### МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РЕСПУБЛИКИ АРМЕНИЯ НАЦИОНАЛЬНЫЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ АРМЕНИИ

### ВАРДАНЯН АРСЕН МОВСЕСОВИЧ

## ОЦЕНКА ВЛИЯНИЯ УСЛОВИЙ ЭКСПЛУАТАЦИИ НА ОСТАТОЧНЫЙ РЕСУРС УЗЛОВ ПАРОГЕНЕРАТОРОВ ЭНЕРГОБЛОКОВ ВВЭР-440

## **ДИССЕРТАЦИЯ**

на соискание ученой степени кандидата технических наук по специальности 05.14.02 - "Ядерные энергетические установки"

Научный руководитель доктор технических наук,

профессор В.Г. Петросян

**EPEBAH 2017** 

### ОГЛАВЛЕНИЕ

| ПЕРЕЧЕНЬ СОКРАЩЕНИЙ, ИСПОЛЬЗУЕМЫХ В ТЕКСТЕ                           |
|----------------------------------------------------------------------|
| введение                                                             |
| <b>ГЛАВА 1. ОБЗОР ЛИТЕРАТУРЫ И ПОСТАНОВКА ЗАДАЧИ ИССЛЕДОВАНИЯ</b> 10 |
| 1.1Конструкция, назначение, условия эксплуатации и технология        |
| изготовления разнородных сварных соединений приварки коллекторов к   |
| корпусу парогенераторов ПГВ-4 ВВЭР-44010                             |
| 1.2. Особенности сварки комбинированных конструкций из сталей        |
| перлитного и аустенитного класса15                                   |
| 1.3. Сварочные материалы для выполнения разнородных сварных          |
| соединений оборудования и трубопроводов АЭС                          |
| 1.4. Причины образования повреждений сварных соединений приварки     |
| коллекторов к корпусу парогенераторов ПГВ-440                        |
| 1.5. Определение характера повреждения швов №2327                    |
| 1.6. Динамика обнаружения повреждений разнородных сварных соединений |
| приварки коллекторов теплоносителя к патрубкам парогенераторов 36    |
| 1.7. Выводы и конкретизация задач исследования                       |
| ГЛАВА 2. МЕТОДИКА ЭКСПЕРИМЕНТАЛЬНОГО ИССЛЕДОВАНИЯ И                  |
| МЕТОДОЛОГИЯ ОЦЕНКИ КРИТИЧЕСКИХ И ДОПУСТИМЫХ РАЗМЕРОВ                 |
| ГЛУБИНЫ ДЕФЕКТА СВАРНЫХ ШВОВ ПЕРЕХОДНОГО КОЛЬЦА И ПАТРУБКА           |
| <b>ДУ-1100 ПАРОГЕНЕРАТОРОВ ВВЭР-440</b>                              |
| 2.1. Методика экспериментального исследования 40                     |
| 2.1.1. Система АВГУР 5.2 44                                          |
| 2.1.2. Система Х-32 45                                               |
| 2.2. Методика расчета критических и допустимых размеров              |
| глубины дефекта46                                                    |

| 2.3. | Метод  | , пласти  | ческого ша | рнира                        |           |                   |                        |            | 49  |
|------|--------|-----------|------------|------------------------------|-----------|-------------------|------------------------|------------|-----|
| 2.4. | Метод  | , Ј-интег | рала       |                              |           |                   |                        |            | 51  |
| ГЛА  | BA 3   | . PE3\    | /ЛЬТАТЫ    | ЭКСПЕРИМ                     | ЕНТАЛЬН   | ых                | исслед                 | ОВАНИЙ     | и   |
| CPA  | вните  | льный     | АНАЛИЗ     | СВАРНЫХ                      | ШВОВ      | ΠΕΡΕΧΟ            | дного                  | КОЛЬЦА     | И   |
| ΠΑΤ  | РУБКА  | ДУ-110    | Ο ΠΑΡΟΓΕΗ  | ΙΕΡΑΤΟΡΟΒ Ι                  | ٦ГВ-4с ВВ | ЭР-440            |                        |            | 52  |
| 3.1. | Экспе  | римента   | альное ис  | следование                   | сварных   | ШВОВ П            | ереходно               | ого кольца | И   |
|      | патру  | бка Ду-1  | 100 парог  | енераторов Г                 | ٦ГВ-4с    | •••••             |                        |            | 52  |
| 3.2. | Сравн  | ительнь   | ый анализ  | сварных ц                    | ивов пер  | реходног          | о кольца               | а и патруб | бка |
|      | Ду-11  | 00 паро   | генераторо | ов ПГВ-4с ВВЗ                | ЭР-440    | •••••             |                        |            | 57  |
|      | 3.2.1. | Пароге    | енератор N | ⁰.1 <i>,</i> "холодні        | ый" колле | ектор <i>,</i> 20 | 03 и 2014              | 4 гг       | 57  |
|      | 3.2.2. | Пароге    | енератор N | º.1, " горячиі́              | й" колле  | ктор, 200         | )3 и 2014              | гг         | 59  |
|      | 3.2.3. | Пароге    | енератор N | ⊵.2 <i>,</i> "холодні        | ый" колле | ектор <i>,</i> 20 | 03 и 2014              | 4 гг       | 61  |
|      | 3.2.4. | Пароге    | енератор N | <u></u> .2 <i>, "</i> горячи | й" колле  | ктор, 200         | )3 и 2014              | гг         | 63  |
|      | 3.2.5. | Пароге    | енератор N | ≌.3 <i>,</i> "холодні        | ый" колле | ектор <i>,</i> 20 | 03 и 2014              | 4 гг       | 65  |
|      | 3.2.6. | Пароге    | енератор N | <u></u> .3, " горячи         | й" колле  | ктор, 200         | )3 и 2014              | гг         | 67  |
|      | 3.2.7. | Пароге    | енератор N | ⁰.4 <i>,</i> "холодні        | ый" колле | ектор, 20         | 03 и 2014              | 4 гг       | 69  |
|      | 3.2.8. | Пароге    | енератор N | º.4," горячи                 | й" колле  | ктор, 200         | )3 и 2014              | гг         | 71  |
|      | 3.2.9. | Пароге    | енератор N | ⁰.5 <i>,</i> "холодні        | ый" колле | ектор, 20         | 03 и 2014              | 4 гг       | 73  |
|      | 3.2.10 | . Пароге  | енератор N | ⁰.5, " горячи                | й" колле  | ктор, 200         | )3 и 2014              | гг         | 75  |
|      | 3.2.11 | . Пароге  | енератор N | ⁰.6, "холодн                 | ый" колл  | ектор, 20         | )03 и 201 <sub>4</sub> | 4 гг       | 78  |
|      | 3.2.12 | . Пароге  | енератор N | ⁰.6, " горячи                | й" колле  | ктор, 200         | )3 и 2014              | гг         | 81  |
| 3.3. | Резул  | ытаты э   | ксперимен  | тальных исс                  | ледовани  | ий                |                        |            | 83  |
| 3.4. | Вывс   | ды по т   | ретьей гла | ве                           |           |                   |                        |            | 84  |

| ГЛАВА   | 4. АНАЛИЗ ЭКСПЕРИМЕНТАЛЬНЫХ РЕЗУЛЬТАТОВ И ОЦЕНКА                                                                                                        |
|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| ΟΟΤΑΤΟΥ | НОГО РЕСУРСА УЗЛА ПРИВАРКИ КОЛЛЕКТОРОВ ТЕПЛОНОСИТЕЛЯ К                                                                                                  |
| КОРПУС  | <b>АМ ПАРОГЕНЕРАТОРОВ ВВЭР-440</b> 85                                                                                                                   |
| 4.1     | A                                                                                                                                                       |
| налі    | из возможных последствий развития (до сквозной течи) дефектов в                                                                                         |
| разн    | юродных сварных соединениях узлов крепления коллекторов                                                                                                 |
| тепл    | юносителя к патрубкам корпусов парогенераторов ПГВ-4с                                                                                                   |
| 4.2     | A                                                                                                                                                       |
| налі    | из действующей аварийной документации Армянской АЭС в части                                                                                             |
| упра    | авления предполагаемой аварией                                                                                                                          |
| 4.3     | A                                                                                                                                                       |
| налі    | из влияния деградирующих факторов на остаточный ресурс узлов                                                                                            |
| крег    | лления коллекторов теплоносителя к патрубкам корпусов                                                                                                   |
| паро    | огенераторов ПГВ-4с                                                                                                                                     |
| 4.4     | Р                                                                                                                                                       |
| азра    | аботка и обоснование критических и предельно допустимых в                                                                                               |
| ЭКСП    | луатации размеров несплошностей сварных швов №23 патрубков                                                                                              |
| Дv-1    | 100 ПГВ-4с                                                                                                                                              |
| 4.4.3   | 10                                                                                                                                                      |
|         | пределение оценки критических и предельно допустимых в                                                                                                  |
|         | эксплуатации размеров несплошностей                                                                                                                     |
| 4.4.2   | р                                                                                                                                                       |
|         | езультаты применения расчетов метолом конечных элементов 106                                                                                            |
| ΔΔ3     | M                                                                                                                                                       |
|         | етолика расчетов "Норм лефектов для патрубков Лу-1100 в районе                                                                                          |
|         |                                                                                                                                                         |
| ЛЛ      | 1                                                                                                                                                       |
| ·       |                                                                                                                                                         |
| 4.4.3   | етодика расчетов "Норм дефектов для патрубков Ду-1100 в районе<br>СС №23"109<br>4О<br>ценка остаточного ресурса узла приварки коллекторов теплоносителя |

| к корпусам парогенераторов ВВЭР-440    | 111 |
|----------------------------------------|-----|
| 4.5. Выводы по четвертой главе         | 115 |
| ОСНОВНЫЕ ВЫВОДЫ ДИССЕРТАЦИОННОЙ РАБОТЫ | 117 |
| СПИСОК ЛИТЕРАТУРЫ                      | 118 |
| ПРИЛОЖЕНИЕ 1                           | 129 |
| ПРИЛОЖЕНИЕ 2                           | 136 |
| ПРИЛОЖЕНИЕ 3                           | 147 |
|                                        |     |

ПЕРЕЧЕНЬ СОКРАЩЕНИЙ, ИСПОЛЬЗУЕМЫХ В ТЕКСТЕ

| • | АЭС   | Атомная электрическая станция                    |
|---|-------|--------------------------------------------------|
| • | ААЭС  | Армянская атомная электрическая станция          |
| • | НВАЭС | Нововоронежская АЭС                              |
| • | ввэр  | Водо-водяной энергетический реактор              |
| • | РУ    | Реакторная установка                             |
| • | пг    | Парогенератор                                    |
| • | ГЦН   | Главный циркуляционный насос                     |
| • | Ду    | Диаметр условный                                 |
| • | НПУА  | Национальный политехнический университет Армении |
| • | CC    | Сварное соединение                               |
| • | МКК   | Межкристальная коррозия                          |
| • | РЭМ   | Растровый электронный микроскоп                  |
| • | ASME  | American Society of Mechanical Engineers         |
|   |       | (Американское общество инженеров-механиков);     |
| • | УЗК   | Ультразвуковой контроль                          |
| • | АУЗК  | Автоматизированный ультразвуковой контроль       |
| • | ТА    | Турбоагрегат                                     |
| • | гпк   | Главный паровой коллектор                        |
| • | A3    | Аварийная защита                                 |

| • | АПЭН | Аварийный питательный электронасос   |
|---|------|--------------------------------------|
| • | ПЭН  | Питательный электронасос             |
| • | ПЭП  | Пьезоэлектрический преобразователь   |
| • | НУЭ  | Нормальные условия эксплуатации      |
| • | MP3  | Максимальное расчетное землетрясение |
| • | ГИ   | Гидравлические испытания             |

#### ВВЕДЕНИЕ

**Актуальность работы.** Наряду с развитием атомной энергетики и длительной эксплуатацией действующих энергоблоков, а также исходя из задачи повышения срока их службы до 45...60 лет при повышении коэффициента использования установленной мощности за счет сокращения сроков ремонта, возрастают требования к надежности и безопасной работе оборудования и трубопроводов атомной электростанции (АЭС), которые во многом определяются правильным техническим обслуживанием.

По мере роста срока эксплуатации АЭС в связи с износом оборудования и ухудшением радиационной обстановки значительно осложняются техническое обслуживание и ремонт оборудования, увеличиваются трудозатраты и численность ремонтного персонала.

Начиная с 2007 года одной из наиболее острых проблем на действующих АЭС являются повреждения разнородных сварных соединений (СС) трубопроводов и оборудования, выполненных с использованием сварочных материалов типа 10Х16Н25АМ6 (электроды ЭА-395/9 и сварочная проволока Cв-10Х16Н25АМ6). При этом отсутствуют систематизированные сведения о характере и причинах возникновения вышеназванных повреждений. В связи с этим актуальной задачей является анализ и систематизация выявленных повреждений, определение характера и причин их образования, а также

разработка мероприятий по предотвращению образования повреждений и их устранению.

Цель исследования. Целью диссертационной работы является исследование разнородных сварных соединений Ду-1100 узла приварки коллекторов теплоносителя из нержавеющей стали 08X18H10T к патрубкам корпусов парогенераторов (ПГ) из стали 22К атомных энергоблоков водоводяного энергетического реактора 440 (ВВЭР-440).

Для достижения этой цели были поставлены следующие задачи:

- разработать и экспериментально обосновать комплекс мероприятий, способствующих предотвращению образования повреждений сварных соединений узла приварки коллекторов теплоносителя к патрубкам корпусов парогенераторов;
- оценить влияние условий эксплуатации на остаточный ресурс узлов крепления коллекторов теплоносителя к патрубкам корпусов парогенераторов ПГВ-4с;
- оценить размеры критических и предельно допустимых в эксплуатации дефектов сварных соединений узла приварки коллекторов теплоносителя из нержавеющей стали 08Х18Н10Т к патрубкам корпусов парогенераторов из стали 22К.

Методы исследования. Представленная в диссертации методология исследования основывается на методах науки о прочности, статистическом анализе и теории вероятности. Методологической базой послужили труды ученых и специалистов по вопросам надежности и безопасности в технике. При проведении исследований использовалась доработка существующих и разработка новых методов исследования. В процессе выполнения работы были использованы следующие методы исследования:

автоматизированный ультразвуковой контроль (АУЗК) системы
АВГУР 5.2;

- ультразвуковой контроль (УЗК) датчиками с фазированной решеткой системы X-32;
- метод пластического шарнира, для расчета критических и допустимых размеров дефекта;
- метод Ј-интеграла, для оценки состояния напряженного твердого тела с трещиной;
- метод конечных элементов, для оценки влияние остаточных напряжений.

#### Научная новизна и практическая значимость работы

- Определены характер и механизм повреждения сварных соединений деталей из сталей разного структурного класса (сталь 22К+сталь 08Х18Н10Т), выполненных с использованием электродов ЭА-395/9 после длительной эксплуатации.
- Оценено влияние условий эксплуатации на остаточный ресурс узлов крепления коллекторов теплоносителя к патрубкам корпусов парогенераторов ПГВ-4с ВВЭР-440.
- Разработана методология расчетов критических и предельно допустимых в эксплуатации размеров несплошностей сварных соединений узла приварки коллекторов теплоносителя из нержавеющей стали 08X18H10T к патрубкам корпусов парогенераторов из стали 22К.
- Разработана методика расчетов "Норм дефектов сварных соединений №23 патрубков Ду-1100 парогенераторов ПГВ-4с реакторных установок (РУ) ВВЭР-440".
- Оценено значение остаточного ресурса узла приварки коллекторов теплоносителя к корпусам парогенераторов ПГВ-4с ВВЭР-440.

#### Основные положения, выносимые на защиту

 Методология расчетов критических и предельно допустимых в эксплуатации размеров несплошностей сварных соединений узла приварки коллекторов теплоносителя из нержавеющей стали 08X18H10T к патрубкам корпусов парогенераторов из стали 22К.

- Методика расчетов "Норм дефектов сварных соединений №23 патрубков Ду-1100 парогенераторов реакторных установок ВВЭР-440".
- Определение значения остаточного ресурса сварного соединения для условий нормальной эксплуатации.

Апробация работы. Основные результаты работы докладывались и обсуждались на:

- международном семинаре "NDE Methods and Results of Composite Welds Inspections of ANPP Stream Generators, Participants from USA, Russian, Ukrainian, Czech and Armenian orgaziations" (2-5 сентября 2014г., Ереван, РА);
- международном семинаре Московского центра "WANO" "Monitoring and Maintenance of Welds Connecting the Primary System Cellectors With the SG Nozzles at the Stations with VVER-440 and VVER-1000" (18-22 мая 2015г., ААЭС, РА);
- научном семинаре кафедры ядерной физики Киевского национального университет имени Тараса Шевченко (1-2 марта, 2017г., Киев, Украина).
- научных семинарах кафедры "Теплоэнергетика и защита окружающей среды" Национального политехнического университета Армении -НПУА, (2014-2017гг., Ереван).

**Публикации.** Основное содержание диссертации опубликовано в четырех научных статьях.

<u>Структура и объем работы.</u> Диссертационная работа состоит из введения, списка сокращений, четырех глав, основных выводов, списка литературы, включающего 96 наименований, и трех приложений. Общий объем работы,

включая приложения, составляет 148 страницы. Основной объем – 128 страницы, включая 58 рисунков и 43 таблиц.

#### ГЛАВА 1. ОБЗОР ЛИТЕРАТУРЫ И ПОСТАНОВКА ЗАДАЧИ ИССЛЕДОВАНИЯ

1.1. Конструкция, назначение, условия эксплуатации и технология изготовления разнородных сварных соединений приварки коллекторов к корпусу парогенераторов ПГВ-4 ВВЭР-440

Водо-водяной энергетический реактор электрической мощностью 440 МВт (ВВЭР-440) разработан в 60-х годах ОКБ "Гидропресс".

В состав каждого блока АЭС с реактором ВВЭР-440 входят 6 парогенераторов, которые в зависимости от типа проекта также имеют некоторое различие в конструкции [1] (рис. 1.1).

Для реакторной установки ААЭС сейсмической модификации В-270 парогенераторы имеют обозначение ПГВ-4с и отличаются от модельного ряда существенным антисейсмическим усилением.

Парогенератор ПГВ-4с предназначен для выработки сухого насыщенного пара давлением 4,6 МПа с температурой 258...260 °С в составе атомной электростанции с ВВЭР-440 (В-270) и является составной частью циркуляционных петель 1-го контура. ПГ энергоблока № 2 (2ПГ-1÷6) относятся к основному оборудованию ААЭС и являются элементами нормальной эксплуатации, важными для безопасности. Классификационное обозначение

элементов парогенераторов:

- корпус с патрубками, крышками и деталями узлов уплотнения по 2-му контуру, коллекторы с крышками и деталями узлов уплотнения по 1-му контуру относятся к классу 1Н по ПНАЭ Г-01-011-97 (ОПБ-88/97), к І категории сейсмостойкости – по НП-031-01, группе А – по ПНАЭ Г-7-008-89;
- теплообменные трубки и паровой коллектор относятся к классу 2Н по ПНАЭ Г-01-011-97 (ОПБ-88/97), к I категории сейсмостойкости – по НП-031-01, группе В – по ПНАЭ Г-7-008-89;
- опоры и подвески ПГ относятся к классу ЗН по ПНАЭ Г-01-011-97 (ОПБ-88/97), к І категории сейсмостойкости – по НП-031-01.

Проект В-270 является сейсмической модификацией проекта В-230 российской реакторной установки ВВЭР-440 с учетом условий площадки ААЭС. Интерес представляют следующие особенности проекта :

- в составе реакторной установки В-270 предусмотрены сейсмостойкие парогенераторы ПГВ-4с (в отличие от стандартных ПГВ-4 других ВВЭР-440);
- все узлы ПГ усилены на стадиях проектирования и изготовления для повышения значений допускаемых в них напряжений в среднем в 2...3 раза. В частности, расчетные напряжения в проблемных сварных швах составили 800 кг/см<sup>2</sup>, допускаемое напряжение повышено до 2080 кг/см<sup>2</sup>;
- для исключения перемещения корпусов ПГ при сейсмических воздействиях на каждом ПГ установлено по восемь гидроамортизаторов;
- в тех же целях на каждой петли трубопроводов первого контура установлено по 7 гидроамортизаторов;
- трубопроводы питательной воды и паропроводы (механически связанные с корпусами ПГ) также сейсмически укреплены амортизаторами;
- все амортизаторы подобраны с трехкратным запасом.

Перечисленные особенности существенно снижают вероятность возникновения в элементах трубопроводов и оборудования критических напряжений при сейсмических событиях (практически сводят к нулю).

В каждом парогенераторе имеются по два коллектора по 1-му контуру, через которые теплоноситель (T=290<sup>0</sup>C) распределяется по теплообменным трубкам и испаряет в корпусе ПГ поступающую в него питательную воду.

Коллекторы являются важнейшей частью парогенераторов ПГВ-440. Они предназначены для раздачи теплоносителя по теплообменным трубкам.

Из-за разницы температуры теплоносителя на входе и выходе из ПГ коллекторы называют "горячими" и "холодными".

Оба коллектора при изготовлении парогенераторов вваривались в корпус ПГ по одинаковой технологии: вначале выполнялось сварное соединение приварки переходной втулки из стали 08Х18Н10Т к воротнику коллектора, который изготавливается также из стали 08Х18Н10Т, а затем переходная втулка приваривается к патрубку корпуса парогенератора из углеродистой стали 22К (сварное соединение №23) [2].

Сварные соединения, однотипные сварным швам № 23х и № 23г в проектах атомных блоков ВВЭР-440 других модификаций (В-213, В-230), имеют



другое обозначение - соответственно 76 и 72. В дальнейшем для удобства изложения все вышеназванные однотипные СС будут называться швом №23.

Рис. 1.1. Конструкция парогенератора АЭС с ВВЭР [2]: 1 - коллектор теплоносителя: 2 - испарительная поверхность нагрева; 3 - подача питательной воды; 4 - отвод перегретого пара; 5 - перегревательная поверхность нагрева;





Масштаб 11

Рис. 1.2. Эскиз шва №23 приварки коллектора теплоносителя к корпусу парогенератора ПГВ-4 [3]

На рис. 1.2 представлен эскиз конструкции сварного соединения узла приварки коллекторов теплоносителя к патрубку Ду-1100 парогенератора ПГ-1 Армянской АЭС. Эта конструкция включает [3]:

 Патрубок парогенератора Ду-1100 из стали 22К с предварительной наплавкой на кромку в два слоя: первый слой - ЭА-395/9 (Св-10Х16H25AM6) + второй слой ЭА-400/10Т (Св-04Х19H11M3). Наплавка производится с подогревом до 100°С с последующей термообработкой по режиму окончательного отпуска 640<sup>+20</sup> °С в течение 9 часов. Эта операция выполнялась на "Ижорском заводе" (город Колпино, Россия)

- 2. Переходную втулку из стали 08Х18Н10Т, имеющую конусный переход по наружному диаметру, с изменением толщины стенки втулки от 75 мм (для приварки к патрубку корпуса парогенератора) до 35 мм (для приварки переходной втулки к циркуляционному трубопроводу). Такая конструкция обеспечивает восприятие значительных эксплуатационных нагрузок.
- 3. Сварной шов №23 приварки переходной втулки к патрубку парогенератора из стали 22К с предварительно наплавленной кромкой, выполняемый ручной электродуговой сваркой электродами ЭА-400/10Т. Сварка осуществлялась без подогрева. Отпуск для снятия остаточных напряжений не проводился. Эта операция выполнялась на Подольском машиностроительном заводе им. Орджоникидзе (ЗиО) [4].
- 4. Однородный сварной шов №25, выполняемый на монтаже ручной сваркой электродами ЭА-400/10Т. Этим швом производится присоединение циркуляционного трубопровода первого контура к коллектору ПГ (обеспечивается поступление теплоносителя в ПГ). Сварка осуществляется без подогрева и последующего отпуска.

Шов №23 представляет собой СС деталей из различных по структурному классу сталей: патрубка из перлитной стали 22К и втулки-переходника из стали 08Х18Н10Т. Переход от перлитной стали к аустенитной осуществлялся через предварительную наплавку. Такие сварные соединения из сталей различных структурных классов называются по-разному (например, композитное, двухкомпонентное, переходное) однако здесь и далее мы будем называть их "разнородными сварными соединениями", как принято в ГОСТе на обозначение терминов в сварочной технике, и в ПН АЭГ - 7 - 009 -89 [4].

Особенностью этих швов являются их сложная геометрия и, главное, многокомпонентность (в узле присутствуют пять различных металлов и пять границ их соприкосновения)(рис. 1.2).

Изготовление парогенераторов энергоблоков ВВЭР-440 началось в 1967 году на двух предприятиях: вначале на "Ижорском заводе", где производились корпус и коллекторы теплоносителя, которые затем передавались на ЗиО, где производились установка и приварка коллектора к корпусу парогенератора швами №25 и №23 через переходную втулку, а также сверление отверстий в коллекторе, набивка и вварка теплообменных труб [3].



Рис. 1.3. Схема узла приварки

Наличие трещин в сварном шве коллектора с корпусом парогенератора представляет угрозу возникновения течи в этом участке. Специфика такой течи заключается в том, что она расположена в нижней части корпуса (ниже уровня трубчатки) и не позволяет удерживать воду в ПГ (рис 1.3).

Замена парогенераторов атомных электростанций является сложной технической задачей, которая не всегда экономически обоснована (высокая стоимость оборудования и работа), особенно для атомных электростанций, работающих ближе к концу проектного периода.

Указанные обстоятельства значительно повышают значимость исследования разнородных сварных соединений, чтобы обеспечить надежную работу. Эффективность этих действий зависит от разработки углубленного исследования с целью выявления причин их возникновения и всестороннего анализа проблем.

## 1.2. Особенности сварки комбинированных конструкций из сталей перлитного и аустенитного класса

Оборудование АЭС, исходя из условий эксплуатации, изготавливается из сталей различного структурного класса. Поэтому при производстве атомно-энергетического оборудования неизбежно возникает необходимость выполнять разнородные сварные соединения и, прежде всего, сварку деталей из сталей перлитного и аустенитного класса [5].

Согласно В.Н. Земзину [6], при сварке деталей из стали перлитного и аустенитного класса, кроме общих положений свариваемости, необходимо учитывать дополнительные факторы, определяющие выбор сварочных материалов, режим сварки, способы, а также условия эксплуатации и требования к работоспособности изделия, а именно:

- химическая и структурная неоднородность состава металла шва, образующуюся за счет проплавления при сварке основного металла другого легирования, чем наплавленный металл;
- развитие в зоне сплавления (под зоной сплавления условно понимают область, включающую границу сплавления и непосредственно примыкающие к ней участки шва и околошовной зоны переменного состава разнородных материалов) малопрочных и хрупких прослоек переменного состава;

 наличие остаточных напряжений в соединениях разного структурного класса, вызванных разницей коэффициентов линейного расширения, которые не могут быть сняты термической обработкой.

К вышеназванным факторам следует добавить активизацию при "вредных" проведении термообработок диффузионных процессов, приводящих к сенсибилизации межкристаллитной коррозии (МКК), а также сложные процессы коррозии из-за разницы электрохимических потенциалов в контакте разнородных сталей, приводящих при постоянном контакте с теплоносителем к развитию гальванической коррозии [7-15].

Длительный период эксплуатации (до 60 лет), сложность проведения и ограниченность технологической доступности для неразрушающего контроля (ультразвуковым методами) усугубляют проблемы мониторинга эксплуатационного состояния этих сварных соединений.

Свариваемость разнородных СС должна изучаться с учетом исследований Г.Л. Петрова [16] и А.А. Ерохина [17], в которых показано, что состав металла шва в пределах одного слоя для большинства методов дуговой сварки и применяемых материалов является полностью однородным, за исключением узкого участка, примыкающего к границе сплавления и характеризующегося изменением содержания входящих в него элементов от состава основного металла до состава металла шва.



Рис. 1.4. Схема определения ширины хрупких кристаллизационных прослоек в зоне сплавления: 1 - основной металл (низколегированная сталь перлитного класса); 2 - аустенитный шов; 3 - зона кристаллизационных прослоек [6]

Этот участок шва (рис. 1.4), располагающийся вблизи границы сплавления и характеризующийся переменным химическим составом, принято называть "кристаллизационной" прослойкой [6].

Структура и свойства кристаллизационных прослоек зависят от сочетания составов основного металла и шва, а их протяженность, определяемая долей участия в зависимости от способа и режима сварки и, следовательно, разбавления, колеблется в пределах 0,05...0,6 мм [18,19]. В зоне сплавления наиболее распространенных СС перлитных сталей с аустенитным швом кристаллизационные прослойки, содержащие 3...12% Сг и 2...7% Ni, имеют структуру высоколегированного мартенсита и являются хрупкими [20,21].

Шов при изменении структуры металла приводит к неизбежному изменению механических свойств [22-24].

Таблица 1.1

Коэффициенты линейного расширения сталей и сварных швов конструкций [6]

| Структурный класс | Марка стали | а∙10⁻6 в интервале |          |          |  |  |  |
|-------------------|-------------|--------------------|----------|----------|--|--|--|
|                   | или тип шва | 20200 °C           | 20400 °C | 20600° C |  |  |  |
| Перлитный         | Сталь 20    | 12,1               | 13,4     | 14,4     |  |  |  |
|                   | X18H10T     | 17,0               | 17,5     | 18,2     |  |  |  |
| Аустенитный       | X25H13      | 15,8               | 16,8     | 17,8     |  |  |  |
|                   | X16H25M6    | 14,6               | 15,4     | 16,0     |  |  |  |
| Высоконикелевый   | X15H60M7    | 12,1               | 12,7     | 13,6     |  |  |  |

Важным фактором, который следует учитывать при выполнении разнородных сварных соединений, являются остаточные напряжения. Основными источниками возникновения внутренних напряжений при сварке разнородных сталей является различие коэффициентов линейного

расширения свариваемых сталей (табл. 1.1), приводящее к образованию остаточных напряжений непосредственно после сварки [6,22].

При нагревании разнородных СС до высоких температур возникают специфические, присущие разнородным сварным соединениям особенности.

Термообработка после сварки сталей разного структурного класса (на стадии нагрева и высокотемпературной выдержки), как и ожидается, снимает остаточные напряжения, однако, в отличие от однородных СС, при последующем охлаждении в соединениях возникают новые внутренние напряжения, обусловленные разностью коэффициентов линейного расширения свариваемых материалов [19].

Таким образом, термическая обработка разнородных сварных соединений после сварки не только не снимает остаточные напряжения, но, наоборот, может привести к повышению их уровня [19].

## 1.3. Сварочные материалы для выполнения разнородных сварных соединений оборудования и трубопроводов АЭС

Согласно ПН АЭ Г-7-009-89 [4], при выполнении сварных соединений деталей оборудования и трубопроводов АЭС из сталей перлитных и аустенитных классов между собой при толщине до 10 мм сварка должна проводится без предварительной наплавки на кромки с использованием сварочных материалов как типа 10Х16Н25АМ6, так и типа 07Х25Н13 [4].

При толщине свариваемых деталей более 10 мм сварные соединения должны выполняться с предварительной наплавкой на кромки в два слоя: первый слой - сварочными материалами типа 10Х16Н25АМ6, второй слой сварочными материалами типа 04Х19Н11М3. При этом толщина первого слоя безосновательно не регламентируется. Толщина наплавки после механической обработки должна составлять (6±2) мм под ручную дуговую сварку с

покрытыми электродами и аргонодуговую сварку и (9±2) мм - под автоматическую под флюсом [4,25].

Использование комбинации сварочных материалов, в которой для предварительной наплавки первого слоя применяются сварочные материалы типа 07Х25Н13 в ПН АЭ Г-7-009-89, не предусмотрено, несмотря на то, что такие материалы допущены для выполнения разнородных СС без предварительной наплавки.

В европейских странах, наоборот, для сварки деталей из перлитных и аустенитных сталей используются только материалы типа 07X25H13 (E-309) или 02X25H13 (E-309L) по ASME, обладающие высокой стойкостью к МКК, при этом ограничения по толщине свариваемых деталей отсутствуют [26].

Как показали исследования, выполненные в последние годы, состав типа 10Х16Н25АМ6 обладает повышенной склонностью к МКК, и поэтому разнородные сварные соединения, выполненные с его использованием, должны быть защищены от контакта с теплоносителем [27-39].

В некоторых случаях и, прежде всего, при ремонте на действующих АЭС техническая возможность выполнять защитную антикоррозионную наплавку отсутствует, и поэтому возникает необходимость выполнения ремонта с использованием сварочных материалов типа 07Х25Н13. При этом необходимо обеспечить не только высокую коррозионную стойкость разнородных сварных соединений, но и требуемую прочность [40].

Кромки которых наплавлены аустенитными присадочными материалами, должны подвергаться "предварительному отпуску по режиму окончательного отпуска".

На это противоречие должно быть обращено внимание при проведении экспериментальных исследований.

# 1.4. Причины образования повреждений сварных соединений приварки коллекторов к корпусу парогенераторов ПГВ-440

Впервые недопустимые дефекты разнородных сварных соединений в швах №23"х" были выявлены при эксплуатационном контроле в период ППР-2007 энергоблока №3 Нововоронежской АЭС (НВ АЭС) на парогенераторе ЗПГ-1 приварки холодного коллектора к патрубку парогенератора Ду-1100 [41].

Парогенератор ЗПГ-1 (заводской № 5540) [3] был изготовлен в 1969 году на Подольском заводе им. Орджоникидзе (ЗиО). Этот парогенератор был первым для серийных блоков ВВЭР-440. Он успешно эксплуатировался начиная с 1971 года в течение 36 лет.

Выявление повреждения шва №23 было связано с разработкой к этому моменту новой методики УЗК, позволяющей проводить эффективный эксплуатационный контроль. До этого момента шов №23 контролировался только внешним осмотром [42, 43].

Для устранения повреждения в срочном порядке была разработана технология ремонта, полностью повторяющая заводскую при выполнении шва №23 на ЗиО [44].

В том же 2007 году подобное повреждение шва №23 (76) было выявлено на Кольской АЭС ВВЭР-440, был также вырезан и исследован темплет, исследование которого полностью подтвердило идентичность с трещиной, ранее выявленной на НВ АЭС [45]. Уже тогда стало ясно, что такие повреждения имеют практически все парогенераторы ПГВ-440 после длительной эксплуатации. Поэтому в 2009 году было принято решение провести ремонты всех сварных соединений №23 (76,77) путем полной вырезки всех швов, их восстановления с использованием сварки, то есть ремонт стал выполняться в плановом порядке.

При разработке конструкции узла крепления коллекторов к корпусам парогенераторов ПГВ-440, а затем ПГВ-1000 были использованы аналогичные конструкции: приварка патрубка корпуса парогенератора (углеродистая, перлитная сталь 22К), сварка коллекторов осуществлялась также с использованием узла воротник коллектора + патрубок парогенератора, соответственно швы №23 (для ПГВ-440) и №111 (для ПГВ-1000) [46].

С 1998 года на парогенераторах российских блоков и ближнего зарубежья визуальным контролем начали фиксироваться коррозионные трещины в зоне сварного соединения №111 горячего коллектора с патрубком корпуса ПГВ-1000. Для устранения дефектов была разработана специальная технология местного (участкового) ремонта.

За первые двенадцать лет (до 2010 г.) ремонт поврежденной зоны сварного соединения №111 был проведен на семи парогенераторах ПГВ-1000, причем на четырех парогенераторах повторно, что свидетельствует о недостаточной эффективности разработанной методики частичного ремонта.

Что касается сварных соединений №23 ПГВ-440, то до 2007 года какихлибо замечаний по их качеству выявлено не было, как впоследствии выявилось, из-за несовершенства применяемых в то время методик неразрушающего контроля. Во многом это было связано с тем, что объемы эксплуатационного контроля сварных соединений №111 (ПГВ-1000) и №23 (ПГВ-440) существенно различались, а именно - практически все дефекты на швах №111 обнаруживались методами УЗК, которые на тот момент не применялись на швах №23.

Для повышения эффективности контроля в ходе после эксплуатации с 2005 года были начаты исследования по разработке методик контроля УЗК, в результате чего была разработана специализированная методика (система автоматизированного УЗК) АВГУР 5.2. В 2007 году при проведении АУЗК системы АВГУР 5.2 на швах №23"г" и №23"х" парогенераторов №3ПГ-1 НВ АЭС

(парогенератор 3 блока ВВЭР-440) были обнаружены плоскостные протяженные дефекты в области сплавления основного металла патрубка и металла наплавки [41].

После обнаружения дефекта было принято решение о вырезке темплета для определения характера и причин образования повреждения. Выявленное повреждение оказалось очень опасным - коррозийная трещина по линии сплавления аустенитной наплавки с основным перлитным металлом корпуса с максимальной высотой 51 мм [43]. При дополнительном обследовании выяснилось, что трещина является кольцевой, поэтому все сварное соединение было удалено.

После извлечения вырезанных темплетов (рис 1.5) была произведена их предварительная механообработка, а затем эти шлифы были переданы в ОАО НПО "ЦНИИТМАШ" для детального исследования. Позднее в том же 2007 году аналогичные повреждения были выявлены на сварном соединении 2ПГ-4"г" Кольской АЭС, из которых вырезались шлифы, которые для повышения достоверности исследования также были переданы в ОАО НПО "ЦНИИТМАШ" [45, 47].



Рис. 1.5. Вырезка темплета для исследования поврежденного шва №23. Блок №3 Нововоронежской АЭС

Для определения характера дефекта в сварных соединениях №23 (76,77) и причин его образования были использованы следующие методы исследования шлифов: внешний осмотр, фрактографические исследования, определение химического состава различных зон сварного соединения, оптическая металлография, измерение микротвердости, сканирующая электронная микроскопия.

**Внешний осмотр.** При внешнем шлифов (рис. 1.6) было осмотре установлено, что все шлифы имеют одинаковые зоны, характерные для всех разнородных сварных соединений, а именно - основной металл патрубка парогенератора - перлитная сталь 22К; зона сплавления основного металла патрубка парогенератора И первого слоя предварительной наплавки; предварительная наплавка кромок, выполненная в два слоя: первый слой электродом ЭА 395/9 (аустенитная сталь 10Х16Н25АМ6) и второй слой -ЭА400/10Т (аустенитная сталь 04Х19Н11М3); электродом металл шва, выполненного электродом ЭА400/10Т (аустенитная сталь 04Х19Н11М3); основной металл переходной втулки коллектора теплоносителя 08X18H10T; внутренняя поверхность контакта сварного соединения с рабочей средой [43].



Рис. 1.6. Образец №23х-1: а - внешний вид обнаруженной трещины; б - поверхность, контактирующая с рабочей средой

Результаты внешнего осмотра поверхностей представленных темплетов (рис. 1.6) позволили констатировать: повреждения во всех исследованных темплетах имеют вид трещин; трещины берут начало со стороны контакта сварного соединения с теплоносителем в зоне соединения сталь 22К - металл первого слоя промежуточной наплавки (электродом ЭА 395/9, 10Х16H25AM6); трещина распространяется вдоль линии сплавления сталь 22К - наплавленный металл электрода (ЭА-395/9, 10Х16H25AM6); длина видимых трещин в различных темплетах различна (от 10 до 55 мм); внутренняя поверхность темплета покрыта темным слоем оксида металла; по всему сечению шва не наблюдается участков, где отсуствует наплавка первого слоя, однако она неравномерна по ширине; трещина ветвистая; поверхность перлитной стали, контактирующей со средой кармана коллектора, имеет многочисленные мелкие очаги; в силовом корне шва, выполненного электродами ЭА-400/10, визуально (на шлифах) каких-либо повреждений не обнаружено [45].

Фрактографическое исследование. Фрактографическое исследование было проведено на образцах, изготовленных вырезкой из темплета. После резки один образец распался по трещине на две части, что свидетельствует о том, что высота трещины была более 50 мм. На рис. 1.7 представлена поверхность раскрытой трещины, а на рис. 1.8 приведены области долома, который проходил и через наплавку, и через металл шва. Из анализа изображения долома можно заключить, что разрушение было вязким. В области переходной наплавки размер ямок отрыва меньше, что связано с процессом рекристаллизации этого слоя. На рис. 1.9 представлены окислы, образовавшиеся на поверхности трещины [48]. Огранка кристаллов окислов говорит о том, что процесс их образования проходил практически в равновесных условиях. Анализ полученных результатов по сварному соединению позволяет отметить [49]: рост магистральной трещины носит

стадийный характер; инициирование трещины происходит в зоне линии сплавления разнородных материалов разнородного сварного соединения и сопровождается интенсивным растворением основного металла с развитием очага локальной коррозии; разрушение металла наплавки и металла шва в доломе происходит по механизму вязкого разрушения, о чем свидетельствуют различного размера ямки отрыва.



Рис. 1.7. Поверхность раскрытой трещины [49]



а) б) Рис. 1.8. Область долома: а - металл шва; б - наплавка [49]



Рис. 1.9. Окислы (Ре<sub>3</sub>0<sub>4</sub>) на поверхности раскрытой трещины [49]

Определение химического состава. Химический состав основного металла (22К), предварительных наплавок на сварочные кромки (ЭА-395/9+ЭА-400/10Т), металла шва (электроды ЭА400/10Т) и основного металла коллектора определяли методом спектрального атомно-эмиссионного анализа.

Результаты приведены в табл. 1.2. Как видно из данных таблиц, химический состав основного металла и металла шва соответствует требованиям нормативных документов "Оптическая металлография и измерение микротвердости" [48].

Исследования выполнялись при помощи цифровой системы для оптической металлографии на базе микроскопа "Neophot", а также стереомикроскопа "Olympus" CZ 61 с цифровой фотокамерой C5060, а измерения микротвердости производились при помощи микротвердомера ПМТ-3, предназначенного для измерения микротвердости металлов методом

Содержание элемента, %

вдавливания алмаза в испытуемый материал, на шлифах, подготовленных к металлографическим исследованиям [49,50].

Таблица 1.2

Результаты химического анализа основного металла и металла шва в сварном соединении № 23х-1 парогенератора 3ПГ-1 НВ АЭС

|                                                                             | С             | Si            | Mn            | Сг            | Ni           | Cu    | Р               | S               | Мо          | Nb    | V             |
|-----------------------------------------------------------------------------|---------------|---------------|---------------|---------------|--------------|-------|-----------------|-----------------|-------------|-------|---------------|
| Основной<br>металл                                                          | 0,23          | 0,32          | 0,80          | 0,21          | 0,19         | 0,15  | 0,019           | 0,022           | -           | -     | -             |
| Металл шва                                                                  | 0,066         | 0,46          | 2,35          | 18,7          | 11,7         | 0,15  | 0,015           | 0,012           | 2,71        | <0,01 | 0,60          |
| Состав марки<br>стали 22к                                                   | 0,19-<br>0,26 | 0,20-<br>0,40 | 0,75-<br>1,00 | ≤0,40         | ≤0,50        | ≤0,30 | ≤0 <i>,</i> 025 | ≤0 <i>,</i> 025 | -           | -     | -             |
| Состав<br>металла шва,<br>выполненного<br>электродом<br>марки ЭА-<br>400/ЮТ | ≤0,10         | ≤0,6          | 1,1-3,1       | 16,8-<br>19,0 | 9,0-<br>12,0 | -     | ≤0,030          | ≤0,025          | 2,0-<br>3,5 | -     | 0,30-<br>0,75 |

#### 1.5. Определение характера повреждения швов №23

Определение характера повреждения швов №23 выполняется для исследования и анализа микроструктуры представленных образцов методом сканирующей электронной микроскопии.

Растровый электронный микроскоп (РЭМ) является одним из наиболее универсальных приборов для исследования и анализа микроструктурных характеристик тел. Принцип РЭМ заключается в сканировании поверхности образца сфокусированным электронным пучком и анализе или низкоэнергетичных вторичных электронов, или отраженных от поверхности электронов [48].

Исследование макроструктуры. Исследование макроструктуры образцов сварных соединений выполнялось на трех шлифах, вырезанных из разных участков швов. На всех трех шлифах (рис. 1.10-1.13) обнаружены магистральные трещины. В образцах №23х-2 и №23г переходная наплавка присутствует вдоль всей линии сплавления (рис. 1.12 и 1.13) [51].

Для подтверждения сказанного были проведены дополнительные исследования образца №23х-1 на сканирующем электронном микроскопе с энергодисперсионной приставкой (рис 1.14 и 1.15) [29]. На рис. 1.14 приведено

изображение обратнорассеянных электронов участков, выделенных на рис. 1.15. На рис. 1.14 а приведен участок с полноценным переходным покрытием, что подтверждается данными химического состава (микрорентгеноспектральный анализ).

Из рассмотренных данных, представленных на рис. 1.10-1.15, следует, что имеются участки, где предварительная наплавка на кромки патрубка корпуса сделана некачественно. В некоторых местах этой наплавки выявлены нарушения технологии, заключающиеся в полном переплаве первого слоя предварительной наплавки. Это свидетельствует о том, что наплавка первого слоя на перлитную кромку патрубка велась при больших значениях сварочного тока на форсированных режимах, что привело к большому местному разбавлению и, как следствие, образованию мартенситных прослоек. На рис. 1.14 б виден участок, на котором заканчивается переходная наплавка, и основной металл контактирует непосредственно с металлом шва. На некоторых участках наплавка переплавлена полностью, а иногда она присутствует, но толщина ее составляет десятые доли мм (рис. 1.15) [48].

На шлифе образца №23х-2 (рис. 1.16) четко прослеживается слой металла околошовной зоны со стороны низколегированной стали (обезуглероженный слой), характерный для разнородных сварных соединений и возникающий за счет диффузии углерода из углеродистой стали [51].





#### Рис. 1.10. Макроструктура образца

#### Рис. 1.11. Макроструктура образца

№23х-1, корень шва [48]

№23х-1, средняя часть



Рис. 1.12. Макроструктура образца №23х-2: а - начало трещины; б - конец трещины [48]





Рис. 1.13. Макроструктура образца №23г: а - начало трещины;



б - конец трещины [48]

a)

Рис. 1.14. Исследование зоны сплавления разнородного сварного соединения

а - начало трещины; б - конец трещины [48]

При металлографических исследованиях вырезанных шлифов особое внимание уделялось изучению зоны сплавления, которая включает в себя основные металлы 22К и 08Х18Н10Т, предварительную двухслойную наплавку и присущую разнородным сварным соединениям кристаллизационную прослойку [48].

Результаты исследования, представленные на рис. 1.14-1.15, позволяют определить толщину кристаллизационной прослойки: при наплавке электродом ЭА-395/9 диаметром 4 мм на сталь 22К толщина такой прослойки составляет 80...100 мкм (0,08...0,010 мм).



Рис. 1.15. Исследование зоны сплавления разнородного сварного соединения. Зона сплавления состоит из следующих участков: 1 - основной металл - сталь 22К; 2 - линия сплавления; 3 - кристаллизационная прослойка; 4 - первый слой предварительной наплавки, 5 - второй слой предварительной наплавки [48]

Из определения химического состава структуры зоны сплавления, по которой распространяется трещина, следует: в зоне сплавления в металле первого слоя предварительной наплавки четко выявляется зона классической кристаллизационной прослойки, ширина которой составляет 0,08...0,010 мм; в зоне распространения трещины содержание Сг составляет около 2,0...5,0%, а содержание Ni - в пределах 1,5...4,0%; в зоне кристаллизационной прослойки выявляются зоны повышенной твердости, которые могут быть классифицированы как структурные включения игольчатого мартенсита [48].

Исследование микроструктуры. Металлографический анализ микроструктуры представленных образцов на шлифах в плоскости поперечного сечения СС, исследование методами сканирующей электронной микроскопии, а также методом микрорентгеноспектрального анализа, замеры микротвердости структуры позволяют констатировать следующие особенности развития трещин [29]:

- магистральные трещины развиваются вдоль линии сплавления, в металле первого слоя наплавки, прилегающем к основному металлу на расстоянии 10...20 мкм; трещина прерывистая, окисленная, имеющая многочисленные трещинки-сателлиты, отходящие от магистральной трещины в перпендикулярном направлении (рис. 1.16 а);
- в зоне, где промежуточная наплавка в образце №23х-1 сходит на нет, магистральная трещина изменяет направление и развивается в глубь металла шва под углом -45° по отношению к линии сплавления (рис. 1.16 б); при этом отчетливо прослеживается извилистый характер трещины;



a)

Рис. 1.16. Общий вид характера распространения трещины:

а - распространение трещины; б - вершина трещины

- имеет место интенсивный растрав трещин (по ходу роста трещин);
- наблюдается стадийный рост трещин во времени;
- на всех шлифах магистральные трещины и сателлиты имеют ветвистое, хаотическое распространение (рис. 1.17);



Рис. 1.17. Участки интенсивного растрава трещины (х500)

характер развития трещин-сателлитов на шлифах после травления (рис.1.18 свидетельствует о том, a) они распространяются что перпендикулярно линии сплавления по дендритам наплавленного металла имеют преимущественно межкристаллитный характер. И Косвенным подтверждением этого предположения является вид трещин на травленых шлифах (рис. 1.18 б);



а) (x500) б) (x1000) Рис. 1.18. Характер развития трещин сателлитов: а - x500; б - x1000

- в отдельных микрозонах образца металлографическим анализом четко определено наличие измененного слоя, примыкающего к основному металлу (рис. 1.19) (на представленных микрофотографиях зоны темносерого цвета). Согласно результатам определения химического состава с помощью методов микрорентгеноспектрального анализа, этот слой металла является следствием сильного перемешивания металла аустенитного шва и углеродистой стали;
- в структуре слоя с повышенной твердостью выявлены прослойки игольчатой мартенситной структуры (рис. 1.19);





Рис. 1.19. Результаты замера микротвердости металла промежуточной наплавки и слоя измененного химического состава в образце №23х-1

Сложные физико-химические процессы, проистекающие, как в процессе формирования сварочной ванны исследуемого шва, так и в ходе эксплуатации этого сварного соединения в условиях постоянного контакта термически активированного слоя углеродистой стали 22К с агрессивной средой теплоносителя второго контура, вполне ожидаемо провоцируют исходное коррозийное повреждение незащищенного наплавкой металла ферритного класса на линии соприкосновения его с металлом первого слоя наплавки. В узкой застойной зоне между наружной поверхностью коллектора первого контура парогенератора (сталь 08Х18Н10Т) и его корпусом (сталь 22К)

существенно завышенная концентрация активных ионов хлора, натрия, меди, вымываемых из конденсаторов и изначально содержащихся в воде второго контура даже при ее регламентированном качестве, запускает механизм межкристаллитной "ножевой" коррозии металла. В ослабленном ПО описанному сценарию металле сварного шва знакопеременные напряжения, обусловленные разницей температурных перемещений разнородных компонентов, становятся инициатором зарождения и развития трещины на линии сплавления основного металла (перлитная сталь 22К) с металлом первого слоя наплавки (аустенитная сталь 10Х16Н25АМ6).

Таким образом, главной причиной образования повреждений разнородного СС №23 является низкая коррозионная стойкость в сочетании со склонностью к образованию "горячих" трещин первого слоя наплавки [3].

Под воздействием знакопеременных нагрузок, возникающих при эксплуатации за счет разницы коэффициентов линейного расширения и при постоянном контакте с агрессивной средой теплоносителя в ходе длительной эксплуатации, происходит образование опасных трещин [52].

Предлагаемое выше понимание причин деградации металла композитных СС №23 достаточно убедительно подтверждается фиксируемыми данными:

- существенный временной диапазон между стартовым повреждением металла и развитием исходной трещины до выявляемых размеров (по истечении более 80% проектного срока эксплуатации);
- концентрация микротрещин, зарожденных по механизму "коррозийное растрескивание под напряжением", на линии сплавления разнородных металлов и их слияние в канальную магистральную трещину (наглядно демонстрируется на шлифах темплетов);
- существенные изменения химического состава металлов В зоне сплавления: декарбонизация (выпадение карбидов вследствие высокотемпературного отпуска наплавленного металла), очаговый

растрав углеродистой стали, гальванический вынос нестабилизированных элементов (Cr, C, Ni) и их вклинивание в разнородные металлы в зоне сплавления;

- наличие в двухкомпонентной области сварного соединения (основной металл и металл первого слоя наплавки) микрозон различной твердости (перлит, мартенсит, аустенит), являющихся провокатором зарождения сателлитных микротрещин по границам дендритов;
- химический состав отложений в застойной зоне "карманов', содержащих источники агрессивных активных ионов (хлор, медь, окислы железа).

## 1.6. Динамика обнаружения повреждений разнородных сварных соединений приварки коллекторов теплоносителя к патрубкам парогенераторов ПГВ-440

Первые тревожные сведения течи из сварных швов парогенераторов ВВЭР-1000 появились в 1998-2000 гг., но это считалось особенностью этих парогенераторов, и для ПГ ВВЭР-440 российские нормы оставались неизменными. Только в 2007 г., после появления этих проблем на ПГ ВВЭР-440 (по результатам эксплуатационного УЗК), российские нормы рекомендуют контроль методикой механизированного УЗК этих сварных швов. При этом аттестованная методика механизированного УЗК ("Эхо-пульс" (PEUT)) в России применяется только с 2010 г. История ремонта этих сварных швов началась также с 2007 г. (устранение течи из сварного шва парогенератора ВВЭР-1000). В настоящее время в России принят следующий подход к данной проблеме:

 ежегодный контроль швов аттестованной методикой УЗК, уточнение размеров индикаций, определение фактической скорости роста;
выполнение упредительного ремонта швов согласно графику и исследование металла вырезанных участков для выявления причин появления дефектов и их развития;

• совершенствование ремонтной процедуры по результатам исследований.

Отношение ААЭС к данной проблеме с самого начала было максимально серьезным. Уже в 2003 г. по инициативе ААЭС был выполнен экспертный контроль (механизированный ультразвуковой) сварных швов на всех шести ПГ (всего 12 таких швов). Контроль был выполнен специалистами ИЯИ Ржеж (Чехия) по стандартной методике УЗК "Эхо-пульс" (PEUT – the Pulse-Echo technique using SIROCO=SUMIAD UT system) в рамках проекта МАГАТЭ ARM/4/004. В результате контроля были выявлены индикации на всех швах, но их размеры были оценены ниже уровня регистрации, а сами индикации классифицировались как геометрические флуктуации.

В связи с этим актуальной задачей является анализ и систематизация выявленных повреждений, определение характера и причин их образования, а также разработка мероприятий по предотвращению образования повреждений и их устранению.

#### 1.7. Выводы и конкретизация задач исследования

Проблемы надежной и безопасной эксплуатации одного из важнейших элементов реакторной установки – парогенераторов обуславливаются необходимостью обеспечения определенных регламентированных условий: целостность теплообменных трубок; пределы допустимой теплонапряженности и теплообменных показателей; водно-химический режим теплоносителей первого и второго контура; целостность корпуса парогенератора.

Именно целостность корпуса парогенератора, в конечном итоге, и является целью и задачей предлагаемого исследования, поскольку

многолетними наблюдениями за всю историю эксплуатации (несколько тысяч peaктор/часов) однозначно определен единственный слабый узел корпусов парогенераторов – композитное сварное соединение корпуса с коллектором первого контура (СС №23 для парогенераторов энергоблоков ВВЭР-440).

Задача практически сводится к обеспечению целостности этого СС – своевременному выявлению деградационных процессов, оценке текущего состояния (величины повреждений), прогнозированию временных границ безопасной эксплуатации (сроков достижения предельного состояния), определение и реализация компенсирующих и профилактических мер, обеспечивающих восстановление и/или поддержание исходных проектных кондиций данного узла ПГ.

Успешное решение обозначенной проблемы предполагает четкое понимание конструкционных особенностей СС №23 и условий эксплуатации, а также обоснованную оценку возможного негативного воздействия этих особенностей на сохранность исходных проектных характеристиках данного узла и, тем самым, на фактическое текущее состояние корпуса ПГ в целом.

Обобщенно эти особенности сводятся к следующим:

- сложная геометрия, что наиболее существенно, многокомпонентность сварного соединения (в узле присутствуют пять различных металлов, пять границ их сплавления, а также микрозоны частичного взаимопроникновения разнородных металлов);
- наличие в сварном соединении микрозон с компонентами различной твердости (перлит, феррит, мартенсит, аустенит);
- постоянный контакт внутренней поверхности (корня шва) сварного соединения с агрессивной средой застойной зоны "карманов";
- образование "гальванических пар" на линии соприкосновения основного металла (перлитная сталь 22К) и металла первого слоя наплавки (аустенитная сталь 10Х16Н25АМ6);

- выявление средствами неразрушающего контроля и подтверждение в ходе ремонтных работ наличие магистральных трещин, зарожденных на внутренней поверхности сварных соединений и развивающихся в толще СС в направлении к наружной поверхности, достигающих размеров, приближающихся к критическим;
- выявление средствами неразрушающего контроля и подтверждение в ходе ремонтных работ коррозийного повреждения внутренней поверхности (корня) сварного соединения по всему периметру на глубину до 7 мм (исходная позиция для зарождения трещины);
- достаточно высокий температурный градиент в зоне соприкосновения металла сварного шва (255 <sup>0</sup>C) с теплоносителем второго контура, питательной водой (223 <sup>0</sup>C) при существенной разнице коэффициентов температурного расширения металлов патрубка корпуса парогенератора (сталь 22К), первого слоя наплавки (сталь 10Х16Н25АМ6), второго слоя наплавки (сталь 04Х19Н11М3) и коллектора первого контура парогенератора (сталь 08Х18Н10Т).

Начиная с 2007 года в разнородных сварных соединениях приварки коллекторов теплоносителя к патрубкам парогенераторов ПГВ - 440 №23 были выявлены и продолжают выявляться на ААЭС, НВ АЭС, Кольской АЭС, а также на АЭС Дукованы (Чехия) кольцевые трещины в зоне сплавления перлитного и аустенитного металлов. Исходя из анализа литературных данных и опыта эксплуатации атомных энергоблоков с реакторами типа ВВЭР-440, целью данной работы является поиск обоснованных предложений по повышению эксплуатационной надежности разнородных сварных соединений узла приварки коллектора теплоносителя к патрубкам парогенераторов реакторных установок ВВЭР-440 (шов №23).

Для достижения поставленной цели необходимо решить следующие задачи:

- оценить влияние условий эксплуатации на остаточный ресурс узлов крепления коллекторов теплоносителя к патрубкам корпусов парогенераторов ПГВ-4с ВВЭР-440;
- разработать и обосновать оценку критических и предельно допустимых в эксплуатации размеров несплошностей сварных швов №23 патрубков Ду-1100 ПГВ-4с;
- оценить остаточный ресурс узла приварки коллекторов теплоносителя к корпусам парогенераторов ВВЭР-440.

# ГЛАВА 2. МЕТОДИКА ЭКСПЕРИМЕНТАЛЬНОГО ИССЛЕДОВАНИЯ И МЕТОДОЛОГИЯ ОЦЕНКИ КРИТИЧЕСКИХ И ДОПУСТИМЫХ РАЗМЕРОВ ГЛУБИНЫ ДЕФЕКТА СВАРНЫХ ШВОВ ПЕРЕХОДНОГО КОЛЬЦА И ПАТРУБКА ДУ-1100 ПАРОГЕНЕРАТОРОВ ВВЭР-440

#### 2.1. Методика экспериментального исследования

В рамках экспериментального исследования выполнялся контроль сварного соединения в 2014 г. на ААЭС по "Методике автоматизированного ультразвукового контроля (МА5-АЭ1-ПК0Б/9-К-08 с изм № 1) сварного соединения (композитного) переходного кольца и патрубка Ду-1100 парогенераторов реакторной установки ВВЭР-440 с применением системы АВГУР 5.2".

Также дополнительно проводился контроль по проекту "Методики ультразвукового контроля (*X-32*) сварного соединения (композитного) переходного кольца и патрубка Ду-1100 парогенераторов реакторной установки ВВЭР-440 с применением технологии фазированных решёток",

предназначенному для проведения аттестационных испытаний в течение 2018 г. [53].

Основные параметры методики. Система АВГУР 5.2 представляет собой измерительный прибор, предназначенный для измерения параметров дефектов (тип, размеры, координаты) в основном металле и сварных соединениях трубопроводов.

Областью применения системы АВГУР 5.2 является автоматизированный ультразвуковой контроль труб различных габаритов и толщин, используемых при строительстве и эксплуатации трубопроводов в таких отраслях промышленности, как трубопроводный транспорт, атомная и тепловая энергетика и др.

Система АВГУР 5.2 позволяет:

 выявлять дефекты, несплошности и неоднородности материала (трещины, поры, расслоения, включения и т.д.);

• измерять координаты положений дефектов и их размеры.

Система предназначена для эксплуатации в помещениях при значениях рабочих температур от плюс 1°С до плюс 35°С и относительной влажности воздуха до 80%.

Ниже приведены характеристики, описывающие назначение методики, основные параметры контроля, принципы анализа данных [59-62].

1. Контроль проводился с целью обнаружения и определения параметров эксплуатационных и технологических несплошностей в сварном соединении, включая его корень, линию сплавления, а также околошовную зону. При проведении контроля определяются следующие параметры несплошностей эквивалентная площадь или амплитуда эхо-сигнала от несплошности относительно браковочного уровня, место их расположения вдоль СС,

протяженность, глубина залегания и высота. Погрешность измерения высоты несплошности составляет ±6 мм в 95%-ом доверительном интервале.

2. Контроль, проводимый по настоящей методике, позволяет обнаруживать трещины, непровары, несплавления и включения в наплавленном металле сварного шва и околошовной зоне шириной 20 мм от линии сплавления. Не гарантируется обнаружение несплошностей, расположенных вне зоны прозвучивания под внешней поверхностью валика, усиленого на глубине до 10 мм. Размер области прозвучивания может уменьшиться при наличии ремонтных выборок в околошовных зонах сварного соединения.

3. Контроль, проводимый по настоящей методике, обеспечивает выявление несплошностей с эквивалентной площадью более 15 мм<sup>2</sup> и условной протяженностью более 15 мм вдоль оси сварного соединения.

4. Для определения геометрических размеров несплошностей проводилась когерентная обработка А-сканов методом вычислительной многочастотной акустической голографии (FT SAFT) [59]. Путем анализа восстановленных голографических изображений определяются геометрические размеры и координаты местоположения несплошностей.

5. Для повышения надежности обнаружения несплошностей при проведении АУЗК по данной методике используются различные углы ввода продольных и сдвиговых волн (двухмодовая методика АУЗК) и схемы прозвучивания.

Перечень схем контроля и типов пьезоэлектрических преобразователей (ПЭП) которые были использованы в рамках экспериментального исследования приведен в табл. 2.1.

#### Таблица 2.1

| ПЭП | Центральная | Тип | Сторона  | Угол ввода, | Обозначение |
|-----|-------------|-----|----------|-------------|-------------|
|     | частота,    | вол | контроля | o           | схемы       |
| _   | ±МГц        | ны  |          |             | контроля    |
|     |             |     | 42       |             |             |

|   | 2L1.8R45 | 1,8±0.2 | L | перлит   | 45±3      | NL45 |  |
|---|----------|---------|---|----------|-----------|------|--|
| - | 2L1.8R55 | 1,8±0.2 | L | перлит   | 55±3      | NL55 |  |
|   | 2L1.8R45 | 1,8±0.2 | L | аустенит | 45±3      | PL45 |  |
|   | 2L1.8R55 | 1,8±0.2 | L | аустенит | 55±3      | PL55 |  |
|   | L1.8R75  | 1,8±0.2 | L | перлит   | 75±3      | NL75 |  |
|   | (2H1.8R) |         |   |          | (головная |      |  |
|   |          |         |   |          | волна)    |      |  |
|   | L1.8R75  | 1,8±0.2 | L | аустенит | 75±3      | PL75 |  |
|   | (2H1.8R) |         |   |          | (головная |      |  |
|   |          |         |   |          | волна)    |      |  |
|   | S2.5D45  | 2,5±0.3 | S | перлит   | 45±3      | NS45 |  |

Перечень схем контроля МА5-АЭ1-ПК0Б/9-К-08 с изм № 1 [63]

Для настройки чувствительности применяются настроечные образцы, выполненные по штатной монтажной технологии или по определенной технологии ремонта [64].

На рис. 2.1 поясняется принцип измерения высоты несплошностей визуализированным методом FT-SAFT изображениям.

Согласно методике, при анализе данных для измерения геометрических параметров несплошностей фиксируются все несплошности, высота которых равна или превышает 7 мм от данной поверхности сварного шва [65, 66].



Рис. 2.1. Принцип определения высоты несплошностей плоскостного типа

#### 2.1.1. Система АВГУР 5.2

Для выполнения экспериментальных исследований по АУЗК СС Ду-1100 использовалась система автоматизированного ультразвукового контроля АВГУР 5.2, включающая в свой состав основные приборы и оборудование: блок системный БСЗ.А5.2ПК-U; сканер СК.426Т412162-2; трек Ду1100 с ремнем T1225; блок выносной БВ6.А5.212160; ПЭП 2L1.8R55; ПЭП 2H1.8R; ПЭП 2L1.8R75; ПЭП L1.8D45; ПЭП 2L1.8R45; ПЭП L1.8D55; ПЭП L1.8D70; ПЭП S1.8D45;

Система АВГУР 5.2 позволяет осуществлять дистанционный контроль при удалении оператора от объекта контроля на расстояние до 68 мм [63, 64].

Сканер представляет собой устройство для перемещения ПЭП по поверхности патрубка Ду-1100 и переходного кольца. ПЭП перемещаются вдоль и поперек сварного соединения (сканирование). Сканер включает в себя приводы X (движение в направлении, перпендикулярном относительно оси шва) и Y (движение вдоль оси шва), направляющие прижимов ПЭП, прижимы ПЭП (установочные места ПЭП) и блок электроники сканера. Сканер устанавливается на локальный трек в виде полосы и крепится на объекте контроля магнитными опорами и натяжным ремнем (рис. 2.2) [65-67].



#### Рис. 2.2. Размещение сканера АВГУР 5.2 на объекте контроля

#### 2.1.2. Система Х-32

Система Harfang X-32 (далее система X-32) представляет собой прибор, предназначенный для измерения параметров дефектов (их типа, размеров, координат) в основном теле металлических и полимерных труб, а также в сварных и паяных соединениях труб [68, 69].

Областью применения системы X-32 является контроль труб различных габаритов и толщин, используемых при строительстве и эксплуатации водопроводов и теплотрасс в таких отраслях промышленности, как трубопроводный транспорт, атомная промышленность, энергетика и др. [70].

Основные преимущества технологии фазированных решеток системы Х-32:

- скорость работы диагностика с помощью X-32 с линейным сканированием обычно на порядок быстрее, чем обычное растровое сканирование с применением одного датчика;
- гибкость с помощью единственной решетки можно провести диагностирование целого ряда различных образцов с применением различных процедур, используя файлы электронной настройки;
- механическая надежность меньшее количество движущихся частей повышает надежность системы диагностики;
- повышение выявляемости неориентированных дефектов фокусированный луч увеличивает отношение сигнал-шум. Наличие ряда А-сканов, сгруппированных в сектор с определенным угловым разрешением, увеличивает вероятность обнаружения дефектов.

Для выполнения экспериментальных исследований по X-32 СС Ду-1100 использовалась система ультразвукового контроля на фазированных решетках

Harfang X-32 № X322007139 в составе [71, 72]: прибор Harfang X-32; призма X-32-35°-R-IL42; призма X-32-20°-426-IL42; датчик пути ИП-150-ПЛ.Р.ДП.1.

#### 2.2. Методика расчета критических и допустимых размеров дефекта

Расчет критических и допустимых размеров дефекта, на достижение которых направлены описанные далее методики, заключается в том, что они позволяют произвести оценку с реальными дефектами после контроля определить фактический уровень надежности и безопасности.

Оценка допустимой глубины дефекта выполнена в соответствии с процедурой American Society of Mechanical Engineers (ASME, часть С-6000) на основе опыта использования сталей ВВЭР (т.е. был опущен критерий отбора) [73-79].

В связи с тем, что могут появиться несплошности, задача состаит втом чтобы разработать методологию расчетов учитывающих дефектность.

Критерий приемки для кругового дефекта определен в виде

$$\sigma_b \leq S_c, \tag{1}$$

где  $\sigma_b$  — напряжение при изгибе по первому контуру; S<sub>c</sub> — допустимое напряжение.

Допустимое напряжение определяется в виде

$$S_{c} = \frac{1}{c} \left| \frac{\sigma_{b}^{c}}{7} - \sigma_{e} \right| - \sigma_{m} \left[ 1 - \frac{1}{7c} \right], \tag{2}$$

где и - коэффициенты безопасности для напряжения изгиба; - предел текучести, МПа; - напряжение при изгибе по второму контуру, МПа; - мембранные напряжения в первом контуре, МПа.

Коэффициенты безопасности и представлены в табл. 2.2.

Таблица 2.2

#### Коэффициенты безопасности

| Коэффициенты    | Группа А | Группа В | Группа С | Группа D |
|-----------------|----------|----------|----------|----------|
| S <sub>Fb</sub> | 2,7      | 2,4      | 1,8      | 1,3      |
| $S_{Fm}$        | 2,3      | 2        | 1,6      | 1,4      |

Значения коэффициента Z рассчитаны по формуле

$$Z = 1,35 [1,$$
 (3)

где *D*<sub>out</sub> - внешний диаметр в метрах, вместо номинального диаметра. Значения коэффициента *А* рассчитаны по формуле

$$A = \sqrt[4]{0,125\frac{R}{4} - 0,25}, \tag{4}$$

где R - средний радиус трубы, мм; t - толщина трубной стенки, мм.

Предел текучести определен по формуле

$$\sigma_b^c = \frac{2\sigma_f}{\pi} \left(2 - \frac{a}{t}\right) \sin\beta,\tag{5}$$

где

$$\beta = \frac{\pi}{2} \left( 1 - \frac{a}{t} - \frac{\sigma_m}{\tau} \right). \tag{6}$$

Осевая нагрузка в первом контуре, вызванная давлением в первом контуре, может быть определена следующим образом [75]:

$$F_{lid,prim} = \pi \cdot \left(\frac{D_{in,cool}}{2}\right)^2 \cdot \left(P_{prim} - P_{sec}\right),\tag{7}$$

где - внутренний диаметр внутреннего коллектора первого контура, мм; - давление первого контура, МПа; - давление второго контура, МПа.

Осевая нагрузка в первом контуре, вызванная давлением во втором контуре, может быть определена следующим образом:

$$F_{lid,sec} = \pi \cdot \left( \left( \frac{D_{in}}{2} \right)^2 - \left( \frac{D_{in} - 2h}{2} \right),$$
(8)

где **D**<sub>in</sub> - внутренний диаметр коллектора, мм; h - пространство между самим коллектором и сварным швом коллектора, мм.

Общая аксиальная нагрузка первого контура определяется выражением

$$F_{ax} = F_{lid,prim} + F_{lid,sec} + |P_{dw}|$$
(9)

- осевая нагрузка собственного веса, Н; - осевая нагрузка где внутреннего давления, Н; - осевая нагрузка сейсмичности, Н.

Момент изгиба по первому контуру с учетом момента кручения рассчитывается по формуле [79]

$$M_{b} = \left| \sum \left( \left| M_{j.dw} + M_{j.ip} \right| + M_{j.seism} \right)^{2} \right|,$$
(10)

где  $M_{dw}$  - нагрузка собственного веса, Нм;  $M_{ip}$  - нагрузка внутреннего давления, Нм; *M<sub>seism</sub>* - нагрузка сейсмичности, Нм.

Момент изгиба по второму контуру с учетом момента кручения рассчитывается по формуле [79]

$$M_e = \left| \sum M_{j,e''}^2 \right|, \tag{11}$$

- нагрузка теплового расширения, Нм. где

Мембранные напряжения в первом контуре могут быть определены по формуле

$$\sigma_m = \frac{F_{ax}}{2\pi Bt} \quad . \tag{12}$$

Напряжение при изгибе по первому контуру рассчитывается по формуле

$$\sigma_b = \frac{M_b}{\pi R^2 t} \quad . \tag{13}$$

Напряжение при изгибе по второму контуру рассчитывается по формуле

$$\sigma_e = \frac{M_e}{-R^2 t} . \tag{14}$$

#### 2.3. Метод пластического шарнира

Критический размер дефекта — это такой размер, при достижении которого происходит мгновенное разрушение конструкции.

Допустимый в эксплуатации размер несплошности не должен превышать такого значения, которое равно критическому размеру, уменьшенному на соответствующие коэффициенты запаса прочности [80-82].

Например, для трубопровода в рабочем режиме, как правило, характерно вязкое состояние металла. Дефект можно схематизировать так, как показано на рис. 2.3.

Для цилиндрических оболочек с несплошностями, ориентированными в кольцевом направлении, критические размеры дефектов а<sub>с</sub> и с<sub>с</sub> находят по формуле

$$\sigma_{f} = \frac{2 \cdot R \left[ 2 \cdot \sin \left( 0.5 \cdot \left( \pi - n_{a} \cdot y \cdot n_{\varphi} \cdot x - \pi \cdot \frac{\sigma_{m}}{R} \right) \right) - n_{a} \cdot y \cdot \sin \left( n_{\varphi} \cdot x \right) \right]}{\pi} , \quad (15)$$

где  $\sigma_f$  - изгибное напряжение; *R* - критерий разрушения в вязкой области;  $R = 1.2 * R_{p0,2}$ ;  $R_{p0,2}$  - предел текучести материала цилиндра, МПа; y=a/S относительная глубина трещины критического размера; *a* - глубина трещины, мм; *S* - толщина стенки цилиндра, мм; x=C/R - половина длины трещины критического размера; C - половина длины трещины, мм;  $n_a$  – коэффициент запаса прочности по глубине трещины (для критических размеров равен 1);  $n_{\varphi}$  коэффициент запаса прочности по длине трещины (для критических размеров равен 1).

Коэффициенты запаса прочности:

для НУЭ:  $n_a$ =3,  $n_{\varphi}$ =2; для ГИ:  $n_a$ =2,  $n_{\varphi}$ =2;

для НУЭ+МРЗ:  $n_a$ =1,  $n_{\varphi}$ =2.



Рис. 2.3. Схематизация несплошности

#### 2.4. Метод Ј-интеграла

*J*-интегральный метод является широко используемым методом на основе энергетического баланса [83-86]. Он применяется для оценки состояния напряженного твердого тела с трещиной.

**Ј**–интеграл определяется выражением

$$J = \int_{\Gamma} \left( W dy - T_i \, \frac{du_i}{dx} ds \right), \tag{16}$$

где Г - замкнутый контур, который нужно обойти против часовой стрелки, окружающей в напряженном твердом теле некоторую область; Т - вектор напряжений, перпендикулярных к контуру Г, и направлен во внешнюю сторону;  $T_i = \sigma_{ii}n_i$  - перемещение в направлении оси *x*; *ds* - элемент контура Г;

$$W=\int\limits_{0}^{arepsilon_{jj}}\sigma_{_{mn}}darepsilon_{_{mn}}$$
 - модуль устойчивости (в контурных точках); связь

напряжение-деформация может быть нелинейной. Координаты (x,y) трещины лежат на оси x. Если Г - замкнутый контур, то J=0.

Этот метод основан на GE / EPRI методе в соответствии с NUREG/CR-6235 и модифицирован с учетом изгибающего момента и усилия фактора. Модифицированный метод описан в методических рекомендациях MP125-02-95, используемых в атомной отрасли [85].

# ГЛАВА З. РЕЗУЛЬТАТЫ ЭКСПЕРИМЕНТАЛЬНЫХ ИССЛЕДОВАНИЙ И СРАВНИТЕЛЬНЫЙ АНАЛИЗ СВАРНЫХ ШВОВ ПЕРЕХОДНОГО КОЛЬЦА И ПАТРУБКА ДУ-1100 ПАРОГЕНЕРАТОРОВ ПГВ-4с ВВЭР-440

# 3.1. Экспериментальное исследование сварных швов переходного кольца и патрубка Ду-1100 парогенераторов ПГВ-4с

Экспериментальные исследования сварного соединения в 2014 г. на ААЭС выполнялись по "Методике автоматизированного ультразвукового контроля сварного соединения (композитного) переходного кольца и патрубка Ду-1100 парогенераторов реакторной установки ВВЭР-440 с применением системы АВГУР 5.2". Также дополнительно проводилось исследование по проекту "Методики ультразвукового контроля сварного соединения (композитного) переходного кольца и патрубка ду-1100 ларогенераторов реакторной установки ВВЭР-440 с применением системы АВГУР 5.2". Также дополнительно проводилось исследование по проекту "Методики ультразвукового контроля сварного соединения (композитного) переходного кольца и патрубка Ду-1100 парогенераторов реакторной установки ВВЭР-440 с применением технологии фазированных решёток".

Как было отмечено в первой главе отношение ААЭС к данной проблеме с самого начала было максимально серьезным. Уже в 2003 г. по инициативе ААЭС был выполнен экспертный контроль (механизированный ультразвуковой) сварных швов на всех шести ПГ (всего 12 таких швов). Контроль был выполнен специалистами ИЯИ Ржеж (Чехия) по стандартной методике УЗК "Эхо-пульс" (PEUT – the Pulse-Echo technique using SIROCO=SUMIAD UT system) в рамках проекта МАГАТЭ ARM/4/004 [87]. В результате контроля были выявлены индикации на всех швах, но их размеры были оценены ниже уровня

регистрации, а сами индикации классифицировались как геометрические флуктуации.

В период 30.09.2014 – 09.10.2014 проведено экспериментальное исследование АУЗК сварных соединений на всех коллекторах всех ПГ на энергоблоке № 2 ААЭС, в результате которого на двух швах (на "горячих" коллекторах ПГ-5 и ПГ-6) выявлены дефекты, превышающие допустимые размеры. Этот контроль был выполнен двумя методиками:

- УЗК "Эхо-пульс" (PEUT the Pulse-Echo using SIROCO=SUMIAD UT system).
   Подобная методика аттестована для сварных швов российских АЭС и Армянской АЭС (эта методика применена на ААЭС и аттестована в России и в Армении);
- УЗК датчиками с фазированной решеткой (PAUT-the Phased Array technique using ZIRCON system) (эта методика применена на ААЭС впервые экспериментальным путем, методика не аттестована ни в России, ни в Армении [89]).

Основные характеристики сварного соединения:

- материал патрубка парогенератора сталь 22К;
- наплавка на патрубке первый слой выполнен электродами ЭА-395/9, второй слой – электродами ЭА-400/10Т;
- тип сварки ручная электродуговая;
- сварной шов выполнен электродами ЭА 400/10У;
- разделка шва V-образная;
- аргонодуговая подварка корня сварного шва проволокой 04Х19Н11М3;
- переходное кольцо сталь 08Х18Н10Т.

Композитные сварные швы (рис. 3.1) являются специфическими для горизонтальных ПГ российского проекта и соединяют коллекторы первого контура (нержавеющая сталь 08Х18Н10Т) с корпусами самих парогенераторов

(углеродистая сталь 22К). Швы являются частью ПГ и изготовлены на заводе (наплавка – на Ижоре, сам шов – на "ЗиО-Подольск").

Данные о парогенераторах энергоблоков №1 и №2 ААЭС приведены в табл. 3.1.

# Таблица 3.1

|                | <b>№ ΠΓ</b> | Регистрационный<br>номер ПГ | Заводской<br>номер ПГ | Год<br>изготовления | Год ввода в<br>эксплуатацию |
|----------------|-------------|-----------------------------|-----------------------|---------------------|-----------------------------|
| Энергоблок № 1 | 1ПГ-5       | 8                           | 7749                  | 1975                | 1976                        |
|                | 2ПГ-1       | 3P                          | 8517                  | 1977                |                             |
| № 2            | 2ПГ-2       | 4P                          | 8518                  | 1977                |                             |
| JOK            | 2ПГ-3       | 5P                          | 8519                  | 1978                | 1980                        |
| r o 0.         | 2ПГ-4       | 6P                          | 8522                  | 1979                | 1980                        |
| Энер           | 2ПГ-5       | 7P                          | 8521                  | 1979                |                             |
|                | 2ПГ-6       | 8P                          | 8520                  | 1978                |                             |

Сведения о парогенераторах ААЭС



Рис. 3.1. Сварной шов: внешний диаметр — 1245 мм, внутренний диаметр — 1098 мм, толщина шва (стенки) — 73,5 мм

В табл. 3.2 представлены результаты УЗК, выполненного в 2014 г. по двум методикам: "Эхо-пульс" (PEUT) и "Фазированная решетка" (PAUT).

#### Таблица 3.2

Максимальные размеры выявленных индикаций (максимумы по глубине, 2014 г. "Эхо-пульс" (PEUT) и "Фазированная решетка" (PAUT)) [89]

| №<br>_ /_ Обозн |        | ачение парогенератора | "Эхо-пул     | њс" (PEUT)     | "Фаз. решетка"<br>(PAUT) |                |  |
|-----------------|--------|-----------------------|--------------|----------------|--------------------------|----------------|--|
| п/п             |        |                       | длина,<br>мм | глубина,<br>мм | длина,<br>мм             | глубина,<br>мм |  |
| 1               |        | "холодный" коллектор  | 288          | 27,5           | 595                      | 10             |  |
| 2               | 2111-1 | "горячий" коллектор   | 648          | 22,8           | 329                      | 15,4           |  |
| 3               | 205.2  | "холодный" коллектор  | 944          | 24,6           | 515                      | 13,1           |  |
| 4               | 2111-2 | "горячий" коллектор   | 393          | 25,2           | 300                      | 16,7           |  |
| 5               | 205.2  | "холодный" коллектор  | 210          | 25,6           | 217                      | 9,1            |  |
| 6               | 2111-3 | "горячий" коллектор   | 227          | 22,4           | 456                      | 14             |  |
| 7               | 205.4  | "холодный" коллектор  | 657          | 26,5           | 1160                     | 12,7           |  |
| 8               | 2111-4 | "горячий" коллектор   | 327          | 27,2           | 68                       | 14             |  |
| 9               | 205.5  | "холодный" коллектор  | 824          | 24             | 678                      | 11,3           |  |
| 10              | 2111-5 | "горячий" коллектор   | 748          | 27,5           | 88                       | <u>46,6</u>    |  |
| 11              | 205.0  | "холодный" коллектор  | 506          | 26,3           | 727                      | 12,2           |  |
| 12              | 2111-6 | "горячий" коллектор   | 116          | <u>32,9</u>    | 77                       | <u>48,4</u>    |  |

В табл. 3.3 представлены результаты УЗК, выполненного по одной и той же методике (PEUT) дважды за 11 лет (в 2003 и 2014 гг.) для возможности оценки изменений этих индикаций за данный период.

## Таблица 3.3

Максимальные размеры выявленных индикаций (максимумы по глубине,

| № Обозн |        | ачение парогенератора | "Эхо-пул     | њс" (PEUT)     | Скорость (за 11 лет) |                |  |
|---------|--------|-----------------------|--------------|----------------|----------------------|----------------|--|
| п/п     |        |                       | длина,<br>мм | глубина,<br>мм | длина,<br>мм         | глубина,<br>мм |  |
| 1       | 20F 1  | "холодный" коллектор  | 200          | 26,8           | 8,8                  | 0,08           |  |
| 2       | 2111-1 | "горячий" коллектор   | 687          | 22,7           | -3,7                 | 0,01           |  |
| 3       | 205.2  | "холодный" коллектор  | 521          | 19,2           | <u>42,3</u>          | 0,5            |  |
| 4       | 2111-2 | "горячий" коллектор   | 431          | 22,7           | -3,8                 | 0,25           |  |
| 5       | 205.2  | "холодный" коллектор  | 321          | 24,5           | -11,1                | 0,11           |  |
| 6       | 2111-5 | "горячий" коллектор   | 348          | 23,0           | -12,1                | 0,06           |  |
| 7       | 205.4  | "холодный" коллектор  | 784          | 26,5           | -12,7                | 0              |  |
| 8       | 2111-4 | "горячий" коллектор   | 527          | 27,2           | <u>20</u>            | 1,15           |  |
| 9       | 205.5  | "холодный" коллектор  | 408          | 22,2           | <u>41,5</u>          | -0,18          |  |
| 10      | 2111-5 | "горячий" коллектор   | 182          | 27,1           | <u>56,6</u>          | 0,04           |  |
| 11      | 205.0  | "холодный" коллектор  | 227          | 25,1           | <u>27,9</u>          | 0,06           |  |
| 12      | 2111-6 | "горячий" коллектор   | 227          | 25,1           | -11,1                | 0,78           |  |

| 2003 г. "Эхо-пульс" | (PEUT) | ) [89] |  |
|---------------------|--------|--------|--|
|---------------------|--------|--------|--|

Как видно из табл. 3.3, за 11 лет индикации изменились только в длину (в некоторых случаях даже уменьшились), глубины индикаций в швах практически остались неизменными.

# 3.2. Сравнительный анализ сварных швов переходного кольца и патрубка Ду-1100 парогенераторов ПГВ-4с ВВЭР-440

# 3.2.1. Парогенератор №.1, "холодный" коллектор, 2003 и 2014 гг.

На рис. 3.2 показаны общие и максимальные индикации, выполненные в 2014 г. по методикам "Эхо-пульс" (PEUT) и "Фаз. решетка" (PAUT), вместе взятым.



Рис. 3.2. Результаты контроля за 2014 г. по методикам "Эхо-пульс" (PEUT) и "Фаз. решетка" (PAUT), вместе взятым

В общем счете общие и максимальные индикации, выполненные в 2014 г. по методикам "Эхо-пульс" (PEUT) и "Фаз. решетка" (PAUT), вместе взятым, представлены в табл. 3.4.

В табл. 3.5 представлены результаты индикаций, выполненных в 2003 г. по методике "Эхо-пульс" (PEUT).

#### Таблица 3.4

Результаты контроля за 2014 г. по методикам "Эхо-пульс" (PEUT) и "Фаз. решетка" (PAUT), вместе взятым Таблица 3.5

Результаты контроля за 2003 г.

по методике "Эхо-пульс" (PEUT)

|    |                | Располож      | ение   |                      |     |        |            |        |        |
|----|----------------|---------------|--------|----------------------|-----|--------|------------|--------|--------|
| Nº | начало<br>угла | конец<br>угла | длина, | глуб. <i>,</i><br>мм |     | Ра     | асположени | 1e     |        |
|    | ,              | <b>,</b>      | ММ     |                      | No  | начало | конец      | длина, | глуб., |
| 1  | 20,51          | 42,14         | 207,6  | 19,83                | IN≌ | угла   | угла       | мм     | мм     |
| 2  | 65             | 130,94        | 633,0  | 26,16                |     |        |            |        |        |
| 2  |                | 242.2         | 652.7  | 22.7                 | 1   | 22,02  | 43,23      | 203,6  | 18,11  |
| 5  | 145,1          | 213,2         | 653,7  | 23,7                 | 2   | 67,2   | 114,85     | 457,4  | 20,46  |
| 4  | 241,4          | 324,2         | 794,8  | 27,51                | 3   | 151,13 | 195,62     | 427,1  | 23,75  |
|    |                |               |        |                      | 4   | 247,68 | 268,5      | 199,9  | 26,77  |
| I  | На рис         | 2. 3.3        | предст | гавлены              | 5   | 284,59 | 312,04     | 263,5  | 25,19  |

на

результаты сравнения индикаций,

выполненных в 2003 г. по методике "Эхо-пульс" (PEUT) и в 2014 г. по методикам "Эхо-пульс" (PEUT) и "Фаз. решетка" (PAUT), вместе взятым.



Рис. 3.3. Результаты сравнения индикаций, выполненных в 2003 г. по методике "Эхо-пульс" (PEUT) и в 2014 г. по методикам "Эхо-пульс" (PEUT) и "Фаз. решетка" (PAUT), вместе взятым

# 3.2.2. Парогенератор №.1, " горячий " коллектор, 2003 и 2014 гг.

На рис. 3.4 показаны общие и максимальные индикации, выполненные в 2014 г. по методикам "Эхо-пульс" (PEUT) и "Фаз. решетка" (PAUT), вместе взятым.



Рис. 3.4. Результаты контроля за 2014 г. по методикам "Эхо-пульс" (PEUT) и "Фаз. решетка" (PAUT), вместе взятым

В общем счете общие и максимальные индикации, выполненные в 2014 г. по методикам "Эхо-пульс" (PEUT) и "Фаз. решетка" (PAUT), вместе взятым, представлены в табл. 3.6.

В табл. 3.7 представлены результаты индикаций, выполненных в 2003 г. по методике "Эхо-пульс" (PEUT).

## Таблица 3.6

| Результаты контроля за 2014 г.       | Таблица 3.7                    |
|--------------------------------------|--------------------------------|
| по методикам" Эхо-пульс" (PEUT) и    | Результаты контроля за 2003 г. |
| "Фаз. решетка" (PAUT), вместе взятым | по методике "Эхо-пульс" (PEUT) |

|    |                | Располож      | ение         |                     |    |                | Располож      | ение         |                     |
|----|----------------|---------------|--------------|---------------------|----|----------------|---------------|--------------|---------------------|
| Nº | начало<br>угла | конец<br>угла | длина,<br>мм | глуб.,<br><i>мм</i> | Nº | начало<br>угла | конец<br>угла | длина,<br>мм | глуб.,<br><i>мм</i> |
| 1  | -88,97         | 78,70         | 1609,5       | 22,84               | 1  | 0              | 73.63         | 706.8        | 17.81               |
| 2  | 122,00         | 123,00        | 9,6          | 8,64                | 2  | 113,58         | 185,21        | 687,6        | 22,66               |
| 3  | 119,89         | 188,90        | 662,4        | 22,84               | 3  | 226,85         | 250,52        | 227,2        | 18,75               |
| 4  | 215,80         | 253,20        | 359,0        | 22,88               | 4  | 269,45         | 318,35        | 469,4        | 20,03               |

На рис. 3.5 представлены результаты сравнения индикаций, выполненных в 2003 г. по методике "Эхо-пульс" (PEUT) и в 2014 г. по методикам "Эхо-пульс" (PEUT) и "Фаз. решетка" (PAUT), вместе взятым.



Рис. 3.5. Результаты сравнения индикаций, выполненных в 2003 г. по методике "Эхо-пульс" (PEUT) и в 2014 г. по методикам "Эхо-пульс" (PEUT) и "Фаз. решетка" (PAUT), вместе взятым

3.2.3. Парогенератор №.2, "холодный" коллектор, 2003 и 2014 гг.

На рис. 3.6 показаны общие и максимальные индикации, выполненные в 2014 г. по методикам "Эхо-пульс" (PEUT) и "Фаз. решетка" (PAUT), вместе взятым.



Рис. 3.6. Результаты контроля за 2014 г. по методикам "Эхо-пульс" (PEUT) и "Фаз. решетка" (PAUT), вместе взятым

В общем счете общие и максимальные индикации, выполненные в 2014 г. по методикам "Эхо-пульс" (PEUT) и "Фаз. решетка" (PAUT), вместе взятым, представлены в табл. 3.8.

В табл. 3.9 представлены результаты индикаций, выполненных в 2003 г. по методике "Эхо-пульс" (PEUT).

Результаты контроля за 2014 г. по методикам "Эхо-пульс" (PEUT) и "Фаз. решетка" (PAUT), вместе взятым

|    | Расположение |        |        |        |  |  |  |  |
|----|--------------|--------|--------|--------|--|--|--|--|
| Nº | начало       | конец  | длина, | глуб., |  |  |  |  |
|    | угла         | угла   | ММ     | ММ     |  |  |  |  |
| 1  | 25,44        | 123,82 | 944,4  | 24,59  |  |  |  |  |
| 2  | 133,99       | 175,12 | 394,8  | 16,62  |  |  |  |  |
| 3  | 186,20       | 300,30 | 1095,3 | 20,83  |  |  |  |  |

|     | Расположение |        |        |        |  |  |  |  |  |
|-----|--------------|--------|--------|--------|--|--|--|--|--|
| No  | начало       | конец  | длина, | глуб., |  |  |  |  |  |
| 142 | угла         | угла   | мм     | ММ     |  |  |  |  |  |
| 1   | 25,48        | 79,71  | 520,6  | 19,22  |  |  |  |  |  |
| 2   | 158,58       | 176,42 | 171,2  | 16,54  |  |  |  |  |  |
| 3   | 187,29       | 240,8  | 513,6  | 16,98  |  |  |  |  |  |

На рис. 3.7 представлены результаты сравнения индикаций, выполненных в 2003 г. по методике "Эхо-пульс" (PEUT) и в 2014 г. по методикам "Эхо-пульс" (PEUT) и "Фаз. решетка" (PAUT), вместе взятым.



Рис. 3.7. Результаты сравнения индикаций, выполненных в 2003 г. по методике "Эхо-пульс" (PEUT) и в 2014 г. по методикам "Эхо-пульс" (PEUT) и "Фаз. решетка" (PAUT), вместе взятым

Результаты контроля за 2003 г.

по методике "Эхо-пульс" (PEUT)

# 3.2.4. Парогенератор №.2, " горячий " коллектор, 2003 и 2014 гг.

На рис. 3.8 показаны общие и максимальные индикации, выполненные в 2014 г. по методикам "Эхо-пульс" (PEUT) и "Фаз. решетка" (PAUT), вместе взятым.



Рис. 3.8. Результаты контроля за 2014 г. по методикам "Эхо-пульс" (PEUT) и "Фаз. решетка" (PAUT), вместе взятым

В общем счете общие и максимальные индикации, выполненные в 2014 г. по методикам "Эхо-пульс" (PEUT) и "Фаз. решетка" (PAUT), вместе взятым, представлены в табл. 3.10.

В табл. 3.11 представлены результаты индикаций, выполненных в 2003 г. по методике "Эхо-пульс" (PEUT).

Таблица 3.11

Результаты контроля за 2003 г.

по методике "Эхо-пульс" (PEUT)

| Расположение |                |                |                           |       |  |  |
|--------------|----------------|----------------|---------------------------|-------|--|--|
| Nº           | начало<br>угла | конец<br>угла  | онец длина,<br>игла длина |       |  |  |
|              |                |                | /////                     |       |  |  |
| 1            | -2,00          | 2,20           | 40,3                      | 14,11 |  |  |
| 2            | 12,30          | 17,40          | 49,0                      | 14,45 |  |  |
| 3            | 25,60          | 99 <i>,</i> 93 | 713,5                     | 20,26 |  |  |
| 4            | 163,20         | 231,17         | 652,5                     | 22,73 |  |  |
| 5            | 238,39         | 258,06         | 188,8                     | 24,99 |  |  |
| 6            | 267,69         | 308,63         | 393,0                     | 25,23 |  |  |
| 7            | 322,60         | 343,55         | 201,1                     | 20,26 |  |  |

|    | Расположение   |               |              |                      |  |
|----|----------------|---------------|--------------|----------------------|--|
| Nº | начало<br>угла | конец<br>угла | длина,<br>мм | глуб. <i>,</i><br>мм |  |
| 1  | 186,22         | 231,17        | 431,5        | 22,73                |  |

На рис. 3.9 представлены результаты сравнения индикаций, выполненных в 2003 г. по методике "Эхо-пульс" (PEUT) и в 2014 г. по методикам "Эхо-пульс" (PEUT) и "Фаз. решетка" (PAUT), вместе взятым.



Результаты контроля за 2014 г. по методикам "Эхо-пульс" (PEUT) и "Фаз. решетка" (PAUT), вместе взятым

Рис. 3.9. Результаты сравнения индикаций, выполненных в 2003 г. по методике "Эхо-пульс" (PEUT) и в 2014 г. по методикам "Эхо-пульс" (PEUT) и "Фаз. решетка" (PAUT), вместе взятым

# 3.2.5. Парогенератор №.3, "холодный" коллектор, 2003 и 2014 гг.

На рис. 3.10 показаны общие и максимальные индикации, выполненные в 2014 г. по методикам "Эхо-пульс" (PEUT) и "Фаз. решетка" (PAUT), вместе взятым.



Рис. 3.10. Результаты контроля за 2014 г. по методикам "Эхо-пульс" (PEUT) и "Фаз. решетка" (PAUT), вместе взятым

В общем счете общие и максимальные индикации, выполненные в 2014 г. по методикам "Эхо-пульс" (PEUT) и "Фаз. решетка" (PAUT), вместе взятым, представлены в табл. 3.12.

В табл. 3.13 представлены результаты индикаций, выполненных в 2003 г. по методике "Эхо-пульс" (PEUT).

Таблица 3.12

Результаты контроля за 2014 г. по методикам "Эхо-пульс" (PEUT) и "Фаз. решетка" (PAUT), вместе взятым Таблица 3.13

Результаты контроля за 2003 г.

по методике "Эхо-пульс" (PEUT)

| Расположение |                |               |              |                     |  |
|--------------|----------------|---------------|--------------|---------------------|--|
| Nº           | начало<br>угла | конец<br>угла | длина,<br>мм | глуб.,<br><i>мм</i> |  |
| 1            | 23,82          | 64,43         | 389,8        | 24,11               |  |
| 2            | 71,84          | 128,46        | 543,5        | 24,03               |  |
| 3            | 203,04         | 229,30        | 252,1        | 25,61               |  |
| 4            | 241,30         | 269,02        | 266,1        | 24,11               |  |
| 5            | 282,30         | 317,05        | 333,6        | 25,56               |  |

| Расположение |        |        |        |        |  |
|--------------|--------|--------|--------|--------|--|
| No           | начало | конец  | длина, | глуб., |  |
| IN-          | угла   | угла   | мм     | ММ     |  |
| 1            | 20,82  | 54,27  | 321,1  | 24,46  |  |
| 2            | 200,04 | 220,86 | 199,9  | 24,17  |  |
| 3            | 235,69 | 252,09 | 157,4  | 22,17  |  |
| 4            | 284,91 | 317,41 | 312,0  | 23,46  |  |

На рис. 3.11 представлены результаты сравнения индикаций, выполненных в 2003 г. по методике "Эхо-пульс" (PEUT) и в 2014 г. по методикам "Эхо-пульс" (PEUT) и "Фаз. решетка" (PAUT), вместе взятым.



Рис. 3.11. Результаты сравнения индикаций, выполненных в 2003 г. по методике "Эхо-пульс" (PEUT) и в 2014 г. по методикам "Эхо-пульс" (PEUT) и "Фаз. решетка" (PAUT), вместе взятым

# 3.2.6. Парогенератор №.3, " горячий " коллектор, 2003 и 2014 гг.

На рис. 3.12 показаны общие и максимальные индикации, выполненные в 2014 г. по методикам "Эхо-пульс" (PEUT) и "Фаз. решетка" (PAUT), вместе взятым.



Рис. 3.12. Результаты контроля за 2014 г. по методикам "Эхо-пульс" (PEUT) и "Фаз. решетка" (PAUT), вместе взятым

В общем счете общие и максимальные индикации, выполненные в 2014 г. по методикам "Эхо-пульс" (PEUT) и "Фаз. решетка" (PAUT), вместе взятым, представлены в табл. 3.14.

В табл. 3.15 представлены результаты индикаций, выполненных в 2003 г. по методике "Эхо-пульс" (PEUT).

### Таблица 3.14

| Результаты   | контроля з     | за 2014 г.  | Таблица 3.15                   |
|--------------|----------------|-------------|--------------------------------|
| по методика  | м" Эхо-пульс   | " (PEUT) и  | Результаты контроля за 2003 г. |
| "Фаз. решетн | ка" (PAUT), вм | есте взятым | по методике "Эхо-пульс" (PEUT) |

| Расположение |              |        |        |        |  |  |
|--------------|--------------|--------|--------|--------|--|--|
|              | гасположение |        |        |        |  |  |
|              | начало       | конец  | длина, | глуб., |  |  |
| Nº           | угла угл     | угла   | мм     | мм     |  |  |
| 1            | -101,5       | 14,83  | 1116,7 | 19,18  |  |  |
| 2            | 35,60        | 36,40  | 7,7    | 6,86   |  |  |
| 3            | 49,54        | 113,9  | 617,8  | 22,36  |  |  |
| 4            | 125,60       | 127,90 | 22,1   | 10,43  |  |  |
| 5            | 140,72       | 184,89 | 424,0  | 21,56  |  |  |
| 6            | 206,30       | 207,30 | 9,6    | 9,99   |  |  |

| Расположение |                |        |        |        |
|--------------|----------------|--------|--------|--------|
| No           | начало         | конец  | длина, | глуб., |
| IN2          | угла           | угла   | мм     | мм     |
| 1            | -29,97         | 6,31   | 348,3  | 23,01  |
| 2            | 88 <i>,</i> 97 | 97,81  | 84,9   | 20,24  |
| 3            | 144,82         | 174,79 | 287,7  | 21,74  |
| 4            | 286,17         | 311,41 | 242,3  | 19,69  |

На рис. 3.13 представлены результаты сравнения индикаций, выполненных в 2003 г. по методике "Эхо-пульс" (PEUT) и в 2014 г. по методикам "Эхо-пульс" (PEUT) и "Фаз. решетка" (PAUT), вместе взятым.



Рис. 3.13. Результаты сравнения индикаций, выполненных в 2003 г. по методике "Эхо-пульс" (PEUT) и в 2014 г. по методикам "Эхо-пульс" (PEUT) и "Фаз. решетка" (PAUT), вместе взятым

## 3.2.7. Парогенератор №.4, "холодный" коллектор, 2003 и 2014 гг.

На рис. 3.14 показаны общие и максимальные индикации, выполненные в 2014 г. по методикам "Эхо-пульс" (PEUT) и "Фаз. решетка" (PAUT), вместе взятым.



Рис. 3.14. Результаты контроля за 2014 г. по методикам "Эхо-пульс" (PEUT) и "Фаз. решетка" (PAUT), вместе взятым

В общем счете общие и максимальные индикации, выполненные в 2014 г. по методикам "Эхо-пульс" (PEUT) и "Фаз. решетка" (PAUT), вместе взятым, представлены в табл. 3.16.

В табл. 3.17 представлены результаты индикаций, выполненных в 2003 г. по методике "Эхо-пульс" (PEUT).

Результаты контроля за 2014 г.

по методикам "Эхо-пульс" (PEUT) и

"Фаз. решетка" (PAUT), вместе взятым

|    | Расположение   |               |              |                     |  |
|----|----------------|---------------|--------------|---------------------|--|
| Nº | начало<br>угла | конец<br>угла | длина,<br>мм | глуб.,<br><i>мм</i> |  |
| 1  | 18,3           | 208,87        | 1829,3       | 26,45               |  |
| 2  | 218,33         | 313,62        | 914,7        | 23,28               |  |

| Расположение |        |        |        |        |  |
|--------------|--------|--------|--------|--------|--|
| No           | начало | конец  | длина, | глуб., |  |
| IN 2         | угла   | угла   | мм     | мм     |  |
| 1            | 18,93  | 61,52  | 408,8  | 22,37  |  |
| 2            | 159,96 | 191,83 | 305,9  | 21,87  |  |
| З            | 230,96 | 312,67 | 784,3  | 26,5   |  |

На рис. 3.15 представлены результаты сравнения индикаций, выполненных в 2003 г. по методике "Эхо-пульс" (PEUT) и в 2014 г. по методикам "Эхо-пульс" (PEUT) и "Фаз. решетка" (PAUT), вместе взятым.



Таблица 3.17

Результаты контроля за 2003 г.

по методике "Эхо-пульс" (PEUT)
Рис. 3.15. Результаты сравнения индикаций, выполненных в 2003 г. по методике "Эхо-пульс" (PEUT) и в 2014 г. по методикам "Эхо-пульс" (PEUT) и "Фаз. решетка" (PAUT), вместе взятым

### 3.2.8. Парогенератор №.4, " горячий " коллектор, 2003 и 2014 гг.

На рис. 3.16 показаны общие и максимальные индикации, выполненные в 2014 г. по методикам "Эхо-пульс" (PEUT) и "Фаз. решетка" (PAUT), вместе взятым.



Рис. 3.16. Результаты контроля за 2014 г. по методикам "Эхо-пульс" (PEUT) и "Фаз. решетка" (PAUT), вместе взятым

В общем счете общие и максимальные индикации, выполненные в 2014 г. по методикам "Эхо-пульс" (PEUT) и "Фаз. решетка" (PAUT), вместе взятым, представлены в табл. 3.18.

В табл. 3.19 представлены результаты индикаций, выполненных в 2003 г. по методике "Эхо-пульс" (PEUT).

Таблица 3.18

длина,

ΜМ

1809,5

1057,2

глуб.,

ΜМ

27,17

23,23

Результаты контроля за 2014 г. по методикам "Эхо-пульс" (PEUT) и "Фаз решетка" (PAUT) вместе взятым Таблица 3.19

Результаты контроля за 2003 г.

по методике "Эхо-пульс" (PEUT)

| Расположение |                |               |                |                     |  |  |  |
|--------------|----------------|---------------|----------------|---------------------|--|--|--|
| Nº           | начало<br>угла | конец<br>угла | длина,<br>мм   | глуб.,<br><i>мм</i> |  |  |  |
| 1            | -31,24         | 95,92         | 1220,6         | 13,97               |  |  |  |
| 2            | 187,73         | 242,63        | 527 <i>,</i> 0 | 15,7                |  |  |  |
| 3            | 277,97         | 292,48        | 139,3          | 13,59               |  |  |  |

На рис. 3.17 представлены результаты сравнения индикаций, выполненных в 2003 г. по методике "Эхо-пульс" (PEUT) и в 2014 г. по методикам "Эхо-пульс" (PEUT) и "Фаз. решетка" (PAUT), вместе взятым.

| 74 |
|----|

"Фаз. решетка" (PAUT), вместе взятым Расположение

конец

угла

97,00

256,83

начало

угла

-91,50

146,70

N⁰

1



Рис. 3.17. Результаты сравнения индикаций, выполненных в 2003 г. по методике "Эхо-пульс" (PEUT) и в 2014 г. по методикам "Эхо-пульс" (PEUT) и "Фаз. решетка" (PAUT), вместе взятым

### 3.2.9. Парогенератор №.5, "холодный" коллектор, 2003 и 2014 гг.

На рис. 3.18 показаны общие и максимальные индикации, выполненные в 2014 г. по методикам "Эхо-пульс" (PEUT) и "Фаз. решетка" (PAUT), вместе взятым.



Рис. 3.18. Результаты контроля за 2014 г. по методикам "Эхо-пульс" (PEUT) и "Фаз. решетка" (PAUT), вместе взятым

В общем счете общие и максимальные индикации, выполненные в 2014 г. по методикам "Эхо-пульс" (PEUT) и "Фаз. решетка" (PAUT), вместе взятым, представлены в табл. 3.20.

В табл. 3.21 представлены результаты индикаций, выполненных в 2003 г. по методике "Эхо-пульс" (PEUT).

### Таблица 3.20

| Результаты    | контроля     | за   | 2014     | г. | Таблица 3.21                   |
|---------------|--------------|------|----------|----|--------------------------------|
| по методикам  | 🛚 " Эхо-пуль | с"   | (PEUT)   | И  | Результаты контроля за 2003 г. |
| "Фаз. решетка | а" (PAUT), в | мест | ге взяты | м  | по методике "Эхо-пульс" (PEUT) |

| Расположение |                |               |                |                     |  |  |
|--------------|----------------|---------------|----------------|---------------------|--|--|
| Nº           | начало<br>угла | конец<br>угла | длина,<br>мм   | глуб.,<br><i>мм</i> |  |  |
| 1            | 34,08          | 204,14        | 1632,4         | 22,75               |  |  |
| 2            | 241,68         | 327,50        | 823 <i>,</i> 8 | 23,98               |  |  |

| Расположение |        |        |        |        |  |  |  |
|--------------|--------|--------|--------|--------|--|--|--|
| No           | начало | конец  | длина, | глуб., |  |  |  |
| IN≌          | угла   | угла   | мм     | мм     |  |  |  |
| 1            | 35,65  | 91,5   | 536,1  | 17,2   |  |  |  |
| 2            | 108,54 | 137,25 | 275,6  | 13,01  |  |  |  |
| 3            | 147,34 | 189,94 | 408,9  | 22,25  |  |  |  |
| 4            | 233,53 | 327,82 | 905,1  | 19,34  |  |  |  |

На рис. 3.19 представлены результаты сравнения индикаций, выполненных в 2003 г. по методике "Эхо-пульс" (PEUT) и в 2014 г. по методикам "Эхо-пульс" (PEUT) и "Фаз. решетка" (PAUT), вместе взятым.



Рис. 3.19. Результаты сравнения индикаций, выполненных в 2003 г. по методике "Эхо-пульс" (PEUT) и в 2014 г. по методикам "Эхо-пульс" (PEUT) и "Фаз. решетка" (PAUT), вместе взятым

3.2.10. Парогенератор №.5, " горячий " коллектор, 2003 и 2014 гг.

На рис. 3.20 показаны общие и максимальные индикации, выполненные в 2014 г. по методикам "Эхо-пульс" (PEUT) и "Фаз. решетка" (PAUT), вместе взятым.



Рис. 3.20. Результаты контроля за 2014 г. по методикам "Эхо-пульс" (PEUT) и "Фаз. решетка" (PAUT), вместе взятым

В общем счете общие и максимальные индикации, выполненные в 2014 г. по методикам "Эхо-пульс" (PEUT) и "Фаз. решетка" (PAUT), вместе взятым, представлены в табл. 3.22.

В табл. 3.23 представлены результаты индикаций, выполненных в 2003 г. по методике "Эхо-пульс" (PEUT).

| Результаты    | контроля     | за   | 2014    | г. | Таблица 3.23                   |
|---------------|--------------|------|---------|----|--------------------------------|
| по методикам  | " Эхо-пуль   | с"   | (PEUT)  | и  | Результаты контроля за 2003 г. |
| "Фаз. решетка | " (PAUT), ві | мест | е взяты | м  | по методике "Эхо-пульс" (PEUT) |

|    | Расположение   |               |              |                      |  |    |                | Расположе     | ение         |                             |
|----|----------------|---------------|--------------|----------------------|--|----|----------------|---------------|--------------|-----------------------------|
| Nº | начало<br>угла | конец<br>угла | длина,<br>мм | глуб.,<br><i>м</i> м |  | Nº | начало<br>угла | конец<br>угла | длина,<br>мм | глуб. <i>,</i><br><i>мм</i> |
| 1  | -85,5          | 81,0          | 1598,3       | 27,46                |  | 1  | 41,02          | 82,03         | 393,7        | 24,22                       |
| 2  | 160,5          | 193,0         | 312,0        | 46,63                |  | 2  | 171,01         | 189,94        | 181,7        | 27,13                       |
| 3  | 200,3          | 220,7         | 195,8        | 12,22                |  | 3  | 293,43         | 341,07        | 457,3        | 23,88                       |

На рис. 3.21 представлены результаты сравнения индикаций, выполненных в 2003 г. по методике "Эхо-пульс" (PEUT) и в 2014 г. по методикам "Эхо-пульс" (PEUT) и "Фаз. решетка" (PAUT), вместе взятым.



Рис. 3.21. Результаты сравнения индикаций, выполненных в 2003 г. по

методике "Эхо-пульс" (PEUT) и в 2014 г. по методикам "Эхо-пульс" (PEUT) и "Фаз. решетка" (PAUT), вместе взятым

На глубине выборки 25 мм на границе сплавления основного металла патрубка ПГ и предварительной наплавки кромки в координатах 3020...3080 мм была выявлена трещиноподобная несплошность размером L=60 мм. После проведенного капиллярного контроля участка выявлена протяженная плоскостная индикация (рис. 3.22 и 3.23) [88, 90].



Рис. 3.22. Изображение индикации, полученной по результатам капиллярного



контроля на глубине выборки 25 мм

Рис. 3.23. 2ПГ-5 "горячий" коллектор, АВГУР 5.2. FT-SAFT характерное изображение коррозии в корне шва

### 3.2.11. Парогенератор №.6, "холодный" коллектор, 2003 и 2014 гг.

На рис. 3.24 показаны общие и максимальные индикации, выполненные в 2014 г. по методикам "Эхо-пульс" (PEUT) и "Фаз. решетка" (PAUT), вместе взятым.



Рис. 3.24. Результаты контроля за 2014 г. по методикам "Эхо-пульс" (PEUT) и "Фаз. решетка" (PAUT), вместе взятым

В общем счете общие и максимальные индикации, выполненные в 2014 г. по методикам "Эхо-пульс" (PEUT) и "Фаз. решетка" (PAUT), вместе взятым, представлены в табл. 3.24. В табл. 3.25 представлены результаты индикаций, выполненных в 2003 г. по методике "Эхо-пульс" (PEUT).

Таблица 3.24

Результаты контроля за 2014 г. по методикам "Эхо-пульс" (PEUT) и "Фаз. решетка" (PAUT), вместе взятым Таблица 3.25

Результаты контроля за 2003 г.

по методике "Эхо-пульс" (PEUT)

| Расположение |                |               |              |                      |  |  |
|--------------|----------------|---------------|--------------|----------------------|--|--|
| Nº           | начало<br>угла | конец<br>угла | длина,<br>мм | глуб.,<br><i>м</i> м |  |  |
| 1            | 64,36          | 125,30        | 585,0        | 24,15                |  |  |
| 2            | 133,78         | 178,80        | 432,1        | 22,24                |  |  |
| 3            | 195,30         | 356,90        | 1551,2       | 26,29                |  |  |

| Расположение |        |        |        |        |  |  |  |
|--------------|--------|--------|--------|--------|--|--|--|
| Νο           | начало | конец  | длина, | глуб., |  |  |  |
|              | угла   | угла   | ММ     | мм     |  |  |  |
| 1            | 20,82  | 90,55  | 669,3  | 23,03  |  |  |  |
| 2            | 221,91 | 234,43 | 120,2  | 24,38  |  |  |  |
| 3            | 259,67 | 307,94 | 463,3  | 23,1   |  |  |  |

На рис. 3.25 представлены результаты сравнения индикаций, выполненных в 2003 г. по методике "Эхо-пульс" (PEUT) и в 2014 г. по методикам "Эхо-пульс" (PEUT) и "Фаз. решетка" (PAUT), вместе взятым.



Рис. 3.25. Результаты сравнения индикаций, выполненных в 2003 г. по методике "Эхо-пульс" (PEUT) и в 2014 г. по методикам "Эхо-пульс" (PEUT) и "Фаз. решетка" (PAUT), вместе взятым

### 3.2.12. Парогенератор №.6, " горячий " коллектор, 2003 и 2014 гг.

На рис. 3.26 показаны общие и максимальные индикации, выполненные в 2014 г. по методикам "Эхо-пульс" (PEUT) и "Фаз. решетка" (PAUT), вместе взятым.



Рис. 3.26. Результаты контроля за 2014 г. по методикам "Эхо-пульс" (PEUT) и "Фаз. решетка" (PAUT), вместе взятым

В общем счете общие и максимальные индикации, выполненные в 2014 г. по методикам "Эхо-пульс" (PEUT) и "Фаз. решетка" (PAUT), вместе взятым, представлены в табл. 3.26.

В табл. 3.27 представлены результаты индикаций, выполненных в 2003 г. по методике "Эхо-пульс" (PEUT).

Таблица 3.26

Результаты контроля за 2014 г. по методикам "Эхо-пульс" (PEUT) и "Фаз. решетка" (PAUT), вместе взятым Таблица 3.27

Результаты контроля за 2003 г.

по методике "Эхо-пульс" (PEUT)

| Расположение |        |        |        |        |  |  |  |
|--------------|--------|--------|--------|--------|--|--|--|
| Nº           | начало | конец  | длина, | глуб., |  |  |  |
|              | угла   | угла   | мм     | ММ     |  |  |  |
| 1            | 21,50  | 35,04  | 130,0  | 48,42  |  |  |  |
| 2            | 164,00 | 165,00 | 9,6    | 6,86   |  |  |  |
| 3            | 186,47 | 264,08 | 745,0  | 21,91  |  |  |  |
| 4            | 291,85 | 349,90 | 557,2  | 28,44  |  |  |  |

| Расположение |                |               |              |                             |  |  |  |
|--------------|----------------|---------------|--------------|-----------------------------|--|--|--|
| Nº           | начало<br>угла | конец<br>угла | длина,<br>мм | глуб. <i>,</i><br><i>мм</i> |  |  |  |
| 1            | 21,77          | 28,24         | 62,10        | 21,99                       |  |  |  |
| 2            | 174,79         | 245,78        | 681,40       | 22,38                       |  |  |  |
| 3            | 308,26         | 331,92        | 227,10       | 25,06                       |  |  |  |

На рис. 3.27 представлены результаты сравнения индикаций, выполненных в 2003 г. по методике "Эхо-пульс" (PEUT) и в 2014 г. по методикам "Эхо-пульс" (PEUT) и "Фаз. решетка" (PAUT), вместе взятым.



Рис. 3.27. Результаты сравнения индикаций, выполненных в 2003 г. по методике "Эхо-пульс" (PEUT) и в 2014 г. по методикам "Эхо-пульс" (PEUT) и "Фаз. решетка" (PAUT), вместе взятым

На глубине выборки 24 мм на границе сплавления основного металла патрубка ПГ и предварительной наплавки кромки в координатах 824...930 мм была выявлена трещиноподобная несплошность размером L=106 мм. После проведенного капиллярного контроля участка выявлена протяженная индикация (рис. 3.28 и 3.29) [88, 91].



Рис. 3.28. Изображение индикации, полученной по результатам капиллярного контроля на глубине выборки 24 мм

Рис. 3.29. 2ПГ-6 "горячий" коллектор, АВГУР 5.2. FT-SAFT характерное изображение коррозии в корне шва



3.3. Результаты экспериментальных исследований

В целом во всех проконтролированных СС Ду-1100 выявлены индикации от коррозийных повреждений корня шва (с внутренней стороны на границе сплавления основного металла патрубка и промежуточной наплавки) высотой не более 7 мм.

Недопустимые несплошности зафиксированы в "горячих" патрубках 2ПГ-5 и 2ПГ-6.

Результаты контроля на "горячем" патрубке 2ПГ-5 по методике АВГУР 5.2:

 Выявлена трещиноподобная осевая несплошность (несплошность плоскостного типа, расположенная вдоль оси сварного соединения) протяженностью L = 130 мм и высотой H = 27,5 мм. Координаты выявленной несплошности: Y = 2980÷3110 мм; X=-30 мм; Z=28÷70 мм.

- 2. По всему периметру шва выявлены индикации от коррозийных повреждений корня шва (с внутренней стороны) высотой не более 7 мм.
- 3. Других индикаций, требующих фиксации и/или анализа, не выявлено.

Результаты дополнительного контроля на "горячем" патрубке 2ПГ-5 по проекту методики с применением фазированной решетки:

- Выявлена трещиноподобная осевая несплошность (несплошность плоскостного типа, расположенная вдоль оси сварного соединения) протяженностью L = 122 мм и высотой H = 46,6 мм. Координаты выявленной несплошности: Y = 2985÷3107 мм; X=-30 мм; Z=22÷70 мм.
- 2. По всему периметру шва выявлены индикации от коррозийных повреждений корня шва (с внутренней стороны) высотой не более 7 мм.
- Других индикаций, требующих фиксации и/или анализа, не выявлено.
  Результаты контроля на "горячем" патрубке 2ПГ-6 по методике АВГУР 5.2:
- Выявлена трещиноподобная осевая несплошность (несплошность плоскостного типа, расположенная вдоль оси сварного соединения) протяженностью L = 136 мм и высотой H = 32,9 мм. Координаты выявленной несплошности: Y = 810÷946 мм; X = -30 мм; Z = 32÷70 мм.
- 2. По всему периметру шва выявлены индикации от коррозийных повреждений корня шва (с внутренней стороны) высотой не более 6 мм.
- Других индикаций, требующих фиксации и/или анализа, не выявлено.
  Результаты дополнительного контроля на "горячем" патрубке 2ПГ-6 по проекту методики с применением фазированной решетки:
- Выявлена трещиноподобная осевая несплошность (несплошность плоскостного типа, расположенная вдоль оси сварного соединения) протяженностью L = 84 мм и высотой H = 48,4 мм. Координаты выявленной несплошности: Y = 826÷910 мм; X = -30 мм; Z = 21÷70 мм.

- 2. По всему периметру шва выявлены индикации от коррозийных повреждений корня шва (с внутренней стороны) высотой не более 6 мм.
- 3. Других индикаций, требующих фиксации и/или анализа, не выявлено.

#### 3.4. Выводы по третьей главе

- При проведении АУЗК в СС Ду-1100 "горячих" коллекторов 2ПГ-5 и 2ПГ-6 энергоблока № 2 ААЭС выявлены недопустимые по действующим в РФ нормам оценки качества несплошности.
- В "горячем" коллекторе 2ПГ-4, а также в "холодных" коллекторах 2ПГ-4 и 2ПГ-5 выявлены допустимые несплошности.
- Во всех СС Ду 1100 обнаружены кольцевые коррозионные повреждения высотой, не превышающей 7 мм.
- 4. Все поврежденные ПГ (2ПГ-4, 2ПГ-5, 2ПГ-6) расположены с одной стороны относительно реактора.

# ГЛАВА 4. АНАЛИЗ ЭКСПЕРИМЕНТАЛЬНЫХ РЕЗУЛЬТАТОВ И ОЦЕНКА ОСТАТОЧНОГО РЕСУРСА УЗЛА ПРИВАРКИ КОЛЛЕКТОРОВ ТЕПЛОНОСИТЕЛЯ К КОРПУСАМ ПАРОГЕНЕРАТОРОВ ВВЭР-440

4.1. Анализ возможных последствий развития (до сквозной течи) дефектов в разнородных сварных соединениях узлов крепления коллекторов теплоносителя к патрубкам корпусов парогенераторов ПГВ-4с

Анализ возможных последствий развития выявляемых (и ожидаемых) дефектов в разнородных сварных соединениях узлов крепления коллекторов

теплоносителя к патрубкам корпусов парогенераторов ПГВ–4с не имеет целью оценку возможности или вероятности нарушения целостности этого элемента РУ энергоблока №2 Армянской АЭС, но анализирует последствия, если такое событие произойдет по любой причине.

Анализ выполнен для конкретных повреждений, выявленных в сварных соединениях узлов крепления коллекторов теплоносителя к патрубкам корпусов парогенераторов "горячих" коллекторов парогенераторов 2ПГ-5 и 2ПГ-6. Выявленные повреждения имеют характер трещин на внутренней поверхности СС, по линии сплавления первого слоя аустенитной наплавки на перлитную кромку патрубки парогенератора с основным металлом корпуса парогенератора. Выявленные повреждения имеют глубину до 48,4 мм и протяженность до 312 мм.

Морфология повреждений, их расположение и причины возникновения проанализированы в предыдущих главах диссертационной работы, где показано, что нагрузки для всех режимов эксплуатации, включая переходные процессы, гидравлические испытания (ГИ), сейсмическое воздействие, могут спровоцировать развитие (на плотность и прочность) зафиксированных дефектов, вплоть до гильотинного разрыва по сварному соединению втулки переходной с патрубком парогенератора.

Такое разрушение приводит к значительной течи воды 2-го контура из поврежденного ПГ в помещение бокса ПГ. Анализ дальнейшего развития аварийного процесса показывает наиболее вероятное развитие сценария.

- Уровень в поврежденном ПГ падает до нуля (осушение) за время около З...4 минут (время может несколько различаться в зависимости от времени локализации ПГ по питательной воде).
- Давление в главном паровом коллекторе (ГПК) и поврежденном ПГ до осушения (сброс давления за счет потери объема питательной воды – течь из нижней части ПГ) снижается не так быстро, как при течи из паропровода

или из трубопровода питательной воды (прямой сброс давления из паропровода и сброс давления за счет утечки пара через поврежденный трубопровод питательной воды). По этой причине происходят временная задержка отключения турбоагрегата (ТА) и, соответственно, автоматическое срабатывание аварийной защиты (АЗ-1). В этом случае АЗ-1 срабатывает автоматически после осушения ПГ по факту отключения турбоагрегата (ТА) из-за снижения давления в ГПК (до осушения ПГ давление в нем остается выше уставки срабатывания блокировок на локализацию ПГ).

- 3. Пар, истекающий из места повреждения ПГ, приводит к подъему давления в боксе ПГ, отключению вентиляции, срабатыванию спринклерной системы и к срабатыванию АЗ-2. АЗ-2 быстро останавливает РУ, а из-за снижения давления в ГПК отключается ТА, что также приводит к срабатыванию АЗ-1.
- 4. Под действием блокировок выполняется рассечение ГПК на две части. Дальнейшее снижение давления в поврежденном ПГ. Одновременно закрывается подача питательной воды на отсеченные ПГ и отключаются соответствующие главные циркуляционные насосы (ГЦН).
- 5. После осушения поврежденного ПГ параметры 1-го и 2-го контуров стабилизируются. Во время переходного процесса работают блокировки на поддержание параметров 1-го контура. После снижения давления в боксе ПГ активную фазу аварии можно считать законченной.
- 6. Срабатывание взрывных клапанов бокса ПГ и ГЦН потенциально возможно даже при проектной работе спринклерной системы, однако, учитывая место течи из ПГ (2-й контур), выброса продуктов деления в окружающую среду не происходит, и авария не имеет радиационных последствий.
- 7. Таким образом, возможный гильотинный разрыв переходной втулки узла крепления коллекторов теплоносителя к патрубкам корпусов

парогенераторов вследствие развития анализируемого дефекта сварного соединения №23 мало чем отличается от любой другой течи из системы 2го контура в помещении бокса ПГ и ГЦН.

Необходимо отметить, что ограничивающим фактором размера течи при гильотинном разрыве переходного кольца по дефектному композитному шву является кольцевой зазор между коллектором ПГ и обечайкой ПГ выше композитного шва (рис. 4.1). Именно в этом месте зазор, образующий проходное сечение для выхода среды (воды, пара) 2-го контура через поврежденный шов, минимальный. Поэтому определяющим фактором размера течи при гильотинном разрыве будет не собственно величина разрыва по СС, а указанный проектный зазор. Таким образом, при гильотинном разрыве по СС истечение воды будет ограничиваться только указанным зазором, т.е. максимальный эквивалентный диаметр течи соответствует проходному сечению зазора.



Рис. 4.1. Конструкция парогенератора АЭС с ВВЭР-440

# 4.2. Анализ действующей аварийной документации Армянской АЭС в части управления предполагаемой аварией

Для определения возможности диагностики аварии и действий персонала по ее ликвидации выполнен анализ действующей аварийной документации (в том числе как событийных, так и симптомно-ориентированных инструкций по ликвидации аварий на реакторной установке).

Как показано в разделе 4.1, предполагаемый гильотинный разрыв переходного кольца узла крепления коллекторов теплоносителя к патрубкам корпусов парогенераторов по признакам и последствиям соответствует исходному событию – "Разрыв трубопровода ПГ или ГПК" (разрыв паропровода ПГ или трубопровода питательной воды). В соответствующих разделах аварийных инструкций достаточно полно описаны процедуры диагностики аварии, проектная работа и действия персонала по ликвидации аварии (в том числе и при наложении дополнительных отказов).

При гильотинном разрыве проектные технические средства безопасности автоматически локализуют поврежденный ПГ без вмешательства персонала с последующим восстановлением всех параметров 1-го и 2-го контуров и переводом энергоблока в стабильное безопасное состояние.

Для ситуации с частичным повреждением сварного соединения №23 картина несколько иная. При таком событии проектные технические средства безопасности не локализуют поврежденный ПГ. Это происходит по причине поступления в поврежденный ПГ питательной воды от питательного электронасоса (ПЭН) или аварийного питательного электронасоса (АПЭН) с расходом не менее расхода в течь, т.е. с полной ее компенсацией. Такое состояние приводит к стабилизации уровня в поврежденном ПГ. При этом давление в поврежденном ПГ также стабилизируется на уровне выше уставки срабатывания блокировок на локализацию ПГ по пару и питательной воде.

Таким образом, ПГ не локализуется, параметры стабилизируются, однако питательная вода от ПЭН (или АПЭН) с высоким расходом поступает из деаэратора МЗ через разрыв в бокс ПГ и ГЦН, что в итоге ведет к потере запаса питательной воды, разбавлению раствора бора в баке запаса (Б-8) и повышению вероятности нарушения теплоотвода от ПГ. Такая ситуация требует вмешательства персонала и скорейшей ручной локализации поврежденного ПГ по пару и питательной воде. Принимая во внимание, что установленные на ААЭС системы контроля течей имеют чувствительность 3,8 л/мин, инициация вмешательства персонала обеспечивается сигналами от вспомогательных диагностических средств — датчиков влажности и датчиков шумовой диагностики системы обнаружения течей в боксе ПГ и ГЦН.

# 4.3. Анализ влияния деградирующих факторов на остаточный ресурс узлов крепления коллекторов теплоносителя к патрубкам корпусов парогенераторов ПГВ-4с

Парогенераторы ПГВ-4с в составе реакторной установки В-270, по оценке ААЭС, отнесены к группе "незаменяемых" элементов частично восстанавливаемых и в значительной степени определяющих общее техническое состояние энергоблока.

Согласно положениям действующего "Технологического регламента эксплуатации энергоблока №2 ААЭС", отключение любой петли ГЦТ с ее расхолаживанием требует останова энергоблока и исключает возобновление работы до устранения причин, повлекших отключение циркуляционной петли.

С учетом этих факторов обоснованный прогноз гарантированной целостности корпуса парогенератора становится обязательным условием продолжения эксплуатации этого оборудования и энергоблока в целом.

Как показано в предыдущих главах настоящей работы, наиболее важными

условиями для целостности корпуса парогенератора являются мониторинг технического состояния разнородных сварных соединений узлов крепления коллекторов теплоносителя к патрубкам корпуса парогенераторов и обоснованная оценка остаточного ресурса этих узлов.

Особую значимость прогнозная оценка остаточного ресурса этих узлов приобретает при обосновании возможности продолжения эксплуатации энергоблока АЭС за пределами проектного срока (дополнительный срок эксплуатации).

Оценка остаточного ресурса элементов АЭС выполняется по результатам обследования текущего технического состояния, анализа истории эксплуатации, деградирующих факторов (механизмов старения, в т.ч. и доминирующих), а также с учетом возможных последствий аварийной ситуации, возникновение которой может быть спровоцировано исчерпанием ресурса элемента (достижением предельного состояния).

Для анализа влияния деградирующих факторов на остаточный ресурс элемента необходимо определить все стрессоры, оценить их значимость, скорость деградаций, вызываемых стрессорами, установить критерии оценки остаточного ресурса.

Естественный процесс старения применительно к металлам, используемым в промышленности, усугубляется нагрузками, обусловленными рабочими параметрами эксплуатации (технологическими операциями).

В частности, для разнородных сварных соединений узлов крепления коллекторов теплоносителя к патрубкам корпусов парогенераторов причинами возможных деградаций конструкции являются следующие механизмы старения металла:

 температурное старение (низкотемпературная ползучесть) – периодические значимые изменения температуры локальных участков оборудования. Следствие – снижение прочностных свойств металла;

- многоцикловая усталость знакопеременные напряжения в диапазоне упругих деформаций. Следствие – зарождение и развитие "усталостной трещины" после 10<sup>5</sup> циклов нагружений;
- малоцикловая усталость знакопеременные напряжения в диапазоне пластических деформаций. Следствие – зарождение и развитие "усталостной трещины" после 10<sup>4</sup> циклов нагружений;
- коррозионное растрескивание под напряжением нормальные растягивающие напряжения в агрессивной среде. Следствие – зарождение и развитие микротрещин;
- межкристаллитное коррозионное растрескивание нормальные растягивающие напряжения (остаточные напряжения) в агрессивной среде и высокая температура. Следствие – зарождение и развитие микротрещин;
- общая коррозия высокая температура агрессивной среды, несоответствие химической стойкости металла агрессивности рабочей среды. Следствие – потеря механических свойств участков, пораженных коррозией, локальные утонения.

Кроме этих общих факторов деградаций, существенный вклад в изменение технического состояния и остаточного ресурса элементов АЭС вносят стандартные и специфические условия эксплуатации.

В предыдущих главах рассмотрены основные причины возникновения и развития дефектов в сварных соединениях №23. Резюмируя их, можно обозначить доминирующие стрессоры, непосредственно связанные с эксплуатационными процессами.

**Температурный градиент.** Регламентированная разница температур металла парогенератора (T<sub>ном</sub> = 255 <sup>0</sup>C) и питательной воды (T<sub>ном</sub> = 223 <sup>0</sup>C) провоцирует напряжения в сварном соединении вследствие разности коэффициентов температурных перемещений (линейного расширения) сталей перлитного и аустенитного класса, содержащихся в сварном соединении.

Напряжения от температурного градиента на стыке сталей разного класса в сварном соединении приводят к малоцикловой усталостности и, соответственно, к зарождению и последующему развитию усталостных трещин.

Таким образом, диапазон температурных изменений металла корпуса парогенератора и питательной воды, скорость этих изменений при переходных режимах эксплуатации (разогрев-расхолаживание), равно, как и колебания температуры питательной воды в режимах нормальной эксплуатации (изменение теплообменных характеристик оборудования питательноконденсатного цикла), оказывают существенное негативное воздействие на состояние металла сварного соединения и, соответственно, на остаточный ресурс этого элемента.

**Рабочая среда.** Внутренняя поверхность сварного соединения (корень шва) находится в постоянном контакте с питательной водой, являющейся в конечном итоге агрессивной средой.

Содержащиеся в питательной воде, даже в регламентированных концентрациях, хлорид-ионы, натрий, медь, вымываемые из конденсаторов, способствуют межкристаллитному растрескиванию металла корня шва, проникновению питательной воды по образовавшимся трещинным каналам к наименее химически стойкому металлу на границе первого слоя наплавки и нарастающему коррозийному повреждению этого металла.

Соединение стали ферритного класса (патрубок корпуса парогенератора) и стали аустенитного класса (1-й слой наплавки) образует гальванический элемент, который в электропроводной среде питательной воды обуславливает "гальваническую коррозию" металлов сварного соединения. Более высокий коэффициент коррозии феррита приводит к "потере" 22К материала в корневой области и раскрытию корродированного канала на границе сплавления стали 22К с металлом (сталь 10Х16Н25АМ6) 1-го слоя наплавки. Любые ухудшения

качества питательной воды и, тем более, нарушения регламентированных показателей приводят к ускорению деградационных процессов.

**Внутреннее нагружение.** Многочисленные исследования, анализы и поиски основных причин появления и развития дефектов в металле сварного соединения №23 парогенераторов ПГВ-440 в конечном итоге сходятся на том, что деградация этого элемента инициируется механическими напряжениями, концентрируемыми в галтельном переходе патрубка корпуса парогенератора.

Первоисточником этих напряжений, в числе прочих, является и внутреннее давление в корпусе парогенератора, причем большее воздействие оказывают амплитуда и скорость изменения внутреннего давления.

Влияние внутреннего нагружения корпуса парогенератора на остаточный ресурс сварных соединений №23 наглядно оценено в настоящей работе.

4.4. Разработка и обоснование критических и предельно допустимых в эксплуатации размеров несплошностей сварных швов №23 патрубков Ду-1100 ПГВ-4с

4.4.1. Определение оценки критических и предельно допустимых в эксплуатации размеров несплошностей

*Исходные данные.* Основные рабочие параметры, необходимые для расчета прочности парогенераторов ПГВ-4с, приведены в табл. 4.1.

Зона соединения коллекторов первого контура с корпусом парогенератора, в котором располагаются сварные соединения № 23, в процессе эксплуатации находится под воздействием давления со стороны первого и второго контуров, температурных нагрузок и нагрузок со стороны присоединяемых трубопроводов.

Номинальные физико-механические свойства материалов, принятые на основании [92], приведены в табл. 4.2.

| Наименование параметра                                    | Значение |         |
|-----------------------------------------------------------|----------|---------|
|                                                           | Первый   | Второй  |
|                                                           | контур   | контур  |
| Давление генерируемого пара, МПа                          | -        | 4,61    |
| Давление со стороны теплоносителя первого контура, МПа    | 12,30    | -       |
| Расчетное давление, МПа                                   | 13,73    | 5,30    |
| Давление гидравлических испытаний на прочность, МПа       | 17,16    | 7,3     |
| Температура генерируемого пара, °С                        | -        | 260     |
| Температура теплоносителя первого контура, <sup>о</sup> С |          |         |
| - на входе;                                               | 300      | -       |
| - на выходе                                               | 270      | -       |
| Температура питательной воды, <sup>°</sup> С              | -        | 158-225 |
| Расчетная температура, °С                                 | 325      | 270     |
| Минимальная допустимая температура стенки корпуса при     | 5        | 70      |
| проведении гидравлических испытаний, °С                   |          |         |

## Основные рабочие параметры

## Таблица 4.2

## Физико-механические свойства материалов

| Наименование      | Марка      | T,°C | R <sub>p02</sub> , | R <sub>m</sub> , | E·10 <sup>-5</sup> , | $\alpha \cdot 10^6$ , | Z, % |
|-------------------|------------|------|--------------------|------------------|----------------------|-----------------------|------|
| элемента          | материала, |      | МПа                | МПа              | МПа                  | 1/°C                  |      |
|                   | сортамент  |      |                    |                  |                      |                       |      |
| Корпус            | Сталь 22К  | 20   | 215                | 430              | 2,00                 | 11,5                  | 40   |
| парогенератора    | (лист)     | 270  | 186                | 353              | 1,80                 | 13,1                  | 38   |
| Патрубок Ду-1100  | Сталь 22К  | 20   | 215                | 430              | 2,00                 | 11,5                  | 38   |
|                   | (поковка)  | 270  | 186                | 353              | 1,80                 | 13,1                  | 34   |
| Коллектор первого | Сталь      | 20   | 196                | 491              | 2,05                 | 16,4                  | 40   |
| контура,          | 08X18H10T  | 325  | 137                | 314              | 1,75                 | 17,6                  | 40   |
| переходное кольцо | (поковка)  |      |                    |                  |                      |                       |      |

Были рассмотрены также теплофизические свойства материалов, принятые на основании [93].

Геометрия. Хотя геометрия в этой области является более сложной, в упрощенном анализе предполагается геометрия трубы со следующими размерами: *D*<sub>out</sub>=1 225 мм,

D<sub>in</sub>= 1 078 мм.

Средний радиус трубы *R* и толщина трубной стенки *t*:

Внутренний коллектор первого контура представляет собой трубу с внутренним диаметром D<sub>in.col</sub>= 800 мм, толщина стенки t<sub>col</sub>= 90 мм. Зазор, формирующий кольцевое пространство между самим коллектором и сварным швом коллектора, имеет радиальный размер h= 49 мм (рис. 4.2).

Поскольку дефекты в этом месте возникают, как правило, из-за межкристаллитного коррозионного растрескивания или транскристаллитного коррозионного растрескивания под напряжением и их проявление, как правило, обширно, длина трещины рассматривается как трещина с полной окружностью с половиной угла  $\theta = \pi$ .



Рис. 4.2. Размеры и материалы коллектора первого контура ВВЭР-440

Материал. Особенностью разнородных сварных соединений узлов крепления коллекторов теплоносителя к патрубкам корпусов парогенераторов является их сложная геометрия и, главное, их многокомпонентность (в узле присутствуют шесть различных металлов и пять границ их соприкосновения)(рис 4.3).



Рис. 4.3. Эскиз шва №23 приварки коллектора теплоносителя к корпусу

парогенератора ПГВ-4

Патрубок корпуса парогенератора – углеродистая сталь 22К Первый слой наплавки – аустенитная сталь 10X16H25AM6 (ЭА-395/9) Второй слой наплавки – аустенитная сталь 07X25H13 (ЭА-400/10У) Заполнение шва – аустенитная сталь 07X25H13 (ЭА-400/10У) Корень шва – аустенитная сталь 04X19H11M3 Втулка переходная (коллектор ПГ) – аустенитная сталь 08X18H10T

*Нагрузка.* Нагрузки были выбраны для трех режимов эксплуатации: НУЭ (нормальные условия эксплуатации), НУЭ+МРЗ (максимальное расчетное землетрясение) и гидравлические испытания (на плотность и на прочность)[94].

Несмотря на то, что парогенераторы Армянской АЭС изначально имеют дополнительное сейсмическое усиление конструкции, для анализа было выбрано исходное состояние без дополнительного усиления, чтобы повысить консерватизм и сделать анализ более простым для этого этапа, поскольку для сейсмического усиления было постулировано некоторое количество сбоев демпферного оборудования. Расчет будет производиться для сварных швов как на "горячей", так и на "холодной" нитке.

Нагрузки представлены в табл. 4.3 и 4.4.

Таблица 4.3

| Нагрузка            | Осевая<br>нагрузка,<br>Р [Н] | Нагрузка<br>крутящего<br>момента, | Изгибное<br>напряжение<br>оси Z, | Изгибное<br>напряжение<br>оси Х, |
|---------------------|------------------------------|-----------------------------------|----------------------------------|----------------------------------|
|                     |                              |                                   | М <sub>2</sub> [Нм]              | М <sub>3</sub> [Нм]              |
| Собственный вес     | -18660 68                    | -3382,16                          | -22140,31                        | 2926,66                          |
| Внутреннее давление | 670,4                        | -1791,82                          | -1068,32                         | -747,77                          |
| Сейсмичность        | 41700,54                     | 116073,73                         | 33894,84                         | 45419,6                          |
| Тепловое расширение | Не                           | -129476,57                        | -57036,88                        | 11420,81                         |

Нагрузки на сварной шов "холодной" нитки в условиях НУЭ+МРЗ

Таблица 4.4

Нагрузки на сварной шов "горячей" нитки в условиях НУЭ+МРЗ

| Нагрузка            | Осевая<br>нагрузка,<br>Р [H] | Нагрузка<br>крутящего | Изгибное<br>напряжение<br>оси Z, | Изгибное<br>напряжение<br>оси X, |
|---------------------|------------------------------|-----------------------|----------------------------------|----------------------------------|
|                     |                              | момента,              |                                  |                                  |
| Собственный вес     | -49341,52                    | -15488,64             | -40638,36                        | 12862,94                         |
| Внутреннее давление | 112,82                       | 208,42                | -690,32                          | -1138,23                         |
| Сейсмичность        | 124301,84                    | 171551,14             | 110842,45                        | 95326,98                         |
| Тепловое расширение | Не используется              | 25865,31              | 130430,67                        | 1868,04                          |

Давление первого контура составляет 12,4 МПа, давление второго контура - 4,80 МПа, внутренний диаметр коллектора первого контура - 0,80 м. Осевая нагрузка в первом контуре, вызванная давлением в первом контуре, может быть определена по формуле (7) (раздел 2.2):

$$F_{lid,prim} = \pi \cdot \left(\frac{0,80^2}{2}\right) \cdot (12,4 \cdot 10^6 - 4,80 \cdot 10^6) = 3,82 \cdot 10^6 \text{H}.$$

Осевая нагрузка в первом контуре, вызванная давлением во втором контуре, решается по формуле (8) (раздел 2.2):

$$F_{lid,sec} = \pi \cdot \left( \left(\frac{1,078}{2}\right)^2 - \left(\frac{1,078 - 2 \cdot 0,049}{2}\right)^2 \right) (4,80 \cdot 10^6 - 0,1 \cdot 10^6) = 7,44 \cdot 10^5 \text{H}.$$

Общая аксиальная нагрузка первого контура для сварного шва "горячей" нитки с более консервативными результатами решается по формуле (9) (раздел 2.2):

 $F_{ax}=3,82\cdot10^{6}+7,44\cdot10^{5}+|-49341,52+112,82|+124301,84=4,74\cdot10^{6}$  H,

для сварного шва "холодной" нитки:

$$F_{ax}$$
=4,62·10<sup>6</sup> H.

Момент изгиба по первому контуру с учетом момента кручения рассчитывается по формуле (10) (раздел 2.2):

• для сварного шва "горячей" нитки с более консервативным результатом:

• для сварного шва "холодной" нитки:

Момент изгиба по второму контуру рассчитывается по формуле (11) (раздел 2.2):

• для сварного шва "горячей" нитки с более консервативным результатом:

• для сварного шва "холодной" нитки:

Значения, необходимые для оценки мембранных напряжений в первом контуре, могут быть определены по формуле (7) (раздел 2.2):

$$\sigma_{m,\text{rop}} = \frac{4,62 \cdot 10^6}{2 \cdot 3,14 \cdot 575,8 \cdot 73,5} = 17,4 \text{ MIIa}.$$

Напряжение при изгибе по первому контуру рассчитывается по формуле (13)(раздел 2.2):

 $\sigma_{b,rop} = \frac{263670000}{2.14 \text{ F7F} 02 \text{ 72 F}} = 3,44 \text{ MIa}.$ 

Напряжение при изгибе по второму контуру контуру рассчитывается по формуле (14)(раздел 2.2):

$$\sigma_{e,rop} = \frac{132984000}{2.14 \text{ FTE } 02 \text{ T2 F}} = 1,74 \text{ M}\Pi a.$$

Значения напряжений сведены в табл. 4.5-4.8 для режимов эксплуатации: НУЭ, НУЭ+МРЗ и ГИ (на плотность и на прочность).

Таблица 4.5

Напряжения в СС коллекторов 1-го контура для НУЭ+МРЗ

| Напряжение               | СС в "горячей" | СС в "холодной"<br>нитке |
|--------------------------|----------------|--------------------------|
| Мембранные напряжения в  | 17,4 МПа       | 15,2 МПа                 |
| первом контуре           |                |                          |
| Напряжение при изгибе в  | 3,44 МПа       | 1,61 МПа                 |
| первом контуре           |                |                          |
| Напряжение при изгибе во | 1,74 МПа       | 1,60 МПа                 |
| втором контуре           |                |                          |

Таблица 4.6

Напряжения в СС коллекторов 1-го контура в "горячей" нитке для НУЭ

| Мембранные напряжения в первом контуре  | 15,1 МПа |
|-----------------------------------------|----------|
| Напряжение при изгибе в первом контуре  | 0,52 МПа |
| Напряжение при изгибе во втором контуре | 1,50 МПа |

Таблица 4.7

"Горячая" нитка. Напряжения в сварном шве при испытаниях на плотность

| Мембранные напряжения в первом контуре  | 22,5 МПа |
|-----------------------------------------|----------|
| Напряжение при изгибе в первом контуре  | 0,33 МПа |
| Напряжение при изгибе во втором контуре | 0,43 МПа |

Таблица 4.8

"Горячая" нитка. Напряжения в сварном шве при испытаниях на прочность

| Мембранные напряжения в первом контуре  | 31,4 МПа |
|-----------------------------------------|----------|
| Напряжение при изгибе в первом контуре  | 0,33 МПа |
| Напряжение при изгибе во втором контуре | 0,43 МПа |

Расчет допустимого напряжения при изгибе был выполнен для материала 22К сварных соединений "горячей" и "холодной" нитки, для различных относительных глубин трещин *а/t*, расположенных параллельно оси сварного соединения (по образующей).

Сварное соединение "горячей" нитки обладает более низким резервом, поэтому расчеты для материала 04Х19Н11М3 (с наименьшим пределом текучести из всех аустенитных сталей) и углеродистой стали 22К для большей консервативности были выполнены именно для "горячей" нитки. Было показано, что наиболее консервативный результат был получен для материала 22К.

Напряжения при изгибе в случае пластических деформаций  $\sigma_b$ , допустимые напряжения  $S_c$  при изгибе для различных глубин трещин a/t, условий нагрузки и материалов сведены в обобщенные результаты для различных условий нагрузки, которые для относительных глубин постулированных трещин a/t = 0,74 представлены в табл. 4.9. Результаты решаются по формуле (2) (раздел 2.2).

### Таблица 4.9

Допустимые значения напряжений при изгибе и их запас для различных

| Нитка               | Материал                                    | Условие                   | <i>о<sub>b</sub>с</i><br>[МПа] | <i>S<sub>c</sub></i><br>[МПа] | <i>о<sub>ь</sub></i><br>[МПа] | $S_c/\sigma_b$ |
|---------------------|---------------------------------------------|---------------------------|--------------------------------|-------------------------------|-------------------------------|----------------|
| "Горячая"<br>нитка  | 22К                                         | НУЭ+МРЗ                   | 141                            | 28,7                          | 3,4                           | 8,4            |
| "Холодная"<br>нитка | 22К                                         | НУЭ+МРЗ                   | 142                            | 29,1                          | 1,6                           | 18,2           |
| "Горячая"<br>нитка  | СС и наплавка<br>(ЭА-395/9 +<br>ЭА-400/10Т) | НУЭ+МРЗ                   | 138                            | 41,7                          | 3,4                           | 12,3           |
| "Горячая<br>"нитка  | 22К                                         | НУЭ                       | 142                            | 10,2                          | 0,5                           | 20,4           |
| "Горячая"<br>нитка  | 22К                                         | Испытание<br>на плотность | 128                            | 1,65                          | 0,3                           | 5,5            |
| "Горячая"<br>нитка  | 22К                                         | Испытание<br>на прочность | 90,9                           | -9.78                         | 0,3                           | <0             |

эксплуатационных режимов для кольцевой трещины *a/t* = 0.74

Напряжение при изгибе в случае пластических деформаций  $\sigma_b^c$ , допустимые напряжения при изгибе S<sub>c</sub> для различных глубин трещин a/t представлены в таблицах П.1.1-П.1.6 Приложения 1. Полученные результаты были использованы для определения критических дефектов и допустимых размеров кольцевых и единичных коротких размеров дефектов.

Критический размер дефекта — это такой размер, при достижении которого происходит мгновенное разрушение конструкции.

Допустимый в эксплуатации размер несплошности не должен превышать такого значения, которое равно критическому размеру, уменьшенному на соответствующие коэффициенты запаса прочности.

Выполнен расчет критических и предельно допустимых в эксплуатации размеров несплошностей в режимах НУЭ, НУЭ+МРЗ и ГИ на прочность для всех

12 патрубков Ду-1100 в районе СС23 ААЭС. Результаты расчета по методу пластического шарнира (раздел 2.3) представлены в Приложении 2 (рис. П.2.1-П.2.6).

Предельно допустимые размеры для кольцевых дефектов. Из полученных результатов расчета (Приложение 2) взят самый неблагоприятный вариант при учете коэффициентов запаса (раздел 2.2) и сформированы предельно допустимые размеры для кольцевых дефектов. Размеры в табл. 4.10 даны без учета времени предстоящей эксплуатации (времени до следующего контроля или ремонта).

Таблица 4.10

| Νº/Νº<br>ΠΓ | Коллектор | Предельно<br>допустимая глубина<br>кольцевого дефекта,<br>мм |  |  |
|-------------|-----------|--------------------------------------------------------------|--|--|
| 1           | "хол."    | 21,7                                                         |  |  |
| 1           | "гор."    | 21,4                                                         |  |  |
| 2           | "хол."    | 21,1                                                         |  |  |
|             | "гор."    | 21,1                                                         |  |  |
| 3           | "хол."    | 21,4                                                         |  |  |
|             | "гор."    | 21,4                                                         |  |  |
| 4           | "хол."    | 20,3                                                         |  |  |
|             | "гор."    | 20,6                                                         |  |  |
| 5           | "хол."    | 21,4                                                         |  |  |
|             | "гор."    | 21,4                                                         |  |  |
| 6           | "хол."    | 20,7                                                         |  |  |
|             | "гор."    | 20,5                                                         |  |  |

Предельно допустимые размеры для кольцевых дефектов

**Предельно допустимые размеры для коротких дефектов.** В результате сравнительного анализа данных измерения высоты трещины по АУЗК (АВГУР 5.2) (по главе 3) была получена зависимость частоты погрешности при контроле от размера погрешности (рис. 4.4).



Рис. 4.4. Гистограмма частоты погрешности при контроле дефектов системой АВГУР 5.2 в зависимости от размера погрешности, а также кривая экспоненциального распределения, описывающая гистограмму

На основе анализа указанных результатов был определен запас 19,5 мм на размер дефекта в направлении толщины стенки, обеспечивающий возможность появления устойчивой протечки с вероятностью не более 10<sup>-5</sup>. Указанный запас на допустимый размер трещины в направлении толщины стенки (глубина дефекта) и коэффициент запаса 2 на протяженность максимального возможного сквозного устойчивого дефекта использованы при определении допустимых в эксплуатации размеров единичных дефектов.

Размеры в табл. 4.11 даны без учета времени предстоящей эксплуатации (времени до следующего контроля или ремонта).

Таблица 4.11

Предельно допустимые размеры для коротких дефектов
|             |           | Предельно допустимые размеры |              |
|-------------|-----------|------------------------------|--------------|
| חפיוש<br>חר | Коллектор | максимальная                 | максимальная |
|             |           | протяженность, мм            | глубина, мм  |
| 1           | "хол."    | 550,0                        | 50,5         |
| L           | "гор."    | 550,0                        | 49,5         |
| 2           | "хол."    | 539,0                        | 48,5         |
|             | "гор."    | 539,0                        | 48,5         |
| 3           | "хол."    | 555,5                        | 49,5         |
|             | "гор."    | 550,0                        | 49,5         |
| 4           | "хол."    | 531,9                        | 46,0         |
|             | "гор."    | 550,0                        | 46,8         |
| 5           | "хол."    | 563,8                        | 49,5         |
|             | "гор."    | 563,8                        | 49,5         |
| 6           | "хол."    | 536,3                        | 47,3         |
|             | "гор."    | 545,6                        | 46,6         |

**Расчет критической длины трещины.** Критическая длина трещины рассчитывается решением следующего уравнения (раздел 2.2):

$$S_{Fm} \cdot Z(\sigma_{m} + \sigma_{b}) - \sigma_{m} = \frac{2\sigma_{f}}{\pi} (2\sin\beta - \sin\theta),$$
(17)  
где  $\beta = \frac{\pi}{2} \left( 1 - \frac{\vartheta}{\pi} - \frac{\sigma_{m}}{\pi} \right).$ 

Решением уравнения для  $\theta$  = 1,02 рад получаем критическую длину шва S<sub>Fm</sub>=1204 мм.

Размер критической трещины является объективным инструментом оценки остаточного ресурса анализируемых сварных соединений – отношение разницы размеров (мм) сквозной трещины, обнаруживаемой станционными системами контроля течи, и критической трещины к рассчитанной скорости (мм/год) развития дефекта в конечном итоге определяет временной запас безопасной эксплуатации данного элемента (с учетом коэффициента безопасности), т.е. цифровое выражение (в годах) его остаточного ресурса.

Результаты расчетов, выполненных в рамках обоснования приемлемости для ААЭС концепции "Течь перед разрушением" [95], показали, что

станционными системами контроля течи надежно выявляется истечение воды в бокс ПГ и ГЦН интенсивностью 38,0 л/мин (при коэффициенте безопасности 10). Для системы второго контура парогенераторов ААЭС рассчитанная длина сквозной трещины, соответствующая такой течи, равна 27 мм.

Для скорости утечки 380 л/мин (коэффициент безопасности 100) длина сквозной трещины составит 56 мм, а для течи интенсивностью 3800 л/мин (коэффициент безопасности 1000) соответствует длина трещины 152мм.

Максимальная длина выявленных дефектов в сварных соединениях №23 парогенераторов ААЭС равна 312 мм при глубине 46,6 мм. Развитие этой трещины до выходе на поверхность (до сквозной) приведет к истечению воды интенсивностью 22 671 л/мин.

На основании сопоставления размеров поверхностных (сквозных) трещин, надежно выявляемых станционными системами ААЭС, с размерами критической трещины (1204 мм) вероятность гильотинного разрыва оценивается, как существенно низкая.

#### 4.4.2. Результаты применения расчетов методом конечных элементов

Основной подход расчета с помощью метода конечных элементов заключается в следующем. В соответствии с процедурой ASME для схематизации трещин, как и при аналитическом расчете, была постулирована трещина всей окружности с половинным углом  $\theta = \pi$ .

Глубина трещины, соответствующая самой глубокой трещине горячего коллектора ПГ-6, принята равной 48,4 мм (ультразвуковое испытание трещины 48,4 мм + 5 мм (погрешность УЗК метода)).

Для толщины стенки патрубка корпуса ПГ ААЭС (73,5 мм) относительная глубина повреждения сварного соединения составит 53,4/73,5 = 72,6%.

Поскольку напряжения при изгибе, вызванные трубопроводом, являются незначительными, они были опущены на этом этапе работы, и была создана симметричная модель. Коллектор первого контура считался свободным, не оказывая влияния на второй контур за счет внутреннего давления. Расчетными нагрузками приняты внутреннее давление и термические напряжения из-за различного расширения свариваемых материалов. Эти напряжения выше, чем внутренние напряжения давления. Упругопластический интеграл *J* (раздел 2.4) оценивался и сравнивался с самым низким значением для материала сварного соединения (сталь 10CH16N25AM6) *J*<sub>0.2</sub>= 81,2 H/мм.

Было рассчитано, что допустимый предел нагрузки достигается при увеличении давления в 6 раз, при котором значение *J* составляет 79 Н/мм.

Также, с точки зрения пластического разрушения, можно утверждать, что формируется местное пластическое разрушение в районе трещины. Если коэффициент прочности для мембранных напряжений для НУЭ считается равным 2,7 (раздел 2.2, табл. 2.2), разность можно оценить, как 6/2,7 = 2,2.

Для гидроиспытаний на прочность давлением во втором контуре 7,65 МПа возможное увеличение давления составляет примерно 3,7 раза, что соответствует соотношению 3,7/2,7=1,3.

Из вышесказанного можно утверждать, что проанализированная трещина четко соответствует разности напряжений. При аналитическом расчете близкое соответствие разности напряжений также может быть констатировано (за исключением испытания на прочность, где получено более низкое значение).

Влияние остаточных напряжений было оценено с помощью метода конечных элементов. Практическое измерение остаточного напряжения не было доступно, поэтому использовалась модель кривой, основанная на принципе равновесия. Был сделан вывод, что для глубоких трещин (74% толщины стенки) остаточные напряжения закрывают трещины, но их влияние очень мало.

Выполнена оценка дефектов, выявленных в разнородных сварных швах коллектора ПГ. Сварные швы на горячих коллекторах ПГ-5 и ПГ-6 подвергаются большой деградации. Трещины с максимальными глубинами 46,6 мм (2ПГ-5) и 48,4 мм (2ПГ-6) сопровождаются менее глубокими трещинами на большей части окружности с глубинами 27,5 мм (ПГ-5) и 29 мм (ПГ-6). Длина кольцевой трещины с максимальной глубиной составляет 312 мм (ПГ-5) и 130 мм (ПГ-6). Механизм деградации этого вида сварного шва объясняется в главе 3 на основе анализа результатов лабораторных испытаниях АУЗК.

В связи с тем, что деградация металла сварных соединений №23 выявляется почти по всему периметру, дефект был систематизирован в соответствии с ASME, как полная кольцевая трещина с глубиной до 72,6% толщины стенки (измеренная минимальная глубина составляет 48,4 мм ± 5 мм – погрешность УЗК метода), т.е. 53,4/73,5 = 72,6% толщины стенки (73,5 мм).

Этот максимальный дефект был оценен аналитически на основе норм ASME и с помощью метода конечных элементов на основе вычисления J-интеграла по отношению к пластичности (раздел 2.4).

Анализ с помощью метода конечных элементов проводился для различных парогенераторов ВВЭР-440, результаты использованы в данной работе.

Метод конечных элементов продемонстрировал консерватизм аналитического решения, подтвердил важность термических напряжений и малую значимость теоретически ожидаемых остаточных напряжений. Результаты показывают актуальность анализа с помощью метода конечных элементов, и он должен быть продолжен в дальнейшем в ходе эксплуатации.

Решение о допустимой глубине одиночного дефекта менее консервативным методом конечных элементов предоставляет более реалистическое значение a/t = 0,74.

Для сварных соединений №23 Армянской АЭС при толщине сварного соединения 73,5 мм получаем для критической глубины дефекта значение [*a*] = 54,4 мм (73,5 x 0,74).

## 4.4.3. Методика расчетов "Норм дефектов для патрубков Ду-1100 в районе СС №23"

На основании выполненного выше анализа разработана методика расчетов "Норм дефектов сварных соединений №23 патрубков Ду-1100 парогенераторов 2ПГ1÷6 энергоблока №2 Армянской АЭС" [96].

В методике принято, что все несплошности в районе СС №23 следует считать кольцевыми с протяженностью, равной периметру патрубка по внутреннему диаметру, то есть 2с = 2πR, где 2с – протяженность несплошности; R - внутренний диаметр патрубка Ду1100.

Глубину (размер в направлении толщины стенки патрубка) кольцевой несплошности *а<sub>кол</sub>* определяют с учетом размеров всех единичных несплошностей (*a<sub>j</sub>* ; *c<sub>j</sub>*), выявленных при контроле по периметру СС №23, а именно:

$$a_{\kappa o \pi} = \frac{\sum_{i=1}^{k} F_i}{2\pi R} \quad , \tag{18}$$

где F<sub>j</sub> - площадь единичного дефекта, мм<sup>2</sup>; k - количество единичных дефектов, выявленных в районе CC №23.

Допускается оценивать площадь единичного дефекта с учетом его фактической формы (рис. 4.5).



 $F = (a_1 \cdot 2C_1) + (a_2 \cdot 2C_2) + (a_3 \cdot 2C_3)$ Рис. 4.5. Уточнение площади единичной несплошности в районе СС №23

Глубина кольцевой несплошности должна быть не больше допустимой величины [*а<sub>кол</sub>*], устанавливаемой в табл. 4.12 в зависимости от времени предстоящей эксплуатации до следующего контроля:

$$a_{\kappa o \pi} \leq [a_{\kappa o \pi}].$$

Глубина единичной несплошности *а<sub>j</sub>* должна быть не более величины [*a<sub>единичн</sub>*], устанавливаемой в табл. 4.12 в зависимости от времени предстоящей эксплуатации до следующего контроля:

$$a_j \leq [a_{eduhuyh}].$$

При условии, что её протяженность 2с<sub>ј</sub> не превышает величину 312 мм, на энергоблоке установлены три независимые системы контроля протечки в районе СС№ 23 с чувствительностью 3,8 литров в минуту.

Таблица 4.12

| Глубина<br>несплошности       | Время предстоящей эксплуатации до следующего           |        |        |        |
|-------------------------------|--------------------------------------------------------|--------|--------|--------|
| песниешнесни                  | перазрушающего котпроля или ремонта по его результатам |        |        |        |
| MM                            | 1 год                                                  | 2 года | 3 года | 4 года |
| [ <b>а<sub>единичн</sub>]</b> | 45                                                     | 43     | 41     | 39     |
| [ <b>0</b> <sub>кол</sub> ]   | 19                                                     | 18     | 17     | 16     |

Нормы кольцевого и единичного дефекта

Выполнение положений настоящего методики обеспечивает надежность эксплуатации до следующего контроля и ремонта по его результатам патрубков

Ду-1100 в районе СС №23 по критерию сопротивления разрыву полным сечением с вероятностью разрыва менее 10<sup>-7</sup> и вероятностью образования обнаруживаемой протечки через устойчивую сквозную несплошность – меньше 10<sup>-5</sup> за тот же период эксплуатации до очередного контроля.

# 4.4.4. Оценка остаточного ресурса узла приварки коллекторов теплоносителя к корпусам парогенераторов ВВЭР-440

С учетом значимости парогенераторов, как оборудования реакторной установки, в вопросах надежной и безопасной эксплуатации энергоблока АЭС весьма ответственной задачей становится оценка остаточного ресурса наиболее проблемного узла парогенератора.

Целостность корпуса парогенератора в большей степени определяется состоянием сварных соединений №23.

Остаточный ресурс сварных соединений - конструктивно достаточно простых элементов, в первом приближении определяется размерами выявленных дефектов и скоростью их развития [96].

Числовое значение остаточного ресурса (максимальное время безопасной эксплуатации) рассчитывается по формулам с выбором наименьшего значения:

$$T_{S} = (S - a_{i})/V_{S}$$
,  $T_{C} = (a_{r} - c_{i})/V_{c}$ , (19)

где T - остаточный ресурс, *год*; S - толщина СС, *мм*;  $a_i$  - глубина выявленного дефекта, *мм*;  $a_r$  - критическая длина единичного дефекта, *мм*;  $c_i$  - длина выявленного дефекта, *мм*;  $V_S$ ,  $V_c$  - скорость развития дефекта по глубине и длине, *мм/год*.



Рис. 4.6. Схема расположения критических размеров дефектов в стенке патрубка при различных режимах эксплуатации

Успешно проведенные ГИ подтверждают, что в патрубке дефекты с размером больше чем *а<sub>сгГИ</sub>* отсутствуют, но могут быть дефекты меньше чем *а<sub>сгГИ</sub>* (рис. 4.6).

Эти дефекты могут подрастать и достигать *а<sub>сгнуэ.</sub>* В этом случае существует вероятность разрыва патрубка.

Средняя скорость развития дефекта по глубине толщине СС для 2ПГ-6 равна

$$\frac{a_{\max} + a_{\min}}{2\tau_{_{\mathcal{SKC}}}} = \frac{48.4 + 0}{2*34} = 0.71(MM/200),$$
(20)

где  $a_{\min}$  = 0, поскольку рассматриваемый дефект консервативно принят круговым (длина равна периметру) с глубиной, равной максимальной глубине выявленного дефекта;  $a_{\max}$  - трещина с максимальной глубиной 48,4 мм (2ПГ-6);  $\tau_{scc}$  - срок эксплуатации ААЭС. Остаточный ресурс элемента понимается как период, в течение которого обеспечено выполнение элементом проектных функций; для сварного соединения - это целостность (плотность и прочность).

Поскольку рассматриваемый дефект консервативно принят круговым (длина равна периметру) с глубиной, равной максимальной глубине выявленного дефекта, целостность сварного соединения обеспечена при подтвержденном отсутствии дефектов, глубина которых равна критической глубине, рассчитанной для соответствующего режима эксплуатации.

Значения  $a_{crHy_{3}}$  = 66 мм и  $a_{cr\Gamma N}$  = 62 мм (Приложение 2) сравниваются с измеренными значениями реального (выявленного) дефекта:  $a_{i}$  = 48,4 мм.

Отношение выявленной разницы фактической и критической глубин дефекта к скорости развития (подроста) дефекта дает числовое значение остаточного ресурса [96]:

$$T_{\Gamma H} = \frac{62 - 48,4}{0,71} = 19$$
 лет,

$$T_{\rm HY9} = \frac{66 - 48,4}{0,71} = 24 \ \text{coda}$$

Для обеспечения требуемого консерватизма следует основываться на доказанной гидравлическими испытаниеми глубине возможного дефекта – положительные результаты ГИ исключают наличие дефектов с глубиной, равной или большей, чем *а*<sub>сс ги</sub>.

При таком подходе, принимая  $a_i = a_{cr \ \Gamma \mu}$ , получаем значение остаточного ресурса СС для условий нормальной эксплуатации:

$$T_{\Im} = \frac{66-62}{0,71} = 5,6$$
 nem.



После каждого успешного ГИ значение этого ресурса остается неизменным.

Рис. 4.7. Оценка безопасности эксплуатации патрубка в районе СС №23 2ПГ-6 ААЭС (с учетом выявленного дефекта с глубиной 48,4 мм)

Координаты: по вертикали – *а/*S относительная глубина дефекта;

по горизонтали – С/Я протяженность дефекта в радианах.

На рис. 4.7 показаны критические размеры дефектов в режимах ГИ и НУЭ. Красной точкой показан выявленный дефект в предположении, что он является кольцевым. Расстояние между кривыми на рисунке по вертикали составляет 4 мм, или, если трещина растет в глубину и длину одновременно, то тогда 2,9 мм. Видно, что этот дефект существенно ниже критических размеров. Время, за которое *а*<sub>сгги</sub> достигнет величины *а*<sub>сгнуэ</sub>, - это время безопасной эксплуатации сварного соединения №23, когда разрыв патрубка принципиально невозможен.

#### 4.4. Выводы по четвертой главе

- 1. Обосновано, что возможный гильотинный разрыв переходной втулки узла патрубкам крепления коллекторов теплоносителя К корпусов парогенераторов вследствие развития анализируемого дефекта сварного соединения №23 мало чем отличается от любой другой течи из системы 2го контура в помещении бокса ПГ и ГЦН. На ВВЭР-440 АЭС имеются технические средства для своевременного обнаружения такой аварии. При гильотинном разрыве проектные технические средства безопасности локализуют поврежденный без автоматически ПΓ вмешательства персонала, с последующим восстановлением всех параметров 1-го и 2-го контуров и переводом энергоблока в стабильное безопасное состояние.
- Обосновано, что для ситуации с частичным повреждением сварного соединения №23 на ВВЭР-440 АЭС имеются адекватные инструкции, позволяющие персоналу перевести реакторную установку в безопасное состояние с учетом рассматриваемого события.
- Установлено, что на основании сопоставления размеров поверхностных (сквозных) трещин, надежно выявляемых станционными системами ААЭС, с размерами критической трещины (1204 мм) вероятность гильотинного разрыва оценивается, как существенно низкая.
- Доказано, что максимальная длина выявленных дефектов в сварных соединениях №23 парогенераторов ААЭС равна 312 мм при глубине 48,4

мм. Развитие этой трещины до выхода на поверхность (до сквозной) приведет к истечению воды интенсивностью 22 671 л/мин.

- Разработана методология оценки критических и предельно допустимых в эксплуатации размеров несплошностей в режимах НУЭ, ГИ на прочность и НУЭ+МРЗ для всех 12 патрубков Ду-1100 в районе СС23.
- 6. Доказано, что максимально возможный подрост трещины по периметру патрубка в районе сварного шва №23 ААЭС не превышает 0,71 мм в год.
- На основании выполненного анализа разработана методика расчетов "Норм дефектов сварных соединений №23 патрубков Ду-1100 парогенераторов ПГВ-4с".
- Определено, что значение остаточного ресурса узла приварки коллекторов теплоносителя к корпусам парогенераторов атомных энергоблоков ВВЭР-440 для условий нормальной эксплуатации составляет 5,6 лет.

#### ОСНОВНЫЕ ВЫВОДЫ ДИССЕРТАЦИОННОЙ РАБОТЫ

- Показано, что в сочетании с циклическими нагружениями, нагружения, вызванные разницей коэффициентов линейного расширения между аустенитными и перлитными металлами СС ПГВ-4с, в условиях многолетней эксплуатации вызывают образование и развитие трещин.
- Доказано, что в СС Ду-1100 "горячих" коллекторов 2ПГ-5 и 2ПГ-6 энергоблока № 2 ААЭС выявлены недопустимые по нормам оценки качества несплошности.
- 3. Обосновано, что возможный гильотинный разрыв переходной втулки узла крепления коллекторов теплоносителя к патрубкам корпусов парогенераторов вследствие развития анализируемого дефекта сварного соединения №23 мало чем отличается от любой другой течи из системы 2го контура в помещении бокса ПГ и ГЦН.
- Впервые разработана методология расчетов критических и предельно допустимых в эксплуатации размеров несплошностей в режимах НУЭ, НУЭ+МРЗ и ГИ на прочность и на плотность для всех патрубков Ду-1100 в районе СС23 ПГВ-4с.
- Доказано, что максимальная длина выявленных дефектов в сварных соединениях №23 парогенераторов ПГВ-4с равна 312 мм при глубине 46,6 мм. Развитие этой трещины до выхода на поверхность (до сквозной) приведет к истечению воды интенсивностью 22 671 л/мин.
- Разработана методика расчетов "Норм дефектов сварных соединений №23 патрубков Ду-1100 парогенераторов реакторных установок ВВЭР-440".
- 7. Установлено, что максимально возможный подрост трещины по периметру патрубка в районе сварного шва №23 не превышает 0,71 мм в год, и оценено значение остаточного ресурса узла приварки коллекторов теплоносителя к корпусам парогенераторов ПГВ-4с ВВЭР-440.

#### СПИСОК ЛИТЕРАТУРЫ

- Маргулова Т.Х. Атомные электрические станции. 3-е изд., перераб. и доп.
   М.: Высшая школа, 1978. -168 с.
- Սահակյան Ա.Պ., Մարուխյան Ո.Չ., Պետրոսյան Վ.Գ. ՋՋԷՌ-440 ռեակտորներով էներգաբլոկի սարքավորումները և շահագործման ռեժիմները. - Երևան։ ՀԱՊՀ, 2017,- 282 էջ։
- Удостоверение о качестве изготовления сосуда. Заводской №5540, Парогенератор ПГВ-4М. Дата изготовления: август 1969 г. Машиностроительный завод им. Орджонекидзе (ЗиО).
- Оборудование и трубопроводы атомных энергетических установок.
   Сварка и наплавка, основные положения ПНАЭ Г-7-009-89. Введ. 1.06.1990
   г.
- Ходаков В.Д., Зубченко А.С. Опыт эксплуатации и ремонта разнородных сварных соединений оборудования и трубопроводов из аустенитных и перлитных сталей. Вопросы атомной науки и техники. – 2008. -Выпуск 23. Реакторный установки ВВЭР-1000.
- Земзин В.Н. Сварные соединения разнородных сталей. М., Л.: Машиностроение, 1966. – 232 с.
- Проблемы прочности и безопасности водо-водяных энергетических реакторов / Н.А. Махутов, К.В. Фролов, М.Б Бакиров, А.Ф Гетман и др. – М., 2008. – 445 с.
- Резинских В.Ф., Гринь Е.А. Современные проблемы обеспечения безопасности тепломеханического оборудования при продлении сроков его службы // Теплоэнергетика. - 2013. - №1. - С. 17.
- Судаков А.В., Словцов С.В. Современные методы оценки прочности и ресурса энергооборудования при термопульсациях и вибрациях // Теплоэнергетика. - 2013. - №1. - С. 55.

- Разработка программных средств и нормативной документации по эрозионно-коррозионному износу трубопроводов на АЭС / В.И. Бараненко, А.А. Просвирнов, С.В. Европин, А.А. Арефьев и др. // Теплоэнергетика. - 2012. - №5. - С. 34.
- Опыт проведения восстановительной термической обработки штампосварных колен из стали 15Х1М1Ф после длительной эксплуатации / Р.Н. Калугин, Ф.А. Хромченко, Т.А. Швецова, К.К. Крейцер и др. // Теплоэнергетика. - 2012. - №4. - С. 22.
- Ланин А.А. Подходы к конструктивно-технологическому проектированию сварных узлов мощных энергетических установок // Теплоэнергетика. -2012. - №3. - С. 43.
- Проблемы локальной эрозиикоррозии сварных соединений трубопроводов энергоблоков АЭС / Г.В. Томаров, В.Н. Ловчев, Д.Ф. Гуцев и др. // Тепло-энергетика. - 2012. - №8. - С. 57.
- Трунов Н.Б., Рыжов С.Б., Давиденко С.Е. Горизонтальные парогенераторы: проблемы и перспективы // Теплоэнергетика. - 2011. -№3. - С. 2-5.
- Современное состояние проблемы управления ресурсом парогенераторов АЭС с ВВЭР. э. / Н.Б. Трунов, С.Е. Давиденко, В.С. Попадчук, Н.Н. Давиденко и др. // Теплоэнергетика. - 2011. - №3. - С. 6-10.
- Петров Г.Л. Неоднородность металла сварных соединений. Л.: Судпрогиз, 1963. - 206 с.
- Ерохин А.А. Кинетика металлургических процессов дуговой сварки. М.: Машиностроение, 1964. - 252 с.
- Шубин Ф.В. Сварка разнородных сварных соединений. Сварка в машиностроении: Справочник в 4-х т./Под ред. А.И. Акулова. - Том 1. - М.: Машиностроение, 1978. - 504 с.

- Бельчук Г.А., Земзин В.Н. Сварка разнородных сварных соединений.
   Сварка в машиностроении: Справочник в 4-х т./Под ред. А.И. Акулова. Том 2. М.: Машиностроение, 1978. 462 с.
- Schaffler A.L. Selection of Austenetic Electrode for welding Dissimilar Metals
   Welding Journal. 1947. V.26, N 10. P.601 620.
- 21. De Long W.T. Ostrom G.A. Stumachowsky. Measurement and Calculation of Ferrite in Stainless Steel // Welding Journal. 1956. V.35, N 11. P.285 301.
- 22. Закс И.А. Сварка разнородных сталей.-JI.: Машиностроение, 1973. 208 с.
- Теория сварочных процессов: Учеб. для вузов по ТЗЗ спец. "Оборуд. и технология сварочн. пр-ва"/В.Н. Волченко, В.М. Ямпольский, В.А. Винокуров и др.; Под ред. В.В. Фролова. М.: Высш. шк. 1988. 559 с.
- Каховский Н.И. Сварка нержавеющих сталей. Киев: Техника, 1968. 562с.
- 25. Основные положения по сварке и наплавке узлов и конструкций атомных электростанций, опытных и исследовательских ядерных реакторов и установок ОП1513-72. - 1972 г.
- 26. Технические условия AWS (American Welding Society) A5.9-93.
- 27. Технический отчет о научно-исследовательской работе по договору № 2007/4.1.1.1.10.8/24025 от 14.09.2007 "Сопровождение и поддержка работ по ЭНК на АЭС. Исследование характера и причин повреждения сварного соединения №23 ЗПГ-1 Нововоронежской АЭС". - М., 2007. - 55 с.
- 28. Ходаков В.Д., Харина И.Л., Корнеев А.Е. Анализ опыта эксплуатации и ремонта сварных соединений аустенитного и перлитного класса (разнородных сварных соединений) оборудования и трубопроводов АЭС // Материалы 10-й Международной конференции. - Том 2 /ФГУП ЦНИИ "Прометей", -СПб., Россия, октябрь 2008.
- 29. Ходаков В.Д., Харина И.Д., Корнеев А.Е. Исследование характера и причины повреждений разнородных сварных соединений узла приварки

переходного кольца к патрубку Ду-1100ПГВ Нововоронежской и Кольской АЭС // Материалы 10-й Международной конференции. - Том 2 /ФГУП ЦНИИ "Прометей", -СПб., Россия, октябрь 2008.

- 30. М.А. Гальперин, Т. И. Иванова, К.К. Младзиевский, Е.Е. Старец, и др. Проверка протектирующего действия перлитной стали на межкристаллитную коррозию аустенитного металла наплавки / М.А. Гальперин, Т. И. Иванова, К.К. Младзиевский, Е.Е. Старец и др. //Сварка: Сб. статей. – Л.: Судостроение, 1971. – С. 265.
- Харченко С.А., Трунов Н.Б., Коротаев Н.Ф. Меры по обеспечению надежности сварного соединения коллектора I контура с корпусом парогенератора АЭС с ВВЭР-1000//Теплоэнергетика. - 2011. - №3. - С. 27-32.
- Томаров Г.В., Шипков А.А. Эрозионно-коррозионный вынос железосодержащих соединений — источник отложений в парогенераторах АЭС с ВВЭР// Теплоэнергетика. - 2011. - №3. - С. 54-61.
- 33. Скоробогатых В.Н., Щенкова И.А., Туголуков Е.А. Длительная прочность и структурные особенности сварных соединений хромистых сталей// Теплоэнергетика. - 2010. - №1. - С. 9-14.
- 34. Попов А.Б. Особенности напряженного состояния и оценка ресурса штампосварных колен паропроводов горячего промперегрева энергоблоков 500 МВт // Теплоэнергетика. - 2010. - №11. - С. 70-75.
- 35. Анохов А.Е., Гринь Е.А., Перевезенцева Т.В., Федина И.В. Характер и причины разрушения сварных соединений паропроводов горячего промперегрева энергоблоков мощностью 800 МВт // Теплоэнергетика. -2009. - №2. - С. 20-26.
- 36. Рыженков В.А., Селезнев Л.И., Медников А.Ф., Тхабисимов А.Б. Экспериментальное исследование эрозионного износа конструкционных материалов // Теплоэнергетика. - 2014. - №8. - С. 56.

- 37. Учет внутриструктурных напряжений в процессах влияния структурной неоднородности на коррозионные повреждения теплообменных труб / Любимова Л.Л., Макеев А.А., Заворин А.С., Ташлыков А.А. и др. //Теплоэнергетика. - 2014. - №8. - С. 62.
- Рыженков В.А., Селезнев Л.И., Рыженков А.В. Исследование процессов эрозионного износа конструкционных материалов//Теплоэнергетика. -2014. - №10. - С. 44.
- 39. Варавка В.Н., Кудряков О.В., Рыженков А.В., Качалин Г.В. Применение нанокомпозитных покрытий для защиты энергетического оборудования от каплеударной эрозии // Теплоэнергетика. 2014. №11. С. 29.
- Игнатов Б.А., Строкан Б.В., Рохлин Э.А., Хачатурянц Л.В. Обоснование замены перлитных электродов марки УОНИ 13/45 на аустенитные марки ЭА 855/51 для приварки выпусков к корпусам парогенераторов ПГВ-1000 из стали марки 10ГН2МФА. – Л., 1972.
- 41. Заключение №532/2007 от 12.06.07 года по АУЗК с применением системы АВГУР 5.2.
- ПН АЭ Г 7-010-89. Оборудования и трубопроводы АЭС. Правила контроля. М., 1990. 77 с.
- 43. Решение Федеральной службы по экологическому, технологическому и атомному надзору "О ремонте сварных соединений №23 патрубков Ду1100 парогенератора №1(ЗПГ-1) энергоблока №3 Нововоронежской АЭС №НВАЭС ЗР-78 (1.7)2007" от 11.07.2007.
- 44. Типовая технологическая инструкция №060100.025000ТИ2750401-00212179: "Ремонт разнородных сварных соединений приварки переходных втулок из стали 08Х18Н10Т к патрубкам Ду1100 из стали 22К узла крепления ПГВ-4М, ПГВ-4Э, ПГВ-2В энергоблоков ВВЭР- 440" (редакция 2007 года).

- 45. Заключение о характере повреждения металла сварного соединения
   №23«г» узла приварки переходного кольца к патрубку Ду-1100
   парогенератора 2ПГ-4 Кольской АЭС. М., 2007. 10 с.
- 46. Типовая Технологическая инструкция № 060200.025000ТИ2760179-00212179 "Парогенератор ПГВ-1000. Ремонт с использованием сварки узла приварки коллектора теплоносителя к патрубку парогенератора (сварные швы №111 (76,77)". - 2008.
- 47. Заключение "О характере повреждения металла сварного соединения
   №23 "х" узла приварки коллектора теплоносителя к патрубку Ду-1100
   парогенератора ЗПГ-1 Нововоронежской АЭС". М., ОАО НПО «ЦНИИТМАШ», 2007. 9 с.
- Ходаков Д.В. 48. Исследование и разработка технологии ремонта разнородных сварных соединений узла крепления коллекторов теплоносителя к патрубкам корпусов парогенераторов ПГВ – 440 / Центральный научно-исследовательский институт технологии машиностроения, ОАО НПО "ЦНИИТМАШ". - 2012.
- 49. Исследование коррозионной стойкости сварочных материалов для выполнения разнородных сварных соединений оборудования и трубопроводов АЭС / В.Д. Ходаков, И.Л. Харина, Е.Г. Старченко, Д.В. Ходаков и др. // Тяжелое машиностроение. - 2012. - №6. - с. 17-25.
- 50. Vardanyan A., Petrosyan V., Kryukov A., Sevikyan G. Irradiation embrittlement assessment and prediction of Armenian NPP reactor pressure vessel steels // Nuclear Engineering and Design. – 2014. – Vol. 272. - P. 28-35.
- Барданян А.М. Причины образования повреждений сварных соединений приварки коллекторов к корпусу парогенераторов ПГВ-440// Вестник ИАА.
   2016. Т. 13, № 2. С. 263-270.
- 52. Ходаков Д.В., Ходаков В.Д., Харина И.Л. Сравнительные исследования коррозионной стойкости сварочных материалов, используемых для

выполнения первого (переходного) слоя разнородных сварных соединений перлитных и аустенитных сталей атомно-энергетического оборудования//Материалы VI научно-технической конференции молодых ученых и специалистов. "Сварка и родственные технологии". – Киев: ИЭС им. Патона, 2011. – 263с.

- 53. Тихонов Д.С. Технический отчет "Результаты автоматизированного неразрушающего контроля разнородных сварных соединений Ду-1100 АЭС". - 23.10.2014.
- 54. Базулин Е.Г. Разработка системы эксплуатационного ультразвукового неразрушающего контроля повышенной информативности с применением антенных решёток. – М., 2014. – 346с.
- 55. Гурвич А.К. Способы сканирования при ультразвуковом контроле // В мире неразрушающего контроля. - 2010. - № 3. - С. 4-6.
- 56. Автоматизированная система для измерения параметров ультразвуковых пьезопреобразователей / А.Е. Базулин и др.// В мире неразрушающего контроля. - 2010. - №1. - С. 35-41.
- 57. Зайнуллин Ф.Р. Ультразвуковой контроль толщины стенок деталей априорно неизвестной конфигурации: Дис. ... канд. техн. наук. - Казань, 2001. - 106 с.
- 58. Алешин Н.П., Вадковский Н.Н., Волкова Н.Н. Ультразвуковой контроль аустенитных сварных швов: анализ способов и рекомендации повышения надежности // Дефектоскопия. - 1988. - №2. - С. 43-59.
- 59. Алешин Н.П., Горная С.П. Новый подход к оптимизации УЗК аустенитных сварных швов //В мире неразрушающего контроля. 2003. №1. С. 16-18.
- 60. Гребенников В.В., Гурвич А.К. Состояние и проблемы ультразвукового контроля аустенитных сварных швов // Дефектоскопия. - 1985. - №9. -С. 3-12.

- Применение методов сверхразрешения при экспертном контроле сварных швов трубопроводов АЭС / В.Г. Бадалян и др. // Дефектоскопия. -2001. - № 1. - С. 58-65.
- 62. Ермолов И.Н., Вопилкин А.Х., Бадалян В.Г. Эволюция средств и методов определения формы и размеров дефектов при ультразвуковом контроле // Контроль. Диагностика. 2003. № 2 (56). С. 6-27.
- 63. Щербинский В.Г., Алешин Н.П. Ультразвуковой контроль сварных соединений. М.: Издательство МГТУ им. Баумана, 2000. 496 с.
- 64. Методы акустического контроля металлов / Н.П. Алёшин, В.Е. Белый, А.Х. Вопилкин и др. - М.: Машиностроение, 1989. -152 с.
- 65. Григорьев М.В., Гребенников В.В., Гурвич А.К. Определение размеров трещин ультразвуковым методом // Дефектоскопия. 1978. № 1. С. 8-12.
- 66. Гребенников В.В., Бадалян В.Г., Вопилкин А.Х., Гребенников Д.В., Сравнительный анализ способов повышения отношения сигнал/шум при ультразвуковом контроле аустенитных швов // Контроль. Диагностика. -2000. - № 9 (27). - С. 29 - 35.
- 67. Бадалян В.Г., Вопилкин А.Х., Тихонов Д.С. Новый подход к ультразвуковому неразрушающему автоматизированному контролю ответственных сварных соединений // Контроль. Диагностика. - 1999. - № 10. - С. 23-31.
- 68. Тихонов Д.М. Разработка методов и аппаратуры для ультразвуковой дефектометрии сварных соединений трубопроводов АЭС. – М.: - 2004. -189с.
- 69. Porter R.P., Devaney A.J. Generalized holography and computational solutions to inverse source problem // J. of Optical Society of America. 1982.
   Vol. 72, issue 12. P. 1707-1713.
- Synthetic aperture focusing technique signal processing / K.J. Langenberg, M.
   Berger, Th. Kreutter, et al // NDT Int. 1986. Vol. 19, N 3. P. 177-189.

- 71. Система калибровки ультразвуковых пьезоэлектрических преобразователей АВГУР 4.4: Руководство по эксплуатации. 002.00.РЭ. М.: НПЦ «ЭХО+», 2001. 41 с.
- 72. Унифицированные методики контроля основных материалов (полуфабрикатов), сварных соединений и наплавки оборудования и трубопроводов атомных энергетических установок. Ультразвуковой контроль. Часть 2: Контроль сварных соединений и наплавки. ПНАЭ Г-7-014-89. М.: ЦНИИАтоминформ, 1992. - 158 с.
- Сопроводительный справочник к Нормам ASME по котлам и сосудам давления. – М., 2006. – 170с.
- 74. BPVC Section IV Rules for Construction of Heating Boilers ASME, 2010.
- 75. BPVC Section VI Recommended Rules for the Care and Operation of Heating Boilers ASME, 2010.
- 76. BPVC Section II-Materials Part C-Specifications for Welding Rods Electrodes and Filler Metals (BPVC-IIC 2015).
- BPVC Section II-Materials-Part A-Ferrous Materials Specifications (2 Volumes) (BPVC-IIA - 2015).
- 78. BPVC Section II-Materials-Part B-Nonferrous Material Specifications (BPVC-IIB 2015).
- 79. Pressure Gauges and Gauge Attachments (B40.100 2013).
- Москалев Н.С., Пронозин Я.А. Металлические конструкции. М.:
   Издательство Ассоциации строительных вузов, 2007. 344 с.
- Муханов К.К. Металлические конструкции. М.: Стройиздат, 1978. 572 с.
- 82. Вопилкин А.Х Последовательность перераспределения моментов в защемленной балке. Статический способ метода предельного равновесия
   М.: ЦНИИАтоминформ, 1998. 212 с.

- 83. Cherepanov G. P. The propagation of cracks in a continuous medium// Journal of Applied Mathematics and Mechanics – 1967. - 31(3). - P. 503–512.
- Rice J.R. A Path Independent Integral and the Approximate Analysis of Strain
  Concentration by Notches and Cracks//Journal of Applied Mechanics. 1968. –
  35. P. 379–386.
- Meyers and Chawla //Mechanical Behavior of Materials. 1999. P. 445– 448.
- Yoda, M. The J-integral fracture toughness for Mode II//Int. J. of Fracture. –
   1980. 16(4). P. R175–R178.
- 87. Ivan B. Results of UT NDE of the Dissimilar welds of WWER440 SG secondary collectors by Pulse-Echo technique //Doc. ÚJV Řež, a. s. 2003.
- 88. Варданян А.М. Экспериментальное исследование сварных швов парогенераторов второго энергоблока Армянской АЭС // ВЕСТНИК НПУА Электротехника, Энергетика. – 2016. - №1. - С. 86-96.
- 89. Ondřej H. NDT examination and evaluation results of SG secondary collectors at VVER 440 ANPP by Phased array//Doc. ÚJV Řež, a. s. 2014.
- 90. АКТ № 01. По результатам исследования неразрушающими методами контроля в процессе проведения выборки поврежденного сварного соединения № 23 "горячего" коллектора Ду-1100 парогенератора 2ПГ-5 энергоблока № 2 Армянской АЭС. 11.10.2014г.
- 91. АКТ № 02. По результатам исследования неразрушающими методами контроля в процессе проведения выборки поврежденного сварного соединения № 23 "горячего" коллектора Ду-1100 парогенератора 2ПГ-6 энергоблока № 2 Армянской АЭС. 15.10.2014г.
- 92. Нормы расчета на прочность оборудования и трубопроводов атомных энергетических установок. ПНАЭ Г-7-002-86. – М.: Энергоатомиздат, 1989.
- Физические свойства сталей и сплавов, применяемых в энергетике.
   Справочник /Под ред. Б.Е. Неймарка. М., Л.: Энергия, 1967. 240с.

- 94. Руководство по расчету на прочность оборудования и трубопроводов АЭС на стадии их эксплуатации. РД ЭО 0330-01. – М.: - 2001.
- 95. Гетман А.Ф. Концепция безопасности «течь перед разрушением» для сосудов и трубопроводов АЭС». М.: Энергоатомиздат, 1999.
- 96. Петросян В.Г., Варданян А.М. Оценка остаточного ресурса узлов крепления коллекторов теплоносителя к патрубкам корпусов парогенераторов энергоблоков ВВЭР-440// Вестник ИАА. – 2017. – Т. 14, № 2. – С. 215-218.

ПРИЛОЖЕНИЕ 1

## НАПРЯЖЕНИЯ С РАЗВИТИЕМ ПЛАСТИЧЕСКИХ ДЕФОРМАЦИЙ ДЛЯ РАЗЛИЧНЫХ ГЛУБИН ДЕФЕКТОВ В СВАРНЫХ СОЕДИНЕНИЯХ №23 ПГ ААЭС

Допустимые напряжения изгиба для материала сварного шва "горячей" нитки

| a /4 | $\sigma_{b}{}^{c}$ | $S_{c}$  |
|------|--------------------|----------|
|      | [Па]               | [Па]     |
| 0,1  | 4,22E+08           | 1,13E+08 |
| 0,12 | 4,16E+08           | 1,11E+08 |
| 0,14 | 4,10E+08           | 1,09E+08 |
| 0,16 | 4,04E+08           | 1,07E+08 |
| 0,18 | 3,98E+08           | 1,05E+08 |
| 0,2  | 3,91E+08           | 1,03E+08 |
| 0,22 | 3,85E+08           | 1,01E+08 |
| 0,24 | 3,78E+08           | 9,95E+07 |
| 0,26 | 3,71E+08           | 9,74E+07 |
| 0,28 | 3,64E+08           | 9,53E+07 |
| 0,3  | 3,56E+08           | 9,31E+07 |
| 0,32 | 3,49E+08           | 9,09E+07 |
| 0,34 | 3,41E+08           | 8,86E+07 |
| 0,36 | 3,34E+08           | 8,62E+07 |
| 0,38 | 3,25E+08           | 8,38E+07 |
| 0,4  | 3,17E+08           | 8,13E+07 |
| 0,42 | 3,09E+08           | 7,88E+07 |
| 0,44 | 3,00E+08           | 7,62E+07 |
| 0,46 | 2,91E+08           | 7,36E+07 |
| 0,48 | 2,82E+08           | 7,08E+07 |
| 0,5  | 2,73E+08           | 6,80E+07 |
| 0,52 | 2,63E+08           | 6,52E+07 |
| 0,54 | 2,53E+08           | 6,22E+07 |
| 0,56 | 2,43E+08           | 5,92E+07 |
| 0,58 | 2,33E+08           | 5,61E+07 |
| 0,6  | 2,22E+08           | 5,30E+07 |
| 0,62 | 2,11E+08           | 4,97E+07 |
| 0,64 | 2,00E+08           | 4,64E+07 |
| 0,66 | 1,89E+08           | 4,30E+07 |
| 0,68 | 1,77E+08           | 3,95E+07 |
| 0,7  | 1,66E+08           | 3,60E+07 |

## 22К и условия НУЭ+МРЗ

| 0,72 | 1,53E+08 | 3,24E+07 |
|------|----------|----------|
| 0,74 | 1,41E+08 | 2,87E+07 |

### Допустимые напряжения изгиба для материала сварного шва холодной нитки

### 22К и условия НУЭ+МРЗ

| a/t  | $\sigma_{b}{}^{c}$<br>[Па] | <i>S<sub>c</sub></i><br>[Па] |
|------|----------------------------|------------------------------|
| 0,1  | 4,22E+08                   | 1,13E+08                     |
| 0,12 | 4,16E+08                   | 1,11E+08                     |
| 0,14 | 4,10E+08                   | 1,09E+08                     |
| 0,16 | 4,04E+08                   | 1,07E+08                     |
| 0,18 | 3,98E+08                   | 1,06E+08                     |
| 0,2  | 3,91E+08                   | 1,04E+08                     |
| 0,22 | 3,85E+08                   | 1,02E+08                     |
| 0,24 | 3,78E+08                   | 9,97E+07                     |
| 0,26 | 3,71E+08                   | 9,77E+07                     |
| 0,28 | 3,64E+08                   | 9,56E+07                     |
| 0,3  | 3,57E+08                   | 9,34E+07                     |
| 0,32 | 3,49E+08                   | 9,12E+07                     |
| 0,34 | 3,42E+08                   | 8,89E+07                     |
| 0,36 | 3,34E+08                   | 8,65E+07                     |
| 0,38 | 3,26E+08                   | 8,41E+07                     |
| 0,4  | 3,18E+08                   | 8,17E+07                     |
| 0,42 | 3,09E+08                   | 7,91E+07                     |
| 0,44 | 3,00E+08                   | 7,66E+07                     |
| 0,46 | 2,92E+08                   | 7,39E+07                     |
| 0,48 | 2,82E+08                   | 7,12E+07                     |
| 0,5  | 2,73E+08                   | 6,84E+07                     |
| 0,52 | 2,64E+08                   | 6,55E+07                     |
| 0,54 | 2,54E+08                   | 6,26E+07                     |
| 0,56 | 2,44E+08                   | 5,96E+07                     |
| 0,58 | 2,33E+08                   | 5,65E+07                     |
| 0,6  | 2,23E+08                   | 5,33E+07                     |
| 0,62 | 2,12E+08                   | 5,01E+07                     |
| 0,64 | 2,01E+08                   | 4,68E+07                     |
| 0,66 | 1,90E+08                   | 4,34E+07                     |

| 0,68 | 1,78E+08 | 3,99E+07 |
|------|----------|----------|
| 0,7  | 1,66E+08 | 3,64E+07 |
| 0,72 | 1,54E+08 | 3,28E+07 |
| 0,74 | 1,42E+08 | 2,91E+07 |

### Допустимое напряжение изгиба сварного шва горячей нитки для материала

| a/t  | $\sigma_b^{\ c}$ | $S_c$    |
|------|------------------|----------|
|      | [Па]             | [Па]     |
| 0,1  | 4,14E+08         | 1,49E+08 |
| 0,12 | 4,09E+08         | 1,47E+08 |
| 0,14 | 4,03E+08         | 1,44E+08 |
| 0,16 | 3,97E+08         | 1,42E+08 |
| 0,18 | 3,91E+08         | 1,40E+08 |
| 0,2  | 3,84E+08         | 1,37E+08 |
| 0,22 | 3,78E+08         | 1,35E+08 |
| 0,24 | 3,71E+08         | 1,32E+08 |
| 0,26 | 3,64E+08         | 1,29E+08 |
| 0,28 | 3,57E+08         | 1,27E+08 |
| 0,3  | 3,50E+08         | 1,24E+08 |
| 0,32 | 3,43E+08         | 1,21E+08 |
| 0,34 | 3,35E+08         | 1,18E+08 |
| 0,36 | 3,28E+08         | 1,15E+08 |
| 0,38 | 3,20E+08         | 1,12E+08 |
| 0,4  | 3,11E+08         | 1,09E+08 |
| 0,42 | 3,03E+08         | 1,06E+08 |
| 0,44 | 2,95E+08         | 1,02E+08 |
| 0,46 | 2,86E+08         | 9,90E+07 |
| 0,48 | 2,77E+08         | 9,55E+07 |
| 0,5  | 2,68E+08         | 9,19E+07 |
| 0,52 | 2,58E+08         | 8,82E+07 |
| 0,54 | 2,48E+08         | 8,45E+07 |
| 0,56 | 2,39E+08         | 8,07E+07 |
| 0,58 | 2,28E+08         | 7,67E+07 |
| 0,6  | 2,18E+08         | 7,27E+07 |
| 0,62 | 2,07E+08         | 6,85E+07 |
| 0,64 | 1,96E+08         | 6,43E+07 |
| 0,66 | 1,85E+08         | 6,00E+07 |
| 0,68 | 1,74E+08         | 5,56E+07 |
| 0,7  | 1,62E+08         | 5,11E+07 |
| 0,72 | 1,50E+08         | 4,65E+07 |
| 0,74 | 1,38E+08         | 4,17E+07 |

#### 04Х19Н11МЗ и условия НУЭ+МРЗ

### Допустимое напряжение при изгибе для сварочного шва горячей нитки, материал 22К, и условия НУЭ

| a/t  | $\sigma_b^{\ c}$ | $S_c$    |
|------|------------------|----------|
|      | [Па]             | [Па]     |
| 0,1  | 4,22E+08         | 6,11E+07 |
| 0,12 | 4,16E+08         | 6,01E+07 |
| 0,14 | 4,10E+08         | 5,90E+07 |
| 0,16 | 4,04E+08         | 5,79E+07 |
| 0,18 | 3,98E+08         | 5,67E+07 |
| 0,2  | 3,91E+08         | 5,56E+07 |
| 0,22 | 3,85E+08         | 5,44E+07 |
| 0,24 | 3,78E+08         | 5,32E+07 |
| 0,26 | 3,71E+08         | 5,19E+07 |
| 0,28 | 3,64E+08         | 5,06E+07 |
| 0,3  | 3,57E+08         | 4,93E+07 |
| 0,32 | 3,49E+08         | 4,79E+07 |
| 0,34 | 3,42E+08         | 4,65E+07 |
| 0,36 | 3,34E+08         | 4,51E+07 |
| 0,38 | 3,26E+08         | 4,37E+07 |
| 0,4  | 3,18E+08         | 4,22E+07 |
| 0,42 | 3,09E+08         | 4,06E+07 |
| 0,44 | 3,01E+08         | 3,90E+07 |
| 0,46 | 2,92E+08         | 3,74E+07 |
| 0,48 | 2,83E+08         | 3,58E+07 |
| 0,5  | 2,73E+08         | 3,41E+07 |
| 0,52 | 2,64E+08         | 3,23E+07 |
| 0,54 | 2,54E+08         | 3,05E+07 |
| 0,56 | 2,44E+08         | 2,87E+07 |
| 0,58 | 2,33E+08         | 2,68E+07 |
| 0,6  | 2,23E+08         | 2,49E+07 |
| 0,62 | 2,12E+08         | 2,29E+07 |
| 0,64 | 2,01E+08         | 2,09E+07 |
| 0,66 | 1,90E+08         | 1,89E+07 |
| 0,68 | 1,78E+08         | 1,68E+07 |
| 0,7  | 1,66E+08         | 1,46E+07 |
| 0,72 | 1,54E+08         | 1,24E+07 |
| 0,74 | 1,42E+08         | 1,02E+07 |

#### Допустимое напряжение при изгибе для сварочного шва горячей нитки,

| a/t  | $\sigma_{b}{}^{c}$ | $S_c$    |
|------|--------------------|----------|
|      | [Па]               | [Па]     |
| 0,1  | 4,19E+08           | 5,46E+07 |
| 0,12 | 4,13E+08           | 5,35E+07 |
| 0,14 | 4,07E+08           | 5,23E+07 |
| 0,16 | 4,00E+08           | 5,12E+07 |
| 0,18 | 3,94E+08           | 5,00E+07 |
| 0,2  | 3,87E+08           | 4,88E+07 |
| 0,22 | 3,80E+08           | 4,75E+07 |
| 0,24 | 3,73E+08           | 4,62E+07 |
| 0,26 | 3,66E+08           | 4,49E+07 |
| 0,28 | 3,59E+08           | 4,36E+07 |
| 0,3  | 3,51E+08           | 4,22E+07 |
| 0,32 | 3,43E+08           | 4,08E+07 |
| 0,34 | 3,35E+08           | 3,93E+07 |
| 0,36 | 3,27E+08           | 3,78E+07 |
| 0,38 | 3,19E+08           | 3,63E+07 |
| 0,4  | 3,10E+08           | 3,47E+07 |
| 0,42 | 3,01E+08           | 3,31E+07 |
| 0,44 | 2,92E+08           | 3,15E+07 |
| 0,46 | 2,83E+08           | 2,98E+07 |
| 0,48 | 2,73E+08           | 2,81E+07 |
| 0,5  | 2,64E+08           | 2,63E+07 |
| 0,52 | 2,54E+08           | 2,45E+07 |
| 0,54 | 2,44E+08           | 2,27E+07 |
| 0,56 | 2,33E+08           | 2,08E+07 |
| 0,58 | 2,23E+08           | 1,88E+07 |
| 0,6  | 2,12E+08           | 1,68E+07 |
| 0,62 | 2,00E+08           | 1,48E+07 |
| 0,64 | 1,89E+08           | 1,27E+07 |
| 0,66 | 1,77E+08           | 1,06E+07 |
| 0,68 | 1,65E+08           | 8,42E+06 |
| 0,7  | 1,53E+08           | 6,21E+06 |
| 0,72 | 1,41E+08           | 3,95E+06 |
| 0,74 | 1,28E+08           | 1,65E+06 |

#### материал 22К, испытание на плотность

#### Допустимое напряжение при изгибе для сварочного шва горячей нитки,

#### материал 22К, испытание на прочность

| a/t  | $\sigma_{b}{}^{c}$ | $S_{c}$   |
|------|--------------------|-----------|
|      | [Па]               | [Па]      |
| 0,1  | 4,16E+08           | 5,06E+07  |
| 0,12 | 4,10E+08           | 4,95E+07  |
| 0,14 | 4,04E+08           | 4,83E+07  |
| 0,16 | 3,97E+08           | 4,70E+07  |
| 0,18 | 3,90E+08           | 4,58E+07  |
| 0,2  | 3,83E+08           | 4,45E+07  |
| 0,22 | 3,76E+08           | 4,32E+07  |
| 0,24 | 3,69E+08           | 4,18E+07  |
| 0,26 | 3,61E+08           | 4,04E+07  |
| 0,28 | 3,54E+08           | 3,90E+07  |
| 0,3  | 3,46E+08           | 3,76E+07  |
| 0,32 | 3,38E+08           | 3,61E+07  |
| 0,34 | 3,30E+08           | 3,45E+07  |
| 0,36 | 3,21E+08           | 3,30E+07  |
| 0,38 | 3,13E+08           | 3,14E+07  |
| 0,4  | 3,04E+08           | 2,97E+07  |
| 0,42 | 2,95E+08           | 2,80E+07  |
| 0,44 | 2,85E+08           | 2,63E+07  |
| 0,46 | 2,76E+08           | 2,45E+07  |
| 0,48 | 2,66E+08           | 2,27E+07  |
| 0,5  | 2,56E+08           | 2,09E+07  |
| 0,52 | 2,46E+08           | 1,90E+07  |
| 0,54 | 2,35E+08           | 1,70E+07  |
| 0,56 | 2,25E+08           | 1,50E+07  |
| 0,58 | 2,14E+08           | 1,30E+07  |
| 0,6  | 2,03E+08           | 1,09E+07  |
| 0,62 | 1,91E+08           | 8,81E+06  |
| 0,64 | 1,79E+08           | 6,64E+06  |
| 0,66 | 1,67E+08           | 4,42E+06  |
| 0,68 | 1,55E+08           | 2,16E+06  |
| 0,7  | 1,43E+08           | -1,42E+05 |
| 0,72 | 1,30E+08           | -2,49E+06 |
| 0,74 | 1,17E+08           | -4,88E+06 |

ПРИЛОЖЕНИЕ 2

### РЕЗУЛЬТАТЫ РАСЧЕТА КРИТИЧЕСКИХ И ПРЕДЕЛЬНО ДОПУСТИМЫХ РАЗМЕРОВ

#### ДЕФЕКТОВ В СВАРНЫХ СОЕДИНЕНИЯХ №23 ПГ ААЭС

Координаты:

по вертикали – *а/S* относительная глубина дефекта;

по горизонтали – С/Я протяженность дефекта в радианах.

Рис. П.2.1. Парогенератор ПГВ-4с (№ 1)



а) "Холодный" коллектор

Критические размеры дефектов в режимах: – НУЭ; – НУЭ+МРЗ; – ГИ.



Допустимые размеры дефектов в режимах: – НУЭ; – НУЭ+МРЗ; – ГИ.

б) "Горячий" коллектор



Критические размеры дефектов в режимах: – НУЭ; – НУЭ+МРЗ; – ГИ.





Рис. П.2.2. Парогенератор ПГВ-4с (№ 2)



"Холодный" и "горячий" коллектора





Допустимые размеры дефектов в режимах: – НУЭ; – НУЭ+МРЗ; – ГИ.
Рис. П.2.3. Парогенератор ПГВ-4с (№ 3)



а) "Холодный" коллектор





Допустимые размеры дефектов в режимах: – НУЭ; – НУЭ+МРЗ; – ГИ.

б) "Горячий" коллектор



Критические размеры дефектов в режимах: – НУЭ; – НУЭ+МРЗ; – ГИ.





Рис. П.2.4. Парогенератор ПГВ-4с (№ 4)



а) "Холодный" коллектор







б) "Горячий" коллектор



Критические размеры дефектов в режимах: – НУЭ; – НУЭ+МРЗ; – ГИ.





Рис. П.2.5. Парогенератор ПГВ-4с (№ 5)



"Холодный" и "горячий" коллектора







Рис. П.2.6. Парогенератор ПГВ-4с (№ 6)



а) "Холодный" коллектор







б) "Горячий" коллектор



Критические размеры дефектов в режимах: – НУЭ; – НУЭ+МРЗ; – ГИ.



Допустимые размеры дефектов в режимах: – НУЭ; – НУЭ+МРЗ; – ГИ.

ПРИЛОЖЕНИЕ 3

AKT

О ПРАКТИЧЕСКОМ ИСПОЛЬЗОВАНИИ

РЕЗУЛЬТАТОВ ДИССЕРТАЦИОННОЙ РАБОТЫ



AKT

О практическом использовании на Армянской АЭС результатов диссертационной работы Варданяна Арсена Мовсесовича «Оценка влияния условий эксплуатации на остаточный ресурс узлов парогенераторов энергоблоков ВВЭР-440»

Мы, Заместитель Генерального Директора по продлению эксплуатации Севикян Г.А., Заместитель Главного Инженера по безопасности ААЭС Атоян В.А., Начальник реакторного цеха Арсенян А.С., Начальник службы технического контроля (руководитель лаборатории металлов) Амбарцумян А., настоящим Актом подтверждаем, что методология расчетов критических и предельно допустимых в эксплуатации размеров несплошностей сварных соединений №23 и методика «Норм дефектов сварных соединений №23 патрубков Ду-1100 ПГВ-4с BBЭР-440», разработанная в диссертационной работе «Оценка влияния условий эксплуатации на остаточный ресурс узлов парогенераторов энергоблоков ВВЭР-440» используется в лаборатории металлов Армянской АЭС для обоснования допустимости выявленных индикаций, прогноза их развития и оценки остаточного ресурса узла приварки коллекторов теплоносителя к корпусам парогенераторов, обязательных для принятия решений о дальнейшем обращении с этими сварными соединениями и парогенераторов в целом (продолжение эксплуатации на номинальных параметрах, сокращение периодичности контроля и/или срока ремонта).

ЗГД по продлению ЗГИ по безопасности ААЭС Начальник реакторного цеха Начальник СТКиДМ

Севикян Г.А. Атоян В.А. Арсенян А.С. Амбарцумян А.В.