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INTRODUCTION

Relevance of the Subject

Conventional encryption algorithms are designed to be secure in the “black-box” attack
context, i.e. the attacker can observe the input and output of the encryption algorithm, but
cannot access the intermediate values generated during the software execution.

Yet in some cases, the encryption algorithm runs in a hostile environment, where the
attacker can see not only the input and output values but also has full access to all the
intermediate values generated during the software execution and can change the execution
at will. This means that an attacker can use different emulators, disassemblers and
debuggers such as IDA Pro system and others to analyze binary code of the software, see
values of variables during execution and change the execution routine. Any cryptographic
software running on these type of devices is operating in the white-box attack context (later
WBAC), which means that conventional black-box ciphers don’t provide the necessary level
of security for these devices.

White-box (later WB) cryptography algorithms are designed to be executed in such
untrusted environments and are said to operate in the WBAC. These algorithms are based
on the black-box algorithms, but instead of using the secure cryptographic key directly,
special look-up tables are built based on the key and the algorithm runs using those tables.
All the operations are performed using these tables in such a clever way, that the attacker
having access to all the tables and being able to observe the process of each encryption
operation and even modify it at will, is unable to extract the cryptographic key used for the
construction of the tables.

WB cryptography is a crucial part of several security-centric commercial products, such as
Digital Rights Management (later DRM) applications. It is used to effectively protect
cryptographic keys, which has often been the Achilles heel in DRM systems in the past.
Other benefits of using a WB algorithm are software traceability, tamper resistance,
renewability, and so on. This makes WB algorithms the most crucial element in the modern
DRM systems, such as iTunes, Amazon [1], and others. The initial versions of iTunes

employed black-box encryption algorithms and were broken in a matter of days, stopping
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Apple to sell movies on iTunes. In 2005, WB algorithms were used to increase the level of
difficulty of breaking the “FairPlay”, thus fixing the problem of content distribution control.
Wide usage of cloud storage systems providers like Dropbox [2], Google Drive [3], Box [4]
and Microsoft OneDrive [5] for storing emails, multimedia files, different records like
financial transactions, healthcare, tax documents, etc. resulted to the spread of data as a
service (DaaS) business model [6], [7]. The motivation for DaaS architecture was the
software as a service (SaaS) [8] architecture. In SaaS software deployment model the
software hosted on a web server is providing a service to manage your data. This way the
user of the DaaS system does not need to maintain the software and hardware
infrastructure, as it was for the conventional database systems. These DaaS providers have
access to all of the user’s files, which is a concern for some users. This gave birth to cloud
encryption gateways like Sookasa [9], nCryptedCloud [10], Boxcryptor [11] and SkyCryptor
[12], startups that provide encryption services to the users who want to keep their files
secure, while still storing them in the clouds of their choice. Users of these startups end up
storing only encrypted files on the cloud, thus taking away the ability of the provider to
access all the files.

The ability to search over this big encrypted data is a crucial feature of such service
providers. Though each user’s data is stored in an encrypted form on the servers of the
DaaS provider company, given a search token, the users are able to search over their files
in a secure manner. So the users are able to perform the file addition, modification,
deletion, search and file sharing operations without revealing any information about the
content of his/her files or the search keyword itself. Traditionally public key (later PK)
encryption algorithms were used in Searchable Encryption (later SE) schemes, yet WB
algorithms can replace them to provide efficient search functionality.

Another important application of WB cryptography is Oblivious transfer (later OT)
protocols. OT is an important cryptographic primitive, which has different applications and
plays an essential role in secure multiparty computation protocols. Most existing OT
protocols are based on public-key operations, which have slow execution speeds, making

the protocol infeasible to be used in practical applications. In the recent result [13] a novel
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OT protocol is presented, which replaces the public-key operations with WB cryptography
techniques resulting to sufficient performance improvement. The protocol also requires less
communication bandwidth. Such optimizations make secure function evaluation (later SFE)
applications practical for real-life applications.

WB algorithms can also be used as a fast alternative to public key cryptography in most of
applications, resulting to significant performance improvements.

The first WB implementation of AES [14] cipher was presented by Chow, Eisen, Johnson and
van Oorschot in 2002 [15]. The steps of AES algorithm were implemented using WB look-
up tables. WB diversity and ambiguity criteria were first introduced, and diversity and
ambiguity of all the tables used in the implementation were computed by the authors. The
security of each table used was proved. Yet the authors stated that the security of a group
of tables is not analyzed and needs additional research.

Chow’s AES WB was shown to be vulnerable to the BGE attack presented by Billet, Gilbert
and Ech-Chatbi in 2004 [16]. This attack targets a group of tables from Chow’s WB, viewing
AES round as four look-up tables, each mapping 4-bytes of input state to 4-bytes of output
state. This group of tables providing 4-byte to 4-byte mapping did not have the same
diversity and ambiguity properties as each particular table making the group. So it was
impossible to break each box separately, but a group of tables was successfully attacked.
The attack had a work factor of 23°, so could successfully extract the secure key from
Chow’s white-boxes in a matter of seconds.

In 2009 another attempt was made to build a secure AES WB by Yaying Xiao and Xuejia Lai
[17]. Xiao and Lai used the same structure of Chow’s tables, but instead of cancelling out
the mixing bijections (later MB) in the same round, tried to cancel them in the following
round. This would make the attacker analyze tables of all the rounds together, protecting
Chow’s tables from the BGE attack. Suddenly, this implementation was also broken in 2013
by Yoni Mulder, Peter Roelse, and Bart Preneel [18].

In 2010, another WB AES implementation was presented by Karroumi [19], which was
supposed to withstand the BGE attack. Karroumi used dual AES ciphers [20], [21] to build

the WB tables. In 2013, De Mulder, Roelse, and Preneel showed, that Karroumi’s and
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Chow’s implementations are equivalent, i.e. the BGE attack can be successfully applied to
both [22].

In 2013, yet another successful attack was introduced by T.Lepoint and M. Rivain [23],
which could be used to attack both Chow’s and Karroumi’s implementation with 222 work
steps. The attack was based on collisions on some table outputs. This new attack was not
only faster, compared to BGE attack, but was also much easier to understand and
implement.

Another approach to practically break WB algorithm was recently introduced by Joppe W.
Bos and Charles Hubain and Wil Michiels and Philippe Teuwen which uses Differential
Computation Analysis [24], the software version of the differential power analysis [25].
These WB implementations and effective attacks were researched, and a brief review of
each algorithm and attack is presented in this dissertation.

The first part of the research done in the scope of this dissertation refers to the creation of
a safe symmetric WB encryption algorithm based on Safer+ block cipher [26]. This
algorithm can replace its black-box alternative on the smartphones and other vulnerable
devices as well as get used in the search over encrypted data systems. Other important
applications include usage of the WB algorithm in oblivious transfer (later OT) protocols
and as a faster alternative to conventional public key encryption algorithms. As all existing
WB schemes ( [15], [17], [19]) were successfully attacked by different methods, the
presented algorithm is the only secure WB implementation to use. Performance analyses
and memory requirements are provided, showing high performance of the algorithm.
Security analyses were provided, describing several attacks on weakened variants and
comments regarding security against BGE attack.

A pioneering work by Diffie and Hellman [27] describing Diffie-Hellman key exchange gave
birth to the public key (later PK) cryptography. A fundamental work by Rivest, Shamir and
Adleman [28] presented the RSA cryptosystem. Another important development for PK
cryptosystems was the invention of Elliptic curve (later EC) cryptosystems [29].

The second part of this dissertation describes a white-box PK encryption algorithm based

on permutation polynomials. This algorithm can safely replace the conventional public key
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schemes like RSA [28] and EC [29] and is significantly faster compared to them, both for
encryption and decryption operations. The cryptosystem was first proposed by G.
Khachatrian, M. Kuregian in [30]. In current dissertation we provide modifications for this
system to improve the security and performance. The resulting algorithm is faster
compared to its predecessor at the price of slightly higher memory requirements. Several
implementation details are presented and performance analyses are made comparing it to
its predecessor and rival public key cryptosystems.

Finally, we provide some details of integration of the WB algorithms into the Secure Search

engine of SkyCryptor [12].

Objects of the Research

There were several attempts to build a secure WB implementation of a symmetric block
cipher, but all the existing algorithms were later successfully attacked with different
methods. Our research concentrated on those implementations and known attacks in effort
to build a novel WB cryptosystem which will resist all the attacks that were successful on
similar schemes.

Several WB implementations of AES block cipher [14] were researched including
implementations of Chow, Eisen, Johnson and van Oorschot [15], Karroumi [19], Yaying Xiao
and Xuejia Lai [17].

Different attacks on the existing ciphers were researched including the BGE attack [16], its
modification [22] and the collision attack by T.Lepoint, M. Rivain [23].

The PK encryption scheme proposed in [30] was researched and improved for higher
security and better performance.

Research and Implementation Methods

In the research general methods and concepts of classical cryptography are used.

C++ programming language and CryptoPP [31] library were used to implement the
algorithms and test them. Performance tests were made for comparing the speed of

presented schemes with the rival algorithms.



Scientific Novelty

1. A novel white-box algorithm was created based on Safer+ block cipher. The general
security analyses of the cryptosystem were presented, including comments regarding
resistance to the widely successful BGE attack [16].

2. The public key encryption algorithm based on permutation polynomials [30] was
modified for improved security and performance. The algorithm uses WB reduction for

encryption operation.

Practical Significance

The white-box (WB) algorithm based on Safer+ presented in this dissertation can be used in
different Digital Right Management (later DRM) systems, including video-on-demand
services and applications requiring distribution control for protected content playback.
Symmetric WB encryption is a crucial part of digital media distribution from iTunes,
Amazon Prime Video.

Oblivious transfer (later OT) protocol has a number of applications including an essential
role in secure multiparty computation protocols. Yet most existing OT protocols are based
on computationally ineffective public key operations. In the recent result [13] a novel OT
protocols is introduced, which replaces usages of PK operations with WB cryptography
techniques which results to significant performance improvements. The resulting algorithm
runs several magnitudes of orders faster and requires less communication bandwidth
compared with the older protocols. Yet this approach required usage of a secure WB
encryption algorithm, which didn’t exist before, since all the candidates got broken in a few
years after getting published. The WB algorithm presented in this dissertation can be safely
used in the OT protocol described.

Searchable encryption (later SE) is a technique for storing user’s files on a server in an
encrypted form without sacrificing the user experience of accessing the data. In recent
years many practical schemes have been developed for performing SE with optimal search
time and efficient memory consumption with reasonable security leakage. The most

practical schemes are based on the secure index approach. In [32] a method for
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constructing delegable (multi-user) SE scheme is presented which uses WB algorithm for
symmetric encryption. This is yet another practical application to the secure WB based on
Safer+ cipher presented.

The improved PK encryption scheme based on permutation polynomials can replace
existing public key systems like RSA [28], Diffie-Helman [27] or Elliptic curve cryptosystems
[29]. Replacing the conventional public key systems with their WB alternative presented

results to significant performance improvement in different applications.

Practical Implementation

Based on the results of the research a white-box (WB) algorithm based on Safer+ and
another WB algorithm based on permutation polynomials were implemented and tested.
The algorithms were integrated into SkyCryptor’s [12] secure search engine. SkyCryptor is
a startup, which provides zero-knowledge encryption for users who want to store their files
in any cloud in an encrypted form. SkyCryptor relies on the WB algorithms presented in
this dissertation for keyword encryption and proxy re-encryption operations, which are
crucial for searching over the user’s encrypted data and file sharing features.

The corresponding implementation certificate is appended to the dissertation.

Provisions Presented to the Defense
e A novel white-box algorithm based on SAFER+ block cipher, secure against the
widely successful BGE attack.
e An improved public key encryption scheme based on permutation polynomials with
white-box reduction on encryption procedure.
e A C++ library which implements the novel SAFER+ white-box algorithm for proof of
concept and performance testing.
e A C++ library which implements the new PK system based on permutation

polynomials.
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Approbation

The results of the work on dissertation have been presented at international workshop on
Information theory and Data Science, "From Information Age to Big Data Era", Yerevan,

Armenia, October 3-5, 2016.
Publications

The main topics of this dissertation are published in three publications:

[33], [34], [35].
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CHAPTER 1
PRIOR ART AND BASE FOR THE CONTRIBUTION

For a fixed plaintext space M, key space K and ciphertext space C, a black-box cipher is a
list of 3 algorithms (Gen, Enc,Dec), where Gen randomly selects a key keK, Enc(k; M) &
Enc (M) maps M into C with respect to a selected key k, and Dec(k; C) & Dec,(C) maps C
into M in such a way, that for any given k € K and m € M, Dec (Enc;(m)) = m.
A WB encryption/decryption scheme corresponding to the block cipher algorithm
(Gen, Enc, Dec) is a list of four (WBGenEnc, WBGenDec, WBEnc, WBDec) algorithms such that
given the secret key k € K, algorithms operate as follows:
o WB Encryption Tables T,,. are generated from k with algorithm WBGenEnc:
Tene < WBGenEnc (K)
o WB Decryption Tables T,,. are generated from k with algorithm WBGenDec:
T4ec < WBGenDec (K)
e Plaintext me M can be encrypted to the corresponding ciphertext ¢ given the WB

tables T, using WBEnc:
¢ < WBEncr, (m)

e The ciphertextc can be decrypted to the plaintext m e M using the Tz, and algorithm

WBDec:
m <« WBDecr,, (¢)
e ForanymeM, T,,. < WBGenEnc (k) the following statement holds:
m = Dec x(WBEnc, (m))
e ForanymeM, T, < WBGenDec (k) the following statement holds:
m = WBDecy, _(Enc,(m))
In some cases only the encryption boxes are considered, i.e. the algorithms
WBGenEnc and WBEnc are presented, because in most of the applications WB encryption is
done on client devices, and decryption is done on the secure server, i.e. the decryption
algorithm runs in a protected environment and does not need to be WB secure.
In this chapter we present the existing WB implementations of AES symmetric encryption

algorithm and known successful attacks on them. All known WB AES implementations were
13



successfully attacked. Later we present a novel WB implementation of SAFER+ algorithm,

which can safely replace AES WB in all of its applications.

1.1 WHITE-BOX IMPLEMENETATIONS OF AES AND KNOWN ATTACKS

There were numerous attempts to design a WB implementation of the Advanced Encryption
Standard (later AES) or Data Encryption Standard (later DES), all of which were later
broken.

The first WB implementation of AES block cipher was first presented in 2002 [15]. The BGE
attack [16] presented in 2004 showed that the secure master key can be extracted from
Chow’s implementation in 2°° work steps [16].

A WB implementation of DES [36] was also presented by Chow, Eisen, Johnson, and van
Oorschot in 2002 [37], which was broken in [38], [39]. Another attempt was made by
Hamilton and Neumann [40], which was trying to fix vulnerabilities in Chow’s DES
implementation. Yet several other attacks on DES were introduced later, which operate on
all implementations of DES [41], [42].

In 2006, perturbed AES tables were presented [43], which were broken in [44].

In 2009 another attempt was made to build a secure AES WB by Yaying Xiao and Xuejia Lai
[17], broken in 2013 by Yoni Mulder, Peter Roelse, and Bart Preneel [18].

In 2010, Karroumi presented a modified version of Chow’s algorithm based on dual
ciphers, which was designed to withstand the BGE attack and increase the work factory of it
to 293 [19]. In 2013, De Mulder, Roelse and Preneel proved that Karroumi’s and Chow’s
implementations are identical and the BGE attack can be applied to Karroumi’s
implementation with minor modifications [22]. Also several speed optimizations were
presented, after which just 2* work steps are required to extract the key.

In 2013, yet another successful attack was introduced by T.Lepoint and M. Rivain [23], [45],
which could be used to attack both Chow’s and Karroumi’s implementation with a work
factor of 222 work steps.

Another work was presented in 2009, describing an attack on any WB implementation of

any SLT cipher which satisfies the given condition on diffusion matrix [46].
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In 2013, a paper was published describing the general security notion expected from a WB
algorithm. The authors came up with several desired security properties for WB programs,
such as traceability, one-wayness and incompressibility[47].

Despite the general results concerning impossibility of software program obfuscation [48],
the implementation of secure WB for block ciphers can be possible. The fact that all publicly
known white-boxes have been successfully broken does not proof the impossibility of

existence of another WB algorithm for another block cipher.

1.1.1 AES BLACK-BOX ENCRYPTION

AES is a substitution-permutation network cipher for symmetric encryption also known as
the Rijndael cipher [14]. It supports key lengths of 128, 192 or 256 bits and has 10, 12 or 14
rounds, respectively. AES-128 will be considered as the primary setting in the rest of this
paper. Each round updates a 16-byte state and consists of four operations: SubBytes,
ShiftRows, MixColumns and AddRoundKey, except the final round, where the MixColumns
operation is omitted.

ShiftRows transformation shifts 2nd, 3rd and 4th rows of the table 1, 2 and 3 times to the
left, respectively.

MixCoumns is a transformation applied on the columns of the state matrix. Each column is

2 3 1 1

L . |12 31
multiplied with a fixed matrix MC = 11 2 3|

31 1 2

AddRoundKey operation simply XORs the state with the next key, generated by the key

schedule.

15



128 bit Plaintext

T
AddRoundKey(0)

v N
SubBytes
ks
ShiftRows

v >

MixColumns

v
AddRoundKey(K;)
v
SubBytes

-
ShiftRows >

v
AddRoundKey(Ky, )
- —

L3(1) punoy

[=IN€ |

P

punoy [eut |

128 bit ciphertext

Figure 1.1: Structure of AES black-box encryption [14].

S-Box . . .
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So0 | 521 [ S22 523 Sao0 | 521 | S22 | 523
S30 530 [ 32| 933 S30 | 31 | $32 | 533

Figure 1.2: AES SubBytes operation [14].
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ShiftRows ()

e A

1 ! 1 r

Sro|Sra|Sr2]5,3 SeolSra [Sra]5:3

SU,O SO__I SO,E S{},B SO_O SO._] SDﬁE SD,B

So | Su [ S12 | 513 m S| Si2 | i3 | Sio
S20| 521 | 522|523 rmjjﬁ S22 | S23 | 2.0 | S2
2553 ]_D:Ij:'j S35 | 530 | S0 | S32

Figure 1.3: AES ShiftRows operation [14].

For purpose of creating a WB implementation for AES, we can view the algorithm in a
different manner. One can notice that SubBytes and ShiftRows operations can be safely
switched without any change in the output. Also because the ShiftRows is a linear
transformation,

AddRoundKey(K;) followed by ShiftRows is identical to ShiftRows followed by
AddRoundKey(K;), where K; is the result of applying ShiftRows operations on K;. These

allow us to change the AES structure to the one in Figure 1.5.

17



MixColumns ()

— o~ -
S0.0 Joc E{: So0.3 *;;? S0 505 | o3
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82,0 %2 $22 [ 523 S2.0 2. S.:z_,z 312__3
830 Slc S32 533 3.0 S;uf«‘ Sr3__2 S;;,?,

Figure 1.4: AES MixColumns operation [14].
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SubBytes
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AddRoundKey(Ky ) |
h 4
128 bit ciphertext

13(1) punoy

[=IN€

AN

punoY [euI.]

Figure 1.5: Modified structure of AES algorithm [14].
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1.1.2 CHOW’S AES WHITE-BOX IMPLEMENTATION

In 2002, Chow, Eisen, Johnson and van Oorschot proposed the first WB implementation of
AES-128 [15]. Instead of calculating the function Ex on the plaintext, another function
Ey = IDE = Ex * ODE~! is computed, where IDE and ODE are input and output data
encodings, which are randomly generated independent of K. Since in some cases it’s
infeasible to have input and output encodings of the desired bit length, some encodings can
be represented as a concatenation of smaller bijections.

A bijection F of size n = ny +n, + -+ + n, can be built from a list of smaller bijections F;,

where F; has size n;, and for any n-bit vector b = (by, b, ..., by,),

F(b) = Fy(bs,, b,) Fa(Bryas - Brgeny) o Fic (Bryotmgar o b ).

In this case we say F = F; || F2|| ... || Fx, and call F a concatenated encoding.

The encryption algorithm is implemented as a sequence of look-ups from different tables.
The output encoding of any table matches the input encoding of the table following it, so the
encodings can cancel each other. After the encryption routine is over, the value of
Ex = G = Ex = F~1 is properly computed, as any intermediate encodings are cancelled out.
We will present an unprotected implementation first, to describe the tables we’ll need, and

then describe the modified protected version of the tables.

1.1.2.1 UNPROTECTED IMPLEMENTATION

For each round, AddRoundKey and SubBytes transformations can be made using 16 look-up
tables that map 1 byte to 1 byte for each round. These tables are called T-Boxes, and are
defined as follows:

TF(x) = S(x ® k,_4[i]), fori=0..15andr =1...9,
T0(x) = S(x @ kolil) D kyoli], for i =0...15.

It’s obvious, that T-boxes have no security and the attacker can easily extract the keys from
the T-boxes, if those were provided. So additional encoding is applied on the T-boxes,

before they can be used.
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After the state vector passes through the T-boxes, MixColumns operations must be applied

on it. MixColumns operation multiplies each 4 bytes of the state vector [x;, x,, x5, x,4] with
1

the MC = matrix. This can be accomplished by the so called T, tables where

(VSN
=N W
_ N W R
N W

T, (x) = x - [0201 01 03]",

T, (x) = x - [03020101]",

T, (x) = x - [01030201]",

T,,(x) = x - [01010302]".
So T,,,-boxes are 1 byte to 4 byte tables. The outputs of each 4 consecutive T, tables must be
XOR-ed to get the output of the round, i.e. T, (x) @ T, (x) ® Ty, (x) © Ty, (x).
XOR tables are used for this purpose:

XOR(x,y) =xDy.

XOR tables operate on 2 nibbles (4-bit values) each, so they are 1 byte to 4 bits mapping
tables. The XOR of two 32-bit values can be computed using 8 copies of these XOR tables

as shown in Figure 1.6.

32-bitinput 1 32-bitinput 2

4 41 4 4144 414 414 4 45 4 1 1 414
XOR /\ XOR /\xoa /\xoa /\XOH. /\xoa /\XOR /\xoa /
1 T T Y T T ey
Figure 1.6: Applying XOR operation on 2 32-bit values using 8 4-bit XOR tables.

One can notice that T-boxes and T, boxes can be combined into a single table. These tables

will look as follows:
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Ty, (T7 (%)) = S(x + k,—4[i]) - [02 0101 03], (1.1.2.1)

T, (TF (x)) = S(x + k,—4[i]) - [03 0201 01]7, (1.1.2.2)
T, (TF (x)) = S(x + k,—4[i]) - [01 03 02 01]7, (1.1.2.3)
Ty, (T7 (x)) = S(x + k,—4[i]) - [01 01 03 02]". (1.1.2.4)

Then the outputs of these tables must be passed through XOR boxes to get the round’s
output.

So there will be 144 composed T — box/T,, tables, 864 XOR tables and 16 T-boxes total for
all the rounds of AES together. These boxes are not secure against key extraction. The next

section will change these tables to apply some defense mechanisms against different attacks.

1.1.2.2 PROTECTED IMPLEMENTATION

As there are just 256 possible values for k" 1[i], one can build a T — box / Ty, table for each
of these values, and check if the table we provide matches any of those. This will allow an
attacker to extract the key from T — box/Ty; tables.

In order to prevent this, input and output encodings are applied to all the tables. The
encodings are applied in a networked fashion, so all the encodings except the input
encoding of the first round F and the output encoding of the last round G neutralize each
other, and the function Ex = G0 Ex © F~' is calculated by using these tables, where o
stands for function composition. Here G and F are concatenated encodings of 128 bits,
made of 16 bijections of 8 bits each. These encodings dramatically increase the total
number of possible tables. There are 16!% possible input encodings and 16!® output
encodings per table. It’s obvious that for a fixed input key, the tables constructed for
different output encodings are all different. This means that there are at least 16!® possible
tables, which makes it impossible to the attacker to enumerate.

As the input/output encodings provide the confusion step for the tables, linear
transformations are applied to produce the diffusion step. The table input/outputs are
multiplied with randomly generated matrices over GF(2) which are called mixing bijections

(MB).
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16 8-bit to 8-bit MBs are randomly generated and applied at the inputs of each round

except the first. Let’s denote mixing bijection for byte i in round r as L}. Another 4 32-bit to

32-bit mixing bijections MB], i = 1,4, r = 1,9 are applied to all the rounds outputs except
the last one. So after these changes, the results that we get after applying XOR tables will
need to be multiplied with the inverse of the mixing bijection (MB/)~* and (L}*')~%,s0 the
effect of MB is cancelled, and the inverse of L7 is applied' so it can get cancelled in the
next round. This is done with the same technique as the MixColumns step, and additional
XOR tables are created for this.

4 types of tables are used in the WB, shown in Figures 1.7-1.10. Type | tables compute the
strips in input permutation F and ODE , and represent a pair of 4-bit decodings, followed
by an 128x8 matrix, then thirty-two 4-bit encodings. These tables are used in round 1 and

10 only, 32 tables are required, 28 « 128 bits = 4096 bytes each.

4-bit 4-bit
input input
decoding decoding
128 x 8
matrix
HEN HEN HEN
4-bit 4-bit 4-bit
output output ¢ & & | output
encoding encoding encoding

Figure 1.7: “extern_encode” table for input and output, type 1 [15].

Type Il tables compute the strips in the first half of a round transformation. These represent
two 4-bit decodings, then an 8x8 mixing bijection, followed by a T-box, then an 32x8
matrix, and finally eight 4-bit encodings. These tables are used in rounds 1-9,s0 9 * 4 * 4

= 144 tables are required, 28 = 32 bits = 1024 bytes each.
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L L
4-bit 4-bit
input input
decoding decoding
[T 1] [ 1]
8x8
mixing
bijection

Lj
ERNEEER

32x8
matrix

[ L[] L] L]
4-bit 4-bit 4-bit
output output * ** | output
encoding | | encoding encoding

IREAR T
Figure 1.8: “Sub” table, type 2 [15].

Type Il tables compute the strips in the second half of a round transformation,
representing two 4-bit decodings, followed by a 32x8 matrix, and then eight 4-bit
encodings. These tables are used in rounds 1-9, so 9 * 4 * 4 = 144 tables are required,

28 x 32 bits = 1024 bytes each.

4-bit 4-bit

input input

decoding decoding

| |||32X8| [ ]

matrix

HEE HEN HEE
4-bit 4—bit 4-bit
output output ¢ ¢ ¢ | output
encoding encoding encoding

IR RN

Figure 1.9: “Untwist” table, type 3 [15].
Type IV tables compute the GF(2) additions, representing two 4-bit decodings, the known
XOR operation, and a 4-bit output encodings. These tables are used in groups for applying

XOR operation on values of higher bit-length. In each of rounds 1-9 twelve 32-bit XORs are
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required and as 8 XOR tables are required to compute a single 32-bit XOR, a total of 9 * 2
*4*8* 3 =1728 type 4 tables are required adding up the outputs of type 2 and 3 boxes,
and another 2 * 32 * 15 = 960 tables are required for adding up the outputs of type 1

boxes. So 2688 type 4 boxes are required in total, 28 « 4 bits = 128 bytes each.

4-bit 4-bit
input input

decoding decoding

4-bit
output

encoding

Figure 1.10: “XOR” table, type 4 [15].

The structure of a complete AES round 2 for first 4 bytes of state of Chow’s WB is shown in
Figure 1.11. AES 16-byte state is divided into four 4-byte parts, and the encryption is
procedure is executed separately on them. Similar boxes are applied on the other bytes of
the 16-byte state. Rounds 3-9 are similar. For the first round, the input mixing bijections

(MBs) are skipped and type 1 tables are used.

24



B
3 i
i 2 i
7 {,/' Tir, 7 T
ME MB Mz M
S RXORs
T EXOHs
8 &
M, M ! wog!
i e i
. AXORs
12
af AL ma o=

il 1 2 4 4 i L 7 4 a 1 11 12 13 14 16

Figure 1.11: Structure of a complete AES WB round 2. Rounds 3-9 are similar. For round 1

the only difference is the absence of input mixing bijections on the T-boxes [49].

As we see in Figure 1.11 the encryption on the first 4 bytes is done with the following steps:

o All 4 bytes pass through the T — boxes and MBs using Type 2 tables.
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e The four 32-bit outputs get XOR-ed using 24 type 4 tables.

e The inverse MBs are applied using type 3 tables.

e The four 32-bit outputs get XOR-ed using 24 type 4 tables.
The total size of the lookup tables of this implementation is 32 * 4096 + 144 x 1024 + 144 *
1024 + 2688 * 128 = 770,048 bytes. There are 3104 lookups during each execution [15].
For a more detailed description of Chow’s WB AES refer to [15] and [49].

1.1.3 MIXING BIJECTIONS ARE NECESSARY FOR CHOW'’S IMPLEMENTATION

In this chapter we briefly describe an attack on Chow’s WB tables which could possibly work
if MBs were not used, and the tables were protected only with input/output encodings. It is
shown in [15] how to extract input/output encodings and secure key bytes having
T — box/Ty; tables of round 2 defined by formulas 1.1.2.1-1.1.2.4 using frequency analyses.
So we have 3 different values to attack:

01-S(x+ kr_1[i1),02 - S(x + k,_4[i]),03 - S(x + k_4[i]).
Each value is given by two 4-bit nibble pair, with an output permutation applied on it. The

first 4 rows of AES S-box are provided in the table 1.1.3.1.

Table 1.1.3.1: The first 4 rows of AES S-box [49].

63 7C 77 7B F2 6B 6F C5 30 01 67 2B FE D7 AB 76

CA 82 C9 7D FA 59 47 FO AD D4 A2 AF 9C A4 72 CO

B7 FD 93 26 36 3F F7 CC 34 A5 E5 F1 71 D8 31 15

04 C7 23 C3 18 96 05 9A 07 12 80 E2 EB 27 B2 75

The number of times each left nibble value occurs in the first row is shown in the following

table.

Table 1.1.3.2: The frequencies of each value as a left nibble in the first row of S-box [49].

0123456789ABCDEF
1011004400101 102
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By sorting the entries in the table 1.1.3.2 in descending order we get 4421111110000000.

So if we take the outputs of 01-S(x + k,_1[i]) and apply this operation of both left and
right nibble of its outputs, the value we’ll get is called frequency signature [15].

One can notice, that frequency signatures do not depend on the 4-bit input-output
encodings used, so no matter which encoding you use, the resulting signatures are the
same, and depend only on the key bytes. Similar to the row signatures column signatures
can be built. So two sets R and C are built, which contain 16 row and column signatures for
each byte. It can be programmatically checked, that the values of R and C are distinct for
each key. Using the values of R and C for the given T — box/Ty; tables Chow et al.
presented an attack for key extraction [15], [49]. After the application of MBs these
frequency signatures are dependent not only on the key, but also on the chosen random

bijection, which makes this attack impossible.

1.1.4 BGE ATTACK
BGE attack, introduced in 2004 [16], targets not a single table from Chow’s
implementation, but a group of tables, which form the AES round. As each table has good
confusion and diffusion properties, it’s hard to extract the key from a single table, but
attacking a group of tables is more reasonable. The AES round is viewed as four 32-bit to
32-bit mappings R}, where the structure of R} is shown in Figure 1.6. P's are a combination
of input encodings and mixing bijections(MBs), Q/s are a combination of MBs and output
encodings. As MBs are already canceled out after these 2 steps are performed, they have no
effect any more.
The BGE attack consists of 3 phases:

e The values of P/'s and Qs are recovered up to an unknown affine transformation.

This allows us to replace transformations P and Q; with affine transformations.

e The values of P and Q] are recovered completely.

e Having P/ and Q;, the AES-128 private key is extracted from the WB tables.
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Figure 1.12: Rg mapping, 1 of the 4 mappings that make the AES round.

Let’s denote the inputs of R{ as x,, x4, x5, x3 and the outputs as y,, y;, v, v3, where

Yo = Qo(02 - Tg(Py(x0)) @03 - T{(P{(x1)) @01 - T7(P;(xz)) @D 01 - T3 (P5(x3))),
y1= Q1(01- Tg(P5(xp)) @02 - T{ (P (x1)) D03 - T3 (P;(x2)) @ 01 - T3 (P3(x3))),
y2 = Q2(01 - Tg(Py(x0)) @01 - T{(P{(x1)) @ 02 - T;(P;(xz)) @ 03 - T3 (P5(x3))),
¥z = Q3(03 - Tg(Pg(x0)) D01 - Ty (P{(x1)) © 01 - T7(P;(xz)) @D 02 - T3 (P3(x3)));

Now, having these tables, we must find a transformation Q" such that
0 =Qr o4,
i.e. Q7 differs from Q7 by an unknown affine transformation A7 .
So y, is a function of 4 parameters x,, x4, x,, x3. Let’s fix the values of x; and x, to ¢; and

c,, respectively, and give 2 different values to x5, namely c; and c3. We will get 2 functions:
Vo(xq,€1,¢2,¢3) = Qo (02 * Tr(Pr(xo))) + B, cy 50

Yo(xo,€1,¢2,¢3) = Qo (02 * Tr(Pr(xo))) + B eyl
From these 2 equations we get:
Yo (X, €1, €2, €3) © ¥ (X9, €1,€2,63)™F = Qo © B0 Qy 7,
where B = B cyes T Bcl,c2,c§'

If we vary the value of ¢} so it can take all the possible 256 values in GF(28), the value of B

will also take all the 256 different values. This gives us a set of 256 functions S =
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{Qo °®5° Q5" }pecr(28), Where Qo is a permutation of GF(2°). This set of bijections forms a

commutative group under composition. Billet et al provide a technique to recover the value
of Qo up to an unknown affine transformation, given this group of functions S. Once this is
done, we can change all the tables to use Aj instead of Q] which significantly weakens the
confusion properties of the tables. As the output encodings Q match the input encodings of
the next round P then the values of P can also be changed to affine.
Now we will shortly review the algorithm of recovering the input and output encodings
completely, given they are already changed to be affine. For any round we can write a set of
equations, describing the mappings R;] as

Yo = Qo(02 - Tg(xo) B 03 - T{(x;) @01 - T;(x;) @ 01 - T5(x3)),

y1= Qi(01- Tg(xo) @02 - T{(x;) @03 - T;(xz) @ 01 - T5(x3)),

¥z = Qz(01 - Tg(xo) © 01 - T{(x,) B 02 - T3(x2) @ 03 - T5(x3)),

y3 = Q3(03 - Tg(xo) © 01 - T{(x,) B 01 - T3(x2) @ 02 - T5(x3)),
where T; = T; o P;, and the round number r was dropped, since the equations are the same
for all the rounds.
The algorithm is provided in [16], by which for each pair (y;,y;) we can find a linear

mapping L and a constant ¢ such that

¥1(x0,0,0,0) = L (;(x,0,0,0)) D c.

The algorithm requires less than 2'¢ work steps to compute the values of L and c, i.e. the
mapping between y; and y;can be found. This means, that having the affine parasite Aj for
one value of i we can compute the values of the other 3 affine parasites A}, spending less
than 21® work steps on each. So now all we need to do is find the affine transformation A7
for just one value of i.

Having affine transformations as input and output encodings and the algorithm to find the
values of L and c for each pair of (y;,y;) the values of Q; and P; are determined, which is
described in detail in [16]. Also the fact, thatT;(x) = S(x @ k;), i.e. the mapping
x » STtoT;0P(x) =Pi(x) @ k;is affine, is used for recovering the affine parasites up
to the key addition. Then having these values and using the simple structure of AES key

schedule, the secure key is recovered.
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1.1.5 PERTURBED AES WHITE-BOX

In 2006, perturbed AES WB implementation was presented [43]. This WB scheme relies on
the Isomorphism of Polynomials (IP) problem [50]. In order to tightly link the rounds
together and prevent any attack targeted at a single round, specific terms are added to the
first round, which are carried over up to the last round, where they are cancelled out. An
AES WB implementation is presented, where the S-boxes are secret and unknown to the

attacker — called Advanced Encryption without standard S-boxes (AEw/oS).

1.1.5.1 BRINGER ET AL.’S PERTURBATIONS

Let 0 be a polynomial which often equals to 0, and denote P = P + 0 for any polynomial P.
The idea of [51] is to replace the original systems of polynomials G;; by G;; and insert
random linear transformations between each pair of rounds to hide this modification [43].
The algorithm of building several correlated polynomials 0 is provided in [51]. This allows
creation of a set of white-boxes with modified S-boxes in each of them. As 0 equals O often
enough, the actual result can be obtained by majority vote, if enough white-boxes are

present. This modifies the set of equations the attacker must analyze to break the cipher.

1.1.5.2 MODIFIED AES WHITE-BOX
The operations in a single round of AES can be defined as systems of n = 16 equations
in GF(28) with 4 variables each. The last round gives a system 16 equations, each having
around 255 terms of a degree less than 254. Four correlated polynomials 0 are selected in
a special way, such that for any input, 2 polynomials are equal to zero while the other 2 give
different values. This way having 4 white-boxes the real result will be distinguishable by the
majority vote.
Several modifications were made to the initial AES WB:

e Random variables are added in every round except the last one to dissimulate the

information.
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e Specific terms are added to the first round, that are carried round after round, up to
the last one, where they are canceled out.
e Corresponding polynomials are added to the last round, such that they vanish when
the correct value is reached. In this way, intermediate results of each round are ‘false’
with a high probability as the specific terms added in the first round perturb all the
intermediate values until they are cancelled in the last round [43].
The size of the described WB is 142 MB, and as the authors state that the presented system
has to be improved to be practical for execution on a general purpose processor. Huge size

of the WB tables and slow performance make this implementation practically infeasible.

1.1.6 XIAO-LAI WHITE-BOX AES ALGORITHM

In 2009 another attempt was made to build a secure AES WB by Yaying Xiao and Xuejia Lai
[17]. The main idea is to add a mixing bojection MB before MixColumn matrix and cancel it
in the next round. For that, let’s define a mixing bijection MI as

MI" =TT o MC o (MB™"Y) toMC™ o (T"), forr = 2,..,9.

r

—> Tu. > > » —
1]
r

— Tl,j+1 > > > >

MI’ MB* MC

r - - -

— Tz.j” » = > —
r - - -

—P Tj.j+3 > > > —

Figure 1.13: AES WB round using MI.
A single AES round for 4 bytes is shows in Figure 1.13. In order to improve diffusion

properties of the table, additional 8x8 mixing bijections are applied on each byte of the

output and canceled out in the next round, so the final structure of the round is depicted in
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Figure 1.14. In order to encrypt a message using structure defined

modifications to Type 2 tables of Chow’s implementation are required.

— In > mb, Ty,
— In 1 mb; T ;.
- In > mb; T; .2
— In > mbj T, s

MCoMB'" o MI"

in Figure 1.14,
(mb;*')™ Out
(mb*)™ Out —~
(mb3*)™ Out >
(mb3*)™ Out

Figure 1.14: AES WB round structure of Xiao-Lai implementation.

Also several modifications were made to type 1 tables. Input and output encoding F and G

are used, where is composed of a non-linear input encodings and a linear bijection U.G is

composed of a linear bijection V and non-linear output encodings. Type 1 (a) tables, shows

in Figure 1.15, are applied on the inputs of round 1 to apply the input encoding F and the

inverse of MB', so the MB applied in round 2 will be canceled out. V is integrated into the

last round, so table type 1(b), shown in Figure 1.16, is used [17]. The total size of the WB

tables is 500 KB.
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Figure 1.15: type 1(a) table.
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Authors state that this implementation will resist the BGE attack, as the mixing bijection MB

Figure 1.16: type 1(b) table.

is never completely canceled out. The BGE attack attacks a group of Chow’s WB tables,
such that MB is already cancelled out and has no effect any more. In the described

implementation this is not possible any more, as MB is removed only in the next round.

1.1.7 KARROUMI’S AES WHITE-BOX IMPLEMENTATION

In 2010 Mohamed Karroumi presented a modification of Chow’s AES WB algorithm, which
was supposed to withstand the BGE attack [19]. The algorithm is based on usage of AES
dual ciphers. AES dual ciphers were first presented in [20] with a list of 240 ciphers. This
list was further expanded to 61,200 ciphers that are dual to AES in [21]. For each of these

dual ciphers, there exists an affine transformation 4 that maps AES plaintext P, ciphertext C
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and key K into plaintext Py,,;, ciphertext Cy,q and key Kg,q of a dual AES, i.e. Py,q =
A(P), Cauar = A(C) and Kgyar = A(K).

In Karroumi’s WB implementation, for each of 10 rounds of AES a dual-AES is selected
randomly. SubBytes constants, MixColumns matrix and the key of the corresponding dual-
AES cipher are used for building the T — box/T,, tables. In order to get the same output
values for the same input values as Chow’s AES algorithm, affine transformation Ar must be
applied at the input of each round, and Ar” at the output of the round. The outputs of each
round of this implementation will be different from Chow’s outputs as different SubBytes

and MixColumns values are used, but the final round outputs will match.

HUOH Uil il goi
Por P4 Por P3r
(g G i

Arx Arx Arx Arx
Al AT A1 Al

muur o diy I
Tor Tir || T2' || Tsr
o g gud g

MC

myur o g gy
Qo” Qqr Qar Qs
(ITEE TR0 OETEE O

Figure 1.17: Dual AES round structure.
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One can notice, that as each 4 output bytes of an AES round depend on only 4 input bytes,
4 different dual ciphers may be used in each round, so employing 40 different randomly
chosen dual ciphers in total. These changes will not affect the general structure of the
tables, so the speed and memory requirement will be identical to Chow’s implementation.
Karroumi argues that the attacker will need to brute force these randomly chosen dual
ciphers, which will increase the security to 2°*. The detailed description of this

implementation can be found in [19].

1.1.8 ATTACK OF LEPOINT AND RIVAIN FOR BOTH CHOW’S AND
KARROUMI’S IMPLEMENTATIONS

In 2013, another successful attack was presented by Lepoint and Rivain [23]. The attack
requires 222 work steps, is simpler to implement than the BGE attack and can be applied on
both Chow’s and Karroumi’s white-boxes. For this attack, the AES round is viewed as
application of function f on 4 bytes of the state, where f is defined as

02 03 01 01 S(xo D ko)

, 01 02 03 01 S(xs D ks)
fi(oxsx0xs) > | o1 07 02 03 |® S(x10 @ kyo)
03 01 01 02 S(x15 @ kys)

Let’s denote by E; = (P;|| P;1) © L; and E{ = (P/,||P{;) © L}, where P, ; are input encodings

(1.1.7.1).

and L; are mixing bijections. Chow’s WB algorithm can then be expressed by a function f’,
where
f' = (EolIELNIES|IES) © f o (Eg™ || Es ||Exo |1Exs)) [23].
Function f' can be computed using Chow’s WB tables, by putting together all the tables that
build a single AES round. Let’s denote by f; the coordinate functions of f’, such that
f'=Uo fi. f2, 13)-
Then let us denote by S; the function
Si(x)=S$ (k,- D Ej_l(x)).
Then the attack recovers the functions S; by looking at the collisions of the function f”.

Particularly, for recovering S, and S;, we look at the collisions of form

fO’ (C(, 010;0) = fOI (O’ ,8' 0'0)'
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which can be written as

E((02 - Sy(a) @ 03 - S5(0) @ S10(0) D S;5(0))

= E((02 - Sp(0) @ 03 - Ss(B) @ S10(0) D S;5(0)),
from which we get
02 - So(a) @B 03 - S:(0) = 02 - S,(0) @ 03 - S=(B).

There are always enough collisions in the outputs of function f; to construct enough such
equations and solve them for the values of S, and Ss. Actually functions
a - f,(a,0,0,0) and B+ f;(0,5,0,0) are bijections, so there will be exactly 256 collisions
for all 256 possible values of a and 3, giving us 256 linear equations. If we look at the other
collisions of form f/(«,0,0,0) = £/(0,5,0,0), we will get 256 linear equations from each of
i = 0..3, so 4*256 linear equations will be built. Some of these will be irrelevant or
repetitive, but this system of 4*256 linear equations with just 2*256 unknowns S,(«) and
Ss(a) can always be solved.
In a similar way the rest of the values of S; can be recovered.

After recovering the values of S;, the next step is the key extraction. It’s easy to notice that

f3(@,0,0,0) = Ej ((02 - Sy(@) @ 03 - S5(0) @ 510(0) @ 515(0))),
which means having the values of f; and S;, we can easily compute the value of function Ej.
Other values of E; are recovered similarly.
Having the values of E;, the key can be extracted by checking all 256 possible values for the

key byte. It’s easy to check that function

15
0’ =) E(T ) ©F),000)
a=0

equals to O when the value of k, equals to the value of the secret key, used in the
construction of the white-boxes [23]. So one can easily run over the 256 possible values of
ko and check which one is the real key byte. Then the same is done for the other key bytes.

The bottleneck of this attack is the recovery of the values Sy, Ss, S10, S15, which requires ~222

operations.
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1.2 APPLICATIONS OF WHITE-BOX CRYPTOGRAPHY

Initially WB cryptography schemes were created to be used in DRM systems and for
software protection of cryptographic keys for the cases, when the software runs in
unprotected environment. Later WB algorithms found applications in Oblivious Transfer
(OT) protocols, Secure Pattern Search, Secure Multi-party computations and SE algorithms,
as more computational-efficient replacement of traditional PK cryptography. In this section,
we describe these applications of WB cryptography in more details.

1.2.1 DRM AND SOFTWARE PROTECTION

Cryptography is increasingly deployed in applications which run on unprotected devices
(such as PCs, smartphones or tablets). On this kind of devices, gets full access to all the
intermediate values generated during the software execution and can change the execution
at will. This means that an attacker can use different emulators, disassemblers and
debuggers such as IDA Pro system and others to analyze binary code of the software, see
values of variables during execution and change the execution routine. Any cryptographic
software running on these kind of devices is operating in the WBAC. This makes WB
algorithms an essential part of any encryption routine running on such unprotected devices,
as usage of conventional black-box algorithms will allow the attacker to directly read the
cryptographic key from device’s memory during the execution.

WB cryptography is a crucial part of several security-centric commercial products, such as
Digital Rights Management (later DRM) applications. It is used to effectively protect
cryptographic keys, which has often been the Achilles heel in DRM systems in the past.
Other benefits of using a WB algorithm are software traceability, tamper resistance,
renewability, and so on. This makes WB cryptography an essential part of any software
security strategy for cryptographic software running on unprotected devices. This technique
enables digital media distribution from Amazon Prime Video, iTunes, and others, which
actively use software DRM protection. The initial versions of iTunes used black-box
cryptography and were famous for being broken by Jon Lech Johansen (DVD John) in a
matter of days. In 2005, Apple switched to using WB encryption algorithms, which resulted

to the increased level of difficulty in breaking “FairPlay”, breaches to the DRM were
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stopped, allowing the company to sell movies on iTunes. WB algorithms decrypt movie on
the fly, allowing the user to watch it, but without letting the attacker observe any portion of
the secure key. This is achieved by making the encryption algorithm run using specially built
look-up tables. The attacker must be unable to derive the secret master key based on the

tables, yet the encryption must be performed correctly.

1.2.2 EFFICIENT OBLIVIOUS TRANSFER PROTOCOLS

“1-out-of-2” Oblivious transfer (OT) protocol can be described in the following way. Alice
(the Server) possesses two data items in a database: k1 and k2. Bob (the Receiver) secretly
requests a single item from Alice. OT is a protocol which describes the communication
between Bob and Alice, such that Bob requests Alice to send him one of the items, yet in
such way that Alice does not learn which item was sent, and Bob does not learn the value of
the other item. There are also many generalizations of the basic OT protocol and one of the
most important generalization is 1 out of n OT. 1-out-of-n OT means Alice (the server) owns
n secrets, namely s;,s,,..,s,, and Bob(the client) wants to get the values of s;. Alice must
return the value of s; to Bob, without learning the value of i, and Bob must get the value of
s; without learning any other information about the secrets. OT protocol plays a key role in
secure multiparty computation protocols.

Most existing basic and generalized OT protocols are based on slow PK operations, which
makes them infeasible to be used in most of their applications. In the recent result [13] a
novel approach for designing OT protocols is introduced, which replaces PK operations with
WB cryptography techniques. This results to significant performance improvement and
reduction of necessary communication bandwidth for OT protocol. This makes it practical to

use OT protocols as a part of secure function evaluation (SFE).

1.2.3 SECURE PATTERN SEARCH ALGORITHMS

Secure pattern matching (SPM) algorithms considers the following problem. The first party
(client) has a Deterministic Finite Automata (DFA) (or regular expression) I' as long as the
second party (server) has a string X. Their objective is to check whether the string X
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belongs to the language generated by the I' allowing both parties to learn the answer so that
neither the client nor the server learned any additional information about the input of each
other.

This problem and its variations have numerous application: lots of problems which are
associated with two-party secure and private communication result to this problem. One
such example is searching the number of appearances of some given DNA pattern in the
server’s DNA storage, without client revealing to the server the pattern searched, and
without the server providing the DNA of any person to the client. Another popular
application is checking the client’s credit history by the bank, to see if the client is
trustworthy, without getting the full credit history of the client. Secure pattern matching
problem and its applications have been actively discussed during recent years [52], [53],
[54], [55], [56], [57], [58], [59].

SPMs are compared to each other based on the the number of client-server communication
rounds, the required bandwidth and computational resources. The recent result [60]
presents an SPM algorithm similar to the “Efficient Protocol for Oblivious DFA Evaluation”
construction described in [52], but unlike it, it does not use any PK operations in the
algorithm and is totally based on WB based 1-out-of-2 OT protocol [32], which results to

significant performance improvements for the secure search pattern algorithm.

1.2.4 DELEGATABLE SEARCHABLE ENCRYPTION SCHEMES

Nowadays online storage providers like Dropbox [2], Google Drive [3], Box [4] and
Microsoft OneDrive [5] are widely used. These cloud storages provide data storage and
sharing functionality to their users. However, the third-party storages often are not trusted,
which requires users to outsource their data in encrypted form. Users of such systems
store their files in the cloud in unencrypted form, so the provider has access to each and
every file of the user. This gave birth to cloud encryption gateways like Sookasa [9],
nCryptedCloud [10], Boxcryptor [11] and SkyCryptor [12], startups that provide encryption
services to the users who want to keep their files secure, while still storing them in any of

the clouds. Data encryption preserves the data security but on the other hand prevents the
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user to search and selectively access the parts of the data. Searchable encryption (SE) is a
cryptographic technique which allows clients store their documents on a server in encrypted
form without sacrificing the user experience of accessing the data. In recent years many
practical schemes have been developed for performing SE with optimal search time and
efficient memory consumption with reasonable security leakage. The most practical schemes
are based on the secure index approach.

In an index-based SSE scheme [61], [62], [63], [64], [65], [66], [67], [68], [69], [70] the
encryption algorithm takes as input an index and a sequence of n files f = (f,.... , ;) and
outputs an encrypted index and a sequence of n ciphertexts ¢ = (c4,..., ¢;). All known index
constructions encrypt the files f using a symmetric encryption scheme such as AES. To
search for a keyword w, the client generates a search token t,, and given t,, and c, the
server can find the identifiers I, of the files that contain w.

Most of the schemes consider only the SE domain where the owner of the data performs
both storage and retrieval of data, i.e. there is no file sharing between the users and each
user has access to only his own files. The natural extension of symmetric SE was the multi-
user setting, where each user has an encrypted storage for his documents, but many
entities can be granted access to search among his files.

In [32] a development of a novel method of constructing delegable (multi-user) SE schemes
is presented which can transform any existing symmetric SE schemes into multi-party SE
scheme. This allows the third-parties search on the user’s encrypted database as well as
update the data by adding (and/or deleting) new documents without compromising the
user’s key security or violating the practical aspects of scheme usage. Access to the files
shared between users is set up by each user and enforced by the server, where the server
is considered to be honest-but-curious. The third-party added files can only be decrypted
using the secure master key. The underlying idea of the proposed approach is to employ
WB cryptography techniques to delegate the encryption functionality to third-parties without
revealing the secret key. The proposed implementation is based on the scheme called
“Dynamic searchable symmetric encryption” [62], where the data owner can grant

permission to third-parties for searching on his/her encrypted database, as well as update
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the database without violating the master key security or adding extra communication

and/or computation efforts for each search.
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CHAPTER 2

WHITE-BOX ENCRYPTION ALGORITHM BASED ON SAFER+
BLOCK CIPHER

In this chapter we introduce a novel WB encryption algorithm based on SAFER+ block
cipher. The black-box algorithm is briefly described. The original key schedule was modified
to make it irreversible, i.e. if the attacker somehow gets the key for some round, he/she
must be unable to derive the keys for the other rounds.

The encryption/decryption and table generation algorithms are presented for the proposed
WB algorithm. Security analyses are discussed and resistance to BGE attack [16] is shown.

A C++ library was implemented to demonstrate the cipher. Implementation aspects are

discussed and performance test results are provided.

2.1 SAFER+ BLACK BOX ENCRYPTION AND DECRYPTION

The underlying symmetric encryption algorithm for the WB encryption is based on Safer+
block cipher [26] with 128-bit key running 6 rounds plus and extra key addition at the end
of 6-th round. The cipher was nominated as a candidate for Advanced Encryption
Standard(AES). Though the official document [26] requires 8 rounds of encryption,
differential analyses show, that 7 rounds of encryption provide enough security. So in this
paper we are using 128-bit Safer+ with 6 full rounds encryption and an extra key addition
at the end. Similar WB can be built for 192 and 256-bit settings.

The round encryption procedure is graphically shown in the Figure 2.1. We can see, that a
single round of Safer+ consists of non-liner layer built with key addition and logarithmic
and exponent functions, followed by a linear layer which consists of 4 layers of 2 — PHT

boxes followed by Armenian shuffles.
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Round input (16 bytes)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Y A 4 \ 4 Y A 4 h 4 A A A h 4 Y h 4 Y h 4 A A
xor add add xor xor add add xor xor add add xor xor add add xor | <«— Ky

Y A 4 A 4 A 4 A 4 Y ‘L A 4 A 4 A 4 A 4 A 4 4 Y \} \‘

exp log log exp explog log exp exp log log exp exp log log exp

S S S S S S T 2 N S S S N N

add xor xor add add xor xor add add xor xor add add xor xor add | +— Kai

| A A A A A A A A Y A O A |

2-PHT| |2-PHT| |[2-PHT| |[2-PHT| |2-PHT| |[2-PHT| |2-PHT| |2-PHT

| T A Y Y A Y S A S A

Armenian Shuffle

A A A Y A A Y A A A A A A |

2-PHT| [2-PHT| |[2-PHT| |2-PHT| |2-PHT| |2-PHT| |[2-PHT| |2-PHT

| A A A A Y Y A Y A A

Armenian Shuffle

| A A O A N N A A A

2-PHT 2-PHT| |2-PHT 2-PHT 2-PHT| [2-PHT 2-PHT 2-PHT

| S A Y Y A Y A S A A

Armenian Shuffle

I !

e e e A s e e A s e

Figure 2.1: Round structure of SAFER+

Below is the meaning of the functions used in the SAFER+ round.
e exp stands for the exponential function, which converts the input value x into
45 mod 257.
e log stands for the logarithmic function, which converts the input values x
into log,s(x) mod 257.
¢ xor stands for bitwise exclusive OR of two input values.

¢ add stands for the sum of the two input value modulo 256.
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2 — PHT stands for Pseudo-Hadamard Transform operation, i.e. it multiplies 2 input values

2 1

with matrix H = [1 1

] , 1.e. given a, b € Z,54 on inputs, 2 — PHT operation will produce

values of 2 x a + b and a + b on the outputs.
Armenian shuffle is [9,12,13,16,3,2,7,6,11,10,15,14,1,8,5,4]. Four layers of 2 — PHT
boxes with Armenian shuffles between each 2 layers makes up the linear layer of the cipher

and is identical to multiplication of the input 16-byte vector with the matrix M shown below

in Figure 2.2.

(2 2 1 11668 2 1 4 2 4 2 1 1 4 47
1 1118 4 21214 211 2 2
1 1 4 4 2 1 4 2 4 216 8 2 2 1 1
11 2 2 21 21 4 2 8 41111
1 4 2 1 4 2 4 2 168 1 1 1 1 2 2
2 2 21 214 2 8 4 11 1111
1 1 4 2 4 2 168 2 1 2 2 4 4 1 1
1 1 21 4 2 8 4 2 1 1 1 2 2 1 1
2 11668 11 2 211 4 4 4 2 4 2
21 8 4 1 1 1 1 1 1 2 2 4 2 21
1 2 4 2 4 4 1 1 2 2 1 116 8 2 1
21 4 2 2 2 1 1 1 1 1 1 8 4 2 1
1 2 2 211 4 4 11 4 2 2 116 8
1 211112 2112121 8 4
68 11 2 2 1 1 4 4 2 1 4 2 4 2
s 4 1 1 1 1 1 1 2 2 21 2 1 4 2]

Figure 2.2: Diffusion matrix M of SAFER+ algorithm [26].

2.2 KEY GENERATION SCHEDULE FOR SAFER+ WHITE-BOX
ENCRYPTION AND DECRYPTION

By the key schedule for SAFER+ WB encryption we mean the key schedule for generating
keys for corresponding regular black-box encryption. The key schedule starts with a 16-byte
master key, and generates 32-bytes of sub-keys for each round. First it XORs 16 bytes of
the master key to get the 17" byte value. Then for each round each byte of the previous
round’s key is rotated by 3 bits, and then the whole vector of 17 bytes is rotated by 1 byte,
so the 17" byte is moved to the start of the vector. Then a fixed bias vector is XOR-ed with

the first 16 bytes of the generated vector and the result is used as the next sub-key. The
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algorithm of key schedule is shown in Figure 2.3. SAFER+ key schedule details can be
found in [26]. It’s obvious that given any sub-key for any round from the described key

schedule one can easily compute all the keys used for all the rounds.

User-Selected Key (16 Bytes) Select byvtes K
1 2 . 15 16 . 1
1.2,5..... 1516
» | Sum bytes
bit-by-bit
— |modulo two

L (R l_l

Rotate each byte left by 3 bit positions
t 3 | IR
1 2 .. 15 16 17 |—»f Select bytes ﬂ@—- K
2.3,...15.16.17
t 4 t 4
Rotate each byte left by 3 bit positions B
't RN
1 2 . 15 16 17 - Select h'_h'[lfh —..@—i- K]
i4,...16,17,1
I} R
Rotate each byte left by 3 bit positions Bs
| | IR
1 2 e 15 16 17 f—= Selectbytes —P@—" K.
45,.,17,1,2
P i | BN
Rotate each byte left by 3 bit positions By
R R
(| b+
Rotate each byte left by 3 bit positions
R R
— Select bytes
i~ i 17,1,2,...,14,15 _"@_" Kir
B;

@ denotes bytewise modulo 256 addition of 128 bt

Figure 2.3: Structure of SAFER+ key schedule [26].

We modify the key schedule in order to eliminate any possibility of using the key schedule
algorithm in key recovery attacks against the described WB implementation. We use the

same key schedule algorithm for generating the 2™ key of the first round, after which SHA-
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256 hash is applied over the last 32 bytes of sub-keys to generate the next 32 bytes. This is
continued before R pairs of 16-byte sub-keys are generated, where R is the number of
rounds in the SAFER+ (Figure 2.4). Then for each round r, keys (r and 2 * R — r) are used.
This modified key schedule algorithm prevents the attacker from getting the keys of any
other round, if the key of some round is somehow compromised. SHA-256 is actually used

as a Pseudo-Random Function (PRF) with a fixed seed of K,, K,.

] 1
1 1
1 1
[Pl rlrtrirlrivly e LTI
i i
] K, K Round 2 i
1 1

"""" ﬂ;““i/""""""'""""'"1*"""'""""""""""""'

SHA-256 SHA-256
|ﬁ
. /e s o !
i — Ks > Kio Round 3 i
1 1
N I vy P e N |
i K4 Ko Round 4 i
1 1
Eommmees R 722 72 [
SHA-256 SHA-256
P e e o Im L —— R—— & _______________________
i v i
i N S| K Round 5 i
| S —— - g S ——— I ——— (R S ———-
E ------------------------------------------------------------------------- i
i Ks Kz Round 6 i
1 1
I R e
SHA-256
|

Figure 2.4: Structure of the modified key schedule for 6 round SAFER+

46



2.3 WHITE-BOX ENCRYPTION DESIGN RATIONALE
Our WB encryption is based on SAFER+ algorithm described in [26]. We're merging

several steps of encryption rounds into look-up tables and obfuscating the table’s inputs
and outputs with input/output encodings (permutations) similar to those first introduced by
Chow in [15]. We split the 16 bytes indices for each round into two sets
A= {1458912,13,16} and B ={2,3,6,7,10,11,14,15} according to the order in which
exponential (exp) and logarithmic (log) functions are applied. The round confusion
operations, namely key additions and non-linear layer evaluation, can be combined into 16

tables which map 1 byte of input to 1 byte of output in following manner:

forr=1
T} (x) = exp(x®k};) + ki fori €A, (2.3.1)
TH(x) :=log(x + k) ® ki for i € B, (2.3.2)
for2<r<e6
T/ (x) = exp(x®k[;) + k[, fori €A, (2.3.3)
T{ (x) :=log(x + k[)®k, for i € B, (2.3.4)
forr=7
T/ (x) := x ® k3 for 1 <i < 16; (2.3.5)

For security reasons, we randomly divide the output value into 2 parts that sum up to the
original value. Given that, we need 16 tables that map 1 byte to 2 bytes for round 1, 2 bytes
to 2 bytes for rounds 2 to 6, and 2 bytes to 1 byte for round 7 in the following manner.
Let’s denote the i mapping for input value x for round r = 1 as T} (x) and T5(x), i pair
of mappings of the r" round, for rounds r = 2..6, for input values of x; and x, by
T/ (x4, x5) and TS (x4, x,) and for round r = 7, i*® mapping for input values x; and x, by
T/ (x4, x3).

Taking into account also the input and output permutations IP and OP, we can make the

following definitions:
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forr=1

Ty (x) := exp(IP;()®k}; ) + ki, + R} (x) for i € 4, (2.3.6)
T (x) := log(IP;(x) + ki) ® ki + Ri (x) for i € B, (2.3.7)
T2 (x) = —Rj; (x) for 1<i<16, (2.3.8)

for2<r<6

T/ (x1,x3) = exp((xy + x5 — S)®k{1) + ki + Rl (x1,x,) fori€A, (2.3.9)

T/ (x1,x3) :=log(x; + x, — S; + ki1)®kj, + R{ (x4,x,) fori€B, (2.3.10)

Ti5 (%1, %2) 3= =Ry (x1,%2) for 1 <i < 16, (2.3.11)
forr=7

T (x1, %) 1= OP;((x1 + x, — S;) ® k) for1<i<1i16, (2.3.12)

where R} (x;,x,) is a random function for each round, byte and input values and S; is a

compensation for random values added in the 2 — PHT boxes described later.

2.3.1 STRUCTURE OF SAFER+ WHITE-BOX ALGORITHM ROUND

The structure of SAFER+ round using encryption boxes is shown in Figure 2.5. Two types
of boxes are used: E — Boxes and 2 — PHT boxes. E — boxes are accounting for the round
confusion operations, while 2 — PHT boxes are similar to 2 — PHT boxes of regular SAFER+
algorithm described in [26], except they operate on 2 pairs of bytes. Armenian shuffles also
operate on byte pairs, i.e. the permutation is applied on consecutive byte pairs, instead of
single bytes.

For each round 1 <r <6 the confusion step is followed by layers of 2 — PHT boxes and
Armenian shuffles. Tables will be provided for applying 2 — PHT operation on each pair of

outputs.

48



Round input (16 * 2 bytes)

|
T . e aoxs||ﬁ‘eoi[||ﬁ‘aoio||E‘euin ||Ejeoiz||E o] |F“T“T
HﬁH O O 52 9 G 5P G

2-PH 2-PHT| |[2-PHT| |[2-PHT| [2-PHT| |2-PHT| |[2-PHT| [2-PHT

l \

Armenian Shuffle

\ \
2-PHT| |2-PHT| |[2-PHT| |2-PHT| |2-PHT| |[2-PHT| |2-PHT| |2-PHT

Armenian Shuffle

|

2-PHT| [2-PHT| |2-PHT| |2-PHT| |2-PHT| |2-PHT| |[2-PHT| |[2-PHT

J

Armenian Shuffle

\ \
2-PHT| |2-PHT| |2-PHT| |[2-PHT| |[2-PHT| |2-PHT| |[2-PHT| [2-PHT

Round Output (16 * 2 bytes)

Figure 2.5: Round structure of SAFER+ White-box encryption.

2.3.2 E-BOXES

E-Boxes are look-up tables for getting values of T} (x) and T, (x) for round r=1, values of
T} (x4, x5) and T}, (x4, x,) for all x; and x, for rounds 2 <r < 6 and values of T/ (x,x;)
for round r=7. We apply random encodings to the E — box inputs and outputs for all the
rounds. Thirty two random output encodings (permutations) f7,f7, ..., f], are generated at
WB table generation phase per round for rounds 1 <r <6 , where f/: Z,554 = Z,54, and
thirty two input encodings g7, g}, ..., g%, are generated for rounds 2 <r <6 gi: Z,55 >

Z,56. We apply inverse permutations of g},;_; and g5,; on the inputs of the E — Box] and
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output encodings f7,;_; and f],; on the outputs. So we get the following formulas for the

outputs of E-boxes:

forr=1
EL(O = 1, (TA), (2.3.2.1)
EL(Grnx) 2 £ (TR(0), (2.3.2.2)
for2<r<e6
Ef (g, xp) & £33 (Ti’i (gZ*i_l_l(xl),gQ*i_l(xz)», (2.3.2.3)
r def £T r r -1 r -1
Ef(x1,x2) = £7, (Tiz (gZ*i—l (1), 824 (xz))>, (2.3.2.4)
forr=7
1 7 r -1 r —1
Ef(x1,%) = T; (gZ*i—l (1), 824 (xz))- (2.3.2.5)

So from this formulas we can see, that E-boxes essentially provide access to the values of
T/, and T/, given by formulas 2.3.6-2.3.12, but also apply input and output encodings.
These encodings make the tables secure, because if the values of T/, and T/, were given out
by value without external encodings, the attacker might easily extract the values of secure
keys ki, and k, by simply computing the values of

T (x1,x2) + T, (x1,x2) = exp((xq + x5, — S)®kj;) + ki fori€A,

T] 1 (ey,x0) + T, (%1, x2) = log(xy + x, — S; + ki)®k], for i € B;
As there are just 256 possible values for each of S;, k; and kj,, the attacker can simply
brute-force all 2563 possible values, build tables for each of these values and check which

one matches the given tables.

2.3.3 2-PHT boxes

2 — PHT boxes are look-up tables that multiply the 2-byte input with matrix H = i ﬂ , e

given a, b € Z,5¢ on inputs, the box will produce values of 2xa+b and a+ b on the
outputs. In our WB implementation 2 — PHT boxes must operate on 4 bytes of input,
because each input is split in 2 parts and encoded with a permutation. One can easily notice

that this kind of a box can be built with 2 standard (2-byte input, 2-byte output) 2 — PHT
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boxes as shown in Figure 2.6 and that the sum of pairs of the outputs 2a, + b; + 2a, +
b, =2(a; +a,)+ (by +b,) and a,;+b;+a,+b,=(a;+a,)+ (b, +b;) match the
required outputs. This means that 2 — PHT operation can be successfully implemented on 2
pairs of numbers using two 2 — PHT boxes of size 256 * 256 * 2 bytes = 128 KB each.
Random input and output encodings (permutations) are applied on all the inputs and
outputs for all the 2 — PHT boxes. Input encodings of the first layer of 2 — PHT boxes match
the output encodings of the corresponding E-boxes of the previous round and the output
encoding of the last layer of 2 —PHT boxes must match the input encodings of the
corresponding E-boxes of the same round. This lets the input/output encodings successfully
neutralize each other, resulting to the proper execution of the algorithm.
If input encodings f;, f, and output encodings g;,g, are used for the 2-byte 2 — PHT box of
round r, layer [(le[1..4]), byte B(Be[1..16]), the outputs for input values of xy, x, will be

2 — PHTy (xq,%5) = g1(2 % fi1(x) + f5 1 (x2) + SEY), (2.2.3.1)

2 = PHT, (%1, x2) = g2 (fi *(x0) + £ 1(x2) + Sgha)- (2.2.3.2)
The values of S3' are randomly generated for each 2 — PHT box for each round, layer and
byte. Later these values are compensated in the subsequent E — boxes of the next round,
taking into account the coefficients which apply to each value of S’
For the given inputs a,, a,, by, by, given that permutations fi, f,, f3, f» and g4, 92,93, g4 are
applied on the inputs and outputs of a 2 — PHT box at round r, layer | and byte B, the left
2 — PHT box in the Figure 2.6 will output values of g,(2 * f{*(a;) + f5 (b)) + S§') and

g2(f7 (ay) + f51(by) + SE41), and the right 2—PHT box will output the values of

83(2 * f3_1(a2) + fi t(by) + 5514-2) and g4(f3_1(a2) + fi t(by) + 555-4 .
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di

4 1]
| 77— |

2-PHT 2-PHT
v v
2a1 + b1 12324' b2 ai+ bll a+ b2
4 v

Figure 2.6: 2 — PHT operation for 2 pairs of bytes

Proposition 1: The result of the WB encryption presented above is equivalent to the black-
box encryption result of SAFER+ accurate to the input and output permutations IP; and OP;
applied on the WB input and output states.

Proof: The proof is straightforward. We have to compare two functions the one which
makes a black-box encryption based on the formulas 2.3.1-2.3.5 and formulas
implementing WB algorithm described in by formulas 3.2.1 and 3.2.5, 2.2.3.1 and 2.2.3.2.
One can easily notice that

T/ (x4, x3) + TS (x) = exp((x1 + x2)®kj;) + ki, = T/ ((x1 + x,) fori € 4,

T/ (x4, x3) + TH(x) = log(xy + x5 + k}))®k, = T/ ((x1 + x,) for i € B.

So E-boxes correctly apply the SAFER+ confusion step on the input value (x; + x;,). All the
output permutations of E-boxes match the input permutations of the corresponding 2 — PHT
boxes, and the output encodings of the last layer of 2 —PHT boxes match the input
encodings of E-boxes, so it’s obvious that all the encodings cancel each other. So the only
difference between ordinary black-box SAFER+ encryption procedure and WB encryption

procedure described above are the input and output encodings IP; and OP; applied
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accordingly to the input of the E-boxes of round 1 and the output of E — boxes of the final

round.

2.4 WHITE-BOX DECRYPTION ALGORITHM

Decryption white-boxes can be built in a similar way to the encryption boxes. This chapter is
devoted to the details of how to build and use decryption white-boxes. Similar to the
encryption, the decryption round confusion operations, namely key additions and non-linear
layer evaluation, can be combined into 16 tables which map 1 byte of input to 1 byte of

output in following manner:

forr=1
DT!(x) := log(x — ki) ®k} fori € A4, (2.3.1)
DIAGx) = exp(x® ki) — ki for i€ B, 232)

for2<r<6

DT/ (x) :=log(x — ki,) ® k[, for i € 4, (2.3.3)

DT/ (x) :=exp(x ® k) — ki;  fori€ B, (2.3.4)
forr=7

DT/ (x) := x ® k}* for 1 <i < 16; (2.3.5)

It is easily to check, that equations 2.3.1-2.3.5 apply the inverse operation of equations

2.2.1-2.2.5, I.LE. DTF( T/ (x)) = x, for any value of i, rand x. For 2<r <6and i € A

DT (T{ (%)) = log(T{ (x) — k)®kf; = log(exp(x@kjy) + ki, — ki) ®k];
= log(exp(x®k[;))®k}, = x®k},®k]; = x.

The same check can be applied for the other values of r and i.

In a similar way to the encryption algorithm, these values of DT/ (x) are actually randomly
divided into 2 values, which sum up to the original value.

Let’s denote the i mapping for input value x for round r=1 as DT} (x) and DT}(x), i-th pair

of mappings of the r™ round, for rounds r =2..6, for input values of x; and x, by
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DT}, (x4, x,) and DT}, (x4, x,) and for round r = 7, i*" mapping for input values x;and x,
by T/ (xy,x,). We split the 16 bytes indices for each round into two sets

A= {14538/9,12,13,16} and B ={2,3,6,7,10,11,14,15} according to the order in which
exponential (exp) and logarithmic (log) functions are applied. Taking into account also the

input and output permutations IP and OP, we can make the following definitions:

forr=1
DT} (x) := log(IP;(x) — ki) ® ki + R} (x) fori €A,
DT (x) := exp(IP;(x) ® kiy) — ki; + R} (x) for i € B,
DT (x) == —Rj; (x) for 1<i< 16,

for2<r<e6

DT{; (x1,%2) = log((x1 + x2 — kiz — S))®kiy + R{ (x1,x3) fori €A,
DT{1 (1, %2) := exp((x1 + x2) @ kiz — Si) — kiz + R{ (x1, %) for i € B,
DT}, (x1,%2) := —R[ (x1, ;) forl1<i<1e,
forr=7
DTl-7(x1,x2) = OP;((x; +x,— S;) ® ki13) for1 <i<1e;

where R] (xy,x,) is a random function for each round, byte and input values and S; is a

compensation for random values added in the 2-PHT boxes described later.

2.4.1 STRUCTURE OF SAFER+ WHITE-BOX DECRYPTION ROUND

The structure of WB decryption round is similar to the encryption structure. Two types of
boxes are used: E-Boxes and 2-PHT boxes. Figure 2.7 illustrates the structure of a single
intermediate round.

D — boxes are responsible for the confusion step, i.e. for undoing the effect of the
encryption E-boxes, and 2-PHT boxes are the opposite of the encryption 2 — PHT boxes.

Both boxes are described in detail in the following chapters.
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Figure 2.7: Round structure of SAFER+ WB decryption

2.4.2 D-BOXES

D-Boxes are look-up tables for getting values of DT} (x) and DT (x) for round r=1, values
of DT/(xq,x;) and DT}, (x4,x,) for all x;and x, for rounds 2<r <6 and values of
DT/ (x4,x,) for round r=7. Similar to the encryption E — boxes, we apply random
encodings to the D-boxes outputs, and the inputs for all the rounds are also encoded.
Thirty two random output encodings (permutations) f7,f7, ..., fl, are generated at WB table
generation phase per round for rounds 1 <r <6 , where {/: Z,55 = Z,56, and thirty two
input encodinds g7, g5, ..., 85, are generated for rounds 2 <r <6 gi: Z,56 = Z,56. We

apply reverse permutations of g},;,_; and g},; on the inputs of the D — Box] and output
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encodings f7,;_; and f],; on the outputs. So we get the following formulas for the outputs of

E-boxes:
forr=1
DA(O) 2 £,y (DTA()), (2.4.2.1)
DL () # £, (DTE(0)), (2.4.2.2)
for2<r<e
Dii(x1,x) & £5, 4 (DTiq (gg*i—fl(?ﬁ)'gg*i_l(xz))), (2.4.2.3)
T def T T (7 -1 r —1
D (x1,%2) = £3,; (DTi1 (82*1'—1 (1), 824 (xz)))' (2.4.2.4)
forr=7
1 7 (T -1 r —1
D; (x1,x;) = DT, (82*1—1 (1), 824 (xz)) (2.4.2.5)

Equations 2.4.2.1-2.4.2.5 are similar to equations 2.3.2.1-2.3.2.5 used for encryption,
though the input and output encodings do not require to be the same. If both encryption
and decryption are implemented as white-boxes, any E — box of round r will use different
input/output encodings and random values than the corresponding D — box of round r, so
if one encrypts some data using E — box at round r, then decrypts it with the D — box of

round r, the result will not be equivalent to the initial data.

2.4.3 Decryption 2-PHT boxes
Decryption 2 — PHT boxes multiply the input with matrix
-1
HT = i 1 - [—11 _21]

i.e. given a, b € Z,54 on inputs, will produce values of a —b and 2 *b — a on the outputs.
In our WB implementation 2 — PHT boxes must operate on 4 bytes of input, because each
input is divided into 2 values and encoded. One can easily notice that this kind of a box can
be built with 2 standard (2-byte input, 2-byte output) 2 — PHT boxes as shown in Figure 2.8
and that the sum of pairs of the outputs a; — b; + a, — b, = (a, + a,) — (b, + b,) and

2by — a; + 2b, — a, = 2(by + by) — (a; + a,) match the required outputs. Random input
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and output encodings (permutations) are applied on all the inputs and outputs for all the
2 — PHT boxes. Input encodings of the first layer of 2 — PHT boxes match the output
encodings of the corresponding D-boxes of the same round and the output encoding of the
last layer of 2 — PHT boxes must match the input encodings of the corresponding D-boxes
of the next round. This lets the input/output encodings successfully neutralize each other,
resulting to the proper execution of the algorithm.
If input encodings fi, f, and output encodings g;, g, are used for the 2-byte decryption
2 — PHT box of round r, layer le[1..4], byte Be[1..16], the outputs for input values of
X1, x5 Will be
2 — PHTy (xq, %5) = g1(fi(x1) — f5 (%) + SEY) (2.2.3.1)

2 — PHT, (%1, x5) = g2(2 % f51(x0) — fit(xy) + SE4e) (2.2.3.2)
The values of S3' are randomly generated for each 2 — PHT box for each round, layer and
byte. Later these values are compensated in the subsequent D — boxes of the next round,
taking into account the coefficients which apply to each value of S5
For the given inputs a,, a,, by, b,, given that permutations fi, f,, f3, f» and g4, 9, g3, g4 are
applied on the inputs and outputs of a 2 — PHT box at round r, layer | and byte B, the left
2 —PHT box in the Figure 2.8 will output values of g,(fi*(a)) — f5*(by) + S§') and
g2(2 = f571(by) — fi ' (ay) + SE41), and the right side decryption 2 — PHT box will output the
values of g3(f5 " (az) — fi'(by) + SEy2) and ga(2 * fi (b)) — f5'(az) + Shha).
One can easily notice, that decryption 2 — PHT boxes apply the inverse operation of
encryption 2 — PHT boxes given by formulas (2.2.3.1) and (2.2.3.2), yet this does not mean,
that if white-boxes are used for both encryption and decryption operations a single
decryption 2-PHT table for some round, layer and byte will perform the exact opposite
operation of a single encryption 2-PHT table of the same round, layer and byte. This is
because the values of S5 and input/output permutations used for protection of the tables
are different for encryption and decryption. This is crucial, because usage of the same
values of S3' and input/output permutations might result to weaker system, and the attack
having both encryption and decryption tables built with those values can learn some

information regarding the permutations used.
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Figure 2.8: decryption 2 — PHT operation for 2 pairs of bytes

2.5 SECURITY ANALYSIS

Definition 1.1: A WB encryption scheme WBES & (WBGenEnc, WBEnc) is secure against
key recovery attacks if given T,,. « WBGenEnc (k) it is computationally infeasible to
extract the secret key k.

Definition 1.2: A WB encryption scheme WBES & (WBGenEnc, WBEnc) is secure
against reverse-engineering attacks if given T < WBGen (k) and any ciphertext c =
Enc,(m) it is computationally infeasible to compute m.

Definition 1.3: A WB encryption scheme WBES & (WBGenEnc, WBEnc) is
computationally secure if for every my, m; € M the values WBEnc,(m,) and WBEnc(m,)
are computationally indistinguishable.

Definition 1.4: A WB scheme WBES & (WBGenEnc, WBEnc) is considered secure if it is
secure against key recovery and reverse-engineering attacks, is computationally secure and
the corresponding black-box scheme is secure in the black-box attack context.

It was shown in [26] that SAFER+ black-box symmetric encryption algorithm is secure

against differential and linear cryptanalysis attacks after 6 rounds of encryption. Black-box
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encryption described in current document is similar to SAFER+, except it applied input and
output encodings for round 1 input and last round’s output. Clearly these encodings will not
reduce the security of black-box encryption from the point of view of differential and linear
cryptanalysis.

There is no common way to proof the security of a WB algorithm yet the known algorithms
were successfully attacked by the BGE attack [16], so the security against this particular
attack will be addressed. Chow defined two properties for estimating the security of WB
tables, namely WB diversity and ambiguity. WB diversity is the number of possible
construction of any given table, while ambiguity is the number of constructions which could
lead to the given exact table [15]. Having good diversity and ambiguity properties is a pre-

requisite for a possibly good white-box algorithm. These metric are discussed later.

2.5.1 DIVERSITY AND AMBIGUITY

Two types of boxes are used in our WB implementation of SAFER+: E — boxes and 2 — PHT
boxes. E — boxes of round r depend on the input and output encodings of 2 bytes of input
and output, round key k{; , random parameter S; and random function R](x,x,). There
are 256! possible bijections for 1 byte, so there are (256!)* possibilities for input and output
encodings for a single E — box. There are 256 possible values of k;, 256 values for S; and
256256*256 possible functions R} (x4, x,). So the WB diversity of a single E — box is (256!)* «
256 * 256 * 256256%256 & p4+1684+8+8+256+256 — 972288 For 2 — PHT tables, there are (256!)*
possible input and output encodings and 256 values for S3', so WB diversity is (256!)* «
256 ~ 21992 One can notice that this value is significantly smaller compared to the diversity
of E — boxes, which implies that these boxes must be less secure. But compared to the
diversities of boxes in Chow’s WB, this value is acceptable.

There is no known way of computing the WB ambiguity for a given table. So instead of
directly counting the value, we must somehow estimate it or provide a lower bound. In our
case, for the E — box, it’s easy to notice that one can manipulate the output by the output
encodings only, i.e. for any given E — box, for any fixed input encoding, values of k{;, S;

and R} (xy,x,), we can change the output encodings in such a way, that the resulting
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E — box will exactly match the given one. This means that the lower bound for ambiguity of
the E — boxes is (256!)% * 256 x 256 x 256256+256 ~ D2+1684+8+8+256+256 — 268920 The same
is true for 2 — PHT boxes, i.e. for any fixed 2 — PHT box and values of Spt and input
encodings, we can find output encodings in such a way, that the resulting tables matches

the given one. This means that the lower bound for 2 — PHT table is (256!)% x 256 ~

22*1684+8 — 23376

Table 2.5.1: Estimated WB diversity and ambiguity for our and Chow’s WB tables.

Diversity Ambiguity
E — box 272288 268920
2 — PHT 21692 23376
Chow’s type 1 22420 2546
Chow’s type 2 2769 2129
Chow’s type 3 2699 2117
Chow’s type 4 2133 248

From Table 2.5.1 we can see, that both diversity and ambiguity of our tables are better that
those of Chow. This is a good sign, that the WB must be secure. We can see, that the
“weakest” tables in Chow’s implementation are Type 4 tables, and the
2 — PHT tables are much “weaker” compared to E — boxes. We can also see that the
“weak” 2 — PHT tables have stronger diversity and ambiguity values compared to Chow’s

tables. This is a good sign but does not guarantee absolute security.

2.5.2 SECURITY AGAINST BGE ATTACK

An algebraic attack against WB AES implementation was developed in 2004 called BGE
attack [16]. It is shown in [22] that BGE attack can be applied to all substitution-linear
transformation network (later SLT) ciphers which match the following definition.

Definition 2.1: A cipher is called SLT cipher if it can be specified as follows: It consists of R

rounds where R>0. A single round r is a bijective function FZ ;(x{,%,,..,%,) on GF(2™)
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where n = m-s and x; € GF(2™). This function starts with the XOR-ing an n-bit length
round key k™ = (ki,k}, ..., k%) with the input(xy,x,,..,x5). That is, a value y; =x; ® k; is
computed. Next the round computes z; = S/ (y;) for all y; where the (non-linear) invertible
S-boxes (87,53,..,57) are part of cipher. These two steps achieve confusion. The diffusion
is realized by multiplying the outcome of the S-boxes with an invertible matrix M(r)
over GF(2™).

The BGE attack proceeds in three steps:

e Transform the non-linear output encodings Q;; to unknown GF (2)-affine
transformation. (i.e. recover the non-linear part up to some unknown affine
transformation)

e Fully determine the values of Q;; using algebraic analysis.

¢ Obtain round keys for two consecutive rounds and recover the symmetric secret key
using the reversibility of underlying key-schedule.

In our case the first step of BGE attack cannot be applied on the E — boxes, as the outputs
of the E — boxes are randomly divided into 2 parts that sum up to the real result. This
significantly complicates the equations in the tables, so it’'s impossible to build a
commutative group under composition. This deems the first step of BGE attack on the
E — boxes impossible. Any attack targeted on only one output of an E-box will fail because
of totally random values of R}(x), so the attacker must try to analyze both outputs
T} (x4, x3) and T (x4, x,) together, which makes it impossible to apply the BGE attack.
Though the first step of the attack cannot be applied on the E — boxes to recover the
random input-output permutations of E-boxes f/ and g] up to affine transformations, that
can still be achieved by attacking the 2 — PHT boxes, which have much simpler structure.
However, the techniques for completely recovering the input and output encodings will not
work in our case. The 2-byte input/output structure of our E-boxes is significantly different
from SLT ciphers and makes it impossible for the attacker to recover the input/output
encodings using methods of the BGE attack. Step 3 relies on the fact that

Ti(x) = S(x ® k;), i.e. the mapping x » S~toT;0P;(x) = P;(x) @ k;is affine, which is
not true in the case of SAFER+, because from formulas (2.3.3) and (2.3.4) we can see, that
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the key is applied in two different ways, either by modulo 2 addition, or by modulo 256
addition. This stops the recovery of affine parasites of BGE attack, even if the rest of the
steps succeed. Also the modified key schedule is irreversible, so the structure of key

schedule cannot be used by the attacker.

2.5.3 USING DIFFERENT 2-PHT TABLES IN DIFFERENT LAYERS IS NECESSARY
In this section we will consider an attack on a weakened variant of the presented SAFER+
WB. Let’s assume our WB uses the same 2 — PHT tables for 2 different layers of the same
round. Using the same tables looks like secure from the first sight, and could save up some
space, resulting to lower memory requirements for the WB tables in total.

So let us assume that the same 2 — PHT table is used for layer 1 and 4 for some
intermediate round. He same conclusions could be made if the same tables are used for any
other 2 layers. Let’s denote the input encodings of the first 2 bytes as f; and f,. As we are
using the same 2 — PHT boxes for the 4" layer, then the same input encodings must be
used there. We know that the input for the first byte of the 4™ layer can be expressed by the

input of the first layer in the following way:

f1_1(x3) + fz_l(x4) = 2% (f1_1(x1) + fz_l(xz)) t+c (2.5.3.1)

where x; and x, are the first 2 inputs of the round, x; and x, are the first 2 inputs of the
4™ |ayer of 2 — PHT and c is the contribution of the other values on the inputs of the 2-PHT
table’s inputs. So if we keep the other input values constant(let’s say 0), for each value of x;
and x, we will get one equation of (2.5.3.1), where ¢ will be a constant. This set of
2562 equations will have 256*2+1 unknowns, i.e. fi 1 (x) and f, 7 (x) for all 256 values of x
and c, which means that we have more than enough linear equations to solve them for the
values of f;™" and £,”". In a similar way the other values of f;”'can be recovered. Having
these values one can easily attack the E — boxes for key extraction.

Let’s show how the secure keys can be extracted from E-boxes, given input and output
permutations. Having the values of input and output permutations, means we can get the
values of functions T/, (x;,x,) and T/,(xy,x;) for each x;,x,e Z,5, given by formulas

(2.3.9) - (2.3.11). So by summing up these 2 values, we get the values of
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T/ (x4, %) + T, (x1,x3) = exp((xy + x, — S)®k(;) + ki, for i € A,
T/ (x1, %) + T{,(x1, %) = log(xy + x, — S; + ki})®k;, for i € B.
This means we’ve got access to functions
F/ (x) == exp((x — S))®k{;) + ki, fori €A,
F/(x) :=log(x — S; + k[;)®k}, fori € B,
which are very similar to formulas (2.3.1)- (2.3.4), except a random values S; is subtracted.
These values of S; can be computed from 2-PHT boxes, as they are also not protected by
input/output permutations any more. Then the attacker can brute-force all 2562 possible
values to extract the values of kj; and kj,. In cases when more than 1 pair of kj; and k[,
satisfies the formulas, the relations between keys of different rounds can be used to filter
the proper keys. Despite the fact that the changed key schedule does not allow computation
of round keys based on some other round’s key pair, it still allows checking if a given set of
keys for all rounds results to a proper key schedule.
We proved that using the same 2 — PHT boxes in different layers of the same round creates
security issues. Similar techniques can be applied for proving that using the same 2 — PHT

boxes in the different rounds is also unsafe.

2.5.4 COLLISION ATTACK ON E-BOXES

In this chapter we describe a possible attack on our E-boxes, which could work, but was
programmatically checked to be impossible. The main idea of this attack is to gain
information about the output encodings of the E — boxes by analyzing the collisions between
different outputs. E — boxes are built with equations (2.3.2.1) - (2.3.2.5), while the values
of T/ are computed by formulas (2.3.6) - (2.3.12). Particularly from the formulas (2.3.9)
and (2.3.10) one can notice, that there are 2562 possible inputs for x,,x, pair, but just 256
values for x; + x5, i.e. the values of T}; (x;, x;) will have collisions.

Let’s say T/ (xq,x2) = T/ (x3,x,) for some values x;,x,,x3,x, and i € 4, i.e.

exp((x1 + 2 — SP®k[y) + kiz + R (x1,x5) = exp((x3 +xa — S) @ kiy) + ki, + Ri (x3,%4).
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This can be achieved if x;+x,— S;= x3+x,— S; and R/ (xy,x,) = R} (x3,x4), or
randomly. The first statement x; + x, — S; = x3 + x4, — S; happens pretty often, because
there are just 256 values for x; + x, while there are 256 values for x;, x, pair. R} (x1,x,) =
R[ (x3,x,) happens less frequently.

So for each collision we can say, not certainly but with a high probability that x; + x, =
x3 + x4. Having this, the attacker may use collisions of values of the E — box outputs to
construct a set of linear equations like

fl_l(xl) + fz_l(xz) = f1_1(x3) + fz_l(x4).

Yet the attacker is not sure if all the equations for all the collisions are certainly true, but
he/she knows that each equation is true with some probability. We have programmatically
checked that the attacker never gets enough equations to solve them, and knowing that
some of them are not true makes solutions of these set of equations, or even finding

possible candidate solutions for it impossible.

2.5.5 COLLISION ATTACK ON 2-PHT BOXES

Another possible attack could be trying to user the collisions of the outputs of 2-PHT boxes
to gain some information about the input/output permutations used. The attacker could
analyze the tables given by formula (2.2.3.2). One can notice that there are 2562 possible
input values for these boxes and just 256 possible outputs, which means that collisions here
are pretty common.
So if
2 — PHT,(xq,x,) = 2 — PHT,(x3,x,)
for some values of x;, x,, x3, x4, then we get
g2(fi (o) + f71(x2) + SEha) = g2 (i (xa) + f5 1 (xa) + SEha).
From this we get
fitle) + f5 1) = fit(xs) + fo ' (xa).
This way the attacker can build a set of linear equations and try to solve them to get the
values of functions f;.Yet this attack fails because this set of equations has many possible

solutions, and the functions f; are only used in these tables and the corresponding
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E — boxes. This does not allow the attacker to gain enough information about these

permutation functions f; to recover them.

2.5.6 FREQUENCY ANALYSES ARE NOT POSSIBLE

In this section we describe why frequency analyses are not an option for the presented
WB algorithm, meaning there is no need for Mixing Bijections(MBs) in our implementation.
One key difference between Chow’s AES WB and the presented Safer+ WB is that all our
tables are 8-bit tables, and are not operating on nibbles. This means, that the frequency
signatures must operate on all 8 bits. Yet one can easily notice, that in our case, for each
given master key and E — boxes, one can choose a set of input and output permutations
and functions R} (xy,x,), such that the E — boxes constructed with given key, permutations
and R](xi,x;) match the given E — boxes. This can be achieved by using the same
R[ (x4, x,) that were used for construction of the initial E — boxes, because functions T/ (x)
are bijections. The input permutations can be chosen arbitrarily and the output

permutations can simply be chosen as
-1 -1
feia (Ti’i (gg*i—l (x1), 824 (xz))) = Ej;1(x,x3),

(75 (gm0, 85 () ) = ERCo ),
where T/, are built using the new master key, and E]; and E/, are the E — boxes provided,
built with the initial master key.
Because function T/ (x) is a bijection of Z,s54, the frequency signature of function
Ef (x4, x3) or E,(xq1,x,) is always identical to frequency signature of function R] (xy,x,),
and the attacker can learn limited amount of information about R (xi,x;), but nothing

about the secure key. This shows that MBs are not necessary for our WB implementation.

2.6 C++ IMPLEMENTATION

To demonstrate the algorithm and do the performance testing, a C++ library was
implemented which has features of building encryption or decryption tables and applying

encrypt/decrypt operations on a single block of data of 16 bytes.
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Class Safer_key_schedule (Figure 2.9) is used for generating the keys for all rounds of
SAFER+ from the given 16-byte master key using the modified key schedule algorithm
described in section 3.2. The constructor of this class requires a 16-byte master key and
function “get_keys” returns a pair of 16-byte round keys for any given round. SHA-256
implementation of CryptoPP library is used by the class.

Figure 2.10 shows a UML diagram with the classes used for generation of encryption and

decryption WB tables from a given secret master key and input/output permutations.

( Safer_key_schedule A
Clazs

= Methods
@ get_keys
@ Safer_key_schedule

Figure 2.9: Class Safer_key_schedule.

The following are the main classes in the library, providing an API to the WB algorithm:
o WB_enc_tables - responsible for generation, access, storage and retrieval of
encryption WB tables.
o WB_dec_tables - responsible for generation, access, storage and retrieval of
decryption WB tables.
e WB_tables - contains shared data and methods for both tables.
Constructors of both WB_enc_tables and WB_dec_tables require the 16-byte master key
and input/output permutations to generate the key schedule and build the WB tables for
encryption and decryption, respectively. This includes the generation of E — boxes and
2 — PHT boxes for all the rounds.
The main functions for accessing the WB tables are:
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e get_round_1_ebox_output - returns the 2-byte output of an E — box of round 1 for
any given 1-byte input. Looks up the value in local array “table_round_1”, works in 0(1)
time.

¢ get_intermediate_round_ebox_output - returns the 2-bytes of output for any given
2-byte input for all the E — boxes for each round and byte. Looks up the value in local
array “tables”, works in 0(1) time.

o get_2_pht_output - returns 2-byte output for 2-byte input for a given 2 — PHT table
for all rounds, layers and bytes. Looks up the value in local array “two_pht”, works in
0(1) time.

e constructor - builds the WB tables based on the given master key and input/output
permutations. The generation of white-boxes tables ~200ms, as all the E — boxes and
2 — PHT tables must be built.

o tables_from_file — loads WB tables from a given file. The tables must be created by
providing the master key to constructor, and stored in the file using function
tables_to_file.

o tables_to_file - stores the created WB tables into the given file in binary format.

Later function “tables_from_file” can be used for loading the tables back into the class.
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| WE_tables A
Clazz
= Fields
'i'* has_round_1_
= Methods
@ generate_intermediate_shuffles
@ generate_tables [+ 1 overload)
@ has_round_1
@ tables_from_file
@ tables_to file
public public
| WB_enc_tables A | WE_dec_tables A
Clazs Clazs
= WB_tables = WB._tables
= Fields = Fields
'ii‘a table_round_1 'iia table_round_1
'i'a tables 'i'a tables
'ii'a two_pht ﬂa two_pht
= Methods = Methods
E’E build_intermediate_round_ebox E’a build_intermediate_round_ebox
E’a create_2_pht_tables E’a create_2_pht_tables
@, create_chowes @, create_choxes
[ generate_tables [+ 2 overloads) @ generate tables [+ 2 overloads)
@ get_2_pht_output @ get_2_pht_ocutput
@ get_intermediate_round_sbox_output @ get_intermediate_round_ebox_output
@ get_round_1_ebox_cutput @ get_rcund_1_ebox_cutput
@ tables_from_file @ tables from file
@ tables_to file @ takles_to file

Figure 2.10: Classes for generation and access to white-box tables for encryption and

decryption.

Class WB_cryptor shown in Figure 2.11 is the main class for applying encrypt/decrypt
operations. It holds encryption and/or decryption WB tables and applies the
encryption/decryption operation on a single integer, string or a blob of 16-byte binary data.

Encrypted integers and strings are returned as a base64 encoded string.
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The API functions of class WB_Cryptor are:

e encrypt - encrypts the given 16-byte blob of binary data.

e decrypt - decrypts the given 16-byte blob of binary data.

e encrypt_integer — encrypts a single integer using encryption WB tables and base6t4

encodes the resulting ciphertext.

e decrypt_integer - decrypts a single base64 encoded integer, using the decryption

white-boxes if present, the reverse of function encrypt_integer.

e encrypt_string — encrypts the given data encoded as a base64 string.

o decrypt_string - decrypts the given data encoded as a base64 string, the reverse

operation of encrypt_string.

| WB_cryptor

Class
= Fields
"i'a dec_tables_
= enc_tables_
@ has_round_1
= Methods
G:]a apply_2_pht_layer
@, apply_decryption_2_pht_layer
@, apply_decryption_ebox
@9, apply_ebox
@, decrypt
@ decrypt_integer
Gja decrypt_intermediate_round
@ decrypt_string
@ encrypt (+ 2 overloads)
@a encrypt_intermediate_round
@, server_d ecrypt
@B server_encrypt
@ WB_cryptor (+ 1 overload)

Figure 2.11: Class WB_cryptor.
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2.7 PERFORMANCE TESTING

Performance tests of the presented WB encryption were made on Intel Core 15 CPU 1.6
GHZ processor. A single encryption operation on a 16-byte plaintext block took 6.5 * 10°
seconds, while a single decryption took 6.7 * 10° seconds. This means the current
implementation encrypts at ~5.07 Mbit/sec and decrypts at ~5.23 Mbit/sec. These
performance values can be improved programmatically by writing a faster but less readable
software code. Comparison of the WB implementation performance with its black-box and
with RSA is shown in the table 2.7.1. As we can see WB encryption is about 6.5 times slower
compared to its black-box variant. Yet for those applications, where using the black-box
algorithm is not an option, the speed of WB presented is sufficient. As in some cases white-
box can replace PK cryptography, the comparison with RSA-2048 and RSA-4096 is shown.
As we can see that the algorithm is ~1800 times faster on encryption and ~80000 times
faster on decryption. This means that replacement of PK cryptography with the presented

WB algorithm will result to significant performance improvements.

Table 2.7.1: Time spent on a single encryption/decryption operation.

Encryption speed (ms) Decryption speed (ms)
White-box Safer+ 6.5 *10° 6.7 *10°
Black-box Safer+ 1.02 *10° 1.07 *10°
RSA-2048 0.12 5.46
RSA-4096 0.64 16.1

2.8 MEMORY REQUIREMENTS

Presented WB implementation of Safer+ requires 16 1-byte to 2-byte E — boxes for round 1,
16 2-byte to 2-byte E — boxes for each of rounds 2 to 6, 2-byte to 1 byte E — box for round

7 and four layers of sixteen 2 — PHT tables for each of rounds 1 to 6.
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Table 2.8.1: Size and quantity of white-box tables required.

Table name Size of each table Number of tables required Total memory required
Round 1 E — box 512 byte 16 8 KB

Round 2-6 E — box 128 KB 16*5 =80 10 MB

Round 7 E — box 64 KB 16 1 MB

2 —PHT 128 KB 16*4*5=320 40 MB

So the total size of WB tables required for our implementation is around 51 MB. These
boxes are significantly larger compared to their AES alternatives, yet this large size is
required for security reasons. As in some applications WB tables are created and delivered
to each user very rarely or just once, this huge size of the tables must not be an issue. Yet
we understand that the size of WB tables can be an obstacle for using it in some memory-

critical applications.

2.9 STATIC AND DYNAMIC TABLES FOR SECURE KEY UPDATING

In some applications, server needs to update WB tables with each file download, or several
times during a given operation. Particularly, this is the case for DRM systems, which need
to send the WB tables for each multimedia file, so the end user can decrypt and watch the
content. In some cases, multiple WB tables can be used for watching different parts of the
multimedia file, making the files harder to steal. Yet some of WB tables are not dependent
on the secure key, and optimizations can be made to save the network traffic. Those tables
which do not depend on the secure key, so do not need to get updated are called static
tables, and those which contain the key are called dynamic tables. It is easy to notice, that in
our implementation E — boxes are dynamic tables and 2 — PHT boxes are static. This lets
the server update only E — boxes with each file to be decrypted, and store 2 — PHT boxes
locally on the client device. In case the attacker tries to analyze the stored 2 — PHT boxes
separately from E — boxes, this kind of analyses will give no result, because the secure key
is not stored in them. This way the server is able to frequently update the E — boxes

allowing shorter timeframe for the attacker to break them, also resulting to smaller network
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bandwidth. This way, the content stream provider may create a separate white-box for each
small fragment of the multimedia file, such that the attacker will gain access to only a small
fragment of the whole file if one of the user white-boxes is broken.

So for our white-boxes, the total size of E — boxes required is around 11 MB, and the
total size of 2 — PHT boxes is 40 MB. So in order to update the secure key, the server will
be required to send the new E — boxes only, which is sufficiently less that the total size of

white-boxes.

2.10 CONCLUSION

A novel WB encryption scheme was introduced based on SAFER+ [26] algorithm. The
structure of SAFER+ was used to build a WB algorithm with better security, compared to
AES white-boxes. SAFER+ round operates on all 16 bytes of the input state and uses both
bitwise addition and addition modulo 256 operations when adding the key to the state
vector in the non-linear layer of the cipher. These give us additional advantages while trying
to build a secure WB. The modification of the original key schedule, which complicates the
key schedule algorithm making it irreversible, adds security to the described
implementation, making it impossible for the attacker to easily compute round keys for
another rounds, given the round key of some round. BGE attack is using the reversibility of
AES key schedule, and the fact that the AES key is just added to the state, making the key
addition an Affine Transformation. This is not true in our case, thus preventing application
of the BGE attack for key extraction. Also the 16 byte WB algorithm runs with a 32-byte
state vector, which is a novel approach in WB cryptography. This increases the size of WB
tables and slows down the encryption, but lets us build a secure WB.

Security analyses were provided describing several possible attacks which do not work on
the described cipher, including BGE attack, collision attacks, frequency analyses and other
algebraic attacks.

Performance tests show that the provided C++ library encrypts at ~5.07 Mbit/sec and
decrypts at ~5.23 Mbit/sec, which is slower compared to its black-box, but is order of

magnitudes faster compared to modern PK cryptography algorithms. As WB cryptography
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can be an alternative to PK cryptosystems in most of their applications, this creates a huge
domain for the presented algorithm to be applied. Also the presented algorithm can be
used in security critical software applications, which are running on unprotected devices, on

which the black-box algorithms cannot be safely used.
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CHAPTER 3

PUBLIC KEY ENCRYPTION ALGORITHM BASED ON
PERMUTATION POLYNOMIALS

Standard PK algorithms are nowadays widely used for key sharing and many other popular
applications, despite being known for slow execution speeds. A pioneering work describing

DH key exchange by Diffie and Hellman [27] was presented in 1976, which is based on the

discrete logarithm problem (DLP). In 1978 the RSA cryptosystem [28] was invented by

Rivest, Shamir and Adleman, which is the standard public key (PK) encryption to use for

most applications and is based on integer factorization problem. Another important
development for public key cryptosystems was the invention of Elliptic Curve(later EC)
cryptosystems [71].

An effective PK encryption system was presented in [30], which uses permutation
polynomials and runs as a WB algorithm. The presented cryptosystem can replace the
standard public key cryptosystems in all of their applications, resulting to significant speed
improvements. Later several modifications were made to the algorithm to improve security
and increase performance in [33]. In this chapter we will briefly review the cryptosystem

[30] and discuss the modifications made.

3.1 BRIEF DESCRIPTION OF THE INITIAL ALGORITHM

Let GF(q) be a finite field of characteristic p. For every permutation polynomial f(x) over
GF(q), there exists a unique polynomial, f~*(x) over GF(q) such that f(f 1(x)) =
f71(f(x)) = x called the compositional inverse of f(x).

Let F(x) =Xl_oa,x* € GF(2) be a primitive polynomial and P(x) =1, a,x%" be its
linearized 2-associate. Elements of the GF(2") will be represented through a primitive
polynomial g(x) over GF(2). Then P(x) is a permutation polynomial and an algorithm for
finding it's compositional inverse P~*(x) was presented in [30].

A primitive polynomial g(x) of degree n over GF(2) is used as the PK encryption private

(secret) parameter and a permutation polynomial P(x) as the public parameter.
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a) Public key encryption: any message m(x) of the length n as an input (plaintext) and
evaluation of the polynomial
P(m(x)) = c(x) mod g(x)
as an output (ciphertext). The evaluation operation will be implemented via the WB
evaluation without revealing the value of polynomial g(x). The output of PK encryption will
be ¢'(x) based on WB tables described later.
b) Private key decryption: Given a ciphertext ¢’(x) calculate c(x). Compute
P‘l(c(x)) =p1 (P(m(x))) = m(x) mod g(x) [30].
The WB evaluation is used to calculate the value of c(x) without revealing the value of
modulo reduction polynomial g(x) in such a way, that the “owner” of the system can
calculate c(x) from it.
The evaluation procedure will be as follows: all possible residues
xN = Ry(x) mod g(x), (3.1.1)
where N = 2t % (2k+1),i =1..128,r = 2k + 1 for k = 0..63
are calculated. Then these values are biased by using random 64 secret polynomials
Lo, L4,..,Lg3 based on another secret polynomial L(x) which are only known to the “owner”
of the system. All biased values for residues modulo polynomial g(x) are provided to the
public in the following manner:
By(x) = (RN(x) - Lo(x) mod L(x)) @D Lys1(x), (3.1.2)
forany N = 2t (2k +1), i = 1,128, k = 0,63

Based on the above explanation an encoding procedure will be as follows: The user
calculates an evaluation result of the polynomial P(m(x)) without any reduction, takes the
polynomial R(x) that contains all terms of evaluation for the degrees not exceeding 127, and
calculates the modulo two sum of nonzero terms By (x) denoted by Y By(x) corresponding
to nonzero terms of evaluation result exceeding N = 127.

An encrypted message c'(x) then contains two 16-byte vectors R(x) and ) By(x) and
another 8-byte vector B = (by, by,.., bg3), Where b, = 0 if the number of nonzero terms

with the same value k in evaluation result is even and b, = 1 otherwise for

N=2'xQk+1), k=063.
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Decoding procedure by the “owner” of the system will be as follows: based on the value

B = (by, by,..,bgs,) and vector Y. By (x) the “owner” calculates:

128

R(x) ® (Z By(x) @ z b; * LAX)) Lo(x)™' = c(x) mod L(x).  (3.1.3)

Then having the values of c(x) the value of m(x) can be calculated:

P (c(x)) =Pt (P(m(x))) = m(x) mod g(x) [30].

3.2 IMPROVEMENTS MADE ON THE PUBLIC KEY ENCRYPTION
ALGORITHM

A public polynomial P(x) = ¥*_,a,x*" is used in the encryption algorithm described in
[30].

Our analyses showed, that if a, = 0 for all but one value v in u =2..7 then the attacker
may gain some information about the plain-text message m(x) having the value of R(x). For
example if P(x) = x2" + x2 +x is used and if m(x) = ¥28a;-x; then R(x) =
»83,a;x%, which means that the attacker will easily get the values of a; for i =0..63. A
simple solution to this problem is to use values of P(x) for which a,, # 0 for more than one
u fromu = 2..7.

A modification of the PK system follows, which will make usage of any value of P(x) secure.
We will describe the algorithm for n = 128, but it can be easily extended to be used for any
value of n.

a) Public key encryption: any message m(x) of the length n as an input (plaintext) and
evaluation of the polynomial

P(m(x) = x128) = c(x) mod g(x), (3.2.1)
as an output (ciphertext). The evaluation operation will be implemented via a WB evaluation
described later.
b) Private key decryption: Given a ciphertext c¢’(x) calculate c(x) using formula (3.1.2). Then
compute

P1(c(x) * x2™7°) = (x) mod g(x), (322)
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where P~1(x) is the compositional inverse of the polynomial P(x). The equation holds,
because x2*°"" = 1 mod g(x).

After the modification there are no terms with degrees of N < 128 in the evaluation result
of the polynomial P(m(x) = x'28), so there is no need for having the polynomial R(x) any
more.

Polynomials Ly, L4,.., L1,7 are generated, and values of By(x) are provided publicly for any
N = 2' % (2k + 1) where i = 1,128 and k = 0,127 according to formula (3.1.2).

An encrypted message c'(x) then contains a 16-byte vector }; By(x) and another 16-byte
vector B = (by, b4,..,b127), where b, = 0 if the number of non-zero terms with the same
value k in the evaluation result is even and b, = 1 otherwise.

The decoding procedure by the “owner" of the system will be as follows: based on the value

c'(x) = {XBy(x), B = (bg,by,..,b127)} the "owner" calculates:

128
(Z By(x) & Z b; * Li(x)> +Lo(x)™! = ¢(x) mod L(x). (3.2.3)
i=1

Then the “owner” of the system can decrypt the message by calculating the value of m(x)
using formula (4.3.2).
Now we need to prove the following lemma:
Lemma 3.2.1: The polynomial obtained by applying formula (3.2.2) on polynomial
c(x) obtained by using formula (3.2.3) gives a correct decryption result m(x).
Proof: During the encryption, first the value of c(x) is calculated according to formula
(3.2.1). The reverse operation of this first step, done during decryption is the computation
of m(x) according to formula (3.2.2). It’s easy to notice that

P (c(x) lezg_g) = P7H(P(m(x) * x28) x xzm_s) = m(x) * x128 % x2*°7°

— m(x) " x2128—1

= m(x) mod g(x),

i.e. formula (3.2.2) successfully applies the reverse operation of formula (3.2.1) on any
polynomial.

Now all is left to prove is that the values of c(x) computed with formula (3.2.3) is equal to

P(m(x) = x128) mod g(x). So let’s say
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lc(x)]
P(m(x) * x%8) = c(x) = z xCi,

i=1
The ciphertext is {); By(x), B}, where B = (by, by,..,b1,7) . In our case,
[c(x)]

D Bn®) = ) Bo)

According to formula (3.1.2):
[4€9]]
D B = Y (R L@ mod L)) @ Liss ().

i=1

According to (3.2.3):

128
(2 By(x) @ Zbi * Li(x)> . Lo(x)‘l mod L(x) =

lcC)] 128
(Z (Re, ) - Lo() mod L(x)) @ Lk+1(x)> ® ) bix L) | L) =
i=1

i=1

lc(x)| [4€3]
<Z (R )+ LoGo) mod L(x)) ) Ly(x)! = Z Re,(x) mod L(x)

i=1
So using formula (3.2.3) during decryption and doing modulo L(x) operations we get the

c(x)|

value of ZL=1 R (x) as a result, and according to (3.1.1)

[c(x)]
Z Re,(2) = c(x) mod g(x).

Thus Lemma 3.2.1 is true, and a message encrypted with the described WB algorithm can

be correctly decrypted.

3.3 A NUMERICAL EXAMPLE

We will provide an example of size n = 8 for demonstration purposes. This numerical

example can be used for testing purposes for other implementations of the described

system. In normal settings n = 128 must be used, and n = 8 setting, obviously, provides no

security.

Let P(x) = x¥ + 22" +x% +x2° + 22", g(x) = 1+ x + x2 + x7 + x8and m(x) = x3 + x°.
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P(m(x) - x8) = (x3+8 +x5+8)22 + (x3+8+x5+8)24 + (%378 +x5+8)25 +
(x3+8 +x5+8)26 + (X318 +x5+8)27 = 1127 4 41322 4 jar2t | a3t | 1128 | 1328
+x112% 4 413:2° 4 41127 4 41327
We have that
X By(x) = B1122(x) @ By322(x) @ By1.24(x) @ Bygpe(x) @ By1p5(x) @ Byzps(x) @
B11.26(x) @ By3.26(x) @ B11.57(x) @ By3,57(x),
where By (x) are defined according to (3.1.1).
For this example, L(x) =1+ x%+x*+ x> +x®+x” +x® was used, and the following

random values for L;(x) were chosen:

Lo(x) 1+x+x24+x7 +x8

L (%) 1+x+x°+x7
L,(x) x2 4+ x3 +x* +x°
Ly(x) 1+x+ x2+x3+x°+ x7
L, () x2+x3+x7

Ls(x) x3 + x* + x84+ x7
Lg(x) 1+x%+x7

L,(x) 1+ x%+x7

Lg(x) 1+x+ x2+x3+x°+ x7

Given these values of L;(x) and the value of g(x), we get the following values for
polynomials By(x),N = 2! % (2k + 1) (only the values required in this particular sample

encryption are listed):
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Biq.52(x) 1+x+ x2+x3+ x5+ x°
By3.52(x) 1+ x2+ x°
Byq.54(x) T+x+ x*+ x5+ x6
By3.54(x) 1+ x2+x°+ x7
By..5(%) x%+x*+ x7
By3.55(x) x*+ x®
Bq.26(x) 1+x+ x*+x>+x%+ x7
By3.56(x) 1+x+ x3+x%+ x7
B11.27(x) x + x?

By3.,7(x) 14 x34+x%+ x7

The ciphertext will consist of the values YBy(x)=1+x+x?2+x3+x°+x’ and
vectorB=(0,0,0,0,0,1,1,0), i.e. ¢'(x) = {1 + x + x? + x® + x> + x7,(0,0,0,0,0,1,1,0)}.

For the decryption, we need to calculate the value of

<Z By(x) @ Le(x) ® L7(x)> “Lo(x)™! = c(x) mod L(x).

<ZBN(x) @ Lg(x) EBL7(x)> =1+x+x2+x3+x>+x"+1+x+x" +1+x%2+x7
=1+4+x+x3 +x5+x% +x7.
It’s easy to check that Loy(x)™* = 1+ x?+x°® +x” andc(x) =1+ x +x% +x3 +x6.
Using the method described in [30], by solving a system of linear equations, we get the
value of reverse permutation polynomial of P(x),
Pl(x) = 1+x+x3+x* +x8.
The last step of decryption is calculation of the value of m(x) using the following formula:
P (c(x) = x28_3) = m(x) mod g(x)
We have x2° here, because n = 8 in our case, instead of the usualn = 128, and 8 = 23,

28—3

SO x is the multiplicative inverse of x8 mod g(x) .
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3.4 IMPLEMENTATION ASPECTS AND PERFORMANCE OPTIMIZATIONS

Encryption algorithm of the proposed system requires evaluation of the polynomial
P(m(x) - x'?®) and then a modular reduction using WB implementation. The evaluation of
P(m(x) - x128) will require to calculate the values of m(x)? for all i = 0,n, where 2" is the
order of P(x). This will require n polynomial squaring operations.

In the rest of this dissertation let's agree to denote by |P(x)| the weight of polynomial P(x).

Then the evaluation of P(m(x) - x'?8) will have |P(x)| * [m(x)| terms, so |P(x)|* |m(x)|
polynomials additions will be required to compute Y By(x). Also another |P(x)|* |m(x)|
operations will be required to compute the value of vector B.

Let’s denote by |B| the number of 1s in the binary vector B. During the decryption
procedure, the calculation of c(x) from c¢'(x) will require |B| modulo two additions to add
the values of L;(x) to Y By(x) and one multiplication of polynomials to multiply with
Lo(x)™! to compute the polynomial c(x) according to formula (3.2.3), if the value of
Lo(x)~! is pre-computed once for all the messages and stored.

Final decryption operation will require to compute P~1(c(x)) - x2*°

= m(x) mod g(x),
where P~1(x) is a compositional inverse of polynomial P(x). Calculation of P‘l(c(x)) will
require computing the values of c(x)? for all i =0,127, which takes 128 polynomial
squaring operations, and adding up the resulting polynomials which will require |P~*(x)|
polynomial additions. Again, we assume that the value of P~'(x) is pre-computed and

stored.

The memory required for storing the WB tables, i.e. the values of By(x) will be 16 bytes

per value for each N = 2!« (2k + 1), i = 1,128, k = 0,63, resulting to overall 128*128*16
bytes, which is 256 KB of data.

Several performance optimizations were made to the presented algorithm. One can notice,

that for P(x) = ¥7_, a,x? and m(x) = Y7, a,x’,
P(m(x)) = Tp_oa,P(x) (3.4.1)
In a similar way for c(x) = Y-, a;x!,
P~ (c() = TP (xh) (3.4.2)

Let’s denote by Bp(,») (x) the sum of By (x) for all degrees N in polynomial P(x").
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So from (3.4.1) one can notice, that given the values Bp(,v) (x), which are independent of

the value of m(x), one can easily notice that for a given polynomial m(x) = Y-, a,x",

n

> By = > a,Bpan ()

v=0

This means that if we pre-calculate and store the values of Bp(,» (x) for each v = 0,127 and
the values of P~1(xV) for eachl = 0,127, this will require 128*16 bytes of additional
memory for each of the encryption and decryption operations, but the performance will be
increased dramatically.

We also pre-calculate the impact of P(x¥) on array B for each v = 0,127, which requires
another 12816 bytes of memory.

After calculating and storing these values, instead of doing 128 polynomial squaring
operations and |P(x)| * |m(x)| modulo 2 additions for computing ), By(x) and B during the
encryption, we'll do no squaring operations and just |m(x)| modulo 2 additions to add up
the values of Bpw) (x). After this modification we will require |P(x)| = 128 times less
operations in average.

In decryption we will skip doing the squaring operations and will just do sum up the values
of P~1(x!), doing just |c(x)| polynomial additions.

Presented optimizations speed up both encryption and decryption operations by about 2.2

times at the cost of 4 KB additional memory and some pre-computations.

3.5 SECURITY ANALYSIS

The secret values in the cipher presented are polynomials g(x),L(x),L;(x). Public values

are the values of By(x) forall N = 2'x(2k+1), i =1,128, k = 0,127, computed by
formula (3.1.2) and polynomial P(x). Having these public polynomials, as well as the
encryption result ¢’(x) for some given plaintext polynomials m(x), the attacker’s objective is
to obtain the values of g(x),L(x)andL;(x) to be able to decrypt any encrypted

message ¢’ (x).

82



In order to decrypt message c'(x), the attacker must be able to perform the following 2
operations:

e Calculate the value of c(x) from c¢'(x) using formula (3.2.3).

e Compute the value of P~1(x), so the value of m(x) can be calculated using formula

(3.2.2).

In order to be able to compute c(x) from c¢’(x) using formula (3.2.3), the values of L;(x) as
well as the value of Ly(x)™* mod L(x) and L(x) are required. In order to compute the value
of P71(x) from the value of P(x), polynomial g(x) is required.
So in order to decrypt a message, the attacker must deduce the values of the secret
polynomials g(x), L(x),and L;(x) for all i = 0,127.
Let us proof the following lemma:
Lemma 3.5.1: For any given set of By (x) forany N = 22k + 1), i = 1,128, k = 0,127,
it’'s computationally infeasible to deduce the values of g(x), L(x) or L;(x). Moreover, for
each g(x) there will be a value of L(x) that would result to the same values of By (x).

Proof: From formula (3.1.2) we get:

Byyg(x) = (Ryzg(x) - Lo(x) mod L(x)) @ Ly(x),
Byse(x) = (Rys6(x) - Lo(x) mod L(x)) @ Ly(x),
Bs12(x) = (Rs12(x) - Lo(x) mod L(x)) @ Ly(x).
From these equations we get:
B12g(x) @ Base(x) = (Rizs(x) @ Rase(x)) - Lo(x) mod L(x),
B125(x) @ Bs12(x) = (Ri2(x) @ Rs12(x)) - Lo(x) mod L(x).
From these two equations we get:

Bi25(x) @ Bjse(x) _ Ri25(x) @ Rys6(x)
Bi2g(x) @ Bs12(x)  Ryz8(x) @ Rsq2(x)

Though the division operations here are done modulo L(x), while Ry,5(x) = x'?® mod g(x).

mod L(x). (3.5.1)

So if the value of g(x) is given, one can compute the values of R;(x) , then from formula
(3.5.1) can be written as
(Bi2s(x) @ Bys6(x)) * (Ri23(x) @ Rs12(x))
= (Bi2g(%) @ Bs12(x)) * (Ri23(x) @ Ras6(x)) mod L(x),
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Which is the same as

(B1zs(x) D ste(x)) * (R128(x) @ Rs512(x)) — (B12s(x) @ Bsi2(x)) * (Ry25(x) (3.5.2)
@ R3s6(x)) = 0mod L(x)

So if all the values on the left side of equation are given, one can compute it and knowing
the degree of L(x) find a divisor of the required degree. Or, alternatively another similar
equation can be written with N = 1024, and having 2 polynomials, both divisible by L(x),
we can simply compute the GCD of the given two polynomials.

So for any value of g(x) there exists a value of L(x). On the other hand if the value of L(x)

is known, one can compute the value of g(x) from formula (3.5.1). We can rewrite it as

B12g(x) @ Base(x) mod L(x) = (x'?® @ x*°°) mod g(x)
Bi25(x) @ Bsip(x) B (x128 @ x512) mod g(x)

From which we get:

Bi2g(x) @ Bzse(x)
Bi25(x) @ Bsq2(x)

As the polynomial on the left side of the equation can be computed, given the value of L(x),

mod L(x),

* (21?8 @ x52) mod L(x) — (x2® @ x?°¢) = 0 mod g(x).

one can get the value of g(x), because g(x) is a divisor of that polynomial.

So we proved that for any given value of L(x), the polynomial g(x) can be computed, and
for any given value of g(x), the value of L(x) can be computed. Yet if none of them is
known, the equations got from the values of By(x) don’t provide enough information for

getting any of these values.

Lemma 3.5.2: The computation of P71(x) from P(x) without the knowledge of secret
polynomial g(x) is not possible, and for each value of g(x) there is a corresponding value of
P 1(x).

Proof: An algorithm for building the compositional inverse of polynomial P(x) for any value
of g(x) was presented in [30]. A set of linear equation is being solved, and it’s shown that
this set of equations must always have a solution. So for every value of g(x) the
corresponding value of P~1(x) exists. This means, that without the knowledge of g(x) it’s

impossible to compute P~ (x).
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So based on the proved lemmas 3.5.1 and 3.5.2 we can say, that the attacker, having the
values of By (x) and P(x), which are publicly provided, will be unable to compute the values
of g(x), L(x),L;(x) or P~*(x), which are necessary for decryption. This proves the security

of the presented cryptosystem.

3.6 C++ IMPLEMENTATION

A C++ library was implemented for performance testing of the presented algorithm.
CryptoPP [31] library was used for RSA [28] implementation and for mathematical primitive
operations. The main class is class Cryptor (Figure 3.1), with the following public methods:
e wbox_encrypt - encrypts the given message with the WB algorithm, returning the
value of ¢'(x) = {} By(x), B = (by, by,..,b157)} for any given message m(x).
o blackbox_decrypt - decrypts the message with black-box algorithm, i.e. computes the
value of c(x) from c¢’(x), then uses formula (3.2.2) to compute the value of m(x).
The values of g(x), L(x), P(x) and L;(x) for all i = 0,127 must be provided through the
constructor. Polynomial P~1(x) is computed using Gauss Elimination method in the
constructor and is locally stored in the class for all subsequent decryption operations.
Class Cryptor can be used to generate and use WB tables, apply encryption and decryption
operations. It possesses the values of polynomials g(x), P(x), P~1(x), L(x), L;(x), Ly*(x).
Class EuclideanMultiplicativelnverseCalculator is used for computing the value of
polynomial Ly (x) using the Euclidean algorithm.
Class CompositionallnverseCalculator is used for computing the value of P~*(x) for a
given P(x) by solving a system of linear equations using Gaussian Elimination, as described

in [30].
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Class PolynomialModuloMultiplier is used for multiplying any 2 polynomials modulo a
fixed polynomial g(x). In order to speed up the multiplications, it creates and stores the
values of Ry(x) = x" mod g(x) for N = 0,256 during construction, so the modulo
reductions of the resulting polynomial can be calculated fast. The construction of these
values takes 256 modulo g(x) reductions. Yet the reductions are pretty fast, since the

values of Ry (x) are computed with the following pseudo-code:
Ry(x) =1
FOR N :=1to 256 do
Ry(x):= Ry_1(x) *xx
IF degree of Ry(x) = degree of g(x) THEN

Ry(x):= Ry(x) ® g(x)
ENDIF

ENDFOR

This way, if the degree of g(x) is 128, we’ll do just 128 polynomial additions to compute all
necessary values of Ry (x).

Two instances of this class exist in the Cryptor class, for operations modulo g(x) and L(x),
respectively. As most of the operations in the cryptosystem are made modulo g(x) or
modulo L(x) the total system performs better with these pre-computations.

Class Polynomial represents a single polynomial in the system and provides multiplication,
addition and division operations. As the most frequent operation is modulo 2 additions, the
class is optimized to do it fast. A polynomial of degree <128 is represented as a mask of 128
bits and stored as a vector of four 32-bit integers. So having 2 such polynomials, we can
apply XOR operation to these 4 32-bit integers and we’ll get the mask representation of
modulo two sum of the given pair of polynomials. This makes the speed of one polynomial

addition operation equal to 4 integer XOR operations.
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3.7 PERFORMANCE TESTING

Performance tests of the presented PK encryption scheme were ran on Intel Core i5 1.6
GHZ processor. The CryptoPP [31] library's RSA-2048 and RSA-4096 implementations
were used for benchmarking. The results of performance tests are provided in table 3.7.1.
As we can see the presented algorithm is ~3.75 times faster on encryption and ~133 times
faster on decryption compared to RSA-2048. This is a significant performance
improvement, and shows that replacement of RSA with the presented WB algorithm in any

of its applications will result to a significant improvement in execution speed.

Table 3.7.1: Time spent on a single encryption/decryption operation in milliseconds.

Encryption speed Decryption speed

Initial WB algorithm 0.094 0.12
Improved WB algorithm 0.032 0.041
RSA-2048 0.12 5.46
RSA-4096 0.64 16.1
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3.8 CONCLUSION

An improved version of the PK encryption scheme based on permutation polynomials
described in [30] was presented. The algorithm uses WB reduction during encryption. The
improvements were made for security improvement and performance optimization. Security
analyses were briefly discussed.

The modified implementation stores several pre-computed values, which results to
significant speed improvements at the price of increase in memory requirements by just 4
KB. Performance analyses of the improved system were presented showing that the
algorithm runs ~3.75 times faster on encryption and ~133 times faster on decryption
compared to RSA-2048. This proves that the algorithm is a good alternative to standard PK
algorithms like RSA for all of its applications. Implementation aspects were described, and

several implementation optimizations were presented.
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CHAPTER 4

INTEGRATION OF THE WHITE-BOX ALGORITHM INTO
SKYCRYPTOR'’S SECURE SEARCH ENGINE

Nowadays many companies and individual users store their data in cloud storage systems
providers like Dropbox [2], Google Drive [3], Box [4] and Microsoft OneDrive [5]. These
storage providers have full access to the data they store. This is a big security issues for
some companies [72], so the solution for them is to use third-party tools like Sookasa [9],
Boxcryptor [11], nCryptedCloud [10] in order to encrypt their data on the fly before storing
it on the cloud storage.

SkyCryptor [12] is a cloud encryption service provider which provides zero-knowledge
security to users who want to store their files on cloud storages in an encrypted form.
SkyCryptor relies on proxy re-encryption scheme [73], [74], [75], [76], and acts as a semi-
trusted proxy server for key storage and file sharing. Each user has public and private keys
used for encrypting the AES key of the file. So each file is first encrypted by a randomly
generated key using AES [14], then the key itself is encrypted with the user’s public key and
is stored with the encrypted file on the cloud storage provider’s site. SkyCryptor allows file
sharing, in which case if user A wants to share a file with user B, he/she creates a special
proxy re-encryption key and stores it on the servers of SkyCryptor. Then user B can
request the re-encryption key, and using that decrypt the encrypted file key, which can be
used to AES decrypt the file itself. The next fundamental advantage of SkyCryptor is the fast

SE algorithm used. Both file sharing and search use zero knowledge algorithms.

4.1 USAGE OF WHITE-BOX ALGORITHM IN ENCRYPTED SEARCH
IMPLEMENTATION

As SkyCryptor provides zero knowledge security, it must not learn anything about the user’s
files’ contents, even after analyzing the search outcomes. All the communication between
SkyCryptor and the user must stay encrypted, and SkyCryptor must not see or possess any

information which will allow learning any information about any user’s files. For this reason,
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all the files are encrypted and decrypted only on the users’ devices and SkyCryptor stores

only re-encryption keys, which do not provide sufficient information to decrypt the files.

Secure file indexes are also built on the user side.

SkyCryptor supports the following operations:

e Account creation
o All users create accounts, RSA key pair and WB tables are generated on creation.
o WB tables are encrypted using the RSA public key and are stored on the
SkyCryptor’s servers.
o Every time a user adds a new device, the tables are downloaded from SkyCryptor
servers and decrypted using user’s private key.
. File addition

o The new file with id f;; is encrypted by a generated 256-bit AES key K,
o Kg,, is encrypted by the user’s public key K,
o User uploads the encrypted file and its AES key to the online storage provider of the
his/her choice.
o A list of keywords stems Wy, is built with a keyword extraction algorithm followed by
a stemming algorithm [77].
o Each keyword w; € Wy is encrypted using the WB implementation of SAFER+ block
cipher.
o The list of encrypted keywords {Ey z(w;), w;eW} is uploaded to SkyCryptor
o SkyCryptor builds forward and inverted indexes using these values. The forward
index stores a list of keywords per f;;, and the inverted index stores a list of f;; which

contain the given encrypted keyword Ey,z(w).
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fia Encrypted keywords Encrypted keyword List of fi4

1 Ewg(Wy), Eyg(Wg), Eyyg (W) Eywp(wy) 1,2,n

2 Ewg(W1), Ewpg(We), Ewp(Ws) Ewg(w,) n

n Ewg(wWy), Eyp(Wy) Ewp(Wn) 3,15
(a) Forward index (b) Inverted index

Figure 4.1: Forward and reverse indexes.

Search
o User enters the search query, consisting of a list of keywords.
o A stemming algorithm [77] is ran on each keyword, to extract the stems from each
keyword.
o User uses the same WB tables to encrypt the resulting list of search keyword stems.
o The list of encrypted keywords is sent to SkyCryptor.
o SkyCryptor looks up the inverted index for file ids for given encrypted keywords,
then intersects the file id lists to compute the list of encrypted file ids matching all the
search keywords, then sends this list back to the user.
o User uses the file ids to download the necessary files from the cloud storage
provider where the files were stored. The encrypted AES keys are downloaded with
each file.
o The AES key is decrypted using the user’s private key K, .
o Decrypted AES key K, is used to decrypt the file itself.

File modification
o User edits the file, encrypts it the same way and uploads to the storage provider
with the encrypted key.
o User generates the new list of encrypted keywords, sends it to SkyCryptor server.
o SkyCryptor uses the forward index to remove the previous keywords from both
indexes, then adds the new encrypted keyword list received from the user to both
indexes.

File deletion
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o User deletes a file from the cloud storage provider.
o User sends a digitally signed deletion request to SkyCryptor.
o SkyCryptor uses the forward index to find a list of encrypted keywords {Ey; 5 (w;),
w;eWr } which are present in the file being deleted then removes the corresponding
entries from both forward and inverted indexes.

. File sharing - User Bob wants to share a file with Alice.
o Bob downloads the public key of Alice from SkyCryptor.
o A proxy re-encryption scheme is used to generate a proxy key, which will allow Alice
to decrypt a single file owned by Bob. The proxy key is also built in a special way, using
our WB algorithm.
o The proxy re-encryption key is then uploaded to SkyCryptor, providing access to the
file for Alice from all of her devices.
o Alice request the re-encryption key from SkyCryptor, downloads the file she wants to

access, and decrypts the file AES key using the re-encryption key and her private key.

As we can see, none of the operations performed by SkyCryptor deals with any unencrypted
data of a user. WB algorithm here replaces PK cryptography, and lets the file addition
operation run orders of magnitudes faster. This allows SkyCryptor to encrypt big number of
keywords on file addition operation in seconds, as well as effectively share files between

users and re-build the forward and inverted indexes when necessary.
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CONCLUSION

White-box algorithms, unlike their “black-box” alternatives, are designed to run on
vulnerable devices (such as PCs, smartphones or tablets), where the attacker can use tools
like IDA Pro, debuggers and emulators to gain full access to all the internal values
generated during the software execution and full control over the execution routine. We say
that software running on such devices operates in the WB attack context and conventional
black-box ciphers don’t provide the necessary level of security for these devices. WB
algorithms use look-up tables for encryption, which are constructed in such clever ways,
that the attacker, having full access to all the tables and observing or modifying the
encryption routine is unable to extract the secure cryptographic key or perform a
decryption operation. This creates a wide range of applications for WB algorithms, from
Digital Rights Management systems, to Oblivious Transfer and SE algorithms. WB
algorithms are also used as a fast alternative to PK encryption algorithms.

A pioneering work by Chow and others in 2002 [15], presenting the first WB
implementation of AES block cipher, gave birth to WB cryptography. Yet Chow’s
implementation were successfully attacked by the BGE attack [16]. Later, several attempts
were made to improve Chow’s white-boxes to protect it from the BGE attack. Yet all the
subsequent implementations [19], [43], [17] were successfully broken by the modifications
of BGE attack [22], [18], [44]. Later a collision attack was introduced by T.Lepoint and M.
Rivain [23], which runs much faster and is easier to understand and implement compared
to the BGE attack. A review of all the mentioned WB implementations was presented. The
BGE attack [16] and the collision attack by T.Lepoint and M. Rivain [23] were briefly
described.

In this dissertation we presented a novel WB encryption scheme based on SAFER+ block
cipher [26]. The algorithm takes advantage of some details of SAFER+ and uses different
techniques to defend from the known attacks such as the BGE attack [16]. The key schedule
was modified to make it irreversible. The outputs of all the tables were randomly split into 2
parts, which significantly complicates any algebraic attack on the tables. General security

analyses were presented, including security against the BGE attack, some collision and
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frequency analyses attacks, which work on weakened variants of the presented cipher, but
are shown to be not applicable for the presented implementation. A C++ library was
implemented as a proof of concept and for performance testing. Performance test results
were presented, showing sufficient speed of the algorithm. As all the WB implementations
of AES were successfully broken, the presented algorithm is the only WB implementation of
a block cipher which can be safely used. This creates large number of applications for the
presented algorithm.

The second part of this research presented a modification of a WB encryption algorithm
based on permutation polynomials [30]. Several modifications were made to improve the
security and performance. The algorithm can safely replace conventional PK encryption
schemes such as RSA [28] and Eliptic Curve Cryptosystems [29] resulting to a significant
performance improvement. Benchmarks of the implementation were provided proving its
high performance compared to rival algorithms. The optimized algorithm is ~3.75 times
faster on encryption and ~133 times faster on decryption compared to RSA-2048. This
makes it a good alternative to the classic public key cryptosystems and switching to the
presented scheme will result to significant performance improvements. Security analyses
were provided, describing several attacks which cannot be applied on the presented
algorithm.

The presented algorithms were integrated into SkyCryptor’s [12] secure search engine, to
replace all the usages of conventional PK cryptosystems and provide better performance for
the search and file sharing operations. SkyCryptor is a cloud encryption service provider
which provides zero-knowledge security to users who want to store encrypted files on cloud
storages like Box [4], Google Drive [3], Dropbox [2] and Microsoft OneDrive [5].
SkyCryptor relies on proxy re-encryption scheme [73], [74], [75] and acts as a semi-trusted
proxy server for key storage and file sharing. Two vital features of SkyCryptor are secure
keyword search over encrypted user files and file sharing. Without the ability to search, the
users would be unable to manage huge amounts of data they want to store on the cloud,

and without the ability to share the files, the users would be required to download and re-
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encrypted each file which they need to send to another person. Proxy re-encryption
schemes allow implementing both operations, but rely on slow PK cryptography algorithms.

SkyCryptor uses proxy re-encryption and keyword encryption based on our WB algorithms.
The replacement of PK operations with our WB algorithms speeded up the operations of
addition and modification of files, as encryption of many keywords was necessary for these
operations. The performance of file sharing and re-encryption key generation was also
improved. This resulted into a practically usable fast searchable encryption system for users

who want to store their files on the cloud in an encrypted form.
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APPENDIX A. GLOSSARY OF ACRONYMS

AES - Advanced Encryption Standard
API - Application Programming Interface
ASP - Application Service Provider

BGE - Billet, Gilbert, Ech-Chatbi

DaaS - Data as a Service

DFA - Deterministic Finite Automata
DES - Data Encryption Standard

DLP - discrete logarithm problem
DRM - Digital Right Management

GCD - Greatest Common Divisor

IDE - input output data encoding

ODE - output data encoding

IP - Isomorphism of Polynomials

MB - mixing bijection

OOP - Object Oriented Programming
OT - Oblivious Transfer

PK - Public Key

PRF - Pseudo-Random Function

SaaS - Software as a Service

SE - Searchable Encryption

SFE - Secure Function Evaluation

SPM - Secure Pattern Matching

SSE - Searchable Symmetric Encryption
SLT - Substitution-Linear Transformation
WB - White Box

WBC - White Box Cryptography

WBAC - White box attack context

AEw/oS - Advanced Encryption without standard S-boxes
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