
INSTITUTE OF MATHEMATICS,  

NATIONAL ACADEMY OF SCIENCES OF REPUBLIC OF ARMENIA 

 

 

 

PETROSYAN VAHE 

 

 

 

BOUNDARY VALUE PROBLEMS IN  

HARDY WEIGHTED SPACES  

 

 

Dissertation 

01.01.02 “Differential Equations, Mathematical Physics” 

Specialty 

 

 

For the degree of candidate of  

Physical and Mathematical sciences 

 

 

 

Scientific Supervisor 

Doctor of phys.-math.sciences 

H. M. HAYRAPETYAN 

 

Yerevan, 2017 

 



2 
 

TABLE OF CONTENTS 

INTRODUCTION ............................................................................................................... 4 

CHAPTER 1. RIEMANN  PROBLEM  IN  THE  WEIGHTED  SPACES   ......... 20 

1.1 Statement of the problem ................................................................................... 25 

1.2 Preliminary results .............................................................................................. 27 

1.2.1 In the case .......................................................... 27 

1.2.2  class of functions ................................................................................... 34 

1.3 The main result ................................................................................................... 39 

1.4 Investigation of the Problem R in the case  ............... 41 

1.4.1 General solution of the homogeneous Problem R ................................... 41 

1.4.2 General solution of the inhomogeneous Problem R ................................ 43 

1.5 Investigation of the Problem R in the case of arbitrary  ..... 43 

CHAPTER 2. RIEMANN-HILBERT  and DISCONTINUOUS  RIEMANN PROBLEMS  IN  

THE  WEIGHTED  SPACES   ................................................................................ 47 

2.1 Riemann-Hilbert Problem ................................................................................. 47 

2.1.1 Introduction ................................................................................................ 47 

2.1.2 Statement of the Problem H ...................................................................... 49 

2.1.3    Solution of the Problem H ........................................................................ 50 

2.1.4    Dirichlet Problem ...................................................................................... 56 

2.2 Discontinuous Riemann Problem ...................................................................... 58 

2.2.1 Statement of the Problem R ........................................................................ 58 

2.2.2  Solution of the Problem R .......................................................................... 60 

CHAPTER 3. DIRICHLET PROBLEM FOR BIHARMONIC FUNCTIONS IN THE 

WEIGHTED SPACES ....................................................................................................... 65 

3.1   Statement of the Problem ..................................................................................... 67 

3.2   Solution of the homogeneous Problem D ............................................................ 67 

3.3   Solution of  the  inhomogeneous Problem D ...................................................... 70 



3 
 

CONCLUSION .................................................................................................................. 73 

REFERENCES ................................................................................................................... 75 

 



4 
 

INTRODUCTION 

 

Theory of differential equations has a central role in the science of mathematics. 

Development of this theory simulated the development of associated fields, such as: 

elasticity theory, hydrodynamics, aerodynamics, theory of electromagnetic field. 

Nowadays, differential equations are mostly applied in biology, mathematical modeling of 

physical processes, engineering, finance, ecology, etc. Thus, theory of differential equations 

is one of the basic tools of contemporary research. 

In this dissertation there are investigated boundary value problems for elliptic equations 

in the unit circle. Riemann, Riemann-Hilbert and Dirichlet problems are solved in the 

weighted spaces. This kind of problems arose during the investigation of boundary value 

problems of partial differential elliptic equations which have applications in physical 

processes. General solution of partial differential elliptic equations (system of equations) 

with constant coefficients is given by linear combination of analytic functions (Bitsadze 

A.V. [10], [11]). 

Boundary value problems in the classes of analytic functions are investigated with 

boundary conditions in  Holder classes,  spaces by Muskhelishvili N.I. [59], 

Gakhov F.D. [15], Vekua I.N. [83],[84], Khvedelidze B.V. [50], Simonenko I.B. [67]. 

Riemann boundary value problem is investigated in the weighted spaces  by 

Khvedelidze B.V. [51]. By Hayrapetyan H.M., Asatryan A.S. Riemann boundary value 

problem is investigated in  [41]. Poghosyan L.V. and Hayrapetyan H.M. considered 

Riemann boundary value problem in the sense of weak convergence [39], [63]. During 

investigation of boundary value problems of differential equations the need has arisen to 

expend theory of singular integral equations, also theory of boundary value problems of 

theory of functions. By Bikchantayev I.A. [8], [9], Soldatov A.P. [71], [72], [74], Tovmasyan 

N.E. [76], [77] and others [16], [58], [60] are suggested other boundary conditions which are 

correct for both improperly and properly elliptic equations. By Hayrapetyan H.M., 

Meliksetyan P.E. [25] and Hayrapetyan H.M., Oganisyan I.V. [26] are investigated 

boundary conditions for improperly elliptic equations of second and third order in the 
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weighted spaces. The same kind of problem in multiply connected domain is investigated 

by Babayan A.H. [2]. In the half-space the same kind of problems for the class of functions 

of polynomial growth are investigated in the works by Tovmasyan N.E. [79], Asatryan V.V. 

[1]. Note the work of Tovmasyan N.E. and Babayan A.H. which is dedicated to 

investigation of Riemann problem in the half-plane for properly elliptic equations of 

second order in the case when boundary functions are continuous with the weight in 

numeric axis [80]. Also, by Tovmasyan are studied partial differential equations in regard to 

their important applications in electrodynamics [81], [82]. Boundary value problems for 

poly-harmonic and poly-analytic functions are investigated by Hayrapetyan H.M. in the 

half-plane [20], [21], [22], [23]. Schwarz type problems are investigated in the class of bi-

analytic functions by Hayrapetyan A.R. [19] and in the class of poly-analytic functions by 

Begehr H., Schmersau D. [7]. Note the work of Begehr H., Kumar A. [6], where boundary 

value problems are studied for the inhomogeneous poly-analytic equation. In this work it is 

shown that for solvability of the Dirichlet problem for Bitsadze equation uncountable 

linear independent conditions must hold. Also, note monograph of Tanabe H. [75], where 

he studies Dirichlet problem for strongly elliptic equation in the classes of continuous 

functions. In the unit circle Dirichlet boundary value problem for biharmonic functions is 

investigated by Hayrapetyan H.M. [30]. Also, note the work by Hayrapetyan H.M., 

Hayrapetyan A.R. [40], where they studied some questions regarding uniqueness of 

harmonic functions. Babayan V.A. and Hayrapetyan H.M. studied Riemann-Hilbert and 

Dirichlet problems in the classes of continuous functions [3], [4], [5], [35].  

Relevance of the topic 

Let  is Lyapunov simple, closed curve,  and  are respectively interior and exterior 

domains. Riemann boundary value problem or conjugation problem in classical setting has 

the following statement: 

Determine analytic function  in  bounded or vanishing at infinity such that 

the following holds: 

  (1) 
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where function  and  are defined in  and belong to Holder classes  

Besides,  for any point of    

Function  is called coefficient of Riemann problem and  is called free member. 

This problem was solved by Gakhov F.D. [15]. Then, Khvedelidze B.V. has studied the 

case when function  belongs to the space  where  [50], [52]. In the works of 

Simonenko I.B. [68], [69], [70] the same problem for   was investigated with 

essentialy extended coefficient. For all these cases solution of the problem is given with 

Cauchy type integral of function  Furthermore, if  belongs to either classes  

or  then solution of the problem also belongs respectively to the classes 

 or  [17], [54], [57]. 

Boundary value problems when  becomes complicated as Cauchy type integral of 

function from  is not bounded operator belonging to Smirnov class  [44], [55]. For 

solving Riemann boundary value problem in space  Hayrapetyan H.M. suggested new 

setting of the problem [28], [34]. This statement helped H.M. Hayrapetyan and his students 

Meliksetyan P.E., Hayrapetyan M.S., Tsutsulyan A.V. and others [24], [27], [43] to 

investigate Riemann boundary value problem and elliptic differential equations associated 

with it in the weighted spaces. Particularly, for unit circle  statement is as 

follows: 

Determine analytic function  in  bounded or vanishing at infinity such that 

the following holds: 

 
 (2) 

where functions  and  are defined in ,  belongs to Holder classes , 

 at any point of  and  belongs to  space.  

Then, it was shown that this setting is correct. In other words, if function  is a solution 

of Riemann boundary value problem with this setting for the function  from Holder 

classes or  spaces, then it would be also a solution with the classical 

statement. Thus, attained results are generalization of classical results of theory of boundary 

value problems.  
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Taking into consideration above mentioned reasons, we may conclude that studied 

problems in this dissertation are relevant in the field of boundary value problems of 

differential equations in the weighted spaces.  

Object of study 

Boundary value problems in the weighted spaces in unit circle with coefficients 

belonging to Holder classes 

Goals 

 Study Riemann boundary value problem with a coefficient from Holder classes in 

the weighted spaces , where weight function is concentrated on finite 

number of singular points. Give necessary and sufficient conditions for solvability 

of the problem and determine solutions in explicit form. 

 Study Discontinuous Riemann boundary value problem in the weighted spaces 

, where weight function is concentrated on one singular point. Give 

necessary and sufficient conditions for solvability of the problem and determine 

solutions in explicit form. 

 Study Riemann-Hilbert boundary value problem in the weighted spaces , 

where weight function is concentrated on finite number of singular points by 

transforming it into Riemann boundary value problem, give necessary and 

sufficient conditions for solvability of the problem and determine solutions in 

explicit form. 

 Study Dirichlet problem for biharmonic functions in the weighted spaces, where 

weight function is concentrated on one point, give necessary and sufficient 

conditions for solvability of the problem and determine solutions in explicit form. 

Research methods 

In this work there are applied methods of theory of analytic functions and boundary 

value problems  

Scientific novelty of work 

All the results of the dissertation are novel. 

Theoretical and practical value 
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Generally speaking all the results have theoretical value and can be applied in the 

study of boundary value problems of differential and integral equations. 

Approbation of work 

The results were reported during both republican and international conferences and 

seminars: 

 International Conference “Education, science and economics at universities 

and schools. Integration to international educational area”, March 2014, 

Tsaghkadzor, Armenia 

 Annual Conference, National Polytechnic University of Armenia, 2015 

 AMU Annual Session dedicated to the 100th anniversary of Proffesor Haik 

Badalyan, June 2015, Yerevan, Armenia 

 International Conference, Harmonic Analysis and Approximations, VI, 

September 2015, Tsaghkadzor, Armenia 

 VI Russian-Armenian Conference on Mathematical Analysis, Mathematical 

Physics and Analytical Mechanics, September 2016, Rostov-on-Don, Russia 

 Seminar, Mathematical Analysis Sessions, Wroclaw University of Science and 

Technology, April 2017, Wroclaw, Poland 

Author’s Publications in the topic of dissertation  

Results of the dissertation are published in 8 works (4 papers and 4 abstracts), which 

are stated at the end of references. 

The volume of the dissertation 

The dissertation consists of introduction, three chapters, conclusion and references. 

The volume of dissertation is 82 pages. References contain 92 items. 

 

 

Work content 

In the first chapter the Riemann boundary value problem is solved in the weighted 

spaces with a coefficient belonging to Holder classes in unit circle. The solution separately 

is given for two different cases regarding the order of singularity of the weight function. 

For stating the results precisely it is necessary to do some notations. 
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Let  be a unit circle in the complex plane , and let  and  be the interior and 

exterior domains, respectively bounded by the curve . Also, by  we define the 

following space: 

 

where 

 

 

 

 and   are real numbers. To formulate the problem we first 

introduce some notation. We set 

 

 

 

where 

 

 

We consider the Riemann boundary value problem in the following setting: 

Problem R  

Let  be an arbitrary measurable on  function from the space . Determine an 

analytic in  function   to satisfy the boundary condition: 

 
 (3) 

where  is an arbitrary function from the class  

 and   are the contractions of function  on  

respectively. 

Let  and  It is well known that the function  admits the 

representation (see [15]) 
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where 

 

 

 

(4) 

 and  as . 

Also, by  we denote the following: 

 

 

 

Lemma 1  

Let ,  and  be some solution of the Problem R. 

Then the following assertions hold. 

a) If  , then   admits the representation 

 

 
(5) 

where  is some polynomial of degree  and 

 

b) If  , then  has the representation (5), where  and the function 

 satisfies the conditions: 

 

 
(6) 

Let 

 

 
(7) 
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Theorem 1  

Let  Then 

 
  

where  is defined as in (7). Thus,  is a solution of the inhomogeneous 

Problem R, when   If  then  is a solution of the inhomogeneous 

Problem R if and only if  satisfies conditions (6). 

Theorem 2 

Let ,  Then the following assertions hold. 

a) If   then the general solution of the homogeneous Problem R can be 

represented in the form: 

 

 

 

where  is a polynomial of degree   for  and  for  

b) If   and  then the general solution of the homogeneous Problem R 

can be represented in the form: 

 

 
 

where  is a polynomial of degree   

c) If   then the homogeneous problem has only trivial solution. 

Theorem 3  

Let ,  Then the following assertions hold. 

a) If   then the general solution of the inhomogeneous Problem R can be 

represented in the form: 

 
 (8) 

where  is defined as in (7), and  is the general solution of the homogeneous 

Problem R. 
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b) If   then the Problem R is solvable if and only if  satisfies the conditions 

(6). And the solution can be represented in the form (7). 

 

In general case when  are arbitrary real numbers, we need to demand 

from function  to belong some specific class of functions. Let define this class as follows: 

Definition 

Given  we say that a function  belongs to the class  if 

 
 (9) 

Theorem 4 

Let  are arbitrary real numbers,  and   Then the 

following assertions hold. 

a) If   then the general solution of the inhomogeneous Problem R can be 

represented in the form: 

 

 
 

where  is defined as in (7),  is an arbitrary complex number for  and  

for , and  is a polynomial of degree . 

b) If   and , then   can be represented in the form (8), where 

 and  satisfies conditions (6). 

c) If   and , then the inhomogeneous Problem R has a unique solution: 

 
  

where 

 

 
 

and  satisfies conditions (6) if   

d) If  and , then the Problem R has a single solution:  

and  satisfies conditions (6). 
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Theorem 5 

Let  are arbitrary real numbers,  and   Then the 

following assertions hold. 

a) If   then the general solution of the homogeneous Problem R can be 

represented in the form: 

 

 
 

where  is an arbitrary complex number for  and  for  , and  is a 

polynomial of degree . 

b) If   and  , then , where  is an arbitrary complex 

number.  

c) If   and , then the homogeneous Problem R has only trivial solution: 

. 

 

In the second chapter two problems are studied which are connected with Riemann 

boundary value problem: Riemann-Hilbert boundary value problem and Discontinuous 

Riemann boundary value problem.  

If not stated opposite we use the same notations as in Chapter 1. 

Problem H  

Let  be a real-valued, measurable on  function from the space . Determine an 

analytic in  function  to satisfy the boundary condition: 

 
 (10) 

where  is an arbitrary function from the class  . 

By making the following notations 

 

we come to the following Riemann Problem. 

Problem R 
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Let  is some measurable on  function from the space . Determine an analytic in 

 function  to satisfy the boundary condition: 

 
 (11) 

where  is a function from the class  and   are the 

contractions of function  on  respectively. 

Let 

 

 

where  and  are real-valued functions, such that  

Also, 

 

 
(12) 

Theorem 6 

The following assertions hold. 

a) If  then  is a solution of the inhomogeneous Problem H, where 

 is defined as in (12).  

b) If   then  is a solution of the inhomogeneous Problem H if and 

only if   satisfies the following conditions: 

 

 
(13) 

Theorem 7 

Let   Otherwise,  Then the following assertions hold. 

a) If  then the general solution of the homogeneous Problem H can be 

represented in the form: 

 

 
 

where numbers  satisfy condition: 
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b) If   then the homogeneous Problem H has only trivial solution. 

Theorem 8  

Let  Otherwise,  Then the following assertions hold. 

a) If   then the general solution of the inhomogeneous Problem H can be 

represented in the form: 

 
  

where  is defined as in (12), and  is the general solution of the homogeneous 

Problem H. 

b) If   then the Problem H is solvable if and only if  satisfies the 

conditions (13). And the solution can be represented in the form (12). 

 

Discontinuous Riemann boundary value problem is investigated in the case when 

coefficient of the problem belongs to Holder class in unit circle except from finite number 

of points where it has jump discontinuity. To state the problem we have to make following 

notations. 

Definition 

We say   if function  belongs to Holder class in any interval 

from  not including   points and has jump discontinuity at those points. 

      Let  where  and  is arbitrary real number. By  we denote 

the following:  

 

 
 

By introducing  function it is easy to get the following: 

 

 
(14) 
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Problem R 

Let   and  Also, 

. Determine in  analytic function  such that the 

following condition holds: 

 
  

Theorem 9 

The general solution of the inhomogeneous Problem R, which has some finite degree at 

infinity, is given by the following formula: 

 

 

 

(15) 

where   is any polynomial and 

 

 
 

Let introduce the following functions: 

 

 

Then, 

 

Hence, for any polynomial , equation (15) can be represented as 

follows: 
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It is well known that  where  are integers such that 

 

and   is the index of function  

Theorem 10 

The following assertions hold.  

a) If   then the general solution of the inhomogeneous Problem R has the 

following representation: 

 

 

 

(16) 

where  are arbitrary complex numbers when  and 

 when  

b) If   then the Problem R has a solution if and only if: 

 

 
(17) 

And, the solution has the representation (16), where   

 

In the third chapter the Dirichlet Problem is investigated for biharmonic functions in 

the weighted spaces in unit circle. The problem is investigated in the case when boundary 

conditions of a function and his derivative are considered in different weighted spaces. 

Firstly we introduce some notations. 

Let  is a weight function,  is arbitrary real number, 

  is the norm of space,   are real- 
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valued functions defined in . The problem is investigated in the following setting: 

Problem D 

Determine function ,  to satisfy the equation 

  (18) 

and boundary condition 

 

 
(19) 

With this statement we prove that Problem (18), (19) is normally solvable, besides, if 

, then the problem is investigated with the following boundary conditions: 

 

 
(20) 

where   

Theorem 11 

Let . Then the homogeneous problem (18), (20) has only trivial solution: 

 

Definition 

We say that,  numbers belong to class   if 

   

Theorem 12 

Let . Then the general solution of the homogeneous problem (18), (19) can be 

represented as follows: 

 

where 
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Besides,  numbers belong to the class , and   numbers to the class 

. 

Theorem 13 

Let  Then the general solution of the inhomogeneous problem (18), (20) can be 

represented as follows: 

 

where   are analytic functions in , determined with the following formulas: 

 

 

 

Besides, there are necessary and sufficient conditions for solvability of the problem, which 

have the following form: 

 

 
 

Theorem 14 

Let  Then the general solution of the problem (18), (19) can be represented in 

the form: 

 

where   are analytic functions in , and are given by the following formulas: 

 

 

 

and  numbers belong to the class , and  numbers to the class . 
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CHAPTER 1. RIEMANN  PROBLEM  IN  THE  WEIGHTED  SPACES   

 

Riemann boundary value problem1 firstly was stated in Riemann’s work on differential 

equations with algebraic coefficients [66]. However, Riemann surprisingly did not try to 

solve the problem. Solution of the homogeneous problem firstly was given by Hilbert. The 

basic idea which helped him to solve the problem was that any complex-valued function is 

boundary value of some analytic function. Then, he constructed Fredholm integral 

equation for which the solution of the homogeneous problem satisfies. Analyzing this 

equation he came to the conclusion that one of the two problems, one with coefficient  

second with  is solvable. Further investigation of this problem by Privalov I.I. [65] and 

Picard E. [61] was based on the same approach: use Cauchy type integral as a basic tool. The 

main difference from the works of Hilbert was the alternative problem. They used   

coefficient instead of . This method is still used in Riemann boundary value problems 

in a lot of cases of unknown functions.  

It is worth mentioning two fundemantal works done by Plemelj I. [62] and Carleman T. 

[14]. First proves that for single-valued function , solution of the homogeneous 

problem can be found explicitly with Cauchy type integral of this function. Second, during 

the process of investigation of singular integral equation with Cauchy kernel coincidently 

solved Riemann inhomogeneous problem with a constant coefficient, when the contour is 

the interval  of real axis. These works are very specific, they refer to only very trivial 

cases regarding coefficient of the problem, but as one of the first fundamental solutions, 

they stand very highly in the theory of Riemann boundary value problem. It was Gakhov 

F.D. who firstly investigated Riemann boundary value problem with a coefficient which 

can have index other than zero in simply connected domains [15]. Khvedelize B.V. 

expanded his results in multiply connected domains [53].  

                                                           
1
 Different authors use other names for this problem, such as: “Hilbert problem”, “problem of conjugation”, 

“Hilbert-Privalov problem”, “Riemann-Privalov problem”. 
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Riemann boundary value problem with  a  displacement  firstly  was  studied  by 

Haseman C. [18]. He used the same method as Hilbert by transforming the problem into 

Fredholm integral equation and obtained the same alternative to the problem as Hilbert for 

Riemann boundary value problem. Complete solution of this problem was given by 

Kveselava D.A. in his work [56]. 

It would be helpful for future investigation to state some basic properties, which can be 

found in the works [15], [59].  

1. Holder class functions 

Let  is closed, smooth curve and  is a function defined on this curve. We say that 

function  satisfy Holder condition, if for any two points of this curve following holds: 

 

where  is constant and  The class of functions which satisfy Holder condition 

called Holder class:  Note that if  then Holder class coincides with Lipshitz 

class. 

Let consider Cauchy type integral from  function, which belongs to Holder classes 

 

By  and  we understand interior and exterior domains of curve  respectively. The 

following is true: 

 

Suppose 

 

 
(1.1) 

where   and  This integral is understood by Cauchy principal value. 

Sometimes for easy calculations it is used in the following form: 
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The fundamental property of (1.1) is that  with the same number  in the case 

 and  where  ), is arbitrary real number in the case 

 In other words, Cauchy type integral of Holder class function also is a Holder class 

function. This property plays key role in the theory of boundary value problems.  

2. Sokhotski-Plemelj formulas 

Let 

 

where  

By  and  we understand the following: 

 

The following formulas are true and called Sokhotski-Plemelj formulas: 

 

 

(1.2) 

3. Index 

Let  is a continuous function defined in   at any point of  

Definition 

Augmentation of argument of function  when traversing a curve in positive 

direction devided by  is called index of function by contour  . 

 

 
(1.3) 

4. Riemann boundary value problem 

Statement 

Let  is a closed, smooth curve dividing complex plane into interior domain  and 

exterior domain  Functions  and  belong to Holder class of functions, also 
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 Determine analytic functions  and  in  and  including  

point respectively such that the following holds: 

  (1.4) 

Function   is called coefficient of Riemann boundary value problem, free 

member. Supposing  in (1.4) we get the homogeneous problem. 

Now let consider particular case, when  Taking into consideration Sokhotski-

Plemelj formulas (1.2) solution of the problem is: 

 

By demanding additional condition  solution of the problem would be unique: 

 

Now let  Also, let  and  are solutions of the homogeneous problem. 

Denote by  and  the quantity of their zeroes in  and  respectively. Then 

 Thus, , otherwise homogeneous problem has only trivial solution. 

a) Let  then  is a single valued function and  is analytic, so we have 

 

From Sokhotski-Plemelj formulas we get 

 

hence  

 

By demanding additional condition  we get . Thus, the homogeneous 

problem has only trivial solution. 

b) Let  Transform (1.4) into the following 
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 (1.5) 

Obviously, , so 

 

where 

 

Then we have  

 

As function    is analytic in  and function    is analytic in  except from 

maybe at infinity where it can have a pole of order not higher than , then from 

Liouvill’s generalized theorem we obtain 

 

 
(1.6) 

Now let 

 

 
(1.7) 

Obviously, 

 

Then general solution of the homogeneous problem can be represented in the form 

 

Taking into account the equation above, the inhomogeneous problem can be written in the 

form 



25 
 

 

 
(1.8) 

Let 

 

 
(1.9) 

Taking into consideration Sokhotski-Plemelj formulas  satisfies (1.8) equation. 

a) , then  at infinity and  Then the general solution of the 

inhomogeneous problem has the following representation 

   

b) , then  has a pole of order  at infinity, thus for obtaining  

we should determine necessary and sufficient conditions. 

Clearly, 

 

thus  

 

where 

 

Then we get the following conditions 

 

 

(1.10) 

The problem has unique solution which has (1.9) form and  necessarily satisfies conditions 

(1.10). 

  

1.1 Statement of the problem 
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Let  be a unit circle in the complex plane , and let  and  be the interior and 

exterior domains, respectively bounded by the curve . Also, by  we define the 

following space: 

 

where 

 

 

(1.1.1) 

 and   are real numbers. To formulate the problem we first 

introduce some notation. We set 

 

 

(1.1.2) 

where 

 

 

 . It is clear that  and  

We consider the Riemann boundary value problem in the following setting: 

Problem R 

Let  be an arbitrary measurable on  function from the class . Determine an 

analytic in  function  to satisfy the boundary condition: 

 
 (1.1.3) 

where  is an arbitrary function from the class  

 and  are the contractions of function  on  

respectively. 
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1.2 Preliminary results 

 

1.2.1 In the case  

 

Lemma 1.2.1  

Let  and let  be arbitrary real 

numbers. The following assertions hold: 

 

 

 

where   is independent of  . 

Proof. We choose half-open intervals    such that 

 

Then for any  and  we have 

 

 

It is enough to show that for any  

 

Taking into account that 
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we show that 

 

Since  (see [42]), it is enough to show that 

 

Indeed, we have  

 

 

where  This completes the proof of assertion a) of the lemma. 

To prove assertion b), similar to the case a), it is enough to show that 

 

Taking into consideration that 

 

we set 

 

 

Since  for  we can write 
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To complete the proof of assertion b) of the lemma, it remains to observe that 

 

Next, to prove assertion c), we first observe that 

 

 

Hence taking into account that 

 

we can apply Holder inequality to obtain 

 

 

and the assertion c) follows. Lemma 1.2.1 is proved. □ 

Let  and  It is well known that the function  admits the 

representation (see [15]) 

 

where 

 

 

 

(1.2.1) 
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 and  as . 

Also, by  we denote the following: 

 

 

(1.2.2) 

Lemma 1.2.2 

Let ,  and  be some solution of the Problem R. 

Then the following assertions hold. 

a) If  , then   admits the representation 

 

 
(1.2.3) 

where  is some polynomial of degree  and 

 

b) If  , then  has the representation (1.2.3), where  and the 

function  satisfies the conditions: 

 

 
(1.2.4) 

Proof. First let  Since   we have 

 

Denote 
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Then we obtain the Hilbert boundary value problem  with respect 

to function  Taking into account that the function  has a pole of order  at 

infinity, we can write 

 

where  is a polynomial of degree  Since 

 

as  by passing to the limit we complete the proof of assertion a).  

Now let  then we have  and  

 

Taking into account that the function has a pole of order  at infinity, 

the assertion b) of the lemma follows. Lemma 1.2.2 is proved.□ 

Lemma 1.2.3 

Let  and 

 

 
(1.2.5) 

then 

 

Proof. We set 

 

where 

 

and 
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Since  for  (see [42]), we obtain 

 

Next, we have 

 

where 

 

 

Taking into account that the function   is uniformly bounded for  

we obtain 

 

 

Assuming that  we can write 

 

 

where  is as in (1.1.2). 

By assertion a) of Lemma 1.2.1 for  and , we have 

 

Therefore 
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And we have 

 

By assertion b) of Lemma 1.2.1 

 

Therefore 

 

For evaluating  integral function at the interval  we firstly prove the following 

inequality: 

 

 
(1.2.6) 

Let make the following notation: 

 

We obtain 

 

 

 

 

 

So, we have 
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Taking into account that for any  

 

 

we can apply assertion c) of Lemma 1.2.1 to obtain 

 

Hence 

 

Now we assume  are arbitrary real numbers. 

So we have 

 

 

Finally, taking into account that 

 

we can apply Lemma 1.2.1 to complete the proof of Lemma 1.2.3.□ 

1.2.2  class of functions 

Definition  

Given  we say that a function  belongs to the class if 
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 (1.2.7) 

Let construct example of a function which belongs to the class  

Example: The function 

 

 

(1.2.8) 

where   is an integer and  are nonnegative integers, belongs to  provided that 

 

It is obvious that  and if  then  and 

 

We have 

 

Therefore for  we can write 

 

Hence, taking into account that  we obtain  Similarly we can show 

that  in  case. 

Lemma 1.2.4  

Let  and  for some  If  

 

satisfies the condition 

 

for some    then  

Proof. Since 
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where 

 

 

The condition  implies that . 

Let  then we have  

 

where  

Hence 

 

Since  for , then we have 

 

implying that  

Now assume that . Let  be an odd number and  Then for 

 we have  

 

Therefore, 

 

 

Taking into account that , we obtain 
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If  is an even number, then we have 

 

 

Taking into account that , we complete the proof of Lemma 1.2.4.□ 

In what follows in this chapter we assume that 

 

 

(1.2.9) 

Lemma 1.2.5 

Let  then 

 

 

(1.2.10) 

Proof. Since 

 

where 

 

 

In view of  and , we obtain 

 

 So, we will get 
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Since for  

 

 

then we get 

 

Taking into consideration that  we obtain 

 

So, lemma is proved.□ 

Lemma 1.2.6 

Let   for some  and 

 

 

(1.2.11) 

If the function 

 

 
(1.2.12) 

satisfies the condition 

 

then  can be represented in the form 

 
 (1.2.13) 

where  is analytic at point  function, and  is some complex number. 
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Proof. By Lemma 1.2.5, 

 

as  we can conclude that the function 

 

also satisfies the condition 

 

By lemma 1.2.4, the numbers  can uniquely be determined from the 

conditions: 

 

 

(1.2.13) 

Choosing  arbitrarily, the numbers  can uniquely determined by the 

above system. Taking into account Lemmas 1.2.4 and 1.2.5 we complete the proof of 

Lemma 1.2.6.□ 

 

1.3 The main result 

Theorem 1.3.1  

Let  Then 

 
 (1.3.1) 

where  is as in (1.2.5), that is,  is a solution of the Problem R, when 

 If  then   is a solution of the Problem R if and only if  

satisfies the conditions (1.2.4). 

Proof. Let  in some non-overlapping neighboarhoods  of points , and let 

 denote the union of these intervals. Then the function 
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is analytic in  and its Taylor series at points  has the form 

 

where 

 

We have 

 

where 

 

 

Since  then in view of 

 

for  and every  we obtain 

 

Also, for  we have 

 

 

Next, let  Since  the function 
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satisfies the condition  

 

Thus, the theorem is proved for a function vanishing in neighboarhoods of points  

 

Now let  be an arbitrary function from  Then for any  a function  

can be found to satisfy  in  and  In view of Lemma 1.2.3 we can 

write 

 

 

 

 

Taking into account that  we 

complete the proof of Theorem 1.3.1.□ 

 

1.4 Investigation of the Problem R in the case  

1.4.1 General solution of the homogeneous Problem R 

In the theorem 1.4.1 we state the general solution of the homogeneous Problem R in the 

case  

Theorem 1.4.1 

The following assertions hold. 

a) If  then the general solution of the homogeneous Problem R can be 

represented in the form: 

 

 

(1.4.1) 

where  is a polynomial of degree  for  and  for  
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b) If  and  then the general solution of the homogeneous Problem R 

can be represented in the form: 

 

 
(1.4.2) 

where  is a polynomial of degree  

c) If   then the homogeneous problem has only trivial solution. 

Proof. Let 

 

Since  we have 

 

Therefore 

 

Setting  we can write 

 

 

 

Hence 

 

Since  and  the last integrals tend to zero as  Thus, the  
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assertion a) of the theorem is proved. Assertions b) and c) can be proved similarly. Theorem 

1.4.1 is proved.□ 

 

1.4.2 General solution of the inhomogeneous Problem R 

In the theorem 1.4.2 we state the general solution of the Problem R in the case          

 

Theorem 1.4.2 

The following assertions hold. 

a) If   then the general solution of the inhomogeneous Problem R can be 

represented in the form: 

 
 (1.4.3) 

where  is as in (1.2.5), and  is the general solution of the homogeneous 

Problem R. 

b) If   then the Problem R is solvable if and only if  satisfies the conditions 

(1.2.4). And the solution can be represented in the form (1.2.5). 

 

1.5 Investigation of the Problem R in the case of arbitrary  

 

In the theorem 1.5.1 we state general solution of the Problem R in the case of arbitrary 

numbers  ,  . 

Theorem 1.5.1 

Let  The following assertions hold. 

a) If  then the general solution of the inhomogeneous Problem R can be 

represented in the form: 

 

 
(1.5.1) 

where  is as in (1.2.5),  is an arbitrary complex number for  and  for 

, and   is a polynomial of degree  . 
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b) If  and , then  can be represented in the form (1.4.3), where  

 and  satisfies the following conditions: 

 

 
(1.5.2) 

c) If   and  , then Problem R has a unique solution: 

 
 (1.5.3) 

where 

 

 
(1.5.4) 

and  satisfies conditions (1.5.2) if   

d) If  and , then Problem R has a single solution  and  

satisfies conditions (1.5.2). 

Proof. Let  be a solution of the Problem R. Then we have 

 

where 

 

Denoting 

 

we obtain the Hilbert problem for function   

 

where 
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Taking into account that the function  has a pole of order  at point 

 and at infinity  Also, denoting by 

 

the principal part of Laurent expansion of function   at point , we obtain 

 

 

(1.5.5) 

Next, assuming that , we obtain 

 

where  is some polynomial of degree  for  and  for 

  

Since  in , we have 

 

 

(1.5.6) 

where 

 

It is clear that the function 

 

satisfies condition (1.1.3). Hence the function 

 

also satisfies condition (1.1.3). Therefore, in view of Lemma 1.2.6 we obtain the following 

representation: 
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(1.5.7) 

Assume that . Since , then  is a solution of the 

homogeneous Problem R. Hence the general solution of the inhomogeneous Problem R can 

be represented in the form: 

 

where  is an arbitrary complex number. 

If   then the function  has a pole of order  at infinity. Hence 

 is not a solution of the homogeneous Problem R. In order to satisfy the condition 

 it is necessary to find  from (1.5.4), and to require  to satisfy the conditions 

(1.5.2) for  

Finally, for  clearly we have  and  satisfies the condition 

(1.5.2). Theorem 1.5.1 is proved.□ 

Theorem 1.5.2 

Let  The following assertions hold. 

a) If  then the general solution of the homogeneous Problem R can be 

represented in the form: 

 

 
(1.5.8) 

where  is an arbitrary complex number for  and  for , and  is a 

polynomial of degree . 

b) If   and , then  where  is an arbitrary complex 

number.  

c)  If  and , then the homogeneous Problem R has only trivial solution:  

. 
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CHAPTER 2.RIEMANN-HILBERT  and DISCONTINUOUS  RIEMANN PROBLEMS  IN 

THE  WEIGHTED  SPACES   

 

2.1 Riemann-Hilbert Problem 

 

2.1.1 Introduction 

If not stated opposite we will use here the same notations as in Chapter 1. 

    Let  is a function defined in  By  we understand the following (see [59]): 

 

 
(2.1.1) 

where  is defined in  It is well known that this operation is symmetric, thus 

 

Properties 

1. If  is holomorphic (meromorphic) function  then  is holomorphic 

(meromorphic) in  

Suppose 

 

then 

 

2.  If 

 

then 
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Thus, if  has a pole (zero) of order  at the point  then  also has a 

pole (zero) of order  at the point  So, if  is analytic in unit circle, then  

is bounded at infinity. 

3. Let  Then, there exists 

 

So, if we define function  as follows: 

 
where  is holomorphic in  and  is holomorphic in  then 

 
 (2.1.2) 

4. Let  is the Cauchy type integral of function  So, 

 
Then, 

 
and 

 
By substituting  

 
we have 

 
thus 

 

 
(2.1.3) 
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2.1.2 Statement of the problem 

We consider the Riemann-Hilbert problem in the following setting: 

Problem H  

Let  be a real-valued, measurable on  function from the space . Determine an 

analytic in  function  to satisfy the boundary condition: 

 
 (2.1.4) 

where  is an arbitrary function from the class . 

By taking into consideration 

 

equation,  (2.1.2) can be represented as follows: 

 
 

(2.1.5) 

Our goal is to transform condition (2.1.4) such that it has the same representation as   

convergence condition (1.1.3) in Riemann boundary value problem (Problem R) which is 

fully investigated in Chapter 1. Then we will reconsider Riemann-Hilbert Problem 

(Problem H) as a complicated application of the Problem R. In other words, by applying 

fundamental results attained in Problem R we will solve the Problem H. 

Taking into account (2.1.1) and (2.1.2) we come to the following contractions of function  

on  and  respectively: 

 

 

(2.1.6) 

By taking into account (2.1.6) we can rewrite (2.1.5) as follows: 

 

 
(2.1.7) 

It remains to make some minor changes in the view of (2.1.7) to get exactly the same  
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convergence condition as in Problem R.  Denote, 

 

 
 

As  with some  obviously  in  Also, if  then 

 
 (2.1.8) 

From (2.1.8) it is obvious that the function  has index of even number. We will denote 

it by  and take into account that , where  is even number. 

So, we have come to the following Riemann Problem. 

Problem R 

Let  is some measurable on  function from the class . Determine an analytic in 

 function  to satisfy the boundary condition: 

 
 (2.1.9) 

where  is a function from the class  and  are the 

contractions of function  on  respectively. 

Suppose  is a solution of the Problem R. Then, generally it may not be a solution of 

the Problem H as well. For  to be a solution of the Problem H it is necessary and 

sufficient that  satisfy to the following condition: 

  (2.1.10) 

Besides,  is also a solution of the Problem R. So, we will give the general solution of 

the Problem H with the following formula 

 

 
(2.1.11) 

where  is the general solution of the Problem R. 

 

2.1.3   Solution of the Problem H 

Let 
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(2.1.12) 

where  and  are real-valued functions, such that  

It is well known that the function  admits the representation (see [15]) 

 

where 

 

 

 

(2.1.13) 

 and  as . 

 Taking into consideration (2.1.3) (see [59]) 

 

 
(2.1.14) 

Also, from (2.1.2) 

  (2.1.15) 

Suppose 

 

Now we evaluate function  

 

Thus we have 

 

 

(2.1.16) 

With the same manner we conclude 

 



52 
 

Let 

 

 
(2.1.17) 

As in (2.1.1) suppose 

 

Taking into consideration (2.1.12), (2.1.14), (2.1.16) and (2.1.3) we have: 

 

Obviously, 

 

So, from (2.1.15) we get 

 

Now we evaluate the following: 

 

Obviously, 

 

 

Then, 

 

 

By some easy calculations we will get 



53 
 

 

 
(2.1.18) 

Theorem 2.1.1 

The following assertions hold. 

a) If  then  is a solution of the Problem H, where  is defined as 

in (2.1.18).  

b) If   then   is a solution if and only if  satisfies the following 

conditions: 

 

 
(2.1.19) 

Proof. By taking into consideration  the proof of this theorem directly follows 

from the theorem 1.3.1 in Chapter 1 and from the definition of function . □ 

Suppose  Then, let 

 

where  is a polynomial of degree  

Let evaluate the following function 

 

By taking into account (2.1.14) and (2.1.16) we have: 

 

Let 

 

then 

 

Thus, 
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Suppose  Then, we have 

 

So we get 

 

and 

 

 

(2.1.20) 

For the homogeneous problem we will discuss two cases separately as in Riemann 

boundary value problem in Chapter 1. 

1. Let   

Theorem 2.1.2 

The following assertions hold. 

a) If  then the general solution of the homogeneous Problem H can be 

represented in the form: 

 

 
(2.1.21) 

where numbers  satisfy condition (2.1.20). 

b) If   then the homogeneous problem has only trivial solution. 

Proof. By taking into consideration  the proof of this theorem directly follows 

from evaluations above and the theorem 1.4.1 in Chapter 1. □ 

Theorem 2.1.3 

The following assertions hold. 
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a) If   then the general solution of the Problem H can be represented in the 

form: 

 
 (2.1.22) 

where  is as in (2.1.18), and  is the general solution of the homogeneous 

Problem H. 

b) If  then the Problem H is solvable if and only if  satisfies the conditions 

(2.1.19). And the solution can be represented in the form (2.1.18). 

2. Let  are arbitrary real numbers  

Suppose function  is such that function 

 

satisfies (1.2.7) convergence condition. Thus,  

Theorem 2.1.4 

Let  Then the following assertions hold. 

a) If  then the general solution of the homogeneous Problem H can be 

represented in the form (2.1.21), where numbers   satisfy conditions (2.1.20). 

b) If   then the homogeneous problem has only trivial solution. 

Proof. From theorem 1.5.1 in chapter 1 we can see that in case of  function , is 

a solution of the homogeneous problem (2.1.9), where  is any complex number. As we 

concluded above not every solution of the problem (2.1.9) is a solution of the Riemann-

Hilbert problem. For being a solution it should necessarily satisfy (2.1.10). As 

 so , hence it is not a solution of the Problem H. □ 

Theorem 2.1.5  

Let  Then the following assertions hold. 
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a) If   then the general solution of the Problem H can be represented in the 

form (2.1.22), where  is as in (2.1.18), and  is the general solution of the 

homogeneous Problem H. 

b) If  then the Problem H is solvable if and only if  satisfies the conditions 

(2.1.19). And the solution can be represented in the form (2.1.18). 

2.1.4  Dirichlet Problem 

Now let consider particular case, when  Then we get Dirichlet problem in the 

following setting: 

Problem D 

Let  be a real-valued, measurable on  function from the class . Determine an 

analytic in  function to satisfy the boundary condition: 

 
 (2.1.23) 

In the same way (2.1.23) can be reduced to  

 
 (2.1.24) 

Let  

 

 
 

then 

 

Hence, 

 

and 

 

 
(2.1.25) 
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Theorem 2.1.6 

The following assertions hold. 

a) If  then the general solution of the homogeneous Problem D can be 

represented in the form: 

 

 
(2.1.26) 

where numbers   satisfy conditions: 

 

 

(2.1.27) 

b) If   then the homogeneous problem has only trivial solution. 

Proof. The proof of this theorem directly follows from theorems 2.1.2 and 2.1.4. □ 

Theorem 2.1.7 

The following assertions hold. 

a) If  then the general solution of the Problem D can be represented in the 

form: 

 
  

where  is as in (2.1.25), and  is the general solution of the homogeneous 

Problem D. 

b) If  then the Problem D is solvable if and only if  satisfies the following 

conditions: 

 

 
 

And the solution can be represented in the form (2.1.25). 

Proof. This theorem directly follows from theorems 2.1.3 and 2.1.5. □ 
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2.2   Discontinuous Riemann Problem 

 

2.2.1  Statement of the Problem 

Let  where  and  is arbitrary real number. 

By  we denote Holder class functions in   

Definition 

We say that   if  belongs to Holder class in any interval from 

 not including   points and has jump discontinuity at those points.  

We will discuss the problem in the case 

 

Let  and  By introducing  

function it is easy to get the following (see [15]): 

 

 
(2.2.1) 

Obviously, the following function 

 

can be represented in some small interval of the point  as follows: 

 

where  is analytic function in  and  For function  we 

make the following notation: 

 

Let consider the following boundary problem. Find analytic  function in  such that 

 
 (2.2.2) 

where 
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There exist  and  conformal mapping functions from  and  

into some  and  domains respectively such that they satisfy Lipschitz condition in 

 and  (see [34]). Let consider 

 

 

where  are integers such that  

Making following notation 

 

we can easily conclude that function  satisfies (2.2.2). Even further, 

 where  is analytic function in  and  

 

Let  It admits the following representation: 

 

 

(2.2.3) 

Lemma 2.2.1 

For function  we have (see [34]): 

 

 and  

in some small interval  of the point  the following is true: 

 

 
 

where  thus  and function  Obviously, 

 when  

By  we denote the following:  
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(2.2.4) 

We consider Riemann boundary value problem with the following setting: 

Problem R 

Let  and  is the weight 

function, where  is arbitrary real number and . Determine in  analytic 

function  such that the following condition holds: 

 
 (2.2.5) 

Parallel, we will consider Problem R by extracting condition  from function  

and letting him to have some finite degree at infinity. 

 

2.2.2 Solution of the Problem R 

Theorem 2.2.1 

Let  If  is a solution of the Problem R and has at infinity some finite degree, 

then the following representation is true: 

 

 

 

 

where  is some polynomial and 

 

 
 

Proof. Let  be a solution of the Problem R and has at infinity some finite degree. Also, 

 is a sequence such that  From Lemma 2.2.1 

we can easily obtain the following result: 

 

Let  
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(2.2.6) 

Thus, we get the following boundary problem 

 

where  and  Taking into 

consideration that functions  and  are bounded respectively in  and  we 

conclude: 

 

 

 

(2.2.7) 

where  is a general part of Laurent expansion of function  at infinity and 

 

We have  

 

 

Besides,  uniformly converges to polynomial  if  So, we get 

 

Hence, 

 

Taking into account (2.2.6), theorem 2.2.1 is proved.□ 
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Theorem 2.2.2 

Let  Then, the general solution of the Problem R, which has some finite 

degree at infinity, is given by the following formula: 

 

 

 

(2.2.8) 

where  is some polynomial and 

 

 
(2.2.9) 

Remark 

In theorem 2.2.1 we showed that any solution of the Problem R which has some finite 

degree at infinity has the representation (2.2.8). Now we will prove that any function, 

which has the representation (2.2.8) is a solution of the Problem R. By doing so, we will 

eventually prove theorem 2.2.2 which states the general solution of the Problem R with the 

assumption of it having finite degree at infinity. 

Proof of Theorem 2.2.2 

Let  and  Denote by  the following: 

 

where  is some polynomial. 

Also, suppose 

 

 

 

(2.2.10) 

It is clear that the function  is the solution of the following Riemann boundary value 

problem 
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 (2.2.11) 

Even further, they have degree of   in some small interval of points  so there 

exists some real number  such that for every  the following is true: 

 

 

Taking into consideration last result, for every  we have 

 

By denoting  we will have 

 

 

 

 

 

All summands at the right side of the inequality tend to zero as  so we get the 

proof of the theorem 2.2.2.  □ 

Let introduce the following functions: 

 

 

Then, 
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Hence, for any polynomial   (2.2.8) can be represented as 

follows: 

 

 

 

(2.2.12) 

We have  (see [34]). Obviously, function  has at infinity  degree.  

Theorem 2.2.3 

Let  Then, the general solution of the Problem R has the following 

representation: 

a) if   then 

 

 

 

(2.2.13) 

where  are arbitrary complex numbers when  and 

 when  

b) if   then the problem has a solution if and only if: 

 

 
(2.2.14) 

Besides, the solution has the representation (2.2.13), where   
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CHAPTER  3.  DIRICHLET  PROBLEM  FOR  BIHARMONIC  FUNCTIONS  IN  THE 

WEIGHTED  SPACES 

 

Let  is any simply connected domain bounded by the curve . Let consider the 

following equation in this domain: 

  (3.1) 

where  

 

Solutions of the equation (3.1) which are continuous with their  power derivatives 

are called harmonic or polyharmonic functions. For this equation Dirichlet boundary 

value problem has been studied with different boundary conditions by Tovmasyan N.E. 

[77], [78], Bitsadze A.V. [12], [13], Soldatov A.P. [73], Hayrapetyan H.M. [29], [31], [32], 

[33], Babayan A.H. [79]. If boundary functions belong to the classes  then 

Dirichlet problem in the classical statement has the following setting. Determine those 

solutions of the equation (3.1), which satisfy boundary conditions: 

 

 

(3.2) 

where  are real-valued functions belonging to  class of 

functions. Also, by  we mean normal derivative. Particularly, if  is a unit circle, then   

. If we denote unit circle by  then this problem in spaces   can be 

formulated with the boundary conditions: 
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(3.3) 

It is shown that in case of  this statement is equivalent to the classical statement 

with boundary conditions (3.2), which is investigated by Khvedelidze B.V. [50], Soldatov 

A.P. [68] and others [48], [49]. Boundary value problem (3.1), (3.2) also is studied in the 

space of continuous functions [36], [37], in the  and in the space of measures 

[39]. In the space  boundary conditions are understood in the sense of uniformly 

convergence: 

 

 

(3.4) 

where  is the norm of space  and  are continuous functions. In 

the space  the same statement does not guarantee normal solvability of the Dirichlet 

problem, so in the works [63], [64] it is suggested new boundary conditions: 

 

where  and convergence is understood in the sense of weak 

topology of  Thus, 

 

where  is any function  In the same way (3.1), (3.2) problem is studied in the 

space of measures   with boundary conditions: 

 

for any function  [21].  
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Dirichlet problem in the weighted spaces   firstly was studied by 

Kazarian K. [45], [46], [47]. In his works he attained direct connections between Dirichlet 

problem and Fourier series. By Hayrapetyan H.M. Dirchlet problem is investigated for 

varying weight functions [38]. 

 

3.1. Statement of the Problem 

Let  is a weight function,  is arbitrary real number, 

 is the norm of space   are real valued 

functions in  such that  

We investigate Dirichlet problem in the following setting: 

Problem D 

Determine function  ,  to satisfy the equation 

  (3.1.1) 

and boundary condition 

 

 
(3.1.2) 

With this statement we prove that Problem (3.1.1), (3.1.2) is normally solvable, besides if 

, the problem is investigated with the following boundary condition: 

 

 
(3.1.3) 

where . 

It is known that (3.1.1) can be written in explicit form: 

 

 

3.2. Solution of the homogeneous Problem D 

Theorem 3.1 

Let  . Then the homogeneous problem (3.1.1), (3.1.3) has only trivial solution 
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Proof. It is well known that the general solution of the equation (3.1.1) can be represented 

as follows (see [30]): 

 
 (3.1.4) 

where  are some analytic functions satisfying in condition: 

. Besides, functions  are uniquely determined with the 

function . Substituting  with its representation (3.1.4) in the first condition of 

(3.1.3), for  we get 

 

By denoting 

 

we get  and 

 

where  is some real number. Passing to the limit as  for every fixed  

we get , where  is a real number. From the second condition (3.1.3) we 

obtain 

 

where . Taking into consideration the results attained in [22], we can 

easily state 

 

where 

 

,  is some real number. Passing to the limit as  we get 

, where  is some real number. Thus from (3.1.4) . □ 

 



69 
 

Definition: We say that,  numbers belong to class if 

  (3.1.5) 

Theorem 3.2 

Let . Then the general solution of the homogeneous problem (3.1.1), (3.1.2) can 

be represented as follows: 

 

where 

 

 

(3.1.6) 

Besides,  numbers belong to the class , and  numbers to the class 

. 

Proof. Taking into account (3.1.4), from the first condition of (3.1.2) we obtain 

 

Passing to the limit as  and taking into account that  in  as 

 we conclude 

 

From the second condition of (3.1.2) we have: 

 

Passing to the limit as  we get 
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Thus 

 

Theorem 3.2 is proved. □ 

 

3.3. Solution of  the  inhomogeneous Problem D 

 

Theorem 3.3 

Let  Then the general solution of the problem (3.1.1), (3.1.3) can be represented 

as follows: 

 

where   are analytic functions in , determined with the following formulas: 

 

 

(3.1.7) 

Besides, there are necessary and sufficient conditions for solvability of the problem, which 

have the following form: 

 

 

(3.1.8) 

Proof. As the general solution of the problem (3.1.1) can be represented as follows: 

 

where ,  are analytic functions in , from the first condition (3.1.3) we can easily 

obtain 

 
 

(3.1.9) 

Hence (see [43])  
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(3.1.10) 

As 

 

then 

 

and 

 

 
(3.1.11) 

Therefore,  has the form 

, 

where  are determined as in (3.1.10), (3.1.11). 

Now we prove that the function  determined by (3.1.10) and (3.1.11) satisfies 

(3.1.1), (3.1.2) conditions for every  functions. Indeed, as 

 

and (see [22]) 

 

then the proof of the theorem follows from the following assertions (see [22]): 

 

 

 

With the same manner next theorem can be proved. □ 
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Theorem 3.4 

Let  Then the general solution of the problem (3.1.1), (3.1.2) can be represented 

in the form: 

 

where are analytic functions in , and are given by the following formulas: 

 

 

(3.1.12

) 

where  numbers belong to the class , and  numbers to the class 

. 
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CONCLUSION 

 

PETROSYAN  VAHE 

BOUNDARY VALUE PROBLEMS IN HARDY WEIGHTED SPACES 

 

In dissertation there are represented the following main results: 

1. Investigated Riemann boundary value problem in the weighted spaces   in unit 

circle with a coefficient from Holder class , where weight is concentrated 

on finite number of singular points.  In the case, when order of singularity of weight 

function at all singular points is greater than -1, it is shown normal solvability of the 

problem and the general solution of the problem is determined in explicit form. Besides, 

if the sum of index of coefficient and order of singularities at singular points is negative, 

then it is given necessary and sufficient conditions for solvability of the problem [87], 

[89], [90].  

When order of singularity at least at one singular point is less or equal -1, then it is 

proved that the number of linear independent solutions of the homogeneous problem 

does not only depend on the index of coefficient but also on the behavior of the 

coefficient at the corresponding singular points. Thus, it is introduced  class of 

coefficients and is shown that for the coefficients belonging to this class, the problem is 

normally solvable. As in the first case, here also there are given the same kind of 

necessary and sufficient conditions for solvability of the problem and the solutions are 

written in explicit form [85], [91], [92].   

2. Investigated Riemann-Hilbert boundary value problem in the weighted spaces   in 

unit circle with a coefficient from Holder class , where weight is 

concentrated on finite number of singular points. With the help of the famous 

transformation this problem is reduced to Riemann boundary value problem which is 

investigated in chapter 1. It is known that if weight function is concentrated on one 

singular point then coefficients of the polynomial in the general solution of the 

homogeneous problem must satisfy some conditions. With this setting it is found new 

conditions for solvability of the problem which are direct generalizations of the famous 
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results. Thus, it is shown normal solvability of the problem and the general solution is 

given in explicit form. 

3. Investigated Dirichlet boundary value problem in the weighted spaces  in unit 

circle as a particular case of Riemann-Hilbert boundary value problem. It is shown 

normal solvability of the problem, there are given necessary and sufficient conditions 

for solvability of the problem and the general solution is written in explicit form. 

4. Investigated Riemann boundary value problem in the weighted spaces   in unit 

circle with a piecewise continuous in the sense of Holder coefficient, where weight 

function is concentrated on one singular point, besides the order of singularity at this 

point is greater than -1. It is shown normal solvability of the problem, there are given 

necessary and sufficient conditions for solvability of the problem which depend on the 

value of jump at the points of discontinuity and on the order of singularity of weight 

function at the singular point. Besides, the general solution is given in explicit form [86]. 

5. Investigated Dirichlet problem for biharmonic functions in unit circle in the weighted 

spaces, where weight function is concentrated on one singular point. This problem is 

investigated in the case when boundary conditions on the function and on the normal 

derivative of this function are considered in different weighted spaces. Convergence of 

biharmonic function to boundary function is understood with  and convergence 

for normal derivative in the norm where  and 

 When  it is shown normal solvability of the problem and 

the general solution is given in explicit form. If , then the homogeneous problem 

has only trivial solution, besides there are given necessary and sufficient conditions for 

solvability of the inhomogeneous problem [88]. 
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