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0.1 Introduction

The theory of dynamical systems, besides its intrinsic theoretical relevance, recently had a significant

impact on a wide range of disciplines from physics to ecology and economics, providing method-

ological tools which are currently employed in financial and economic forecasting, environmental

modeling, medical diagnosis, industrial equipment diagnosis and so on. An important physical set-

ting in which such dynamical techniques are profitably applied is equilibrium statistical mechanics of

lattice models, more specifically in the investigation of physical properties of low-dimensional clas-

sic and quantum spin systems in an external magnetic field. The Ising model was invented by the

physicist Wilhelm Lenz(1920) [1], and solved by his student Ernst Ising. The one-dimensional model

which was solved by Ising has no phase transition. The Ising model was further researched by Peierls,

Onsager, Yang and many others. The model has also been successfully studied with the Monte Carlo

method. The Heisenberg model was discovered by Werner Heisenberg and, nearly simultaneously,

by P. A. M. Dirac, in 1926. Further work over the following decade established the Heisenberg

model, due to its versatility, to be the fundamental object of study of the theory of magnetism. Since

then, much work in theoretical statistical mechanics, solid state physics, and mathematical physics

alike has been concentrated on understanding this model. Despite this effort, the Heisenberg model

remains largely intractable, its predicted energy levels and eigenfunctions poorly understood, espe-

cially in a three-dimensional setting. The first step towards solving the Heisenberg model was the

diagonalization by Hans Bethe in 1931 of the one-dimensional Heisenberg XXX model. Using an

extension of the Bethe ansatz, Rodney Baxter solved the more general one-dimensional XYZ model

in 1971. This solution, however, as well as approaches to the two-dimensional and three-dimensional

Heisenberg models [2–5], is exceedingly complicated. The Heisenberg model can be used to describe

magnetically ordered solids, in which internal magnetic interactions cause individual magnetic ions

to possess nonzero magnetic moments below some critical temperature. Physical properties of low-

dimensional quantum spin systems have attracted much attention over the last few decades. For the

first time K. Hida [6] in a pioneering work has shown the appearance of magnetization plateau in
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trimerized Heisenberg model. The magnetization plateaus play an important role in understanding a

large family of nontrivial quantum phenomena in spin systems, both in experimental physics and in

theory [7–15]. The magnetization plateau phenomena is greatly connected with entanglement. The

understanding of correlated quantum systems, phase transitions, and collective quantum phenomena

has an important role in the study of entanglement [16–18]. The concept of entanglement, and indeed

the coining of the word itself, dates back to the origins of quantum mechanics [19]. Entanglement

is considered to play a key role for understanding of strongly correlated quantum systems, quan-

tum phase transitions and collective quantum phenomena in particular many-body spin and fermionic

lattice models [16–18, 20–22]. With the advent of quantum information theory, entanglement was

recognized as a resource, enabling tasks like quantum cryptography [23], quantum teleportation [24]

or measurement based on quantum computation [25]. Together with the rapid experimental progress

on quantum control, this leads to a rapidly growing interest in entanglement theory and many nowa-

days experiments aim at the generation of entanglement. Moreover, a recent experimental observation

showed a possibility of entangling macroscopic millimeter sized diamonds at room temperature [26].

Geometrically frustrated spin systems exhibit fascinating new phases of matter, a rich vari-

ety of unusual ground states and thermal properties as a result of zero and finite temperature phase

transitions respectively [27]. Among the most notable features of these systems one could mention an

existence of the magnetization plateau in a low-temperature magnetization curve, a striking plateau of

Lyapunov exponents, temperature dependences of susceptibility and specific heat. The magnetization

plateaus play a great role in understanding of a large family of nontrivial quantum phenomena in one-

and two-dimensional spin systems [15, 28]. One can obtain magnetization plateaus with multiple-

spin exchange interaction using the dynamic and transfer-matrix methods. As attractive materials

among geometrically frustrated spin systems, one should mention the metal-containing complexes

(compounds). A distinguishable feature of this family of materials is that the coupling between the

sites of their lattices can be described by an alternating sequence of Ising-type and Heisenberg-type

interactions. This makes the corresponding models exactly solvable, using both transfer-matrix and/or

recurrence relation techniques.

Another important part in this dissertation are pseudo random number generators(PRNG). PRNGs
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have a wide variety of uses in both commercial and scientific problems. The demanded quality of

PRNGs varies depending on its application. One of the main uses of PRNGs in science is its use in

Monte Carlo simulations which have high requirements on the applied PRNG. K-system PRNGs have

been proven to have high quality and low computational costs. Monte Carlo Simulations are widely

used in the study of Ising model. Another essential part of the dissertation are Cellular automata and

the Abelian sandpile model. Cellular automata are used in a number of spheres starting from com-

puter processors, cryptography to forest fires.

This dissertation is organized in the following way.

The dissertation consists of 6 chapters. In chapter 1 we review the material necessary to present our

results which are given in chapters 2-6. The first chapter start with a short introduction of statistical

mechanics with a strong emphasis on the Ising model. Chapter 1 also includes a description of the

basics of Cellular Automata and the Abelian Sandpile model, an introduction to K-system PRNGs

and Monte Carlo simulations.

In chapter 1 we collect and review the basics of Statistical mechanics. In section 1.1 we review and

define the concepts of partition function, free energy and their relation. We also define the average of

an observable quantity in the language of Statistical mechanics and show that the equation of internal

energy can be easy derived from these concept. In section 1.2 we give the basic definition of the

general Ising model, in form of its Hamiltonian. In section 1.3 we review the idea of free energy and

give its definition as a thermodynamical limit. We also give the definition of specific heat. In section

1.4 we give the definition of magnetization as an average of magnetic moment per site and review

some of its properties. We also give the definition of susceptibility. Section 1.5 is a short intruduction

to correlations. In section 1.6 we consider the nearest-neighbor Ising model and discuss some of its

interesting properties. In chapter 1.2 we discuss and review the one-dimensional Ising model. Sec-

tion 1.2 also acts as a theoretical background for the Chapter 3 and 4. In Section 2.1 we describe the

model and give the general form of its free energy and magnetization. We also discuss the transfer

matrix method which has a essential role in exact solutions of Ising and/or Heisenberg models. Next

in section 2.2 we talk about the correlations between two spins, here we also take advantage of the

transfer matrix method. And at last but not least in 2.3 section of chapter 1 we discuss the models
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critical behavior near T = 0. In section 3 we study the Ising model on Bethe Lattice. In the first part

of the section we discuss the Bethe lattice and Cayley tree. We give a convenient definition of the

Bethe lattice as a sub lattice of the Cayley tree. Next we show that the Bethe lattice has seemingly

infinite dimensionality. In the next section we describe the recurrence relations technique. As the

transfer matrix method it is also an essential tool in the study of Ising and Heisenberg models. Next

we show the form of the partition function and magnetization when using the recurrence relations

method. The set of recurrence relation for the Ising model on Bethe lattice has only one element and

its form is comparatively simple. In the following section we take a closer look at the magnetization.

We express it as a function of H. We also discuss its behavior depending on the critical point. In

the next section we study the free energy of the Cayley tree and from it derived free energy of Bethe

lattice.

In Chapter 4 we give an introduction to the Abelian sandpile model. This model was presented by

Per Bak, Chao Tang and Kurt Wiesenfeld in a 1987 paper [29]. It is the first dynamical model shown

to have self-organized criticality. Dynamical systems have self-organized criticality if they manifest

a critical point as an attractor. Their macroscopic behavior thus displays the spatial and/or temporal

scale-invariance characteristic of the critical point of a phase transition, but without the need to tune

control parameters to a precise value, because the system, effectively, tunes itself as it evolves towards

criticality. The concept self-organized criticality has been applied in a variety of disciplines includ-

ing physical cosmology, evolutionary biology and ecology, bio-inspired computing and optimization

(mathematics), economics, sociology, neurobiology and others. The model can be thought of as a

Cellular automata. The concept of cellular automata was first introduced by John von Neumann in

the 1940s. In section 4.1 we give the definition of Cellular automata and discuss some of its more

important properties. In chapter 4.2 we study frontal cellular automata and Abelian sandpile model.

We give the deffinition of frontal cellular automata and discuss its advantages over frontal cellular

automata. We also justify our choice of using frontal cellular automata. Next we give the definition

of the sandpile model. We also introduce a couple of concepts which simply and enhance our under-

standing of the sandpile model. And atlast but not least we give the criteria which makes a sandpile

model Abelian and discuss some pivotal lemmas of the subject.
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In Chapter 5 we give an introduction to pseudo random number generators and especially the K-

system generators. There are two methods of random number generation first the so called true ran-

dom number generators and second pseudo random generators. True number generators first measure

some physical phenomena then transform the output of the measurement to counter some possible

biases. Of course the physical phenomena is chosen to be as random as possible. The most pop-

ular phenomena include atmospheric noise, thermal noise, and other external electromagnetic and

quantum phenomena. One of the apparent weakness of such method is its speed. Most true random

generators have much slower speed compared to pseudo random generators which makes them uncon-

tentious if a large set of random numbers are required. Another shortcoming of true random generator

is their unreliability, i.e. if we generate random numbers with the help of cosmic background radiance

it will return different data depending on the radiance of the sun. The second group of random number

generators are pseudo random generators or ells called deterministic random bit generator. Pseudo

random generators are essential an algorithm which takes a seed and returns a sequence of numbers.

Of course this sequence depends on the seed and is not truly random as the sequences generated by

true random generators. Nevertheless there are pseudo random generators which generate sequences

very close too true random. An advantage of pseudo number generators os its reproducibility, i.e. by

knowing the seed we can reproduce the sequence of numbers. Pseudo random generators are mostly

used in simulations such as the Monte Carlo method and cryptography. Devising a pseudo number

generator with quality output is not a trivial problem. Especially in cryptography and some Monte

Carlo simulations have a very high requirements on the pdeudo random generator. In general, careful

mathematical analysis is required to have any confidence that a pseudo random generator generates

numbers that are sufficiently close to true random to suit the intended use. In section 5.1 we discuss

the Monte Carlo method. Next we give the definition of the Metropolis algorithm. We also show the

application of metropolis algorithm for the Ising model. After we give the definition of the so called

K-system generators. Next we show some results connected to the K-system generators.

Chapter 2 is based on the paper [30]. In this paper we consider the appearance of superstable cycles in

the dynamical approach to the antiferromagnetic and ferromagnetic spin-1 Ising and Ising-Heisenberg

models on diamond chains, and their connection with magnetization plateaus. The rational mappings,
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which provide the statistical properties of the model, are derived by using recurrence relations tech-

nique. We consider stability properties of the mapping, providing evidences of a connection between

magnetization plateaus and dynamical properties, as the behavior of Lyapunov exponents. The new-

found correspondence between superstable point and zero magnetic plateau in spin-1 models on a

diamond chain has been tested for a range of parameters.

Chapter 3 is based on the paper [31]. The geometrically magnetic frustrations and quantum thermal

entanglement of antiferromagnetic metal-containing compounds are considered on a diamond chain.

We researched the magnetic and thermal properties of the symmetric Hubbard dimers with delocal-

ized interstitial spins and the quantum entanglement states. It is presented magnetization plateaus and

negativity in spin-1 Ising-Heisenberg model using transfer matrix technique. Applying the dynamic

system approach we study the magnetic curves, Lyapunov exponents and superstable point in the

two-dimensional mapping for the partition function of spin-1 classical and Ising-Heisenberg models

at T → 0 on a diamond chain.

Chapter 4 is based on the paper [32]. In this paper we consider the appearance of superstable points

and cycles in the dynamical approach to the antiferromagnetic and ferromagnetic spin-1 Ising on

diamond-like decorated Bethe lattice, also their connection with magnetization plateaus. The calcula-

tions of Lyapunov exponents, magnetisation and quadrupole moment are done via recursion relation

technique.

Chapter 5 is based on the paper [33]. In this paper we investigate the interrelation between the dis-

tribution of stochastic fluctuations of independent random variables in probability theory and the

distribution of time averages in deterministic Anosov C-systems. On the one hand, in probability

theory, our interest dwells on three basic topics: the laws of large numbers, the central limit theorem

and the law of the iterated logarithm for sequences of real-valued random variables. On the other

hand we have chaotic, uniformly hyperbolic Anosov C-systems defined on tori which have mixing of

all orders and nonzero Kolmogorov entropy. These extraordinary ergodic properties of deterministic

Anosov C-systems ensure that the above classical limit theorems for sums of independent random

variables in probability theory are fulfilled by the time averages for the sequences generated by the

C-systems. The MIXMAX generator of pseudorandom numbers represents the C-system for which
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the classical limit theorems are fulfilled.

Chapter 6 is based on the paper [34].The paper provides frontal cellular automata algorithms for

abelian sandpile models [35–37]. Also in this paper we calculate the height probabilities on a 2D

lattice with fractal boundaries. Fractals have been subject of study in a variety of fields. One of the

more interesting features of fractals is its way of scaling. If we take a polygon and double its edge

length its are becomes four times its original area i.e the area is multiplied by 2e
2d where 2e is the

times the edge length is being multiplied and 2d is the dimension in which the polygon is residing. In

the same manner if we take a sphere and multiply its radius by two its volume becomes eight times the

original i.e. the volume is being multiplied by 2r
3d where 2r is the factor with which we multiply the

radius and 3d is the dimension of sphere. But if a fractal’s one-dimensional lengths are all doubled,

the spatial content of the fractal scales by a power that is not necessarily an integer. This power is

called the fractal dimension of the fractal, and it usually exceeds the fractal’s topological dimension.

Fractal patterns which exhibit diverse degrees of self-similarity have been the focus of rendering or

study in images, structures and sounds and have been observed in nature, technology, art, architecture

and law. The graphs of most chaotic processes are fractal which makes them especially interesting to

study from the perspective of Chaos theory.
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Chapter 1

Preliminary ideas and concepts

1.1 Basics of Statistical mechanics

1.1.1 Partition function

A partition function describes the statistical properties of a system in thermodynamic equilibrium

[38–40]. The partition function is one of the fundamental functions in statistical mechanics which

allows the calculation of thermodynamic functions such as magnetization from the microscopic forces

between the elements of the system. The partition function is given by the following formula:

Z = ∑
n

e−
E(n)
kBT (1.1)

where kB denotes the Boltzmann constant and E(n) admits all allowed states of the system. Another

fundamental variable in statistical mechanics is the free energy. The free energy is the most important

quantity at fixed temperature. It is also the quantity that is most directly related to the partition

function Z:

F =−kBT lnZ (1.2)
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The probability of the system being at state n is given by:

Z−1e−
E(n)
kBT (1.3)

The observed average thermodynamic value of any observable A i.e. the magnetization or total energy

which has the value A(n) at state n is

〈A〉= Z−1
∑
n

A(n)e−
E(n)
kBT (1.4)

Notably the internal energy [41, 42] is

U = 〈E〉= Z−1
∑
n

E(n)e−
E(n)
kBT (1.5)

By using the definitions of partition function and free energy the above equation can be written i the

following form

U = kBT 2 ∂

∂T
lnZ =−T 2 ∂

∂T
(F/T ) (1.6)

which complies with thermodynamics. So if our system is at equilibrium the goal of statistical me-

chanics is to calculate the partition function. This enables us to calculate F which in itself allows us

to obtain by differentiation the thermodynamic properties of the system.

But of course the size of any macroscopic system makes the above procedure for most cases unman-

ageable. Therefore one is forced to uses one or both of the following methods:

A. Replace the real system with some kind of model which is an idealization of the former one. In

a Mathematical language this is equal to specifying the states n and the energy Hamiltonian function

E(n).

B. Evaluate the partition function by using some approximations.
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1.1.2 Ising model

The Ising model [43–50], named after the physicist Ernst Ising [1,51,52], is a mathematical model of

ferromagnetism [53, 54] in statistical mechanics. The Ising model can be thought of as a model of a

magnet. The model consists of discrete variables that represent magnetic dipole moments of atomic

spins that can be in one of two states (+1 or -1). The spin σi is considered to be up when it takes

the value +1 and down when it has the value of -1. Frequently these values are written just + or -.

The spins lay on a graph which in most cases is a lattice also each spin is allowed to interact with its

neighbors. As a simplified model of reality the model allows the identification of phase transitions.

Lets give the formal Mathematical definition of the Ising model.

Lets consider a set of lattice sites Λ, each with a set of adjacent sites (e.g. a graph) forming a d-

dimensional lattice. For each lattice site k ∈Λ there is a discrete variable σk such that σk ∈ {+1,−1},

representing the site’s spin. A spin configuration, σ = (σk)k∈Λ is an assignment of spin value to each

lattice site.

σ = {σ1,σ2, . . . ,σN ,} (1.7)

A general Hamiltonian function for the Ising model will have the following form:

H(σ) =−∑
〈i, j〉

Ji jσiσ j−µ∑
j

h jσ j (1.8)

where Ji j is an interaction term for two adjacent sites i, j ∈ Λ. And h j is the external magnetic

fields interacting with the j-th site. Positive J correspond to ferromagnetism and negative J-s to

antiferromagnetism. 〈i j〉 denotes two nearest neighbor sites i and j. µ is the magnetic moment. In a

ferromagnetic Ising model, spins desire to be aligned: the configurations in which adjacent spins are

of the same sign have higher probability. In an antiferromagnetic model, adjacent spins tend to have

opposite signs.

The Boltzmann distribution describes the configuration probability, with inverse temperature β≥ 0 it
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has the following form:

Pβ(σ) =
e−βH(σ)

Zβ

(1.9)

where β = (kBT )−1 and Zβ is the normalization constant which is given by

Zβ = ∑
σ

e−βH(σ) (1.10)

which is the partition function.

1.1.3 Free Energy and Specific Heat

In physical large systems we expect the free energy to be proportional to the size of the system. That

means the thermodynamical limit

f (H,T ) =−kBT lim
N→∞

N−1 lnZN(H,T ) (1.11)

should exist, where f is the free energy per site.

We expect the limit in the above equation to be independent of the way it is taken. For example we

assume that whether the length, breadth and height of the crystal go to infinity together or or one after

another doesn’t matter as long they go to infinity eventual.

By using the equation of internal energy from thermodynamics and the above equation we get

u(H,T ) =−T 2 ∂

∂T
( f (H,T )/T ) (1.12)

The definition of specific heat is given by the following equation

C(H,T ) =
∂

∂T
u(H,T ) (1.13)
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Lets define two critical exponents α and α′ by asserting that near Tc the zero-field specific heat di-

verges as a power-law, i. e.

C(0,T )∼ t−α as t→ 0+ (1.14)

C(0,T )∼ (−t)−α′ as t→ 0− (1.15)

where t is

t = (T −Tc)/Tc (1.16)

The problem with this definition is that C(0,T ) may remain finite as t goes to zero through positive

(or negative) values, even though it is not an analytic function t = 0. For example C(0,T ) may have

a simple jump discontinuity at t = 0, as in the mean-field model.

In most cases to get an exponent which characterizes such behavior it is simpler to use the following

technique.

We define f+(0,T ) f−(0,T ) as the zero-field free energy functions for T > Tc and T < Tc respectively.

Analytically continue these functions into the complex T plate and define the ’singular part’ of the

free energy to be

fs(0,T ) = f+(0,T )− f−(0,T ) (1.17)

Near the point T = Tc the value of this function vanishes as a power law, so α can be defined by

fs(0,T )∼ t2−α as t→ 0 (1.18)

This definition is equivalent to the above definitions of α and α′ when α′ = α for the case when

u(0,T ) is continuous and C(0,T ) diverges both above and belove Tc.
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It used to be thought that the only possible singularity in f (0,T ) was a jump-discontinuity in some

derivative of f . If the first r− 1 derivatives where continuous but the r-th derivative discontinuous,

then it was said that the system had a ”transition of order r”. In particular, a discontinuity in u (i.e.

latent heat) is called first-order transition.

While it is now known that this classification is not exhaustive, such behavior is included in the above

case: a transition of order r corresponds to 2−α = r. In particular, α = 1 for a first order transition.

From the definition of specific heat per site the the above definition implies that u(0,T ) contains a

term proportional to t1−α. Since u(0,T ) is usually bounded, it follows that

α≤ 1 (1.19)

The exponent α may be negative.

1.1.4 Magnetization

The average of the magnetic moment per site is the magnetization. Using the general equation for any

observed average we get:

M(H,T ) = N−1〈σ1 + · · ·+σN〉 (1.20)

= N−1Z−1
N ∑

σ

(σ1 + · · ·+σN)

× exp

[
−(E0(σ)−H ∑

i
σi)/kBT

]

By using the definition of the partition function and free energy the following equation can be ob-

tained:

M(H,T ) =− ∂

∂H
f (H,T ) (1.21)
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Its obvious that the summand in partition function doesn’t change when we negate H and σ also ZN

and f are even functions depending of H so it can be concluded that M is an odd function, i.e.

M(−H,T ) =−M(H,T ) (1.22)

from the definition of M one can see that it lies in the interval

−1≤M(H,T )≤ 1 (1.23)

By differentiating the equalization of M with respect to H and using the equation of spontaneous

magnetization and the average of an expected value the equation for susceptibility is

χ =
∂M
∂H

= (NkBT )−1(〈M 2〉−〈M 〉2) (1.24)

where

M = ∑
i

σi (1.25)

Considering the fact that the average of a constant and the constant are equal one can write the

equation for susceptibility in the following way.

χ = (NkBT )−1〈(M −〈M 〉)2〉 (1.26)

From the above equation follows that the susceptibility is the average of a non-negative quantity, so

χ =
∂M
∂H
≥ 0 (1.27)

From this follows that the magnetization is an odd monotonic increasing function of H, which lays in

the interval [−1,1].
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1.1.5 Correlations

Between the spins i and j the correlations are

gi j = 〈σiσ j〉−〈σi〉〈σ j〉 (1.28)

Assuming E(σ) is translation invariant which is true in most cases, then the average 〈σi〉 is constant

for all sites i so from this and the definition of magnetization follows

〈σi〉= 〈σ j〉= M(H,T ) (1.29)

Another important fact is that the correlation gi j will depend only on the vector distance ri j between

sites i and j i.e.

gi j = g(r) (1.30)

where g(r) is the correlation function. We expect the correlation function g(r) to decay exponentially

to zero as r becomes large wen we move away from Tc. In more mathematical terms, if k is s0me

fixed unit vector it is expected

g(xk)∼ x−τe−x/ξ as x→ ∞ (1.31)

where ξ is the correlation length taken in the direction k and τ is some number.

We expect the correlation length to become infinite at Tc, which is also a function of H and T . A

hallmark of a critical point can be regarded the property of an infinite correlation length. In particular

it is expected that

ξ(0,T ) ∼ t−ν as t→ 0+ (1.32)

∼ (−t)−ν′ as t→ 0−

19



where ν and ν′ are the correlation length critical exponents.

The fact that ξ also depends on the direction k is somewhat discouraging. However it is expected

that the dependence will disappear near Tc and the large-distance correlations to become isotropic.

Therefore the critical exponents ν and ν′ should not depend on the direction in which ξ is defined.

The correlation function g(r) near the critical point itself still exists which decays as a power law

instead of decaying exponentially.

g(r)∼ r−d+2−η (1.33)

where η is a critical exponent.

In scaling theory, these properties are simple corollaries of the correlation scaling hypothesis, which

is near Tc for r ∼ ξ.

g(r)∼ r−d+2−ηD(r/ξ, t|H|−1/βδ) (1.34)

We can express the χ susceptibility in terms of g(r). To achieve this we need to sum the correlation

between two spins gi j over all sites. From the definition of χ we can get the following equation

χ = (NkBT )−1
∑

i
∑

j
gi j (1.35)

For a translation-invariant system,

∑
j

gi j = ∑
j

g(ri j) = independent of i (1.36)

therefore

χ = (kBT )−1
∑

j
g(r0 j) (1.37)
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where 0 is some fixed site in the lattice. The function g(r) is an isotropic bounded slowly varying

function depending on r near the point Tc therefore we can replace the summation by an integral

getting

χ∼
∫

∞

0
g(r)rd−1dr (1.38)

by replacing r = xξ and using the above equation it follows that neat Tc

χ∼ ξ
2−η (1.39)

Now teh scaling relations follow from the equality of γ and γ′ and the definitions of γ, γ′, ν, ν′.

1.1.6 Nearest-Neighbor Ising model

In the previous sections the equations are true for any even Hamiltonian E0(σ) which is only subject

to the implicit assumptions of existence ferromagnetic critical point and eq. 1.11 thermodynamical

limit.

The most basic of such Hamiltonians is one which has only nearest neighbors interaction, i.e,

E0(σ) =−J ∑
(i, j)

σiσ j (1.40)

here the sum goes over all nearest-neighbors pairs of spins in the graph. If we choose J > 0 then the

system is ferromagnetic that means when all spins point the same way the system is in the lowest

energy state.

The above model has been subject of great interest and has been thoroughly studied, a great deal

is know even for the cases when an exact solution has not been found such as in three dimensions

or in two dimensions when an external field is present. For example it is possible at high or low

temperatures to develop valid expansions.
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The partition function will have the following form

ZN = ∑
σ

exp

[
K ∑

(i, j)
σiσ j +h∑

i
σi

]
(1.41)

where

K = J/kBT (1.42)

h = H/kBT

therefore we can think of ZN as a function depending on h and K. So the magnetization per sit will be

M =
∂

∂h
lim

N→∞
N−1 lnZN(h,K) (1.43)

We expect the magnetization to have a critical point at H = 0 for some positive value Tc of T .

Lets consider a square lattice (the following argument is true for any multi-dimensional lattice). The

right hand side of the partition function equation is possible to expand in powers of K, giving

ZN = (2coshh)N(1+2NKt2 +NK2((2N−7)t4 +6t2 +1)+O(K3)) (1.44)

where

t = tanhh (1.45)

Using this expansion in the magnetization equation gives

M = tanhh{1+4sech2 h(K +(3−7t2)K2 +O(K3))} (1.46)

Note that all terms in the above equation are odd analytic bounded functions depending on h. By

assuming that for sufficiently small K the expansion converges. The expansion at H = 0 is continuous
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and

M0(T ) = M(0,T ) = 0, T is sufficiently large (1.47)

As for when the temperature is low then K is large and the right hand side of the partition function

can be expanded in powers of

u = exp(−4K) (1.48)

The first term to Z is with all spins up (or down) of the expansion. The succeeding terms to contribute

to Z are N terms with one pin up and the rest down (or reversed); the following are a group of 2N

states which have two adjacent spins up (or down); and so on. This will result

ZN = exp(2NK +Nh){1+Nu2e−2h (1.49)

+ 2Nu3e−4h +
1
2

N(N−5)u4e−4h

+ 6Nu4e−6h +Nu4e−8 +O(u5)}

+ e2NK−Nh{1+Nu2e2h

+ 2Nu3e4h +
1
2

N(N−5)u4e4h

+ 6Nu4e6h +Nu4e8h +O(u5)}

In the above expression the first term in curly brackets comes from states which have almost all spins

up, as for the states with almost all spins down their contribution is the second term in curly brackets.

The previous equation can also be written in the following form

ZN = eNψ(h,K)+ eNψ(−h,K) (1.50)
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where

ψ(h,K) = 2K +h+u2e−2h (1.51)

+ 2u3e−4h +u4(−e−4h +6e−6h + e−8h)

+ O(u5)

If N is sufficiently large for any order in u-expansion ψ(h,K) doesn’t depend on N.

In the partition function when h > 0 then eNψ(h,K) becomes larger then eNψ(−h,K). In the limit of N

large we can write the magnetization in the following form

M =
∂

∂h
ψ(h,K) = 1−2u2e−2h−8u3e−4h (1.52)

− u4(−10e−4h +36e−6h +8e−8h)−O(u5) if h > 0

therefore the spontaneous magnetization will be

M0(T ) = lim
h→0+

M = 1−2u2−8u3−34u4−O(u5) (1.53)

If the temperature is sufficiently low which is the same u being sufficiently small and the expansions

converge then M0 will be positive if u is small. Using the fact that M(H,T ) is an odd function

depending on H one can obtain the fact that M(H,T ) has a discontinuity at H = 0.

Therefore for sufficiently large T M0(t) is identically zero but for sufficiently small T it is positive. It

will change from zero to non-zero at some intermediate temperature T0 also at point T0 it must be a

non-analytic function depending on T . Therefore at H = 0, T = Tc there must be a critical point where

the thermodynamical functions became non-analytic. For a closer look at correlations see [55,55–58].
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1.2 One dimensional Ising model

1.2.1 Free Energy and Magnetization

The Ising model [59] has been proposed in 1920 and solved for the one-dimensional case at 1925.

The solution is obtained whit transfer matrix technique. This model does not exhibit phase transitions

[60–65] at any non-zero temperature. At H = T = 0 it has a critical point.

Lets consider an Ising model on a one-dimensional lattice which has N sites whith the labels j =

1,2, . . . ,N. The energy is given by the following expression

E(σ) =−J
N

∑
j=1

σ jσ j+1−H
N

∑
j=1

σ j (1.54)

we connect the first site σ1 and the last site σN so σN+1 is regarded as σ1. This is the same as imposing

periodic boundary conditions on the system. This step ensures that the system is translationally

invariant and all sites are equivalent. In particular

〈σ1〉= 〈σ2〉= · · ·= 〈σN〉 (1.55)

the magnetization per site will have the following form

M(H,T ) = 〈σ1〉 (1.56)

where instead of 1 we could have taken any site. For any translationally invariant system this reason-

ing holds.

The partition function of this system will have the following form

ZN = ∑
σ

exp

[
−K

N

∑
j=1

σ jσ j+1−h
N

∑
j=1

σ j

]
(1.57)
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where

K = J/kBT, h = H/kBT (1.58)

The exponential in partition function is possible to factored into terms in which every one depends

only on two neighboring spins resulting

ZN = ∑σ V (σ1,σ2)V (σ2,σ3)V (σ3,σ4) . . . (1.59)

. . . V (σN−1,σN)V (σN ,σ1)

where

V (σ,σ′) = exp
[

K(σσ
′)+

1
2

h(σ+σ
′)

]
(1.60)

There are several ways to choose V for example: we can multiply it with exp [a(σ−σ′)] (where a can

be any number) and the partition function wont change. We choose V in the above form because it

guaranties that

V (σ,σ′) =V (σ′,σ) (1.61)

this symmetry will be useful in later calculations.

Now lets look at the right hand side of partition function, we shall view V (σ,σ′) as elements of a

two-by-two matrix

V =

V (+,+) V (+,−)

V (−,+) V (−,−)

=

eK+h e−K

e−K eK−h

 (1.62)
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In the partition function the summation over σ2,σ3, . . . ,σN sites will be interpreted as matrix multi-

plication as for the summation over σ1 as the taking of a trace

ZN = TraceV N (1.63)

Matrix V is called the transfer matrix.

We denote the eigenvectors of V as x1,x2 and λ1,λ2 their corresponding eigenvalues. Then

V x j = λ jx j, j = 1,2 (1.64)

Lets define a 2×2 matrix consisting of column vectors x1,x2 we name this matrix P

P = (x1,x2) (1.65)

so

V P = P

λ1 0

0 λ2

 (1.66)

We can choose x1 and x2 orthogonal and linearly independent because V a symmetric matrix. P is

non-singular.Multiplying the right side of the above equation we get

V = P

λ1 0

0 λ2

P−1 (1.67)

By using this equation in the partition function we get

ZN = Trace

λ1 0

0 λ2


N

= λ
N
1 +λ

N
2 (1.68)
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we suppose the larger of the two eigenvalues is λ1 so

N−1 lnZN = lnλ1 +N−1 ln
[
1+(λ1/λ2)

N] (1.69)

since λ1 > λ2 as N tends to infinity N−1 ln
[
1+(λ1/λ2)

N] will tend to zero. So the free energy per

site as N→ ∞ will be

f (H,T ) =−kBT lim
N→∞

N−1 lnZN =−kBT lnZN (1.70)

=−kBT ln
[
eK coshh+(e2K sinh2 h+ e−2K)1/2

]

We can obtain the magnetization per site by differentiating the above equation with h

M(H,T ) =
eK sinhh[

e2K sinh2 h+ e−2K
]1/2 (1.71)

For all positive T and real H the free energy is an analytic function.Also depending on H the mag-

netization is an analytic function. Therefore for any positive temperature the system does not exhibit

phase transitions.

1.2.2 Correlations

The probability of the system being in the state σ≡ {σ1, . . . ,σN} is

Z−1
N V (σ1,σ2)V (σ2,σ3)V (σ3,σ4) . . .V (σN ,σ1) (1.72)

Therefore the average value of lets say σ1σ3 is equal to

〈σ1σ3〉Z−1
N ∑

σ

σ1V (σ1,σ2)V (σ2,σ3)σ3V (σ3,σ4) . . .V (σN ,σ1) (1.73)
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The same thing can be written in the language of matrices:

S =

1 0

0 −1

 (1.74)

S is a diagonal matrix and its elements are

S(σ,σ′) = σδ(σ,σ′) (1.75)

The right hand side of the equation of two spins average can be written as

Z−1
N TraceSVV SV . . .V (1.76)

therefore

〈σ1σ3〉= Z−1
N TraceSV 2SV N−2 (1.77)

and if 0≤ j− i≤ N

〈σiσ j〉= Z−1
N TraceSV j−iSV N+i− j (1.78)

〈σi〉= Z−1
N TraceSV N (1.79)

From the above equations one can easily confirm that the system is translational invariant.

Lets define an angle φ by the following equation

cot2φ = e2K sinhh, 0 < φ <
π

2
(1.80)
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It is possible to choose P to be an orthogonal matrix

P =

cosφ −sinφ

sinφ cosφ

 (1.81)

By keeping i− j fixed and taking N to infinity the average value of σiσ j will be

〈σiσ j〉= cos2 2φ+ sin2 2φ(
λ2

λ1
) j−i (1.82)

similarly the average of σi is

〈σi〉= cos2φ (1.83)

From the above equations one can get an alternative derivation of magnetization, of course it is iden-

tical to the previous results. From the above equations the correlation function can be expressed in

the following way

gi j = 〈σiσ j〉−〈σi〉〈σ j〉= sin2 2φ(
λ2

λ1
) j−i, j ≥ i (1.84)

gi j does not tend to zero exponentially because |λ2
λ1
| < 1. We denote the correlation length by ξ, in

units of the lattice spacing it will have the form

ξ = [ln(λ1/λ2)]
−1 (1.85)

1.2.3 Critical Behavior near T = 0

For all temperatures T and all real fields H |λ2
λ1
|< 1 but if H = 0 then

lim
T→0+

(λ2/λ1) = 1 (1.86)
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Therefore at H = T = 0 the correlation length is infinite. The definition of a critical point can be

interpreted as ξ = ∞ therefore H = T = 0 can be regarded as a critical point. The scaling hypothesis

can be articulated in terms of M, H and t = (T −Tc)/Tc. For further calculations it is more suitable

to replace the variables M, h = H/kBT and

t = exp(−2K) = exp(−2J/kBT ) (1.87)

this replacements are most suitable when Tc = 0.

In a sense the scaling hypothesis is equivalent to the statement that the relation between M, h and t is

invariant when we substitute them with

λ
βM, λ

βδh, λt for λ > 0 (1.88)

Therefore

M = h|h|δ
−1−1

φ(t|h|−1/βδ) (1.89)

here φ(x) represents a scaling function which is related to the function h(x).

If |h| � 1 for the one-dimensional Ising model the magnetization can be expressed as follows

M = h/(t2 +h2)1/2 (1.90)

Its obvious that the magnetization is a function depending only on t/h therefore the scaling hypothesis

is satisfied so

βδ = 1, δ = ∞ (1.91)
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also

φ(x) = (x2 +1)−1/2 (1.92)

The above relations follow from the scaling hypothesis therefore they must always hold. From them

follows

α = 1, β = 0, γ = 1 (1.93)

The eigenvalues of transfer matrix can be written in the following form when h = 0

λ1 = 2coshK, λ2 = 2sinhK (1.94)

so

λ1/λ2 = (1+ t)/(1− t) (1.95)

If t� 1 the correlation length becomes

ξ∼ (2t)−1 (1.96)

with

ν = 1 (1.97)

The eigenvalues of the transfer matrix are equal at the critical point, therefore the corelation function

becomes constant.

η = 1 (1.98)
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1.3 Ising model on Bethe latices

1.3.1 The Bethe lattice

The Ising model on Bethe latices [66–75] has a central role in exactly solvable models. We construct

the Bethe lattice with the following procedure: choose a starting point which we name central point 0

and add to it q points, these points are connected to the central point 0. The set of new created q points

are called the the first shell. We repeat the previous step for the new created points by connecting each

one with new points, but in contrast to the central point we add only q−1 new points for each point

neighboring the central point. the second generation of points connected to the first shell are called

two. One cane repeat this processes to obtain the number shells needed.

Generate the shells 2, . . . ,n. The result will be a graph identical to the one in Fig. 1. If we calculate

all point belonging to shell r we will have q(q−1)r−1 points, so the total number of points in all the

shells will be

q [(q−1)n−1]/(q−2) (1.99)

The points belonging to the outermost shell n are called boundary points as for any other point they

are called interior points. The boundary points differ from interior points by the fact that they have

only one direct neighbor in contrast to q neighbors of interior points.

Note that the above described graph has no circuits, also its called sometimes a Cayley tree. Assumed

the boundary pints can be ignored it is sufficient for our purposes to consider it as a regular graph

with coordination number q.

If we ignore the boundary points it is natural to expect that the number of boundary points is fare less

then the interior points in a thermodynamic limit of a large system. Both sets have grow exponentially

like (q−1)n. To avoid complications connected with this we regard only points which are fare away

from the boundary in the limit n→ ∞. Each such pints has a coordination number of q and are in

some sense equivalent, these sites form the Bethe lattice.
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If we constructed the Ising model on Cayley tree we are obliged to take into account both interior and

boundary sites while calculating the partition function Z. Of course even in a thermodynamic limit

the contribution of boundary points in comparison to interior point is is not small. In this section we

will discuss only the Ising model on Bethe lattice i.e. the lattice created of Cayley trees sites that are

deep within the lattice.

The dimensionality of any regular two or tree dimensional lattice is given by the following equation

lim
n→∞

(lncn)/ lnn = d (1.100)

where d is the dimensionality and cn = 1+m1 + · · ·+mn, here mi is the number of neighbors with

distance i. If we try to calculate the dimensionality of the Bethe lattice we will get a positive divergent

value. So in a sense the Bethe lattice has infinite dimensionality.

1.3.2 Recurrence Relations for the Central Magnetization

By first considering Cayley tree and subsequently disregarding boundary condition on can effectively

get the results for a Bethe lattice. The partition function of Cayley tree is

Z = ∑
σ

P(σ) (1.101)

where

P(σ) = exp

[
K ∑

(i, j)
σiσ j +h∑

i
σi

]
(1.102)

This expression consists of a sum over all edges and sites. The above expression can be regarded as

a probability function which has not been normalized. The local magnetization can be expressed as

follows

M = 〈σ0〉= ∑
σ

σ0P(σ)/Z (1.103)
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where σ0 is the central site of the Bethe lattice. If we cut the Bethe lattice at the central site we will

obtain q identical tree graphs. The tree graphs root is the site 0, such graphs are called rooted trees.

By considering the above mentioned fact one can express P(σ) as follows

P(σ) = exp(hσ0)
q

∏
j=1

Q (σ0|s( j)) (1.104)

the spins of the j-th sub tree except the 0 site are denoted by s( j). And

Q (σ0|s) = exp

[
K ∑

(i, j)
sis j +Ks1σ0 +h∑

i
si

]
(1.105)

the spin of the i-th site of the selected sub-tree is denoted by si, except for the central site which has

spin σ0. The central site has q adjacent sites, one of them is site 1. In the above equation ∑(i, j) sis j is

over all edges of the sub tree, except for edge (0,1). And ∑i si is over all sites likewise except for site

0. The first site and a boundary site have n steps distance, in other words the sub-tree has n shells.

Lets cut the sub tree at the site 1 which is neighboring the central site 1. The result will be on one

hand the the trunk consisting of (0,1) edge and sites and on the other hand q−1 sub trees which are

identical to the original except they have n−1 shells. Therefore

Qn(σ0|s) = exp [Kσ0s1 +hs1]
q−1

∏
j=1

Qn−1(s1|t( j)) (1.106)

here the spins of the j-th branch are named t( j) except for s1. Lets denote

gn(σ0) = ∑
s

Qn(σ0|s) (1.107)

using this equation the partition function can be expressed as follows

Z = ∑
σ0

exp(hσ0) [gn(σ0)]
q (1.108)
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Likewise the magnetization can be expressed as

M = Z−1
∑
σ0

σ0 exp(hσ0) [gn(σ0)]
q (1.109)

Let

xn =
gn(−)
gn(+)

(1.110)

By taking in consideration the above expressions the magnetization will be

M =
eh− e−hxq

n

eh + e−hxq
n

(1.111)

The calculation of M is dependent of xn. By using the above equations gn(σ0) can be written as

gn(σ0) = ∑
s1

exp(Kσ0s1 +hs1) [gn−1(s1)]
q−1 (1.112)

Taking into consideration that σ0 and s1 take the values +1 or −1 xn can be written as

xn = y(xn−1) (1.113)

where

y(x) =
e−K+h + eK−hxq−1

eK+h + e−K−hxq−1 (1.114)

By employ the above recursion relation it’s easy to se that

x0 = g0(σ0) = 1 (1.115)

After defining xn the calculation of magnetization is straightforward.
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1.3.3 Magnetization as a function of H

Lets study the variations of x and M when T is fixed (i.e. K is fixed) and with h = H/kBT .

The magnetization of our system when n← ∞ has the following form

M =
e2h− xq

e2h + xq (1.116)

here x is a solution for the following expression

x = y(x) (1.117)

this equation can be expressed as follows

e2h = xq−1 e2K− x
e2Kx−1

(1.118)

Considering the fact that all xn are positive its obvious that their limit x must also be positive. From

this follows that x must lie in the following region

e−2K < x < e2K (1.119)

So we have an expression which for a fixed K gives h as a function depending on x. By differentiating

this expression logarithmically we get

2x
dh
dx

= q−1− 2sinh2K
2cosh2K− x− x−1 (1.120)

Like before x lies in the above region. The right hand side of this expression assumes its maximum

value at x = 1. When K < Kc where

Kc =
1
2

ln [q/(q−2)] (1.121)
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In this case when x becomes from e−2K to e2K the function h becomes a monotonic decreasing func-

tion with the minimum 0 and maximum ∞. Therefore if h has a real value our expression has only one

solution x which is real and positive. This solution x is a analytic function depending on h which lies

in the region−∞ < h < ∞. Now lets discus the case when K > Kc, here when x is sufficiently close to

one dh/dx > 0. The function h has a form similar to the graphic depicted in Fig 1 also note that when

x = 1 then h = 0. From the graphic it’s also obvious that for small h there are three solutions.

In all solutions x is a decresing function depending on h.

x(−h) =
1

x(h)
(1.122)

Also note tha the magnetization is an odd function depending on h. It is a monotonic increasing func-

tion with −1 as minimum and 1 as maximum. The magnetization goes from minimum to maximum

as h goes from negative infinity to positive infinity also its analytic if K < Kc. When K > Kc its also

analytic everywhere except when h is becoming zero.

Such behavior coincides with the behavior of ferromagnet. Therefore the Ising model Bethe lattice is

a good approximation of a ferromagnet which exhibits critical point at H = 0 and T = Tc, where.

J
kBTc

=
1
2

ln
[

q
q−2

]
(1.123)

1.3.4 Free Energy

The free energy of the whole Cayley tree is given by the equation

F =−kBT lnZ (1.124)

here Z is the total partition function of the tree. By differentiating the free energy with H

−∂F
∂H

= ∑
i

Mi (1.125)
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where H = hkBT and the sum goes over all states. And Mi is the magnetization of site i.

Mi = 〈σi〉 (1.126)

Note that Mi depends only on H (i.e. h) for a given temperature. To emphasis this more we denote

it by Mi(h). For a sufficiently large H with positive values the most dominant state in the partition

function is the one with all up spins. Therefore

F
kBT

=−KNe−hN (1.127)

here N denotes the number of sites and Ne the number of edges. Note that in this limit the average

value of all spins is one.

By integrating the sum of all local magnetizations with respect to H and using the above equation for

the integration constant we get

F
kBT

=−KNe−hN +∑
i

∫
∞

h

[
Mi(h′)−1

]
dh′ (1.128)

By taking into consideration that ∑i qi = 2Ne where qi is the number of sites neighborer to site i.

F = ∑
i

fi (1.129)

where

fi

kBT
=−1

2
Kqi−h

∫
∞

h

[
Mi(h′−1)

]
dh′ (1.130)
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1.4 Abelian Sandpile model

1.4.1 Cellular automata

Cellular automata belong to the class of self-regulatory systems. Such systems are characterized by

the ability to regulate over time, even with a random initial state. The cellular automata is a set of

”cells” or vertices V = (v1,v2, ...vn) which have the following properties:

• The vertices are placed in the finite dimensional network Zn

• Every vertex has a state, usually the set of these states is finite, we denote this set S = 1,2, ...,k

• Every vertex has a set of neighboring vertices, which can be anywhere in the general case.

• 3×3 Von Neumann , 5×5 Von Neumann , and Moore are the most common neighbore selec-

tion. methods. For the future, we will accept if the opposite does not claim that neighbors are

choosen via the 3×3 Von Neumann methode. The set of all neightbors of vertex v j is denoted

as N(v j).

• There are transitional laws for each vertex, in the general case these laws depend from the

vertex, its neighbors, time and it’s state. Fv j(sv j ,N(v j), t) = si where j ∈ 1,2, ...,n, ..., Si, S j ∈ S.

Usually these laws are independent of time and the vertex otherwise such cellular automata are

called non homogenious

The cellular automata is called asynchronous if its vertices make state transitions independent of each

other and abelian if the set of final states is independent from the order of the single vertex state

transitions.

The classic algorithm for the implementation of the synchronous homogeneous cellular automata has

two steps. If A(t) is the set of all the vertices states at time t then the set A(t +1) is obtained by the

following equation.

A(t +1) = {F(sv1,N(v1)),F(sv2 ,N(v2)), . . . ,F(svn,N(vn)),} (1.131)
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1.4.2 Sandpile Model

Before we start discussing the Abelian sandpile model lets look at a specific group of cellular au-

tomata called frontal cellular automata. Frontal cellular automata belong to the class of homogenous

asynchronous abelian cellular automata. Frontal cellular automata, as opposed to ordinary cellular

automata, make it possible to dramatically decrease the runtime and save RAM. Unlike conventional

cellular automata which use two sets A(t) and A(t +1) while modeling frontal cellular automata use

only one. In frontal cellular automata the flow of information is reversed which allows to take into

account only a subset of all vertices. This fact gives us the opportunity to abandon the approach of

ordinary cellular automata where we apply the transitional law for all the vertices. If a vertex is in

a stable state and there is no change in its neighbors, it remains in the same state. If the vertex be-

comes active, it checks its transition law and sends information to its neighbors as a result of which

its neighbors check their transition laws. The Abelian sandpile model is a frontal cellular automata.

The following is the definition of the Abelian sandpile model.

Consider the G(V,E) directed graph. Lets denote the vertices of G by v1,v2, . . . ,vn. the directed edge

e can be considered as a ordered pair (vi,v j), where e is directed from vertex vi to v j. The model

allows e = (vi,vi), em = (vi,v j) and ek = (v j,vi) types of edges where e,em,ek ∈ Eand vi,v j ∈V . The

number of edjes orginating from vertex vi is denoted by dvi or just di. If the number of edges that

originate from a vertex is equal to zero, then we call this vertex sink. We call the sink global if there is

a guided path from any vertex. Note that if there is a global sink, it is the only one. Proof immediately

follows from the fact that it does not have any outgoing edges. The neighborhood matrix A of graph

G is a n×n square matrix withe elements ai j being equal to the number of edges connecting vertex i

to vertex j. The Laplacian of graph G has the following form.

∆ = D−A (1.132)
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where D is a diagonal matrix which i, i-th element is equal to di. The elements of Laplacian are

∆i j =


−ai j for i 6= j

di−aii for i = j

i, j ∈ 1,2, ...,n, (1.133)

The sum of the elements in each row of this matrix is equal to zero. All elements corresponding to a

sinks row are equal to zero. The state(configuration) of graph G is a ordered set H = h1,H2, . . . ,hn

which elements are non negative and are in a one to one corespondent to the none sink vertices of

the graph, they are also sorted correspondingly. We denote the number of sand grains on vertex i by

hi. In the H configuration vertex i is called active if the non-negative natural number corresponding

to it is greater than or equal to the number of edges originating at the vertex i. The active vertex is

possible to collapse, resulting in the configuration H transiting to a new configuration H ′. H ′ is called

a descendant of H.

H ′ = H−∆
′
i (1.134)

where ∆′ is the reduced Laplacian, we get it from the Laplasia by removing the rows and columns

corresponding too the sink. And ∆′i is the i-th row of the reduced Laplacian. If we obtain the σ

configuration by collapsing a vertex in σ′ we call σ the predecessor of σ′. The following lemmas

enable us to understand the model more deeply.

Lemma 1: Consider any directed Graph G. Lets examine a sequence of states σ0,σ1, . . . ,σn where

each state is a descendant of the state written previous to it, also consider a second sequence of states

σ′0,σ
′
1, . . . ,σ

′
m with the same property. Construct these two sequences so that their first members are

equal σ′0 = σ0.

1. If σn is stable then m ≤ n, also there is no vertex on the graph which will be collapsed more

times in the first sequence then in the second sequence.

2. If σn and σ′m are stable simultaneously then m = n also the number of collapses of each vertex

is equal in bot sequences.
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Lemma 2: If the graph has a global sink, it can always be brought to a stable state.

Lets define the sand-grain addition operator Evi . The operators adds a grain on top of vertex i and

collapses all the active vertices until the configuration reaches a stable state.

Eviσ = (σ+1vi)
◦ = (h1,h2, . . . ,hi +1, . . . ,hn)

◦ (1.135)

Lemma 3: In the arbitrary oriented graph if there is a global sink operator E is commutative.

If the operator E is commutative, then we call the sandpile model abelian. It should be noted that the

existence of a global sink is a sufficient and necessary condition for the operator E to be commutative.

Affecting the configuration σ with a sequence of E operators, brings to the same stable state when we

add the sand-grains simultaneously and bring to a stable configuration.

As it is desirable to view the configurations before and after collapses, we consider the group Zn−1/H

where H = Zn−1∆′. Consider the directed graph G which has n vertices and a global sink s. The graph

G sandpile group is the following adjacent group:

S(G) =
Zn−1

Zn−1∆′
(1.136)

Lemma 4: S(G) groups order is equal to the ∆′ reduced Laplasian’s determinant.

Lemma 5: Consider the oriented graph G that has a global root. Each class of equivalence Zn−1

mod ∆′ contains at least one stable configuration.

Configuration σ is called accessible if it can be attained from any other configuration using a particular

sequence of E operators. If a configuration is stable and accessible, we call it a recurrent.

Lemma 6: Consider the oriented graph G that has a global root. Each class of equivalence Zn−1

mod ∆′ contains at least one recurrent configuration.

Lemma 7: Consider ε=(2δ)−(2δ)◦ where δ=(dv1,dv2, . . . ,dvn−1) if σ is recurrent then (σ+ε)◦=σ.

Lemma 8: Each class of equivalence Zn−1 mod ∆′ contains maximum one recurrent configuration.

Lemma 8: The following four statements are equivalent

1. σ is recurrent
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2. if ξ is accessible from σ then σ is accessible from ξ

3. from any Evσ (where v is any none sink vertex) type of configuration σ is accessible

4. for any strong connected G/s there is a vertex v such that σ is accessible from Evσ.

1.5 Random number generation

1.5.1 Monte Carlo method

Ω

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Figure 1.1: Finding Areas Using the Monte Carlo Method

Let us consider a unit square Π×Π (Π is the closed interval [0,1]). Inside the square we insert

points ξ with unit probability distribution ρ(ξ) = 1 after this some region Ω ∈ Π2 is taken. The

following expression which determines the area of Ω can be easily derived,

areaΩ =
number o f points insideΩ

N
(1.137)

where N is the number of points ξ inside the square. Thus we are able to determine the area of regions.

This method is widely known as the Monte Carlo method. The main challenge here is to generate
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evenly distributed random numbers (two random numbers corresponds to every point in figure:1.1).

Historically the first registered generator of pseudo-random numbers was the so called middle-square

method. Let as discus the essence of the method with few words. The algorithm of generating

pseudo-random numbers with the middle-square method has the following essential steps.

1. take a 2 digit number

2. square it

3. if it is shorter then 4 digits add zeros to the left side of the number

4. take the middle two digits of the number

5. repeat

For example 0(23)0→ 0(52)9→ 2(70)4→ 4(90)0→ 8(10)0→ 0(10)0→ 0(10)0, our seed is 23

and the generated random numbers are 52,70,90,10,10, . . . . In practice it is not a good method, since

its period is usually very short (as is in our example) and it has some other severe weaknesses, such

as the output sequence converges to zero almost always.

1.5.2 Metropolis algorithm

1

PtPnP
t
*

f(P
t
* )

f(Pn)

f(Pt)

ξt

ξ
t
*

Figure 1.2: This picture presents the Metropolis algorithm, f (Pt)
f (Pn)

< ξt so we stayed at Pn, then we

went on this time f (Pt∗)
f (Pn)

> ξt∗ so we jumped to Pt∗

We introduce the so called Metropolis algorithm, and illustrate its application for the Ising

model [76,77]. The Metropolis Monte Carlo method is a computational approach (i.e., an algorithm)

45



for generating a set of N configurations of the system P0,P1, . . . ,PN−1 such that

1
N

dN(P)
dP

= f (P)dP (1.138)

where N(P)dP is the multiplicity of configurations lying in the interval [P,P+dP] and f (P) is a given

probability distribution.

The Metropolis algorithm can be understood as follows:

1. Pick a configuration Pn (the initial configuration can be any configuration of the system, a

random point in the horizontal line of figure: 1.2).

2. Pick a trial configuration Pt and compute the ratio R = f (Pt)
f (Pn)

.

3. Choose a random number ξ with value between 0 and 1 (any point on the vertical line of figure:

1.2).

4. if ξ≤ R put Pn+1 = Pt else put Pn+1 = Pn.

5. Go to the second step and replace Pn by Pn+1.

Repeat the same process N times.

Thus we’ll obtain a one dimensional distribution which is given by the function f (P). The prove

that such an algorithm indeed produces an ensemble with distribution function f (P) (see Eq.1.138)

straightforward. Using the Metropolis algorithm one can easily compute the average of functions [78].

Figure 1.3: The picture shows the distribution of points after replaying the Metropolis algorithm

∫
Π

f (P)dP =
1
N

N−1

∑
i=0

f (Pi), (1.139)
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∫
Π

g(P)
f (P)∫

Π
f (P)dP

dP =
1
N

N−1

∑
i=0

g(ξi) (1.140)

∫
Π

g(P) f (P)dP =
1
N

N−1

∑
i=0

g(ξi)
∫

Π

f (P)dP (1.141)

Note that Eq.1.141 reduces to Eq.1.139 by choosing f (P) = 1 . In particular this algorithm can be

used for the D dimensional Ising model by taking f (x) = exp−βV (x1,...,xN), as for the partition function

it can be expressed as

Z(β) =
∫

exp−βV (x1,...,xN) dDx1 . . . dDxN (1.142)

1.5.3 K-system pseudo-random numbers generators

Let us denote by ΠD hypercube in D-dimensional space that is ΠD consists of all points P with

Cartesian coordinates 0≤ xi ≤ 1(i = 1, . . . ,D). The discrepancy is defined as

DN(P0, . . . ,PN−1) = supP∈ΠD |Nx1x2 . . .xD−AN | (1.143)

where AN is the number of points with coordinates Pi

0≤ x(i)1 ≤ x1, . . . ,0≤ x(i)D ≤ xD, i = 0, . . . ,AN−1 (1.144)

if the distribution is uniform Nx1 . . .xD is the number of points in the region 1.144 see fig. 1.4.

Therefore the maximal deviation of the real distribution of the points from the ideal one is estimated

by DN . One can get a maximal value for DN by putting all points at (1,1), thus DN = N so in general

DN ≤ N. If f (P) is continuous together with its first partial derivatives, it can be shown that

∣∣∣∣∣ 1
N

∞

∑
k=0

f (Pk)−
∫

ΠD
f (P)dP

∣∣∣∣∣≤C
DN

N
(1.145)
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x1

x2

Π ≡

Figure 1.4: In this case AN = 5

where C > 0 is a constant.

If one is not interested in the dynamical origin of the pseudo-random sequence Pi, but thinks of it

as a sequence of a uniformly distributed random quantity ζ in a cube ΠD with a probability density

ρ(ζ) = 1, therefore in agreement with the central limit theorem the rate of convergence in Eq. (1.145)

with high probability will be 1√
N

. Thus for, ζ, DN ∼
√

N.

To understand the behavior of DN depending on the dynamical origin of Pi, let us consider the Pi

sequence as a trajectory of some dynamical system. Let as assume that the cube ΠD is the phase

space of the dynamical system T , therefore

Pi = T ·T · · · · ·T ·P0 ≡ T iP0 (1.146)

where P0 is the initial point of the trajectory. In this context the sequence of points Pi represents

one of the trajectories of the dynamical system T . We assume that the Liouville theorem holds,

i.e. the phase volume of this dynamical system is conserved. We can reformulate the statement in

(1.145) by considering the pseudo-random number generator as a dynamical system. Then the rate of

convergence is governed by the dynamical properties of a system T :

∣∣∣∣∣ 1
N

N−1

∑
i=0

f (T iP0)−
∫

ΠD
f (P)dP

∣∣∣∣∣≤C
DN(T )

N
(1.147)

48



A natural question arises. How to get the best rate of convergence DN(T )? Possible maps are classi-

fied as follows.

1. ergodic maps

lim
t→∞

1
t

∫
dt µ(T tA∩B) = µ(A)µ(B)

2. mixing maps

lim
t→∞

µ(T tA∩B) = µ(A)µ(B)

3. n-fold mixing maps

lim
t1,t2,...,tn→∞

µ(A0∩T t1A1∩T t2+t1A2∩ . . .T t1+···+tnAn) = µ(A1)µ(A2) . . .µ(An)

One easily observes that if a map is n-fold mixing so it is mixing and if a map is mixing then it

is also ergodic. In general the reverse statement is not true.

Kolmogorov entropy (0≤ h(T )≤∞)is one of the best ways to describe the statistical properties

of a dynamical system [79–82]. One can define it by starting with the usual entropy H(ξ) with ξ a

collection of region C, ξ = {C}, so

H = ∑
C∈ξ

µ(C) lnµ(C) (1.148)

To clarify this lets discus a simple example. Namely we will calculate the entropy of some ξ’s depicted

in figure: 1.5. Here a unit total area of regions is assumed.
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(a) (b) (c)

Figure 1.5: This picture shows haw ρ looks like

• region ξ = {C1,C2} correspond to 1.5a

H =−1
2

ln
1
2
− 1

2
ln

1
2
= ln2, (1.149)

• region ξ = {C1,C2,C3,C4} correspond to 1.5b

H =−1
4

ln
1
4
− 1

4
ln

1
4
− 1

4
ln

1
4
− 1

4
ln

1
4
=− ln

1
4
= 2ln2, (1.150)

• region ξ = {C1,C2} correspond to 1.5c

H =−1
2

ln
1
2
− 2

3
ln

2
3
= ln3− 2

3
ln2 (1.151)

One observes from this examples that when the space is split into more and more pieces the entropy

groves. If multiple splits ξ1,ξ2, . . . ,ξα, . . . the entropy is

H(
∨
α

ξα) =−∑µ

[⋂
α

Cα

]
logµ

[⋂
α

Cα

]
(1.152)

This splits can be generated with the help of a dynamical system T , T t=1 = T in such a way that the

expression of the entropy becomes (ξ,T ξ,T 2ξ, . . .)

Hn(ξ,T ) = H
(
ξ∨T ξ∨T 2

ξ, . . .
)

(1.153)
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In this case the Kolmogorov entropy can be defined as [83–86]

h(T ) = sup
ξ

lim
n→∞

1
n

Hn(ξ,T ) (1.154)

The relaxation time is the time during which the system reaches a uniform distribution is called. K-

systems are systems with nonzero Kolmogorov entropy. Because of the K-system have exponential

instability their relaxation time is maximally rapid. The quick relaxation of a dynamical system T is

equivalent to the slow grows of the discrepancy DN(T ).

Let as consider a special case of Eq.(1.146) as an example:

Pi = {KPi−1} (1.155)

where the fractional part of a number is denoted by {} . We assume that K � 1 is a fixed integer

number, under such condition the Liouville theorem holds. The correlation function for this system

behaves like

RN =
1
12

exp−N lnK (1.156)

The correlation splitting time is determined by the characteristic K.

τ0 =
1

lnK
(1.157)

Consider the set of points in a very small interval δP0 � 1
K . The trajectories, coming from these

points, almost uniformly fill the interval [0,1] in time τ:

τ = τ0 ln
1

δP0 (1.158)

In this system the characteristic are coupled by this relation

τ0 < τ (1.159)
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We see that the pseudo-random number generators growth of the deviation DN(T ), depends on the

statistical properties of T and how this generator is characterized by the relaxation time τ. Certainly it

is better to use more unstable systems T . We define the Anosov K-systems T to be a matrix T = ||akl||

satisfying two constrains

1. the unit determinant, det||akl||= 1.

2. T can’t have an eigenvalue with unit modulus , |λk| 6= 1.

The first condition ensures that the map defines a volume preserving automorphism. The second

condition ensures that nearby trajectories diverge exponentially when the automorphism is viewed

as a tool defining a dynamical system with discrete time t ∈ Z, . The Kolmogorov entropy of this

systems is

h(T ) = ∑
|λk|>0

ln |λk| (1.160)

and the correlation splitting time is

τ0 =
1

h(T )
=

1
∑|λk|>0 ln |λk|

(1.161)

1.5.4 Results

Lets consider T (N,s) which is a family of matrix operators which produces a K-system [87, 88],

T (N,s) =



1 1 1 1 · · · 1 1

1 2 1 1 · · · 1 1

1 3+ s 2 1 · · · 1 1

1 4 3 2 · · · 1 1

...
...

...
... . . . ...

...

1 N N−1 N−2 · · · 3 2


(1.162)
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this matrix has dimensions of N×N, where each element is a integer Ai j ∈ Z also s labels the mem-

bers of the family. Notice that the determinant of this matrix is one and its eigenvalues don’t lie on a

unit circle.

The Kolmagorov entropy is one of the most important quantities that characterizes the ergodic prop-

erties of the K-system generators, see Eq. 1.160 .

Size Magic Entropy

N s h

256 -1 164.473

256 487013230256099064 193.583

240 487013230256099348 183.417

423 0 272.423

523 0 337.037

723 0 466.262

The entropy h(T ) defines the number π(τ) of periodic trajectories with period less or equal to τ

π(τ)→ ehτ

hτ
(1.163)

It is not possible to simulate on a computer trajectories that are not periodic. The following matrix

operator also represents a K-system A(N,m,s)

A(N,m,s) =



1 1 1 1 · · · 1 1

1 2 1 1 · · · 1 1

1 2+m+ s 2 1 · · · 1 1

1 2+2m 2+m 2 · · · 1 1

...
...

...
... . . . ...

...

1 2+(N−2)m 2+(N−3)m 2+(N−4)m · · · m+2 2


(1.164)

the family members of this operators are labeled by two parameters m and s. It’s obvious that when

we put m = 1 then A = T
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Size Magic Magic Entropy

N s m h

8 0 253 +1 220.421

17 0 236 +1 374.299

40 0 242 +1 1106.26

60 0 252 +1 2090.53

96 0 255 +1 3583.57

120 1 251 +1 4171.36

240 487013230256099140 251 +1 8418.8
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Chapter 2

Superstable cycles and magnetization plateau

for antiferromagnetic spin-1 Ising and

Ising-Heisenberg models on diamond chains

2.1 Introduction

The theory of dynamical systems, besides its intrinsic theoretical relevance, recently had a significant

impact on a wide range of disciplines from physics to ecology and economics, providing methodolog-

ical tools which are currently employed in financial and economic forecasting, environmental mod-

elling, medical diagnosis, industrial equipment diagnosis and so on [89, 90]. An important physical

setting in which such dynamical techniques are profitably applied is equilibrium statistical mechan-

ics of lattice models, more specifically in the investigation of physical properties of low-dimensional

classic and quantum spin systems in an external magnetic field.

In this paper we apply dynamical techniques in the analysis of Ising and Ising-Heisenberg spin

models on a diamond chain, which are of current interest for a number of reasons. As a matter of fact,

these models can be solved exactly by using different mathematical methods, and they exhibit a wide

range of interesting properties such as the appearance of intermediate plateaus in the magnetization

curves, geometric spin frustration, multiple peak structure of the magnetic susceptibility and specific
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heat [91–101].

The dynamical systems approach [102,103] has been used in many different physical situations,

deepening our understanding of the phase structure and critical properties of spin and gauge models: it

is particularly powerful in the analysis of exact solution of spin models on hierarchical lattices, which

in many cases accurately approximate real ones (the so called Bethe-Peierls approximation). The

specific dynamical method we will employ is the recursion relations method, where the lattice is cut

into branches, and the full partition function is expressed in terms of the reduced partition functions

of all branches. This procedure allows to derive one- or multi-dimensional mappings for branches of

the partition function, providing as well recursion relations for the relevant thermodynamic quantities,

such as magnetization, magnetic susceptibility and specific heat.

In order to motivate our analysis, we remark that spin-1 Ising and Ising-Heisenberg models

on diamond chains are a very good approximation for atoms of homometallic magnetic complex

[Ni3(C4H2O4)2(µ3−OH)2 (H2O)4]n · (2H2O)n [104] [105], and the molecular compound [Ni8(µ3−

OH)4(OMe)2(O3PR1)2 (O2CtBu)6 (HO2CtBu)8] [106]. Magnetic-property measurements on such

compounds indicate the coexistence of both antiferromagnetic and ferromagnetic interactions be-

tween the magnetic centers, Ni ions with spin 1, which indeed suggests to investigate theoretically

the magnetic properties of such compounds. Another related interesting material is Cu3(CO3)2(OH)2

-known as natural azurite (Copper Carbonate Hydroxide)- which can be well described by using the

quantum antiferromagnetic Heisenberg model on a generalized diamond chain [7, 8, 107]. A remark-

able feature of these systems is their exact solvability through recurrence relations techniques; within

this method, as we already mentioned, statistical properties of a system are associated to one or

multidimensional rational mappings. In the antiferromagnetic case both models exhibit a complex

behavior, featuring superstable points and cycles, and magnetic plateaus.

The aim of this paper is to study the dynamical approach, and notably superstability in the

above mentioned models [108–112]. We propose a non-trivial connection of superstable points and

Lyapunov exponents to magnetic plateaus.

The paper is organized as follows: in the next section we give a brief description of the spin-1

Ising and Ising-Heisenberg models on diamond chains and we describe how the dynamical approach
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allows a detailed analysis of physical properties. In Section 3 we address stability features of the dy-

namical mappings we derived for such models, and their connections with magnetization; in addition

we compare our results with the experimental data in [104]. Finally, in Section 4, we present our

concluding remarks.

2.2 Models and their dynamic solutions

In this section we describe the quantum spin-1 Ising-Heisenberg model and the classical spin-1 Ising

model, both on diamond chain. Since the equations for both models are rather similar we will explic-

itly consider one case, providing further details in the Appendix. The spin-1 Ising-Heisenberg model

on a diamond chain (see Fig 2.1) and its classic analogue (spin-1 Ising model on a diamond chain)

are defined by the following Hamiltonians, written in terms of block contributions:

HIH =
N

∑
i

HIH,i =
N

∑
i
(J(Sx

a,iS
x
b,i +Sy

a,iS
y
b,i +Sz

a,iS
z
b,i)+K(Sx

a,iS
x
b,i

+Sy
a,iS

y
b,i +Sz

a,iS
z
b,i)

2 + J1(µz
i +µz

i+1)(S
z
a,i +Sz

b,i)+K1((µz
i )

2

+(µz
i+1)

2)((Sz
a,i)

2 +(Sz
b,i)

2)+∆((Sz
a,i)

2 +(Sz
b,i)

2)+∆1
(µz

i )
2 +(µz

i+1)
2

2

−hH(Sz
a,i +Sz

b,i)−hI
µz

i +µz
i+1

2
) (2.1)

and

HI =
N

∑
i

HI,i =
N

∑
i
(J(Sa,iSb,i)+K(Sa,iSb,i)

2 + J1(µi +µi+1)(Sa,i +Sb,i)

+K1((µi)
2 +(µi+1)

2)((Sa,i)
2 +(Sb,i)

2)+∆((Sa,i)
2 +(Sb,i)

2)

+∆1
(µi)

2 +(µi+1)
2

2
−hH(Sa,i +Sb,i)−hI

µi +µi+1

2
) (2.2)

In the Ising-Heisenberg Hamiltonian Sa,i, Sb,i are quantum Heisenberg spins and µi, µi+1 are clas-

sical Ising spins. The parameter J accounts for the interactions between the nearest-neighbouring

Heisenberg spins (Sa,i-Sb,i) and J1 is the interactions parameter for nearest-neighbouring Ising and

Heisenberg spins (Sa/b,i-µi/i+1). Analogously, K and K1 govern quadratic interactions. ∆ and ∆1 are
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the single-ion anisotropy parameters (crystal fields), hI and hH represent contributions of a longitu-

dinal external magnetic field, interacting with the Heisenberg spins and Ising spins correspondingly.

The parameters in Ising Hamiltonian are the same as in Ising-Heisenberg but in such a case Sa,i, Sb,i

are Ising spins. For the quantum Ising-Heisenberg case it can be shown that the block Hamiltonian

commutes with Ising and Heisenberg spins, i.e. [HIH,i,µz
j] = [HIH,i,Sz

a, j + Sz
b, j] = 0 for any values

of the model parameters. On the other side, block Hamiltonian and quadrupole moment commute,

([HIH,i,(Sz
a, j)

2+(Sz
b, j)

2] = 0), only when J =K. In further calculations we assume that K = J, K1 = J1,

∆ = ∆1, hH = hI = h.

The partition functions, single site magnetic and quadrupole moments for the quantum case are given

by the following expressions:

ZIH = ∑
µi,Sa,i,Sb,i

e−βHIH = ∑
µ0

e−
−hIµz

0+∆1(µ
z
0)

2

T gn(µz
0)

2 (2.3)

mµ =< µz
i >=

∑µi,Sa,i,Sb,i
(µz

i )e
−βHIH

ZIH
(2.4)

mS =
< Sz

a,i +Sz
b,i >

2
=

∑µi,Sa,i,Sb,i
(Sz

a,i +Sz
b,i)e

−βHIH

ZIH
(2.5)

pµ =< (µz
i )

2 >=
∑µi,Sa,i,Sb,i

(µz
i )

2e−βHIH

ZIH
(2.6)

pS =
< (Sz

a,i)
2 +(Sz

b,i)
2 >

2
=

∑µi,Sa,i,Sb,i
(Sz

a,i)
2 +(Sz

b,i)
2e−βHIH

ZIH
(2.7)
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where we have set kB = 1 (see the Appendix for the classical case). The total magnetization and

quadrupole moment per site are given by the following expressions:

m =
mµ +2mS

3
, p =

pµ +2pS

3
(2.8)

By cutting the diamond chain at µ0 into two branches -gn(µ0)- (see Fig 2.1) an exact recursion relation

for the partition function can be derived:

Figure 2.1: The structure for the Ising (Sa and Sb are white) and Ising-Heisenberg (Sa and Sb are
black) diamond chain. White circles are Ising spins and black ones are Heisenberg spins.

xn =
gn(1)
gn(0)

= f1(xn−1,yn−1), yn =
gn(−1)
gn(0)

= f2(xn−1,yn−1), (2.9)

For both models the recursion functions have the following form:

f1(x,y) =
a0 +a1x+a2y
c0 + c1x+ c2y

(2.10)

f2(x,y) =
b0 +b1x+b2y
c0 + c1x+ c2y

, (2.11)

where the parameters a0− c2 can be found in the Appendix. By using the recursion relations, the

calculations of magnetic and quadrupole moments are straightforward. The magnetic and quadrupole

moments are shown in Fig 2.2 and 2.3 for the Ising case, and, for the Ising-Heisenberg case, in Fig

2.4 and 2.5.
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Figure 2.2: Magnetization dependence on the external field for the classical case (J = 1, J1 = 1,
T = 10−7).
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Figure 2.3: Quadrupole moment dependence on the single-ion anisotropy parameter for the classical
case (J = 1, J1 = 1, T = 10−6).
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Figure 2.4: Magnetization dependence on the external field for the quantum case (J = 1, J1 = 1,
T = 10−7).
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Figure 2.5: Quadrupole moment dependence on the single-ion anisotropy parameter for the quantum
case (J = 1, J1 = 1, T = 10−6).
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2.3 Lyapunov exponents and superstable points

Lyapunov exponents [113] quantify the growth rate of an infinitesimal perturbation on a reference

trajectory, and they provide a measure of the degree of ”instability” of the system: a positive maximum

Lyapunov exponent corresponds to chaotic, unstable states, while a negative maximum Lyapunov

exponent signals stable states. Such exponents are computed from dynamical recursion equations: a

zero maximum Lyapunov exponents is the dynamic counterpart of a second-order phase transition.

We recall that if we have a N dimensional map then a spectrum of N exponents is present; the i− th

Lyapunov exponent is calculated by the following equation (see [113–115])

λi = lim
n→∞

logHi

2n
, H = J(x0)J(x1)...J(xn) (2.12)

where Hi is the i− th eigenvalue of H†H and J(xk) is the Jacobian matrix of our N dimensional

map after k iterations from the initial point x0. We used a standard (Gram-Schmidt) [113] numerical

procedure to compute both Lyapunov exponents for our 2 dimensional recursion relations.

When examining dynamical properties of recursion relations, it is natural to start by an investi-

gation of fixed points, such that f1(x,y) = x and f2(x,y) = y. For both classical and quantum models

the structure of fixed point equations greatly simplifies when h = 0, as in this case we get:

f1(x,y) =
a0 +a1x+a2y
c0 + c1x+ c1y

(2.13)

f2(x,y) =
a0 +a2x+a1y
c0 + c1x+ c1y

; (2.14)

for which a stable fixed point with x = y can be found. This turns out to be the only physically sig-

nificant fixed point, as the other goes to infinity when T → 0. We notice a striking similarity between

the structure of ground states (T = 0), and the parameters dependence of both the stable fixed point

and quadrupole moment, see Fig. 2.6: this suggests a strong connection between magnetization,

quadrupole moment and Lyapunov exponents. We also investigated numerically when stable fixed

points become superstable, that is when stability is maximal, yielding a negatively diverging maximal
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Lyapunov exponent (see Fig. 2.7). The computation of Lyapunov exponents for physically reason-

able parameters leads to the observation of a remarkable symmetry between superstable points and

magnetization plateaus. Our investigations show the existence of a zero magnetization plateau around

h = 0 if there is a superstable point. We have performed a detailed search on the conditions for the

existence of superstable orbits: in the classical case it is ∆ > 0 (see Fig 2.8): this coincides with the

the non-magnetic (NM) phase in the ground states diagram as well as with a well defined region in

the stable fixed points diagram and the quadrupole moment p = 0 plateau (see Fig 2.6a, 2.6b, 2.6c).

In the quantum case the superstable points existence condition is ∆ > 2J (see Fig 2.9); like in the

classical case this condition also coincides with the non-magnetic phase in the ground states (for a

detailed discussion on the ground states with transfer matrix technique see [12], the eigenvectors and

eigenvalues of the phases can be found in the Appendix see Eq. 2.24,2.25,2.26,2.27,2.28), a region in

stable fixed points diagram and the quadrupole moment p = 0 plateau (see Fig 2.6d, 2.6e, 2.6f). We

observe a magnetization plateau correspondence with a non superstable maximum Lyapunov expo-

nent plateau at or near h = 0 (see Fig. (2.2a,2.8a),(2.2b,2.8b) for the classical case and Fig (2.4a,2.9a)

for the quantum caseand for J = ∆ see Fig. (2.4b,2.9b). Another interesting observation is the one

to one correspondence of the first plateau of the Lyapunov exponent and first non zero plateau of

magnetization in the presence of a superstable point (for the classical case ∆ > 0 and for the quantum

case ∆ > 2J). Unfortunately the next plateau for T = 0.03 does not fit in this picture, maybe due to T

being not sufficiently close to zero.

We conclude with a comment on our results when compared with the experimental data from

[104], where spin-1 antiferromagnetic nodal-interstitial (dimer-monomer) Ising coupling and ferro-

magnetic interstitial-interstitial Heisenberg coupling on a diamond chain was considered. To this end

we assume that K = K1 = 0 and the existence of different crystal fields [105]. The numerical cal-

culations show that there are a number of configurations with superstable points, two of the more

interesting configurations being J = −2, ∆1 = 2, J1 = 1 and J = −6, ∆1 = 4, J1 = 1 with ferromag-

netic Heisenberg coupling constant and antiferromagnetic Ising couplings, see Fig. (2.10). In these

cases the decreasing part close to superstable point as well as the first Lyapunov exponent plateau

again correspond to magnetization plateaus.
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Figure 2.6: Figures a, b, c show the ground states, stable fixed point x diagrams and quadrupole
moment for classical case, while figures d, e, f refer to the quantum case. In the above figures J = 1,
J1 = 1, h= 0 for the stable point x diagrams and quadrupole moments: the temperatures are T = 0.025
and T = 0.001 respectively.
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Figure 2.7: The maximum Lyapunov exponent as a function of 0.001 < T < 0.1 for the classical case
(J = 1, J1 = 1, ∆ = 1).
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Figure 2.8: The Lyapunov exponent dependence on the external magnetic field for the classical case(
J = 1, J1 = 1, T = 0.01) .
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Figure 2.9: The Lyapunov exponent dependence on the external magnetic field for the quantum case
(J = 1, J1 = 1, T = 0.01 ).
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Figure 2.10: Figures a, b, c and d show the behavior of Lyapunov exponents for K = K1 = 0, J1 = 1
and ∆ = 2, while figures e, f display the magnetization for the same values of the parameters
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2.4 Discussion and conclusions

In the present work, we studied the connections between stability and magnetic properties of the

spin-1 Ising and Ising-Heisenberg models on the diamond chain. The dynamical solution of the

model is obtained by using the recursion relations method. The Lyapunov exponents, magnetic and

quadrupole moments, superstable points and cycles of the system at T → 0 have been analyzed.

For the first time in spin-1 models on a diamond chain we provide evidence of the existence of

zero magnetization plateau around superstable points. Also the first maximum Lyapunov exponent

plateau is rather similar to the second plateau of magnetization if there exists a superstable point.

This is conjectured to be indicative of a more general connection between magnetization plateaus and

maximum Lyapunov exponents for both classical and quantum models. Furthermore the remarkable

connection between ground states and stable fixed points suggests a non-trivial relation between them.

The superstable points and quadrupole moment p = 0 plateau relation at zero external magnetic field

is also noteworthy. Finally we believe its worthwhile investigating connections of a similar nature for

more complex systems such as a diamond-like decorated Bethe lattice for different temperatures.

2.5 Appendix

The partition function for the classical case has the following form:

ZI = ∑
µi,Sa,i,Sb,i

e−βHI = ∑
µ0

e−
−hIµ0+∆1µ2

0
T gn(µ0)

2 (2.15)

Similarly single site magnetic and quadrupole moments for the classical case have the following

expression:

mµ =< µi >=
∑µi,Sa,i,Sb,i

(µi)e−βHI

ZI
(2.16)
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mS =
< Sa,i +Sb,i >

2
=

∑µi,Sa,i,Sb,i
(Sa,i +Sb,i)e−βHI

ZI
(2.17)

pµ =< (µi)
2 >=

∑µi,Sa,i,Sb,i
(µi)

2e−βHI

ZI
(2.18)

pS =
< (Sa,i)

2 +(Sb,i)
2 >

2
=

∑µi,Sa,i,Sb,i
(Sa,i)

2 +(Sb,i)
2e−βHI

ZI
(2.19)

Note that gn(µ0) in the quantum case has a different form than in classical case: gn(µ0) in the quantum

case is given by the following equation:

gn(µ0) = ∑
Sa,0,Sb,0,µ1

exp
(

J(Sx
a,0Sx

b,0 +Sy
a,0Sy

b,0 +Sz
a,0Sz

b,0)+K(Sx
a,0Sx

b,0 +Sy
a,0Sy

b,0

+Sz
a,0Sz

b,0)
2 + J1(µz

0 +µz
1)(S

z
a,0 +Sz

b,0)+K1((µz
0)

2 +(µz
1)

2)((Sz
a,0)

2

+(Sz
b,0)

2)+∆((Sz
a,0)

2 +(Sz
b,0)

2)+∆1(µz
1)

2−hH(Sz
a,0 +Sz

b,0)

−hIµz
1

)
gn−1(µz

1) (2.20)

while for the classical case gn(µ0) has the following form:

gn(µ0) = ∑
Sa,0,Sb,0,µ1

exp
(

J(Sa,0Sb,0)+K(Sa,0Sb,0)
2 + J1(µ0 +µ1)(Sa,0 +Sb,0)

+K1(µ2
0 +µ2

1)((Sa,0)
2 +(Sb,0)

2)+∆((Sa,0)
2 +(Sb,0)

2)+∆1(µ1)
2

−hH(Sa,0 +Sb,0)−hIµ1

)
gn−1(µ1) (2.21)

gn−1(µ1) in both cases is analogous to gn(µ0). From gn(µ0) one can derive the recursion relations for

the model. Finally we give the parameters of the recursion functions for the quantum and classical

cases.
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For the Ising-Heisenberg case, we get the corresponding expressions:

a0 = e−
2J
T + e−

h+∆

T + e−
h+2J+∆

T + e−
−h+2J1+∆

T + e−
−h+2J+2J1+∆

T + e−
2h+2J+2∆

T

+ e−
2J1+2∆

T + e−
2(J+J1)+2∆

T + e−
−2h+2(J+2J1)+2∆

T

a1 = e−
2∆

T + e−
−h+2J+∆

T + e−
2(−h+2J1+∆)

T + e−
2J+2∆

T + e−
−2h+2(J+2J1)+2∆

T

+ e−
h+2J+3∆

T + e−
−h+4J1+3∆

T + e−
−h+2(J+2J1)+3∆

T + e−
−3h+2(J+4J1)+3∆

T

a2 = e−
h+2J+∆

T + e−
2J1+2∆

T + e−
2h+2J1+2∆

T + e−
2h+2J+2J1+2∆

T + e−
2(J+J1)+2∆

T

+ e−
h+4J1+3∆

T + e−
−h+2(J+2J1)+3∆

T + e−
h+2(J+2J1)+3∆

T + e−
3h+2(J+2J1)+3∆

T

c0 = e−
2J
T + e−

2∆

T + e−
−h+∆

T + e−
h+∆

T + e−
−h+2J+∆

T + e−
h+2J+∆

T + e−
2J+2∆

T

+ e−
−2h+2J+2∆

T + e−
2h+2J+2∆

T

c1 = e−
2∆

T + e−
−h+2J+∆

T + e−
2J+2∆

T + e−
−2h+2J1+2∆

T + e−
−2h+2J+2J1+2∆

T

+ e−
h+2J+3∆

T + e−
−h+2J1+3∆

T + e−
−h+2(J+J1)+3∆

T + e−
−3h+2(J+2J1)+3∆

T

c2 = e−
2∆

T + e−
h+2J+∆

T + e−
2J+2∆

T + e−
2h+2J1+2∆

T + e−
2h+2J+2J1+2∆

T + e−
−h+2J+3∆

T

+ e−
h+2J1+3∆

T + e−
h+2(J+J1)+3∆

T + e−
3h+2(J+2J1)+3∆

T

b0 = e−
2J
T + e−

−h+∆

T + e−
−h+2J+∆

T + e−
h+2J1+∆

T + e−
h+2J+2J1+∆

T + e−
−2h+2J+2∆

T

+ e−
2J1+2∆

T + e−
2(J+J1)+2∆

T + e−
2h+2(J+2J1)+2∆

T

b1 = e−
−h+2J+∆

T + e−
2J1+2∆

T + e−
−2h+2J1+2∆

T + e−
−2h+2J+2J1+2∆

T + e−
2(J+J1)+2∆

T

+ e−
−h+4J1+3∆

T + e−
−3h+2(J+2J1)+3∆

T + e−
−h+2(J+2J1)+3∆

T + e−
h+2(J+2J1)+3∆

T

b2 = e−
2∆

T + e−
h+2J+∆

T + e−
2(h+2J1+∆)

T + e−
2J+2∆

T + e−
2h+2(J+2J1)+2∆

T + e−
−h+2J+3∆

T

+ e−
h+4J1+3∆

T + e−
h+2(J+2J1)+3∆

T + e−
3h+2(J+4J1)+3∆

T .

(2.22)
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For the Ising case the parameters have the following form:

a0 = eD− 4J1
T (e

5h
T +

4J1
T + ∆

T +2e
3h
T + 2J

T +
6J1
T + ∆

T + e
h
T +

8J1
T + ∆

T +2e
4h
T + 2J

T +
6J1
T + 2∆

T

+2e
2h
T + 2J

T +
8J1
T + 2∆

T + e
3h
T + 2J

T +
8J1
T + 3∆

T )

a1 = e−
4J1
T (2e

4h
T + 2J

T +
4J1
T + e

2h
T +

8J1
T + e

6h
T +2e

5h
T + 2J

T +
4J1
T + ∆

T +2e
3h
T + 2J

T +
8J1
T + ∆

T

+ e
4h
T + 2J

T +
8J1
T + 2∆

T )

a2 = e−
4J1
T (e

4h
T +

4J1
T +2e

2h
T + 2J

T +
4J1
T + e

4J1
T +2e

h
T +

2J
T +

6J1
T + ∆

T +2e
3h
T + 2J

T +
6J1
T + ∆

T

+ e
2h
T + 2J

T +
8J1
T + 2∆

T )

c0 = e
h
T +

4J1
T + ∆

T + e
5h
T +

4J1
T + ∆

T +2e
3h
T + 2J

T +
4J1
T + ∆

T +2e
2h
T + 2J

T +
4J1
T + 2∆

T

+2e
4h
T + 2J

T +
4J1
T + 2∆

T + e
3h
T + 2J

T +
4J1
T + 3∆

T

c1 = 2e
4h
T + 2J

T +
2J1
T + e

2h
T +

4J1
T + e

6h
T +2e

5h
T + 2J

T +
2J1
T + ∆

T +2e
3h
T + 2J

T +
4J1
T + ∆

T

+ e
4h
T + 2J

T +
4J1
T + 2∆

T

c2 = 1+2e
2h
T + 2J

T +
2J1
T + e

4h
T +

4J1
T +2e

h
T +

2J
T +

2J1
T + ∆

T +2e
3h
T + 2J

T +
4J1
T + ∆

T

+ e
2h
T + 2J

T +
4J1
T + 2∆

T

b0 = e−
4J1
T (e

h
T +

4J1
T + ∆

T +2e
3h
T + 2J

T +
6J1
T + ∆

T + e
5h
T +

8J1
T + ∆

T +2e
2h
T + 2J

T +
6J1
T + 2∆

T

+2e
4h
T + 2J

T +
8J1
T + 2∆

T + e
3h
T + 2J

T +
8J1
T + 3∆

T )

b1 = e−
4J1
T (e

2h
T +

4J1
T + e

6h
T +

4J1
T +2e

4h
T + 2J

T +
4J1
T +2e

3h
T + 2J

T +
6J1
T + ∆

T

+2e
5h
T + 2J

T +
6J1
T + ∆

T + e
4h
T + 2J

T +
8J1
T + 2∆

T )

b2 = e−
4J1
T (1+2e

2h
T + 2J

T +
4J1
T + e

4h
T +

8J1
T +2e

h
T +

2J
T +

4J1
T + ∆

T +2e
3h
T + 2J

T +
8J1
T + ∆

T

+ e
2h
T + 2J

T +
8J1
T + 2∆

T ),

(2.23)

The phases in Fig. 2.6d are characterized by the following spin configurations, values of the single-

site magnetization and quadrupole moment at zero magnetic field.
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• The antiferromagnetic phase:

∣∣AFM
〉
=


∏

N
i=1

1√
2
(|−1〉i⊗ (|1,0〉− |0,1〉))ai,bi

∏
N
i=1

1√
2
(|1〉i⊗ (|0,−1〉− |−1,0〉))ai,bi

, E = 2(−J1 +K1 +∆) (2.24)

mµ =∓1,mS =±
1
2
,m = 0, pµ = 1, pS =

1
2
, p =

2
3

• The ferrimagnetic phase:

∣∣FRI
〉
=

N

∏
i=1

(|−1〉i⊗ (|1,1〉)ai,bi, E = 2J−4J1+4K1 +3∆ (2.25)

mµ =−1,mS = 1,m =
1
3
, pµ = 1, pS = 1, p = 1

• The monomer-dimer phase:

∣∣MD
〉
=

N

∏
i=1

1√
2
(|0〉i⊗ (|1,0〉− |0,1〉))ai,bi, E = ∆ (2.26)

mµ = 0,mS =
1
2
,m =

1
3
, pµ = 0, pS =

1
2
, p =

1
3

• The frustrated phase:

∣∣FRU
〉
=

N

∏
i=1

1√
2
(|±1〉i⊗ (|1,−1〉− |−1,1〉))ai,bi, E = 4K1+3∆ (2.27)

mµ = 0,mS = 0,m = 0, pµ = 1, pS = 1, p = 1

• The non-magnetic phase:

∣∣NM
〉
=

N

∏
i=1

(|0〉i⊗ (|0,0〉)ai,bi, E = 2J (2.28)

mµ = 0,mS = 0,m = 0, pµ = 0, pS = 0, p = 0
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Chapter 3

Magnetization Plateaus and Thermal

Entanglement of Spin Systems

3.1 Introducion

The magnetic plateau and entanglement properties exhibit common features observable via antfer-

romagnetic coupling constant, external magnetic, crystal (single-ion anisotropy) fields and chemical

potential. The family of known non-trivial quantum effects in the condensed matter physics is en-

riched with the novel phenomenonintermediate plateaus in the magnetization processes [6, 15]. The

observation of a 1/3 magnetization plateau in natural azurite Cu3(CO3)2(OH)2 has been proposed

as a realization of the exotic diamond chain of antiferromagnetically coupled of spin-1/2 Cu+2-

monomers [7, 8]. The theoretical study of magnetization plateaus in azurite were obtained by us-

ing the density functional theory [10,107], mean-field-like treatment based on the Gibbs-Bogoliubov

inequality [13] , the density-matrix renormalization-group (DMRG) technique [116, 117] and the

decoration-iteration transformation [95]. On a diamond chain there were observed the plateaus of

electron density as a function of chemical potential on spinless fermion, extended Hubbard and mag-

netization as a function of external magnetic field on distorted Ising-Hubbard models [118–120]. The

magnetic behavior and magnetic susceptibility of the metal-containing complex [Ni3( f um)2− (µ3−

OH)2(H2O)4]n ·(2H2O)n was measured [104]. The spin-1 diamond-chain of the compound is charac-
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terized by both ferromagnetic and antiferromagnetic exchanges. In this article we would get magne-

tization and quadrupole moment plateaus at low temperatures as a function of external magnetic field

and single-ion anisotropy. Quantum entanglement is considered to play a key role for understanding

of strongly correlated quantum systems, quantum phase transitions and collective quantum phenom-

ena in particular many-body spin and fermionic lattice systems [16–18] especially in antferromagnetic

models. Another important observation is the strong relationship between magnetic and entanglement

properties of the antiferromagnetic system on diamond chain models [105, 119, 121–126]. One also

regard magnetic behavior of spin lattice models applying the dynamic system method [127–129]. The

dynamical approach represents an essential tool in the theory of phase transitions and criticality and

it enhanced our understanding of the phase structure and critical properties of spin models. In the

case of antiferromagnetic coupling between lattice nodes of the three site interaction Ising and the

Q-state Potts models (Q < 2) on Husimi and Bethe lattices exhibit a complex behavior, featuring

doubling bifurcations, chaotic regimes, intermittency, and superstable points [100,112]. The plateaus

of the maximal Lyapunov exponent coincide with magnetization plateaus on a kagome chain for mul-

tidimensional mapping [130]. The existence of the magnetization plateau has been observed at one

third of the saturation magnetization in the antiferromagnetic spin-1/2 IsingHeisenberg model on a

diamond chain using the multidimensional mapping [110]. It has been detected that the maximal Lya-

punov exponent exhibits plateau like magnetization one and found the existence of the supercritical

point at T → 0 in the absence of the external magnetic field corresponding to the phase transition

point.

In the present paper we shall mainly deal with the quantum entanglement and magnetic curve behav-

ior of symmetric Hubbard dimers with delocalized interstitial electrons and spin-1 Ising - Heisenberg

model using transfer matrix technique on a diamond chain. Applying the recurrence relation of the

two-dimensional mapping we shall study magnetic plateau and their relation to maximal Lyapunov

exponents, superstable point of spin-1 classical and Ising - Heisenberg models on a diamond chain.

The paper is organized as follows. In Section 2 the phase behaviour of the diamond chain is presented

of a symmetric Hubbard-Ising model and studied the magnetic and thermal properties. We research

the quantum entanglement of electrons in Hubbard dimers and dependence of Hamiltonian parame-
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ters as well as on temperature. We give an exact solution of spin-1 Ising - Heisenberg model by means

of the transfer-matrix method and study the magnetization plateaus and negativity in Section 3. In

Section 4 we apply the dynamical system approach in researching magnetic plateaus and maximal

Lyapunov exponent plateaus. It is observed that the superstable coincide with phase transition point

at T → 0 in the spin-1 classical and Ising-Heisenberg models on the diamond chain. Some concluding

remarks are given in section 5.

3.2 Symmetric diamond chain with delocalized Hubbard inter-

stitial spins

The Hamiltonian of symmetric Ising- Hubbard model [131] describing the diamond chain (Fig. 1)is

H =
N
∑

i=1
Hi,i+1, where

Hi,i+1 =−t̃
(

a+i↑bi↑+ai↑b+i↑+a+i↓bi↓+ai↓b+i↓
)
+Ṽ nainbi +Ũ

(
nai↑nai↓+nbi↑nbi↓

)
(3.1)

+J̃mscisci+1 + J
(
sz

ai + sz
bi

)
(sci + sci+1)− µ̃(nai +nbi)− h̃

(
sz

ai + sz
bi +

sci + sci+1

2

)
.

Figure 3.1: Two sites of the Hubbard dimer are denoted as a– and b–. There is an electron hopping
between them with amplitude t. One–site (U) and two–site (V ) Coulomb interactions are also present.
The diamonds are connected to each other at nodal c–sites. There is an Ising–like direct interaction
with Jm coupling constant between the nodal sites. The nodal sites are also connected to a– and b–sites
by means of Ising–like interactions with coupling constant J.

Here a+iσ (aiσ) and b+iσ (biσ) are the electron creation (annihilation) operators with the spin value

σ=(↑,↓), respectively on sites ai and bi. The naiσ = a+iσaiσ and nbiσ = b+iσbiσ are the electron number

operators, respectively on sites ai and bi and t̃ is the hopping amplitude. We denote nαi = nαi↑+nαi↓,
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sz
αi =

1
2
(
nαi↑−nαi↓

)
, (α = a,b) and sci =±

1
2

. Here µ̃ and h̃ are the values of the chemical potential

and the external magnetic field (h̃= gµBBz) respectively. The terms which contain Ũ and Ṽ correspond

respectively to one–site and two–site Coulomb repulsions in the Hubbard dimer(interstitial spins).

The terms which contain the symmetric coupling J that describe Hubbard dimer interactions with

nodal Ising-type spins. The term containing J̃m describes two nodal Ising–like spins interaction.

From the identity

Ṽ nanb +Ũ
(
na↑na↓+nb↑nb↓

)
=
(

Ũ−Ṽ
)(

na↑na↓+nb↑nb↓
)
+

n(n−1)
2

Ṽ , (3.2)

(where n = na↑+ na↓+ nb↑+ nb↓ is the total number of electrons in the Hubbard dimer), it follows

that the differences between energy levels depend on Ũ − Ṽ ≡ W̃ only, if n is fixed. In particular, for

fixed n 6= 2,
(
na↑na↓+nb↑nb↓

)
is constant and the behavior of the system does not depend on W̃ at all,

which is physically obvious.

As all Hi,i+1 commute, therefore the partition function can be written as:

ZN = Tr
(

e−βH
)

= ∑
sci=± 1

2

N

∏
i=1

Tra,b

(
e−βHi,i+1(sci,sci+1)

)
= TrVN , (3.3)

where V =

 V (+,+) V (+,−)

V (−,+) V (−,−)

 is the transfer matrix, with V (±,±) = ∑
j

e−βE j(±,±), where

E j (±,±)≡ E j
(
±1

2 ,±
1
2

)
are the eigenvalues of the Hi,i+1 (±,±)≡Hi,i+1

(
±1

2 ,±
1
2

)
Hamiltonian.

In the thermodynamic limit the free energy per diamond is

F = lim
N→∞

−T
N

lnZN =− lnλ1, (3.4)

where λ1 =
1
2

(
TrV+

√
(TrV)2−4detV

)
is the largest eigenvalue of the transfer matrix.

On this basis it is easy to calculate magnetization and specific heat. Analogously we use the

following expression for reduced density matrix of a Hubbard dimer to study entanglement properties:
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ρ
′ =

1
λ1

[
e−βH(+,+)+ e−βH(−,−)

2
+ e−βH(+,−) sin2θ +

+
e−βH(+,+)− e−βH(−,−)

2
cos2θ

]
, (3.5)

with sin2θ =
2V (+,−)√

(TrV)2−4detV
, cos2θ =

V (+,+)−V (−,−)√
(TrV)2−4detV

.

In the sequel we rescale all quantities by the J absolute value, substituting t = t̃/|J|, h = h̃/|J|,

µ = µ̃/|J|, U = Ũ/|J|, V = Ṽ/|J|, W = W̃/|J| and Jm = J̃m/|J|.

The magnetization curves at nonzero temperature are derived from m = −∂F
∂h . Here we take the

number of electrons in a Hubbard dimer fixed and equals to 2. Fig. 3.2 shows possible forms of

magnetization curves at zero and nonzero temperatures. The following types of plateaus exist here:

at 0, 1/3 and 2/3 values and of classical (electrons in the Hubbard dimers are not entangled and their

spin projections have definite value at each site) and nonclassical (electrons in the Hubbard dimers

are entangled) types.

The entanglement of formation in the special case of two spin-1/2 particles has the analytical expres-

sion [132]: EF = H
(

1+
√

1−C2

2

)
, where H(x) =−x log2(x)−(1−x) log2(1−x), and C is the quantity

called concurrence.

For fixed values of t and Jm we have plotted the concurrence as a function of the temperature and the

external magnetic field (Figs. 3.3). The thermal entanglement becomes significantly large when the

energy level of the (non-entangled) ground state and the nearest energy level (corresponding to the

entangled state) are close to each other.
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a) Jm = 0, Jm = 0.6 b) Jm = 1.2, Jm = 1.7

Figure 3.2: Dependence of the diamond chain magnetization (m) (per diamond in gµB units) on the
external magnetic field (h) for different values of the internodal change interaction (Jm) at T = 0. The
fixed chain parameters are t = 0.3, W = 0, µ = 0. The case of T = 0.1 is also shown. In this case
thermal fluctuations smoothen magnetization jumps.

a) t = 0.45,Jm =−2 b) t = 0.55,Jm =−2

Figure 3.3: The dependence of the concurrence from temperature and external magnetic field for
various values of hopping amplitude. Concurrence vanishes in high temperature limit.

3.3 Magnetization plateaus and negativity in spin-1 Ising - Heisen-

berg model

Let us consider spin-1 Ising-Heisenberg model on a diamond chain (see Fig. 3.6) without biquadratic

coupling terms using the transfer matrix technique. The magnetic behavior of homometallic molecu-

lar ferrimagnet [Ni3( f um)2− (µ3−OH)2(H2O)4]n · (2H2O)n was measured by [104] without single-

ion anisotropy parameters. We observe magnetisation plateau and thermal quantum negativity in the

presence of an external magnetic fields and single-ion anisotropy terms. The Hamiltonian is equal to

the sum over block Hamiltonians H = ∑i Hi with

Hi = J~Sa,i~Sb,i + J1(Sz
a,i +Sz

b,i)(σ
z
i +σ

z
i+1)+DH((Sz

a,i)
2 +(Sz

b,i)
2)+

DI

2
(
(σz

i )
2 +(σz

i+1)
2) (3.6)

− hHgµB(Sz
a,i +Sz

b,i)−
hIgµB

2
(
σ

z
i +σ

z
i+1

)
,
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where Sα

a/b,i (α = x,y,z) are spin-1 operators on the sites with coordinates (a/b, i), while σ
z
i ’s are z

projections of spin-1 operator resting on the sites i, J denotes the XXX interaction within the Heisen-

berg dimer and J1 stands for the interaction between nodal and dimer spins. Coefficients DI and DH

correspond to the longitudinal crystal(single-ion anisotropy) fields in the z direction. The gyromag-

netic ratio is taken to be g = 2.2 in the plots drawn below, which is more or less typical for nickel

containing compounds. We assume that cyclic boundary condition σN+1 = σ1 is applied. The block

Hamiltonians(Hi) are commutative, therefore the partition function can be written like in equation

(3).

After direct diagonalization of the block Hamiltonian Hi one gets the energy spectrum of a diamond

block depending on Ising spins:

E1 =−J− hIgµB

2
(σi +σi+1)+

DI

2
(
σ

2
i +σ

2
i+1
)
+2DH ,

E2,3 =±J−
(

J1 +
hIgµB

2

)
(σi +σi+1)+hHgµB +DH +

DI

2
(
σ

2
i +σ

2
i+1
)
,

E4,5 =±J+(J1−
hIgµB

2
)(σi +σi+1)−hHgµB +DH +

DI

2
(
σ

2
i +σ

2
i+1
)
, (3.7)

E6,7 = J+
(
±2J1−

hIgµB

2

)
(σi +σi+1)∓2hHgµB +

DI

2
(
σ

2
i +σ

2
i+1
)
+2DH ,

E8,9 =
−J±Λ

2
− hIgµB

2
(σi +σi+1)+

DI

2
(
σ

2
i +σ

2
i+1
)
+DH ,

where Λ =
√

(2DH− J)2 +8J2. Knowledge of the spectrum allows us to perform partial trace-

overs along Heisenberg degrees of freedom. Which makes representation ZN = ∑σi ∏
N
i=1Vσi,σi+1 , with

Vσi,σi+1 = Trie−βHi = ∑
9
i=1 e−βEi(σi,σi+1). Vσi,σi+1’s may be viewed as components of a 3× 3 transfer

matrix:

Vσi,σi+1 =


V−1,−1 V−1,0 V−1,1

V0,−1 V0,0 V0,1

V1,−1 V1,0 V1,1

 , (3.8)

where matrix indexes are the three possible projections of Ising spins. Taking into account the cyclic

boundary conditions one may write ZN = Tr(V N) in transfer matrix notations. Hence the partition
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function may be expressed in terms of the transfer matrix eigenvalues:

ZN = λ
N
1 +λ

N
2 +λ

N
3 . (3.9)

As usual, in the thermodynamic limit N → ∞ only the contribution of the largest eigenvalue

must be considered. Denoting the maximal eigenvalue as λ, the free energy per block for infinitely

long chain takes the form

f =−1
β

lim
N→∞

1
N

lnZN =−1
β

lnλ. (3.10)

The exact expression of the free energy will allow us to calculate thermodynamic quantities of the

system. In the present paper we will consider the sublattice magnetization and quadrupole moment

of Ising spins and the sublattice magnetization of Heisenberg spins. They are given by

mI =−
∂ f
∂hI

, mH =−1
2

∂ f
∂hH

, qI =
∂ f
∂DI

. (3.11)

The total magnetization is equal to the average of mI and two mH . To illustrate the magnetiza-

tion process in a few interesting cases. We show the magnetization at sufficiently low temperature

(T = 0.01K) as a function of the magnetic field with several plateaus (Fig. 3.4). Thermal quantum

(a) (b)
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Figure 3.4: Low temperature (T = 0.01K) magnetization curves in Bohr magneton units when J1 = DI =
1cm−1 and (a) J = −6cm−1, DH = 1cm−1 (dashed), DH = 2.25cm−1 (dotted), DH = 4cm−1 (solid), (b) J =
0.9cm−1, DH =−1cm−1 (dashed), DH = 0.7cm−1 (dotted), DH = 2cm−1 (solid).

entanglement (negativity) can be defined as [133]. We have plotted negativity vs. magnetic field

Fig. 3.5(a) , demonstrating the change of negativity by varying DH as well as the sharp step like be-
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Figure 3.5: Negativity via magnetic field for different values of the single-ion anisotropy DH =
0,3,5,10cm−1 (solid, dashed, dotted-dashed and dotted curves, respectively) at low temperature
T = 10−4K and for J = 2cm−1. Here J1 = DI = 1cm−1.

havior of the entanglement at transitions. The introduction of the single-ion anisotropy is essential

for the observation of magnetic and entanglement properties for homometallic molecular ferrimagnet

[Ni3( f um)2− (µ3−OH)2(H2O)4]n · (2H2O)n.

3.4 Magnetic plateaus and quantum entanglement: Dynamical

approach

In this section we utilise two models the spin-1 Ising and Ising-Heisenberg models. Let us first

consider the spin-1 Ising model on diamond chain with free boundary conditions in the presence of

an external magnetic field (see Fig. 3.6). The Hamiltonian operator of the model is equal to the

summation of the block Hamiltonians and can be written as

H =
N

∑
i

Hi =
N

∑
i
(J(Sa,iSb,i)+K(Sa,iSb,i)

2 + J1(µi +µi+1)(Sa,i +Sb,i) (3.12)

+K1((µi)
2 +(µi+1)

2)((Sa,i)
2 +(Sb,i)

2)+∆((Sa,i)
2 +(Sb,i)

2)+∆1
(µi)

2 +(µi+1)
2

2

−hH(Sa,i +Sb,i)−hI
µi +µi+1

2
)

Where Sa,i, Sb,i and µi, µi+1 are classic Ising spins and can take the valuse 1,0,−1. The parameter J

stands for the linear interactions between the nearest-neighbouring Sa,i− Sb,i elements and J1 is the
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linear interactions parameter for nearest-neighbouring S−µ elements (Sa,i−µi, Sa,i−µi+1, Sb,i−µi,

Sb,i− µi+1). Analogously K and K1 stand for the quadratic interactions. ∆ and ∆1 are the single-ion

anisotropy parameters, hI and hH are contributions of a longitudinal external magnetic field interacting

with the Ising spins (Sa,i,Sb,i− hH and µi− hI).This notations are made to highlight the similarities

between the spin-1 Ising and Ising-Heisenberg models. In our further calculations we will consider

the case when K = J, K1 = J1, ∆ = ∆1, hH = hI = h. The partition function of the system with

Figure 3.6: The procedure for derivation of the Ising (Sa and Sb are white) and Ising-Heisenberg (Sa
and Sb are black) diamond chain. White circles are Ising spins and black are Heisenberg spins

Hamiltonian (3.12) is

Z = ∑
µi,Sa,i,Sb,i

exp−βH = ∑
µ0

e−
−hIµ0+∆1µ2

0
T gn(µ0)

2 (3.13)

where β = (T )−1, T is the absolute temperature. By cutting diamond chain at µ0 into two branches

gn(µ0) (Fig. 1) the exact recursion relation for the partition function can be derived. The relation

between gn(0) and gn−1(µ1) is given by the following equation.

gn(µ0) =
1

∑
µ1=−1

1

∑
Sa,0=−1

1

∑
Sb,0=−1

exp[−β(J(Sa,0Sb,0)+K(Sa,0Sb,0)
2 + J1(µ1 +µ0)(Sa,0 +Sb,0)+ (3.14)

K1((Sa,0µ1)
2 +(Sa,0µ0)

2 +(Sb,0µ1)
2 +(Sb,0µ0)

2)+∆((Sa,0)
2 +(Sb,0)

2)+∆1µ2
1

−hH(Sa,0 +Sb,0)−hIµ1)]∗gn−1(µ1)

By introducing the following notation

xn =
gn(1)
gn(0)

, yn =
gn(−1)
gn(0)

(3.15)
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we can get two-dimensional recursion relation for the partition function

xn = f 1(xn−1,yn−1), f1(x,y) =
a1 +a11x+a12y
b0 +b1x+b2y

(3.16)

yn = f 2(xn−1,yn−1), f2(x,y) =
a2 +a21x+a22y
b0 +b1x+b2y

where the coefficients are easily calculated from equations (3.14) and (3.15).

Recursion relation (3.16) plays a crucial role in our further investigation because the order

parameters magnetic and quadrupole moments can be expressed through two-dimensional rational

mapping. The equations for total magnetic and quadrupole moments are expressed similar as [134].

Figure 3.7: Classical Ising spin-1
quadrupole moment(p) for J = 2,J1 =
1,h = 0,T = 0.01.

Figure 3.8: Classical Ising spin-1 mag-
netic moment(m) for J = 2,J1 = 1,∆ =
1,T = 0.01.

Now lets discus the spin-1 Ising-Heisenberg model on diamond chain with free boundary con-

ditions in the presence of an external magnetic and crystal(single-ion anisotropy) fields (see Fig. 3.6).

This two models are very similar therefore this time our narration will be more concise. The blocks

of the diamond chain consist of two Heisenberg interstitial spins (Sα
a,i and Sα

b,i). The z components

of interstitial spins are coupled with nearest-neighboring nodal Ising spins (µi and µi+1). Like in the

previous model the Hamiltonian of the system may be represented as a sum over block Hamiltonians

H =
N

∑
i

Hi =
N

∑
i
(J(Sx

a,iS
x
b,i +Sy

a,iS
y
b,i +DSz

a,iS
z
b,i)+K(Sx

a,iS
x
b,i +Sy

a,iS
y
b,i +D1Sz

a,iS
z
b,i)

2 (3.17)

+J1(µz
i +µz

i+1)(S
z
a,i +Sz

b,i)+K1((µz
i )

2 +(µz
i+1)

2)((Sz
a,i)

2 +(Sz
b,i)

2)+∆((Sz
a,i)

2 +(Sz
b,i)

2)

+∆1
(µz

i )
2 +(µz

i+1)
2

2
−hH(Sz

a,i +Sz
b,i)−hI

µz
i +µz

i+1

2
)
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In this equation, Sα
a,i, Sα

b,i (α = x,y,z) and µz
i represent relevant components of Heisenberg and Ising

spin-1 operators. In equation (3.17) J is the linear Heisenberg interaction term, K is the quadratic in-

teraction term parameter, D and D1 are anisotropy parameters, J1 is the interaction parameter between

the nearest-neighboring Ising and Heisenberg spins, ∆ (∆1) is the single-ion anisotropy parameter of

Heisenberg (Ising) spins and the parameter K1 is the analogue of a quadratic Ising interaction term.

The last two terms in the Hamiltonian are contributions of a longitudinal external magnetic eld in-

teracting with the Heisenberg and Ising spins. It is important to notice that the commutation relation

between different block Hamiltonians is zero ([Hi,H j] = 0). Furthermore it can be shown that the

block Hamiltonian commutes with Ising and Heisenberg spins, i.e. [Hi,µz
i ] = [Hi,Sz

a,i + Sz
b,i] for any

values of the model parameters J , K , J1, K1, D, D1, ∆, ∆1 and magnetic field, but the block Hamilto-

nian and quadrupole moment commute,[Hi,(Sz
a,i)

2 +(Sz
b,i)

2] = 0, only when J = KD1. In the present

work we consider only the case when J = K , J1 = K1, D = D1 = 1, ∆ = ∆1, hH = hI = h. Equation

(2) and (3) are conserved for this model if instead of µi we insert µz
i considering the fact that here

we also cut the diamond chain at µ0 (see Fig. 3.6). From them its easy to calculate the equivalent of

equation (3.14)

gn(µ0) = ∑
µ1,Sa,0,Sb,0

exp[−β(J(Sx
a,0Sx

b,0 +Sy
a,0Sy

b,0 +DSz
a,0Sz

b,0)+K(Sx
a,0Sx

b,0 +Sy
a,0Sy

b,0 +D1Sz
a,0Sz

b,0)
2

(3.18)

+J1(µz
1 +µz

0)(S
z
a,0 +Sz

b,0)+K1((Sz
a,0µz

1)
2 +(Sz

a,0µz
0)

2 +(Sz
b,0µz

1)
2 +(Sz

b,0µz
0)

2)+∆((Sz
a,0)

2 +(Sz
b,0)

2)

+∆1(µz
1)

2−hH(Sz
a,0 +Sz

b,0)−hIµz
1)]∗gn−1(µ1)

by inserting the eigenvalues of the operators and by using the equivalents of equations (3.15,3.16) the

recursion relation has the following form

xn = f 1(xn−1,yn−1), f1(x,y) =
a1 +a11x+a12y
b0 +b1x+b2y

(3.19)

yn = f 2(xn−1,yn−1), f2(x,y) =
a2 +a21x+a22y
b0 +b1x+b2y
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where the coefficients are easily calculated from equations (3.18).

The equations for total magnetic and quadrupole moments are expressed similar as [134].

Figure 3.9: Quantum Ising-Hesenberg
spin-1 quadrupole moment(p) for J =
2,J1 = 1,h = 0,T = 0.01.

Figure 3.10: Quantum Ising-Hesenberg
spin-1 magnetic moment(m) for J =
2,J1 = 1,∆ = 1,T = 0.01.

In the second part of this section we will focus on the thermodynamical equilibrium descrip-

tion of the spin-1 Ising/Ising-Heisenberg model on a diamond chain, by studying infinite-size sys-

tems. Lyapunov exponents have a crucial role in the study of ”stability” or ”instability” of sys-

tems. Lyapunov exponents are the growth rate of an infinitesimal perturbation on a reference trajec-

tory. The following values of maximal Lyapunov exponents can be observed during the investigation

(λ = max(λi)).

λ < 0 negative Lyapunov exponents show that the system is dissipative or non-conservative. The

systems with more negative values of Lyapunov exponent are more stabile. If λ =−∞ means that we

have superstable fixed and superstable periodic points. λ = 0 corresponding to neutral fixed point. At

this value of Lyapunov exponents the second-order phase transition takes place. λ > 0 corresponding

to unstable and chaotic systems. In general case if we have a N dimensional map the i− th Lyapunov

exponent is calculated with the following equation

λi = lim
n→∞

logHi

n
, H = J(x0)J(x1)...J(xn) (3.20)

where Hi is the i− th eigenvalue of H and J(xk) is the Jacobian matrix of our N dimensional map after

k iterations from the initial point x0. In some cases when the eigenvalues of H are complex numbers

and its reasonable to use H†H († denotes the transpose operator) instead of H. In that case Lyapunov
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exponents will have λi = limn→∞
logHi

2n form.

Superstable points are particulary interesting studying maximal Lyapunov exponent in classical and

quantum cases. In this aspect the above mentioned model have many similarities as well as funda-

mental differences. There is a superstable point in the spin-1 Ising model at h = 0, J = 2, J1 = 1,

T → 0 and ∆ > 0. By computational research it’s shown that for many antiferromagnetic configura-

tions there is a superstable point if ∆ > 0 which vanishes for ∆ < 0 configurations. Ising-Heisenberg

models behavior is simular, many antiferromagnetic configurations have superstable points but unlike

the Ising model here are two superstable points and they vanish if approximately ∆ < −1.75 (this

point is for h = 0, J = 2, J1 = 1 configuration). The fact that there is a magnetization plateau around

supercritical points in the classical (see Figures 3.8, 3.11) and quantum (see Figures 3.10, 3.12) cases

is of great importance.

Figure 3.11: Classical Ising spin-1 max-
imal Lyapunov exponent for J = 2,J1 =
1,∆ = 1,T = 0.03.

Figure 3.12: Quantum Ising-Hesenberg
spin-1 maximal Lyapunov exponent for
J = 2,J1 = 1,∆ = 1,T = 0.03.

3.5 Conclusions

In this paper we study symmetric IsingHubbard, spin-1 Ising and Ising-Heisenberg models on a di-

amond chain using transfer matrix and dynamical system methods for antiferromagnetic case. The

behavior of the magnetization plateaus and thermal quantum entanglement are observed. It’s de-

tected the behavior of maximal Lyapunov exponent curves and superstable points connections with

magnetization plateaus at T → 0 in classical and quantum cases.
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Chapter 4

Super stable cycles and magnetization

plateau for spin-1 Ising model on

diamond-like decorated Bethe lattice

4.1 Introduction

The dynamical approach represents an essential tool in the theory of phase transitions and critical-

ity [135, 136] and it greatly enhanced the understanding of phase structure and critical properties of

spin models. The method is widely used to investigate exact solution of spin models on hierarchical

lattices, which are good approximations for real ones (the so called Bethe-Peierls approximation).

This technique can also be applied to the generalized Bethe (Husimi) lattice, to describe properties of

frustrated systems with multisite interactions, and RNA-like [93, 94, 100, 137]. Its worth mentioning

the works on the family of non-linear maps exhibiting quite a complicated behavior, including period

doubling cascade, chaos and periodic windows [138, 139].

Hida has theoretically predicted an appearance of the magnetization plateau for the ferromagnetic-

antiferromagnetic Heisenberg chain of 3CuCl2−2 dioxane compound, which consists of the antifer-

romagnetic coupled ferromagnetic trimers [140].

Using dynamical system method of one-dimensional rational mapping allows us to research the mag-
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netization plateaus, bifurcation points and one period doubling of solid and fluid 3He films, depending

on the values of the exchanging parameters and magnetic field [141–143].

The other major technique for studying magnetization plateau is the transfer matrix method at low

dimensional systems and on a diamond chain [31, 91, 92, 99].

The Bethe lattice even after many years of its introduction presents an important case of study in

many fields of physics and mathematics. The Bethe lattice was originally introduced in order to

explain the phase separation and superfluidity in the mixtures and later developed to describe other

multi-component physical systems, such as metamagnets, liquid crystal mixtures, microemulsions,

semiconductors, etc. [128].

In this paper we study the spin-1 Ising model on a diamond-like decorated Bethe lattice (see Fig 4.1)

using a dynamical approach.

The diamond chain with Ising or Ising-Heisenberg models is widely used in approximations for atoms

of homometallic magnetic complex [Ni3(C4H2O4)2− (µ3−OH)2(H2O)4]n ·(2H2O)n and the molecu-

lar compound [Ni8(µ3−OH)4(OMe)2(O3PR1)2(O2CtBu)6(HO2CtBu)8] as well for Cu3(CO3)2(OH)2-

known as natural azurite (Copper Carbonate Hydroxide) which can be well described by using the

quantum antiferromagnetic Heisenberg model on a generalized diamond chain [7, 8, 104–106, 110].

The aim of this paper is to study the dynamical approach, and notably superstability in the above

mentioned models. A remarkable feature of these systems is their exact solvability through recurrence

relations techniques; within this method, as we already mentioned, statistical properties of a system

are associated to one or multidimensional rational mappings. We show a connection of superstable

points and Lyapunov exponents to magnetic plateaus. In both antiferromagnetic and ferromagnetic

cases the model exhibits a complex behavior, featuring superstable points and cycles, and magnetic

plateaus. In the next section I give a brief description of the spin-1 Ising on Bethe diamond lattice

and describe how the dynamical approach allows a detailed analysis of physical properties. Section

3 I describe the stability features of the dynamical mappings derived for such models, and their con-

nections with magnetization. Finally, in Section 4, I conclude with some general remarks concerning

the results.
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Figure 4.1: The structure of the diamond-like decorated Bethe lattice for q=3. White circles denote
Ising spins.

4.2 Models and their dynamic solutions

The spin-1 Ising model on a Bethe-diamond lattice (see Fig 4.1) is defined by the following Hamilto-

nian, written in terms of block contributions:

H =
N

∑
〈i, j〉

Hi, j =
N

∑
〈i, j〉

(J(Sa,i, jSb,i, j)+K(Sa,i, jSb,i, j)
2 + J1(µi +µ j)(Sa,i, j +Sb,i, j)

+ K1(µi
2 +µ j

2)(S2
a,i, j +S2

b,i, j)+∆(S2
a,i, j +S2

b,i, j)+∆1
µi

2 +µ j
2

q

− h(Sa,i, j +Sb,i, j)−h1
µi +µ j

q
) (4.1)

In the Hamiltonian 〈i, j〉 denotes a summation over all nearest-neighbour diamond blocks and Sa,i, j,

Sb,i, j, µi, µ j are classical Ising spins who take the values ±1,0. The parameter J accounts for the

interactions between the nearest-neighbouring interstitial spins (i.e. Sa,i, j - Sb,i, j) and J1 is the in-

teractions parameter for nearest-neighbouring nodal-interstitial spins (i.e. µi - Sa,i, j). Analogously,

K and K1 govern quadratic interactions. ∆ and ∆1 are the single-ion anisotropy parameters (crystal

fields), h and h1 represent contributions of a longitudinal external magnetic field, interacting with the

interstitial and nodal spins correspondingly. q is a lattice coordination number. In further calculations

we assume that K = J, K1 = J1, ∆ = ∆1, h = h1. Taking into account the shell structure of the Bethe

lattice (4.1) one can express the partition function Z of the model on the finite lattice in the following
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formula:

Z = ∑
µi

eβH = ∑
µ0

e−
−h1µ0+∆1µ0

2

T gn(µ0)
q (4.2)

where µ0 denotes the central spin and gn(µ0) is a contribution to the partition function of one lattice

branch, starting from the central site with fixed spin value µ0. gn(µ0) is connected with gn−1(µ1) in

the following way:

gn(µ0) = ∑
µ0

(J(Sa,0,1Sb,0,1)+K(Sa,0,1Sb,0,1)
2 + J1(µ0 +µ1)(Sa,0,1 +Sb,0,1)

+ K1(µ0
2 +µ1

2)(S2
a,0,1 +S2

b,0,1)+∆(S2
a,0,1 +S2

b,0,1)+∆1
µ0

2 +µ1
2

q

− h(Sa,0,1 +Sb,0,1)−h1
µ0 +µ1

q
) (4.3)

The single site magnetic and quadrupole moments can be written in the form.

mµ = 〈µi〉=
∑µi,Sa,i, j,Sb,i, j

(µi)e−βH

Z
(4.4)

mS = 〈Sa,i, j +Sb,i, j〉=
∑µi,Sa,i, j,Sb,i, j

(Sa,i, j +Sb,i, j)e−βH

Z
(4.5)

pµ = 〈µi
2〉=

∑µi,Sa,i, j,Sb,i, j
(µi

2)e−βH

Z
(4.6)

pS = 〈Sa,i, j
2 +Sb,i, j

2〉=
∑µi,Sa,i, j,Sb,i, j

(Sa,i, j
2 +Sb,i, j

2)e−βH

Z
(4.7)

where I have set kB = 1. The total magnetization and quadrupole moment per site are given by the

following expressions:

m =
mµ +2µs

3
, p =

pµ +2ps

3
(4.8)
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Introducing new notations.

xn =
gn(+)

gn(0)
, yn =

gn(−)
gn(0)

(4.9)

By inserting the values of gn(µ0) in the above equation we get a set of recursion functions.

xn+1 = f1(xn,yn), yn+1 = f2(xn,yn) (4.10)

where f1(x,y) and f2(x,y) have the following form:

f1(x,y) =
a0 +a1xq−1 +a2yq−1

c0 + c1xq−1 + c2yq−1
b0 +b1xq−1 +b2yq−1

c0 + c1xq−1 + c2yq−1 (4.11)

where

a0 = 1+2e−
h+∆−J1+K1

T +2e−
−h+∆+J1+K1

T +2e−
−J+K+2∆+2K1

T + e−
2h+J+K+2∆−2J1+2K1

T

+ e−
−2h+J+K+2∆+2J1+2K1

T

a1 = e−
∆1−h1

T +2e−
h+∆−h1−2J1+2K1+∆1

T +2e−
−h+∆−h1+2J1+2K1+∆1

T +2e−
−J+K+2∆−h1+4K1+∆1

T

+ e−
2h+J+K+2∆−h1−4J1+4K1+∆1

T + e−
−2h+J+K+2∆−h1+4J1+4K1+∆1

T

a2 = e−
h1+∆1

T +2e−
−h+∆+h1+2K1+∆1

T +2e−
h+∆+h1+2K1+∆1

T +2e−
−J+K+2∆+h1+4K1+∆1

T

+ e−
−2h+J+K+2∆+h1+4K1+∆1

T + e−
2h+J+K+2∆+h1+4K1+∆1

T

b0 = 1+2e−
−h+∆−J1+K1

T +2e−
h+∆+J1+K1

T +2e−
−J+K+2∆+2K1

T + e−
−2h+J+K+2∆−2J1+2K1

T

+ e−
2h+J+K+2∆+2J1+2K1

T

b1 = e−
∆1−h1

T +2e−
−h+∆−h1+2K1+∆1

T +2e−
h+∆−h1+2K1+∆1

T +2e−
−J+K+2∆−h1+4K1+∆1

T

+ e−
−2h+J+K+2∆−h1+4K1+∆1

T + e−
2h+J+K+2∆−h1+4K1+∆1

T

b2 = e−
h1+∆1

T +2e−
−h+∆+h1−2J1+2K1+∆1

T +2e−
h+∆+h1+2J1+2K1+∆1

T +2e−
−J+K+2∆+h1+4K1+∆1

T

+ e−
−2h+J+K+2∆+h1−4J1+4K1+∆1

T + e−
2h+J+K+2∆+h1+4J1+4K1+∆1

T
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(a) h = 0 (b) ∆ = 1

Figure 4.2: Ground States diagram for J1 = 1

(a) h = 0 (b) ∆ = 1

Figure 4.3: Fixed Stable points for J1 = 1

c0 = 1+2e−
∆−h

T +2e−
h+∆

T +2e−
−J+K+2∆

T +2e−
−2h+J+K+2∆

T + e−
2h+J+K+2∆

T

c1 = e−
∆1−h1

T +2e−
h+∆−h1−J1+K1+∆1

T +2e−
−h+∆−h1+J1+K1+∆1

T +2e−
−J+K+2∆−h1+2K1+∆1

T

+ e−
2h+J+K+2∆−h1−2J1+2K1+∆1

T + e−
−2h+J+K+2∆−h1+2J1+2K1+∆1

T

c2 = e−
h1+∆1

T +2e−
−h+∆+h1−J1+K1+∆1

T +2e−
h+∆+h1+J1+K1+∆1

T +2e−
−J+K+2∆+h1+2K1+∆1

T

+ e−
−2h+J+K+2∆+h1−2J1+2K1+∆1

T + e−
2h+J+K+2∆+h1+2J1+2K1+∆1

T

(4.12)

By using the recursion relations, the calculations of magnetic and quadrupole moments are straight-

forward. The quadrupole and magnetic moments are shown in Fig 4.5a and 4.5b.

91



4.3 Lyapunov exponents and superstable points

Lyapunov exponents quantify the growth rate of an infinitesimal perturbation on a reference trajec-

tory, and they provide a measure of the degree of ”instability” of the system: a positive maximum

Lyapunov exponent corresponds to chaotic, unstable states, while a negative maximum Lyapunov

exponent signals stable states. Such exponents are computed from dynamical recursion equations: a

zero maximum Lyapunov exponents is the dynamic counterpart of a second-order phase transition.

We recall that if we have a dimensional map then a spectrum of exponents is present; the Lyapunov

exponent is calculated by the following equation (see [108, 112, 114, 115, 144, 145])

λi = lim
n→∞

logHi

2n
, H = J(x0)J(x1) . . .J(xn) (4.13)

where Hi is the i-th eigenvalue of H†H and J(xk) is the Jacobian matrix of our N dimensional map

after k iterations from the initial point x0.

We used a standard (Gram-Schmidt) numerical procedure to compute both Lyapunov exponents for

our 2 dimensional recursion relations. We consider a point a superstable if it’s maximum lyapunov

exponent tends to minus infinity when the temperature goes to zero (see Fig. 4.4). Our numerical

investigation shows the existence of superstable for ∆ > 0 when J > 0 (antiferomagnetic) cases and

∆ > 0 when , J < 0 & |J| < 0 (feromagnetic) cases. This region coincides with the a phase in the

ground states diagram as well as with a region in fixed stable points diagram (see Fig. 4.2 and

4.3). The three way connection of fixed stable points, ground states and superstable points implies a

fundamental property of the system with the specific regions. It’s also worth noticing the existence of

magnetisation plateaus in the region surrounding superstable point.

4.4 Discussion and conclusions

In the present work, I investigated the connections between stability and magnetic properties of

the spin-1 Ising model on the diamond-like decorated Bethe lattice. The dynamical solution of the
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(a) T = 0.03 (b) T = 0.01

Figure 4.4: maximum Lyapunov exponents for J = 1, J1 = 1, ∆ = 1

(a) h = 0 (b) ∆ = 1

Figure 4.5: quadrupole moment and magnetization for J = 1, J1 = 1, T = 0.01

model is obtained by using the recursion relations method. The Lyapunov exponents, magnetic and

quadrupole moments, superstable points and cycles of the system at T → 0 have been studied. Fur-

thermore the paper shows connection between ground states and stable fixed points suggests a non-

trivial relation between them. Finally we believe its implying a more general connection between

magnetization, stable point and superstable points independent of the lattice.
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Chapter 5

Classical limit theorems and high entropy

MIXMAX random number generator

5.1 Introduction

Our intention in this article is to consider the behaviour of deterministic Anosov C-systems in parallel

with the classical limit theorems of probability theory, demonstrating that they possess the proper-

ties which are inherent to the independent and identically distributed random variables defined in

probability theory.

We investigate the interrelation between the distribution of stochastic fluctuations of indepen-

dent random variables in probability theory and the distribution of time averages in deterministic

Anosov C-systems. On the one hand, in probability theory, our interest dwells on three basic topics:

the laws of large numbers, the central limit theorem and the law of the iterated logarithm for sequences

of real-valued random variables [146–158] . On the other hand we have chaotic, uniformly hyper-

bolic Anosov C-systems defined on tori which have mixing of all orders and nonzero Kolmogorov

entropy [76, 77, 79–86, 88, 159–163]. These extraordinary ergodic properties of Anosov C-systems

ensure that the above classical limit theorems for sums of independent random variables in probability

theory are fulfilled by the time averages for the sequences generated by the C-systems [164–167]. The

MIXMAX generator of pseudorandom numbers represents the homogeneous C-system for which the
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classical limit theorems are fulfilled [77, 86, 88, 162, 163].

The present paper is organised as follows. In section two we shall overview the classical limit

theorems in probability theory. In section three the basic properties of the Anosov C-systems will

be defined, their spectral properties and the entropy will be presented. In section four a parallel

between the classical limit theorems of probability theory and behaviour of deterministic dynamical

C-systems will be derived and the mapping dictionary between the two systems will be established.

We shall analyse the law of large numbers, the central limit theorem and law of the iterated logarithm

in the case of C-system MIXMAX generator of pseudorandom numbers. The C-system nature of the

MIXMAX generator provides well define mathematical background and guaranty the uniformity of

generated sequences.

5.2 Classical Limit Theorems in Probability Theory

Consider an infinite sequence of independent and identically distributed random variables ξ1(x),ξ2(x), ...

on the interval 0 ≤ x ≤ 1 having finite mean values Mξk = µ and finite variance σ2 = M(ξk− µ)2 (

0 < σ2 < ∞) [146]. One of the fundamental questions of interest in probability theory is the limiting

behaviour of the sum [146–150, 152, 158]

Sn = ξ1 +ξ2 + ....+ξn =
n

∑
k=1

ξk (5.1)

as n→ ∞. By the classical central limit theorem the difference between the average Sn/n and µ

multiplied by the factor
√

n converges in probability to the normal distribution Φ( z
σ
)

P
{√

n(
Sn

n
−µ)< z

}
→ 1√

2πσ2

∫ z

−∞

e−
y2

2σ2 dy for every z. (5.2)

The estimates of the convergence rate in the above central limit theorem were obtained by Lyapunov,

Berry, Esseen and others [153–157]. For independent and identically distributed random variables
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having finite absolute third moments χ3 = Mξ3
k < ∞ it has the form:

sup
z
|P
{ √

n(
Sn

n
−µ)< z

}
−Φ(

z
σ
)| ≤ 1√

n

(
χ

σ

)3
. (5.3)

By the Kolmogorov strong law of large numbers the average Sn/n converges almost surely to the

common mean value µ of the random variables ξk(x), that is

P
{

lim
n→∞

Sn

n
= µ

}
= 1 . (5.4)

Under the same conditions as in the above theorems Petrov [158] has derived the estimates of the

order of growth of the sums Sn (5.1). The following growth estimates take place

P
{

lim
n→∞

Sn−µn

n
1
2+ε

= 0
}

= 1 , (5.5)

P

{
lim
n→∞

Sn−µn

n
1
2 (lnn)

1
2+ε

= 0

}
= 1 ,

P

{
lim
n→∞

Sn−µn

n
1
2 lnn

1
2 (ln lnn)

1
2+ε

= 0

}
= 1 ,

.........................

for arbitrary ε > 0. This result means that the random variables Sn−µn cannot grow faster than n
1
2+ε

or n
1
2 (lnn)

1
2+ε or lnn

1
2 (ln lnn)

1
2+ε and so on. The theorem on the law of the iterated logarithm for a se-

quence of random variables {ξk} involve conditions under which the sequence limn→∞ sup Sn−µn√
2n ln lnn

=

σ converges almost surely. This relation strengthens the estimates provided by the strong law of large

numbers (5.4) and (5.5). For the independent and identically distributed random variables (5.1) the

following Kolmogorov theorem of the iterated logarithm take place [147–149]

P
{

lim
n→∞

sup
Sn−µn√
2n ln lnn

= σ

}
= 1, P

{
lim
n→∞

inf
Sn−µn√
2n ln lnn

=−σ

}
= 1 , (5.6)

that is a maximal possible growth of the sum is σ
√

2n ln lnn. In order to gain an intuitive under-

standing of this result it is worth to calculate the probability of large fluctuations of the sum Sn us-

96



ing the central limiting theorem (5.2 ). It follows from (5.2) that for the arbitrary positive number

b, z = σ b
√

2ln lnn and large n take place the following relation

P
{√

n(
Sn

n
−µ)≥ σ b

√
2ln lnn

}
→ 1− 1√

2πσ2

∫
σ b
√

2ln lnn

−∞

e−
y2

2σ2 dy , (5.7)

where the right hand side has the asymptotic 1/2b(π ln lnn)1/2(lnn)b2
and therefore

1
(lnn)(1+δ)b2 ≤ P

{
Sn(x)−µn√

2n ln lnn
≥ b σ

}
≤ 1

(lnn)b2 . (5.8)

Considering the subsequence n = qm, where q is a fixed integer, one can derive from (5.8) the cel-

ebrated law of the iterated logarithm (5.6) [147–150, 152, 158]. The law of the iterated logarithm is

a refinement of the law of large numbers (5.4) and specifies the global behaviour of the asymptotic

sequence of the sum Sn since the quantity in the limit in (5.6) depends not only on single n but the

totality of the remainder of the sum. Using the central limiting theorem (5.2) now for the fluctuations

in the interval (−ε
√

2ln lnn,+ε
√

2ln lnn) one can get that

P
{
| Sn(x)−µn√

2n ln lnn
|< ε

}
→ 1√

2πσ2

∫
σ ε
√

2ln lnn

−σ ε
√

2ln lnn
e−

y2

2σ2 dy → 1, (5.9)

meaning that the sum (5.1) scaled by the factor
√

2n ln lnn is less than any ε > 0 with probability

approaching one, but will be occasionally visiting points in the interval (−σ,σ) in accordance with

the theorem (5.6).

Our goal is to compare the asymptotic behaviour of the sum Sn which have been establish in

the above limit theorems in probability theory with the asymptotic behaviour of the corresponding

quantities defined for deterministic dynamical C-systems and specifically for the C-system which

have been implemented into the MIXMAX generator [77, 86, 88, 162, 163].
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Figure 5.1: a)The frequency distribution histogram for the underlying variable φi( f ,n) in (5.23). The
dimension of the C-system generator is N = 17, the iteration time is n = 104, the bins are of equal size
ε = 0.01 and the total number of phase space points xi is I = 106. The function f (x) = cos2π(x1 +
...+ x17). The mean value is 〈φ〉 = 0.000470253 and the standard deviation 〈φ2〉 = σ2

f = 0.499867.
b) The p-value of the cumulative distribution function (CDF) for the Kolmogorov-Smirnov test is
p = 0.909337.

5.3 Classical Limit Theorems and Deterministic C-systems

With that aim let us now consider the statistical properties of deterministic dynamical C-systems.

The hyperbolic Anosov C-systems defined on a torus have mixing of all orders and nonzero Kol-

mogorov entropy [76, 77, 79–85, 159–161, 163]. The statistical properties of a C-system defined by

the map
{
∀ x ∈M : x→ xn = T nx

}
are characterised by the behaviour of the correlation functions of

observables { f (x)} on the phase space M

Dn( f ,g) = 〈 f (x)g(T nx)〉−〈 f (x)〉〈g(x)〉, (5.10)

where T denotes the Anosov C-system and 〈....〉 the phase space averages [77, 86, 88, 161, 162, 168,

169]. These correlation functions decay exponentially, meaning that the observables on the phase

space become independent and uncorrelated exponentially fast [170–182]. For the C-systems de-

fined on the N-dimensional torus (5.19) the upper bound on the exponential decay of the correlation

functions is universal and is defined by the value of the system entropy h(T ) [163] :

|Dn( f ,g)| ≤C e−nh(T )ν, (5.11)
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where C = C( f ,g) and ν = ν( f ,g) depend only on the observables and are positive numbers. This

result allows to define the decorrelation time τ0 for the observable f (x) as [163]

τ0 =
1

h(T )ν f
, (5.12)

where ν f = ν( f , f ). The index ν f is increasing linearly ν f = 2pN with the dimension N of the C-

system, where p is the order of smoothness of the function f (x) [163]. The entropy h(T ) is also

increases linearly h(T ) = 2
π

N (5.22) [162], therefore [163]

τ0 =
π

4pN2 . (5.13)

This result justifies the statistical/probabilistic description of the C-systems [161] and have important

consequences in the form of the law of large numbers and central limit theorem for Anosov C-systems

[164–167]. The time average of the observable f (x) on M

f̄n(x) =
1
n

n−1

∑
k=0

f (T kx) (5.14)

behaves as a superposition of quantities which are statistically independent, therefore [76, 164]

lim
n→∞

f̄n(x) = 〈 f 〉 (5.15)

and the fluctuations of the time averages (5.14) from the phase space average 〈 f 〉 multiplied by
√

n

have at large n→ ∞ the Gaussian distribution [164–167, 183]:

lim
n→∞

m
{

x :
√

n

(
f̄n(x)−〈 f 〉

)
< z
}
=

1√
2πσ2

f

∫ z

−∞

e
− y2

2σ2
f dy , (5.16)

where m is the invariant measure on the phase space M and the value of the standard deviation σ f is

a sum

σ
2
f = 〈 f 2(x)〉−〈 f (x)〉2 +2

+∞

∑
n=1

[〈 f (T nx) f (x)〉−〈 f (x)〉2]. (5.17)
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Figure 5.2: The frequency distribution histogram for the variable χi(t) defined in (5.25). The ”time”
interval is taken as [0.2,2]. The other parameters are the same as in Fig. 5.1.

These results allow to trace a parallel between the classical limit theorems of probability theory and

behaviour of deterministic dynamical C-systems. The theorems (5.15) and (5.16) which taking place

for the deterministic C-systems are in fine analogy with the theorems (5.4) and (5.2) in probability

theory. This analogy can be made explicit if one use the dictionary:

ξk(x) ⇐⇒ f (T kx),

Sn(x) ⇐⇒
n−1

∑
k=0

f (T kx),

Sn(x)
n

⇐⇒ 1
n

n−1

∑
k=0

f (T kx). (5.18)

In the next section we shall consider the fine examples of the C-systems defined on the tori. These

systems represent a large class of C-systems which can be easily realised on a computer platform in

the form of computer algorithms. These algorithms are used to generate pseudorandom numbers of

high quality and represent the called MIXMAX pseudorandom number generators [77, 86, 88, 184–

186]. In particular it passes all empirical U01 tests [187].
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5.4 MIXMAX C-systems Generator

The linear automorphisms of the unit hypercube M N in Euclidean space EN with coordinates (x1, ...,xN)

[76, 77, 86, 88] is defined as follows:

x(k+1)
i =

N

∑
j=1

Ti j x(k)j mod 1, k = 0,1,2, ... (5.19)

where the components of the vector x(k) are x(k) = (x(k)1 , ...,x(k)N ). The phase space M N of the systems

(5.19 ) can also be considered as the N-dimensional torus [76, 77, 86, 88]. The operator T acts on

the initial vector x(0) and produces a phase space trajectory x(n) = T nx(0) on a torus. The C-system is

defined by the integer matrix T which has a determinant equal to one DetT = 1 and has no eigenvalues

on the unit circle [76]:

1) DetT = λ1 λ2...λN = 1, 2) |λi| 6= 1, ∀ i. (5.20)

The measure dm = dx1...dxN is invariant under the action of T . The conditions (5.20) guarantee that

T represents Anosov C-system [76] and therefore as such it is a Kolmogorov K-system [79–81,84,85]

with mixing of all orders and of nonzero entropy. The C-system (5.19) has a nonzero Kolmogorov

entropy h(T ) [76, 81–83, 85, 88]:

h(A) = ∑
|λβ|>1

ln |λβ|. (5.21)

We shall consider a family of matrix operators T of dimension N introduced in [86]. The operators T

fulfill the C-condition (5.20) and represents a C-system [77, 86, 162] with entropy:

h(A) = ∑
β

ln |λβ| ≈
2
π

N (5.22)

which is increases linearly with the dimension N of the matrix. Our aim is to study the asymptotic

behaviour of the sum Sn as n→∞ for the pseudorandom number generator MIXMAX [86,162] which

is defined by the equations (5.19).
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Figure 5.3: Two histograms of the variable Γn = Sn/
√

2n ln lnn in (5.27). The dimension of the C-
system generator is N = 240 and the iteration time n = 109. The total number of phase space points xi
is I = 200. Here in Sn data we have subtracted the term µn. The sum Sn grows approximately as σ

√
n.

The standard deviation for the observable f (x) = x is equal to σ = 1/
√

12. The distribution function
of the supremum of the Γn is calculated for the values n in the interval n ∈ [m,109] for m = 15 and
m = 105. As one can see the distribution of Γn for the supremum values (5.28) is tightens towards
σ = 1/

√
12 ≈ 0.27 in accordance with the Kolmogorov law of the iterated logarithm (5.6). On the

first histogram, at m = 15, there are 65 events smaller and 85 events larger than σ. On the second
histogram, at m = 105, there are 8 events smaller and 8 events larger than σ.
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In order to study the asymptotic behaviour in equation (5.16) as n→ ∞ we shall consider first

the following variable

φi( f ,n) =
√

n
(1

n

n−1

∑
k=0

f (T kxi)−〈 f 〉
)

(5.23)

which depends on initial phase space vector xi of the N-dimensional unit hypercube M N , the func-

tion f (x) and the number of iterations n. In order to calculate the number of vectors xi, i = 1, ..., I

which fulfill the inequality φi( f ,n)< z we shall construct the frequency distribution of the underlying

variable φi( f ,n). The bins will be taken of equal size ε. The Fig. 5.1 represents the distribution

function calculated for the MIXMAX generator of size N = 17 and the comparison with the Gaussian

distribution

ρ(φ) =
Iε√
2πσ2

f

e
− φ2

2σ2
f , (5.24)

shown on the Fig.5.1 as a solid blue line. We have used the Kolmogorov-Smirnov test to calculate

the p-value. The p-value of the cumulative distribution function (CDF) for the Kolmogorov-Smirnov

test here was p = 0.909337. The null hypothesis that the data is distributed according to the normal

distribution is not rejected at the 0.1% level based on the Kolmogorov-Smirnov test.

Introducing a new parameter t = p/n, where p is an integer number p ∈ Z and the alternative

variable

χi(t) = t
√

n
( 1

tn

tn−1

∑
k=0

f (T kxi)−〈 f 〉
)

(5.25)

we can find the distribution function for the variable χ. It was proven that the variable χ is described

in accordance with the Wiener-Feynman process [172]

ρ(χ, t) =
Iε√

2πσ2
f t

e
− χ2

2σ2
f t
. (5.26)

On Fig. 5.2 one can see that with the increasing ”time” t the distribution evolve as in (5.26). The

useful analogy will be if one consider Iε as the number of ”particle” at the initial time of the diffusion

and D = σ2
f as the diffusion coefficient.

Considering the central limit theorem we were performing iterations for the relatively small
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values of n ≈ 104. In order to study the large fluctuations of the sum Sn described by the law of the

iterated logarithm we generated sequences of increasing length n = 107− 109 and then constructed

the distribution function of the maximum values of the variable

Γn(x) =
∑

n−1
k=0 f (T kx)−〈 f 〉 n
√

2n ln lnn
(5.27)

at the tail of the sequences in accordance with the definition of the limit superior

lim Γ := lim
m→∞

( sup
n≥m

Γn ). (5.28)

We illustrated the distribution function for the values n in the interval n ∈ [m,109] for m = 15 and

m = 105 on Fig. 5.3. As one can see the distribution of the supremum values is tightens towards

σ = 1/
√

12.
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Chapter 6

Frontal Cellular Automata for the Study of

Non-Equilibrium Lattice Models

6.1 Introduction

The Abelian sandpile model(ASM) [188, 189] also known as the Bak Tang Wiesenfeld(BTW model

originally proposed by Bak [29] is a dynamical system with essential properties of self-organized

criticality (SOC). The characterization of the SOC state has two aspects, dynamical and structural.

The first one, implies a description of avalanches, their duration, mass, linear extent, perimeter, etc.

The structural characteristics of the sandpile are fractional numbers of sites having a given height

and correlations between heights at different sites in a typical allowed configuration. The model is a

cellular automata, which allows using CA algorithms for research.

The most natural formulation of a 2D lattice ASM is in terms of discrete height variables, take on

four integral values 1 to 4 and are located at the sites of a grid. The configuration of the sandpile,

formed by the values of the heights, evolves under a stochastic dynamics, which eventually reaches a

stationary regime, where the configurations are weighted according to an invariant measure.

The height properties have been calculated for an infinite lattice, also for upper half plane and vari-

ous other elementary boundaries [190–195]. In this paper we take fractals as boundaries taking into

account their self repeating nature.
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ASM is strongly correlated with the rotor-router model and loop-erased random walks. The re-

searches of the late decades showed the connection between the ASM and diverse phenomena such

as: earthquakes, luminosity of stars, river flows, coagulation, relaxation phenomena in magnets, and

neural networks. Another interesting feature is its connection to conformal field theory (CFT) mod-

els. In particular, for 2D ASM, the associated conformal field theory is suggested to be symplectic

fermions with central charge c=-2. Furthermore, some operators in the logarithmic conformal field

theories(LCFT) model which correspond to different clusters in ASM are found. LCFT are believed

to describe the continuum limit of certain non-equilibrium lattice models, like dense polymers, sand-

pile models, dimer models and percolation , as well as the infinite series of the lattice models recently

defined.

6.2 Cellular Automata

Cellular automata are consisted of a grid whose nodes are finite automata. Each node has a finite

set of states and transition rules which depending on the node, the state of the node, the state of its

neighbors and the moment of time change the state of the node. In the general case the neighbors of a

node can be chosen arbitrarily. The general CA is a loosely defined model which allows representing

a great number of models and systems as CAs. In our case we assume that the CA is frontal cellular

automaton. The difference in general CAs and FCAs is in their transition rules and the number of

active nodes (if a node acted by a transition rule changes its state it’s named active). A general FCAs

transition rules do not depend on the time, also the number of active nodes is far smaller then the

number of nodes. The latter criterion ensures a much faster speed in comparison to general CAs. The

following is the classical algorithm for FCAs relaxation.

6.3 Abelian sandpile model

We denote by G = (V,E) a directed finite graph where V is the set of vertices and E is the set of

directed edges. In this model we allow self loops and multiple edges. We denote by E(v) and dv(out
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Algorithm 1 The relaxation of the asynchronous frontal cellular automata
1: for all x ∈V do
2: if x.isUnstable() then
3: stack.push(x)
4: bitmap[x]← 1
5: else
6: bitmap[x]← 0
7: end if
8: end for

9: while stack.containsElement() do
10: x← stack.pop()
11: bitmap[x]← 0
12: while x.isUnstable() do
13: computeNewValue(x)
14: for all y ∈ adj[x] do
15: sendMessage(x, y)
16: if y.isUnstable() ∧ bitmap[y] = 0 then
17: stack.push(y)
18: bitmap[y]← 1
19: end if
20: end for
21: end while
22: end while

degree) the set of edges whose first or second component is v and the number of edges whose first

component is vertex v accordingly. A vertex is a sink if its dv = 0.

We label the vertices of G by v1,v2, ...,vn (|V | = n). The Laplacian ∆ of G will be an n× n matrix

with the following components:

∆i j =


−ai j for i 6= j

di−aii for i = j

i, j ∈ 1,2, ...,n,

where ai j is the number of (vi,v j) edges.

We associate every vertex with, a non negative integer h(v) which is the number of sand grains on the

vertex (if it is a sink, we consider it to be always 0). A configuration or state of sand piles is an one

line (or row) matrix of all h(v). We denote it by h = {h(v1),h(v2),h(v3), ...,h(vn)}. The sand piles are

in a stable configuration if for any h(v) < dv. If for the given vertex v, the height h(v) > dv then we

consider this vertex as active and in that case we can topple it. The new configuration after toppling
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will be h′ = h−∆v, where ∆v is a row associated to the vertex v in the Laplacian matrix. We say there

is a path from vi to v j if there exists a sequence of ei,ei+1, ...,e j, where for every non ending edge his

second component is equal to the firs component of the next edge. If for every vertex there is a path

to a sink then this state can always be toppled to a stable state. We refer such graphs to be graphs with

global sink and from here we will deal with such graphs.

We denote by Evi the sand grain addition operator which acts on the state as follows: Evih is equal to

the stabilized h = {h(v1),h(v2),h(v3), ...,h(vi +1), ...,h(vn)}. It’s proven that in the sandpile models

with a global sink the sand grain addition operator is commutative, this property is called the abelian

property and a sandpile model with this property abelian sandpile model.

The number of stable configurations is ∏i ∆ii, i ∈ 1,2,3...,n where the product is over all non-sink

vertices i. If a stable configuration can be reached from any configuration by using the operator Ev

then we say it’s a recurrent configuration [188]. The number of recurrent configurations is det∆.

The recurrent configurations form a group. A natural question arises: what is the probability of a

concrete vertex having a concrete number of sand grains if it’s in a recurrent configuration? The most

trivial method is to generate all the stable configurations, then separate recurrent configurations and

calculate the above mentioned probabilities. Generating stable configurations isn’t difficult. If σ is

a recurrent configuration, then (σ+ ε)◦ = σ equation is true, where ε = (2δ)− (2δ)◦. Here the δ

configuration is given by δ(v) = dv, and with this formula we can determine if it is stable or not. For

a 100× 100 quadratic lattice the number of stable configurations will be 410000 which is far grater

than the number of elementary particles in the observed universe (1086). A solution to this dilemma

might be a statistical approach where we don’t generate all stable configurations but only a randomly

chosen subset. The second problem is connected to (σ+ ε)◦ = σ equation which computes relatively

slow and for large lattices is unusable. Fortunately, there is a one to one mapping between recurrent

configurations and spanning trees.
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6.4 Loop erased random walk and Wilson’s method

Wilson’s method [196] is a way to generate spanning trees on a given graph. We choose this particular

method due to uniform generation of the trees, also the resolution is computationally and resource

efficient. A walk in G(V,E) is a sequence of vertices v0,v1, ... where for any vi and vi+1 there is an

(vi,vi+1) edge. We define a path as a walk where all vertices are distinct. Lawler [197] defined the

loop-erasure LE(v) operator as the path obtained by deleting the cycles in chronological order from

walk v as follows:

LE(v) = (vs(0),vs(1), ...,vs(J)),

where s(0) = 0 and for j ≥ 0,

s( j+1) = 1+max{i|vi = vs( j)}

A loop erased random walk is obtained by using the operation LE on a random walk.

The following is Wilson’s method. Let G = (V,E) be a finite connected graph. Pick up any vertex

r∈V , and name it as ”root”. We define a growing sequence of subtrees T (i), i≥ 0. We let T (0) := {r}

and we let < v1,v2, ...,vn−1,r > be an enumeration of V . Suppose T (i) has been generated. Start a

LORW at vi+1 and stop when it hits T (i)

T (i+1) := T (i)∪LE walk from vi+1 toT (i)).

6.5 Height probabilities of a fractal bounded lattice

We use as boundaries two kinds of fractals. These are created by acting on a square graphs vertices

with fractal operations. The deforming operation which creates fractals we name fractal operation.

The fractal operations we used are illustrated in the following figure: We used four lattices, two of

500× 500 and two of 150×150 with 4,3 fractal operations on a square as boundaries, respectively.

We denote the number of adjacent vertices of v whose unique path to the root passes through v
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2.

1.

Figure 6.1: Illustration of the two fractal operations.

by predv, and name it the number of predecessors of v. Its proven that after a sufficient times of

experiments the probability for vertex v to have i (i ∈ {0−3}) number of predecessors is the same as

the probability pv of having i number of sand grains. Since the number of predecessors depends on

only neighboring vertices then if we are interested in only vertex v probabilities we can generate only

the subtrees which have the vertex v and its neighbors. According to Wilson’s method, the sub tree T

for vertex v can be generated in the following process: T (1)← v

T (2)← the upper adjacent vertex of v

T (3)← the left adjacent vertex of v

T (4)← the lower adjacent vertex of v

T (5)← the right adjacent vertex of v

Considering the fact that vertices whose distance is more than 4 or 5 have constant probabilities,

we calculated the near border vertices with fare more accuracy ( 1.6 billion times) in comparison to

further away vertices ( 100 million times).

6.6 Conclusion

As was expected the further away vertices don’t depend on the distance from the border, therefore

have constant probabilities. The state is different for near border vertices which have a logarithmic

dependance on the distance from the border. We try to find a dependence between this logarithmic
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Figure 6.2: Illustration of the dependence of probabilities pi from the distance from boundary. Here
blue=0, orange=1, green=2, red=3 is the number of predecessors.

expression and the dimension of fractal boundaries. Despite their complicated shapes, the fractals

have a very weak effect on the probabilities. The results for all four lattices are almost the same and

furthermore we experimented with other fractals as boundaries and the results indicate the same. We

think that considering the almost invisible effect of 2D fractals numerous experiments are needed to

evaluate the height probabilities. The latter is a considerable difficulty taking into account that the

size of the lattice grows with the dimension of fractals.
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