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INTRODUCTION 

 

Parallel to development of new directions of modern technologies, applications of 

elastic wave phenomena are becoming increasingly important in the fields of electronics, 

measuring devices and telecommunications (processing, amplification and of delay signal), 

in medicine (x-ray diagnosis, ultrasonic measurement), in metallurgy (non-destructive 

control of structural elements made of different materials) and in other areas. Currently, for 

mobile phones, computers and other precise measuring devices of radio-electronics, every 

month are produced millions of wave filters, resonators and periodic topographic lattices. 

Typically, these technical elements are simple (single-layer) or composite (multilayer) 

waveguides composed of layers of different materials: dielectrics, conductors, 

piezoelectrics, magnetics, and newly created inhomogeneous materials 

[20],[30],[39],[47],[61],[62],[67],[96]. In each case of selected material there exist different 

physico-mechanical material relations describing the electro-magneto-elastic connections 

between wave characteristics in given layer and the nature of transmission of wave energy 

in the adjacent layer (including vacuum). The use of inhomogeneous materials in 

waveguides often comes out from technical need, for instance, to achieve the desired 

characteristics of the wave field. In the theory of coupled physico-mechanical fields as 

piecewise-homogeneous structures, such as layered inhomogeneity, i.e., when the physico-

mechanical characteristics of the material of the waveguide are piecewise-constant functions 

 ( ) ( ) ( ) ( ) ( ) ( )( ) ;  ;  ;  ;  ;  s s s s s s

s ijmn mij rp mij rpx c e d     in each layer   sx  , 

as well as continuous material inhomogeneity of any waveguide layer, i.e., when the same 

waveguide material physico-mechanical characteristics are described by continuous 

functions 

 ( ) ( ); ( ); ( ); ( ); ( ); ( )ijmn mij rp mij rpx c x e x x d x x x            in    0x   

are investigated. In the theory of coupled physico-mechanical fields, the investigation 

problem of high frequency wave propagation in waveguides is particularly important for 

studies of dynamic processes in layered waveguides, with joints between layers of non-

smooth (rough, wavy) surfaces. 
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Surface non-smoothness is the system of surface irregularities with relatively small 

steps on the base length. The linear dimensions of the roughness and waviness are measured 

in micrometers (μm) or nanometers (nm). They refer to the microgeometry of the solid body 

and define its most important exploitation properties. Quantitatively, the surface roughness 

is set independently of the method of its processing. For a wide class of surfaces, the 

horizontal step of the irregularities is in the range from 1 to 1000 μm and the height 0.01 to 

10 μm. 

Roughness and waviness, as residual deformations of layers near the processing surface 

of the deformable element are consequences of the material surface processing. These 

technological factors in general, lead to geometric inhomogeneity of the structural element 

surface or to physical inhomogeneity of the material in the near-surface zones of given 

element. 

Due to the nature of the residual geometric surface roughness and physico-mechanical 

characteristics of the material, the surface of the structural element will react differently to 

the boundary electromechanical or thermomechanical loads, which in turn leads to 

additional surface loads compared with the case of the model of perfectly smooth surfaces 

of homogeneous material [16]. 

In many studies of wave processes in layered structures (see, for instance [22], 

[35],[38],[39],[51],[62],[71,72],[74],[78],[96],[97],[105],[108]), the presence of residual 

surface geometric and near-surface physical inconsistencies during the layer processing are 

often neglected, considering it as a structure element. But it is clear that perfectly smooth 

surface is an idealized model. It is clear that based on this approximate model it is 

impossible to identify all existing near-surface dynamic phenomena of the wave process, or, 

at least, to quantitatively identify the characteristics of the wave field in the near-surface 

zones of the waveguide. 

A complete description of wave phenomena can be found in the different books of 

different decades [1], [5], [27], [29, 30], [43], [69], [76], [83,84], [93], [110], where you can 

also find overview of earlier works. Wave phenomena are diverse. In particular, the 

detection of dispersion for the normal wave signal propagation in homogeneous finite 
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elastic medium. In primary sources it is shown, that the dispersion is possible for perfectly 

smooth body surface:  

- localization of wave energy of plane deformation in the near-surface zone of mechanically 

free surface of half-space [92] (Rayleigh wave, 1885),  

- localization of wave energy of plane deformation in the near-surface zone of contact 

between two thick layers [99] (Stoneley wave, 1924), 

- localization of wave energy of plane deformation in the near-surface zone of contact 

between two thick layers [68] (Lamb wave, 1917), 

- localization of wave energy of elastic anti-plane deformation in near-surface joint zone of 

elastic half-space with more soft elastic layer [73] (Love wave, 1911),  

- localization of wave energy of electroelastic shear deformation near free surface of 

piezoelectric crystal [28], [50], (Bleustein-Gulyaev wave, 1968-1969).  

However, it is known that the wave signal propagation in waveguides with material 

inhomogeneity, as well with geometric inhomogeneity of the surface layers of the composite 

waveguide, leads to dissipation of wave signal energy (see, for instance, 

[4],[7,8,13÷16],[32],[34],[36],[37], [40÷46],[70],[100,101]). Arising nonlinear amplitude-

phase interaction leads to change of wave dispersion, thereby changing the conditions of 

possible localization of wave energy near the separating surfaces 

[8],[14,15],[27],[51,54],[85÷88],[98],[103], [111]. 

It is obvious that from the point of view of reliability of obtained results, we need more 

accurate reasonable model for boundary inhomogeneities in layered waveguides. This is 

particularly important in the propagation of high-frequency (shortwave) wave signal of 

length commensurable with linear dimensions of the actual roughness on the waveguide 

surfaces. 

Accounting non-smoothness on the element surface or the near-surface inhomogeneity 

of the material, significantly complicates the modeling in general, as well as the 

mathematical solution of the boundary value problem. But it provides an opportunity to 

identify near-surface wave phenomena and more accurately evaluate the quantitative 

characteristics of the wave field in the near-surface zones of the joints of different mediums. 
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Mathematical modeling is the basis of the study of most modern physical problems and 

development of many modern innovative technologies. Important objects of study, requiring 

application of mathematical modeling, are different possible types of contacts of rough 

surfaces in layered structures. The modeling problem gets more complicated in the theory of 

coupled physico-mechanical fields, when dynamic processes are studied in composite 

waveguides with joints of rough surface heterogeneous layers. In layered waveguides we 

often meet adjacent to each other piezoelectrics with magnetic or dielectric with a perfect 

conductor. However, we should pay attention to the fact that the layer-waveguide of 

electroelastic or magneto-elastic materials in vacuum is already multi-layered (composite). 

In mechanics of materials with coupled physico-mechanical fields the common problem 

of electro-magneto-elasticity, is solved in quasistatic statement. Contact conditions of 

bordering mediums are presented by full continuity of the corresponding parameters of all 

physico-mechanical fields [3],[15],[65],[69],[76],[79] etc. Naturally, the number of possible 

combinations of mixed boundary conditions on the surfaces of waveguide layers is 

increased, which can affect to the propagation mode of coupled waves in it. In piezo-

crystals the problem of existence of surface waves is more complicated, because 

acoustoelectric wave propagates already in two mediums. This implies theorems of 

existence of acoustoelectric waves only for a special type of boundary conditions [15], [69], 

[76], [79]. Possible combinations of mixed boundary conditions in problems of linear 

electroelastic piezoelectrics are given in [15]. 

The basis of mathematical modeling is always physical and/or structural modeling 

(physically and/or structurally more accurate representations of the problem), when, based 

on the nature of the problems, physical or geometric visual hypothetical representations for 

some specific components of physico-mechanical fields are proposed. Non-reasonable 

mathematical modeling may simplify the mathematical study in many ways. However, as a 

rule the results of the adopted simplifications are losses in physical characteristics. An 

important subject of study requiring application of mathematical modeling methods are 

optical layered structures. 



8 
 

As in mechanics of deformable solid medium, considering the nature of quantities 

describing the stress-strain state in thin-walled structural elements, for modeling of a new 

two-dimensional mathematical boundary value problem, based on the element thinness and 

boundary conditions on the surfaces and at the ends, different hypotheses about distributions 

of characteristic quantities were introduced [2], [63], [91], [102]. 

Similar hypothetical approach is successfully used also in mechanics of continuous 

medium, taking into account the associated physical and mechanical fields. In that way the 

theory of magneto-elasticity of thin plates and shells was constructed [3], representing 

elastic displacement and potentials of magnetic and electric fields in thin-walled elements in 

form of linear distributions over the element thickness. To this end, an asymptotic approach 

was also developed in [21, 86]. 

Different modeling of the effects related to the influence of surface roughness and 

surface inhomogeneity of the waveguide material on the amplitude and phase coefficients of 

normal wave signal on reflection and transmission division borders of layers with different 

optical parameters, on appearance of internal resonance or forbidden frequency zones, were 

considered in a huge number of works (see, for instance, [26, 31, 33, 48, 49, 55-58, 75,77, 

89, 90, 94, 95]). Most theoretical studies of acoustic problems of rough surface were carried 

out eihter by the method of integral transformation, by calculating the Green’s function, or 

by theory of perturbation. 

a) two homogeneous half-spaces connected with homogeneous thin layer of binding 

material (glue), with geometrically inhomogeneous surfaces of contact – adhesion of bodies, 

b) two homogeneous half-spaces connected with virtually selected, physically 

inhomogeneous layer with smooth surfaces of contact – ultrasonic welding. 

By the input of magneto (electro, thermo) elastic layered systems hypothesis (MELS 

hypothesis) on distributions of characteristic values of physico-mechanical fields over the 

thickness of the newly formed inner layer, mathematical boundary value problem of electro-

magneto-elasticity of three-layer composite is brought [16], [9÷11]. Distribution of 

characteristic values of physical-mechanical fields is set by surface-exponential functions, 

providing surface roughness effect in the equations and boundary conditions of electro-

magneto-elasticity. 
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In this thesis the results of theoretical studies and numerical analysis of the wave field 

characteristics in piezoelectric waveguides for propagation of the normal electro-active 

elastic shear wave in it are given. Researches [12], [16], [17], [25], [53,54], [59] are carried 

out taking into account the weak inhomogeneity of the material layers of the waveguide 

and weak geometric inhomogeneity of the surfaces of these layers.
 

In the introduction of this thesis the actuality of the research topic is outlined 

providing a brief overview of existing results to the problem of wave propagation in weakly 

inhomogeneous media and in waveguides taking into account weakly inhomogeneous non- 

smoothness of its surfaces. 

The first chapter provides basic relations of linear electroelasticity for inhomogeneous 

piezoelectric layer-waveguide and modeling of propagation of pure shear (SH) high-

frequency wave signal in electroelastic waveguides. General issues concerning amplitude-

phase nonlinear interaction for the propagation of linear wave signal in geometrically and 

physically weakly inhomogeneous piezoelectric layer-waveguide are discussed in [6], [8], 

[9], [10], [12], [13], [15], [17]. Some issues of modeling of high frequency electroelastic 

wave signal propagation in piezoelectric waveguides are also discussed. Brief description of 

the hypotheses (MELS) input method in studies of near-surface wave phenomena is given in 

[9], [10], [12]. 

In the second chapter the effect of weak inhomogeneities of the material and the 

surface of the elastic layer-waveguide on the propagation of high-frequency, pure elastic 

shear (SH) wave signal. Propagation of high frequency pure shear (SH) wave signal in 

elastic layer-waveguide of weakly inhomogeneous material with mechanical free or rigidly 

clamped perfectly smooth surfaces is investigated. Analysis of amplitude-frequency 

behaviors of propagating normal waves in weakly inhomogeneous elastic waveguide are 

given in [25], [54]. 

The impact of the weak inhomogeneity of mechanically free or rigidly clamped surfaces 

of homogeneous elastic layer-waveguide on propagation of pure shear (SH) high frequency 

signal is investigated. The comparative analysis of the effects of weak inhomogeneity of the 
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material and surfaces on the propagation of high-frequency (SH) shear wave signals in the 

elastic layer-waveguide is given in [12], [13], [53]. 

In the third chapter the influence of surface weak inhomogeneities on the propagation 

of high-frequency (SH) electroelastic wave signal in the piezoelectric layer-waveguide is 

investigated.  

Propagation of high-frequency electroelastic (SH) wave signal in homogeneous 

piezoelectric layer-waveguide with mechanically free, as well as with rigidly clamped, by 

perfect conductor (or dielectric), weakly inhomogeneous surfaces is observed in [16],[17], 

[59]. Comparative analysis of the effects of different surface conditions on distributions of 

characteristics of the normal waves is given. 

In the last section 3.3 we consider the propagation of high-frequency electroelastic 

(SH) wave signal in homogeneous piezoelectric layer-waveguide with surface weak 

inhomogeneities filled with perfect conductor (or dielectric) [17]. 

In conclusion the main results obtained in the thesis are given. 

The reference list includes 112 references used by the author while writing the thesis.
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CHAPTER 1 

BASIC RELATIONS AND MODELING ISSUES IN PROBLEM OF 

PROPAGATION OF MODELING OF HIGH FREQUENCY 

ELECTROELASTIC SHEAR (SH) WAVE SIGNAL IN ELECTROELASTIC 

WAVEGUIDES 

 

1.1 Main equations, material relations and boundary conditions of linear 

electroelasticity for piezoelectric layer waveguide with material and surface 

inhomogeneities 

 

Mechanical, electrical, thermal and now on magnetic properties in newly created 

materials, in real piezoelectric crystals are coupled, and their study should be done together. 

The investigation of these properties and their coupling can be done using thermodynamic 

methods and thermodynamic potentials, which are available in different well-known 

references [6, 76, 79]. 

For internal energy U  of magneto-electro-thermo-elastic medium, by selecting the 

elastic deformation 
*

iju , where , 1,2,3i j  , electric and magnetic fields strains iE  and kH , 

and temperature T  as independent variables, we will obtain 

ij ij m m k kdU du D dE B dH SdT    , (1.1.1) 

where    1 2ij i j j iu u x u x      
 

is the tensor of elastic deformation, 
ij  is the 

mechanical stress, S  is the entropy density, T  is the temperature, iE  and kH are the strains 

of the electric and magnetic fields, respectively, nD  and iB
 
are the induction vectors of 

electric and magnetic fields, respectively. By introducing  the designations 

 
, ,ij ij D B S

U u   
 

for mechanical stresses;  
, ,m m u H T

D U E  
 

for electric field 

induction;  
, ,k k E u T

B U H  
 

for magnetic field induction;  
, ,E H u

S U T    for 

entropy density,  the full differentials get the forms 

, ,, , , , , ,

ij ij ij ij

ij nk m k

nk m k E H uE H T u H T E u T

d du dE dH dT
u E H T

   


          
          

         
, (1.1.2) 
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, ,, , , , , ,

m m m m
m nk k k

E H unk k kE H T u H T E u T

D D D D
dD du dE dH dT

u E H T

         
          

         
, (1.1.3) 

, ,, , , , , ,

m m m m
m nk k k

E H unk k kE H T u H T E u T

B B B B
dB du dE dH dT

u E H T

         
          

         
, (1.1.4) 

, ,, , , , , ,

nk m k

E H unk m kE H T u H T E u T

S S S S
dS du dE dH dT

u E H T

         
          

         
. (1.1.5) 

Material equations of state in the linear theory of electro-magneto-thermo-elasticity are 

obtained by integrating these equalities, assuming in them all sixteen partial derivatives to 

be constants [76, 79] 

 
, ,ij nk ijnkE H T

u c 
 
are the modules of elasticity of anisotropic medium, which form a 

tensor of rank four(4), 

   
, , , ,ij m m ij ijmu H T E H T

E D u e       - piezoelectric constants which form a tensor of 

the third rank, 

   
, ,, ,ij k m nk ijkE H TE u T

H B u g       are the piezomagnetic constants, which form a 

tensor of rank 3, 

   
, ,, ,ij nk ijE H TE H u

T S u         are the coefficients of temperature stresses, which 

form a tensor of rank 2, 

 
, ,m k mku H T

D E  
 
are the components of dielectric permittivity of anisotropic medium, 

which form a tensor of rank 2, 

 
, ,m k mkE u T

B H  
 

are the components of magnetic permeability of anisotropic 

medium, which form a tensor of rank 2, 

   
, , , ,m k m k mkE u T u H T

D H B E h    
 
is the tensor of coefficients of electromagnetic 

contacts, of rank 2, 

   
, , , ,m m mE H u u H T

D T S E p    
 
are the pyroelectric coefficients, 

   
, , , ,m k mE H u E u T

B T S H q    
 
are the pyro-magnetic coefficients, 
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   0, ,E H u
S T T c   , where c  is the medium thermal capacity,   is the material 

density, 0T  is the initial temperature.  

As a result, integrating the differential relations (1.1.2)÷(1.1.5), we obtain the following 

linear material equations of the medium for mechanical stresses ( , , )ij nm ku E  , electric field 

displacements (electric induction) ( , , )j nm kD u E  , magnetic field induction ( , , )j nm kB u E   

and entropy increment ( , , )nm kS u E  , depending on elastic deformations 
iju , electric field 

stress nE  and temperature changes 0T T   : 

ij ijnk nk ijm m ijk k ijc u e E g H      , (1.1.6) 

m mnk nk mk k mn n mD e u E h H p     , (1.1.7) 

m mnk nk mk k mn n mB g u h E H q     , (1.1.8) 

0

nk nk m m k k

c
S u p E q H

T


      . (1.1.9) 

The obtained material equations of state describe the interaction of the elastic, 

electromagnetic and temperature fields in the medium, explicitly expressed by heat-elastic, 

piezoelectric and piezomagnetic material properties simultaneously. At some natural 

materials, some properties are absent or results to negligible effects in computations. In such 

cases these effects are not considered in the material relations. 

The setting of material relations (1.1.6)÷(1.1.9) in the equations of motion of the 

medium, Maxwell's equations and thermal conductivity equation leads to a coupled system 

of governing equations of electro-magneto-thermo-elasticity. Mass forces of 

electromagnetic nature resulting from the interaction of induced currents with 

electromagnetic field, besides given terms in the material relations, are usually not 

considered in formulation of motion equations of the medium for these materials (materials 

with linear interactions of physico-mechanical fields):  

,ij j iu  . (1.1.10) 

In the absence of free electric charges and conduction current the electromagnetic field in 

the medium is described by the static Maxwell equations: 

, 0ijk j k iE B   ; , 0ijk j k iH D   ; (1.1.11) 

, 0j jB  ; 
, 0n nD  . (1.1.12) 



14 
 

Combined solution of the motion equation (1.1.10) and the Maxwell equations (1.1.11), 

(1.1.12), describes elastic waves and associated electromagnetic field, as well as 

electromagnetic waves, accompanied by medium deformation. It follows from the above 

equations, that if the speed of the elastic wave is ( )V V  , the corresponding speed of 

electromagnetic wave is 
5v( ) 10 ( )V  . Therefore, the magnetic field can be neglected 

in the study of elastic wave propagation, which is due to electric field, propagating together 

with elastic wave with speed ( )V   the electric field, which is due to magnetic field 

propagating with the same speed ( )V   can be neglected as well. They are as small as 

5( ) v( ) 10V   
. Based on this, it is permissible to use the quasi-static approximation of 

the electromagnetic field in most of problems associated with propagation of electro-

magneto-acoustic wave 

, 0ijk j k iE B    ; 
, 0n nD  ; (1.1.13) 

for electric oscillations accompanying acoustic wave and 

, 0ijk j k iH D   ; 
, 0j jB  ; (1.1.14) 

for magnetic oscillations accompanying acoustic wave. In these approximations, the electric 

and magnetic fields will be potential and will be expressed via scalar potentials, 

respectively, 

,n nE   ; (1.1.15) 

,j jH   . (1.1.16) 

Thus, in the full system of equations for the linear homogeneous electro-magneto-thermo-

elastic medium from Maxwell's equations (1.1.11) and (1.1.12), there remain the equations 

of statics together with potentials of electric and magnetic fields (1.1.15) and (1.1.16), 

respectively. 

Taking into account the similarity of interrelation of physico-mechanical fields in the 

material equations (1.1.6)÷(1.1.9), we can assume, that phenomena arising due to interaction 

of acoustic waves with given physical fields will also be identical. Based on aforesaid, 

without losing the generality of argumentation, as well as avoiding bulky formulas, we shall 

consider only the electroacoustic interaction in piezo-electric media, where the complete 

system will be 
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,ij j iu  ; 
, 0n nD  ; with respect 

,n nE   . (1.1.17) 

Material relations (1.1.6)÷(1.1.9) can be reduced also for mechanical stresses and induction 

of electric field (electric displacement) to the known form 

, ,ij ijnk n k mij mc u e   ; (1.1.18) 

, ,m mnk n k mk kD e u    . (1.1.19) 

Material equations are true in the case of homogeneous medium and for medium with 

ordered inhomogeneity (see below), in which physico-mechanical characteristics of the 

material,  , , ,ijnk mij ikc e   , form the tensors describing the specific anisotropy of the 

piezo-dielectric material and determine the structural composition of the associated wave 

field parameters. 

 

6 6 3 6

6 3 3 3 9 9

* * * * * * * * *

* * * * * * * * *

ˆ* * * * * * *

* * * * * * * * *

* * * * * * * * *

* * * * * * * * *

* * * * * * * * *

* * * * * * *

* * * * * * * * *

ijnk ijm

mij nk

c e

e 

 

  

    
    
    
    
    
    
    
    
    
 
    
    
        
    

, (1.1.20) 

In general case of anisotropy and inhomogeneity of piezoelectric material, the quasi-static 

equations of electroelasticity are obtained from (1.1.17) taking into account the material 

relations (1.1.18) and (1.1.19) for inhomogeneous medium: 

, ,( ) ( ) ( ) ( )ij p ijnk p n k p mij m px c x u x e x     , (1.1.21) 

, ,( ) ( ) ( ) ( ) ( )m p mnk p n k p mk p k pD x e x u x x x     , (1.1.22) 

which can be written in the form of system of partial differential equations with variable 

coefficients: 

, , , ,

, ,

( ) ( ; ) ( ) ( ; ) ( ) ( ; )

( ) ( ; ) ( ) ( ; ),

ijnk p n jk p mij p mj p ijnk j p n k p

mij j p m p p i p

c x u x t e x x t c x u x t

e x x t x u x t



 

     

   
 (1.1.23)  
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, , ,

, , ,

( ) ( ; ) ( ) ( ; )

( ) ( ; ) ( ) ( ; ).

mj p mj p mj j p m p

mij p i jm p mij j p i m p

x x t x x t

e x u x t e x u x t

      

   
 (1.1.24) 

For investigation of electroelastic wave signal propagation in two-layer waveguide 

consisting of two piezoelectric inhomogeneous layers contacted with rough surface 

*( , )x h x x   , the system of equations (1.1.23) and (1.1.24) are solving in each mono 

layer, together with corresponding continuity conditions of electromechanical fields at 

contact surface of mediums. 

For completeness of the basic relations of mathematical boundary value problem, 

generated in the waveguides, it is necessary to attach boundary conditions on the surface of 

each component of the composite waveguide to equations (1.1.23) and (1.1.24). In general, 

boundary conditions must be adequately formulated in the internal problem and provide 

compactness of the mathematical boundary value problem. 

Formally, continuity conditions of mechanical fields in boundary mediums for electro-

(magneto-thermo)-elastic medium are the usual relations of the elasticity theory. These are 

the continuity condition for mechanical stresses 
( )m

ij  at the interfaces of the mediums 

( )m ix : 

 (1) (2)

( )
0

m i

ij ij j
x

n 


   ; (1.1.25) 

as well as the continuity conditions for elastic displacements ( )m

ku  at the interfaces of the 

mediums ( )m ix : 

(1) (2)

( ) ( )m i m i
k kx x

u u
 

 . (1.1.26) 

In layered waveguides between two boundary material layers can exist as the conditions of 

full contact (1.1.25) and (1.1.26), as well as the mixed surface conditions of incomplete 

contact. Since in problems of electro-(magneto-) elasticity, the vacuum is considered to be 

interacting “medium” too, conditions of mechanically open borders on the outer surfaces of 

the waveguide must be imposed: 

0

(1)

( )
0

i
ij j x

n


  . (1.1.27) 

In the case of a rigidly fixed outer surface of the waveguide we will have conditions of 

consolidation: 
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0

(1)

( )
0

i
k x

u


 . (1.1.28) 

In the electroelastic medium, conjugacy conditions on the medium interfaces are 

represented in the form of continuity of the tangential components of electric field strength 

and normal components of electric displacements in boundary mediums. Taking into 

account (1.1.13), these conditions can be written on the medium interfaces, as follows: 

(1) (2)

( ) ( )m i m ix x
 

 
 ; (1.1.29) 

 (1) (2)

( )
0

m i

j j j
x

D D n


   . (1.1.30) 

It also follows from (1.1.13), that in these problems the normal components of strengths and 

tangential components of induction of magnetic field of order 
5( ) v( ) 10V   
 in the 

boundary mediums will be continuous, which are determined from 

i
ijk

k j

B

t x x

 


  
. (1.1.31) 

As in the case of surface mechanical conditions, electrical conditions on the surface of the 

medium, may be specified differently. In the case of metalized (shielded) surface of the 

dielectric material, instead of conditions (1.1.29) and (1.1.30), “electrically closed” 

boundary condition is specified, 

0

(1)

( )
0

ix



 . (1.1.32) 

When adjacent dielectric (not piezoelectric) layer has very small dielectric permittivity, then 

(1) (2)

ik   , implying 
(2) (1) 0ik    and instead of surface conditions (1.1.29) and (1.1.30) 

we merely have condition of "electrically open" boundaries (the electric field is seeping to 

the outer medium): 

0

(1)

( )
0

i
j j x

D n


  . (1.1.33) 

The diversity of mechanical and electrical surface conditions allows us to technologically 

form physically different surfaces by selection of different combinations of comparable 

boundary conditions, which in turn determine the dispersion of propagation and localization 

ability of high frequency wave signals near that surface. Here, as in the case of the equations 

of linear electroelasticity (1.1.17), without losing the generality, we present the continuity 

conditions of physico-mechanical fields on the surfaces of piezoelectric layer 
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 1 1 3 2 1 3 1;  ( , ) ( , );  x h x x x h x x x      (see Fig. 1.1.1), with material ratios 

(1.1.18), (1.1.19), and geometrically heterogeneous surfaces 1 1 3( , )x h x x , 2 1 3( , )x h x x , 

where    1 3 1 3 1( , );  ( , )h x x h x x L   . Moreover, the surface 1 1 3( , )x h x x  of the 

piezoelectric layer is bordered with vacuum, and the other surface 2 1 3( , )x h x x  is 

bordered by another piezoelectric layer. 

In the case of non-smooth surface 2 1 3( , )x h x x  of the division to two media, the 

boundary conditions of the linear electroelasticity will be the continuity conditions of the 

mechanical and electrical fields 

 
(1)

1 1 3 3 ( )

1 1 3 3(2)

1 1 3 3

( , ( , ), , )
, ( , ), 0

( , ( , ), , )

ij

j

ij

x h x x x t
n x h x x x

x h x x x t





 





 
  

  

, (1.1.34) 

 
(1)

1 1 3 3 ( )

1 1 3 3(2)

1 1 3 3

( , ( , ), , )
, ( , ), 0

( , ( , ), , )

j

j

j

D x h x x x t
n x h x x x

D x h x x x t

 





 
  

  

, (1.1.35) 

(1) (2)

1 1 3 3 1 1 3 3( , ( , ), , ) ( , ( , ), , )i iu x h x x x t u x h x x x t  , (1.1.36)  

(1) (2)

1 1 3 3 1 1 3 3( , ( , ), , ) ( , ( , ), , )x h x x x t x h x x x t   . (1.1.37) 

On the mechanically free surface 2 1 3( , )x h x x , where the piezoelectric layer is bordered 

with vacuum, the continuity conditions of the electric and elastic fields are written as 

 (1) ( )

1 1 3 3 1 1 3 3( , ( , ), , ) , ( , ), 0ij jx h x x x t n x h x x x 

 
     , (1.1.38) 

 
(1)

1 1 3 3 ( )

1 1 3 3( )

1 1 3 3

( , ( , ), , )
, ( , ), 0

( , ( , ), , )

j

je

j

D x h x x x t
n x h x x x

D x h x x x t

 





 
  

  

, (1.1.39) 

(1) (e)

1 1 3 3 1 1 3 3( , ( , ), , ) ( , ( , ), , )x h x x x t x h x x x t   . (1.1.40) 

If the mechanically free surface 2 1 3( , )x h x x  is covered with grounded thin, good well-

conductive layer, then the conditions (1.1.39), (1.1.40) will be replaced by the condition of 

electrically closed boundary 

(1)

1 1 3 3( , ( , ), , ) 0x h x x x t   . (1.1.41) 

If the dielectric permittivity of the piezoelectric is large enough, i.e. 
(1)

0ik  , then the 

conditions (1.1.39), (1.1.40) will replace the condition of  electrically open boundary 
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 (1) ( )

1 1 3 3 1 1 3 3( , ( , ), , ) , ( , ), 0j jD x h x x x t n x h x x x

 
     . (1.1.42) 

It is obvious that, the full continuity conditions of elastic field (1.1.34) and (1.1.36) were 

replaced by the condition (1.1.38) in the case of the mechanically free surface. However, if 

the surface is rigidly fixed, then the full continuity conditions of the elastic field (1.1.34) 

and (1.1.36) are replaced by the condition of clamping 

(1)

1 1 3 3( , ( , ), , ) 0iu x h x x x t  . (1.1.43) 

 

Fig. 1.1.1 Homogeneous piezoelectric waveguide with weakly inhomogeneous 

surfaces 

 

Taking into account, that the conditions of mechanically free boundary (1.1.38) and 

clamping (1.1.43) are limiting conditions imposed on the mechanical field, and the 

conditions of electrically “open” (1.1.42) and electrically “closed” (1.1.41) boundaries 

similarly are limiting on electric fields, except natural combinations of (1.1.34)÷(1.1.37) and 

(1.1.38)÷(1.1.40), introduce frequently met some combinations of surface conditions 

compact from a mathematical point of view: 

a) Surface 2 * 1 3( , )x h x x
 
of piezoelectric layer is rigidly fixed with well conductor or 

electrically conductive adhesive. Then the electro-mechanical conditions on the 

surface take rather simple forms: 

(1)

1 * 1 3 3( , ( , ), , ) 0iu x h x x x t  , (1.1.44)  

(1)

1 * 1 3 3( , ( , ), , ) 0x h x x x t  . (1.1.45) 

b) Mechanically free surface 2 * 1 3( , )x h x x
 
of piezoelectric layer is with large dielectric 

permittivity. Then the electro-mechanical conditions on the surface also acquire 

simple forms: 
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 (1) (*)

1 * 1 3 3 1 * 1 3 3( , ( , ), , ) , ( , ), 0ij jx h x x x t n x h x x x     , (1.1.46) 

 (1) (*)

1 * 1 3 3 1 * 1 3 3( , ( , ), , ) , ( , ), 0j jD x h x x x t n x h x x x     . (1.1.47) 

c) Mechanically free surface 2 * 1 3( , )x h x x  of piezoelectric layer is covered by 

electrically conductive nanocoating. Then the electro-mechanical conditions on the 

surface again acquire simple forms: 

 (1) (*)

1 * 1 3 3 1 * 1 3 3( , ( , ), , ) , ( , ), 0ij jx h x x x t n x h x x x     , (1.1.48) 

(1)

1 * 1 3 3( , ( , ), , ) 0x h x x x t  . (1.1.49) 

d) Surface 2 * 1 3( , )x h x x
 
of piezoelectric layer is rigidly fixed with “soft” dielectric, 

which has very small dielectric permittivity compared with the piezoelectric, i.e 

(1) (2)

ik   . Then the electro-mechanical conditions on the surface admits simple 

forms: 

(1)

1 * 1 3 3( , ( , ), , ) 0iu x h x x x t  , (1.1.50) 

 (1) (*)

1 * 1 3 3 1 * 1 3 3( , ( , ), , ) , ( , ), 0j jD x h x x x t n x h x x x     . (1.1.51) 

The appearance of the unit normal with variable components  

 (*)

*, ( , ),jn x h x x x    , due to the non-smoothness of the surface *( , )x h x x    in the 

boundary conditions naturally complicates the boundary value problem. 

As physical anisotropy and inhomogeneity of the medium an important role in the 

problems of electro-magneto-elasticity will play the geometrical heterogeneity of the 

surface, beginning with the question of the possible separation of plane and antiplane 

deformations of electro-active fields. 

The investigation of possible formulation of two-dimensional problems in a body with 

non-smooth surfaces shows that for arbitrary *( , )x h x x    the problem of plane 

deformation       , , ;  , , ;  0;  , ,u x x t u x x t x x t         or antiplane deformation 

    0; 0; , , ;  , ,u x x t x x t    
 
could not be separated. 

It is clear from geometric considerations, that the separation of these electro-active 

deformation fields is possible if the surface irregularities are parallel to the axis ox . Then 
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the tangent plane at any point of the body surface is perpendicular to the coordinate plane 

 ,0,x x   or to any line  x const  . The equation of a surface line on these lines can be 

written in the form ( )x H x   or ( )x L x  . The unit normal with variable components 

 (*)

*, ( , ),jn x h x x x     will not change the direction on the axis ox , and therefore in two-

dimensional problems [9, 10] we can take 

 
   

(*)

2 2

( ) 1
, ( ) ;  ;  0

1 ( ) 1 ( )
j

L x x
n x L x

L x x L x x

 
 

   

 
  

  
       

 (1.1.52) 

or 

 (*)

2 2

( )1
( ), ;  ;  0

1 ( ) 1 ( )
j

H x x
n H x x

H x x H x x

 

 

   

 
  

  
             

 (1.1.53) 

Taking into account the changes of the surface normal (1.1.52), the full continuity 

conditions (1.1.34)÷(1.1.37) of the electromechanical fields on the surface ( )x L x   in 

the problem of electro-active plane deformation 

      , , ;  , , ;  0;  , ,u x x t u x x t x x t         can be written in these forms 

(1) (2)

1 ,

(1) (2)

(1) (2)

,

(1) (2)

( , ( ), ) ( , ( ), ) ( )

( , ( ), ) ( , ( ), ) 0,

( , ( ), ) ( , ( ), ) ( )

( , ( ), ) ( , ( ), ) 0,

x L x t x L x t L x

x L x t x L x t

x L x t x L x t L x

x L x t x L x t

      

     

       

     

 

 

 

 

    

    

    

    

 (1.1.54) 

(1) (2)

,

(1) (2)

( , ( ), ) ( , ( ), ) ( )

( , ( ), ) ( , ( ), ) 0,

D x L x t D x L x t L x

D x L x t D x L x t

       

     

    

    

 (1.1.55) 

(1) (2)

(1) (2)

( , ( ), ) ( , ( ), ),

( , ( ), ) ( , ( ), ),

u x L x t u x L x t

u x L x t u x L x t

     

     




 (1.1.56) 

(1) (2)( , ( ), ) ( , ( ), ),x L x t x L x t      (1.1.57) 

which include material ratios of non-zero characteristics of electromechanical fields for 

plane deformation, i.e. 
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,

, ,

( , ) ( , ) ( , )

                  + ( , ) ( , ) ( , ) ( , ),

nk n k

ij ij

x x c x x u x x

e x x x x e x x x x

       

           



 

  

  

,

, ,

( , ) ( , ) ( , )

                 ( , ) ( , ) ( , ) ( , ),

nk n k

ij ij

x x c x x u x x

e x x x x e x x x x

       

           



 

  

   
 (1.1.58) 

,

, ,

( , ) ( , ) ( , )

                 ( , ) ( , ) ( , ) ( , ),

nk n k

ij ij

x x c x x u x x

e x x x x e x x x x

       

           



 

  

   
 

, ,

, ,

( , ) ( , ) ( , ) ( , ) ( , ),

( , ) ( , ) ( , ) ( , ) ( , ).

nk n k k k

nk n k k k

D x x e x x u x x x x x x

D x x e x x u x x x x x x

            

            

 

 

   

   
 (1.1.59) 

Here the summation goes over  ; ;n k   . 

Change of surface normal (1.1.52) converts the boundary conditions of 

electromechanical fields of mechanically free surface (1.1.38)÷(1.1.40) on the line 

( )x L x 
 
of the medium separation from vacuum into 

,

,

( , ( ), ) ( ) ( , ( ), ) 0,

( , ( ), ) ( ) ( , ( ), ) 0,

x L x t L x x L x t

x L x t L x x L x t

       

       

 

 

  

  
 (1.1.60) 

(1) ( )

0 , ,

(1) ( )

0 ,

( , ( ), ) ( , ( ), ) ( )

( , ( ), ) ( , ( ), ) 0,

e

e

D x L x t x L x t L x

D x L x t x L x t

       

     

 

 

    

    

 (1.1.61) 

( )( , ( ), ) ( , ( ), )ex L x t x L x t     . (1.1.62) 

Taking into account the changes of the surface normal (1.1.52), the full continuity 

conditions (1.1.34)÷(1.1.37) of the electromechanical fields on the surface of mediums 

separation ( )x L x  , in the problem of electro-active antiplane deformation 

    0; 0; , , ;  , ,u x x t x x t      are also simplified: 

(1) (2)

,

(1) (2)

( , ( ), ) ( , ( ), ) ( )

( , ( ), ) ( , ( ), ) 0,

x L x t x L x t L x

x L x t x L x t

       

     

 

 

    

    

 (1.1.63) 

(1) (2)

,

(1) (2)

( , ( ), ) ( , ( ), ) ( )

( , ( ), ) ( , ( ), ) 0,

D x L x t D x L x t L x

D x L x t D x L x t

       

     

    

    

 (1.1.64) 

(1) (2)( , ( ), ) ( , ( ), ),u x L x t u x L x t       (1.1.65) 
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(1) (2)( , ( ), ) ( , ( ), ),x L x t x L x t      (1.1.66) 

The material ratios of non-zero characteristics  of electromechanical field of anti-plane 

deformation are included in the surface conditions (1.1.63)-(1.1.66) 

,

, ,

( , ) ( , ) ( , )

                 ( , ) ( , ) ( , ) ( , ),

k k

ij ij

x x c x x u x x

e x x x x e x x x x

        

           



 

  

   
 (1.1.67) 

,

, ,

( , ) ( , ) ( , )

                 ( , ) ( , ) ( , ) ( , ),

k k

ij ij

x x c x x u x x

e x x x x e x x x x

        

           



 

  

   
 (1.1.68) 

, ,( , ) ( , ) ( , ) ( , ) ( , ),k k k kD x x e x x u x x x x x x                   (1.1.69) 

, ,( , ) ( , ) ( , ) ( , ) ( , ).k k k kD x x e x x u x x x x x x                   (1.1.70) 

Here the summation goes over  ;k   . 
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1.2 Amplitude-phase nonlinear interaction in propagation of linear signal in 

geometrically and physically weak inhomogeneous piezoelectric layer-waveguide 

 

There is huge body of references devoted to study of dynamic problems, in particular, to 

propagation of wave signals in inhomogeneous waveguides (see, for instance [18, 19, 23, 

25, 27], etc.). However, it worths to concern to a very important phenomenon, which occurs 

due to physical or geometrical inhomogeneity of media surface in propagation of normal 

wave signal. This is a nonlinear interaction between amplitude and phase of wave signal 

during its propagation in inhomogeneous medium (infinite or bounded by non-smooth 

surfaces). 

In general case of anisotropy and inhomogeneity of the piezoelectric material, the quasi-

static equations of electroelasticity are obtained from (1.1.17) taking into account the 

material ratios (1.1.18) and (1.1.19) for the inhomogeneous medium: 

, ,( ) ( ) ( ) ( )ij p ijnk p n k p mij m px c x u x e x     , (1.2.1) 

, ,( ) ( ) ( ) ( ) ( )m p mnk p n k p mk p k pD x e x u x x x     , (1.2.2) 

and is written in the form of the following system of partial differential equations with 

variable coefficients: 

, , , ,

, ,

( ) ( ; ) ( ) ( ; ) ( ) ( ; )

( ) ( ; ) ( ) ( ; ),

ijnk p n jk p mij p mj p ijnk j p n k p

mij j p m p p i p

c x u x t e x x t c x u x t

e x x t x u x t



 

     

   
 (1.2.3) 

, , ,

, , ,

( ) ( ; ) ( ) ( ; )

( ) ( ; ) ( ) ( ; ).

mj p mj p mj j p m p

mij p i jm p mij j p i m p

x x t x x t

e x u x t e x u x t

      

   
 (1.2.4) 

For investigation of  electroelastic signal propagation in two-layer waveguide consisting of 

two piezoelectric inhomogeneous layers contacting by the rough surfaces *( , )x h x x  
, 

the system of equations (1.2.3) and (1.2.4) are solved in each mono layer separately, 

together with continuity conditions of the electromechanical fields (1.1.34)÷(1.1.37) which 

take the forms: 

(1)

* (*)

*(2)

*

( , , ( , ), )
( , , ( , ), ) 0,

( , , ( , ), )

ij

j

ij

x x h x x t
n x x h x x t

x x h x x t

   

   

   





 
  

  

 (1.2.5) 
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(1)

* (*)

*(2)

*

( , , ( , ), )
( , , ( , ), ) 0,

( , , ( , ), )

j

j

j

D x x h x x t
n x x h x x t

D x x h x x t

   

   

   

 
  

  

 (1.2.6) 

(1) (2)

* *( , , ( , , )) ( , , ( , , )),i iu x x h x x t u x x h x x t         (1.2.7) 

(1) (2)

* *( , , ( , , )) ( , , ( , , )).x x h x x t x x h x x t          (1.2.8) 

If the piezoelectric layer with non-smooth surface 
*( , )x h x x    is bordered with vacuum, 

then together with equations (1.2.3) and (1.2.4), electrostatics equations in vacuum must be 

solved  

2 ( )

*( , , ( , ), ) 0e x x h x x t     , (1.2.9) 

Subjected to boundary conditions of continuity of electromechanical fields on the 

mechanically free surface (1.1.38)÷(1.1.40): 

(1) (*)

* *( , , ( , ), ) ( , , ( , ), ) 0ij jx x h x x t n x x h x x t            , (1.2.10) 

(1)

* (*)

*( )

*

( , , ( , ), )
( , , ( , ), ) 0

( , , ( , ), )

j

je

j

D x x h x x t
n x x h x x t

D x x h x x t

   

   

   

 
  

  

, (1.2.11) 

(1) ( )

* *( , , ( , , )) ( , , ( , , )).ex x h x x t x x h x x t          (1.2.12) 

The formulated mathematical boundary value problem is complicated by the fact that 

the variable coefficients characterizing the physical inhomogeneity of the material and 

geometrical inhomogeneity of the contact surfaces occur as in the electroelasticity 

equations, as well as in boundary conditions. 

Without loss of generality, consider the propagation of monochromatic electroelastic 

pure shear (SH) wave signal 0( ) exp ( )A y i kx t    in the inhomogeneous layer-waveguide 

 ;  ( , ) ( , );  x h x z y h x z z      which is of piezoelectric material of hexagonal 

symmetry of 6mm class, with rough surfaces ( , )y h x z . On the line z const , where the 

oz  axis is selected parallel to the axis of crystal symmetry, i.e. oz p , the anti-plane 

electro-active deformation  0; 0; ( , , );  ( , , )w x y t x y t  is separated from the plane, non-

electro-active deformation   ( , , );  ( , , );  0; 0u x y t v x y t , and the equations for electroelastic 

shear deformation with respect to the elastic shear ( , , )w x y t  and electric potential ( , , )x y t  

take quite simple forms 
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 

 

44 , 15 , ,

44 , 15 , ,

( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , ) ( , ) ( , ) ( , ),

x x x

y y y

c x y w x y e x y x y

c x y w x y e x y x y x y w x y



 

 

  
 (1.2.13) 

 

 

15 , 11 , ,

15 , 11 , ,

( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , ) ( , ) 0.

x x x

y y y

e x y w x y x y x y

e x y w x y x y x y

 

 

 

  
 (1.2.14) 

The boundary conditions (1.1.63)÷(1.1.66) for mechanically free surfaces of the waveguide 

are simplified too 

(1) (1)

,( , ( ), ) ( ) ( , ( ), ) 0zx x yzx h x t h x x h x t      , (1.2.15) 

(1) ( )

,

(1) ( )

( , ( ), ) ( , ( ), ) ( )

( , ( ), ) ( , ( ), ) 0,

e

x x x

e

y y

D x h x t D x h x t h x

D x h x t D x h x t

  

 

    

    

 (1.2.16) 

(1) ( )( , ( ), ) ( , ( ), )ex h x t x h x t    , (1.2.17) 

where the shear stress and the displacement components of the electric field for a given slice 

of piezo-crystal are determined from the material ratio (1.1.67)÷(1.1.70): 

(1)

44 , 15 ,

(1)

44 , 15 ,

(1)

15 , 11 ,

(1)

15 , 11 ,

( , ) ( , ) ( , ) ( , ) ( , ),

( , ) ( , ) ( , ) ( , ) ( , ),

( , ) ( , ) ( , ) ( , ) ( , ),

( , ) ( , ) ( , ) ( , ) ( , ).

zx z x x

yz z y y

x z x x

y z y y

x y c x y u x y e x y x y

x y c x y u x y e x y x y

D x y e x y u x y x y x y

D x y e x y u x y x y x y

 

 

 

 

   

   

   

   

 (1.2.18) 

For vacuum areas will have 

( )

0 ,

( )

0 ,

( , ) ( , ) ( , ),

( , ) ( , ) ( , ).

e

x x

e

y y

D x y x y x y

D x y x y x y

 

 









  

  
 (1.2.19) 

In both vacuum half-spaces ( , )y h x z  and ( , )y h x z
 
the electrostatics equations for 

the electric potential are solved  

( ) ( )

, ,( , , ) ( , , ) 0e e

xx yyx y t x y t    . (1.2.20) 

During propagation of the monochromatic electroelastic wave signal 

0( ) exp ( )A y i k x t    in inhomogeneous piezoelectric medium, the signal faces with the 

physical inhomogeneity of the material, and in the presence of a rough surface of the 

medium separation, the signal faces with the surface inhomogeneities. Resulting dissipation 
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causes the amplitude-phase interaction [8, 14] and hence the unknown wave field admits the 

following general representation 

  

 
  (e)

( , , ) exp ( , ) ( , ) ,

( , , ) exp ( , ) ( , ) ,

( , , ) exp ( , ) ( , ) .

w ww x y t U x y i x y t

x y t U x y i x y t

x y t U x y i x y t

 

 

  

    

  

    

  

 (1.2.21) 

The introduced functions  ( , );  ( , );  ( , )wU x y U x y U x y   are the logarithms of the 

amplitudes of the corresponding components of the wave field, i.e. 

0( , ) ln ( , )wU x y W x y , 
0( , ) ln ( , ) U x y x y  , 

(0)( , ) ln ( , )U x y x y 
. 

Phase functions  ( , );  ( , );  ( , )w x y x y x y    also correspond by indices to the 

corresponding components of the forming wave field. 

By substituting (1.2.21) in the equations of electroelasticity (1.2.13), (1.2.14) and (1.2.20), 

as well as by separating real and imaginary parts, we obtain the system of eight nonlinear 

differential equations in partial derivatives with following variable coefficients with respect 

to the amplitude and phase functions: 

 
2 2

0, 0, 0

44 2 2

0 , 0 ,

0, , 0, ,

44

0 , ,

( , ) ( , ) ( , ) ( , )
( , ) sin ( , )

( , ) ( , ) ( , ) ( , )

2 ( , ) ( , ) ( , ) ( , )
( , )

( , ) ( , ) ( , )

xx yy t

w

w x w y

x w x y w y

w xx w yy

W x y W x y C x y W x y
c x y x y

W x y x y W x y x y

W x y x y W x y x y
c x y

W x y x y x y




 

 

 

      
   
     

      
 

  

 

   

   

44, 0, 44, 0,

0 44, , 44, ,

0, 0,

15 2 2

0 , ,

cos ( , )

( , ) ( , ) ( , ) ( , ) sin ( , )

( , ) ( , ) ( , ) ( , ) ( , ) cos ( , )

( , ) ( , )
( , )

( , ) ( , ) ( ,

w

x x y y w

x w x y w y w

xx yy

x y

x y

c x y W x y c x y W x y x y

W x y c x y x y c x y x y x y

x y x y
e x y

x y x y x 





  

 

  

 
 

  
  

     

      

 
 

  

 

0, , 0, ,

15

0 , ,

15, 0, 15, 0,

sin ( , )
)

2 ( , ) ( , ) ( , ) ( , )
( , ) cos ( , )

( , ) ( , ) ( , )

( , ) ( , ) ( , ) ( , ) sin ( ,

x x y y

xx yy

x x y y

x y
y

x y x y x y x y
e x y x y

x y x y x y

e x y x y e x y x y x y



 



 





   


  

  

  
         

         
       

      

    

 0 15, , 15, ,

)

( , ) ( , ) ( , ) ( , ) ( , ) cos ( , ) 0,x x y yx y e x y x y e x y x y x y     

   

          

(1.2.22) 
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 
2 2

0, 0, 0

44 2 2

0 , ,

0, , 0, ,

44

0 , ,

( , ) ( , ) ( , ) ( , )
( , ) sin ( , )

( , ) ( , ) ( , )

2 ( , ) ( , ) ( , ) ( , )
( , )

( , ) ( , ) ( , )

xx yy t

w

w x w y

x w x y w y

w xx w yy

W x y W x y C x y W x y
c x y x y

W x y x y x y

W x y x y W x y x y
c x y

W x y x y x y




 

 

 

      
   

      

       
  

    

 

   

   

44, 0, 44, 0,

0 44, , 44, ,

0, 0,

15 2 2

0 , ,

cos ( , )

( , ) ( , ) ( , ) ( , ) sin ( , )

( , ) ( , ) ( , ) ( , ) ( , ) cos ( , )

( , ) ( , )
( , )

( , ) ( , ) ( , )

w

x x y y w

x w x y w y w

xx yy

x y

x y

c x y W x y c x y W x y x y

W x y c x y x y c x y x y x y

x y x y
e x y

x y x y x y 





  

 

  


 

 
  

     

      

 
 

  

 

0, , 0, ,

15

0 , ,

15, 0, 15, 0,

sin ( , )

2 ( , ) ( , ) ( , ) ( , )
( , ) cos ( , )

( , ) ( , ) ( , )

( , ) ( , ) ( , ) ( , ) sin ( , )

x x y y

xx yy

x x y y

x y

x y x y x y x y
e x y x y

x y x y x y

e x y x y e x y x y x y



 



 





   


  

  

  
       

         
       

      

      

 0 15, , 15, ,( , ) ( , ) ( , ) ( , ) ( , ) cos ( , ) 0,x x y yx y e x y x y e x y x y x y     



          

(1.2.23) 

 

 

0, 0,

15 2 2

0 , ,

0, , 0, ,

15

0 , ,

( , ) ( , )
( , ) cos ( , )

( , ) ( , ) ( , )

2 ( , ) ( , ) ( , ) ( , )
( , ) sin ( , )

( , ) ( , ) ( , )

xx yy

w

w x w y

x w x y w y

w

w xx w yy

W x y W x y
e x y x y

W x y x y x y

W x y x y W x y x y
e x y x y

W x y x y x y


 

 


 

   
   

      

         
    

      

   

   

15, 0, 15, 0,

0 15, , 15, ,

0, 0,

11 2 2

0 , ,

( , ) ( , ) ( , ) ( , ) cos ( , )

( , ) ( , ) ( , ) ( , ) ( , ) sin ( , )

( , ) ( , )
( , ) cos ( ,

( , ) ( , ) ( , )

x x y y w
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2 2
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2 2
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Subjected to the boundary conditions on non-smooth surfaces ( , )y h x z : 

conditions of mechanically free surfaces 
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continuity conditions of the normal component of electric field displacements 
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continuity conditions of the electric field potential 

0 0( , ( )) cos ( , ( )) ( , ( )) cos ( , ( ))x h x x h x x h x x h x         
         , (1.2.34) 

0 0( , ( )) sin ( , ( )) ( , ( )) sin ( , ( ))x h x x h x x h x x h x         
         , (1.2.35) 
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attenuation conditions of the electric field at infinity 
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0 0lim ( , ) sin ( , ) lim ( , ) sin ( , ) 0
y y
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          . (1.2.37) 

Even enough the mathematical boundary value problem obtained above, is selected for 

a simple anisotropy of piezo-crystals, obviously gives a complicated amplitude-phase 

interaction. This problem can be solved only numerically, and it is necessary to have 

powerful mathematical and software backgrounds. Nevertheless, the numerical solutions do 

not always reveal the full picture of physical phenomena for such problems.
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1.3 Some issues of modeling on problems of propagation of high frequency 

electroelastic wave signal in piezoelectric waveguides. Method of hypotheses (MELS) 

in studies of surface wave phenomena 

 

An approach of modeling of mathematical boundary value problem of electroelasticity 

is suggested in this section by introducing virtual cross-sections in the near-surface zones of 

bordering mediums. By selection of surface exponential functions (SEF), taking into 

account the nature of the process dynamics, new hypotheses on distributions are formulated 

in each selected layer, corresponding to the desired physical-mechanical values [hypotheses 

Magneto (Electro; Thermo) Elastic Layered Systems-MELS] depending on the method of 

joining the rough boundaries of media with different associated physical-mechanical fields. 

Different methods of layers joint naturally lead to formation of different three-layer 

packs in the near-surface zone of the joints (Figs. 1.3.2 and 1.3.3). The main role in the 

formed connecting thin layers plays roughness defined by random functions ( )my h x , 

which is described by the main parameters of the roughness (Fig. 1.3.1). 

The profilogram gives an idea about the relief profile of non-smooth surface: quantity, 

form and size of the ledges and non-smoothness depressions. For relative roughness 

functions we can assume that  1( )mh x L , considering that, in practice, the height of the 

ledges and depressions of the surface micro non-smoothness is in the range from 10 nm to 

500 μm or more, and the relation of the roughness average step in the maximum profile is 

max100imS R . 

 

Fig. 1.3.1 Profilogram and 

roughness main parameters: l -

base line, imS - average step 

profile roughness 

 

In general, the materials of bordering mediums may have different physico-mechanical 

properties and are described by different thermodynamical material relations. 
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First we consider the case of glued half-spaces [9, 10], from which, by setting the 

material constants of the adhesive mediums to zero, we get the contact problem of rough 

surfaces with vacuum gap of variable thickness. 

Model 1. Two elastic deformable half-spaces of material characterized by related 

physical fields (electroelasticity, magneto-elasticity, thermo-elasticity, etc.) are connected 

by adhesive with appropriate physical-mechanical characteristics. Corresponding quasi-

static equations of electroelasticity in the n -th layer are solved in each half-space 

 1 1, ( ),x y h x z       and  2 2, ( ) ,x h x y z      , as well as 

in internal gluing gap  3 1 2, ( ) ( ),x h x y h x z       of variable width 

     2 1x h x h x   : 

( ) ( )

, ,

n n

ijkm k im ijm n im n jc u e u   , 
( )

, , 0n

ijm j im im n ime u    . (1.3.1) 

The number of equations  1;2;...n  and the unknowns naturally depends on the 

associated physico-mechanical fields. 

The full continuity conditions of physico-mechanical fields must be satisfied on the  

surfaces of mediums separation  ( ) ;     1;2.m my h x m      

  

Fig. 1.3.2 Rough surface contact in piezoelectric 

composite waveguide by method of glue 

Fig. 1.3.3 Rough surface contact in piezoelectric 

composite waveguide by method of ultrasonic 

welding 

The above three groups of equations (1.3.1), and the following boundary conditions on each 

surface ( )my h x : 

   ( ) (3) ( )( , ( ), ) ( , ( ), ) , ( ) 0m m

ij m ij m j mx h x t x h x t n x h x    , (1.3.2) 

   ( ) (3) ( )( , ( ), ) ( , ( ), ) , ( ) 0m m

j m j m j mD x h x t D x h x t n x h x   , (1.3.3) 
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( ) (3)( , ( ), ) ( , ( ), )m

i m i mw x h x t w x h x t , (1.3.4) 

3( , ( ), ) ( , ( ), )m m mx h x t x h x t  , (1.3.5) 

with variable normal     ( ) ( ) , ( )m m

j mn x n x h x  for 1;2m  , 

 
   

( )

2 2

( ) 1
, ( ) ; ;0

1 ( ) 1 ( )

m m
j m

m m

h x
n x h x

h x h x

 
 

  
    

, (1.3.6) 

together with vanishing conditions of the corresponding physico-mechanical fields at 

infinity, for indices  ; 1;2;3i j  and  1,2m   

 
 

1

lim , , 0
m m

y

w x y t
  

 , 
 

 
1

lim , , 0
m m

y

x y t
  

  , (1.3.7) 

form a mathematical boundary problem in three-layer composite waveguide with rough 

surfaces in contacts. 

It is known, that in any plane 1 2ox x  (axis oz p  and slice 3x const ), it is possible to 

separate the quasistatic equations of electroelasticity (1.3.1) of the electro-active plane 

deformable state     1 1 2 2 1 2, , ; , , ;0;0u x x t u x x t  from the electro-active anti-plane 

deformable state     3 1 2 1 20;0; , , ; , ,u x x t x x t  [6]. This gives an opportunity to separately 

investigate the influence of surface roughness on propagation of plane deformation wave 

signal and on propagation of electro-active anti-plane deformation wave-signal.  

In this case, two homogeneous piezoelectric half-spaces are associated with 

homogeneous thin layer of glue (material of appropriate characteristics), with geometrically 

inhomogeneous surfaces of contact. 

The inhomogeneity in the formed composite has geometrical nature and they are caused 

by the functions of surface irregularities  ( ) ;     1;2m my h x m    , appearing in the 

boundary conditions (1.3.2) and (1.3.5). Residual physical inhomogeneity of the material 

after processing the layer surfaces may remain in the thin near-surface zones of the 

homogeneous half-spaces. Then, for the study of wave process in the waveguide, the 

quasistatic equations of electroelasticity of inhomogeneous medium (1.1.23) and (1.1.24) 

are solved in these virtually selected zones. 

Model 2. Two elastic deformable half-spaces of material characterized by related 

physical fields (electroelasticity, magneto-elasticity, thermo-elasticity, etc.) are interrelated 
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by method of thermal pressure, so that depression of one roughness was flooded with 

projections of the other. Then, at the connection junction of the half-spaces a thin, 

transversely-inhomogeneous layer of the following thickness  

  0 2 1 2 1 2 1

0

1
2 ( ) ( )

L

H R R R R h x h x dx
L

       (1.3.8) 

is formed, where max ( ) min ( )m m mR h x h x   is the depression (height) maximum values 

of surface roughness ( )mh x , respectively, L  is the total period of surface roughness change 

( )mh x . 

In the virtually selected layers for the physico-mechanical characteristic functions 

 (3) (3) (3) (3) (3)( ) ( ); ( ); ( ); ( )ijkn mij nky c y y e y y    of the material, natural requirements are the 

conditions of equality of physico-mechanical constants on the perfectly smooth planes 

0y H  , respectively, i.e. 

   (1) (1) (1) (1) (1)

0 ; ; ;ijkn mij nkH c e     ,    (2) (2) (2) (2) (2)

0 ; ; ;ijkn mij nkH c e      

Thus, it is possible to represent the material inhomogeneity by any integrable function of 

type 
(3) ( )( , , );    1;2m

mf y R m   , with conditions on the virtual layer surfaces. As a 

result of diffusion, it is natural to impose a new phenomenological condition 

    1 2 1 2( ) ( ) 2 2f h x h x      on the deformed mid-surface of the formed 

inhomogeneous layer  1 2( ) ( ) 2y h x h x  . This additional condition does not simplify 

and does not complicate the solution of the dynamic problem. 

The physical modeling chosen leads to the fact that in studies of dynamic process in 

piezoelectric two-layer waveguides with welded layers need to virtually cut the internal 

inhomogeneous layer  3 0 0;   ;   x H y H z       , in which the quasi-static 

equations of electroelasticity with coefficients varying over the thickness of the virtual layer 

are solved [14, 15] 

, , , ,

, ,

( ) ( ; ) ( ) ( ; ) ( ) ( ; )

( ) ( ; ) ( ) ( ; ),

ijnk p n jk p mij p mj p ijnk j p n k p

mij j p m p p i p

c x u x t e x x t c x u x t

e x x t x u x t



 

     

   
 (1.3.9) 
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, , ,

, , ,

( ) ( ; ) ( ) ( ; )

( ) ( ; ) ( ) ( ; ).

mj p mj p mj j p m p

mij p i jm p mij j p i m p

x x t x x t

e x u x t e x u x t

      

   
 (1.3.10) 

The quasistatic equations of electroelastic homogeneous piezoelectric materials (1.3.1) will 

be solved in the homogeneous piezoelectric half-spaces 

 1 0;  ;  x y H z        and  2 1;  ;  x R y z      . 

 

Fig. 1.3.4 Virtually selected inhomogeneous layer in the contact area of rough surfaces in piezoelectric 

composite waveguide by ultrasonic welding 

 

Obviously, considering the residual technological and structural inhomogeneities of a 

layered structures the study of wave distribution problem becomes much more complicated 

in layered waveguides. The variable coefficients in the equations and boundary conditions 

lead to the nonlinear interaction between the amplitude and phase functions of the 

propagating wave signal in the internal inhomogeneous layers [8, 14]. 

In this case of modeling, electro-mechanical boundary conditions (1.3.2) and (1.3.5) are 

rather simplified by replacing the surface normals     ( ) ( ) , ( )m m

j mn x n x h x  by unit 

normal  ( ) 0; 1; 0jn    : 

( ) (3)

2 0 2 0( ;  ( 1) ; ) ( ;  ( 1) ; ) 0m m m

i ix H t x H t       , (1.3.11) 

( ) (3)

2 0 2 0( ;  ( 1) ; ) ( ;  ( 1) ; ) 0m m mD x H t D x H t      , (1.3.12) 

( ) (3)

0 0( ;  ( 1) ; ) ( ;  ( 1) ; )m m m

i iw x H t w x H t     , (1.3.13) 

0 3 0( ;  ( 1) ; ) ( ;  ( 1) ; )m m

m x H t x H t      . (1.3.14) 
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For analytical analysis of wave processes in composite waveguides, the author in studies [9] 

and [10] proposes hypotheses on the distribution of characteristic values of physico-

mechanical fields or thermodynamic material characteristics of the formed inhomogeneous 

material. Those hypotheses come from physical-mathematical considerations of obtained 

schemes. They also observe the compactness of the mathematical boundary value problem.  

Mathematical modeling of boundary value problems by the introduction of MELS 

hypotheses (hypotheses of Magneto Elastic Layered System). The maximal ledges and 

maximal depressions in the surface roughness are much small compared to the effective 

thickness of bordering layers 

   
 (m)

max 1 2max ( ) min ( ) min ; .m m
x Xx X

R h x h x H H


   (1.3.15) 

Consequently, in both formulations given above, the obtained layers will be very thin 

compared to the base thickness of bordering layers. Thus, the thickness of the adhesive layer 

will be 

   

(m)

3 2 1 max( ) ( ) ( ) max ( ) min ( ) .m m
x Xx X

H x h x h x R h x h x


     (1.3.16) 

Naturally, it will be of the order of the sum of two maximal ledges of the bordering layer 

surface roughness. 

The thickness of the formed laterally inhomogeneous thin layer in the zone of the 

welded joints of the half-spaces 

  0 2 1 2 1 2 1

0

1
2 ( ) ( )

L

H R R R R h x h x dx
L

       

will be of the order of the sum of two maximal ledges of bordering layer surface roughness. 

Taking into account the thinness of the formed surface layers, they can be considered as 

weak surface inhomogeneity. 

Then, for studies on the propagation of wave signals with length  0 32 ;k H H   

comparable to the thickness of the formed layer, we can use the model of a thin layer. The 

thin layers obtained in both models are inhomogeneous. Equations and/or boundary 

conditions contain variable coefficients, which lead to nonlinear interaction between the 

amplitude and phase of the propagating wave signal [8, 14]. Avoiding the difficulties of 
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constructing exact solutions, in [9, 10, 12, 13] hypothetically constructed solutions in the 

formed inhomogeneous layers is proposed to use. 

In the first model the unknowns are the elastic shear displacement 
*

3w ( , , )x y t  and the 

electric field potential 
*

3 ( , , )x y t  for which functional distributions have the following 

forms 

 *

3 2 2 1 1 1 1w ( , , ) ( ( ), ) w ( , ( ), ) w ( , ( ), ) w ( , ( ), )mx y t f h x y x h x t x h x t x h x t    , (1.3.17) 

 *

3 2 2 1 1 1 1( , , ) ( ( ), ) ( , ( ), ) ( , ( ), ) ( , ( ), )mx y t f h x y x h x t x h x t x h x t      . (1.3.18) 

Here w ( , ( ), )n nx h x t  and ( , ( ), )n nx h x t , 1;2n  , are the boundary values of the elastic 

shear and the electric potential on the corresponding non-smooth surfaces. Distribution 

function ( ( ), )mf h x y  of the wave field in the hypotheses of (1.3.17) and (1.3.18) is selected 

in such a way that it is quite simple and completely (without loss of physical phenomena) 

describes the nature of the unknowns on the surfaces and along the thickness of the adhesive 

layer 1 2( ) ( )h x y h x  . The choice of this function must provide the physico-mechanical 

field continuity on the surfaces of medium slices ( )   1;2my h x m  : 

*

3w ( , ( ), ) w ( , ( ), )m m mx h x t x h x t , (1.3.19) 

*

3 ( , ( ), ) ( , ( ), )m m mx h x t x h x t   (1.3.20) 

This requires that on surfaces ( )my h x  the following conditions must be satisfied: 

1( )
( ( ), ) 0m y h x

f h x y


   and  
2 ( )

( ( ), ) 1m y h x
f h x y


 . (1.3.21) 

For complete description of the nature of the physico-mechanical fields in thin layer of 

piezoelectric material (glue), it is necessary that the representations (1.3.17) and (1.3.18) 

satisfy the equations of the electroelastic anti-plane deformations (1.3.1) for 3n   

* * *

3 3, 3 3 3 3,w w wyy xxG G  ,   * * * *

3, 3, 3 3 3, 3,w wxx yy xx yye     . (1.3.22) 

Taking into account the form of the normal shear electroelastic wave signal on the non-

smooth surfaces ( )
m

y h x , the distribution function of the boundary value problem obtain 

the following form: 

2 2 2 2

3( ) ( ) 0d f y dy k f y   ,  for 1 ( ( )) 0f y h x  ,  2( ( )) 1f y h x  , (1.3.23)
 

from where it follows a new representation for distribution functions: 
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3 1 3 1

3 2 1 3 2 1

( ( )) ( ( ))

3 1

( ( ) ( )) ( ( ) ( ))

3 2 1

[ ( ( ))]
( ( ), ) ,

[ ( ( ) ( ))]

k y h x k y h x

m k h x h x k h x h x

e e sh k y h x
f h x y

e e sh k h x h x

 

 





  

  

 
 

 
 (1.3.24) 

which, in contrast to the results in [9, 10], also includes the wave nature of inner adhesive 

layer   2 2 2

3 3 3 31k k G       . The obtained surface of the exponential function is 

sufficiently good. In the intervals 1 2( ) ( )h x y h x  ,  ( ( ), ) 0;1mf h x y   is monotone 

increasing, i.e. 0df dy  , and is normalized by the multiplier of characterizing the width 

of the adhesive layer, 2 1( ) ( ) ( )x h x h x   . 

When a very short wave signal, i.e. 
 

   3 2 1max
x X

H h x h x


 , or a fast wave 

signal,  2 2

3 3 31V G     , is propagating, the distribution function naturally becomes 

sinusoidal 

3 1 3 1

3 2 1 3 2 1

[ ( ( ))] [ ( ( ))]
( ( ), ) ,

[ ( ( ) ( ))] [ ( ( ) ( ))]

n
m

n

sh k y h x sh k y h x
f h x y

sh k h x h x sh k h x h x

 

 

 
 

 
 (1.3.25) 

where 

    2 2 2

3 3 3 31 1n n nn G k        . (1.3.26) 

Introducing hypotheses MELS (1.3.17) and (1.3.18), the relevant thermodynamic material 

relations for the adhesive layer material take the form 

     
     

3* * *

31 3 3

3* * *

23 3 3

n n

n n

G w x e x

G w y e y

       


       

 define the shear electromechanical stress, 

     
     

3* * *

1 3 3

3* * *

2 3 3

n n

n n

D e w x x

D e w y y

       


       
 

define the components of the electric field 

displacement. MELS hypotheses also allow to divide the boundary conditions (1.3.2)-

(1.3.5) into two groups: 

a) The first is the group of continuity conditions (1.3.2) and (1.3.3) of the mechanical stress 

and electric induction on the contact surfaces ( )my h x  taking into account MELS 

hypotheses (1.3.17) and (1.3.18): 
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   

   

(1) (3*) (1) (3*)

1 31 1 31 1 32 1 32 1

(2) (3*) (2) (3*)

2 31 2 31 2 32 2 32 2

( ) ( , ( ), ) ( , ( ), ) ( , ( ), ) ( , ( ), ) 0,

( ) ( , ( ), ) ( , ( ), ) ( , ( ), ) ( , ( ), ) 0,

h x x h x t x h x t x h x t x h x t

h x x h x t x h x t x h x t x h x t

   

   

    

    
 (1.3.27) 

   

   

(1) (3*) (1) (3*)

1 1 1 1 1 2 1 2 1

(2) (3*) (2) (3*)

2 1 2 1 2 2 2 2 2

( ) ( , ( ), ) ( , ( ), ) ( , ( ), ) ( , ( ), ) 0,

( ) ( , ( ), ) ( , ( ), ) ( , ( ), ) ( , ( ), ) 0.

h x D x h x t D x h x t D x h x t D x h x t

h x D x h x t D x h x t D x h x t D x h x t

    

    
 

(1.3.28) 

In comparison with the case of smooth contact surfaces y const , from the boundary 

conditions (1.3.27) it is clear that on the respective surfaces of the joints appear the 

difference of dynamic mechanical efforts 

 ( 3) ( ) (3*)

32 31 31( , ( ), ) ( ) ( , ( ), ) ( , ( ), )m m

m m m mx h x t h x x h x t x h x t     , (1.3.29) 

which do not exist in the absence of roughness. 

Similarly, it is obvious from the boundary conditions (1.3.28), that for non-smooth 

surfaces of the medium contact, in comparison with the case of smooth contact surfaces 

y const , also appear the difference of dynamic displacements of electric field 

 ( 3) ( ) (3*)

2 1 1( , ( ), ) ( ) ( , ( ), ) ( , ( ), )m m

m m m mD x h x t h x D x h x t D x h x t   , (1.3.30) 

which do not exist in the absence of roughness. 

The conditions (1.3.17) and (1.3.18) in the case of normal wave signals 

 

    

0

0 0

w ( , , ) exp(( 1) ) ,

( , , ) exp(( 1) exp(( 1) )

i kx tn

n n n

i kx tn n

n n n n n n

x y t W ky e

x y t ky e W ky e







  





  

     
 (1.3.31) 

are written as four algebraic equations with respect to the four independent wave amplitude 

constants in corresponding half-spaces  01 02 01 02; ; ;W W   . 

From the condition of existence of nontrivial wave solutions, we obtain a dispersion 

transcendental equation 

  ( )

3
4 4

ˆdet , ( ), ( ), ( ) 0m

ij m j nB h x n x k  


     (1.3.32) 

determining the process frequency nature.  

b) The other group of boundary conditions, the continuity of elastic displacements and 

electric field potentials on rough joints, based on (1.3.4), (1.3.5), (1.3.17), (1.3.18) and 

(1.3.31) gives a new system of four inhomogeneous algebraic equations with respect to the 
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four amplitude constants 

 31 32 31 32; ; ;A A B B :    * *ˆ , ( ), ( ), ( ), , ( ), ( ), ( )ij n m m n j i r m m nB h x h x k A b A h x h x k         .(1.3.33) 

The frequency-amplitude descriptions for the phenomenon identification is obtained 

from (1.3.33), due to the surface roughness, near-border new phenomena at the joints 

between the composite waveguide layers. The actual system of equations (1.3.33) 

determines the wave field in the joining layer, loaded by dynamic mechanical efforts and 

electric displacements 
(m3)

2 ( , ( ), )mD x h x t  on the rough surfaces ( )my h x . Naturally, for 

determination of wave amplitudes  31 32 31 32; ; ;A A B B  in the layer, we can obtain the 

conditions of internal resonance occurrence as follows: 

 *

4 4

ˆdet , ( ), ( ), ( ) 0ij n m m nB h x h x k  


     (1.3.34) 

It is easy to see, that the presence of roughness of the layer surfaces coefficients and 

terms in the system of algebraic equations are now complex numbers. Therefore, to identify 

the effect of the roughness on dispersion, or the probability of the appearance of internal 

resonance, the wave field must be represented by complex wave number and complex 

amplitude as follows: 

    *

1 2( , , ) ( , ) ( , ) expn n nF x y t A x y iA x y i k ik x t    . (1.3.35) 

Then, the real   *Re ( , , ) ( , ) cos( ) ( , ) sin( )n n nF x y t A x y kx t A x y kx t        and the 

imaginary   *Im ( , , ) ( , )sin( ) ( , )cos( )n n nF x y t A x y kx t A x y kx t      parts of the wave 

solutions determined from the systems of the characteristic equations will characterize the 

effect of roughness on the dispersion, dissipation and internal resonance for propagation of 

wave signal in a three-layer composite. 
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CHAPTER 2 

INFLUENCE OF MATERIAL AND SURFACE WEAK INHOMOGENEITIES 

OF THE ELASTIC LAYER-WAVEGUIDE ON THE PROPAGATION OF 

HIGH-FREQUENCY, PURE ELASTIC SHEAR (SH) WAVE SIGNAL 

 

2.1 The propagation of high frequency pure shear (SH) wave signal in elastic layer-

waveguide of weakly inhomogeneous material with mechanically free or rigidly 

clamped perfectly smooth surfaces 

 

Two model problems on distributions of pure shear, horizontally polarized, elastic 

normal waves  ( , , ) 0; 0; w( , , )U x y t x y t  in an isotropic weakly inhomogeneous layer- 

waveguide are considered [25, 54]. 

The shear component of the displacement vector has the following form  

 0 0 0w( , , ) exp ( )x y t A i k x t   , (2.1.1) 

where 0A  is the constant amplitude, 0k  is the wave number, and 0  is the frequency of the 

normal wave. Our aim is to identify the loss of stability of the normal wave (2.1.1) for 

different types of boundary conditions on perfectly smooth surfaces of the waveguide. 

Assume, that the normal wave (2.1.1) is distributed in the isotropic, elastic, 

longitudinally weakly inhomogeneous layer  0;  ;  x y h z    with rigidly 

clumped surfaces 0y h   (see Fig. 2.1.1.a). Then the equation of medium motion has the 

following form: 

2

2

w
( )

zyzx x
x y t




 
 

  
, (2.1.2) 

where the mechanical stresses according to Hooke's law can be written in the following 

form: 

w( , )
( , , ) ( )zx

x y
x y t G x

x






; 

w( , )
( , , ) ( )zy

x y
x y t G x

y






. (2.1.3) 

Here ( )G x  is the shear modulus of the material, which, as the density of the material, i.e. 

( )x , for longitudinally weakly inhomogeneous medium are presented in the following 

forms: 
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 

 
0 1 1 1 1

0 2 1 2 1

( ) 1 sin( ) cos( ) ;

( ) 1 sin( ) cos( ) .

G x G k x k x

x k x k x

 

   

  

  
 (2.1.4) 

Here 
1k a  is the number of inhomogeneity waviness of the material layer, a  is the half 

step of inhomogeneity waviness of the material layer, 1 2 1 2;  ;  ;       are the small 

amplitudes of inhomogeneity, which, for weak inhomogeneity of the material satisfy the 

restriction 
2 2 1n n  , 0G  is the shear modulus and 0  is the density of the corresponding 

homogeneous material. 

 

a) 

 

b) 

Fig. 2.1.1 Inhomogeneous elastic waveguide with smooth surfaces 

 

We obtain the equation of motion with variable periodic coefficients considering (2.1.3) and 

(2.1.4) 

   

 

1 1 1 1 1 1 1 1 1

2
2

2 1 2 1 2

w
1 sin( ) cos( ) w cos( ) sin( )

w
1 sin( ) cos( ) ,t

k x k x k k x k x
x

c k x k x
t

   

 


     




  



 (2.1.5) 

where 
2 2 2 2x y       is the Laplace operator, and 

2

0 0 0tc G   is the speed of shear 

normal wave. 

On clamped planes 0y h   the boundary conditions have the form 

0 0w( , , ) w( , , ) 0x h t x h t    . (2.1.6) 

Then, the wave solution of the equation of motion (2.1.5) satisfying the clamped boundary 

conditions (2.1.6) can be expanded into the form of Fourier series 

1

w( , , ) w ( ) sin( ) ni t

n n

n

x y t x y e






   , (2.1.7) 
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where 0n n h   is the wave number of the waveguide. It is obvious, that under these 

boundary conditions the zero form does not exist, i.e. 0w ( ) 0x  . 

The representation of the solution in the form of (2.1.7), leads  the equation of motion 

(2.1.5) to the infinite system of ordinary differential equations with periodic coefficients 

with respect to the amplitude functions of each succession of the n -th wave form 

 

 

2 2

2 2

1 1 1 1 1 21

2 2

1 1 1 1 1 21

w ( ) 1 w ( )

sin( ) w ( ) ( )w ( ) 1 w ( )

cos( ) w ( ) ( )w ( ) ( 1)w ( ) 0.

n n n n

n n n n n

n n n n n

x x

k x x k x x

k x x k x x

 

     

     

    
 

      
 

       

 (2.1.8) 

where 
2 2 2 2

0( )n n t nc    is the given phase speed of  the n -th wave form. 

It is obvious, that due to the inhomogeneity of the material, the process is represented 

by the interaction of three coupled normal wave modes characterized by equations (2.1.8), 

given in the square brackets. Since the interaction is due to the inhomogeneity functions 

1 1sin( )k x  and 1 1cos( )k x  from (2.1.4), the solution of (2.1.8) with variable periodic 

coefficients is natural to seek in terms of expansion by given functions of the inhomogeneity 

 0

1

w ( ) cos( ) sin( )m

n n mn m mn m

m

x a a k x b k x




    ; ;n m , (2.1.9) 

where 
1 ( )mk mk m a  is the wave number in the direction of wave propagation 

corresponding to the m -th harmonic of the wave, and  2 2max i i   , 1;2i   is a 

small parameter which characterizes the weak inhomogeneity of the material.  

Substituting (2.1.9) into (2.1.8) we obtain a recurrent infinite system of homogeneous 

algebraic equations for the constant amplitudes  ;  mn mna b  generated by the interaction of 

the propagating normal wave modes (wave signal) and the longitudinal weak 

inhomogeneity of the material  

 

    

   

2 2

0

2 2 2

12 2 1 12 2 1 0

2 2 2

1

1

sin( ) ( )cos( )

1 sin( ) cos( )

n n n

n n n n

m

n n m m mn m mn

m

a

k x k x a

k k x b k x a

 

         

  




 

     
 

      
 
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  

 

  

2 2 2

21 1 1 1 1 1

1

2 2 2

21 1 1 1 1 1

1

2 2 2

21 1 1 1 1 1

1 sin( ) ( ) cos( ) sin( )

( 1) sin( ) ( ) cos( ) cos( )

1 cos( ) ( ) sin( ) sin( )

m

n n m m m m mn

m

m

n n m m m m mn

m

m

n n m m m m

k k x k k k x k x b

k k x k k k x k x b

k k x k k k x k x

      

      

      









      
 

      
 

     
 





 

1

2 2 2

21 1 1 1 1 1

1

( 1) cos( ) ( ) sin( ) cos( ) 0.

mn

m

m

n n m m m m mn

m

a

k k x k k k x k x a      











      
 





 (2.1.10) 

In the resulting relations there appear the coefficients ;  ;  j j j    characterizing the 

interaction between independent normal harmonics and the distributions of wave signal in 

the layer with the weak longitudinal inhomogeneity (2.1.4) 

 2 2 21m n n mk     ; (2.1.11) 

 2 2 2

2 1 1m n n mk        ; (2.1.12) 

 2 2 2

2 1 1m n n mk        . (2.1.13) 

Considering the fact that in the zeroth approximation 0 1   and 0 0k   correspond to the 

normal form on axis 0x in the case of homogeneous medium, the solution in the first 

approximation will have the following form  

0

0 0 0

1

w ( , , ) sin( ) ni t

n n n

n

x y t a y e






  . (2.1.14) 

From (2.1.14) it follows that in the zeroth approximation the weakly inhomogeneous layer 

allows only one group of discrete frequencies  0 0 0n tc n h   for propagating shear wave 

with appropriate numbers of formations 0n n h  . 

In the first approximation, 1m  , from (2.1.9) we will obtain 

  0

1 0 1 1 1 1 1

1

w ( , , ) cos( ) sin( ) sin( )
i t

n n n n

n

x y t a a k x b k x y e
  





    . (2.1.15) 

For derivation of the wave number 1n  and amplitudes of the first approximation we derive 

from three coupled infinite system of equations: 

     2 2 2 2

2 12 1 2 12 1 01 sin( ) cos( ) 0n n n n nk x k x a             
 

; (2.1.16) 

 2 2 2

1 1 11 sin( ) 0n n nk b k x      
 

; (2.1.17) 
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 2 2 2

1 1 11 cos( ) 0n n nk a k x      
 

. (2.1.18) 

From the condition of existence of non-trivial solutions of the system (2.1.16)÷(2.1.18) we 

compute the wave number of formation of the first approximation obtain 

  2 1 2 1
1 1 0

1 1 1 1

1 sin( ) cos( )
( )

1 sin( ) cos( )
n

k x k x
k x n h

k x k x

 
 

 

 


 
. (2.1.19) 

 

Fig. 2.1.2 The forms of change of formation coefficient (or frequency) on propagation of normal wave signal 

 

It is obvious that the quantities under the square root are positively defined especially (in the 

case of weak inhomogeneity of the material, when 
2 2 1n n  ).Therefore, forbidden 

frequency zones in the first approximation do not arise. From (2.1.19) we see that the 

coefficient of formation (or phase function) 1 0 ( )n n f x    is already variable because of 

the inhomogeneity of the material (Fig. 2.1.2). Fig. 2.1.2 also shows that at relatively large 

compared to the density stiffness coefficients, when  1 2
 and  1 2

, and at relatively 

large compared to the stiffness, density coefficients, when  1 2
 and  1 2

, the changes 

of the vibration frequencies are different, while remaining periodic. 

From coincidence of harmonics, amplitudes  1na  and  1nb  of the first approximation 

expressed in terms of the amplitudes of the wave signal  0na , can be computed as follows 

  
    

22

1 2 0 1

1 02 2 2

0 1

n

n n

n

n h
b a

n h a

   

  




 
; 

  
    

22

1 2 0 1

1 02 2 2

0 1

n

n n

n

n h
a a

n h a

   

  




 
. (2.1.20) 

From (2.1.20) it is clear, that the amplitude distortion compared with the distortion of the 

phase function, is quadratic. The numbers of resonant harmonics, when 1na   and/or 
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1nb  , for which there occurs internal resonance, which can be found from here as well 

(Fig.1.3) 

  1 1 1
0

1

1 sin( )

sin( )

k x
n h a

k x

 

 

 



. (2.1.21) 

Here 

2 2

1 1 1   ; 
 

   

 

   

1 2 1 2

2 2 2 2

1 2 1 2 1 2 1 2

arccos arcsin
   


       

 


     
; 

   
2 2

1 2 1 2       ; 1 1
1 2 2 2 2

1 1 1 1

arccos arcsin
 


   


 

. 

 

Fig. 2.1.3 The line of resonance by harmonic r rx N and by cuts 

 

It is easy to get the instability zones of harmonics from (2.1.21) (when the quantities under 

the square root are positive. (Fig. 2.1.3)) 

   2 1 2a m x a m        ; 0;1;2;...m   (2.1.22) 

Whence it follows that in some cases of medium inhomogeneity, the quantities under the 

square root can be negative and then the corresponding harmonics lose stability and will be 

represented by exponential functions  1 0exp ( ; ; )n i i a h y    . 

From Fig. 2.1.3, in each section we can find the numbers of resonant forms. It is seen 

that starting from a certain number of harmonics, resonant forms periodically exist at certain 

intervals, for particular values of the characteristics of inhomogeneity of the material, Fig. 

2.1.4 (see formulas (2.1.23) and (2.1.24)). 
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a) 

 

b) 

Fig. 2.1.4 The character of changes of amplitudes for certain material inhomogeneity characteristics, 

before and after occurrence of the resonance 

 

The number of resonant harmonics will be 

  1 1 1
0

1

1 sin( )

sin( )

r
r

r

k x
N h a

k x

 

 

 



, (2.1.23) 

and the respective values rx  of the intervals of definition will be 

   2 1 2ra m x a m        ; 0;1;2;...m   (2.1.24) 

In the second approximation, 2m  , the solution will have the following form 

  02

2 1 2 2 2 2 2

1

w ( , , ) w ( ) cos( ) sin( ) sin( )
i t

n n n

n

x y t x a k x b k x y e
 





    . Considering 

(2.1.15), (2.1.19) and (2.1.20), from (2.1.10) with respect to 0na , 2na  and 2nb  we have three 

infinite systems of homogeneous algebraic equations. From the condition of existence of 

non-trivial solution, the formation number in the second approximation will be computed as 

follows 

     0 1 1; ; ; ;n i i i in h k x k x        , (2.1.25) 

where 
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 

 

 
 

   

 

2 2 2 2 2

2 0 1

12 2

2 2 2 2 2

2 0 1

2 1 2 1 12 2

1
2 2 2

2 1 2 1 0 1 1 1 1

12 2

2 2 2

0 1 1 1 1 2 1 2 1

12 2

1 sin( )

1
cos( )

2; ;
2

sin(2 )
2

2 ( )
cos(2 )

2

n

n

n n

i i

n n n n

n n n n

n a n a h
k x

n a

n a n a h
k x

n ak x
n a h

k x
n a

h n a
k x

n a

 

 
   

 
       

       

  
  


  
   

   
 

   

 

 

 

    

   

1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

;

1
; ; 2 1 sin( ) cos( ) .

2
cos(2 ) sin(2 )

n n

i i n n

n n n n

k x k x k x

k x k x

   

     

       












  
 

       
 
     

 (2.1.26) 

The amplitudes 2na  and 2nb will be found from coincidence of harmonics as follows 

2 21 22,na A A 
 

  
  

2 2 2

2 1 1 1 1 1 1 1

2 2 2 2

2

,
2 1

n n n n

n

n n

k b k a
b

k

     

  

  


 

     
  

2 2 2 2 2 2

2 1 1 1 1 2 1 1 1 1

21 2 2 2

2

2 2
,

2 1

n n n n n n

n n

k a k b
A

k

         

  

    


   

    

  

2 2 2 2 2 2

2 1 1 1 1 1 1 1 0

22 2 2 2 2

2

1
.

1

n n n n n n n

n n

k b k a a
A

k

         

  

    
 

   

The wave solution in the second approximation will have the following form: 

  

  
0

2 0 22

2 1 0 2

1 2 0 2

1 ; ; sin( )
w ( , , ) w ( , , ) sin( )

; ; cos( )

i i i t

n n

n i i

na h k x
x y t x y t a y e

na h k x


  

 
  





 
  
  

 . (2.1.27) 

From the obtained relations find the forbidden frequency zones (the number of harmonics, 

for which the following inequality holds) 

2 1n n nb b c    , (2.1.28) 

where 
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    
       
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       

2 2

0 0 2 1 1
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2 22

1 0 2 1 1 0 2 1 1
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2 2 2

0 0 2 1 1 1

2 2
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1 0 2 1 1 0 2 1 1

4 1 4 ( )
;

4 4 ( ) 4

4 1 4 4
.

4 4 ( ) 4

n

n

na h na h
b

na h na h

na h na h
c

na h na h

  

      

   

      

   
 

        
   

      
   

        
   

 (2.1.29) 

From the relations (2.1.25) and (2.1.26) the zones  of instability of the harmonics are 

easily obtained (when the quantities under the square root is negative), whence it follows 

that in some cases of medium inhomogeneity, the quantities under the square root can be 

negative and then the corresponding harmonics lose stability and will be represented by the 

exponential functions  2 0exp ( ; ; )n i i a h y    . 

Numerical analysis of the obtained amplitude-phase distortion will be given along with 

the case of mechanically free boundary conditions of the waveguide. The zones of the 

forbidden frequencies for different values of parameters characterizing inhomogeneity of 

the material are given in Fig 1.4. In one case the forbidden frequency occurs for a limited 

number of harmonics in ,   1 1, 1,...i m m k , but in the other case  there is an unlimited 

number of harmonics  2i m . 

Assume, that the normal wave is propagating in isotropic, elastic, longitudinally weak 

inhomogeneous layer with mechanically free surfaces 0y h   (see Fig. 2.1.1.b): 

0 0

w( , , ) w( , , )
0

y h y h

x y t x y t

y y
 

 
 

 
. (2.1.30) 

The weak inhomogeneity has the form set in (2.1.4). Proceeding like the case of clamped 

surfaces, the wave solution of the equations of motion satisfying (2.1.30) can be represented 

in the form 

0

w( , , ) w ( ) cos( ) ni t

n n

n

x y t x y e






   , (2.1.31) 

where w ( )n x  is shown in the (2.1.9). The character of amplitude-phase distortion on the 

propagation of wave signal will be the same as in the case of clamped surfaces of the layer. 
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a) 2 1n n nb b c     b) 2 1n n nb b c     

Fig. 2.1.5 The zones of forbidden frequencies for particular values of material inhomogeneity 

characteristics 

Unlike the case of the waveguide with clamped surfaces, in this case the solution of the 

zeroth approximation is obtained in the form 

0

0 00 0 0

1

w ( , , ) cos( ) ni t

n n

n

x y t a a y e






   , (2.1.32) 

where 00 0 0w ( , , )a x h t   are the values of the shear strain on surfaces. 

Considering the fact, that the nature of the change in the direction of the propagation of 

the wave signal is characterized by the equation (2.1.8), the wave field in the waveguide in 

the case of the mechanically free surfaces in the following approximations are obtained: 

a) in the first approximation, the solution is obtained in the form accounting the material 

inhomogeneity 

  0

1 00 1 1 1 1 1

1

w ( , , ) cos( ) sin( ) cos( )
i t

n n n

n

x y t a a k x b k x y e
 





    , (2.1.33) 

where the wave characteristics are as follows: 1n  is the wave formation number, 1na  and 

1nb  are the amplitudes of harmonics described in relations (2.1.19) and (2.1.20) accordingly. 

b) in the second approximation, the wave field has the following form: 

  

  
0

2 0 22

2 1 0 2

1 2 0 2

; ; cos( )
w ( , , ) w ( ) cos( )

; ; sin( )

i i i t

n n

n i i

na h k x
x y t x a y e

na h k x


  

 
  





 
  
  

 , (2.1.34) 

where the wave characteristics are the followings: 2n  is the wave formation number, 2na  

and 2nb  are the amplitudes of harmonics described in relations (2.1.25), (2.1.26) and  
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(2.1.28), (2.1.29) respectively. 

As shown above, the frequency characteristics for different boundary conditions on the 

smooth surfaces of the waveguide of weakly inhomogeneous material are identical and 

because of the inhomogeneity are changed identically. The weak inhomogeneity leads to 

distortion of the formation coefficients (Fig. 2.1.2) as in nature, as well as in value. 

Formation coefficients 1 1( )n k x  are already changing periodically from the value 

 0 0n n h  . At the clamped surfaces of the layer the first harmonic with constant 

amplitude does not exist, as in the case of a homogeneous medium. Depending on the 

characteristics of the inhomogeneity of the material, at certain frequencies rn N
 of the 

wave signal in certain sections rx x
 internal resonance occurs (Fig. 2.1.4). The weak 

inhomogeneity of the material of the waveguide may lead to filtration of specific 

frequencies of the normal wave (Fig. 2.1.5). 

In Figures 2.1.6 a) and b) the levels of wave surfaces for different boundary conditions 

are given. It is obvious that the wave surface generally preserves the leveled character, 

existing in the case of homogeneous medium: preserves the symmetry (or asymmetry) over 

the thickness of the waveguide, but are distorted in the direction of wave propagation. On 

the lines of level changes jagged deviations are clearly appeared, characterized by the 

inhomogeneity of the material of the waveguide. At specific frequencies of the wave signal, 

the interaction of the signal and inhomogeneity leads to parametric resonance. 

  

Fig. 2.1.6 a) The levels of the wave surface when 

the surfaces of the waveguide are clamped 

Fig. 2.1.6 b) The levels of the wave surface 

when the surfaces of the waveguide are 

mechanically free 
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2.2 The propagation of high frequency pure shear (SH) wave signal in elastic 

homogeneous layer-waveguide with mechanically free or rigidly clamped weakly 

inhomogeneous surfaces 

 

Let us assume that the pure shear normal wave signal 

 0 0 0( , , ) ( ) exp ( - )w x y t W y i k x t  ,  (2.2.1) 

( , , ) 0u x y t  , ( , , ) 0v x y t  , (2.2.2) 

is propagating in the elastic, isotropic waveguide  ;  ( ) ( );  x h x y h x z       

with rough surfaces ( )y h x  and ( )y h x  (see Fig. 2.2.1). Here   0 02k  is the 

wave number and 0  is the length of wave signal. Then, the equation of motion of the 

medium has the following form: 

2 2 2
2

02 2 2

( , , ) ( , , ) ( , , )w x y t w x y t w x y t
c

x y t

  
 

  
. (2.2.3) 

where 
2

0 0 0c G   is the speed of the shear normal wave in the waveguide. 

It is assumed, that the roughness of the waveguide surfaces 
( )y h x

 are represented 

by the following harmonic functions: 

 

 
0

0

( ) 1 sin( ) cos( ) ,

( ) 1 sin( ) cos( ) ,

h x h k x k x

h x h k x k x

 

 

    

    

       


       

 (2.2.4) 

where 0h  is the half-thickness of basic layer of the waveguide,   and 
 are the relative 

amplitude coefficients of the heights of roughness profiles with  ;  1   , because the 

heights of the protrusions of roughness 
0h   and 

0h   are always much less than the 

basic layer thickness:  0 0 0;  h h h    , 2k   
 is the number of the waviness of 

roughness profile and 


 is the step (wavelength) of the roughness profiles. 

The boundary conditions on mechanically free non-smooth surfaces of the waveguide 

( , ) ( ) 0ij jx y n x    are written respectively in this form: 

( ) ( )

( , ) ( , )
( ) 0

y h x y h x

w x y w x y
h x

x y
 



 

 
   

 
. (2.2.5) 
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It is evident from (2.2.3)-(2.2.5), that its solution must explicitly depend on the roughness of 

the surfaces. Since the roughness is weak  0 0 0;  h h h    , the interaction of 

roughness will mainly be available in case of high-frequency (shortwave) wave signals, for 

which 
0 0h  , or equivalently 

0 0 0 1k h k h . Then, one might be interested in 

investigation of the influence of surfaces roughness of the waveguide on the propagation of 

normal high-frequency shear waves. 

There are two methods to solve the problem [13]: the method of successive 

approximations and the method of introduced hypotheses. Later in this article we will 

compare wave characteristics of the received wave fields. 

When high-frequency, normal shear signal (2.2.1) is propagated in elastic waveguide, 

interaction of the wave signal with the roughness of the surfaces in the near-surface areas 

occurs, which consequently leads to amplitude and phase distortion of the primary signal. 

New harmonics appear and a new amplitude-phase interaction is formed. 

We use Fourier method of variables separation, and the solution of the boundary value 

problem (2.2.3)-(2.2.5) is represented in the following form: 

0

1

( , , ) ( ) ( ) exp( )n n n

n

w x y t W y X x i t




    . (2.2.6) 

Then the conditions of mechanically free surfaces of the waveguide, on rough surfaces 

( )y h x  respectively, for each harmonic of propagating wave will have the following 

form 

 0

( )
( ( )) cos( ) sin( ) ( ( )) ( ( ))

( )

n
n n n

n

X x
W h x h k k x k x W h x W h x

X x
        


            (2.2.7) 

It is suggested, that the equations for determining the desired functions ( )nX x  and 

( )nW y are shown in the form 

2 2

2

( ) 1 ( ) 0,

( ) ( ) 0,

n n n n

n n n

W y k W y

X x k X x

      


  

 (2.2.8) 

where the following assignment for appropriate harmonics 
2 2 2 2

0n n nk c   
 has been taken 

into account, nk  is the wave number (formation coefficient  through the thickness of the 

waveguide), corresponding to the generated n -th harmonic. 
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From surface conditions (2.2.7) it follows that the undamped solutions of (2.2.8) in the 

directions of the propagation Ox  (for  Im 0nk  ) are shown in the following form 

   

 

1 2( ) exp exp

( ) exp

,

,

n n n n n n n

n n

W y C ik y C ik y

X x C ik x

 



   


 

 (2.2.9) 

which, for slow waves, i.e. when 
2 2 1 0n n    , corresponds to the damped harmonics 

from the surface up to the depth of the waveguide, and for fast waves, i.e. when 

2 2 1 0n n    , corresponds to harmonic forms over the thickness of the waveguide. 

From (2.2.8) it also follows that fast damped waves occur in the directions of wave 

propagation Ox  in the case of  Re 0nk  : 

2 2

2

( ) 1 ( ) 0,

( ) ( ) 0.

n n n n

n n n

W y k W y

X x k X x

      


  

 

For slow wave, i.e. when 
2 0n  , the solution corresponds to harmonic forms over the 

thickness of the waveguide, and for fast wave, i.e. when 
2 0n  , it corresponds to damped 

harmonics from the surface up to the depth of the waveguide. 

Taking into account that the roughness of the surface of the waveguide is weak and its 

impact on the propagating wave is described by boundary conditions (2.2.7), the solution of 

system (2.2.8) is represented in this form 

 *

0

( ) expm

n mn m

m

X x A ik x




  . (2.2.10) 

 

Fig. 2.2.1 The model of elastic waveguide as a multilayer waveguide 
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Moreover, the value 0m   corresponds to the case of homogeneous waveguide. Here, the 

introduced wave number 
*mk  should be formed by the impact of normal wave signal and 

roughness of the surfaces of the waveguide. 

The roughness of the surfaces, in its turn, is characterized by the greatest common 

divisor of wave numbers  * *min ; 2k k p k q      is the smallest common wave 

number of roughness on the surfaces corresponding to the generated m -th harmonic waves, 

and  2 2max 1     is a small parameter characterizing the weak roughness of the 

surfaces of the waveguide. 

     

 

     

1 2 *

0

0

1 2 * *

0

exp ( ) exp ( ) exp

cos( ) sin( )

exp ( ) exp ( ) exp .

m

n n n n n n n n mn m

m

m

n n n n n n m mn m

m

k C ik h x C ik h x A ik x

h k k x k x

C ik h x C ik h x k A ik x

   

 

  



 



    



 



      

     

      





 (2.2.11) 

Considering that the right hand sides of boundary conditions (2.2.11) are in small 1m  

order in the 0n   approximation, for non-trivial solutions of (2.2.11) we obtain the 

dispersion equation with the following solution 

0 0
0 0 0

0 0

2
n n

n

c nc
k c

h

 



   . (2.2.12) 

Consequently, interaction of the normal wave (2.2.1) with surface roughness 
( )h x  is not 

occur in the 0n   approximation, and the propagating wave is still normal as in 0n   

approximation of longitudinally weakly rough waveguide with mechanically free surfaces 

[54] 

0 0 0

1 0

( , , ) expn n

n

nx
w x y t A i t

h








  
    

  
 . (2.2.13) 

From the conditions of synchronization of the surface distortions at the mid-plane of the 

waveguide 0y  , we get 

 
 
 

cos( ) sin( )
exp

cos( ) sin( )
m m

k k x k x
i k k x

k k x k x

 

 

    

 

    

     
          

. (2.2.14) 
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Considering that the wave number is formed as 1 ( )n n nk x k k  
 and 

 * *min ; 2k k p k q     , it is easy to get the allowed wavelengths from (2.2.14) 

for the first approximation: 

 
 

1

* 0

cos( ) sin( )
( ) 2 arccos

cos( ) sin( )

k k x k x
x

k k x k x

 
  

 

     

    

       
   

       
. (2.2.15) 

Then from the boundary equations (2.2.11) for the first approximation we will have 

     0 0exp ( ) ( ) exp ( ) ( ) 0n n n nik h x h x ik h x h x         , 

therefore formation coefficient of generated distortions of waves is obtained as 

0 1
( ) ( )

n n

n
k

h x h x




 




. (2.2.16) 

The wave number of the first generated harmonic depends on the surfaces of the non-

smooth waveguide 

   
1 2

22

1 0

0

( ) ( ) ( ) ( ) ( )n

n
k x h x h x h h x h x

h

 

   

          
. (2.2.17) 

In the first approximation, the interaction of the normal wave with surface non-smoothness 

affects to the propagating wave: 

1 1 1 0

1

( , , ) ( ) ( ) exp( )n n n

n

w x y t W y X x i t




    , (2.2.18) 

where 

 

0 1 0 1
1 1 2

1 0 1

( ) ( )
( ) exp exp

( ) ( ) ( ) ( ) ,

( ) exp ( ) .

n n
n n n

n n n

h k x y h k x y
W y C i C i

h x h x h x h x

X x A ik x x

   

     
      

     


   

(2.2.19) 

Note that if the rough surfaces are “symmetric” with respect to the mid-plane of the 

waveguide, i.e. 

 0( ) ( ) ( ) 1 sin( ) cos( )h x h x h x h k x k x            , (2.2.20) 

then from relations (2.2.16) and (2.2.17) for the wave number over the thickness of the 

waveguide and the coefficient of formation, respectively, are obtained as follows 

1 22

0
1 2

0

( ) 1
4 ( )

s

n

n h
k x

h h x




 
   

 
; (2.2.21) 
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1 22

0
1 1 2

4( ) ( )
( ) ( )

s s

n n

n h
k x x

h x h x







 

    
 

. (2.2.22) 

The solution (2.2.19) will be correspondingly transformed into 

 

0 1 0 1
1 1 2

1 0 1

( ) ( )
( ) exp exp ,

( ) ( )

( ) exp ( ) .

s s
s s sn n
n n n

s s

n n n

h k x h k x
W y C i y C i y

h x h x

X x A ik x x

        
         

      


 

 (2.2.23) 

In the case of “synchronous” (parallel to each other) roughness on the surfaces of the 

waveguide, will have the following representations: 

 

 
0

0

( ) 1 sin( ) cos( ) ,

( ) 1 sin( ) cos( ) .

h x h k x k x

h x h k x k x

 

 





       


       

 (2.2.24) 

Then from relations (2.2.16) and (2.2.17) for the wave number over the thickness of the 

waveguide and the coefficient of formation, respectively, are obtained as follows: 

*

1

0

5
( )

10
n

n
k x

h


 

; 

* *

1 1

0

5
( ) ( )

20
n n

n
k x x

h


  

. (2.2.25) 

The solution (2.2.19) changes accordingly 

* * *

1 1 2

0 0

1 0

0

5 5
( ) exp exp ,

20 20

5
( ) exp .

20

n n n

n n

n n
W y C i y C i y

h h

n
X x A i x

h

 




    
        

    


 
  

 

 (2.2.26) 

The Second Approach: To analyze the propagation of the normal, pure shear wave signal 

(2.2.1) and (2.2.2), taking into account that in the isotropic waveguide 

 : ;  ( ) ( );  x h x y h x z      
 roughness of surfaces ( )y h x  and ( )y h x  

are described by the functions (2.2.4), the near-surface thin layers with variable thickness 

(the waveguide is presented as three-layer, see Fig. 2.2.1) are virtually selected 

0    , where 

 

 

 

0

0 0 0

0

;  ( ) ;  ,

;  ;  ,

;  ( );  .

x h x y h z

x h y h z

x h y h x z



 



  

 

  

       

        

        (2.2.27) 
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We intend to solve the equation of medium motion (2.2.3) for all three layers separately 

with boundary conditions (2.2.5) on mechanically free, non-smooth surfaces ( )y h x  and 

( )y h x  for elastic displacements ( , , )w x y t  (respectively for layers 


 ), and the 

conditions of continuity on virtual cross-sections 0y h      and 0y h     

00

00

0

0

( , , ) ( , , ) ,

( , , ) ( , , ) ,

y hy h

y hy h

w x y t w x y t

w x y t w x y t









   

   




 (2.2.28) 

0 0

0 0

0

0

( , , ) ( , , )
,

( , , ) ( , , )
.

y h y h

y h y h

w x y t w x y t

y y

w x y t w x y t

y y

 

 

 

 



   



   

 


 

 


 
 (2.2.29) 

Considering the thinness of the surface layers 


 , the solution in them are represented with 

the hypotheses of MELS [12] taking into account the nature of the changes arising from 

surface roughness ( )y h x  and ( )y h x  

  
  

   

 

0

0 0

0

0 0

( , ) , ( ) ,
( )

, ,

sh y h
w x y w x h x w x h

sh h x h

w x h

 


 



 

   

  



 
       

 
 (2.2.30) 

  
  

   

 

0

0 0

0

0 0

( , ) , ( ) ,
( )

, ,

sh y h
w x y w x h x w x h

sh h x h

w x h

 


 



 

   

  



 
        

  
 (2.2.31) 

where the values  , ( )w x h x   and  , ( )w x h x   
are determined from the conditions on 

mechanically free surface (2.2.5) as follows: 

 
    

    
 

2

0

0 02

0

( ) 1 ( )
, ( ) ,

( ) 1 ( ) ( )

cth h x h h x
w x h x w x h

cth h x h h x h x

  


  

    

  

     

     
   

      
 

; (2.2.32) 

 
    

    
 

2

0

0 02

0

( ) 1 ( )

, ( ) ,

( ) 1 ( ) ( )

cth h x h h x

w x h x w x h

cth h x h h x h x

  



  

    

  

     

      
    

        
 

. (2.2.33) 



60 
 

Substituting (2.2.32) and (2.2.33) into (2.2.30) and (2.2.31), we reach the solution in the 

near-surface thin layers of the waveguide formed by the propagation of the normal wave 

 0 0 0 0( , , ) ( ) exp ( )w x y t W y i k x t  
 
in the basic layer 0 : 

  
  

    

 

0

0

0 0

2

0

1
( )

( , ) ,
( )

( ) 1 ( ) ( )

sh y h

sh h x h
w x y w x h

h x

cth h x h h x h x

 

 


  

 

  

 



     

  
  

   
   


 
       
   

; (2.2.34) 

  
  

  

 

0

0

0 0

2

0

1
( )

( , ) ,
( )

( ) 1 ( ( )) ( )

sh y h

sh h x h

w x y w x h
h x

cth h x h h x h x

 

 



  

 

  

 



     

  
  

   
    
 
        
   

. (2.2.35) 

Let us represent the normal wave in the basic layer 0  in a common form 

   0 * * * 0( , , ) cos( ) sin( ) exp ( )w x y t A y B y i k x t      , (2.2.36) 

here  * *min ; 2k pk qk      is the smallest common wave number of the roughness 

on the surfaces corresponding to the generated harmonic of the wave. 

From the conditions of continuity of mechanical stresses (2.2.29), we obtain a 

dispersion equation to determine the formation coefficient 
* : 

      

   

2

* * * 0(2 ( ) ; ( ) ; ( )

; ( ) ; ( ) ,

ctg h f h x f h x

f h x f h x

      

 

       

     

      

  
 (2.2.37) 

in which 

 
  

    

0

2

0

1

( )
; ( )

1
( )

( ) 1 ( ) ( )

sh h x h
f h x

h x
cth h x h h x h x

 



  

  

  

 

     

 
  

 
 

  
         

; (2.2.38) 
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 
  

    

0

2

0

1

( )
; ( )

1
( )

( ) 1 ( ) ( )

sh h x h
f h x

h x
cth h x h h x h x

 



  

  

  

 

     

 
  

 
 

  
         

. (2.2.39) 

They characterize the influence of the rough surfaces on the formation coefficient. It is 

obvious, that the solution of the dispersion equation (2.2.37) significantly depends on the 

surface roughness 
( )h x . 

Numerical Analysis of Obtained Results: Considering the surface roughness, in the first 

approach, the solutions for formation coefficient 0 1n nk   and wave number 1( )nk x
 are 

obtained in the forms (2.2.16) and (2.2.17) respectively. As expected, the variable thickness 

through the waveguide plays the main role in these expressions
 ( ) ( ) ( )x h x h x   , by 

means of which the wave process can be controlled. 

  

Fig. 2.2.2 а)  The wave number for 

“synchronous” surface roughness of the 

waveguide (the first approach) 

Fig. 2.2.2 b)  The wave number for “symmetric” 

surface roughness of the waveguide (the first 

approach) 

 

Graphics of the formation coefficient and the wave number for different particular 

characteristic surfaces of roughness are given in Figs. 2.2.2 and 2.2.3 using the relations 

(2.2.20)-(2.2.26), respectively. From the figures of the wave number and formation 

coefficient it follows that for “symmetric” surface roughness of the waveguide (2.2.20) the 

changes of these values are characteristically different from the case of “synchronous” 

surface roughness (2.2.24). 
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Fig. 2.2.3 а)  The formation coefficient for 

“synchronous” surface roughness of the 

waveguide (the first approach) 

Fig. 2.2.3 b)  The formation coefficient for 

“symmetric” surface roughness of the waveguide 

(the first approach) 

From Figs. 2.2.2 b) and 2.2.3 b) it is obvious that in the case of “symmetric” surface 

roughness of the waveguide (2.2.20), the wave number and the formation coefficient are 

periodically changed with respect to the half-thickness of the waveguide in the interval 

 *0,x 
. 

In the case of “synchronous” surface roughness of the waveguide (2.2.24) the wave 

number and the formation coefficient are only changed by a constant value for each n -th 

harmonic. In the general case of arbitrary surface roughness ( )y h x  and ( )y h x  from 

(2.2.14)-(2.2.19) it follows that due to the difference of surface roughness in the near-

surface areas there occur qualitatively identical, but quantitatively different harmonics, a 

synchronization which occurs at the mid-plane 0y  . From (2.2.16) and (2.2.17) it is 

obvious that the wave number 1 ( )nk x
 and the formation coefficient 0 1 ( )n nk x

 for the 

propagation of the waves is always positive, since 
( ) ( ) 0h x h x  

. From relations 

(2.2.23) and (2.2.26) we can easily get the nature of the changes of elastic shear through the 

thickness of the waveguide, according to the variable thickness of the waveguide (see Fig. 

2.2.4). The picture of elastic shear 1 ( )s

nW y
 over the thickness of the waveguide for the 

“symmetric” surface roughness is defined by relation (2.2.23) and is shown in Fig. 2.2.4 a). 

Fig. 2.2.4 shows that over the thickness of the waveguide for the “symmetric” surface 

roughness (2.2.20), the normal waveform is periodically distorted depending on the law of 

variation of its thickness ( )x . Accordingly, the phase velocity of the generated harmonic 
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is also changed. The elastic shear 
*

1 ( )nW y  over the thickness of the waveguide for 

“synchronous” surface roughness is defined by relation (2.2.26) and is shown in Fig. 2.2.4 

b). From (2.2.25) it follows that in this case only short waves with lengths * 05 h n    

propagate for large numbers of harmonics n , such that * 05n h  . 

  

Fig. 2.2.4 а)  The elastic shear  through the 

thickness of the waveguide for “symmetric” 

surface roughness (the first approach) 

Fig. 2.2.4 b)  The elastic shear  through the 

thickness of the waveguide for “synchronous” 

surface roughness (the first approach) 

 

Solving the problem with the method of hypotheses MELS, through the thickness of the 

waveguide we obtain the expression of elastic shear in the basic layer 0  in the form of 

(2.2.36), which is analytically continued in both near-surface zones 


  and 


 , 

accordingly (2.2.35) and (2.2.34). The image over the thickness of the waveguide is 

constructed after determining the formation coefficient 
*  from the dispersion equation 

(2.2.37). From relations (2.2.34)-(2.2.39) it is obvious that the solutions, received in the 

near-surface zones 


  and 


 , are characteristically the same, but numerically different at 

different surface roughness 
( )h x  and ( )h x . 

The dispersion equation (2.2.37) is much simplified in the cases of “symmetric” 

(2.2.20) and “synchronous” (2.2.24) surface roughness, considering the expressions of the 

coefficients of the dispersion equation  ; ( )f h x    and  ; ( )f h x   , in relations 

(2.2.38) and (2.2.39) respectively. Fig. 2.2.5 shows the graphical dependence of the 

formation coefficient 
*  on x . To each formation coefficient 

*n  naturally corresponds a 

wave number 
2 2 2

* * 0 0 *2n n nk c     
. 
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From the dispersion equation (2.2.37) and the relations (2.2.38) and (2.2.39) it is evident 

that in the absence of roughness on the surfaces of the waveguide, i.e. when 

( ) ( ) 0h x h x 
   , both introduced multipliers (2.2.38) and (2.2.39) become zero and from 

the dispersion equation we obtain the case of homogeneous waveguide 
* 0

0

n n

n

h


   . 

  

Fig. 2.2.5 а)  The formation  coefficient   for 

“synchronous” surface roughness of the 

waveguide (the second approach) 

Fig. 2.2.5 b)  The formation  coefficient   for 

“symmetric” surface roughness of the waveguide 

(the second approach) 

 

 

 

  

Fig. 2.2.6 a) The elastic shear  through the 

thickness of the waveguide for “symmetric” 

surface roughness (the second approach) 

Fig. 2.2.6 b) The elastic shear  through the 

thickness of the waveguide for “synchronous” 

surface roughness (the second approach) 

 

From the obtained graphs it is also seen how the presence of “symmetric” (2.2.20) or 

“synchronous” (2.2.24) surface roughness of relatively homogeneous waveguide leads to 

distortion of forms (formation coefficient 
*n  and wave number *nk ). 

From relations (2.2.37)-(2.2.39) and the received graphs it is also clear that weak 

surface roughness do not lead to appearance of damped propagating harmonics through the 
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depth of the waveguide. Partial localization of the wave energy occurs only in the thin 

surface rough layers, which can be seen in the given figures of elastic shear over the 

thickness of the waveguide. The images of elastic shear throughout the thickness of the 

waveguide in particular “symmetric” (2.2.20) and “synchronous” (2.2.24) surface roughness 

cases are shown in Fig. 2.2.6. 
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2.3 Comparative analysis of the influence of weak inhomogeneity effect of elastic layer-

waveguide surface in propagation of high-frequency (SH) shear wave signals 

 

The propagation of high-frequency monochromatic horizontally polarized shear wave 

signal in isotropic elastic half-space occupying in Cartesian coordinate plane the domain 

 ;  ( );  x y h x z     with non-smooth, load free surface ( )y h x  is 

investigated [12]. The coordinate axis 0y   is directed along maximal tangential ledge of 

the non-smooth surface (Fig. 2.3.1). Another characteristic line of the surface heterogeneity 

(non-smooth) will be the tangent line of maximal cavity max minmax ( ) ( )y h x h x R      

of irregularities of the half-space surface. 

The problem of horizontally polarized displacement in the half-space is separated from 

that for plain deformation, and the displacement ( , , )w x y t  of the shear wave (SH) satisfies 

the equation 

2 2 2
2

2 2 2

( , , ) ( , , ) ( , , )
t

w x y t w x y t w x y t
c

x y t

  
 

  
, (2.3.1) 

where 
2

tc G  is the speed of shear body wave in the medium. 

The normal to the geometrically inhomogeneous surface ( )y h x  which is free from 

mechanical loads reads as follows: 

      2 2
( ) ( ) 1 ( ) ;  1 1 ( ) ;0n h x h x h x h x     , (2.3.2) 

the boundary condition    ( , , ) ( ) ( , , ) ( ) 0zx x xy yx y t n h x x y t n h x      takes the form 

( ) ( )

( , , ) ( , , )
( ) 0

y h x y h x

w x y t w x y t
h x

x y 

 
   

 
. (2.3.3) 

Naturally, it is merely a model problem about propagation of high-frequency 

horizontally polarized monochromatic shear wave signal in the isotropic elastic layer-

waveguide  ;  ( ) ;  x y h x z   , the surfaces ( )y h x   of which are non-smooth 

and free from mechanical loads, considered in short-wave approximation 0 0H , 

where 0H  is the basic depth of the elastic waveguide.  
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In the case of short-wave approximation along with condition (2.3.3), we have to 

indicate also a condition on the wave field at infinity, i.e. when y . For instance, if 

the attenuation condition is satisfied at infinity, i.e.  

( , , ) 0
y

w x y t


 , (2.3.4) 

then there exists a localized wave on the surface ( )y h x  of the half-space due to presence 

of surface geometric heterogeneities. If the wave field is not attenuated at infinity, then the 

presence of the surface geometric heterogeneity does not lead to localization of the wave 

signal. 

The equation (2.3.1) with the boundary condition (2.3.3) and the condition of 

attenuation at infinity (2.3.4) form a mathematical boundary value problem. To reveal the 

effects of heterogeneity of the half-space surface on the amplitude-frequency characteristic 

of the propagating plane wave signal   0 0 0( , , ) ( ) expw x y t W A y i k x t   , and then 

assess the accuracy of the method of sections and the virtual hypotheses MELS [9, 10], the 

solution of the formulated boundary value problem will be implemented in two ways. The 

first way is the direct solution. 

 

Fig. 2.3.1 Virtual selection of near-surface rough zones as inhomogeneous layer 

of variable thickness 

 

Physical heterogeneity of the environment or geometrical heterogeneity of the 

waveguide surface naturally lead to interaction of amplitude-phase of the plane 

monochromatic wave signal   0( , , ) ( ) expw x y t W A y i kx t   . Due to geometric 

heterogeneity of the waveguide surface the propagating wave is presented as follows: 

  0( , , ) exp ( , ) exp ( , )w x y t W U x y i x y t    , (2.3.5) 
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where  ( , ) ln ( , )wU x y A x y  is the logarithm of the amplitude function, ( , )wA x y  is the 

amplitude function, and  ( , )x y t   is the phase function of the propagating wave. Then 

from the linear boundary value problem (2.3.1), (2.3.3) and (2.3.4) we come to the nonlinear 

interaction of the logarithm of the amplitude function ( , )U x y  and phase function 

 ( , )x y t   [8, 19]. 

Since the presence of the half-space non-smoothness (see (2.3.3)) leads to amplitude-

phase interaction, the solutions of the obtained boundary value problem are presented with 

complex characteristics, namely wave attenuation coefficient 
2 2

1 21 k i       

and wave number 
1 2k k ik . Here   1 2 1 2tk ik c i       is the complex relative 

phase velocity. Satisfying the complex representation of the wave 

   

  
0 1 1 2 2 2

1 1 2 2 1

( , , ) exp exp

exp ,

w x y t W k k y k x

i k x k k y t

 

  

    

     

 (2.3.6) 

from conditions (2.3.3) and (2.3.4) we obtain complex dispersion equation 

   1 1 2 2 1 1 1 2 2 2( ) ( ) 0ik h x i k k k k k h x          , (2.3.7) 

from which we obtain conditions for existence of non-trivial solution 

1 0  ; 2 ( )h x   ;      1 2 0 ( )i ih x       ; 

2 0k  ;   2 0  ;          
1 2

2

1 0( ) 1 ( )tk k x c h x


   . (2.3.8) 

Thus, for propagation of plane shear wave signal   0 0 0 0( , , ) expw x y t W i k x t    

in elastic half-space with non-smooth surface ( )y h x , from the propagating plane body 

waves are formed not attenuated wave fields as along the depth of the elastic half-space, as 

well as along the direction of the propagation 

( , , ) ( , , ) ( , , )w x y t w x y t w x y t   , (2.3.9) 

or in expanded form 

  
 

1 2
2

0 0

1 2
2

0 0

w ( , , ) exp ( ) 1 ( )

                      exp 1 ( ) .

x y t W ik h x h x y

i k h x x t







      
 

            

 (2.3.10) 
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Unlike half-space with smooth boundary, the propagation of plane shear wave signal in 

half-space with non-smooth surface brings to distortion of permanent amplitude on plane 

fronts of propagating and reflecting waves, i.e. 0 0 0k x t  . Thus, 

      
1 2

2

0 0 0( , , ) exp ( ) 1 ( ) expw x y t W ik x h x y h x i t



          
 

. 

The distorted wave field in the half-space  ;  ( );  x y h x z     will take the 

following form 

    
    

 

1 2
2

0

0 0
1 2

2

0

exp ( ) 1 ( ) +

w( , , ) exp

exp ( ) 1 ( )

ik x h x y h x

x y t W i t

ik x h x y h x







         
    

        
   

. (2.3.11) 

From relations (2.3.9)-(2.3.11) it becomes obvious, that the distortion of propagating and 

reflecting waves occurs along the unit tangent vector of the non-smooth 

surface:       2 2
( ) 1 1 ( ) ;  ( ) 1 ( ) ;  0h x h x h x h x      . (2.3.12) 

Moreover, the presence of the non-smoothness ( ) 0h x   on the half-space surface 

generates vibrations in the direction of “ y ” of the form 

   
1 2 1 2

2 2

0 0cos ( ) 1 ( ) sin ( ) 1 ( )k h x h x y i k h x h x y
             

         
, (2.3.13) 

and the presence of the non-smooth surface ( ) 0h x   leads to the distortion of the flat front 

of propagation in the direction “ x ”, i.e. 0 0 0k x t  of the form 

 
1 2

2

0cos 1 ( )k x h x
   

   
. (2.3.14) 

Let 0 const   is the eigen-frequency of the wave signal source for the established 

dynamics, and the speed of bulk shear wave 0 0tc G const   in the half-space 

material. Then, dispersion will occur either in wavelength or wave number 

 

 

2

0

1 2
2

0

( ) 1 ( ) ,

( ) 1 ( ) .

x h x

k x k h x

 



  

  
 

 (2.3.15) 
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It follows from (2.3.15) that 0( )x  , i.e. the surface heterogeneity increases the 

wavelength with respect to the length of the wave signal. Then the corresponding frequency 

of oscillation will be  
1 2

2

0 0( ) 1 ( )x h x  


   
 

. 

The nature of the change in the wavelength, or self-induced oscillation frequency 

(dispersion) for the propagation of the wave signal is definitely determined by the nature of 

the surface heterogeneity and depends on the relative linear characteristics of non-

smoothness: *  is the average pitch and R  is the maximal height of the ledge of surface 

roughness. 

The analytical solution and discussion of the results were convincingly possible due to 

maximal simplicity of the selected model boundary value problem. In the case of 

complicated mathematical boundary value problem corresponding to geometric 

heterogeneity (docking of two rough surfaces with or without adhesive) or when it is 

necessary to take into account arising physical inhomogeneity of the material of the 

waveguide, the method of direct solutions will not always be of help. 

For a more complete detection of surface wave phenomena near the non-smooth surface 

of the half-space let us resolve the problem by the method of virtual sections and 

introducing the hypotheses MELS [9, 10]. Since surface non-smoothness as a geometric 

heterogeneity is localized in the near-surface area of the half-space, along the line y R  , 

where R  is the maximal valley of non-smoothness, let us virtually cut the homogeneous 

near-surface layer of variable thickness  ;  ( );  x R y h x z     . Then we also 

will have the homogeneous half-space  ;  ;  x y R z     , which is in full 

contact with the virtually cut layer (Fig. 2.3.1). 

It is obvious that in the resulting layered waveguide along with equation (2.3.1) in two 

separated areas, boundary condition (2.3.3) on the mechanically free, non-smooth surface 

( )y h x  and conditions of the wave amplitude attenuation at infinity, on the plane of the 

virtual section y R  , the conditions of conjugation of the elastic field  

   

   

1 2

1 2

, , , , ;

, , , ,
,

y R y R

y R y R

w x y t w x y t

w x y t w x y t

y y

 

 



 


 

 (2.3.16) 
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must be satisfied. 

The solution in half-space attenuating at infinity has the known form 

 
1 01( , , ) exp( )

i kx t
w x y t W ky e





  . Taking into account the thinness of introduced layer of 

variable thickness, let us represent the solution in it by means of shear displacements on the 

surfaces of introduced layer: 

         2 1 2 1, , , , , , ( ), , ,ww x y t w x R t g x y w x h x t w x R t        . (2.3.17) 

Here, the shear wave field distribution function along the variable thickness of the layer is 

taken to be 

     , ( )wg x y sh k y R sh k h x R          , (2.3.18) 

in order to satisfy conditions of conjugation (2.3.16) on the plane of virtual sections. For this 

it is necessary that on the surface of the layer  , ( ) 1wg x h x   and  , 0wg x R  . 

Moreover, taking into account that in homogeneous half-space have the known form 

 
1 01( , , ) exp( )

i kx t
w x y t W ky e





  , in homogeneous layer 

 ;  ( );  x R y h x z      it must be expressed by wave harmonics exp( )ky . 

Then, the elastic shear in the layer will take the form 

       2 01, , 1 exp( ) expw x y t W sh k y R kR i kx t          , (2.3.19) 

when  ,y R h x     

For investigation of existence of nontrivial solutions, from the boundary conditions 

(2.3.3) we obtain the dispersion equation 

    ( ) 1 ( ) ( ) 0ikh x sh k h x R k ch k h x R               . (2.3.20) 

Obviously, in the case of waveguide smooth surface, i.e. when ( ) 0h x  , equations (2.3.20) 

and (2.3.7) has only the trivial solution 0k   corresponding to non dispersion and non 

attenuation along the depth of the shear waves. Simplifying (2.3.20) we will arrive at 

 

 

1 ( )
( )

( )

sh k h x R
k ikh x

ch k h x R






    
  

. (2.3.21) 

For ultrasonic wavelengths, i.e. when  0 max max2 1 ( )R h x R    , from (2.3.21) it 

follows that the wave interaction argument  ( ) 0k h x R   . For wave signals ”longer” 
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than the height of maximal ledge maxR , i.e. when  2 1 ( )R h x R    , from (2.3.21) it 

follows that the wave interaction argument  ( ) 1k h x R  . It is easy to see that in both 

cases the factor on the right hand side of (2.3.21) tends to unity without changing the sign 

and the equation itself acquires the form (2.3.7), naturally with bounded solutions (2.3.8): 

1 2 0 ( )i ih x       ;    
1 2

2

0 0( ) 1 ( )k x k h x


  ; 

 
1 2

2

0 0 0( ) 1 ( )x h x  


   
 

;  
2

0 0( ) 1 ( )x h x     . (2.3.22) 

Therefore, introducing unknown function ( )i x    the solution of (2.3.21) will take the 

form 

( )ih x  ;    
1 2

*( ) ( ) ( )nk x n h x R h x
 

      ; n  (2.3.23) 

In fact, the heterogeneity of the half-space surface when signal (2.3.19) with parameters 

(2.3.22) is propagating generates similarity oscillations due to the ratio of the wave signal 

length and variable thickness of the virtually selected layer 

 
 

   

 

   
 

* 0

0

0 02

1
, , 1 exp

1 ( ) ( ) 1 ( ) ( )

                    exp .
2 1 ( ) ( )

n n

n y R n
w x y t W sh i i

h x R h x h x R h x

n R
i k x t

h x R h x

       
                 

  
   

   

. (2.3.24) 

The length and frequency of the generated oscillations are represent by relations 

   
2

*( ) 2 ( ) ( )n x h x R n h x      ;    
1 2

*( ) ( ) ( )n tx n c h x R h x 
 

       , (2.3.25) 

respectively. It becomes obvious from (2.3.25) that these in-layered oscillations do not exist 

if ( ) 0h x  , or simply vanish when ( )h x R  or in the case of large numbers of forms 

1n . 

Thus, considering the characteristics of the dispersions (2.3.23) in the near-surface 

selected layer of thickness  ;  ( )y R h x  , for elastic shear we obtain 

     * * *

1

, , , , , ,n n

n

w x y t w x y t w x y t





    . (2.3.26) 

Thus, using the method of virtual sections and introducing hypothesis MELS, from (2.3.17) 

and (2.3.18) new, commensurable with linear dimensions of the non-smoothness 
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oscillations of length  ( )k h x R    are revealed. At that naturally all possible modes 

of length 
*( )n x  from (2.3.24) occur. Note that in the weakly inhomogeneous surface of the 

half-space when the variable thickness of near-surface layer is much smaller than the 

wavelength of the signal, i.e.   0( )h x R  , and in the case of strictly inhomogeneous 

surface of the half-space when the variable thickness of near-surface layer is much bigger 

than the wavelength of the signal, i.e.   0( )h x R  , we get the same wave fields with 

characteristics (2.3.22). 

Equivalent Dynamic Bearing Load On The Surface. The presence of inhomogeneous 

surface leads to interaction of plain wave with non-smoothness. Introducing the equation of 

motion (2.3.1) in the virtually cut layer ( )R y h x    in the form 

2 2

2 2

yzw w
G

x y t

 
  

  
, (2.3.27) 

and integrating it over the variable thickness of layer we derive the difference between 

mechanical tension on the virtual surface y R   which is equivalent to presence of the cut 

layer of variable thickness in the near-surface layer  

( ) ( )
2 2 2

( )
* * *

2 2 2

h x h x

h x

yz R

R R

w w w
G dy G dy

x t y

 

   
      

     . (2.3.28) 

Taking into account the surface conditions (2.3.3) and (2.3.16) and the expression (2.3.26), 

(2.3.24) for shear in the cut layer ( )R y h x    and (2.3.9), as well as (2.3.11) for shear in 

the homogeneous half-space y R   , for equivalent load we will obtain 

( )
*

( )

w w
( )

h x

yz R
y h x y R

G h x
x y

 

   
       

   

. (2.3.29) 

Consequently, the problem of propagation of shear wave signal in a half-space with non-

smooth surface is equivalent to the problem of propagation of monochromatic shear signal 

in a half-space loaded with dynamic force 
( ) ( )h x h x

yz yzR R 
     and smooth surface 

y R  . 

Internal resonance. It was shown above, that when shear wave signal is propagating in 

a waveguide with non-smooth surface, stationary oscillations with characteristics (2.3.8) and 
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(2.3.15) occur. On the other hand, due to the presence of non-smoothness commensurable 

with the wavelength of the propagating signal, oscillations in the near-surface area 

( )R y h x    are generated characterized by relations (2.3.23) and (2.3.25). Since in the 

first version of solution (2.3.11), the induced frequency has the form 

 
1 2

2

0 0( ) 1 ( )x h x  


   
 

, then it will be resonant at  

 
1 2

2

0 0( ) 1 ( )r x h x  


   
 

, (2.3.30) 

or at the critical points, where ( ) 0h x  . 

In the case of corrugated (sinusoidal) surface of the half-space when 

   *( ) 2 sin 2 1h x R x       we obtain    * *( ) cos 2h x R x      , therefore the 

induced frequency will be resonant when    * *( ) cos 2 0h x R x       . This implies, 

that in the case of macro non-smoothness of the half-space surface when the average pitch 

 

Fig. 2.3.2.a. Shortwave signal with 0 0.25 R    

for macro inhomogeneous surface with 

4

* 10 R   . 

 

 

Fig. 2.3.2.b. Shortwave signal with 

0 0.25 R   for waviness surface with 

2

* 10 R   . 

 

Fig. 2.3.2.c. Shortwave signal with 0 0.25 R    

for rough (sawtooth) surface with * R  .  
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of the irregularities is smaller or equal than the maximal height of the ledges, i.e. 

4

* max 10R  , we have  
2 7max ( ) 10h x   for all wavelengths of the signal. 

Thus, in this case the surface of the half space behaves as an ideally smooth, and 

internal resonance occurs in the excitations of eigen-frequencies 0( )r x  . 

From the other hand side, for this heterogeneity and in cases when the linear parameters 

of the corrugated (sinusoidal) surface correspond to other classifications of non-smooth 

surface, for instance, surface waviness with * max 50 100R   or surface roughness with 

* max 10R  , then the internal resonance can occur in separate segments of the 

configurations of the surface. 

Local internal resonances may occur in surrounding areas of the critical points of the 

surface roughness, near the tops of the ledges or near pits troughs where the derivative of 

then non-smoothness tends to zero, i.e. ( ) 0h x  . In the case of corrugated surface of the 

half-space these zones are   *1 4 ( )mx m o      , m . For virtually cut near-

surface layer ( )R y h x    in the case, when the non-smoothness is commensurable with 

the wavelength of the propagating signal, oscillations generated in the near-surface area, 

characterized by multiple frequencies    
1 2

*( ) ( ) ( )n tx n c h x R h x 
 

        are 

revealed. Equating the value of 
*( )n x  to the value of the frequency of stationary waves 

 
1 2

2

0 0( ) 1 ( )x h x  


   
 

, we will obtain a condition of internal resonance with 

respect to the ratio of the wavelength and geometric characteristics of the non-smoothness: 

   

 

2

0 2

( ) ( )2

1 ( )

h x R h x

n h x


 
 


. (2.3.31) 

In the case of corrugated (sinusoidal) surface when    *( ) 2 sin 2 1h x R x       the 

internal resonance will occur at 

       

    
      

2

*

* 02
0

*

sin 1 cos
; ;

1 cos

x R xR
n F R R x

R x

   
  


  

            
   

, (2.3.32) 

where    *2 0;2x x     is the scaling argument along the surface. 
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From solution of (2.3.11) it follows that in the near-surface layer ( )R y h x   , as 

well as throughout the depth of the half-space, a single dispersive, not attenuated form of 

oscillations is propagating. If the presence of the surface heterogeneity generates 

oscillations along the variable thickness of the layer of the form 

   
1 2 1 2

2 2

0 0cos ( ) 1 ( ) sin ( ) 1 ( )k h x h x y i k h x h x y
             

         
 then these 

heterogeneities distort the plane fronts of the wave signal 

 
2

0 0 1 1 ( )ik x ik h x x     
  

 along directions of propagation and reflection.  

 

Fig. 2.3.3.a. Shortwave signal 

with 0 0.25 R    for macro 

inhomogeneous surface with 

4

* 10 R   . 

 

 

Fig. 2.3.3.b. Shortwave signal 

with 0 0.25 R    for waviness 

surface with 
2

* 10 R   . 
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Fig. 2.3.3.c. Shortwave signal with  

0 0.25 R    for rough 

(sawtooth) with surface * R  . 

For different characteristic of inhomogeneities of the surface of the half-space; macro 

inhomogeneity with 
4

* max 10R , waviness with 
2

* max 10R , roughness with 

* max 10R  or sawtoothness with * max 1.0R , the forms of the wave surface 

corresponding to the solution of (2.3.11) are shown in Fig. 2.3.2.a; b; c. For similar 

parameters, the forms of the wave surfaces corresponding to the solution of (2.3.26) taking 

into account (2.3.24) are shown in Fig. 2.3.3.a; b; c. 

From Fig. 2.3.2 and Fig. 2.3.3 it is avident that in the case of the surface sawtooth 

inhomogeneity, the wave surface is distorted more quickly and dramatically compared with 

weakly inhomogeneous surface. 

From solution (2.3.26) with (2.3.24) it is obvious that the new approach reveals the 

effect of surface inhomogeneities analytically, and the wave field is represented as a 

package of waveforms. It can be seen as well that in the case of weakly inhomogeneous 

surfaces when the wavelength of the signal is much larger than the height of the surface 

roughness  2 1 ( )R h x R    , solutions of the distortion of phase function in 

directions of propagation and reflection of the wave are the same 

 
2

1 1 1 1 ( )ik x ik h x x     
  

 in both approaches, while the distortions of the 

amplitude along the thickness of the virtually cut thin layer in the near-surface area are 

different: the difference is     1 1cos ( ) 1 exp ( )W k h x y R ik h x R        . 

In the particular case of corrugated (sinusoidal) surface of the half-space 

   0( ) 2 sin 2 1h x R x       where *  is the average pitch, and R  is the maximal 

height of the ledge (or the maximal depth) of the non-smooth surface, distortions of the 
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amplitude functions from non-smooth surface along the depth of the half-space for different 

types of weakly inhomogeneous surfaces with  0max ;R  are plotted in Fig. 2.3.2. 

Note, that for macro roughness with * 1000R   or surface waviness with 

* 50 1000R  , the weak inhomogeneity of the surface is governed by the ratio of the 

wavelength of the signal and the average pitch of irregularities is 
0 *p   , while in cases 

of roughness with * 50R   (or even greater) and sawtoothness with * 1R  , the weak 

heterogeneity is governed by the ratio of the signal wavelength and the maximal height of 

the non-smoothness is 
0q R . It turns out that in cases of weakly inhomogeneous macro 

roughness or waviness of the surface (thick waveguide) in the near-surface zone, the elastic 

shear does not differ qualitatively, and the quantitative relative difference is of order 

12 810 10   (Fig. 2.3.2.a). 

In the case of rough irregularity of the surface (Fig. 2.3.2.b), the elastic shear is strongly 

distorted along the depth of the half-space when 0 0,5 2R  , and especially in the near-

surface area ( )R y h x    significant quantitative differences between solutions (2.3.11) 

and (2.3.26) arise. Distortions of the phase functions from the non-smooth surface along the 

signal wavelength 0 *0,5    is plotted in Fig. 2.3.4 for different types of surface 

inhomogeneities. 

In the case of macro inhomogeneous surface, the phase distortion can be neglected and 

is established along the propagation of the wave signal quite slowly (Fig. 2.3.4.a). From 

comparison of the distortion graphs (Fig. 2.3.4.a, 2.3.4.b, 2.3.4.c) it is clear that the 

waviness and the roughness are more sensitive for high frequency wave signals. It is also 

evident that the distortion of the phase functions starts immediately after the signal passage 

of the first ledge of the non-smooth surface. 

The analysis of possible internal resonance is also carried out numerically in particular 

case of corrugated (sinusoidal) surface of the half-space    0( ) 2 sin 2 1h x R x      . 

From the condition of coincidence of minimal frequency of multiple induced harmonics 

   
1 2

*( ) ( ) ( )n tx n c h x R h x 
 

        with the main frequency distortion of the 

amplitude  
1 2

2

0 0( ) 1 ( )x h x  


   
 

, we get the resonant wavelength of the signal. 
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1
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a. Shortwave, comparable in length with signal 

0 *0.5    for macro inhomogeneous surface 

4

* 10 R    

 

1 2 3 4 5 6
x

0.9996

0.9997

0.9998

0.9999

1.0000

y

 

b. Shortwave, comparable in length with signal 

0 *0.5    for waviness surface  

1 2 3 4 5 6
x

1.0

0.5

0.5

1.0

y

 

c. Shortwave, comparable in length with signal 

0 *0.5    for strong rough surface 

* 0.8 R    

 

Fig. 2.3.4: The distortion of phase function at the propagation of wave signal in the case of different 

types of irregularities of the surface 

For macro inhomogeneity when 
4

* max 10R  and for waviness when 
2

* max 10R , 

internal resonance can occur in the half-space, when ultrashort wave signals propagate 

correspondingly for 
11

0 *10 
 and 

5

0 *10 
. If the surface is rough, * max 10R , or 

sawtooth, * max 1.0R , then the internal resonance occurs for wavelengths 
2

0 *10 
 

and 0 *3.6   (Fig. 2.3.5.1–2.3.5.4), correspondingly, commensurable with the sizes of 

the non-smoothness. 
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Fig. 2.3.5.1. Resonant length 
11

0 *10    Fig. 2.3.5.2. Resonant length 
5

0 *10    

  

Fig. 2.3.5.3. Resonant length 
2

0 *10    Fig. 2.3.5.4. Resonant length 0 *3.6      
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2.4 The propagation of plane wave signal in piezoelectric waveguide with surface 

geometrical and physical inhomogeneities 

 

The case of propagation of horizontally polarized (SH) electroelastic monochromatic 

wave signal 
0( , , ) ( ) exp ( )jF x y t F y i kx t    in piezoelectric layer-waveguide is 

considered [16]. The piezoelectric material belongs to one of these classes of symmetry: 

2mm – rhombic, 4mm – tetragonal, 6mm – hexagonal, in which the material anisotropy 

allows the separation of plane non-electroactive and antiplane electroactive deformations 

[6]. Using the method of virtual cuts [10], the piezoelectric homogeneous waveguide with 

near-surface inhomogeneities, is modeled as three-layer composite in vacuum (Fig. 2.4.1), 

with two vacuum half-spaces  0 0, ,x h R y z         and 

 0 0 0, ,x h R y h R z         ,  0 0, ,x y h R z        . 

 

Fig. 2.4.1. Layer with near-surface inhomogeneities (surface roughness and 

burning of material) 

The main piezoelectric layer is homogeneous, near-surface inhomogeneous 

piezoelectric layer  1 0, ( ),x h R y h x z        from above and near-surface 

inhomogeneous piezoelectric layer from the bottom 

 2 0, ( ) ,x h x y h R z         , where 02h  is the base thickness of layer-

waveguide, R  is the maximal height of profile irregularities, ( )y h x   are the rough 

surfaces of layer,  max min 0max ( ) ( )R h x h x h  . 

For the study of propagation of horizontally polarized electroelastic monochromatic 

signal       , 0;0; , , ; , ,u w x y t x y t   , the quasi-static equations of electroelasticity can 

be represented in a unified vector form in the selected layers: 
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 div , ;n n nx y w   div 0;nD   grad ,k nE     ; 0;1;2.n k   (2.4.1) 

The mechanical stresses 
( )n

zx , 
( )n

yz  and the components of the electric displacement vector 

( )n

xD , 
( )n

yD , for piezoelectric of mentioned symmetries can be written in the following 

forms: 

   

   

   

   

( )

, ,

( )

, ,

( )

, ,

( )

, ,

, , ,

, , ,

, , ,

, , ,

n

zx n n x n n x

n

yz n n y n n y

n

x n n x n n x

n

y n n y n n y

G x y w e x y

G x y w e x y

D e x y w x y

D e x y w x y

   

   

   

   

 (2.4.2) 

where the material physico-mechanical characteristics  ,nG x y ,  ,ne x y ,  ,n x y , 

 ,n x y  are piecewise continuous, weakly varying functions in layers n , respectively: 

 

     

 

     

1 0 0 0

0 0 0

2 0 0 0

1 sin ( ) ( ) ,        ; ( )

, ,                                                               ;

1 sin ( ) ( ) ,        ( );

m m

n

m m

y x y x y h R h x

x y y h R h R

y x y x y h x h R

 

 

          
 


     


             

 (2.4.3) 

Here     0 0( ) ( ) 4 1 ( ) 2 ( ) ( )m mx y x m y h R h x h R         . 

The representation (2.4.3) describes the continuity of physical-mechanical 

characteristics of the material on the virtual cuts  0y h R   , as well as slightly 

tightened material characteristics  0 01    on free rough surfaces ( )y h x   of the layer. 

The parameter  m   formally can be taken as the number of cycles of surface 

processing, and  0 02 1R h  is a small geometrical parameter that describes the 

surface roughness. 

On the mechanically free surface ( )y h x   the boundary conditions 

 

 

1 0

(1) (1)

(1) (1)

00

( , ( ), ) exp( ( ))( ) ( , ( ), ) ( , ( ), ) 0,     ,

( ) ( , ( ), ) ( , ( ), ) exp( ( )) ,( ) 1

i kx t

zx yz

i kx t

x y

x h x t kh x eh x x h x t x h x t

h x D x h x t D x h x t kh x ek i h x











        

            
 (2.4.4) 

 

 

(2) (2)

2 0

(2) (2)

00

( ) ( , ( ), ) ( , ( ), ) 0,   ( , ( ), ) exp( ( )) ,

( ) ( , ( ), ) ( , ( ), ) exp( ( ))( ) 1

i kx t

zx yz

i kx t

x y

h x x h x t x h x t x h x t kh x e

h x D x h x t D x h x t kh x ek i h x











           

            
 (2.4.5) 

are satisfied. 
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On the virtual cuts  0y h R    full continuity conditions of electromechanical fields 

are satisfied. 

For the study of the phenomena of the propagation of horizontally polarized (SH) elastic 

and electric monochromatic signal 
0( , , ) ( ) exp ( )jF x y t F y i kx t    in the virtually 

selected layers 1,2n   taking into account (2.4.3), the equations of electroelasticity can be 

represented as follows: 

   

 

0 0 , 0 0 ,

( )

0 0 , , 0 0 , , ,

0 0

1 ( , ( )) 1 ( , ( ))

( , ( )) ( , ( ))

1 ( , ( )) ,

n n xx n n xx

n

n x n x n x n x yz y

n n

G f y h x w e f y h x

G f y h x w e f y h x

f y h x w

      

        

    

 (2.4.6) 

   

 

0 0 , 0 0 ,

( )

0 0 , , 0 0 , , ,

0 0

1 ( , ( )) 1 ( , ( ))

( , ( )) ( , ( ))

1 ( , ( )) ;

n n xx n n xx

n

n x n x n x n x y y

n n

e f y h x w f y h x

e f y h x w f y h x D

f y h x w

       

        

    

 (2.4.7) 

 

     

   

     

1 0

0 0 0

2 0

, ( ) sin ( ) ( ) ,        ; ( )

, ( ) , ( ) 0,                                  ;

, ( ) sin ( ) ( ) ,    ( );

n

f y h x x y x y h R h x

f y h x f y h x y h R h R

f y h x x y x y h x h R

     


    


       

 (2.4.8) 

If the nature of the heterogeneity in near-surface zones 1  and 2  (2.4.3) is known, by 

introducing the hypotheses MELS on the distribution of the shear elastic and electric 

potential through the thickness of these layers, we respectively obtain 

     

       

 

1 0 0 0

1 0 0 0

0 0

, , 1 sin ( ) ( ) , , ,

, , sin ( ) ( ) , ( ), , ,

, , ,

m m

m m

w x y t x y x w x h R t

x y t x y x x h x t x h R t

x h R t

 

 



       
 

          

 

 (2.4.9) 

     

       

 

2 0 0 0

2 0 0 0

0 0

, , 1 sin ( ) ( ) , , ,

, , sin ( ) ( ) , ( ), , ,

, , .

m m

m m

w x y t x y x w x h R t

x y t x y x x h x t x h R t

x h R t

 

 



        
 

            

  

 (2.4.10) 

Here appears the primary electroelastic signal in homogeneous layer 0  

   
0 01 0 02 0( , , ) sin( ) cos( )

i kx t
w x y t A ky A ky e


     , 
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 
 

01 02

0 0
01 0 02 0

0

sin( ) cos( )

( , , )
sin( ) cos( )

i kx t

B ky B ky

x y t ee
A ky A ky



  
 

   
     

, (2.4.11) 

and electrical oscillations damped from the non-smooth surfaces ( )y h x   through the 

depth of corresponding vacuum half-spaces, 

 ( )

0( , , ) exp( )
i kx te

n x y t ky e


   . (2.4.12) 

Electromechanical surface dynamic loads. Geometric heterogeneity of the surface 

(roughness) acts on the propagating wave. On the base surfaces of the layer 0( )y h R    

surface variable electromechanical loads occur during the propagation of horizontally 

polarized electroelastic monochromatic signal 
0( , , ) ( ) exp ( )jF x y t F y i kx t    in the 

waveguide: 

0 0

0 0

( ) ( )

( ) 2 2

0 0 , 0 , 0 0 0

( ) ( )

0 0 , 0 0 ,, ,

( , ( )) ( , ( ))

( , ( )) ( , ( )) ,

h x h x

n

yz n xx n xx n n n

h R h R

h x h x

n n x n n xx x
h R h R

x h R G w e w dy f y h x w dy

G f y h x w dy e f y h x dy

 

 

               

             

 

 

 (2.4.13) 

0

0 0

( )

( )

0 0 , 0 ,

( ) ( )

0 0 , 0 0 ,, ,

( , ( ))

( , ( )) ( , ( )) ,

h x

n

y n xx n xx

h R

h x h x

n n x n n xx x
h R h R

D x h R e w dy

e f y h x w dy f y h x dy



 

         

              



 

 (2.4.14) 

where the under-integral expressions with indices 1;2n   are determined by the MELS 

hypotheses (2.4.9) and (2.4.10) and correspond to the layers 1  and 2 . Obviously, for 

perfectly smooth surfaces of the layer, when 0R , we have 0 0   and 0( )h x h , and 

these loads disappear. 

Choosing the non-smoothness of the layer surface in the sinusoidal form (2.4.16), we 

are able to evaluate the distribution of given mechanical stresses 
( )( )yz x  and electric 

displacements 
( )( )yD x

 at the base surfaces 0( )y h R    of the layer. 

Dispersion of wave signal and internal resonance. Inputting MELS hypotheses 

(2.4.9) and (2.4.10), some boundary conditions are satisfied automatically. From the 

continuity conditions of shear stresses and normal components of the electric displacement 
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on the virtual slices 0( )y h R   , we get a system of four complex algebraic 

homogeneous equations with respect to complex amplitude constants. The condition for the 

existence of non-trivial solutions gives a dispersion equation in the form of 

 2

0 0
8 8

det ,  ( ),  ,  0ijg k h x


    . (2.4.15) 

Choosing non-smoothness of the layer surface in the sinusoidal form 

 0 0 0( ) 1 1 sin( )h x h k x     ,  where  0 02 1R h ,  (2.4.16) 

We can evaluate the frequency dispersion  2

0 0 0,  ,        in each period of the 

surface irregularities  00;x  . 

Numerical analysis shows that in the propagation of short waves 0R h , taking 

into account only near-surface heterogeneity of the material, without taking into account the 

surface roughness, it leads to the Love model problem: homogeneous half-space, bordered 

with a transversely weakly inhomogeneous thin layer. During the propagation of short 

waves 0R h , considering only the surface roughness, excluding the surface 

inhomogeneity of the material leads to another Love model problem: homogeneous half-

space bordering with longitudinally weakly inhomogeneous thin layer. It turns out, that 

during the propagation of shear wave signal, surface inhomogeneity leads to the appearance 

of wave with certain length 0  , where 0  is the average step of periodic roughness. 

Newly appeared wave disappears periodically in some zones 

 * *

1 2 0 0; ( 1) ;n nx n n          on step 0n  of periodic roughness. 

From conditions (2.4.4) and (2.4.5) on the non-smooth surfaces ( )y h x  , we get the 

condition of possible internal resonance, when the electromechanical surface loads (2.4.13) 

and (2.4.14) excite a wave with the same frequency of propagating wave signal 

a)  
22

0 ( )h x  , (2.4.17) 

b)      
1

0 0 0 01 1 sin( )k x m kh


        . (2.4.18) 

It is seen from equation (2.4.17), that the internal resonance in the adhesive layer is possible 

for "slow" electroelastic wave signals in elastic half-spaces with 

    2

3v 1 ( )tk C h x
   . The resonant frequency 
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        
2

3 0 0 0 0 02 1 2 sin 2R t R R RC x                   (2.4.19) 

obviously depends on the relative linear dimensions of the wave signal and roughness. 

For the internal resonance frequency from equation (2.4.18) in the adhesive layer we 

obtain the following form: 

          
2 2( ) 2

3 0 0 0 02 1 1 2 1 sin 2 2 /m

R t R R R RC x m h


                 
 

. (2.4.20) 

Graphical representation of the frequency ( )Rx   in interval  00;x   are shown in Fig. 

2.4.2.a and 2.4.2.b, respectively, for (2.4.20) and (2.4.19). 
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Fig. 2.4.2.a Frequency characteristic of internal resonance, for localized signal 
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Fig. 2.4.2.b Frequency characteristic of internal resonance, for periodic signal 

mod 
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CHAPTER 3 

THE INFLUENCE OF SURFACE WEAK INHOMOGENEITIES ON THE 

PROPAGATION OF HIGH-FREQUENCY ELECTROELASTIC (SH) WAVE 

SIGNAL IN THE PIEZOELECTRIC WAVEGUIDE 

 

3.1 The propagation of high-frequency electroelastic (SH) wave signal in homogeneous 

piezoelectric layer waveguide with mechanically free and electrically open (closed) 

weakly inhomogeneous surfaces 

 

Assume, that a piezoelectric layer occupies in the Cartesian coordinate system 

 ;  ;  x y z  the domain     ;  ;  x h x y h x z       and has non-smooth 

surfaces  y h x . Generally, the surface non-smoothness can be efficiently described by 

functions    2y h x L  . Keeping the generality of considerations, the surface 

roughness can be described by 

      

      
0

0

1 sin cos ,

1 sin cos .

h x h k x k x

h x h k x k x

 

 

    

    

   

  
 (3.1.1) 

Suppose, that the surface of the waveguide  y h x  is coated with a soft dielectric 

layer  11e   of negligibly small thickness, forming an electrically open surface. The 

surface of the waveguide  y h x  is coated with a good conductor layer of negligibly 

small thickness, forming an electrically closed surface. 

During technological processing of the basic piezoelectric layer, in addition to the 

surface roughness, inhomogeneity of the material appears in the near-surface areas. Due to 

small thickness, these areas are especially important in studies of shortwave signal 

propagation. To account for these inhomogeneities in the near-surface areas, let us introduce 

virtual sections  0 1y h     and  0 1y h     , dividing the basic waveguide into 

three-layer piezoelectric waveguide consisting of basic homogeneous layer of constant 

thickness  0 02 2 1H h      : 

    0 0 0;  1 1 ; x h y h z          , (3.1.2) 
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and two near-surface thin layers, inhomogeneous over the variable thicknesses 

     0 1x h h x    
 
and      0 1x h h x     , respectively  

(Fig. 3.1.1): 

    0;  1 ; ,x h x y h z          (3.1.3) 

    0;  1 ; .x h y h x z         (3.1.4)
 

 

Fig. 3.1.1 Homogeneous piezoelectric waveguide with weakly inhomogeneous, mechanically 

free and electrically open (closed) surfaces 

 

Let us assume, that high-frequency (short-wave) elastic shear (SH) wave signal is 

propagating in the composite waveguide, where the length of the normal wave is much 

smaller than the base layer thickness: 0 0 02 2H h  . Assume also, that the material of 

the basic piezoelectric layer 0  belongs to the 4mm  (tetragonal) or 6mm  (hexagonal) 

symmetry class, and the 3ox  axis is parallel to the p  axis of piezo-crystal symmetry of 

fourth or sixth order, respectively. Then, the electro-active shear deformation 

 0; 0; ( , , );  ( , , )w x y t x y t  is separated from non-electro-active plane deformations 

 ( , , );  ( , , );  0; 0u x y t v x y t . The quasi-static equations of electroelasticity for these crystals 

in the basic layer of composite waveguide have the following forms 

2 2

0 0 0( , , ) ( , , ),tw x y t c w x y t    (3.1.5) 

2 2

0 15 11 0( , , ) ( ) ( , , ).x y t e w x y t     (3.1.6) 

Here 15e  is the piezoelectric modulus and 11  is the dielectric coefficient of the 

homogeneous piezoelectric. 

The equations of electroelasticity of laterally inhomogeneous piezoelectric layer must 

be solved in p

 , respectively: 
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2 2

2 2

( , , )( , , ) ( , , )
( ) ( ) ( ) ( , , )

yz x y tw x y t x y t
G y e y y w x y t

x x y






 
   

 
   

  
, (3.1.7) 

2 2

2 2

( , , )w ( , , ) ( , , )
( ) ( ) 0.

yD x y tx y t x y t
e y y

x x y



 
 

 
  

  


  (3.1.8) 

For the homogeneous material, the material relations for mechanical stress and induction of 

electric field are 

0 0 0
0 0

0 0 0
0 0

( , , ) ( , , )
( , , ) ,

( , , ) ( , , )
( , , ) ,

yz

y

w x y t x y t
x y t G e

y y

w x y t x y t
D x y t e

y y

 
 

 

 
 

 







  (3.1.9) 

while in the inhomogeneous case: 

( , , ) ( , , )
( , , ) ( ) ( ) ,

( , , ) ( , , )
( , , ) ( ) ( ) .

yz

y

w x y t x y t
x y t G y e y

y y

w x y t x y t
D x y t e y y

y y







  
 

  
 

 
 

 

 
 

 

  (3.1.10) 

Electromechanical boundary conditions 

( ) ( , ( ), ) ( , ( ), ) 0,zx yzh x x h x t x h x t  

  
    (3.1.11) 

( , ( ), ) 0.x h x t     (3.1.12) 

are satisfied on the outer, mechanically free, electrically closed surface ( )y h x  of the 

inhomogeneous over the variable thickness 
0(1 ) ( )h h x      layer. 

Electromechanical boundary conditions 

( ) ( , ( ), ) ( , ( ), ) 0,zx yzh x x h x t x h x t  

  
     (3.1.13) 

( ) ( , ( ), ) ( , ( ), ) 0,x yh x D x h x t D x h x t 

  
     (3.1.14) 

are satisfied on the outer, mechanically free, electrically open surface ( )y h x


  of 

inhomogeneous over the variable thickness 
0

( ) (1 )h x h 
 

   layer. 

Full continuity conditions of electromechanical fields for homogeneous and inhomogeneous 

piezoelectric layers are satisfied on the virtual section 0(1 )y h      

0 0 0( , (1 ), ) ( , (1 ), )w x h t w x h t        ; (3.1.15)
 

0 0 0( , (1 ), ) ( , (1 ), )x h t x h t          ; (3.1.16) 
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0

0 0( , (1 ), ) ( , (1 ), )yz yzx h t x h t   

      ; (3.1.17) 

0

0 0( , (1 ), ) ( , (1 ), )y yD x h t D x h t 

      . (3.1.18) 

Similarly, the continuity conditions of electromechanical fields are satisfied on virtual 

sections 0(1 )y h    : 

0 0 0( , (1 ), ) ( , (1 ), );w x h t w x h t       (3.1.19) 

0 0 0( , (1 ), ) ( , (1 ), );x h t x h t         (3.1.20) 

0

0 0( , (1 ), ) ( , (1 ), );yz yzx h t x h t   

     (3.1.21) 

0

0 0( , (1 ), ) ( , (1 ), ).y yD x h t D x h t 

      (3.1.22) 

In addition to the material relations (3.1.9), (3.1.10), due to the presence of non-smooth 

surfaces in the multilayer waveguide, tangential components of mechanical strain and 

electric field induction of corresponding layers are involved in the boundary conditions 

(3.1.11), (3.1.13) and (3.1.14): 

( , , ) ( , , )
( , , ) ( ) ( )zx

w x y t x y t
x y t G y e y

x x


   

 

 
 

 
 (3.1.23) 

( , , ) ( , , )
( , , ) ( ) ( )x

w x y t x y t
D x y t e y y

x x


  

 

 
 

 
 (3.1.24) 

The boundary conditions (3.1.11)-(3.1.14) do not include the electric potential and the 

normal component of the electric field induction of the external media, since the surface 

( )y h x  is isolated by perfect conductor (cf. (3.1.12)), and the surface ( )y h x  is 

isolated by good dielectric (cf. (3.1.14)). 

Thus, the homogeneous piezoelectric layer-waveguide with surface inhomogeneities is 

modelled as a multilayer waveguide of different materials. The wave process (localization 

of shear elastic wave in the near-surface inhomogeneous thin layers   and  , delay of 

normal waves of certain frequencies, occurrence of dynamic surface loads, etc.) 

investigation during propagation of electroelastic normal shear wave signal is 

mathematically formulated as a boundary value problem with quasi-static equations of 

electroelasticity (3.1.5) to (3.1.8) in corresponding layers with electromechanical boundary 

conditions (3.1.11)–(3.1.22) on the sections of materials separation. 
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 The obtained boundary-value problem is complicated from a mathematical viewpoint 

by the fact, that differential equations (3.1.7) and (3.1.8) with variable coefficients need to 

be solved in   and  . Due to non-smoothness of the surfaces ( )y h x  and ( )y h x , 

the boundary conditions (3.1.11), (3.1.13) and (3.1.14) will also include variable 

coefficients. 

To overcome mathematical difficulties, let us consider so-called weak inhomogeneity of 

the material and surface geometry in the near-surface areas. Then, for the solution of arising 

mathematical boundary value problem, it is convenient to apply a hypothetical approach. 

The wave solution of the system (3.1.5) and (3.1.6) in 0
 
will be written in the form of 

normal wave 

0 0 0( )

0 0 0( , , ) ,
ky ky i kx t

w x y t A e B e e
        (3.1.25) 

 0 0 0( )

0 0 0 15 11 0 0( , , ) ( ) .
ky ky i kx tky kyx y t C e D e e A e B e e

              (3.1.26) 

Here 
2

0 01    is the formation coefficient of elastic waves over the thickness of 0 , 

and    
1 2

0 0 0 0k G    is the phase velocity of the normal wave in 0 . Evidently, in 

general, both of them are functions of the variable wave number ( )k x . 

Considering the thinness of the other two boundary layers and the complexity of the 

analytical solution of the electroelasticity equations in virtually cut layers   and  , 

heterogeneous over the thickness, hypotheses MELS [9, 10, 12] are introduced for 

distributions of elastic shear and potential of electric field. 

Then, in ,  elastic shear and potential of electric field read as follows: 

 

   

0 0

0 0 0 0

( , , ) , (1 ),

; ; ( ) ( , ( ), ) , (1 ), ,

w x y t w x h t

f y kh h x h w x h x t w x h t





 

    

  

     

 (3.1.27) 

 

   

0 0

0 0 0 0

( , , ) , (1 ),

; ; ( ) ( , ( ), ) , (1 ), .

x y t x h t

f y kh h x h x h x t x h t

  

  

 

    

  

     

 (3.1.28) 

Here    0 0 0 0( ; ; ( ) ) ( (1 )) ( ( ) (1 ))f y kh h x h sh k y h sh k h x h              is the 

distribution (or formation) function of the electromechanical field in inhomogeneous 

piezoelectric layer, corresponding to the electroelasticity equations (3.1.7), (3.1.8) and 

corresponding boundary conditions (3.1.19)-(3.1.22). Moreover, the condition (3.1.19) and 
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(3.1.20) are satisfied automatically with choice of distribution functions (3.1.27), (3.1.28). 

Furthermore, the functions ( , ( ), )w x h x t   and ( , ( ), )x h x t   are obtained from the 

conditions (3.1.13) and (3.1.14), and therefore distributions (3.1.27) and (3.1.28) are 

expressed in terms of arbitrary constant amplitudes  0 0 0 0; ; ;A B C D  of electroelastic wave 

signal: 

 

0 0 0 0

0 0 0 0

(1 ) (1 )

0 0

0 (1 ) (1 )

0 0

( , )

(1 )
,

kh kh

kh kh

w x y A e B e

sh k y h
A e B e

   

   
 



 

 

  



    



 

        

 (3.1.29) 

 

0 0 0 0 0 0

0 0

(1 ) (1 ) (1 ) (1 )0
0 0 0 0

0

(1 )

0

0
0

0

0

( , )

1 ( , ) 1
1

( , )
(1 )

1 ( , ) 1
1

( , )

kh kh kh kh

kh

e
x y C e D e A e B e

x k
A e

k x ke
sh k y h

x k
B e

k x k

     

 








  
 

 

  

   



     





  

 



  

       

  
      

   
      

  
      

   

 

0 0

0

0

(1 )

(1 )

0

0

(1 )

0

1 ( , ) 1
1

( , )
(1 ) .

1 ( , ) 1
1

( , )

kh

kh

kh

x k
C e

k x k
sh k y h

x k
D e

k x k









  
 



  











  

 

 

  

 
 
 

 
 
 
 

   
       

    
       

   
           

 (3.1.30) 

Note, that the formation function 0 0( ; ; ( ) )f y kh h x h   of unknown characteristics of the 

wave field is represented by the formation coefficient  
1 2

2 2

0( ) 1k k G    
 
 

 and 

by the variable thickness  x 
 of the layer. Similarly, the elastic shear and the potential of 

the electric field in   by virtue of (3.1.27) and (3.1.28) are represented in the following 

forms: 

 

   

0 0

0 0 0 0

( , , ) , (1 ),

; ; ( ) ( , ( ), ) , (1 ),

w x y t w x h t

f y kh h x h w x h x t w x h t





 

    

   

      

 (3.1.31)

 

    0 0 0 0( , , ) 1 ; ; ( ) , (1 ),x y t f y kh h x h x h t          (3.1.32)
 

where the formation function 

   0 0 0 0( ; ; ( ) ) ( (1 )) ( ( ) (1 ))f y kh h x h sh k y h sh k h x h              in the 
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inhomogeneous piezoelectric layer is represented by the new formation coefficient 

 
1 2

2 2

0( ) 1k k G    
 
 

 and variable thickness  x  . 

The conditions (3.1.12), (3.1.15) and (3.116) are satisfied automatically with choice of 

distribution functions (3.1.29) and (3.1.30), and we obtain ( , ( ), )w x h x t   from the 

condition (3.1.11). Therefore, the distributions (3.1.29) and (3.1.30) are expressed in terms 

of arbitrary constant amplitudes  0 0 0 0; ; ;A B C D  of electroelastic wave signal 

 

 

 

0 0 0 0

0 0

0 0

0

(1 ) (1 )

0 0

2
(1 )20 0

0 0

2
(1 )20 0
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0

(1 )0
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0

0

0

( , )
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( , )

1
( , )
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1 1

( , )

1 1

( ,
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w x y A e B e

A e
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B e
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C e
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 
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

 
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 


 
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 
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



  
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

 

 

 

 

 

 

 
     

 

 
      
 

     
 

    
 

  0 (1 )

0

,

)

kh
D e

k

 

 
 
 
 
 
 
 
 
 
 
  

  
  

 (3.1.33) 

 
0 0

0 0 0 0

(1 ) (1 )

0 0
0

(1 ) (1 )0
0 0

0

(1 )
( , ) 1 .

( , )

kh kh

kh kh

C e D e
sh k y h

x y e
A e B ex k

 
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 





 

 

  

 

   



  
            

        
 

 (3.1.34) 

Here  0( , ) ( ) (1 )x k sh k h x h     
     characterizes the functions of the near-

surface distributions in   and  , respectively. 

The distributions (3.1.25), (3.1.26), as well as (3.1.29)-(3.1.32), describe the picture of 

distribution over the thickness of the composite waveguide. 

For evaluation of the wave number  0 0( ) ; ;k h x h   
, which satisfies dispersion 

equation, we satisfy the boundary conditions (3.1.17), (3.1.18), (3.1.21) and (3.1.22) and 

obtain a system of four homogeneous algebraic equations with respect to the amplitude 

constants  0 0 0 0; ; ;A B C D . Then, the dispersion equation is obtained from the condition of 

existence of nontrivial solutions: 

    0 0
4 4

det ; ; ; ; ; ; , 0.ij k k k kg G e h x k x

     (3.1.35) 
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Here      0 0
4 4

; ; ; ; ; ; ,ij k k k kg G e h x k x   


 have bulky forms and therefore are not 

brought. Due to the presence of expressions ( ) ( , ( ), )zxh x x h x t 

 
   and 

( ) ( , ( ), )xh x D x h x t

 
   in the boundary conditions (3.1.11), (3.1.13) and (3.1.14), the 

dispersion equation (3.1.35) is extremely complicated. Nevertheless, for selected formation 

functions 0 0( ; ; ( ) ),f y kh h x h  the imaginary part of the dispersion equation is satisfied 

automatically. 

It is easy to see from the expressions of the distributions of the physico-mechanical 

fields, the distribution of amplitude and frequency of the wave field over the waveguide 

depend on as physico-mechanical constants of boundary materials, as well as on 

characteristic linear dimensions of the surface non-smoothness of the composite waveguide. 

Frequency characteristics of propagating wave signal. It is shown in [12], that 

during propagation of long-wave signals, the interaction of propagating normal wave and 

weak surface non-smoothness practically does not occur. 

The dispersion equation (3.1.35) obviously does not admit analytical solution. 

Nevertheless, it is studied numerically. In the case of propagation of short-wave (high 

frequency) electroelastic signal, the presence of surface geometrical inhomogeneities leads 

to the dependence of the wave number on the x coordinate, i.e. the signal has the form 

 0exp ( )k x x t  . Even though in this case damping waves of the form 

 0exp ; ( )i k x y     , can be neglected and uncoupled problems for two piezoelectric 

half-spaces with different electromechanical surface conditions can be obtained, but then the 

influence of the surface non-smoothness in the base layer of the waveguide can not be 

accurately computed. Therefore, quantitatively small, but qualitatively important 

components of the wave field can be preserved during computations. 
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For the comparative analysis, we first present the characteristic frequency description of 

the plane electroelastic shear wave signal propagation in piezoelectric homogeneous 

waveguide with mechanically free, non-smooth surfaces when one of the surfaces of the 

waveguide-layer is electrically open and the other one is electrically closed. 

Fig. 3.1.2 shows the dependence of the wave number for fast normal waves for 

harmonic mode of oscillations  0 ( ( ))sh k y h x  . It also follows, that for each source 

frequency 0 const  , fast wave signal is converted into a wave process with a given wave 

number 0( )k x , with corresponding period cycle of the wave formation. The period (in the 

calculations it is set to 200T  ) is formed by the relationship of linear dimensions of the 

base layer and surface roughness. Fig. 3.1.2 and Fig. 3.1.3 show, that there are certain 

periodic zones   0 1; 200x x  , where the wave number ( )k x  and frequency ( )x  are 

not defined. It is also obvious, that for high frequency (shortwave) signal of order 

25  m, the frequency can increase from 
385 10   Hz to 

55 10   Hz. 

 

Fig. 3.1.2 Dependence of the wave number ( )k x  on the x  coordinate at fixed source 

frequency 0 200000  Hz 
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Fig. 3.1.3 Frequency dependence ( )x  of fast wave signals on the x  coordinate when 

the wave number is prescribed 0 50k  m
-1

 

Note, that even though the wave number decreases in the areas of definition and the 

frequency increases synchronously, their ratio remains constant, and also ultrashort wave 

solutions do not exist, for example, when 250nk   m
-1

. 

For slow waves, when the phase speed is smaller than the values of shear body waves in the 

piezoelectric, the distortion of wave functions and frequencies occurs similarly, but in 

different directions. Unlike fast waves, in this case  the wave number and the frequency are 

changing in different intervals and by opposite signs of monotonicity (Fig. 3.1.4 and Fig. 

3.1.5). Note, that in this case the same periodic zones   0 1; 200x x   appear, where the 

wave number ( )k x  and frequency ( )x  are not defined. It is also seen from Fig. 3.1.4 and 

3.1.5, that for high-frequency (short-wave) signal of order 80   m, the frequency can 

decrease from 
3285 10   Hz to 0  Hz. 

From the other hand, the wave number increases in the areas of definition and the 

frequency decreases synchronously, nevertheless their ratio remains constant. The ultrashort 

wave solutions do not exist, for example, when 165nk  m
-1

. 
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Fig. 3.1.5 Frequency dependence ( )x  of fast wave signals on also appear the x  

coordinate when the wave number is fixed to 0 160k   m
-1

 

 

Obviously, on the basis of  (3.1.25), (3.1.26), (3.1.29), (3.1.30), (3.1.33) and (3.1.34), the 

distribution of the electroelastic wave over the thickness of the piezoelectric waveguide 

 

Fig. 3.1.4 Dependence of the wave number ( )k x  on the x  coordinate at fixed 

source frequency 0 100000  Hz 
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taking into account virtually selected geometrically and physically inhomogeneous near-

surface layers, is computed (see Fig. 3.1.6 and Fig. 3.1.7). 

 

      

     

      

0

0 0 0

0

, , ;                 1 ;   

, , ;                            1 ;  1

, , ;                 ; 1

w x y h x in y h h x

w x y w x y in y h h

w x y h x in y h x h



 



   

 

   

    


       


     

 (3.1.36) 

 

      

     

      

0

0 0 0

0

, , ;                 1 ;   

, , ;                            1 ;  1

, , .                 ; 1

x y h x in y h h x

x y x y in y h h

x y h x in y h x h

 

   

 

   

 

   

    


       


     

 (3.1.37) 

 

 

 

 

Fig. 3.1.6 Distribution of the elastic shear over the thickness of the waveguide 

   h x y h x    

 

 

 

  

Fig. 3.1.7 Distribution of the electric field potential over the thickness of the waveguide 

   h x y h x    

 

Numerical computations are done for test values of adjacent material parameters of the 

composite waveguide and linear dimensions of the surface non-smoothness of the 

waveguide. The algorithm of calculations and obtained formulas allow to construct the 
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required composite waveguide with desired parameters, as well as predict 

phenomenological materials for waveguides with better features. 
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3.2 The propagation of high-frequency electroelastic (SH) wave signal in homogeneous 

piezoelectric layer waveguide with mechanically rigidly clamped and electrically open 

(closed) weakly inhomogeneous surfaces 

 

Let us assume, that in Cartesian coordinate system  ;  ;  x y z  we have a piezoelectric 

layer     ;  ;  x h x y h x z       with non-smooth surfaces   2y h x L . 

Suppose, that the smooth surfaces  y h x  of the waveguide are mechanically rigidly 

clamped, forming mechanically closed borders. The non-smooth surface  y h x  is 

clamped with a rigid dielectric layer forming electrically closed surface, and the other non-

smooth surface  y h x  is clamped with a soft dielectric layer ( 11e  ) forming an 

electrically open surface. 

During technological processing of the basic piezoelectric layer, in addition to the 

surface roughness, inhomogeneity of the material appears in the near-surface zones. These 

near-surface zones are especially important in studies of shortwave signal propagation in 

composite waveguides. To account for these inhomogeneities in the near-surface zones, we 

first introduce virtual slices  0 1y h     and  0 1y h     . Then, with the basic 

waveguide, we will already consider three-layer piezoelectric waveguide, consisting of 

basic homogeneous layer of constant thickness  0 02 2 1H h      : 

    0 0 0;  1 1 ; x h y h z           , (3.2.1) 

and two inhomogeneous over the thickness near-surface thin layers of variable thicknesses 

     0 1x h h x     
 
and      0 1x h h x      , respectively  

(see Fig. 3.2.1) 

    0;  1 ; x h x y h z          , (3.2.2) 

    0;  1 ; x h y h x z         . (3.2.3) 

Let us assume, that high-frequency (short-wave) elastic shear (SH) wave signal propagates 

in the composite waveguide, the length of which is much smaller than the base layer 

thickness 0 0 02 2H h  . Additionally assume, that the material of the basic piezoelectric 

layer 0  belongs to the tetragonal class 4mm  symmetry or hexagonal class 6mm  
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symmetry, for which, when the axis 3ox  is parallel to the axis of piezo-crystal symmetry p , 

of fourth (or sixth) order, the electro-active shear deformations  0; 0; ( , , );  ( , , )w x y t x y t  

are separated from non-electro-active plane deformations  ( , , );  ( , , );  0; 0u x y t v x y t . 

 

Fig. 3.2.1 Homogeneous piezoelectric waveguide with weakly inhomogeneous, 

mechanically rigidly clamped and electrically open (closed) surfaces 

 

As in the previous paragraph, the quasi-static equations of electroelasticity for these crystals 

in the basic layer of composite waveguide will have the following form: 

2 2

0 0 0( , , ) ( , , ),tw x y t c w x y t    (3.2.4) 

2 2

0 15 11 0( , , ) ( ) ( , , ).x y t e w x y t     (3.2.5) 

The equations of electroelasticity of laterally inhomogeneous piezoelectric layer will be 

solved in virtually selected layers p

  as well, (3.1.7) and (3.1.8) of previous paragraph. 

These equations will be solved taking into account the material relations for the component 

of mechanical strain and induction of electric field of homogeneous material (3.1.9) or 

laterally inhomogeneous material (3.1.10). 

Electromechanical boundary conditions are satisfied on the outer, mechanically rigidly 

clamped, electrically closed surface  y h x  of inhomogeneous, over the thickness near-

surface thin layer with variable thickness    0 1h h x      

( , ( ), ) 0;w x h x t    (3.2.6) 

( , ( ), ) 0.x h x t     (3.2.7) 

Electromechanical boundary conditions are satisfied on outer, mechanically rigidly 

clamped, electrically open surface  y h x  of inhomogeneous over the thickness near-

surface thin layer with variable thickness 
0

( ) (1 )h x h 
 

  : 
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( , ( ), ) 0;w x h x t    (3.2.8) 

( ) ( , ( ), ) ( , ( ), ) 0.x yh x D x h x t D x h x t 

  
    (3.2.9) 

As in the previous problem, full continuity conditions of electromechanical fields for 

homogeneous and inhomogeneous piezoelectric layers are satisfied on virtually selected 

slices 0(1 )y h      and 0(1 )y h    : 

0 0 0( , (1 ), ) ( , (1 ), )w x h t w x h t        , (3.2.10) 

0 0 0( , (1 ), ) ( , (1 ), )x h t x h t          , (3.2.11) 

0

0 0( , (1 ), ) ( , (1 ), )yz yzx h t x h t   

      , (3.2.12) 

0

0 0( , (1 ), ) ( , (1 ), )y yD x h t D x h t 

      , (3.2.13) 

0 0 0( , (1 ), ) ( , (1 ), )w x h t w x h t      , (3.2.14) 

0 0 0( , (1 ), ) ( , (1 ), )x h t x h t        , (3.2.15) 

0

0 0( , (1 ), ) ( , (1 ), )yz yzx h t x h t   

    , (3.2.16) 

0

0 0( , (1 ), ) ( , (1 ), )y yD x h t D x h t 

    . (3.2.17) 

It is seen from the given boundary conditions, that in addition to the commonly used 

material relations, due to the presence of non-smooth surfaces in the multilayer waveguide, 

the tangential component of the induction of the electric field of   is involved in the 

boundary condition (3.2.9): 

( , , ) ( , , )
( , , ) ( ) ( ) .x

w x y t x y t
D x y t e y y

x x


  

 

 
 

 
 (3.2.18) 

The boundary conditions (3.2.6)-(3.2.9) do not include the values of potential and normal 

component of the electric field induction of the vacuum half-spaces, because the surface 

( )y h x  is isolated by perfect conductor (c.f. (3.2.7)), and the surface ( )y h x  is 

isolated by soft dielectric (c.f. (3.2.9)). 

Thus, the homogeneous piezoelectric layer-waveguide with surface inhomogeneities is 

modelled as a three-layer waveguide of different materials. The problem of wave process 

investigation (localization of shear elastic wave in forming near-surface inhomogeneous 

thin layers   and  , delay of normal waves of certain frequencies, occurrence of 

dynamic surface loads, etc.) during the propagation of electroelastic normal shear wave 
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signal, mathematically is formulated as a boundary value problem with quasi-static 

equations of electroelasticity in the respective layers, with coupled electromechanical 

boundary conditions on the slices of materials separation (3.2.6)-(3.2.17). 

From mathematical point of view the obtained boundary-value problem is complicated 

by the fact that in both virtually selected layers   and  , the equations of 

electroelasticity of the laterally inhomogeneous piezoelectric with variable coefficients 

should be solved. Due to non-smoothness of the surface ( )y h x , variable coefficients 

will also be available in the boundary condition (3.2.12). 

To avoid mathematical difficulties, for solving the wave propagation problem, taking 

into account the material weak inhomogeneity and surface geometry in near-surface zones, a 

hypothetical approach is applied. For propagation of normal wave signal in the composite 

waveguide, the wave solution of the system of equations (3.2.4) and (3.2.5) in the basic 

homogeneous piezoelectric layer 0
 
will be written in the form of normal wave: 

0 0 0( )

0 0 0( , , ) ,
ky ky i kx t

w x y t A e B e e
        (3.2.19) 

 0 0 0( )

0 0 0 15 11 0 0( , , ) ( ) .
ky ky i kx tky kyx y t C e D e e A e B e e

              (3.2.20) 

Considering the thinness of the other two boundary layers and the complexity of the 

analytical solution of the electroelasticity equations in virtually selected heterogeneous 

layers   and  , over the thickness of each layer we introduce hypotheses MELS for 

distributions of elastic shear and potential of electric field. The elastic shear and potential of 

the electric field in the virtually selected heterogeneous piezoelectric layer   are 

introduced as follows: 

   0 0 0 0( , , ) 1 ; ; ( ) , (1 ),w x y t f y kh h x h w x h t   
      , (3.2.21) 

 

   

0 0

0 0 0 0

( , , ) , (1 ),

; ; ( ) ( , ( ), ) , (1 ), .

x y t x h t

f y kh h x h x h x t x h t

  

  

 

   

  

     

 (3.2.22) 

Moreover, the condition (3.2.8), (3.2.14) and (3.2.15) are satisfied automatically with the 

choice of distribution function in (3.2.21) and (3.2.22). The surface value ( , ( ), )x h x t   is 

obtained from the condition (3.2.9), and therefore the expressions (3.2.21) and (3.2.22) are 

represented by arbitrary constant amplitudes  0 0 0 0; ; ;A B C D  of electroelastic wave signal: 



104 
 

 
 

 0

0 0

0

( (1 ))
( , , ) 1 , (1 ),

( ( ) (1 ))

sh k y h
w x y t w x h t

sh k h x h

 


 

 

 

  

  
    

  
, (3.2.23)

 

 
 

 
 

0 0

0 0

0 0 0 0

(1 ) (1 )0

0 0

(1 ) (1 )

0 0

0

(1 ) (1 )0
0 00

0
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( , )

( (1 ))
1 .

( ( ) (1 ))

kh kh

kh kh

kh kh

sh k y h
x y C e D e

C e D e
sh k y h

e
A e B esh k h x h

 

 

   

 




 

 


 

 

 

   





  

 

  

  

 
  

  
    

     
        

   

(3.2.24)

 

Note, that the formation function 

   0 0 0 0( ; ; ( ) ) ( (1 )) ( ( ) (1 ))f y kh h x h sh k y h sh k h x h               of unknown 

characteristics of the wave field is represented by the formation coefficient ( )k  and by 

the variable thickness  x 
 of the layer. 

Similarly, the elastic shear and the potential of the electric field in virtually selected 

inhomogeneous piezoelectric layer   are represented in the following forms using the 

relations (3.2.21) and (3.2.22) 

    0 0 0 0( , , ) 1 ; ; ( ) , (1 ),w x y t f y kh h x h w x h t       , (3.2.25) 

    0 0 0 0( , , ) 1 ; ; ( ) , (1 ),x y t f y kh h x h x h t         , (3.2.26) 

where the formation function 

   0 0 0 0( ; ; ( ) ) ( (1 )) ( ( ) (1 ))f y kh h x h sh k y h sh k h x h               in the 

inhomogeneous piezoelectric layer is represented by the new formation coefficient ( )k  

and variable thickness    0 1h h x    , characterizing the layer. 

The conditions (3.2.6), (3.2.7), (3.2.10) and (3.2.11) are satisfied automatically with the 

choice of distribution function in (3.2.25) and (3.2.26). Therefore, the expressions of the 

distributions (3.2.25) and (3.2.26) are expressed by arbitrary constant amplitudes 

 0 0 0 0; ; ;A B C D  of electroelastic wave signal: 

 

 
 0 0 0 0

0 (1 ) (1 )

0 0

0

(1 )
( , ) 1

( ) (1 )

kh kh
sh k y h

w x y A e B e
sh k h x h

   
 

 
 

    



  

         
     

, (3.2.27) 
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 

 

0 0

0 0 0 0

(1 ) (1 )

0 0
0

(1 ) (1 )15
0 00

11

(1 )
( , ) 1

( ) (1 )

kh kh

kh kh

C e D e
sh k y h

x y e
A e B esh k h x h

 

   

 


 


 

 

  

 

   

  

  
            

            
 

. (3.2.28)

 

The introduced distributions of characteristics of the wave field (3.2.19), (3.2.20), as 

well as (3.2.25)-(3.2.28) describe the picture of distribution over the thickness of the 

composite waveguide. In order to evaluate the wave number  0 0( ) ; ;k h x h   
, which is 

determined from dispersion equation, we obtain a system of four homogeneous algebraic 

equations with respect to the amplitude constant  0 0 0 0; ; ;A B C D , satisfying the boundary 

conditions (3.2.12), (3.2.13), (3.2.16) and (3.2.17). 

The dispersion equation of the formed wave field is obtained from the condition of 

existence of nontrivial solutions in the following form: 

    0 0
4 4

det ; ; ; ; ; ; , 0,ij k k k kg G e h x k x   

  (3.2.29) 

where 

 

 

 

0

0

11 0 0 0 0

2 0
0

0

1
( ( ) (1 ))

exp (2 )

1
( ( ) (1 ))

sh k h x h
g G k kh

sh k h x h

 

 
   

 


 



  

 



  

  
       

     
  

        

, 

 

 

 

2 0
0

0

12 0 0 0 0

0

0

1
( ( ) (1 ))

exp (2 )

1
( ( ) (1 ))

sh k h x h
g G k kh

sh k h x h

 


 
   

 

 



  

 



  

  
        

    
  

       

, 

 13 0

0

1
( ( ) (1 ))

g e k
sh k h x h



 


  

 
     

; 
 14 0

0

1
( ( ) (1 ))

g e k
sh k h x h



 


  

 
      

, 

 21 0 0 02 exp (2 )g e kh        ,  22 0 0 02 exp (2 )g e kh       , 

 0

23 24 0

( ( ) (1 ))
1

sh k h x h
g g

 




  



  
   

 
, 

 0

24 0

( ( ) (1 ))
1

sh k h x h
g

 




  



  
  

 
, 

   
2 0 0

31 0

0 0

( ) ( ) 1 ( ( ) (1 ))
e e

g h x h x e k cth k h x h
e


  

 


      



 
         

 
, 
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   
2 0 0

32 0

0 0

( ) ( ) 1 ( ( ) (1 ))
e e

g h x h x e k cth k h x h
e


  

 


      



 
          

 
, 

   

   
0

33 00

( ) 1 (x) ( (x) (1 ))

exp (2 )( (x) (1 ))

kh x h ch k h h

g khsh k h h

  

  



     

   



        
 

     
 
 

, 

   

   
0

34 00

( ) 1 ( ) ( ( ) (1 ))

exp (2 )( ( ) (1 ))

kh x h x ch k h x h

g khsh k h x h

  

  



     

   



       
 

      
 
 

, 

   2

41 42 0 0 01g g G e     ,    2

42 0 0 01g G e    , 44 0g  , 43 0g  . 

Formally, the dispersion equation is obtained in complex form. Obviously this is due to 

the presence of expression ( ) ( , ( ), )xh x D x h x t

 
   in the boundary condition (3.2.9). 

However, for 0 0( ; ; ( ) )f y kh h x h , the imaginary part of the dispersion equation is satisfied 

automatically. 

It is easy to see from the coefficient relations of distributions of physic-mechanical 

fields (3.2.19), (3.2.20), (3.2.23), (3.2.24), (3.2.25) and (3.2.26), that and amplitude 

distribution and frequency of the wave field through the waveguide depend on the physico-

mechanical constants of boundary materials, as well as characteristic linear dimensions of 

the surface non-smoothness of composite waveguide. 

Frequency characteristics of propagating wave signal. It is shown in [12], that 

during propagation of long-wave signals, the interaction of propagating normal wave and 

weak surface non-smoothness practically does not occur. Although in this case wave forms, 

damped over the depth of the base layer, i.e.  0exp ; ( )i k x y     , can be neglected, 

reducing to two uncoupled problems of piezoelectric half-spaces with different 

electromechanical surface conditions, but in this case we generally lose the ability to 

accurately calculate the influence of the surface non-smoothness for forming waves in the 

base layer of the waveguide. Therefore, in the calculations remain quantitatively small, but 

qualitatively important components. 

First, present the characteristic frequency description of the problem of plane 

electroelastic shear wave signal propagation in piezoelectric homogeneous waveguide with 
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mechanically rigidly clamped, weakly inhomogeneous surfaces, when one surface of the 

waveguide-layer is electrically open and the other is electrically closed. 

Fig.3.2.2 shows the dependence of the wave number for fast normal waves for harmonic 

mode of oscillations  0 ( ( ))sh k y h x  . 

 

 

 

 

 

 

 

 

 

 

 

 

It follows from Fig. 3.2.2, that for each source frequency 0 const  , fast wave signals are 

converted into a wave process with a given wave number 0( )k x , with corresponding period 

cycle of the wave formation. 

 

Fig. 3.2.3 Frequency dependence ( )x  of fast wave signals on x  coordinate for fixed 

wave length 0 50k   m
-1

 

 

 

Fig. 3.2.2  Dependence of  the wave number ( )k x  on x  coordinate at fixed source 

frequency 0 200000  Hz 
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The period (in the calculations it is 200T  ) is formed by the relationship of linear 

dimensions of the base layer and surface roughness. Fig. 3.2.2 and Fig. 3.2.3 show that there 

are certain periodic zones   0 1; 200x x  , where the wave number ( )k x  and frequency 

( )x  are not defined. It is also seen from the figures that at high frequency (shortwave) 

signal of order 25  m, the frequency can raise from 
385 10   Hz to 

55 10   Hz. 

Note, that the wave number decreases in the areas of definition and the frequency increases 

synchronously and their ratio remains constant, moreover ultrashort wave solutions do not 

exist, for example, when 250nk   m
-1

. 

For slow waves when the phase speed is less than the values of shear body waves in the 

piezoelectric, the distortion of wave functions and frequencies occur similarly, but in 

different directions. In contrast to the case of fast waves, in this case, the wave number and 

the frequency are changing in other intervals and by opposite signs of monotony (see Figs. 

3.2.4 and 3.2.5). 

It is necessary to pay attention to the fact, that in this case the same periodic zones 

  0 1; 200x x   appear, where the given wave number ( )k x  and frequency ( )x  are not 

defined. It is also seen from Fig. 3.2.4 and 3.2.5, that for high-frequency (short-wave) signal 

of order 80  m, the frequency can decrease from 
3285 10   Hz to 0  Hz. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.2.4 Dependence of the wave number ( )k x  on x  coordinate at fixed source 

frequency 0 100000   Hz 
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Note that the wave number increase in the areas of definition and the frequency 

decreases synchronously and their ratio remains constant, moreover, ultrashort wave 

solutions do not exist, for example, when 165nk   m
-1

. 

 

Fig. 3.2.5 Frequency dependence ( )x  of fast wave signals on x  coordiante for  fixed 

wave length 0 160k   m
-1

 

 

Figs. 3.2.6 and 3.2.7 show the dispersion dependence of fast and slow waves, 

respectively. 

Obviously with the help of obtained relations, the distribution of electroelastic wave 

through all thickness of piezoelectric waveguide is built taking into account the virtually 

selected geometrically and physically inhomogeneous near-surface layers, respectively (Fig. 

3.2.8 and Fig. 3.2.9): 

 

      

     
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 (3.2.30) 
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 (3.2.31) 
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Fig. 3.2.6 Frequency dependence ( )k  of fast wave signals on the wave number k   for 

fixed x  coordinate 200x     

 

Fig. 3.2.7 Frequency dependence ( )k  of fast wave signals on the wave number k  for 

fixed x  coordinate  200x   

 

 

  
 

Fig. 3.2.8 Distribution of the elastic shear over the thickness of the waveguide 

   h x y h x    
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Fig. 3.2.9 Distribution of the electric field potential over the thickness of the waveguide 

   h x y h x    
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§ 3.3 The propagation of high-frequency electroelastic (SH) wave signal in 

homogeneous piezoelectric layer waveguide with weakly inhomogeneous surfaces filled 

with perfect conductor (or dielectric) 

 

Let us assume, that in Cartesian coordinate system  ; ;x y z  we have a piezoelectric 

layer     ;  ;  x h x y h x z       with rough surfaces  y h x
 
(see [17]). 

Generally, surface roughness is described by a random function   2y h x L . Based on 

these, without losing the generality of further considerations, the surface roughness can be 

described respectively by functions of the weak inhomogeneity of  y h x  

     

     

0

0

1 sin cos ,

1 sin cos .

h x h k x k x

h x h k x k x

 

 

    

    

     

    

 (3.3.1) 

Assume that the surface roughness  y h x  up to the surface  0 1y h     is filled 

with a perfect dielectric material, and the surface roughness  y h x  up to the surface 

 0 1y h      is filled with a perfect conductor material. Then we obtain a composite 

waveguide of constant thickness consisting of three layers: the conductor layer 

    0;  - 1 ;c x h y h x z        , which has thickness 

     0 1c x h h x     , the base piezoelectric layer 

    ;  ;  x h x y h x z      , which has the thickness 

     p x h x h x   , and the dielectric layer 

    0;  1 ; d x h x y h z        , which has the thickness  

     0 1d x h h x     . These three layers are of variable thickness. 

In studies on propagation of shortwave signals in composite waveguide is also 

important to consider near-surface zones of material heterogeneity, arising during 

technological processing of the base piezoelectric layer. For accounting these 

heterogeneities in the near-surface zones, we take virtual sections  0 1y h     and 

 0 1y h     . Instead of the waveguide base layer of variable thickness, we are going to 

consider a three-layer piezoelectric waveguide consisting of a base homogeneous layer 



113 
 

    0 0 0;  - 1 1 ; x h y h z         , (3.3.2) 

and two inhomogeneous, through the thickness, near-surface thin layers of variable 

thickness (Fig. 3.3.1) 

    0;  1 ; p x h x y h z         , (3.3.3) 

    0;  1 ; p x h y h x z        . (3.3.4) 

Thus, in the near-surface zone at the surface  y h x  there is a composite layer 0  

composed of laterally inhomogeneous piezoelectric and homogeneous perfectly conducting 

materials 
p c

     . 

Also in the near-surface zone at the surface  y h x  we have a composite layer 0  

composed of homogeneous dielectric and laterally inhomogeneous piezoelectric materials 

p d

    . 

Thus, the homogeneous piezoelectric waveguide, surface roughness of which is filled, is 

modeled as a multilayered waveguide made of different materials. We will investigate the 

localization of the shear elastic wave in the formed near-surface inhomogeneous thin layers 

p c

      and 
p d

     (Fig. 3.3.1). 

 

Fig. 3.3.1 Five-layer waveguide with base homogeneous piezoelectric layer with 

weakly inhomogeneous, mechanically free surfaces 

 

Let us assume, that high-frequency (shortwave) elastic shear (SH) wave signal, whose 

length is much less than the base layer thickness 
0 02h , is propagating in the composite 

waveguide. Moreover, the material of the main piezoelectric layer 0  belongs to the class 

4mm  of tetragonal symmetry, or to the class 6mm  of hexagonal symmetry, for which, 
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when the axis 3ox  is parallel to the axis of symmetry of the fourth (or sixth) order 

piezoelectric crystal p , electroactive shear deformation     0; 0; , , t ;  , , tw x y x y  is 

separated from the non-electroactive plane deformation     , , t ;  , , t ;  0; 0u x y v x y . 

Quasi-static equations of electroelasticity for these crystals in the base layer of the 

composite waveguide have the following forms: 

   2 2

0, , , ,tw x y t c w x y t   , (3.3.5) 

     2 2

15 11, , , ,x y t e w x y t    . (3.3.6) 

The equations of electroelasticity of laterally inhomogeneous piezoelectric layer must 

be solved in virtually selected layers 
p

  respectively: 

 
 
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 
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 
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 
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  
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 (3.3.7) 
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 
  

  
, (3.3.8) 

where the material relations for the component of mechanical stress and induction of the 

electric field have the forms: 

   
 

 
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y y
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 (3.3.9) 

The motion equation for perfectly conducting layer 
c  will have in the following form: 

   
 

2

2

, ,, ,
, ,

cc

yzc c c
x y tw x y t

G w x y t
x y




  


  

 
, (3.3.10) 

where the relation for mechanical shear stress is the following  

 
 , ,

, ,

c

c c

yz

w x y t
x y t G

y
 







. (3.3.11) 

The equations of elastic shear motion and electrostatics in the dielectric layer 
d  will 

have the following forms: 
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   
 

2

2

, ,, ,
, ,

dd

yzd d d
x y tw x y t

G w x y t
x y




  


  

 
, (3.3.12) 

   2

2

, ,, ,
0

dd

yd
D x y tx y t

x y


 




  

 
, (3.3.13) 

where the material relations for the component of mechanical stress and induction of the 

electric field have the forms 

 
 , ,

, ,

d

d d

yz

w x y t
x y t G

y
 







;  

 , ,
, ,

d

d d

y

x y t
D x y t

y


 




 


. (3.3.14) 

The separation of the near-surface zones to multiple layers leads to increase in the 

number of boundary conditions on existing and introduced virtual surfaces of the multilayer 

waveguide. 

Only one boundary condition will be posted on the mechanically free surface 

 0 1y h       of the perfectly conducting thin layer 

 
 

0

0

, ,
, , t 0

c

c c

yz

y h

w x y t
x h G

y


 





 


   


. (3.3.15) 

The continuity conditions of the electromechanical fields in piezoelectric and the 

continuity conditions of the perfect conductor are satisfied on the rough surface  y h x : 

     , , , ,cw x h x t w x h x t   ;   , , 0x h x t   , (3.3.16) 

               , , , , , , , , .c c

zx zy zx zyh x x h x t x h x t h x x h x t x h x t    

     
       (3.3.17) 

The continuity conditions of the electromechanical fields of homogeneous and 

heterogeneous piezoelectric layers are satisfied on the virtually selected surface 

 0 1y h       

     

     
0 0 0

0 0 0

, 1 , , 1 , ,

, 1 , , 1 , ,

w x h t w x h t

x h t x h t

 

   

  

  

    

    
 (3.3.18) 

     0

0 0, 1 , , 1 ,yz yzx h t x h t   

      , (3.3.19) 

     0

0 0, 1 , , 1 ,y yD x h t D x h t 

      . (3.3.20) 
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Similarly, the continuity conditions of the electromechanical fields, taking into account 

the fact that the electric field is related to the vacuum half-space from outside through the 

dielectric layer, are satisfied on the mechanically free surface  0 1y h    : 

       0 0, 1 , , 1 ,
ed x h t x h t        , (3.3.21) 

  
 

 0

0

1

, ,
, 1 , t 0

d

d d

yz

y h

w x y t
x h G

y


 





 

 


  


, (3.3.22) 

    
   

 0

0

1

, ,
, 1 , t 0

e

ed

y

y h

x y t
D x h

y



 





 


   


. (3.3.23) 

The continuity conditions of electromechanical fields considering surface roughness are 

satisfied on the rough surface  y h x : 

     , , , ,dw x h x t w x h x t    ,      , , , ,dx h x t x h x t     , (3.3.24) 

               

               

, , , , , , , , ,

, , , , , , , , ,

d d

zx zy zx zy

d d

x y x y

h x x h x t x h x t h x x h x t x h x t

h x D x h x t D x h x t h x D x h x t D x h x t

    

     

 

     

     

     
 (3.3.25) 

and on the virtually selected surface  0 1y h     are satisfied the continuity conditions of 

electromechanical fields  

     

     
0 0 0

0 0 0

, 1 , , 1 , ,

, 1 , , 1 , ,

w x h t w x h t

x h t x h t

 

   

  

  

  

    
(3.3.26) 

     

     

0

0 0

0

0 0

, 1 , , 1 , ,

, 1 , , 1 , .

yz yz

y y

x h t x h t

D x h t D x h t

   

 



 



 

  

  
 (3.3.27) 

It is shown from the introduced boundary conditions, that tangential components of the 

mechanical strain and induction of electric fields are participating in conditions (3.3.17) and 

(3.3.25) due to the rough surfaces  h x  respectively. The tangential components of the 

mechanical strain and induction of electric fields have the following forms: 

   
 

 
 

   
 

 
 

, , , ,
, , ,

, , , ,
, , ,

zx

zx

w x y t x y t
x y t G y e y

x x

w x y t x y t
D x y t e y y

x x







  

 

  

 

 
 

 

 
 

 

 (3.3.28) 
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 
 , ,

, ,

d

d d

zx

w x y t
x y t G

x
 







,  

 , ,
, ,

d

d d

x

x y t
D x y t

x


 




 


, (3.3.29) 

 
 , ,

, ,

c

c c

zx

w x y t
x y t G

x






. (3.3.30) 

The potential and normal component of induction of the electric field in the vacuum 

half-space on the surface  0 1y h     are involved in the boundary conditions (3.3.20) 

and (3.3.21) as well. The quasi-static potential of the electric field 
   , ,
e

x y t  is 

determined from the equation  

   2 , , 0
e

x y t  . (3.3.31) 

Considering its decay at infinity y , it will have the following form 

     0

0, ,
e i kx tkyx y t E e e




 . (3.3.32) 

Thus, the problem of wave process (localization of shear elastic waves in formed near-

surface heterogeneous thin layers 
p c

      and 
p

d    , delay of normal 

waves of certain frequencies, dynamic surface load, etc.) is reduced to the boundary-value 

problem for system of quasi-static equations (3.3.5)-(3.3.8), (3.3.10), (3.3.12), (3.3.13) and 

(3.3.31) with related electromechanical boundary conditions (3.3.15)-(3.3.30). 

Problem Solution. The normal wave solution of the system of equations (3.3.5) and 

(3.3.6) in the base homogeneous piezoelectric layer 0  at propagation of normal wave 

signal in the composite waveguide, is written in the following form 

   00 0

0 0 0, ,
i kx tky ky

w x y t A e B e e
      , (3.3.33) 

      00 0

0 0 0 15 11 0 0, ,
i kx tky kyky kyx y t C e D e e A e B e e

  
        . (3.3.34) 

Considering the thinness of the other four boundary layers and the complexity of the 

analytical solution of the electroelasticity equations in virtually cut heterogeneous layers 

p

  and 
p

 , through the thickness of each layer we introduce the hypotheses MELS [9, 10, 

12] for distributions of elastic shear and potential of electric field. 

The elastic shear and electric field potential in the virtually selected heterogeneous 

piezoelectric layer 
p

  we introduce in the following forms: 
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    
  

  
  0 0 0 0

0 0

, ,
, , ; , 1 , ,

, 1 ,

w x h x t
w x y t f kh h x h w x h t

w x h t




 

   



 
    
   

 (3.3.35) 

    
  

  
  0 0 0 0

0 0

, ,
, , ; , 1 , .

, 1 ,

x h x t
x y t f kh h x h x h t

x h t


  

 

 

   



 
    
   

 (3.3.36) 

Here           0 0 0 0; 1 1f kh h x h sh k y h sh k h x h         
            is the 

distribution function (or formation) of electromechanical field in heterogeneous 

piezoelectric layer, corresponding to the electroelasticity equations (3.3.7) and (3.3.8). 

Obviously, here the formation function   0;f kh h x   of the indefinite characteristics of 

the wave field is represented by the formation coefficient    
1 2

2 2

0 1k k G    
  
 

 

and by the variable thickness of the layer    0 1h x h    . 

Similarly, the elastic shear and potential of electric field in the homogeneous dielectric 

layer 
d

  have the following form: 

    
  

  
  

0

0 0

, 1 ,
, , ; , , ,

, ,

d

d d

w x h t
w x y t f kh h x h w x h x t

w x h x t

 
  

 

  
   
  

 (3.3.37) 

    
  

  
  

0

0 0

, 1 ,
, , ; , , ,

, ,

d

d d

x h t
x y t f kh h x h x h x t

x h x t

 
 





  

 

  
   
  

 (3.3.38) 

where the formation coefficient 

          0 0 0; 1d d df kh h x h sh k y h x sh k h h x     
           

in the homogeneous dielectric layer is presented by the parameters of the homogeneous 

layer    
1 2

2 2

0 1d d dk k G   
 

and  d x . In this case, the representations (3.3.37) 

and (3.3.38) automatically satisfy to the boundary conditions (3.3.24) and (3.3.26). 

Similarly, the elastic shear and potential of electric field in the virtually selected 

heterogeneous piezoelectric layer 
p

  will be introduced in the following form: 

    
  

  
  0 0 0 0

0 0

, ,
, , ; , 1 , ,

, 1 ,

cw x h x t
w x y t f kh h x h w x h t

w x h t






   



 
     
    

 (3.3.39) 
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        0 0 0 0, , 1 ; , 1 ,x y t f kh h x h x h t          , (3.3.40) 

where the formation function 

          0 0 0 0; 1 1f kh h x h sh k y h sh k h x h         
            

in the inhomogeneous piezoelectric layer is represented by the new formation coefficient 

   
1 2

2 2

0 1k k G    
  
 

 and variable thickness  x 
 for the given layer. 

The potential of the electric field is absent in the perfectly conducting layer 
c

 , and for 

elastic shear will have the following representation: 

    
  

  
  

0

0 0

, 1 ,
, , ; , , ,

, ,

c

c c

w x h t
w x y t f kh h x h w x h x t

w x h x t

 
  

 

   
   
  

 (3.3.41) 

where the formation function 

          0 0 0; 1c c cf kh h x h sh k y h x sh k h h x     
           

in the homogeneous perfectly conducting layer is represented by formation coefficient 

   
1 2

2 2

0 1c c ck k G   
 

 and variable thickness  c x . 

It is important to note that the boundary conditions (3.3.16), (3.3.18), (3.3.21), (3.3.24) 

and (3.3.26) for elastic shear and electric field potential are automatically satisfied by the 

selection of formation functions   0 0; ,df kh h x h    0 0; ,f kh h x h   

  0 0; ,f kh h x h     0 0;cf kh h x h  and formation coefficients 

 
1 2

2 2

0 1d d dk G    
 

 for the dielectric layer,  
1 2

2 2

0 1c c ck G    
 

 for 

conductor the layer and  
1 2

2 2

0 1k G    
  
 

 for the virtually selected 

inhomogeneous piezoelectric layers in hypothetical representations (3.3.35)-( 3.3.41). 

In addition, the characteristic formation coefficients for each layer are involved in the 

distribution representations, as well as electromechanical field values on surfaces of 

adjacent layers are involved. 

We receive all elastic shear and electric field potential values on the smooth and rough 

surfaces 0y h    , 0y h     ,  y h x  expressed by arbitrary amplitude constants 
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 0 0 0 0 0, , , ,A B C D E  of piezoelectric waveguide and vacuum half-space, satisfying the 

boundary conditions (3.3.15), (3.3.19), (3.3.22) and (3.3.27) on smooth surfaces 0y h     

and 0y h     . 

The representations for elastic shear and potential of the electric field, using the 

obtained surface values of distributions (3.3.35)-( 3.3.41) for elastic shear and potential of 

the electric field can be written in the expanded form: 

    

 
     

 
     

 

 
  

2

0 0

0 0 0 2

0 0

2

0 0

0 0 0 2

0 0

0 0 2 1

0

0 0

1
exp 1

, 1

1
, , exp 1

, 1

exp 1
,

exp 1

c

k
A kh

x k

k
w x y w x h x B kh

x k

C kh
x k k

D kh

 
 

   

 
 

   


   





 

  

 

 

  



            
     

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Here       0, 1x k sh k h x h     
      

characterize the  near-surface distributions 

in the formed heterogeneous layers 
p

  and 
p

 , respectively. 

The introduced distributions of wave the field (3.3.42)-(3.3.48) allow to build the 

picture of distribution over the thickness of the composite waveguide, by substituting the 

wave number   0 0; ;k h x h    , determined from the dispersion equation. 

We obtain a system of five homogeneous algebraic equations related to the amplitude 

constants 0 0 0 0 0, , , ,A B C D E , satisfying the boundary conditions (3.3.17), (3.3.20), (3.3.23) 

and (3.3.25).  The dispersion equation of the formed wave field is obtained from the 

condition of existence of nontrivial solutions in the following form: 

         35 0 0 0
4 4

; ;h ; det ; ; ; ; ; ; , 0
e d

d ij k k k kg x kh g G e h x k x       


  , (3.3.49) 

where the variable coefficients      0 0
4 4

; ; ; ; ; ; ,ij k k k kg G e h x k x   


 (tensor) of 

dispersion equation is too bulky and for that reason it is not shown here (see [17]). The 

coefficients of the fifth column of the  tensor equal to zero 15 25 45 55 0g g g g    , and 

35g  is positively definite, i.e.   ( )

35 0; ; ; 0e d

dg h x kh      and characterizes 

oscillations of the electric field in vacuum. 

Obviously this is due to the presence of expressions     , ,zxh x x h x t 

 
   and 

    , ,xh x D x h x t

 
  in boundary conditions (3.3.17) and (3.3.25). However, for the 

selected formation functions   0 0;df kh h x h ,   0 0;f kh h x h  ,   0 0;f kh h x h   
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and   0 0;cf kh h x h , the imaginary part of the dispersion equation is satisfied 

automatically. 

It is easy to see from the coefficient relations in Appendix 1, that the amplitude 

distribution and frequency of the wave field over the waveguide depend on as physico-

mechanical constants of boundary materials, as well as characteristic linear dimensions of 

the surface not-smoothness of the composite waveguide. 

The study on the propagation of high-frequency (shortwave 0 1kh ) wave signal in 

waveguides with rough surfaces, in fact, are due to the fact that the linear dimensions of 

these roughness are small compared to the thickness of the base layer 
2 2 1      . 

Frequency characteristics of propagating wave. The dispersion equation (3.3.49) 

certainly does not have an explicit analytical solution. However, in obvious limiting cases 

there is the short-wave approximation, i.e. 0 1kh , and long-wave approximation, i.e. 

0 1kh . As it was mentioned above, as a result of 0 1kh , in the second case, the normal 

propagating wave signal does not interact with the surface non-smoothness. 

In the case of propagation of short-wave (high frequency) electroelastic signal, the presence 

of surface geometrical inhomogeneity leads to the wave number dependence on the 

coordinates of distribution, i.e.  k k x . 

In the problem of propagation of plane electroelastic shear wave signal in homogeneous 

piezoelectric waveguide with non-smooth surfaces, when one non-smooth surface of the 

waveguide is filled with perfect conductor and the other with dielectric, the investigation of 

frequency picture gives interesting results. 

Calculations show that at low frequency (long-wave) signals, up to some wave length 

0nk , which is determined by the physico-mechanical material constant of adjacent 

materials, geometric relations of linear dimensions of 0  and the surface non-smoothness, 

the dependence of the wave number  k x  for normal waves with harmonic mode 

oscillations  0sin ( )k y h x     are almost identical to the dependence  k x  of section 

3.1. 
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This means, that low-frequency electroelastic wave signal does not “feel” the presence of 

the surface weak non-smoothness and the very thin layers on the surfaces of the waveguide 

layer. The dispersion surface of normals and the dependence of the wave number for waves 

with non-harmonic distributions  0 ( )sh k y h x     are shown in Fig. 3.3.3 and Fig. 

3.3.4, from where it is obvious that the dispersion surface at high frequency (shortwave) 

signal varies strongly. 

 

Fig. 3.3.3 Dispersion surface for wave with distribution functions  0 ( )sh k y h x    , where the wave 

number  k k x
 

 

Here, as in the previous case, the high frequencies lead to weak quantitative change of the 

second wave with wave number 02k . This is clearly seen from Figs. 3.3.3 and 3.3.4. Quite 

interesting transformation occurs with low-frequency form, with the corresponding wave 

number 01k . At already relatively short wave signals 01 25k  (for 01 0.25 mm), the 

 

Fig. 3.3.2 Dependence of the wave number  k x  on x  coordinate at fixed source frequency 

0 100  Hz 
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wave number  11k x  strongly changes direction, opening space for the emergence of new 

wave mode (Fig. 3.3.4). 

 

Fig. 3.3.4 Dependence of the wave number  k k x  on x  coordinate at fixed source frequency 

0 100  Hz 

 

The wave number  21k x  of the newly emerged mode first decreases, making leap on 

vertical line 01x const , and then increases to the existence limit of high frequency 

oscillations. 

According to the same scheme, two high-frequency wave modes (Fig. 3.3.4) with 

variable wave numbers  31k x  and  41k x  occur there. It is interesting, that the existance 

limit of these ultrashort waves is the same, i.e. 1 350nk  .  

It follows from Figs. 3.3.4 and 3.3.4, that at higher frequencies of the wave signal 

occurs branching of first low-frequency harmonic (Fig. 3.3.2) on four waves with different 

wave lengths    1 12n nx k x   respectively. So, it means that the function  1nk x  has 

multiple branches which are not intersecting. On some points the branches are becoming 

very closer to each other which is shown on figs. 3.3.5 and 3.3.6. 

Different orientations of the closing curves describing the wave numbers, implies that 

there is fuss of new mode due to the surface roughness of the waveguide (Fig. 3.1.3 of 

section 3.1), which is dissected on the newly formed wave modes  21k x ,  31k x  and 

 41k x  under wave interaction of the first main mode (Fig. 3.3.4). 
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Fig. 3.3.5 Curves for the wave number functions 

 21k x  and  11k x  

Fig. 3.3.6 Curves for the wave number functions 

 41k x  and  11k x  

 

  

Fig. 3.3.7 Dependence of fast, long wave frequency 

 k  from wave number, when  0;1.6k  

Fig. 3.3.8 Dependence of fast, short wave 

frequency  k  from wave number, when 

 1.6;350k  

Such branching, of course, is a consequence of the wave signal dissipation on the 

surface roughness and scattering of the wave energy along selected layers of the waveguide. 

It also follows from Fig. 3.3.4, that the branching of the wave number indicates the 

branching at different changing wave lengths 1 1( ) 2 ( )n nx k x  . This leads to the 

appearance of new wave modes with different dispersions. 

For fast waves when the phase speed is greater than the values of the shear body waves 

in the adjacent materials,  V ; ntk c   , the dispersion of long waves when  0;1.6k  

happens in the interval      0;5000k  (Fig. 3.3.7) and is close to the value 

 01 316000k   (Fig. 3.3.4). 

Fig. 3.3.8 shows, that the second frequency is induced at a certain value of the 

wavelength. Also, for the fast short wave the frequency is very large 
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  4 517 10 ;8 10k      . It is necessary to pay attention to the fact, that starting from 

some value of the wave length, a wave with a specific length can be propagated with three 

different frequencies. 

In the case of slow wave signals, when the phase velocity is less than the values of the 

shear body waves in the adjacent materials  V ; ntk c   , receive an interesting phase 

picture (Fig. 3.3.9 and Fig. 3.3.10). 

It is seen from Fig. 3.3.9, that in contrast to fast long waves (Fig. 3.3.7), where to each 

wavelength corresponds two frequency values, in this case to each frequency value 

correspond two wave modes with different wavelengths. In this case the interval 

 2 1.6;2 0.5    is larger than in the case of faster and longer waves. 

For slow and short waves, when  175; 90   , to each wave length correspond 

two frequencies, and in the interval  90; 30    to each wave length correspond three 

oscillation frequencies. In the case of slow waves it is noteworthy that there is a frequency 

zone of silence. For waves of the length  30;2 0.5   , frequencies does not exist. 

 

Fig. 3.3.9 Dependence of slow, long wave frequency  k  from wave 

number, when  0;0.5k  
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Fig. 3.3.10 Dependence of slow, short wave frequency  k  from wave number, when  60;350k
 

 

Comparing obtained results by frequencies, it is easy to see that, if long waves are 

propagating in the range of relatively low frequencies,  , 0;300s l   and  , 0;5000q l  , 

then short waves are propagating in the range of very high frequencies 

 , 170000;800000s l   and  , 0;600000q l  . 

Amplitude distribution at propagation of wave signal. The distribution of wave field 

characteristics (3.3.42)-( 3.3.48) allow to reduce that, in the thin surface layers of conductor 

and dielectric, elastic shears equal to the surface shears of virtually selected layers from the 

base layer’s     , , , ,cw x y t w x h x t   and     , , , ,dw x y t w x h x t   respectively. 

It is also clear, that in all relations, the main dominant is the wave signal (3.3.33) and 

(3.3.34), and the components due to the interaction of the wave signal with surface 

roughness, appear in the form     1

0, 1n n nx k sh k y h         and 

    0 0 1n n nsh k y h        . These components at any wavelength can not cause 

internal resonance, since at values     0n x k x    they do not go to infinity. 

Relations (3.3.42)-( 3.3.48) also show, that due to the summation of the surface values 

and the effect of the interaction of the wave signal with surface roughness, amplitude 

distributions of slow and fast, short waves (at high-frequency oscillations   510k ) have 

maximal values in the formed near-surface inhomogeneous thin layers 
p c

      and 
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p d

     (Fig. 3.3.1). This corresponds to the case when the length of the 

propagating wave signal is comparable with the linear characteristics of the surface 

roughness    .  

Then using the relations (3.3.42) and (3.3.43), the elastic shear in the geometrically and 

physically heterogeneous near-surface layer 
p c

      will be represented in the form 
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  (3.3.50) 

From the other hand, the elastic shear in the geometrically and physically heterogeneous 

surface layer 
p d

     will be presented in the form 
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CONCLUSION 

 

The thesis is devoted to investigation of wave processes in waveguides with material 

and geometric inhomogeneities. Among others, the following important results are obtained: 

- The influence of the longitudinal, weak inhomogeneity on propagation of normal shear 

wave signal in elastic waveguide is studied in the case of mechanically free or clamped 

boundary conditions. 

- It is shown, that in the case of clamped smooth surfaces, asymmetric localization of wave 

energy occurs in a neighborhood of the middle surface of isotropic elastic layer, while in the 

case of mechanically free smooth surfaces, the localization is symmetric. 

- The weak inhomogeneity of the mechanically free surfaces leads to distortion of 

propagating normal wave in virtually cut thin layers of variable thickness of the near-surface 

zones of the waveguide. Frequency zones of transmission and zones of prohibited 

frequencies of formed wave appear. 

- The influence of mechanically free, geometrically weak inhomogeneous surfaces on the 

propagation of shear normal wave in elastic waveguide is investigated. 

- It is shown, that weak surface inhomogeneities lead to instability of propagating normal 

wave signal in waveguide. 

- Partial localization of wave energy occurs in selected near-surface layers of the 

waveguide, frequency zones of silence (as well as frequency zones of bandwidth) appear for 

newly formed waves. 

- The efficacy of usage of virtual cross sections method and MELS hypotheses is shown on 

model problem about distribution of wave field in thin surface layers of waveguide when 

plane wave signal is propagating in it. 

- The impact of surface non-smoothness on characteristics of propagation of high-frequency 

horizontally polarized wave signal in isotropic elastic half-space is studied. 

- It is shown, that the weak non-smoothness leads to strong distortion of the wave signal 

over the waveguide thickness, and along wave signal propagation direction as well. 
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- Localization of horizontally polarized shear (SH) shortwave (high frequency) signals 

occurs in the near-surface zone of variable thickness. The presence of surface weak 

inhomogeneity leads to prohibition of wave of certain lengths depending on the linear 

characteristics of the inhomogeneity parameters. 

- The use of virtual sections and MELS hypotheses, unlike the direct solution, allows to 

identify near-surface wave effects: effective dynamic load, internal resonance, frequency 

prohibition, etc. 

- Surface heterogeneities of homogeneous elastic waveguide convert plane wave signal into 

non-attenuated oscillatory motion and distort the plane front of the signal. 

- At the wave signal lengths, comparable with the characteristic dimensions of the non-

smooth surface of the waveguide, due to the presence of surface heterogeneities, oscillations 

occur in the near-surface layer, which in the case of certain wave signal lengths can cause 

internal resonance. 

- The propagation of high-frequency electroelastic wave signal in composite waveguide of 

homogeneous piezoelectric layer with rough surfaces filled with perfect conductor and 

perfect dielectric materials respectively is studied. 

- The influence of surface roughness and surface smoothing by different materials (the 

effect of different physical-mechanical boundary conditions) on the propagation of high 

frequency electroelastic wave signal is discussed. 

- The behaviors of wave amplitude and frequency characteristics are numerically 

investigated in the composite waveguide at the propagation of normal wave signal.  

- It is shown, that the filling of the surface roughness with different materials, leads to the 

appearance of up to four wave modes, depending on the length of the wave signal. It turns 

out, that if the surface roughness of the piezoelectric layer is not filled, only one shortwave 

mode occurs.



132 
 

REFERENCES 

 

[1] Achenbach, J.D., Wave Propagation in Elastic Solids, New York, Elsevier, 1984, p. 

364 

[2] Hambardzumyan S.A., Theory of anisotropic plates, (2nd ed.),  Moscow: Nauka, 

1987, 360 p. (In Russian) 

[3] Hambardzumyan S.A., Baghdasaryan G.E., Belubekyan M.V., Magnetoelasticity of 

thin plates and shells, Nauka, 1977, 324 p. (In Russian) 

[4] Apostol B.F., The Effect of Surface Inhomogeneities on the Propagation of Elastic 

Waves, Journal of Elasticity, 2014, Vol. 114, issue 1, pp. 85-99 

[5] Auld B.A., Acoustic Fields and Waves in Solids, Krieger publishing company 

malabar, Florida,  1990, Vol. 2, Second Edition, p. 421 

[6] Avetisyan A.S., About the problem of the propagation of transversal waves in 

piezoelectric, Proc. of NAS Armenia, ser. Mechanics, 1985, Vol. 38, issue 1, pp. 

12-19 (In Russian) 

[7] Avetisyan A.S., Love's electro elastic surface waves in case of inhomogeneous 

piezoelectric layer, Proc. of NAS Armenia, ser. Mechanics, 1987, Vol. 40, issue 

1, pp. 24-29 (In Russian) 

[8] Avetisyan A.S., About propogation of electroelastic monochromatic wave in 

nonhomogeneous piezoelectic, Proc. of NAS Armenia, ser. Mechanics, 1988, 

Vol. 41, issue 5, pp. 34-40 (In Russian) 

[9] Avetisyan A.S., On the formulation of the electro-elasticity theory boundary value 

problems for electro-magneto-elastic composites with interface roughness. Proc. 

of NAS Armenia, ser. Mechanics, 2015, Vol. 68, issue 2, pp. 29-42 

[10] Avetisyan A.S., The boundary problem modelling of rough surfaces continuous 

media with coupled physico mechanical fields, Reports of  NAS of Armenia, 

2015, Vol. 115, issue 2, pp. 119-131 

[11] Avetisyan A.S., Belubekyan M.V., Ghazaryan K.B., Magneto-electro- thermo-

elastic hypotheses for contact problems of  composite waveguides, The 

http://link.springer.com/journal/339/100/2/page/1


133 
 

International Conference «Modern problems of thermomechanics», 22-25 

September, 2016, Lvov, Ukraine, Сollection of  scientific papers, pp. 142-144 

[12] Avetisyan A.S., Hunanyan A.A., The efficiency of application of virtual cross-

sections method and hypotheses MELS in problems of wave signal propagation 

in elastic waveguides with rough surfaces, Journal of Advances in Physics, 

(2016), Vol. 11, issue 6, pp. 3564-3574 

[13] Avetisyan A.S., Hunanyan A.A., Amplitude-phase distortion of the normal high-

frequency shear waves in homogeneous elastic waveguide with weakly rough 

surfaces, Proc. of NAS Armenia. Mechanics, 2017, Vol. 70, issue 2, pp. 28-42 

[14] Avetisyan A.S., Kamalyan A.A., On Propagation of Electroelastic Shear Wave in 

6mm Class Piezodielectric Inhomogeneous Layer, Reports of  NAS of Armenia, 

2014, Vol. 114, issue 2, pp.108-115 (In Russian) 

[15] Avetisyan A.S., Kamalyan A.A., Тhe Influence of Cross Inhomogeneity of 

Piezoelectric Layer and Combinations of Boundary Conditions օn the Shear 

Electroelastic Signal Propagation, Proceedings of State Engineering University 

of Armenia, ser. Mechanics, Machine Science, Machine-Building, 2014, Vol. 17, 

issue 1, pp. 9-25 (In Russian) 

[16] Avetisyan A.S., Kamalyan A.A., Hunanyan A.A., The propagation of plane wave 

signal in piezodielectric waveguide with boundary of geometric and physical 

inhomogeneities, IV International Conference, Topical Problems of Continium 

Мechanics, 21–26 September, 2015 Tsakhkadzor, Armenia, pp. 5-9 (In Russian) 

[17] Avetisyan A.S., Kamalyan A.A., Hunanyan A.A., Features of localization of 

wave energy at rough surfaces of piezodielectric waveguide, Proc. of NAS 

Armenia, ser. Mechanics, 2017, Vol. 70, issue 1, pp. 40-63 

[18] Avetisyan A.S., Sarkisyan S.V., About electromagnetoelastic vibrations and 

waves propagation in nonhomogeneous media, Mechanical Modelling of New 

Electromagnetic Materials, Stockholm, 1990, pp. 387-393 

[19] Bakirtas I. et Maugin G.A., 5 Wave Propagation in Inhomogeneous Media, 

Elsevier, International Geophysics, 1972, Vol. 17, pp. 223-307 



134 
 

[20] Banerjee S., Kundu T., Elastic wave propagation in sinusoidally corrugated 

waveguides, J. Acoust. Soc. Am, 2006, Vol. 119, issue 4, pp. 2006–2017 

[21] Aghalovyan L.A., Asimptotic Theory of Anisotropic Plates and Shells, World 

Scientific Publishing, Singapore London, 2015, 376p. 

[22] Belubekjan M.V., Belubekjan V.M., About shear localized wave propagation 

along the moving surfaces of piezoelectrics, Proc. of NAS Armenia, ser. 

Mechanics, 1994, Vol. 47, issues 3-4, pp.78-89 (In Russian) 

[23] Belubekian M.V., Mukhsikhachoyan A.R., On the shear "standing" surface wave 

existence along a corrugated surface, Reports NAS RA, 1992, Vol. 93, issue 2, 

pp. 63-67 (In Russian) 

[24] Belubekyan M.V., Mukhsikhachoyan A.R., Shear surface waves in weakly 

inhomogeneous elastic media, Acoustic Journal, 1996, Vol. 42, issue 2, pp. 179-

182 (In Russian) 

[25] Belubekyan M.V., Sahakyan S.L., Hunanyan A.A., Shear waves in longitudinal 

periodical weak-inhomogeneous layer, Proc. of YSU (Physical and Mathematical 

Sciences), 2015, issue 1, pp. 36-40 

[26] Benhmammouch O., Vaitilingom L., Khenchaf A., and Caouren N., 

Electromagnetic Waves Propagation above Rough Surface: Application to 

Natural Surfaces, Piers Online, 2008, Vol. 4, issue 7, pp. 775-780 

[27] Biryukov, S.V., Gulyaev, Y.V., Krylov, V., Plessky, V., Surface acoustic waves 

in inhomogeneous media, Springer Series on Wave Phenomena, 1995, 

Vol. 20, 388 p. 

[28] Bluestein J. L., A New Surface Wave in Piezoelectric materials, Appl. Phys. Lett. 

1968, Vol. 13, issue 12, pp. 412-413 

[29] Brekhovskikh L.M., Godin O., Acoustics of Layered Media I: Plane and Quasi-

Plane Waves, Springer Berlin Heidelberg, 1998, 240 p. 

[30] Brekhovskikh L.M., Waves in Layered Media 2e, Applied mathematics and 

mechanics, Elsevier Science, 2012, Vol. 16, 520 p. 

http://link.springer.com/bookseries/415
https://www.google.am/search?hl=ru&tbo=p&tbm=bks&q=inauthor:%22Leonid+M.+Brekhovskikh%22
https://www.google.am/search?hl=ru&tbo=p&tbm=bks&q=inauthor:%22Oleg+Godin%22
https://www.google.am/search?hl=ru&tbo=p&tbm=bks&q=inauthor:%22L+Brekhovskikh%22&source=gbs_metadata_r&cad=2
https://www.google.am/search?hl=ru&tbo=p&tbm=bks&q=bibliogroup:%22Applied+mathematics+and+mechanics%22&source=gbs_metadata_r&cad=2
https://www.google.am/search?hl=ru&tbo=p&tbm=bks&q=bibliogroup:%22Applied+mathematics+and+mechanics%22&source=gbs_metadata_r&cad=2


135 
 

[31] Brevdo L., Wave Packets, Signaling and Resonances in a Homogeneous 

Waveguide, Journal of Elasticity, 1997, Vol. 49, issue 3, pp. 201–237 

[32] Castaings M., SH ultrasonic guided waves for the evaluation of interfacial 

adhesion, Ultrasonics, 2014, Vol. 54, issue 7, pp. 1760–1775 

[33] Carbone G., Scaraggi M., Tartaglino U., Adhesive contact of rough surfaces: 

comparison between numerical calculations and analytical theories, Eur. Phys. J 

E Soft Matter., 2009, Vol. 30, issue 1, pp. 65-74 

[34] Charnotskii M., Propagation of polarized waves in inhomogeneous media, 

Journal of the Optical Society of America A, 2016, Vol. 33, issue 7, pp. 1385-

1394 

[35] Cheng N.C., Sun C.T., Wave propagation in two layered piezoelectric plates. - J. 

Acoust. Soc. Amer., 1975, Vol. 57, issue 3, pp. 632-639 

[36] Chimenti D.E., Lobkis O.I., The effect of rough surfaces on guided waves in 

plates, Ultrasonics, 1998, Vol. 36, issue 1-5, pp. 155–162 

[37] Cocheril Y. and Vauzelle R., A new ray-tracing based wave propagation model 

including rough surfaces scattering, Progress In Electromagnetics Research, 

2007, Vol. 75, pp. 357-381  

[38] Curtis R.G., Redwood M., Transvers surface waves on a piezoelectric materials 

currying a metal layer of finite thickness, J. Appl. Phys., 1973, Vol. 44, issue 5, 

pp. 2002-2007 

[39] Danoyan Z.N., Piliposian G.T., Surface electro-elastic Love waves in a layered 

structure with a piezoelectric substrate and a dielectric layer, Int. J. Solid and 

Structures, 2007, Vol. 44, pp. 5829-5847 

[40] Didenkulova I., Pelinovsky E., Soomere T., Exact travelling wave solutions in 

strongly inhomogeneous media, Estonian Journal of Engineering, 2008, Vol. 14, 

issue 3, pp. 220-231 

[41] Dmitrieva I.Yu., Mathematical modeling of electromagnetic wave propagation in 

inhomogeneous medium, Electronics and Nanotechnology (ELNANO), 2013 

IEEE XXXIII International Scientific Conference, pp. 147-150 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Carbone%20G%5BAuthor%5D&cauthor=true&cauthor_uid=19784680
http://www.ncbi.nlm.nih.gov/pubmed/?term=Scaraggi%20M%5BAuthor%5D&cauthor=true&cauthor_uid=19784680
http://www.ncbi.nlm.nih.gov/pubmed/?term=Tartaglino%20U%5BAuthor%5D&cauthor=true&cauthor_uid=19784680
http://www.ncbi.nlm.nih.gov/pubmed/19784680
http://www.ncbi.nlm.nih.gov/pubmed/19784680


136 
 

[42] Eason G., Wave propagation in inhomogeneous elastic media, solution in terms 

of Bessel functions, Acta Mech., 1969, Vol.7, issue 2, pp. 137–160 

[43] Fedorov F.I., Theory of elastic waves in crystals, Moscow: Nauka, 1965,  

a. 386 p. (In Russian) 

[44] Ferencz C., Electromagnetic wave propagation in inhomogeneous, moving 

media: A general solution of the problem, Radio Science, 2011, Vol. 46, issue 5, 

pp. 1-14 

[45] Flannery C.M, von Kiedrowski H., Effects of surface roughness on surface 

acoustic wave propagation in semiconductor materials, Ultrasonics, 2002, Vol. 

40, issues 1-8, pp. 83-87 

[46] Frank C.K.Jr., Keller J.B., Elastic Wave Propagation in Homogeneous and 

Inhomogeneous Media, The Journal of the Acoustical Society of America, 2005, 

Vol. 31, issue 6, 694 p. 

[47] Gilinsky I.A., Popov V.V., The excitation of electroacoust waves in piezoelectric 

materials by external sources, Jour. of tech. physics, 1976, Vol. 46, issue 11, pp. 

2232-2242 (In Russian) 

[48] Golub M.V., Zhang C., In-plane time-harmonic elastic wave motion and 

resonance phenomena in a layered phononic crystal with periodic cracks, J. 

Acoust. Soc. Am., 2015, Vol. 137, issue 1, 238 

[49] Greenwood, J.A., Williamson J-B-P., Contact of nominally flat surfaces, Proc. of 

the Royal Soc. of London, ser. A, Math. and Phys. Sci., 1966, pp. 300-319 

[50] Gulyaev Yu.V., Electroacoustic surface waves in solids, JETP Letters, 1969, Vol 

.9, issue 1, pp. 63-65 (In Russian) 

[51] Hasanyan D.J., Piliposian G.T., Kamalyan A.H., Karakhanyan M.I., Some 

dynamic problems for elastic materials with functional inhomogeneities: anti-

plane deformations, Continuum Mech. And Thermodynamics, 2003, Vol. 15, 

issue 5, pp.519-527. 

[52] Hertz H., On the contact of elastic solids, Journal of pure and applied 

mathematics, 1882, Vol. 1882, issue 92, pp. 156-171 (In German) 

http://en.wikipedia.org/wiki/Heinrich_Hertz


137 
 

[53] Hunanyan A.A., Localization of high-frequency normal shear waves in elastic 

homogeneous waveguide with weakly inhomogeneous surfaces, Young 

Scientists School-Conference, 3-7 October, 2016, Tsakhkadzor, Armenia, pp. 

140-144 (In Russian) 

[54] Hunanyan A.A., The instability of shear normal wave in elastic waveguide of 

weakly inhomogeneous material, Proc. of NAS Armenia, ser. Mechanics, 2016, 

Vol. 69, issue 3, pp. 16-27 

[55] Huttunen T., Monk P., Collino F., Kaipio J. P., The Ultra-Weak Variational 

Formulation for Elastic Wave Problems, SIAM Journal on Scientific Computing, 

2006, Volume 25, Issue 5, pp. 1717–1742 

[56] Huseyin G.A, Wave Propagation in Heterogeneous Media with Local and 

Nonlocal Material Behavior, Journal of Elasticity, 2016, Vol. 122, issue 1, pp. 1–

25 

[57] Jackson R.L. and Green I., On the Modeling of Elastic Contact between Rough 

Surfaces, Tribology Transactions, 2011, Vol. 54, issue 2, pp. 300-314 

[58] Johnson K.L., Kendall K., Roberts A.D., Surface energy and the contact of 

elastic solids, Proc. Of the Royal Soc. of London, ser. A, 1971, vol. 324, pp. 301-

313 

[59] Kamalyan A.A., Hunanyan A.A., A new type of localization of wave energy near 

non-smooth surfaces of piezoelectric waveguide, Young Scientists School-

Conference, 3-7 October, 2016, Tsakhkadzor, Armenia, pp. 75-79 (In Russian) 

[60] Gordon S.K., John S., Acoustic surface waves, Physics-Uspekhi, Advances in 

Physical Sciences, 1974, Vol. 113, issue 1, pp. 157-179 (In Russian) 

[61] Kalinin V.A, Lobov G.D., Shitok V.V., Radiophysics for engineers, ed. 

Baskakova S.I., М.: Natioanl Research University (MPEI), 1994, 129 p. (In 

Russian) 

[62] Kessenikh G.G., Lyubimov V.N., Filippov V.V., Transverse surface waves in 

isotropic substrate with a piezoelectric layer, Acoustic Journal, 1985, Vol. 31, 

issue 4, pp. 492-495 (In Russian) 



138 
 

[63] Kirchhoff, Lectures on math. physics, mechanics, Leipzig, 1883. (3nd ed.) (In 

German) 

[64] Krasnova T., Jansson P.., Bostrcom A., Ultasonic wave propagation in an 

anisotropic cladding with a wavy interface, Wave Motion, 2005, Vol. 41, issue 2, 

pp. 163–177 

[65] Kudryavcev B.A., Parton V.Z., Magnetoelasticity, The results of science and 

technology VINITI, ser. Mechanics of Solids, 1981, Vol. 14, pp. 3-59 (In 

Russian) 

[66] Kuznetsova I.E., Zaitsev B.D., The peculiarities of the Bleustein-Gulyaev wave 

propagation in structures constaining conductive layer, Ultrasonics, 2015, Vol. 

59, issue 2, pp. 45-49 

[67] Lazarev Yu.F., MatLAB 5.x, Scientific Library of Innovative University of 

Eurasia,  Kiev: BHV, 2000, 384 p. (In Russian) 

[68] Lamb H., On Waves in an Elastic Plat. Proc. Roy. Soc. London, 1917, Vol. 93, 

issue 648, pp. 114–128 

[69] Landau L.D., Lifshitz E.M., Electrodynamics of Continuous Media, Moscow: 

Nauka, 1982, 620 p. (In Russian) 

[70] Lobkist O.I., Chimenti D.E., Elastic guided waves in plates with rough surfaces, 

Appl. Phys. Lett., 1996, Vol. 69, pp. 3486-3502. 

[71] Lothe J., Barnett D.M., On the existence of surface wave solution for anisotropic 

elastic half-spaces with free surface, J. Appl. Phys., 1976, Vol. 47, issue 2, pp. 

428-453 

[72] Lothe J., Barnett D.M., Integral formalism for surface waves in piezoelectric 

crystals. Existance considerations, J. Appl. Phys., 1976, Vol. 47, issue 5, pp. 

1799-1807 

[73] Love А.E.H., «Some problems of geodynamics», first published in 1911 by the 

Cambridge University Press and published again in 1967 by Dover, New York, 

USA. (Chapter 11: Theory of the propagation of seismic waves) 



139 
 

[74] Maerfeld C., Tournois P., Pure spear elastic surface wave guided by the interface 

of two semi-infinite media, Appl. Phys. Lett., 1971, Vol. 19, issue 4, pp. 117-118 

[75] Manen D.-J. van, Robertsson J.O.A., Modeling of Wave Propagation in 

Inhomogeneous Media, Physical Review Letters, 2005, Vol. 94, issue 16, pp. 

164-301 

[76] Maugin G., Mechanics of Electromagnetic Continuous Media, Moscow: Mir, 

1991, 560 p. (In Russian) 

[77] Mokhel A.N., Salganik R.L., Fedotov А.A., Contact interaction of rough elasic 

solids in the presence of two highly different scales of roughness extent, 

Computational continuum mechanics, 2008, Vol. 1, issue 4, pp. 61-68 (In 

Russian) 

[78] Paul H.S., Anandam S., Transvers waves in piezoelectric 622 crystall class, Pure 

and Appl. Geophys, 1971, Vol. 88, issue 5, pp. 35-43 

[79] Parton V.Z., Kudryavcev B.A., Electromagnetoelasticity of piezoelectric and 

electroconductive bodies, Moscow: Nauka, 1988, 472 p. (In Russian) 

[80] Persson B.N.J., Bucher F., Chiaia B., Elastic contact between randomly rough 

surfaces: Comparison of theory with numerical results, Physical Review B, 2002, 

Vol. 65, issue 18, pp. 184-206 

[81] Piliposian G. T., Avetisyan A.S., Ghazaryan K.B., Shear wave propagation in 

periodic phononic/photonic piezoelectric medium, International Journal Wave 

Motion, Elsevier publisher, January 2012, Vol. 49, issue 1, pp. 125-134 

[82] Piliposyan D.G., Ghazaryan K.B., Piliposyan G.T., Internal resonances in a 

periodic magneto-electro-elastic structure, J. Appl. Phys., 2014, Vol. 116, pp. 94-

107 

[83] Pinel N., Bourlier C., Saillard J., Degree of Roughness of Rough Layers: 

Extensions of the Rayleigh Roughness Criterion and Some Applications, 

Progress In Electromagnetics Research B, 2010, Vol. 19, pp. 41-63 

[84] Pobedrya B.E., Mechanics of composite materials, Pub. in Moscow University, 

1984, 336 p. (In Russian) 



140 
 

[85] Potel C., Leduc D., Morvan B., Pareige P., Izbicki J.L., Depollier C., Lamb 

Wave Propagation In Isotropic Media With Rough Interface : Comparison 

Between Theoretical And Experimental Results, 5th World Congress on 

Ultrasonics WCU 2003, September 7-10, 2003, Paris, France 

[86] Sargsyan S.H., General two-dimensional theory of magnetoelasticity of thin 

shells, Erevan: pub. in NAS, 1992, 232 p. (In Russian) 

[87] Potel C., Bruneua M., N’Djomo L.C.F., Leduc D., Elkettani M.E., Izbicki J.-L.; 

Shear horizontal acoustic waves propagating along two isotropic solid plates 

bonded with a non-dissipative adhesive layer: Effects of the rough interfaces, 

Jour. Of Appl. Physics, 2015, Vol. 118, issue 22 (doi: 10.1063/1.4937150) 

[88] Predoi M.V., Castaings M., Hosten B., Bacon C., Wave propagation along 

transversely periodic structures, J. Acoust. Soc. Am., 2007,  Vol. 121, pp. 1935–

1952 

[89] Qian Zh.-H., Hiros S., Kishimoto K., Modulation of Bleustein-Gulyaev Waves in 

a Functionally Graded Piezoelectric Substrate by a Finite-Thickness Metal 

Waveguide Layer, Journal of Solid Mechanics and Materials Engineering, 2009, 

Vol. 3, issue 11, pp. 1182–1192 

[90] Qing-Tian D., Zhi-chun Y., Propagation of guided waves in bonded composite 

structures with tapered adhesive layer, Appl. Math. Modell., 2011, Vol. 35, issue 

11, pp. 5369–5381 

[91] Reissner E., On the theory of bending of elastic plates. J. Math. And Phys., 1944, 

Vol. 23, issue 1-4, pp. 184-191 

[92] Reyleigh J.W., On waves propagated along the plane surface of an elastic solid, 

Proc. Math. Soc. London, 1885/1886, Vol. 1-17, issue 1, pp. 4-11. 

[93] Royer, D., Dieulesaint, E., Elastic Waves in Solids I. Free and Guided 

Propagation. Springer, Berlin, 2000, 374 p. 

[94] Shchegrov A.V., Propagation of surface acoustic waves across the randomly 

rough surface of an anisotropic elastic medium, J. Appl. Phys., 1995, Vol. 78, 

issue 3, pp. 1565-1574 



141 
 

[95] Santamarina, J.C., Cascante, G., Effect of Surface Roughness on Wave 

Propagation Parameters, Geotechnique, 1998, Vol. 48, issue 1, pp. 129-137 

[96] Sharma J.N., Sharma K.K., Kumar Ash., Modelling of Acousto-Diffusive 

Surface Waves in Piezoelectric-Semiconductor Composite Structures, J. of 

Mech. of  Mater. and Struct., 2011, Vol. 6, issue 6, pp. 791-812 

[97] Sinha B.K., Tiersten H.F., Elastic and piezoelectric surface waves guided by thin 

films, J. Appl. Phys., 1973, Vol. 44, issue 11, pp.4831-4854 

[98] Singh S.S., Love Wave at a Layer Medium Bounded by Irregular Boundary 

Surfaces, Journal of Vibration and Control, 2010, Vol. 17, issue 5, pp. 641-650 

[99] Stoneley R., Elastic Waves at the Surface of Separation of Two Solids, Roy. Soc. 

Proc. London, ser. A 106, 1924, pp. 416-428 

[100] Svetovoy V.B., Palasantzas G., Influence of surface roughness on dispersion 

forces, Adv. Colloid Interface Sci., 2015, Vol. 216, pp. 1-19 

[101] Tarasenko A.A., Jastrabik L., Tarasenko N.A., Effect of roughness on the elastic 

surface wave propagation, Eur. Phys. J. Appl. Phys., 2003, Vol. 24, issue 1, pp. 

3-12 

[102] Timoshenko S.P., Theory of Plates and Shells, Moscow: Gostehizdat, 1948, 460 

p. (In Russian) 

[103] Tikhonravov A.V., Trubetskov M.K., Tikhonravov A.A., Duparre A., Effects of 

interface roughness on the spectral properties of thin films and multilayers, 

Applied Optics, 2003, Vol. 42, issue 5, pp. 5140-5148 

[104] Thorsos E.I., The validity of the Kirchoff approximation for rough surface 

scattering using a Gaussian roughness spectrum, Journal of the Acoustical 

Society of America, 1988, Vol. 83, issue 1, pp. 78–92 

[105] Tseng C.C., White R.M., Propagation of piezoelectric and elastic surface waves 

on the bazal plane of hexagonal piezoelectric crystals, J. Appl. phys., 1967, Vol. 

38, issue 11, pp. 4274-4280 

[106] Valier-Brasier T., Potel C., Bruneau M., Modes coupling of shear acoustic waves 

polarized along a one-dimensional corrugation on the surfaces of an isotropic 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Svetovoy%20VB%5BAuthor%5D&cauthor=true&cauthor_uid=25481867
http://www.ncbi.nlm.nih.gov/pubmed/?term=Palasantzas%20G%5BAuthor%5D&cauthor=true&cauthor_uid=25481867
http://www.ncbi.nlm.nih.gov/pubmed/25481867


142 
 

solid plate, Appl. Phys. Lett., 2008, Vol. 93, issue 16 (doi: 

http://dx.doi.org/10.1063/1.2999632) 

[107] Valier-Brasier T., Potel C., Bruneau M., Shear acoustic waves polarized along 

the ridged surface of an isotropic solid plate: Mode coupling effects due to the 

shape profile, J. Appl. Phys., 2010, Vol. 108, issue 7, (doi: 

http://dx.doi.org/10.1063/1.3486020) 

[108] Vashishth, A K, Vishakha G., Wave propagation in transversely isotropic porous 

piezoelectric materials, Int. J. of Solids and Structures, 2009, Vol. 46, issue 20, 

pp. 3620-3632 

[109] Victorov I.A., Talashev A.A., Propagation of Rayleigh waves on the boundaries 

of piezoelectric and semiconductor, Acoustic Journal, 1972, Vol .18, issue 2, pp. 

197-205 (In Russian) 

[110] Viktorov I. A., Sound surface waves in solids., Moscow: Nauka, 1981, p. 287 (in 

Russian) 

[111] Zhang J., Li Youming, Numerical simulation of elastic wave propagation in 

inhomogeneous media, Wave Motion, 1997, vol. 25, issue 2, pp. 109-125 

[112] Zhang Z., Wen Z., Hu J., Calculation of acoustic waves in a multilayered 

piezoelectric structure, Jour. of Semiconductors, 2013, Vol.34, issue 1, pp. 

012002-1-012002-6 


