
Q(x, λ)

Q(x/T2, λ)
≡
∏

(i,j)∈λ

(x− T i1T
j−1
2 )(x− T i−1

1 T j2 )

(x− T i−1
1 T j−1

2 )(x− T i1T
j
2 )

(2.6)

In 4d Nekrasov-Shatashvili limit the logarithmic derivative of this observable generates all

expectation values 〈φJ〉 of the vector multiplet scalar. Besides, its expectation value satisfies

the (quantized analog of) Seiberg-Witten curve equation [32]. In generic Ω-background the

corresponding equations (the so called qq-character equations) were introduced and investigated
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in [41] (see also [42]).

2.3 The special quiver and its relation to the Q observ-

able

The expectation value of the Q-operator associated to the first node, by definition is

Q(x) = Z−1
∑

(~Y1,...,~Yr)

n∏
u=1

Q

(
x

a1,u

, Y1,u

)
ZYq

|~Y1|
1 . . . q|

~Yr|
r (2.7)

It was noticed in [1] that such insertion of the operator Q is equivalent to adding an extra node

with specific expectation values. Here this statement will be proved in more general 5d setting.

Note that a detailed proof in [1] was absent, so that also this gap automatically will be filled.

Let’s look at a quiver with r + 1 nodes with expectation values at the additional node

(denoted as 0̃) specified as (see Fig.2.2):

a0̃,u =
a0,u

T
δ1,u
1

. (2.8)

Due to the specific choice of ~a0̃, in order to give a nonzero contribution, the array of n diagrams

associated with the special node 0̃ has to be severely restricted. Namely, the diagram Y0̃,1

should consist of a single column and the remaining n − 1 diagrams Y0̃,2, . . ., Y0̃,n−1 must be

empty. The proof of this statement is given in the Appendix 2.7.

There is a close relation between the Nekrasov partition function associated to above

described specific length r + 1 quiver and the expectation value of a particular Q operator in

a generic quiver with r nodes. This relation is a consequence of the identity

Z~Y0̃,
~Y1,...,~Yr

(~a0,~a0̃,~a1, . . . ,~ar+1) ql
0̃

(T1q1)|
~Y1| q

|~Y2|
2 . . . q|

~Yr|
r =

n∏
u=1

Q

(
a0,1

a1,u

T l2, Y1,u

) ( a0,1

a1,u
T2;T2

)
l(

a0,1

a0,u
T2;T2

)
l

Z~Y1,...,~Yr
(~a0,~a1, . . . ,~ar+1) ql

0̃
q
|~Y1|
1 . . . q|

~Yr|
r , (2.9)
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where Y0̃,u for u = 1 is a one column diagram with length l and the rest are empty diagrams.

The q-analog of Pochhammer’s symbol is defined as:

(a; q)l = (1− a)(1− aq) · · ·
(
1− aql−1

)
. (2.10)

Inserting the definition (2.2) of Z~Y and canceling out the common factors of q and Zbf , we see

that (2.9) is equivalent to

n∏
u,v=1

(
Zbf (ø, a0,u|Y0̃,v, a0̃,v)Zbf (Y0̃,u, a0̃,u|Y1,v, a1,v)

Zbf (Y0̃,u, a0̃,u|Y0̃,v, a0̃,v)

)
T
|~Y1|
1 =

n∏
u=1

Q

(
a0,1

a1,u

T l2, Y1,u

) (a0,u

a1,u
T2, T2

)
l(

a0,1

a0,u
T2;T2

)
l

 n∏
u,v=1

Zbf (ø, a0,u|Y1,v, a1,v) (2.11)

The last equality is proven in Appendix 4.6.

Clearly, the eq. (2.9) shows that the VEV (2.7) at specific values x = xl

xl = a0,1T
l
2 , l = 0, 1, 2, . . . (2.12)

is related to the partition function of the special quiver with the fixed instanton number |~Y0̃| = l

at the node 0̃

Q(xl) = Z−1

n∏
u=1

(
a0,1

a0,u
T2;T2

)
l(

a0,u

a1,u
T2;T2

)
l

×
∑

(~Y1,...,~Yr)

Z~Y0̃,
~Y1,...,~Yr

(~a0,~a0̃,~a1, . . . ,~ar+1) (T1q1)|
~Y1| q

|~Y2|
2 . . . q|

~Yr|
r (2.13)

2.4 Difference equation for Q and its solution

From now on we’ll restrict ourselves to the simplest case of the quiver of U(1)’s. 5d Nekrasov

partition function of such linear quiver can be found using refined topological vertex method
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~a0

ø

q0̃

U(n)

~a0̃

~Y0̃

U(n)

~a1

~Y1

T1q1

U(n)

~a2

~Y2

q2

~an

~Yr

qr

U(n)

~ar+1

ø

Figure 2.2: The quiver diagram with an extra node, labeled by 0̃, added. Note that the gauge
coupling at the node 1 is chosen to be T1 q1.

[49], [50], [51–53] or through a direct instanton calculation (see e.g. [54] and references therein).

The result can be represented as the infinite product

Z =
∞∏

l,s=0

r∏
i=1

r∏
j=i

(
1− ai−1pi

ajpj
T l1T

s
2

)(
1− aipi

aj+1pj
T l+1

1 T s+1
2

)
(

1− aipi
ajpj

T l1T
s
2

)(
1− ai−1pi

aj+1pj
T l+1

1 T s+1
2

) (2.14)

where

pi = a1

i∏
l=1

ql (2.15)

Applying the formula (2.14) for the special quiver discussed in Section 2.3, and for brevity

denoting the partition function of the special quiver simply as Z(q0̃), up to factors independent

of q0̃ we get

Z(q0̃) '
∞∏
s=0

r∏
i=0

1− a0pi
a1ai+1

q0̃T
1−δi,0
1 T 1+s

2

1− a0pi
a1ai

q0̃T
s
2

(2.16)

Note now that in ratio Z(q0̃)/Z(T−1
2 q0̃) nearly all factors cancel out and one is lead to the

relation

Z(q0̃)
r∏
i=0

(
1− a0pi

a1ai+1

q0̃T
1−δi,0
1

)
= Z(T−1

2 q0̃)
r∏
i=0

(
1− a0pi

a1ai
q0̃T

−1
2

)
(2.17)

Expanding this equality in powers of q0̃ and taking into account (2.13), we’ll get a linear relation

(with rational in xl coefficients) among r + 2 quantities Q(xl), Q(xl/T2),. . . , Q(xl/T
r+1
2 ).
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First let consider the simplest case r = 1. An easy computation allows us to establish the

equality

Q (x)−
(

1 + q1
a1T1x− a0a2

a2 (x− a1)

)
Q

(
x

T2

)
+ q1

a1 (x− a0T2) (T1x− a2)

a2(x− a1)(x− a1T2)
Q

(
x

T 2
2

)
= 0 (2.18)

which is valid for infinitely many values x = xl, l = 0, 1, 2, . . . (see eq. (2.12)).

An essential observation is in order here. Since Q(x) and hence the entire LHS of the

eq. (2.18) restricted up to an arbitrary instanton order is a rational function of x, the equality

must be valid also for generic values of x. It is not difficult to check that the q-hypergeometric

function (see Appendix C for definition)

Q(x) =
(q1;T2)∞(

q1a1T1T2

a2
;T2

)
∞

2φ1

( a0

x
, a1T1T2

a2
a1

x

;T2, q1

)
(2.19)

is a solution of (2.18). The (x-independent) normalization coefficient in (2.19) is fixed from the

asymptotic condition

lim
x→∞

Q(x) = 1 (2.20)

In fact it is possible to argue that (2.19) is the only solution of (2.18) with correct asymptotic and

rationality properties discussed above. Using the special n = 1 case of the identity (2.59) the

eq. (2.19) can be rewritten also as (this equality is referred as Heine’s first transformation [55])

Q(x) =

(
a0

x
;T2

)
∞(

a1

x
;T2

)
∞

2φ1

(
a1

a0
, q1,

q1a1T1T2

a2

;T2,
a0

x

)
. (2.21)

The general case with an arbitrary r though more cumbersome, could be analyzed in the

same way. The resulting difference equation reads:

r+1∑
s=0

(−)sCsQ
(
T−s2 x

)
= 0 (2.22)

56



where Cs

Cs =
xT s−1

1 (O
(s−1)
+ + T1O

(s)
+ )− a1O

(s−1) − a0O
(s)

x− a0

s−1∏
n=0

x− a0T
n
2

x− a1T n2
(2.23)

and O(i), O
(i)
+ are the coefficients of the expansions:

r∏
i=1

(
t+

pi
ai

)
=

∞∑
s=−∞

O(s)tr−s (2.24)

r∏
i=1

(
t+

pi
ai+1

)
=

∞∑
s=−∞

O
(s)
+ tr−s (2.25)

or, explicitly

O(s) =
∑

1≤c1<...<cs≤r

pc1 ...pcs
ac1 ...acs

(2.26)

O
(s)
+ =

∑
1≤c1<...<cs≤r

pc1 ...pcs
ac1+1...acs+1

, (2.27)

supplemented with conditions O(−1) = O
(−1)
+ = 0 and O(0) = O

(0)
+ = 1.

It is possible to find a closed expression for Q by expanding the RHS of eq. (2.16) in

powers of q0̃ and, with the help of eq. (2.13), relating the coefficients to Q(xl). After few

manipulations, with a key role played by the identity

(ax; q)∞
(a; q)∞

=
∞∑
l=0

(a; q)l
(q; q)l

xl , (2.28)

we finally get the expression

Q(x) =

C
∑

m1,...,mr≥0

(
a0

x
;T2

)
m1+m2+...+mr

(
a1T1T2

a2
;T2

)
m1

...
(
arT1T2

ar+1
;T2

)
mk(

a1

x
;T2

)
m1+m2+...+mr

(T2;T2)m1 ... (T2;T2)mr

(
p1

a1

)m1

...

(
pr
ar

)mr
,

(2.29)
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which is a generalization of the q-Appell’s Φ(1) series. As earlier, the normalization constant C

can be fixed from the condition (2.20). Indeed in large x limit the RHS of eq. (2.29) breaks

down to r independent sums which are easy to evaluate using eq. (2.28). The end result is:

C =
r∏
i=1

(
pi
ai

;T2

)
∞(

piT1T2

ai+1
;T2

)
∞

(2.30)

It is remarkable that the multiple sum (2.29) can be expressed in terms of basic hypergeometric

series r+1φr (see Appendix 2.8) so that we finally get

Q(x) =

(
a0

x
;T2

)
∞(

a1

x
;T2

)
∞

n+1φn

(
a1

a0
, p1

a1
, p2

a2
, . . . , pr

ar
p1T1T2

a2
, p2T1T3

a3
, . . . , prT1T2

ar+1

;T2,
a0

x

)
. (2.31)

2.5 Reduction to 4 dimensions

In this section we reduce our results to the case of four dimensions. We substitute:

ai,u → e−βai,u , T1 → e−βε1 , T2 → e−βε2 . (2.32)

where a, ε1 and ε2 are the parameters of our 4d quiver theory. The reduction corresponds to

the small β limit. Let me briefly list how the various quantities and relations get modified.

1. The link between expectation value of the Q operator and the partition function:

Z~Y0,~Y1,...,~Yr
(~a0,~a0̃,~a1, . . . ,~ar+1)ql0q

|~Y1|
1 q

|~Y2|
2 . . . q|

~Yr|
r = (2.33)

n∏
u=1

(
Q(a0,1 − a1,u + lε2, Y1)

(a0,u−a1,u+ε2
ε2

)l

(a0,1−a0,u+ε2
ε2

)l

)
Z~Y1,...,~Yr

(~a0,~a1, . . . ,~ar+1)ql0q
|~Y1|
1 . . . q|

~Yr|
r
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where (a)l is the standard Pochhammer’s symbol, ZY is still given by eq. (2.2) but now Zbf

and Q are given by

Zbf (λ, a|µ, b) =∏
s∈λ

(a− b− Lµ(s)ε1 + (1 + Aλ(s)ε2)
∏
s∈µ

(a− b+ (1 + Lλ(s))ε1 − Aµ(s)ε2)

Q(x, λ) =
∏
x∈λ

x− iε1 − (j − 1)ε2
x− (i− 1)ε1 − (j − 1)ε2

(2.34)

2. The difference equation and its solution:

r+1∑
s=0

(−)sCsQ(x− a1 − sε2) = 0 (2.35)

where Cs is defined as:

Cs =

(a1 − x− (s− 1)ε1)V (s−1) +W (s−1) + (a0 − x− sε1)V (s) +W (s)

a0 − x

s−1∏
n=0

a0 + nε2 − x
a1 −mε2 − x

(2.36)

where

V (i) =
∑

1≤c1<...<ci≤r

pc1 ...pci (2.37)

W (i) =
∑

1≤c1<...<ci≤r

pc1 ...pci(ac1+1 − ac1 + ...+ aci+1 − aci) . (2.38)

Here pi’s are redefined as:

pi =
i∏

j=1

qj (2.39)
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and, by definition, we set V (−1) = W (−1) = W (0) = 0, V (0) = 1.

The solution reads:

Q(x) = C
∑

m1,...,mr≥0

(a0−x
ε2

)m1+m2+...+mr(
a1−a2+ε1+ε2

ε2
)m1 ...(

ar−ar+1+ε1+ε2
ε2

)mk

(a1−x
ε2

)m1+m2+...+mrm1!...mr!
pm1

1 ...pmrk

= CF
(r)
1

(a0 − x
ε2

,
a1 − a2 + ε1 + ε2

ε2
, ...,

ar − ar+1 + ε1 + ε2
ε2

;
a1 − x
ε2

; p1, .., pr
)
,

(2.40)

where F
(r)
1 is a generalization of Appel’s function (see Appendix 2.8). C is x-independent and

can be fixed from normalization:

C =
r∏
i=1

(1− pi)
ai−ai+1+ε1+ε2

ε2 (2.41)

In the special case r = 1 we get

Q(x) = (1− q)
a1−a2+ε1+ε2

ε2 2F1

(
a0 − x
ε2

,
a1 − a2 + ε1 + ε2

ε2
;
a1 − x
ε2

; q

)
(2.42)

It is not difficult to check that after decoupling of both hypermultiplets by sending their masses

to infinity, in Nekrasov-Shatashvili limit we recover the result presented in [32].

2.6 Proof of the equality (2.11)

Here we present the derivation of (2.11). We first derive two auxiliary identities.

Denote a Young diagram λ with column lengths λ1 ≥ λ2 ≥ · · · as {λ1, λ2, . . . }. The corre-

sponding row lengths we’ll indicate as λ′1 ≥ λ′2 ≥ · · · . In particular λ′1 would be the number of

columns. We want to show that

Zbf ({l}, a|λ, b) = Q
(a
b
T1T

l
2, λ
)
T
−|λ|
1 Zbf (ø, aT1|λ, b)

(a
b
T1T2;T2

)
l

(2.43)
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To prove (2.43) we divide and multiply the LHS by Zbf (ø, aT1|λ, b), then insert the definitions

of Zbf and the values of arm and leg lengths. We get

Zbf ({l}, a|λ, b) =

Zbf (ø, aT1|λ, b)
l∏

j=1

(
1− a

b
T

1−λ′j
1 T 1+l−j

2

) λ1∏
j=1

λ′j∏
i=1

1− a
b
T

1+θ(l−j)−i
1 T−λi+j2

1− a
b
T 2−i

1 T−λi+j
, (2.44)

where θ(x) is the Heaviside step function

θ(x) =


1, if x ≥ 0

0, if x < 0

(2.45)

Now we divide the problem into two separate cases when λ1 ≤ l or λ1 > l.

1. λ1 ≤ l.

In this case θ(l − j) = 1 and the double product in (2.44) cancels out. The remaining single

product by a simple manipulation can be rewritten as

Zbf (ø, aT1|λ, b)
l∏

j=λ1+1

(
1− a

b
T 1

1 T
1+l−j
2

) λ1∏
j=1

λ′j∏
i=1

1− a
b
T 1−i

1 T 1+l−j
2

1− a
b
T 2−i

1 T 1+l−j
2

λ1∏
j=1

(
1− a

b
T 1T 1+l−j

2

)
. (2.46)

Notice that the middle double product is nothing but Q(a
b
T1T

l
2, λ)T

−|λ|
1 which concludes the

first case.

2. λ1 > l

We split λ into two parts: λtop consisting of boxes with vertical coordinates j > l, and the

part λdown of lower lying boxes with j ≤ l. Now the part of the double product in (2.44)

corresponding to the boxes of λtop survives. For the single product part we do the same

manipulation as in previous case. As a result we get

Zbf (ø, aT1|Y, b)
l∏

j=1

λ′j∏
i=1

1− a
b
T 1−i

1 T 1+l−j
2

1− a
b
T 2−i

1 T 1+l−j
2

l∏
j=1

(1− a

b
T1T

1+l−j
2 )

∏
(i,j)∈λtop

1− a
b
T 1−i

1 T−λi+j2

1− a
b
T 2−i

1 T−λi+j
. (2.47)
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It is easy to see that the product over λtop can be rewritten as

∏
(i,j)∈λtop

1− a
b
T 1−i

1 T−λi+j2

1− a
b
T 2−i

1 T−λi+j
=

∏
(i,j)∈λtop

1− a
b
T 1−i

1 T 1+l−j
2

1− a
b
T 2−i

1 T 1+l−j
2

. (2.48)

Thus the first double product in (2.47) (which is a product over the boxes of λdown) naturally

combines with that of over λtop to give a product over entire λ. As a result, instead of (2.47)

we may as well write

Zbf (ø, aT1|λ, b)
(a
b
T1T2;T2

)
l

∏
(i,j)∈λ

1− a
b
T 1−i

1 T 1+l−j
2

1− a
b
T 2−i

1 T 1+l−j
2

. (2.49)

As before, the product over λ gives Q(a
b
T l2, λ)T

−|λ|
1 , which concludes the proof of eq. (2.43).

We’ll need also the simple identity

Zbf (ø, a|λ, b) =
∏

(i,j)∈λ

(
1− a

b
T 1−i

1 T 1−j
2

)
(2.50)

Now the only thing that remains to be done is to make use of (2.43) and (2.50):

n∏
u,v=1

Zbf (ø, a0,u|Y0̃,v, a0̃,v)Zbf (Y0̃,u, a0̃,u|Y1,v, a1,v)

Zbf (Y0̃,u, a0̃,u|Y0̃,v, a0̃,v)
=

n∏
u,v=2

Zbf (ø, a0,u|Y1,v, a1,v)
n∏
u=2

Zbf (ø, a0,u|Y1,1, a1,1)Zbf (Y0,1,
a0,1

T1
|Y1,u, a1,u)

Zbf (Y0,1,
a0,1

T1
|ø, a0,u)

×
Zbf (ø, a0,1|Y0,1,

a0,1

T1
)Zbf (Y0,1,

a0,1

T1
|Y1,1, a1,1)

Zbf (Y0,1,
a0,1

T1
|Y0,1,

a0,1

T1
)

= T
−|~Y1|
1

n∏
u=1

(
Q(

a0,u

a1,u

T l2, Y1,u)
(a0,u

a1,u
T2;T2)l

( a0,1

a0,u
T2;T2)l

) n∏
u,v=1

Zbf (ø, a0,u|Y1,v, a1,v) (2.51)

2.7 Restriction on Young diagrams at the special node

To prove that the diagram Y0̃,1 at the special node 0̃ should have at most one column in order

to have a nonzero contribution to the partition function, let us assume in contrary that Y0̃,1

has a non-empty second column with length l ≥ 1. This means that the box with coordinates
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(i, j) = (2, l) belongs to this diagram. Any term of the instanton sum corresponding to such

choice includes a factor

Zbf (ø, a0,1|Y0̃,1, a0,1T
−1
1 ) =

∏
s∈Y0̃,1

(
1− a0,1

a0,1T
−1
1

T
1+Lø(s)
1 T

−AY
0̃,1

(s)

2

)
(2.52)

The arm and leg lengths of the box (2, l) are easy to calculate: Lø(2, l) = −2 and AY (2, l) = 0

and the corresponding factor in eq. (2.52) vanishes.

In a similar way we can easily argue that all remaining n− 1 diagrams Y0̃,i, i = 2, . . . , n must

be empty. In fact, if any of this diagrams is non-empty (denote it as λ), then ZY will include

a factor

Zbf (ø, a1,i|λ, a1,i) =
∏
s∈λ

(1− T 1+Lø(s)
1 T

−Aλ(s)
2 ) (2.53)

In this product the factor corresponding to the top box (1, λ1) of its first column becomes zero,

since for this box Lø(1, λ1) = −1 and Aλ(1, λ1) = 0.

Thus we have proven that at the special node the first diagram has at most one column while

the remaining diagrams are empty.

2.8 Generalized Appel and hypergeometric functions

Appels functions and their q-analogues generalize ordinary hypergeometric and q-hypergeometric

functions for the case with more than one arguments. Here are the definitions:

• Appel’s function F1 and its generalization for the arbitrary number of variables:

F1(a, b1, b2; c;x, y) =
∞∑

m,n=0

(a)m+n(b1)m(b2)n
(c)m+nm!n!

xmyn (2.54)
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F
(k)
1 (a, b1, ..., bk; c;x1, .., xk) =

∑
m1,...,mk≥0

(a)m1+...+mr(b1)m1 ...(bk)mk
(c)m1+...+mrm1!...mk!

(x1)m1 ...(xk)
mk

(2.55)

• The corresponding q-analogs:

Φ1(a, b1, b2; c; q;x, y) =
∞∑

m,n=0

(a; q)m+n(b1; q)m(b2; q)n
(c; q)m+n(q; q)m(q; q)n

xmyn (2.56)

Φ
(n)
1 (a, b1, b2, ..., bn; c; q;x1, .., xn) =

∞∑
m1,...,mn=0

(a; q)m1+...+mr(b1; q)m1 ...(bn; q)mn
(c; q)m1+...+mr(q; q)m1 ...(q; q)mn

xm1
1 ...xmnn , (2.57)

• The basic Hypergeometric function n+1φn:

n+1φn

(
a1, . . . , an+1

b1, . . . , bn
;T2, x

)
=

∞∑
m=0

(a1; q)m · · · (an+1; q)m
(q; q)m(b1; q)m · · · (bn; q)m

xm (2.58)

There is a nice identity relating Φ
(n)
1 with n+1φn (see [56]):

Φ
(n)
1 (a, b1, b2, ..., bn; c; q;x1, .., xn) =

(a, b1x1, b2x2, . . . , bnxn; q)∞
(c, x1, x2, . . . , xn; q)∞

n+1φn

(
c/a, x1, x2, . . . , xn

b1x1, b2x2, . . . , bnxn; q, a

)
, (2.59)

where

(a1, a2, . . . , ak; q)∞ =
k∏
l=1

(al; q)∞ . (2.60)

This identity allows us to rewrite the eq. (2.29) in terms of the function n+1φn (see eq. (2.31)).
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Chapter 3

VEV of Baxter’s Q-operator in N=2

gauge theory and the BPZ differential

equation

3.1 Introduction

Instanton [57] partition function of N = 2 supersymmetric gauge theory in Ω-background

admits exact investigation by localization methods [28, 29, 47, 48, 58]. In the limit when the

background parameters ε1, ε2 vanish, the famous Seiberg-Witten solution [30, 31] is recovered.

The case of non-trivial Ω-background has surprisingly rich area of applications. In particu-

lar when one of parameters is set to zero (Nekrasov-Shatashvili limit [33]), deep relations to

quantum integrable system emerge (see e.g. [32,35–37,59–62] to quote a few from many impor-

tant works). These are quantum versions of classical integrable systems, which played central

role already in Seiberg-Witten theory on trivial background [63, 64]. The remaining non-zero

Ω-background parameter just plays the role of Plank’s constant. Many familiar concepts of ex-

actly integrable models of statistical mechanics and quantum field theory such as Bethe-ansatz

or Baxters T −Q equations [?, 65] naturally emerge in this context [32]. In the case of generic

Ω-background instanton partition function is directly related to the conformal blocks of a 2d
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CFT (AGT correspondence) [39, 40, 66–68]. In this context the NS limit corresponds to the

semi-classical limit of the related CFT [37,38,61,69–72].

In [38] one of present authors (R.P.) has investigated the link between Deformed Seiberg-

Witten curve equation and underlying Baxter’s T − Q equation in gauge theory side and the

null-vector decoupling equation [15] of 2d CFT in quite general setting of linear quiver gauge

theories with U(n) gauge groups and 2d An−1 Toda field theory multi-point conformal blocks

in semi-classical limit (see also [14,72–75] for earlier discussions on the role of degenerate fields

in AGT correspondence).

In this short notes we’ll extend some of the results of [38] to the case of generic Ω-

background corresponding to the genuine quantum conformal blocks. For technical reasons

we’ll restrict ourselves to the case of U(2) gauge groups corresponding to the Liouville theory

leaving Toda field theory case for future work.

3.2 A special choice of parameters, leading to Q~Y inser-

tion

Consider the instanton partition function of the linear quiver theory Ar+1 with gauge groups

U(n) with parameters specified as in Fig.3.1a. Note that the parameters of the first gauge

factor (depicted as a dashed circle) are chosen to be ã0,u = a0,u − ε1δ1,u, where a0,u are the

parameters of the ”frozen” node corresponding to the n antifundamental hypermultiplets. It

has been shown in [14] that under such choice of parameters all n-tuples of Young diagrams

Y0̃,u corresponding to the special node 0̃ (the dashed circle) give no contribution in partition

function unless the first diagram Y0̃,1 consists of a single column while the remaining n − 1

diagrams are empty. Taking into account this huge simplification we’ll be able to separate

the contribution of the special node explicitly. According to the rules of construction of the
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z
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z
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z
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zr+1

z

(b)(a)

Figure 3.1: (a) The quiver diagram for the conformal linear quiver U(n) gauge theory: r circles
stand for gauge multiplets; two squares represent n anti-fundamental (on the left edge) and
n fundamental (the right edge) hypermultiplets; the lines connecting adjacent circles are the
bi-fundamentals. (b) The AGT dual conformal block of the Toda field theory.

s2

s1

s3

Figure 3.2: Arm and leg length with respect to a Young diagram λ = {4, 3, 3, 1, 1} (the gray
area): Aλ(s1) = 1, Lλ(s1) = 2, Aλ(s2) = −2, Lλ(s2) = −3, Aλ(s3) = −2, Lλ(s3) = −4.

partition function for this contribution we have

n∏
u,v=1

Zbf
(
a0,u,∅|ã0,v, Y0̃,v

)
Zbf

(
ã0,u, Y0̃,u|a1,v, Y1,v

)
Zbf

(
ã0,u, Y0̃,u|ã0,v, Y0̃,v

) (3.1)

where for a pair of Young diagrams λ, µ the bifundamental contribution is given by

Zbf (a, λ|b, µ) = (3.2)∏
s∈λ

(a− b− ε1Lµ(s) + ε2(1 + Aλ(s)))
∏
s∈µ

(a− b+ ε1(1 + Lλ(s))− ε2Aµ(s)),

the arm and leg lengths of a box s Aλ(s) and Lλ(s) towards a Young diagram λ are defined as

Aλ(s) = λi − j ; Lλ(s) = λ′i − j , (3.3)

where (i, j) are coordinates of the box s with respect to the center of the corner box and λi

(λ′j) is the i-th column length (j-th row length) of λ as shown in Fig.3.2.
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Using (3.2) It is not difficult to compute the factors Zbf present in (3.1). In particular

Zbf (a,∅|b, λ) =
∏
s∈λ

(a− b− ϕ(s)) (3.4)

where

ϕ(s) = ε1(is − 1) + ε2(js − 1) (3.5)

(e.g. in Fig.3.2 ϕ(s3) = 6ε1 + ε2). To present the final result for the contribution (3.1) it is

convenient to introduce the notation

Q(v|λ) =
(−ε2)

v
ε2

Γ(− v
ε2

)

∏
s∈λ

v − ϕ(s) + ε1
v − ϕ(s)

(3.6)

The analogues quantity was instrumental in construction of Baxters T-Q relation in the context

of Nekrasov-Shatashvili limit of N = 2 gauge theories [32]. Recently the importance of this

quantity in the case generic Ω-background was emphasized in [41]. A careful examination shows

that the contribution (3.1) can be conveniently represented as

n∏
u=1

Q (a0,1 − a1,u + ε2k|Y1,u)

εk2

(
a0,1−a0,u+ε2

ε2

)
k
Q (a0,1 − a1,u|Y1,u)

n∏
u,v=1

Zbf (ã0,u,∅|a1,v, Y1,v) (3.7)

where

(x)k = x(x+ 1) · · · (x+ k − 1) =
Γ(x+ k)

Γ(x)
(3.8)

is the Pochammer’s symbol. Using (3.4) we can see that the Young diagram dependent part of

factor Q in the denominator can be absorbed in the double product. The net effect is a simple
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replacement of parameters ãu,0 by au,0 in arguments of the functions Zbf :

n∏
u=1

Γ
(
−a0,1−a1,u

ε2

)
Q (a0,1 − a1,u + ε2k|Y1,u)

εk2 (−ε2)
a0,1−a1,u

ε2

(
a0,1−a0,u+ε2

ε2

)
k

n∏
u,v=1

Zbf (a0,u,∅|a1,v, Y1,v) (3.9)

Thus we conclude that k-instanton sector of the dashed circle in Ar+1 linear quiver theory can

be treated as insertion of the operator

Q ~Y1
(a0,1 + kε2) =

n∏
u=1

Q (a0,1 − a1,u + ε2k|Y1,u) (3.10)

in a generic Ar theory. It was already known [14], that the special choice of parameters ã0,u =

a0,u−ε1δu,1 corresponds to the insertion of the completely degenerate field V−bω1(z) in AGT dual

Toda CFT conformal block. Thus (3.10) gives an explicit realization of this field in terms of

N = 2 gauge theory notions.

Until now we were discussing arbitrary gauge U(n) gauge factors. In what follows, we’ll

restrict ourselves with the case n = 2, corresponding to the Liouville theory in AGT dual

side. The reason is that in Liouville theory conformal blocks including this degenerate field,

satisfy second order differential equation ∗. In remaining part of the paper we’ll translate

this differential equation in gauge theory terms, finding a linear difference-differential equation,

satisfied by the expectation values of the operators Q(v). Since the equation is valid for infinitely

many discrete values of the spectral parameter v = a0,1 + kε2, k = 0, 1, 2, . . ., it can be argued

that it is valid for generic values of v as well. The last statement we have checked also by

explicit low order instanton computations.

∗In generic Toda theory, the analogues null vector decoupling equation is not investigated in full details yet.
Instead there is a recent progress in the case of quasi-classical limit [38].
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3.3 Degenerate field decoupling equation in Liouville the-

ory

Let us briefly remind that the Liouvill theory (see e.g. [76]) is characterized by the central

charge c of Virasoro algebra parameterized as

c = 1 + 6Q2 Q = b+
1

b
(3.11)

where b is the Liouvill’s dimensionless coupling constant related to the Ω-background parame-

ters via

b =

√
ε1
ε2

(3.12)

The conformal dimensions of primary fields are Vλ are given by

h(λ) = λ(Q− λ) . (3.13)

The parameters α are usually referred as charges. One alternatively uses the Liouville momenta

P = Q/2−λ. In Fig.3.1b we found it convenient to specify the fields associated to the horizontal

lines by their momenta, while those of vertical lines by charges. The relations between this

parameters and the gauge theory VEV’s are very simple†

pα =
1
√
ε1ε2

aα,1 − aα,2
2

; λα =
1
√
ε1ε2

(
aα,1 + aα,2

2
− aα−1,1 + aα−1,2

2

)
(3.14)

†The reader should be careful, there are various factors of 2 between specialized to n = 2 Toda notations
compared to the standard Liouville theory conventions, adopted also in this paper.
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for α = 2, 3, . . . , r + 1. With the same logic we have

p0 =
1
√
ε1ε2

a0,1 − a0,2

2
; p0̃ =

1
√
ε1ε2

a0,1 − ε1 − a0,2

2

λ0̃ = − ε1√
ε1ε2

= − b
2

; λ1 =
ε1√
ε1ε2

(
a1,1 + a1,2

2
− a0,1 − ε1 + a0,2

2

)
(3.15)

Notice that the field Vλ0̃
= V−b/2 is indeed a degenerate field satisfying second order differential

equation due to the null vector decoupling condition (below Lm are the Virasoro generators)

(b−2L2
−1 + L−2)V−b/2 = 0 (3.16)

The differential equation satisfied by our r + 4-point conformal block

G(z|zα) = 〈p0|V−b/2(z)Vλ1(1)Vλ2(z2) · · ·Vλr+1(zr+1)|pr+1〉{p̃0,...,pr} (3.17)

reads [15]

(
b−2∂2

z −
2z − 1

z(z − 1)
∂z +

δ

z(z − 1)
+

r+1∑
α=2

zα (zα − 1)

z(z − 1) (z − zα)
∂zα

+
r+2∑
α=1

h(λα)

(z − zα)2

)
G(z|zα) = 0 (3.18)

where

δ = h (Q/2− p0)− h (−b/2)−
r+2∑
α=1

h(λα) and λr+2 = Q/2− pr+1 . (3.19)

According to AGT correspondence the instanton part of the partition function of the N = 2

theory considered in previous section with U(2) gauge group factors is related to the conformal
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block (3.17) as

G(z|zα) = Zinst z
h(Q/2−p0)−h(−b/2)−b

∑r+1
α=1(Q−λα)

r+1∏
α=1

(z − zα)b(Q−λα)

×
∏

1≤α<β≤r+1

(zα − zβ)−2λα(Q−λβ)
r+1∏
α=2

z
p2
α−p2

α−1−h(λα)+2λα
∑r+1
β=α+1(Q−λβ)

α . (3.20)

To complete the map (3.14), (3.14) between two sides let us mention also that the exponentiated

gauge couplings (instanton counting parameters) are related to the insertion points as [39]

qα = zα+1/zα ; for α = 1, . . . , r , (3.21)

the remaining coupling associated to the special node 0̃ is just 1/z and z1 = 1.

In (3.20) besides standard AGT U(1) factors an extra power of z responsible for scale

transformation (with scaling factor z) mapping the insertion points shown in Fig.3.1b to those

of the conformal block (3.17). Inserting (3.20) into (3.18) and replacing CFT parameters

by their gauge theory counterparts we’ll find a differential equation satisfied by the partition

function. After tedious but straightforward transformations it is possible to represent this

equation as (for more details on calculations of this kind see [38])

r+1∑
α=0

(−)αχα(−ε2 z∂z; û1, . . . , ûr+1)z−α−a0,1/ε2Zinst = 0 (3.22)

where

û1 = −ε1ε2
r+1∑
α=2

zα∂zα ; ûα = ε1ε2zα∂zα for α = 2, . . . , r + 1 (3.23)

and χα(v;u1, . . . , ur+1) are quadratic in v and linear in u1, . . . , ur+1 polynomials (we use notation
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ε = ε1 + ε2)

χα(v;u1, . . . , ur+1) =
∑

1≤k1<···<kα≤r+1

( α∏
β=1

zkβ

)(
y0(v + αε+ (α− δk1,1)ε1)

−
α∑
β=1

(
ykβ−1(v + (α− β + 1)ε+ (α− δk1,1)ε1)− ykβ(v + (α− β)ε+ (α− δk1,1)ε1)

+ukβ + (c0,1 − ckβ−1,1)(ckβ−1,1 − ckβ ,1)
)

+
∑

1≤β<γ≤α

(ckβ−1,1 − ckβ ,1)(ckγ−1,1 − ckγ ,1)

)
, (3.24)

where for α = 0, 1, . . . , r + 1

yα(v) = (v − aα,1)(v − aα,2)v2 − cα,1v + cα,2 . (3.25)

We set by definition

χ0(v) = y0(v) (3.26)

and for the other extreme value α = r + 1 it is easy to see that

χr+1(v) = yr+1(v)
r∏

β=1

zβ . (3.27)

Representing Zinst as a power series in 1/z ,

Zinst =
∑

v∈a0,1+ε2Z

Q(v)z−(v−a0,1)/ε2 (3.28)

from eq. (3.22) for the coefficients Q(v) we get the relation

r+1∑
α=0

(−)αχα(v; û1, . . . , ûr+1)Q(v − αε2) = 0 , (3.29)

which is valid for infinitely many values v ∈ a0,1 + ε2Z. Since Zinst is regular at z =∞, in fact

we have nontrivial equations only for vk = a0,1 + ε2k, with k ≥ 0.
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Remind now that as discussed in previous section, due to eqs. (3.9), (3.10), Zinst of the

Ar+1 theory up to a simple factor is the same as VEV of the quantity Q ~Y1
(3.10) calculated

in the framework of Ar gauge theory (i.e. in theory without the dashed circle in Fig.3.1a).

Explicitly

Q(vk) = C
2∏

u=1

ε
(a0,1−vk)/ε2
2

Γ
(
vk−a0,u

ε2
+ 1
) 〈Q~Y1

(vk)〉Ar , (3.30)

where the constant C takes the value

C =
2∏

u=1

Γ
(
a1,u−a0,1

ε2

)
Γ
(
a0,1−a0,u

ε2
+ 1
)

(−ε2)
a0,1−a0,u

ε2

, (3.31)

if one adopts conventional unit normalization for both partition function and the conformal

block. The right hand side of this equation can be calculated by means of gauge theory for

arbitrary v ∈ C. There are all reasons to believe that also for generic values of v the equation

(3.29) still holds. Indeed, for a given instanton order, the equation (3.29) states, that some

combination of rational functions‡ of v vanish for all values v = vk, but this is possible only if

this combination vanishes identically.

A simple inspection ensures that the equation (3.29) in Nekrasov-Shatashvili limit com-

pletely agrees with the analogous difference equation investigated in details in [38].

3.4 Summary

Thus we made an explicit link between the insertion of the Q operator in N = 2 gauge theory

and insertion of simplest degenerate field in AGT dual 2d CFT.

In the special case of the gauge groups U(2) we found analog of the Baxter’s T − Q

equation, previously known only in the Nekrasov-Shatashvili limit of the Ω-background [32,35–

37,62].

‡Evidently, by multiplying with suitable gamma and exponential functions it is easy to get rid of non-rational
prefactors of (3.6), (3.30).
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To conclude let us mention that a ”microscopic” proof of this statement e.g. along the

line presented in [42] to prove qq-character identities of [41] would be highly desirable.

Another important contribution would be generalization of our analysis to the case of

arbitrary U(n) or other choices of gauge groups.
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Chapter 4

RG domain wall for the N=1 minimal

superconformal models

4.1 Introduction

If there exists a RG flow between two CFT’s then it suggests that these theories could be

connected by a non-trivial interface, which encodes the map from the UV observables to the

IR ones [77, 78]. In particular in [78], for the N = 2 superconformal models by using matrix

factorization technique such an interface (called RG domain wall) was constructed.

Later on an algebraic construction of a RG domain wall for the unitary minimal CFT

models was proposed in [79]. It was shown that the results agree with A. Zamolodchikovs

leading order perturbative analysis performed in [80].

It was shown in [81] that for the wider class of local fields including non-primary ones,

the leading order perturbative calculation of the mixing coefficients again are in an impressive

agreement with the RG domain wall approach.

The higher order perturbative calculations (see [82, 83]) further confirm the validity of

this construction.

Gaiotto suggests that a similar construction is valid also for more general coset CFT

models (see [79]). Among these cosets. are the N = 1 minimal superconformal CFT models
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[84–86], which are the main subject of this paper.

in [87] the Renormalization Group (RG) flow between minimal N = 1 superconformal

models SMp and SMp−2 initialized by the perturbation with the top component of the Neveu-

Schwarz superfield Φ1,3 in leading order of the perturbation theory has been investigated (see

also [88, 89]).

In [90] by extending the technique developed in [82] for the minimal models to the super-

symmetric case, the analysis of this RG flow has been sharpened even further by including also

the next to leading order corrections.

In this article we apply Gaiotto’s proposal for the case of the minimal N=1 SCFT models.

We use a method which is based directly on the current algebra construction thus in this sense it

is more general than the one originally employed by Gaiotto for the case of minimal models (he

heavily exploited the fact that the product of successive minimal models can be alternatively

represented as a product of N = 1 superconformal and Ising models). After that the mixing

coefficients for several classes of fields is explicitly calculated by us. We also compare the results

with the perturbative analysis of [87, 90] and find a complete agreement.

4.2 N=1 superconformal field theory

In any conformal field theory the energy-momentum tensor has two nonzero components: the

holomorphic field T (z) with conformal dimension (2, 0) and its anti-holomorphic counterpart

T̄ (z̄) with dimensions (0, 2). In N = 1 superconformal field theories one has in addition su-

perconformal currents G(z) and Ḡ(z̄) with dimensions (3/2, 0) and (0, 3/2) respectively. These

fields satisfy the OPE rules

T (z)T (0) =
c

2z4
+

2T (0)

z2
+
T ′(0)

z
+ · · · , (4.1)

T (z)G(0) =
3G(0)

2z2
+
G′(0)

z
+ · · · , (4.2)

G(z)G(0) =
2c

3z3
+

2T (0)

z
+ · · · . (4.3)
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The corresponding expressions for the anti-chiral fields look exactly the same. One should

simply substitute z by z̄. Further on we’ll mainly concentrate on the holomorphic part assuming

similar expressions for anti-holomorphic quantities implicitly. We can expand T (z) in Laurent

series

T (z) =
+∞∑

n=−∞

Ln
zn+2

, (4.4)

where Ln’s are the Virasoro generators. Due to the fermionic nature of the super current, there

are two distinct possibilities for its behavior under the rotation of the argument around 0 by

the angle 2π

G(e2πiz) = G(z) Neveu - Schwarz sector (NS) , (4.5)

G(e2πiz) = −G(z) Ramond sector (R) . (4.6)

The space of fields A of the superconformal theory decomposes into a direct sum

A = {NS} ⊕ {R} , (4.7)

where the subspaces {NS} and {R} consist of the Neveu-Shwarz and the Ramond fields re-

spectively. By definition, the monodromy of G(z) around a Neveu-Schwarz field is trivial (the

case of eq. (4.5)) and its monodromy around a Ramond field produces a minus sign (the case

of eq. (4.6)). Because of these two possibilities the Laurent expansions for the super-current

will be

G(z) =
∑

k∈Z+1/2

Gk

zk+3/2
Neveu-Schwarz sector (NS) ,

G(z) =
∑
k∈Z

Gk

zk+3/2
Ramond sector (R) .
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The OPE’s (4.1), (4.2), (4.3) are equivalent to the Neveu-Schwarz-Ramond algebra relations

[Ln, Lm] = (n−m)Ln+m +
c

12
(n3 − n)δn+m,0 ,

[Ln, Gk] =
1

2
(n− 2k)Gn+k , (4.8)

{Gk, Gl} = 2Lk+l +
c

3

(
k2 − 1/4

)
δk+l,0 ,

where {, } denotes the anticommutator. In this paper we’ll deal with minimal super-conformal

series denoted as SMp (p = 3, 4, 5 . . .) corresponding to the choice of the central charge

cp =
3

2

(
1− 8

p(p+ 2)

)
. (4.9)

The main distinctive mark of the minimal super-conformal theories is that they have finitely

many super primary fields. These fields are numerated by two integers n ∈ {1, 2, · · · , p − 1},

m ∈ {1, 2, · · · , p+1} and will be denoted as φn,m. It is assumed that φp−n,p+2−m ≡ φn,m , hence

the number of super primaries is equal to [p2/2] ([x] is the integer part of x). φp−1,p+1 ≡ φ1,1 is

the identity operator. For even (odd) n−m the super-conformal classes [φn,m] form irreducible

representations of the Neveu-Schwarz (Ramond) algebra. The fields φn,m have dimensions

hn,m =
((p+ 2)n− pm)2 − 4

8p(p+ 2)
+

1

32
(1− (−)n−m) . (4.10)

4.3 Current algebra and the coset construction

We apply the coset construction [91, 92] of super-minimal models for ŜU(2)k WZNW models

[93,94].

WZNW models are endowed with spin one holomorphic currents, thus the OPE relations
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of these currents specified for the case of ŜU(2)k read:

J0(z)J0(0) =
k/2

z2
+ reg ,

J0(z)J±(0) = ±J
±(0)

z
+ reg , (4.11)

J+(z)J−(0) =
k

z2
+

2J0(0)

z
+ reg ,

where k is the level. The isotopic indices ±, 0, which will be handy for the later use, are related

to the usual Euclidean indices as:

J0 ≡ J3 and J± ≡ J1 ± iJ2 . (4.12)

The Laurent expansion is

Ja(z) =
∑
n∈Z

Jan
zn+1

. (4.13)

The OPE rules (4.11) imply that the current algebra generators obey the Kac̆−Moody algebra

commutation relations

[
J±n , J

±
m

]
= 0 ,[

J+
n , J

−
m

]
= knδn+m,0 + 2J0

n+m ,[
J0
n, J

±
m

]
= ±J±n+m , (4.14)[

J0
n, J

0
m

]
=
kn

2
δn+m,0 .

Note the subalgebra generated by Ja0 is the Lie algebra su(2).

With the help of the Sugawara construction, the energy momentum tensor is expressed through

the currents

T (z) =
1

k + 2

(
J0J0 +

1

2
J+J− +

1

2
J−J+

)
. (4.15)
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We assumed above and in what follows that any product of local fields taken at coinciding

points is regularized subtracting singular parts of the respective OPE. One can compute the

central charge of the Virasoro algebra by using (4.15). The result is:

ck =
3k

k + 2
. (4.16)

The primary fields of the theory φj,m and the corresponding states |j,m〉 are labeled by the

spin of the representation j = 0, 1/2, 1, . . . , k/2 and its projection m = −j,−j+1, . . . , j, whose

conformal dimensions are given by

h =
j(j + 1)

k + 2
. (4.17)

The zero modes of the currents (4.15) act on the states |j,m〉 as ∗

J±|j,m〉 =
√
j(j + 1)−m(m± 1)|j,m± 1〉 ,

J0|j,m〉 = m|j,m〉 . (4.18)

As is known the explicit form of the su(2) WZNW modular matrices is

S(k)
n,m =

√
2

k + 2
sin

πnm

k + 2
. (4.19)

The N = 1 super-minimal models can be represented as a coset [91,92]

SMk+2 =
su(2)k × su(2)2

su(2)k+2

.

Thus the energy momentum tensor of SMk+2 is given by

T(su(2)k×su(2)2)/su(2)k+2
= Tsu(2)k + Tsu(2)2 − Tsu(2)k+2

. (4.20)

∗Note that a consistent with eq. (4.18) conjugation rule for the primary fields would be φ†j,m = (−)j−mφj,−m
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Indeed, one can easily check that the combination of the central charges (4.16) corresponding

to these three terms matches with the central charge of the super-minimal models (4.9).

The construction of the super-current G is more subtle; it involves the primary fields φ1,m

of the level k = 2 WZNW theory (we denote the currents of this theory as Ka):

G(z) = CaJ
a(z)φ1,−a(z) +DaK

a
−1φ1,−a(z) , (4.21)

where summation over the index a = ±, 0 is assumed. One can be fixed Ca, Da by requiring

the respective state to be the highest weight state of the diagonal current algebra J + K i.e.

both J+
0 +K+

0 and J+
1 +K+

1 annihilate the state

CaJ
a
−1|0〉|1,−a〉+Da|0〉Ka

−1|1,−a〉 . (4.22)

Up to an overall constant κ one obtains

D+ =
κ√
2
, D0 = κ , D− = − κ√

2
,

C+ = −3κ
√

2

k
, C0 = −6κ

k
, C− =

3κ
√

2

k
. (4.23)

Of course the value of κ can be determined using the normalization condition of the the super-

current fixed by the OPE (4.3)

κ =

√
(k + 2)(k + 4)

(k + 6)(5k + 54)
, (4.24)

but this will not be importance for our goals.

4.4 Perturbative RG flows and domain walls

A. Zamolodchikov [80] has investigated the RG flow from minimal modelMp toMp−1 initiated

by the relevant field φ1,3. By applying the leading order perturbation theory valid for p >> 1,
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for several classes of local fields, he calculated the mixing coefficients specifying the UV - IR

map.

It was shown in [87] that a similar RG trajectory connecting N = 1 super-minimal

models SMp to SMp−2 exists. In this case the RG flow is initiated by the top component of

the Neveu-Schwartz superfield Φ1,3. For our purposes it is important that also in this case a

detailed analysis of some classes of fields has been carried out.

It became clear later [89,95], that the above two examples are just the first simplest cases

of more general RG flows. Under perturbation by the relevant field φ = φAdj1,1 , a wide class of

CFT coset models

TUV =
ĝl × ĝm
ĝl+m

, m > l (4.25)

flow to the theories

TIR =
ĝl × ĝm−l

ĝm
, (4.26)

in the IR limit.

In [79] a nontrivial conformal interface between successive minimal CFT models is con-

structed and a is proposed that this interface (RG domain wall) encodes the UV - IR map

resulting through the RG flow discussed above. Of course this proposal is in agreement with

the leading order perturbative analysis of [80].

Generalization of leading order calculations to a wider class of local fields [81] as well as

next to leading order calculations [82, 83] further confirm the validity of this construction.

In [79] Gaiotto also suggests a candidate for RG domain wall for the much more general RG

flow between (4.25) and (4.26). We will recall the construction briefly. Because a conformal

interface between two CFT models is equivalent to some conformal boundary for the direct
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product of these theories (folding trick), it is natural to consider the product theory TUV ×TIR

ĝl × ĝm
ĝm+l

× ĝl × ĝm−l
ĝm

∼ ĝm−l × ĝl × ĝl
ĝl+m

. (4.27)

Note that has a natural Z2 automorphism do to the appearance of two identical factors ĝl

above. Gaiottos proposal states that the boundary of the theory

TB =
ĝl × ĝl × ĝm−l

ĝl+m
, m > l (4.28)

acts as a Z2 twisting mirror. More precisely the RG boundary condition is the image of the Z2

twisted TB brane

|B̃〉 =
∑
s,t

√
S

(m−l)
1,t S

(m+l)
1,s

∑
d

|t, d, d, s;B, Z2〉〉, (4.29)

where the indices t, d, s refer to the representations of ĝm−l, ĝl, ĝl+m respectively and S
(k)
1,r are

the modular matrices of the ĝk WZNW model.

In the coming sections we will examine the case of RG flow between N = 1 super-

minimal models, in details. We apply a method which directly explores the current algebra

representation in contrary to the analysis in [79], where a specific representation applicable only

for the unitary minimal series was used.

4.5 RG domain walls for super minimal models

In the case of the N = 1 super-minimal models needs to consider

ŝu(2)k × ŝu(2)2

ŝu(2)k+2

× ŝu(2)k−2 × ŝu(2)2

ŝu(2)k
∼ ŝu(2)k−2 × ŝu(2)2 × ŝu(2)2

ŝu(2)k+2

, (4.30)

where the first coset on the left hand side corresponds to the UV super conformal model SMk+2

and the second one to the IR theory SMk. We denote by K(z) and K̃(z) the WZNW currents

of ŝu(2)2 entering in the cosets of the IR and UV theories respectively. The current of ŝu(2)k−2
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WZNW theory will be denoted as J(z). Using (4.20) and the Sugawara construction, for the

energy-momentum tensor of the IR theory (the second factor of the left hand sides of (4.30))

one obtains

Tir(z) =
1

k
J(z)J(z) +

1

4
K(z)K(z)− 1

k + 2
(K(z) + J(z))2,

this can be rewritten as

Tir(z) =
2

2k + k2
J(z)J(z)− 2

2 + k
J(z)K(z) +

k − 2

4(k + 2)
K(z)K(z). (4.31)

In the same way the energy-momentum tensor for the UV theory is equal to

Tuv(z) =
2

(2 + k)(4 + k)
J(z)J(z) +

2

(2 + k)(4 + k)
K(z)K(z)

− 2

4 + k
K(z)K̃(z) +

k

4(k + 4)
K̃(z)K̃(z)

+
4

(2 + k)(4 + k)
J(z)K(z)− 2

4 + k
J(z)K̃(z) . (4.32)

To get the one-point functions of the theory SMk+2 × SMk in the presence of RG boundary,

we need explicit expressions of the states corresponding to fields φIRφUV in terms of the states

of the coset theory

TB =
ŝu(2)k−2 × ŝu(2)2 × ŝu(2)2

ŝu(2)k+2

. (4.33)

We denote the highest weight representation spaces of the current algebras J(z), K(z) and

K̃(z) as V
(J)
j , V

(K)
k and V

(K̃)

k̃
respectively. The lower indices specify the spins of the highest

weight states. It is convenient to fix a unique representative of a state of the coset TB in the

space V
(J)
j ⊗V (K)

k ⊗V (K̃)

k̃
requiring that the state under consideration be a highest weight state
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of the diagonal current J +K + K̃. Let us analyze the states corresponding to φIRn,nφ
UV
n,n . Since

hirn,n =
n2 − 1

4k
− n2 − 1

4(k + 2)
,

huvn,n =
n2 − 1

4(k + 2)
− n2 − 1

4(k + 4)
,

the total dimension of the product field is

hirn,n + huvn,n =
n2 − 1

4k
− n2 − 1

4(k + 4)
, (4.34)

thus the corresponding state is readily identified with

|n− 1

2
,
n− 1

2
〉|0, 0〉|0, 0〉 ∈ V (J)

n−1
2

⊗ V (K)
0 ⊗ V (K̃)

0 . (4.35)

where |j,m〉 denotes a primary state of spin j and projection m, so the state above is a spin

n−1
2

highest weight state of the combined current J +K + K̃ and its TB dimension

h
(J)
n−1

2

+ h
(K)
0 + h

(K̃)
0 − h(J+K+K̃)

n−1
2

coincides with (4.34). Note that the permutation of the second and third factors i.e. the Z2

action on this state is trivial. Hence the overlap of this state with its Z2 image is equal to 1

and from (4.29)

〈φIRn,nφUVn,n |RG〉 =

√
S

(k−2)
1,n S

(k+2)
1,n

S
(k)
1,n

. (4.36)

For large k and for n ∼ O(1) this gives 1 + 3/k2 + O(1/k3). Our conclusion is that up to

1/k2 terms, the fields φUVn,n flow to φIRn,n without mixing with other fields, which is in a complete

agreement with both leading order [87] and next to leading order [90] perturbative calculations.

We next examine a more interesting case that of Ramond fields φUVn,n±1 which are expected

to flow to certain combinations of the fields φIRn±1,n [87].
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From (4.10) for the state corresponding to φirn−1,nφ
uv
n,n−1, we get

hirn−1,n =
3

16
+

(n− 1)2 − 1

4k
− n2 − 1

4(k + 2)
, (4.37)

huvn,n−1 =
3

16
− (n− 1)2 − 1

4(k + 4)
+

n2 − 1

4(k + 2)
. (4.38)

Thus the conformal dimension of this product field will be

hirn−1,n + huvn,n−1 =
3

8
+

(n− 1)2 − 1

4k
− (n− 1)2 − 1

4(k + 4)
. (4.39)

There are three primaries in su(2)2 WZNW theory with j = 0, 1, 2 representations and confor-

mal dimensions 0, 3
16

and 1
2

respectively. Hence to get the right dimension one should choose

a combination of states |n
2
− 1,m〉|1

2
, α〉|1

2
, β〉. More this combination must be the spin n

2
− 1

highest weight state of J + K + K̃, this is to match with the last, negative term of (4.39). In

that way we are lead to

Cαβ|
n

2
− 1,

n

2
− 1− α− β〉|1

2
, α〉|1

2
, β〉, (4.40)

where a summation over the indices α,=
¯
±1/2 is assumed. The highest weight condition which

is to say that the operator J+
0 +K+

0 + K̃0 annihilates this state, implies

√
n− 2C++ + C−+ + C+− = 0 .

A further constraint

C++ −
√
n− 2C−+ = 0 ,

one obtains imposing the condition that this state should be an eigenstate of the Virasoro

operator LIR0 constructed from the energy-momentum tensor Tir (4.31) with eigenvalue hirn,n−1
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(4.37). Thus we get

C++ =
√
n− 2C−+ , C+− = −(n− 1)C−+

Note that the undefined overall multiplier could be fixed from the normalization condition. By

taking normalized scalar product of the state (4.40) with its Z2 image we find

〈φirn−1,nφ
uv
n,n−1|RG〉 = − 1

n− 1

√
S

(k−2)
1,n−1S

(k+2)
1,n−1

Sk1,n
. (4.41)

Consideration of the product φirn+1,nφ
uv
n,n+1 fields is quite similar and leads to the state

Cαβ|
n

2
,
n

2
− α− β〉|1

2
, α〉|1

2
, β〉 ,

with the coefficients

C+− = 0 , C++ = − 1√
n
C−+ .

So, in this case

〈φirn+1,nφ
uv
n,n+1|RG〉 =

1

n+ 1

√
S

(k−2)
1,n+1S

(k+2)
1,n+1

Sk1,n
. (4.42)

Constructing the states corresponding to φirn−1,nφ
uv
n,n+1 and φirn+1,nφ

uv
n,n−1 is even simpler and one

easily gets |n
2
− 1, n

2
− 1〉|1

2
, 1

2
〉|1

2
, 1

2
〉 and |n

2
, n

2
〉|1

2
,−1

2
〉|1

2
,−1

2
〉 respectively. In both cases the Z2

action is trivial, hence

〈φirn−1,nφ
uv
n,n+1|RG〉 =

√
S

(k−2)
1,n−1S

(k+2)
1,n+1

Sk1,n
, (4.43)

〈φirn+1,nφ
uv
n,n−1|RG〉 =

√
S

(k−2)
1,n+1S

(k+2)
1,n−1

Sk1,n
. (4.44)
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In the large k limit we get

〈φirn+1,nφ
uv
n,n+1|RG〉 =

1

n
+O(1/k2) , (4.45)

〈φirn+1,nφ
uv
n,n−1|RG〉 =

√
n2 − 1

n
+O(1/k2) , (4.46)

〈φirn−1,nφ
uv
n,n+1|RG〉 =

√
n2 − 1

n
+O(1/k2) , (4.47)

〈φirn−1,nφ
uv
n,n−1|RG〉 = − 1

n
+O(1/k2) , (4.48)

they agree with the second order perturbation theory results [90].

We also analyzed the more complicated case of mixing of the primary Neveu-Schwartz su-

perfields Φn,n±2 and the descendant superfield DD̄Φn,n, here D and D̄ are the super-derivatives.

One can find the details of our calculations in the appendix. Here are the final results:

〈ψirn+2,nψ
uv
n,n+2|RG〉 =

2

(n+ 1)(n+ 2)

√
S

(k−2)
1,n+2S

(k+2)
1,n+2

S
(k)
1,n

, (4.49)

〈φirn+2,nG
uv
− 1

2
φuvn,n|RG〉 =

2

n+ 1

√
S

(k−2)
1,n+2S

(k+2)
1,n

S
(k)
1,n

, (4.50)

〈ψirn+2,nψ
uv
n,n−2|RG〉 =

√
S

(k−2)
1,n+2S

(k+2)
1,n−2

S
(k)
1,n

, (4.51)

〈Gir
− 1

2
φirn,nφ

uv
n,n+2|RG〉 =

2

n+ 1

√
S

(k−2)
1,n S

(k+2)
1,n+2

S
(k)
1,n

, (4.52)

〈Gir
− 1

2
φirn,nG

uv
− 1

2
φuvn,n|RG〉 =

n2 − 5

n2 − 1

√
S

(k−2)
1,n S

(k+2)
1,n

S
(k)
1,n

, (4.53)
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〈Gir
− 1

2
φirn,nφ

uv
n,n−2|RG〉 = − 2

n− 1

√
S

(k−2)
1,n S

(k+2)
1,n−2

S
(k)
1,n

, (4.54)

〈ψirn−2,nψ
uv
n,n+2|RG〉 =

√
S

(k−2)
1,n−2S

(k+2)
1,n+2

S
(k)
1,n

, (4.55)

〈φirn−2,nG
uv
− 1

2
φuvn,n|RG〉 = − 2

n− 1

√
S

(k−2)
1,n−2S

(k+2)
1,n

S
(k)
1,n

, (4.56)

〈φirn−2,nφ
uv
n,n−2|RG〉 =

2

(n− 1)(n− 2)

√
S

(k−2)
1,n−2S

(k+2)
1,n−2

Sk1,n
. (4.57)

At the large k limit we get

〈ψirn+2,nψ
uv
n,n+2|RG〉 =

2

n(n+ 1)
+O(1/k2) , (4.58)

〈φirn+2,nG
uv
− 1

2
φuvn,n|RG〉 =

2

n+ 1

√
n+ 2

n
+O(1/k2) , (4.59)

〈ψirn+2,nψ
uv
n,n−2|RG〉 =

√
n2 − 4

n
+O(1/k2) , (4.60)

〈Gir
− 1

2
φirn,nφ

uv
n,n+2|RG〉 =

2

n+ 1

√
n+ 2

n
+O(1/k2) , (4.61)

〈Gir
− 1

2
φirn,nG

uv
− 1

2
φuvn,n|RG〉 =

n2 − 5

n2 − 1
+O(1/k2) , (4.62)

〈Gir
− 1

2
φirn,nφ

uv
n,n−2|RG〉 = − 2

n− 1

√
n− 2

n
+O(1/k2) , (4.63)

〈ψirn−2,nψ
uv
n,n+2|RG〉 =

√
n2 − 4

n
+O(1/k2) , (4.64)

〈φirn−2,nG
uv
− 1

2
φuvn,n|RG〉 = − 2

n− 1

√
n− 2

n
+O(1/k2) , (4.65)

〈φirn−2,nφ
uv
n,n−2|RG〉 =

2

n(n− 1)
+O(1/k2) . (4.66)

Again, the results are in complete agreement with the next to leading order perturbative cal-

culations of [90].
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4.6 Mixing of the fields Φn,n±2 and the descendant DD̄Φn,n

Let us start with the product field φirn−2,nφ
uv
n,n−2. The corresponding dimensions are

hirn−2,n =
1

2
+

(n− 2)2 − 1

4k
− n2 − 1

4(k + 2)
, (4.67)

huvn,n−2 =
1

2
− (n− 2)2 − 1

4(4 + k)
+

n2 − 1

4(k + 2)
, (4.68)

hence

hirn−2,n + huvn,n−2 = 1 +
(n− 2)2 − 1

4k
− (n− 2)2 − 1

4(4 + k)
. (4.69)

A careful examination shows that the required state should be chosen among the combinations

∑
α,β∈{−1,0,1}

Cα,β|
n− 3

2
,
n− 3

2
− α− β〉|1, α〉|1, β〉 . (4.70)

Indeed the other candidates such as Ja−1|n−3
2
, n−3

2
−a〉|0〉|0〉, Ka

−1|n−3
2
, n−3

2
−a〉|0〉|0〉 or K̃α

−1|n−3
2
, n−3

2
−

a〉|0〉|0〉 though have a correct total dimension, can not be combined to get the required IR

dimension (4.67). This can be easily seen by examining the zero mode of the IR current

T ir =
1

k
J2 − 1

k + 2
(J +K)2 +

1

4
K2 . (4.71)

The only way to get the term 1/2 of (4.67) is to choose j = 1 representation of the current K

(see the last term of (4.71)).

To get correct IR dimension one should impose the condition that the zero mode of

(J + K)2 on the state (4.70) must acquire the eigenvalue n−1
2

n+1
2

. Together with our usual

requirement of being a highest weight state of the J +K + K̃ algebra this fixes the coefficients
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up to an overall multiplier

C+0 =

√
n− 3

2
C00 , C++ = −

√
n− 3

2

√
n− 4

n− 2
C00 ,

C+− =
1− n

2
C00 , C0+ = − 2

n− 2

√
n− 3

2
C00 ,

C−+ = − 1

n− 2
C00 , C−0 = C0− = C−− = 0 .

This leads to the one point function

〈φirn−2,nφ
uv
n,n−2|RG〉 =

2

(n− 1)(n− 2)

√
S

(k−2)
1,n−2S

(k+2)
1,n−2

Sk1,n
. (4.72)

In the same way we construct the state corresponding to φirn+2,nφ
uv
n,n+2

Cαβ|
n+ 1

2
,
n+ 1

2
− α− β〉|1, α〉|1, β〉 ,

where

C++ = − 1√
n
C00, C−+ = −

√
n+ 1

2
C00, C0+ = C00 (4.73)

(all other Cαβ vanish) and

〈ψirn+2,nψ
uv
n,n+2|RG〉 =

2

(n+ 1)(n+ 2)

√
S

(k−2)
1,n+2S

(k+2)
1,n+2

S
(k)
1,n

. (4.74)

The state corresponding to ψirn+2,nψ
uv
n,n−2 is simply |n+1

2
, n+1

2
〉|1,−1〉|1,−1〉 and

〈ψirn+2,nψ
uv
n,n−2|RG〉 =

√
S

(k−2)
1,n+2S

(k+2)
1,n−2

S
(k)
1,n

. (4.75)

92



Similarly for ψirn−2,nψ
uv
n,n+2 the state is |n−3

2
, n−3

2
〉|1, 1〉|1, 1〉 and

〈ψirn−2,nψ
uv
n,n+2|RG〉 =

√
S

(k−2)
1,n−2S

(k+2)
1,n+2

S
(k)
1,n

. (4.76)

Let us now consider states corresponding to the descendant field Gir
−1/2ψ

ir
n,nψ

uv
n,n+2.

Partial dimensions of the field φirn,nφ
uv
n,n+2 are

hirn,n =
n2 − 1

4k
− n2 − 1

4(k + 2)
,

huvn,n+2 =
1

2
+

n2 − 1

4(k + 2)
− (n+ 2)2 − 1

4(k + 4)
,

hirn,n + huvn,n+2 =
1

2
+
n2 − 1

4k
− (n+ 2)2 − 1

4(k + 4)
.

Evidently the correct representative of the respective state is

|n− 1

2
,
n− 1

2
〉|0〉|1, 1〉 . (4.77)

Using the expression (4.21) its is straightforward to find the result of the action of the super-

current mode Gir
−1/2 on this state:

Gir
− 1

2
|n− 1

2
,
n− 1

2
〉|0〉|1, 1〉 = CaJ

a
0 |
n− 1

2
,
n− 1

2
〉|1,−a〉|1, 1〉

+DaK
a
0 |
n− 1

2
,
n− 1

2
〉|1,−a〉|1, 1〉 , (4.78)

where the coefficients Ca, Da are given by (4.23) (one should replace k by k − 2). The final

result is:

Gir
− 1

2
|n− 1

2
,
n− 1

2
〉|0〉|1, 1〉 = −3(n− 1)

k − 2
|n− 1

2
,
n− 1

2
〉|1, 0〉|1, 1〉

+
6

k − 2

√
n− 1

2
|n− 1

2
,
n− 3

2
〉|1, 1〉|1, 1〉 . (4.79)
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Thus for the one-point function we get

〈Gir
− 1

2
φirn,nφ

uv
n,n+2|RG〉 =

2

n+ 1

√
S

(k−2)
1,n S

(k+2)
1,n+2

S
(k)
1,n

. (4.80)

Consideration of the remaining cases do not involve new ingredients and we will simply list the

results.

• The state corresponding to φirn,nφ
uv
n,n−2 is:

− 1√
n− 2

|n− 1

2
,
n− 5

2
〉|0〉|1, 1〉+ |n− 1

2
,
n− 3

2
〉|0〉|1, 0〉

−
√
n− 1

2
|n− 1

2
,
n− 1

2
〉|0〉|1,−1〉 .

The result of Gir
− 1

2

action on this state looks ugly:

|n− 1

2
,
n− 3

2
〉|1,−1〉|1, 1〉+

n− 5

2
√
n− 2

|n− 1

2
,
n− 5

2
〉|1, 0〉|1, 1〉

−
√

3n− 9

2n− 4
|n− 1

2
,
n− 7

2
〉|1, 1〉|1, 1〉 −

√
n− 1

2
|n− 1

2
,
n− 1

2
〉|1,−1〉|1, 0〉

−n− 3

2
|n− 1

2
,
n− 3

2
〉|1, 0〉|1, 0〉+

√
n− 2|n− 1

2
,
n− 5

2
〉|1, 1〉|1, 0〉

+
(n− 1

2

) 3
2 |n− 1

2
,
n− 1

2
〉|1, 0〉|1,−1〉 − n− 1

2
|n− 1

2
,
n− 3

2
〉|1, 1〉|1,−1〉

multiplied by an overall factor 6
k−2

. The corresponding one-point function simply is:

〈Gir
− 1

2
φirn,nφ

uv
n,n−2|RG〉 = − 2

n− 1

√
S

(k−2)
1,n S

(k+2)
1,n−2

S
(k)
1,n

. (4.81)

• In the φirn−2,nφ
uv
n,n case the corresponding state is

|n− 3

2
,
n− 3

2
〉|1, 1〉|0〉 . (4.82)
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Now we must act on this state by the operator Guv
−1/2

Guv
−1/2|

n− 3

2
,
n− 3

2
〉|1, 1〉|0〉 =

(
Ca(K

a
0 + Ja0 ) +DaK̃

a
0

)
|n− 3

2
,
n− 3

2
〉|1,−a〉|0〉

= −3(n− 1)

k
|n− 3

2
,
n− 3

2
〉|1, 1〉|1, 0〉+

6

k
|n− 3

2
,
n− 3

2
〉|1, 0〉|1, 1〉

+
6

k

√
n− 3

2
|n− 3

2
,
n− 5

2
〉|1, 1〉|1, 1〉 .

The one point function:

〈φirn−2,nG
uv
− 1

2
φuvn,n|RG〉 = − 2

n− 1

√
S

(k−2)
1,n−2S

(k+2)
1,n

S
(k)
1,n

. (4.83)

• The state corresponding to the field φirn+2,nφ
uv
n,n is

− 1√
n
|n+ 1

2

n− 3

2
〉|1, 1〉|0〉+ |n+ 1

2
,
n− 1

2
〉|1, 0〉|0〉

−
√
n+ 1

2
|n+ 1

2
,
n+ 1

2
〉|1,−1〉|0〉 . (4.84)

Acting by Guv
−1/2 on this state we get
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,
n− 3

2
〉|1, 1〉|1, 0〉+

√
n+ 1

2
(
n− 1

2
)|n+ 1

2
,
n+ 1

2
〉|1,−1〉|1, 0〉

−
√
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〉|1, 0〉|1, 1〉

−n− 1

2
|n+ 1

2
,
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2
|n+ 1

2
,
n− 1

2
〉|1,−1〉|1, 1〉

multiplied by 6
k
. The result for one-point function:

〈φirn+2,nG
uv
− 1

2
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2

n+ 1

√
S

(k−2)
1,n+2S

(k+2)
1,n
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1,n

. (4.85)
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• Finally, the state corresponding to the field Gir
− 1

2

φirn,nG
uv
− 1

2

φuvn,n is

(CaJ
a
0 +DaK

a
0 )(Cb(K

b
0 + J b0) +DbK̃

b
0)|n− 1

2
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2
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which after some algebra becomes
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multiplied by 36
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. The respective one-point function is equal to
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