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General description

Topicality: Asymptotic efficiency in parametric models goes back to the beginning
of the twentieth century and based on the works of Fisher. He proposed a program
how to define asymptotic efficiency by comparing asymptotic error of an estimator
in a point and proposed an estimator, which is called the maximum likelihood
estimator, as an efficient estimator. Initial program of Fisher was not exactly true,
since Hoges constructed an estimator which had a lower asymptotic error in a point
than the asymptotic error of the maximum likelihood estimator. Such estimators
were called super-efficient estimators. But, in realty these estimators were not better
than the maximum likelihood estimator, since, for improving asymptotic behavior
of an estimator in a point we damage the behavior of the estimator in neighbor
points. To exclude such estimators Hajek proved a lower bound which compares
behavior of estimators locally uniformly. Theorem was proved in the models where
there was a LAM (local asymptotic normality) condition, which was introduced by
Le Cam. Hence, the lower bound was called Hajek-Le Cam lower bound. For this
definition the maximum likelihood estimator is asymptotically efficient for various
models. Later Ibragimov and Khasminskii proved convergence of moments of the
maximum likelihood estimator in the model of independent identically distributed
random variables, hence they proved asymptotic efficiency of the maximum likelihood
estimator for polynomial loss functions. Jeganathan generalized the notion of local
asymptotic normality by defining local asymptotic mixed normality (LAMN) and for
such models proved asymptotic lower bound for all possible estimators. Dohnal, for
multidimensional case Gobet, proved that for a stochastic differential equation (SDE)
with parameter in the diffusion coefficient, we have local asymptotic mixed normality
property. Efficient estimators for this model were constructed by Genon-Catalot and
Jacod.

Same ideas of asymptotic efficiency transferred to the non-parametric estimation
problems. First a such result was proved by Pinsker in the model of signal estimation
in the presence of Gaussian white noise. In such problems the role of the inverse of
the Fisher information in parametric statistics plays a constant, which is called the
Pinsker constant. Later, such results where proved for other models too, particularly,
for the intensity function of an inhomogeneous Poisson process the result was proved by
Kutoyants. To compare asymptotic efficient estimators Golubev and Levit introduced
the concept of second order efficiency for the model of independent identically
distributed random variables and constructed an estimator which is asymptotically
the best one among asymptotically efficient estimators, hence it is called second order
asymptotically efficient estimator.

Objective:

1) Construct an easy calculable, asymptotically efficient estimator for the
parameter in the diffusion coefficient for some diffusion process.

2) Efficiently estimate the solution of a forward-backward stochastic differential
equation (FBSDE).

3) Prove second order efficiency result for the mean function of an inhomogeneous
Poisson process.

Research methods: Methods from Asymptotic Theory of Statistics,



Probability Theory and Functional Analysis.

Scientific novelty: All result presented in the dissertation are new.

Practical and theoretical significance: The main results of the work are of
theoretical nature but can have possible practical applications as well. In each model
we are searching for asymptotically the best estimator, hence in practical applications
it is the most preferable estimator.

Approbation: The results are presented in the scientific seminars in the Chair
of Probability and Mathematical Statistics of Yerevan State University and in the
Laboratory of Mathematics of University of Maine, Le Mans, France. Also, results
are presented in the poster session during the international conference “Statistique
Asymptotique des Processus Stochastiques X” in Le Mans, France, March 17-20, 2015.

Main results of the dissertation are published in three papers; references can
be found in the end of this booklet.

Structure and volume of dissertation: the dissertation is written on 79
pages; consists of an introduction, two main chapters, conclusion and the list of 40
cited references.

Overview and main results

First chapter of this work is devoted to the approximation problem of the solution
of a forward-backward stochastic differential equation (forward BSDE or FBSDE).
We suppose that the diffusion coefficient of the forward equation depends on an
unknown one-dimensional parameter, therefore the solution of the backward equation
also depends on that parameter. It is well-known that if we observe the solution of a
stochastic differential equation on the whole interval, even bounded and very small,
then we can estimate the unknown parameter in the diffusion coefficient “without
an error”, hence it is not a statistical problem. Our considerations are based on the
observations of the solution of the forward equation on a finite interval, at equidistant
discrete points. As the number of observations tends to infinity, the distance between
the observation times tends to zero. Such a statement of problem is called high
frequency asymptotics. At a given point of time we have to construct an estimator
for the unknown parameter based on the observation times before that time only,
hence we have to construct an estimator process. We are seeking an estimator which is
computationally simple, but of course, we do not want to lose in the performance of the
estimator. For that reason we are looking for an estimator which is also asymptotically
efficient.

Recall that the BSDE was first introduced in the linear case by Bismuth [3] and
in general case this equation was studied by Pardoux and Peng [31]. Since that time
the BSDE attracts attention of probabilists working in financial mathematics and
obtained an intensive developement (see, e.g. El Karoui et al. [8], Ma and Yong [28§]
and the references therein). The detailed exposition of the current state of this theory
can be found in Pardoux and Réscanu [33].

Formally, we consider the following problem. Suppose that we have a stochastic



differential equation (called forward)
dX; = S(t, X)) dt + o (0,¢, X:)dWs, Xo, 0<t<T

and two functions f (¢, z,y,2) and @ (z) are given. We have to find a couple of
stochastic processes (Yz, Z;) such that it satisfies the stochastic differential equation
(called backward)

AYy = —f (t, X0, Vs, Z)dt + ZedW,, 0<t<T

with the final value Yr = @ (X7).

The solution of this problem is well-known. We have to solve a special partial
differential equation, to find its solution wu (¢,z,9) and to put Yz = u (¢, X, ) and
Zt =0 (19, t, Xt) U/z (t, Xt, 7.9)

We are interested in the problem of approximation of the solution (Y:, Z:) in
the situation where the parameter ¥ is unknown. Therefore we first estimate this
parameter with help of some good estimator ¥;,,0 < t < T based on the discrete
time observations (till time ¢) of the solution of the forward equation and then we
propose the approximations Y;" = u (t, X, 19{7,1) , Zi =0 (19?771, t, Xt) A (t7 X, 19;,1).
Moreover we show that the proposed approximations are in some sense asymptotically
optimal.

The main difficulty in the construction of this approximation is to find an
estimator-process 97,0 < t < T which can be easily calculated for all ¢ € (0,7] and
at the same time has asymptotically optimal properties. Unfortunately we cannot use
the well-studied pseudo-MLE (maximum likelihood estimator) based on the pseudo-
maximum likelihood function because its calculation is related to the solution of
nonlinear equations and numerically is sufficiently difficult problem.

The MLE (maximum likelihood estimator) was proposed in the local
asymptotically normal statistical models by Le Cam [24] as a method to improve an
arbitrary estimator with the optimal rate up to the one which has the smallest variance.
Volatility parameter estimation has another asymptotic property. Under regularity
condition the volatility parameter estimation model is asymptotically mixed normal
([71, [9], [11]). We propose here a one-step MLE-process, which was recently introduced
in the case of ergodic diffusion [21] and diffusion process with small noise [22], [23].
As in the construction of the MLE-estimator we take a preliminary estimator and
improve its asymptotic performance by transforming that preliminary estimator to an
optimal estimator, with the difference that the MLE-process allows us to improve even
the rate of the preliminary estimator. Similar technique was introduced by Kamatani,
Uchida [18]. The review of statistical problems for the BSDE model of observations
can be found in [20].

Note that the problem of volatility parameter estimation by discrete time
observations is actually a well developed branch of statistics (see, for example, [35] and
references therein). The particularity of our approach is due to the need of updated
on-line estimator ¥; ,, which depends on the first observations up till time ¢.

Let us fix some (small) 7 > 0, we call the interval [0,7] the learning interval.
We construct the estimator process for the values of ¢ € [r,7]. Based on this
learning interval we construct a preliminary estimator, then we improve this estimator
up to an optimal (asymptotically efficient) estimator which, on the other hand,



is computationally easy calculable. As a preliminary estimator 1§T,n we take a
particular minimum contrast estimator (MCE) (for a general method of constructing
MCE estimators for the diffusion parameter see [9]) which is called the pseudo-
maximum likelihood estimator (PMLE), constructed by the observations X™" =
(Xo,Xth7 .. ,XtN’n), where tnn < 7 < tny1,n. For defining the PMLE introduce
the log pseudo-likelihood ratio

k
1
Ly g (197Xk) =3 ;ln [27?0'2 (0, t5-1, Xe,_,) 0]

_ zk: [th - Xy, =S (tﬂ'—letj—l) 6]2
o 202 (197tj71,Xt]~,1) 0

and define the PMLE 19,5," by the equation
Lige (D, X*) = sup L (6, X)),
0ce

This estimator is consistent and asymptotically conditionally normal ([9])
n 1 o(Po,tj-1, Xe, )
= ﬁTn—ﬁ)—HTnﬁ V2 —Jw-—&—ol
Ja ( 0 0) Z ot Xy o

1 6 (Yo, 8, Xs)
= & (90) =1, (o) f/ 719078X)dw(s),
Here the random Fisher information matrix is

o [T 5 (Y0,5,X.) & (00,5, X,)"
1o =2 [ TR T I L0 R g

where dot means the derivative with respect to the unknown parameter 9.
Introduce the pseudo score-function (A;_1 (9) = o* (9, t;-1, Xs;_,))

k
Ak (19,Xk) =300, X1, 1. X))
=1

K [(xtj — Xy, =S50 0)2 = Ay (9) 5] Aj1 (9)
j=1 2A3271 (¥) Vs '
For any t € [1,T] define k by the condition ¢t <t < tx4+1 and the one-step PMLE-
process by the relation
O = Orn + VO e (0r ) Apn(Brn, XF),  k=N+1,...,n
Our goal is to show that the corresponding approximation
Yiin =u(te, Xep,950) k=N+1,...,n

is asymptotically efficient. To do this we need to present the lower bound on the risks
of all estimators and then to show that for the proposed approximation this lower
bound is reached. Our first result is



Theorem 1. The one-step MLE-process ¥%,,k = N 4+ 1,...,n is consistent,
asymptotically conditionally normal (stable convergence)

_ N A (VY

52 (O — U0) = & (D0), E(00) = T4
and is asymptotically efficient for t € [r.,T] where 7 < 7. < T and a bounded loss
functions.

Then we prove a lower bound for the approximation of the solution of a FBSDE

Theorem 2. Suppose that the coefficients of the diffusion process satisfies R
conditions, then, for the loss function £(u) = |ul?, p > 0, the following lower bound is
true

lim lim  sup Eof (5*1/2 (Vipn — mk)) > g, £(a(D0, t, X0)E(00)).

e—>0n—+oo |[9—-Yg|<e

Here u (9, t, x) satisfies the equation

ou ou o (9,t,x) u ou
E+S(t,x)%+#@—ff t,l’,u,o'(ﬁ,t,x)% .

Theorem 3. Suppose that the conditions of reqularity hold, then the estimators

Y = u(te, Xt,, 9%.n), Zin = Uy (tk, Xty Ohm )0 (e, Xty , Ohm),  te € [1,T],
are consistent
Y — Ye, Z8 o — Zt,
and are asymptotically conditionally normal (stable convergence)
672 (Vi = Vi) = (i (£, X4, 90), & (Y0)),

52 (Zh 0 — Zuy) = 0 (, Xo,00) (U (£, X0, 90), & (90))
+ ulz (t7 Xt>190) <U (tvxtv 190) ) £t (190)>

These results are presented in the work [39].
It have to be mentioned here that we could construct the approximation of Y; and
Z; as follows

th = u(t, Xt,ﬁk,N) and Z; = o (@t,N,t,Xt) ul, (t,Xt,ﬁt,N) ,

that is, using only the preliminary estimator. Note that this type of approximation
is not asymptotically efficient, since we use only part of the observations (only the
learning interval) and our estimator does not change depending on time. That is the
reason why we are looking for another estimator of ¥ which can provide smaller error
of estimation.

Then, we are considering a Pearson diffusion

dX; = —Xidt + /9 + X2 dWe, Xo, 0<t<T.

7



For this model, using the preliminary estimator

N N

3 n 2 2 2

In = | Xiy = Xd - 23 Xy, [Xiy - Xy, ] - thj_la] :
j=1 j=1

we propose the one-step MLE process

[Xe; — Xy 0 + ij—16]2 - (51\’ + ijfl) o

k
ﬁfk,n :1§N+\/52

- - 5 , T <t < T.
j=1 2, (On) (19N + ij,l) Vs

and prove the theorem

Theorem 4. The one-step MLE-process 97, ,, is consistent: for any v > 0

Py, ( max |19:kn —190| > Z/) —0

N<k<n
and for allt € (1,T] the convergence

6712 (95 — P0) => G (o)
holds. Moreover, this estimator is asymptotically efficient.

The result is presented in [40].

The second chapter is devoted to non-parametric estimation. The difference
from parametric estimation is that the unknown object to be estimated is infinite
dimensional. As a model we have continuous time observations of an inhomogeneous
Poisson process on the real line with a periodic intensity function. It is supposed that
the period is known. To each Poisson process is associated a positive measure on the
state space, called the mean measure of the Poisson process. If the state space is the
real line and the mean function A(-) (which generates the mean measure) is absolutely
continuous with respect to the Lebesgue measure

At) = /0 " \(s)ds

then the function A(-) is called the intensity function of the Poisson process. We are
considering the case when the intensity function is periodic with the known period.
The mean function estimation problem is very close to the distribution function
estimation problem from independent, identically distributed random observations.
More precisely we can construct consistent estimators without regularity conditions
on the unknown object. It is well known that, for example, in the density or intensity
estimation problems, even for constructing a consistent estimator we have to impose
regularity conditions (existence and Holder continuity of some derivative, see, for
example, [36]) on the unknown object. In the works of Kutoyants [19] (for integral-
type quadratic loss functions see the forthcoming book Introduction to Statistics of
Poisson Processes by Kutoyants) it was shown that the empirical mean function

A =5 > X0)

8



is consistent, asymptotically normal estimator with the optimal rate and even is
asymptotically efficient for a large number of loss functions (including polynomials).
But for example, there are many estimators which are asymptotically efficient
with respect to the integral-type quadratic loss function. Asymptotic efficiency we
understand in a way that, as for all estimators the following lower bound is true

lim lim sup n/ EA([_\n(s)—A(s))zdsz/ A*(s)ds,
0 0

§—0n——+oo A€Vy

the estimator A*(¢) for which we have equality

lim lim sup n/ EA(AZ(s)fA(s))st:/ A*(s)ds.
0 0

§—0n—+oco AEV;

To compare these asymptotically efficient estimators (which we call first order efficient)
we prove an inequality for all possible estimators.

Theorem 5.

lim  sup  n7RlT ( / Ba (A (1) — A(1)?dt — / A(t)dt) >,
0 0

n—+oo A€ Fpm (R,S)

which compares second order asymptotic term of maximal loss over some non-
parametric class of functions (under additional regularity conditions on the unknown
mean function). Hence the estimators reaching that lower bound will be called second
order efficient. In our work we explicitly calculate asymptotic minimal error for the
second order estimation. This constant

2m

28 T m Zm—1
‘R 27 (2m — 1)(m — 1)>

plays the same role in second order estimation as the Pinsker constant in density
estimation problem or the inverse of the Fisher information in the regular parametric
estimation problems. But unlike mentioned problems here the constant is negative.
This is due to the fact that for the empirical mean function

Il =1,(R,S) = (2m — )R (

Ea /T([\(t) —A)dt = %/TA(t)dt,

the second term is equal to zero. We propose also an estimator

N’n
A (t) = A ngpa (t) + Z Kotn Aot ndp2(t)+
=1
“+oo

+ Z [Kzl,n(AQH-Ln + azi+1) — a21+1] da41(),
=1



where {¢;};-°¢ is the trigonometric basis on L2[0, 7], A, are the Fourier coefficients
of the empirical mean function with respect to this basis and

K2l,n: (17 Lﬂ—l an) 3

T +
Wo_frr2s  om )
"7 |ln2r R (2m—1)(m —1) ’
a - [T T
AT 2 2m

T 1 1
Nn = |:27T T;:| ~ Cn2m-1,
On

Here (z4+ = max(z,0)). Our next result is the following theorem.

Theorem 6. The estimator A}, (t) attains the lower bound described above, that is,

lim sup  n7RlT ( / Ba(A% (1) — A(t))%dt — L / A(t)dt) —_m,
0 0

N+ AeF,, (R,S) n

that is, our proposed estimator is asymptotically second order efficient. The
estimator is linear, that is, its Fourier coefficients are linear combinations of the
coefficients of the empirical mean function. We consider Fourier expansions with
respect to the trigonometric basis. The theorem was presented in [38].

The non-parametric estimation problems where we can explicitly calculate the
asymptotic error was first done by Pinsker [34] in the model of observation of a signal
in the white Gaussian noise. The idea was to consider the minimax risk of integral-type
quadratic loss functions on a Sobolev ellipsoid. The concept of second order efficiency
was introduced by Golubev and Levit [13] in the problem of distribution function
estimation for the model of independent, identically distributed random variables. In
the paper [13] authors proved a lower bound which allows to compare second term of
the expansion of the maximal loss over some set of functions and minimize that term.
They proposed also an estimator which attains that lower bound, hence that lower
bound is sharp.

Later, second order efficiency was considered for some other models. For example,
Dalalyan and Kutoyants [5] proved second order asymptotic efficiency in the estimation
problem of the invariant density of an ergodic diffusion process. Golubev and Hérdle
[12] proved second order asymptotic efficiency in partial linear models.

10
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Withnthwghp

Wptbwhinunigynuonud nhipupynud G0 hwunwpd  upnfuwuphy  nhptipitighuy
hwjuuwpdwd nddwb dnpupyiwb ppbnhpp, hbswytiu twb ng hwdwubn wyniwunbyub

wupuhwljul wpngtuh dhohlt $mblghwyh hwdwp tpypnpy Gupgh Eptlpphynieyub
wyugnigiub fubtnhpp: Wpbbwhinuniegynionud uypugyty G0 htplyw) wpnyniopbbpn:

o Yhiwplynud £ iini
dXt = S(t, Xf)dt + 0'(19, t, Xt)dW(t),

upnfuwuphy  nhdbpibghw;  hwjwuwpdwt  mdmdhg  dwdwbwyh  nhulptp
wwhtiphtt X" = (X, Xeg, -, Xt,), ti — tica = %: Uwhdwimy  tbp
wulin-odwnpuittuinput $miyghw (wuptn A;_; (9) = o2 (0,51, th_l))

k(X = Xe, = 8521 0)° — A;-1 (0) 5] Aj1 (0)
Apn (9, XF) = [ ’ ’
o (9:X°) Z: 242, (9)V5
I upnpuwuphly Shotiph hrpnmimghw

™ 6 (90,8, Xs) & (D0, 5, X)©
I, =2 .
(%) /0 o2 (Yo, s, X) ds

Jwiwiwyh guwijugwd ¢ € [r, 7] wwhh hwiwp vwhiwdtip & wjbybu, np tp <
t < trp4+1 L Obhpdmotbp Wbl puyuwing wulnn dwpuhind Godwppubdwbnieub
qhwhupujui-ypngtiup htiplyw; websnigynitihg tibtiing

Ohn = Orn + VO e (0r0) Ak (Frn, XF),  k=N+1,...,0.

Ntplwpwp,  dby  pwyjjubing wulnn  dwpuhinud  Sodwuppubdwbnieyub
qiuwhwpulub-ypngtup” 9% .,k = N + 1,...,n, mbufuyht £ b wuhduppmphy
wuyiwiwlub onpiwy (Guymb gniqudhypnipynil)

_ A¢(d)

1/2 9 9 _ t\V0
g (ﬂk,n 0) - gt ( 0) ’ 6*(190) It('&O) )

htgybu bwl wuhdugnphy Ebtpphy £ pnpnp uwhdwbwthwl Ynpuiph $nibyghwbtiph
hwdwp: Wupbn ¢ € [r, T 7 < 7 < T.

o Glpwnptip upnfuwuyphy nhptipnitghw hwjuuwndwd gnpdwyhgbtinp pwdwpwpnid
b R wuydwbdbpht, htqpwpwp, £(u) = |u|?, p > 0 Ynpuph $mblghwbbph hudwp
iptinh nith htuplywy wpnpht uwhdwbp

lim lim sup Ey/¢ (571/2 (Yepn — sz)) > By l(0(do, t, Xi)€ (o).

e—>0n—+oo |[9—Yg|<e

Wuptin u (9, ¢, z) pudupupmy &

Ou ou o (9t x)? 8%u _ Ou
§+S(t7m)%+fa$27 f t7x7u7a(§atax)8w )
hwjwuwpdwbp, huy @(d, ¢, X;) hwinhuwind t w(d, ¢, X)) $mbyghugh wdwbgyuip

pup 9.
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o Glpunptlp ntgnijjupnipud wquyjdwbdbppn pudupupud tb: Wn nhypmd Yt;,n =
u(tkvthvﬁz,n)a Zt*k,n = u;c(tkathvﬁz,n)o.(tkvthﬂ?’k(:,n)v ly € [Tv T]
dnipupynuitipp mbwyuwyht &b Y3, — Yi, Zf n — Zi L wuhduypmphy
wuwydwiwlud tnpdwy (Quynih gniquishyinipynil)

672 (Vi m — Ya,) = (i (t, X0, 00) s & (90)),
671/2 (Z:k,n - Ztk) =0 (t7 Xt7'(90) <u;7 (t7 Xt>’l90) ) 575 (190»
+ ugy (t, X¢,90) (6 (¢, Xe,D0) , & (90)).

Uprymibiplitipp Gbpyuywgyuwd to [39], [40].
o Gpt yniwunlywb wypngtiuh dhohlt $nibijghwdt yupubind £ htiplyw) puquinipyuinp

Fn(R,S) = {A(t) - /Ot)\(s)ds A€ Gy (Ry),

/OT[A(’")(t)]th <R 2a(r) = s} ,

npptin R >0, S > 0, m > 1, m € N hwupugpnmiblitipp qupywd kb, wuyw

lim  sup  n7RlT ( / Ba(An(t) — At))%dt — L / A(t)dt) >,
0 0

n—+oo A€Fm (R,S) n

wyuptin I hwugpupni nioh htaplywy qupp

2m
258 T m 2m—1
N=I1L,(R,S)=Cm-1)R| 5=— 77— .
(R, 9) = (2m=1) (R 271'(2m—1)(m—1))
e Ltipimdmu tbp htiplywy ghwhwypuljubp

Ny,
An(t) = Al,n¢1 () + Z Ko nAoinda(t)+
=1
+o00 .
+ Z [KQZ,n(A2l+1,n +agi+1) — a21+1} d2+1(t),

=1

npptin {¢ };2% towllyym bwsuhwlwd pughub b L [0, 7] pnupwdnipymbnud, hul f\l,n

tiwhphy dhohtt $niblyghugh dniphtih gnpdwlhgtipnl G wyn pwghup Bjugpdwdp,
hogwtu twb (wyupbn 24+ = max(z,0))

m T 1 1
n , Np = | — ~ Cn2m-1,
i 21

T
an'

27l

T

Koin = (1 —

I R
" n2r R 2m—1)(m—1) P T 290

Ubipdndywd A, (¢) qhwhwgpuuih hwdwp pbinh mbh

lim sup  n7RlT ( / Ba (A3 (1) — A(1)?dt — / A(t)dt) —
0 0

n=+0 AcF,, (R,S)
Upryniliphbipp dbpyuyugwd o [38].
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Annorarus

B mmccepranum paccMaTpuBalOTC IIpoOIeMa aIIPOKCUMAIMN PelleHus. 00PaTHOTO
CTOXacTUIeCKOro JandpepeHnmaaIbHOr0 ypaBHEeHNsT W TpobJieMa OIEHUBAHUS BTOPO-
ro mopsiiKa cpejHeii pyHKIMHU HEOMHOPOIHOIO IIyaCCOHOBCKOrO mporecca. Ilomydennt
CITeYIONre Pe3yIbTATHI.

e PaccmaTpuBaeTcs BHIGOPKA M3 PENIeHUs CTOXACTHYIecKoro muddepennmaILHoro
ypaBHEHUS
dXt = S(t, Xt)dt + 0'(19, t, Xt)dW(t),
B nuckpernble MOMeHTHI Bpemern X" = (X, Xoo, -+, Xe,), ti —tio1 =
BeoauTcsa mpoussomHas GyHKIUHU JIOTAPUGMUIECKOTO OTHOIIEHUS TICEBI0PaB-
nonozobus (3nece A1 (9) = o (9,t-1,X¢,_,))

T
po

[(th — X1, =81 0) = A1 (0) 5] Aj1 (0)

J

k
Apn (ﬂ,Xk) = 242, () Vo

j=1

u croxactuieckas nadopmanua Pumepa

T 5 (90,8, Xs) & (D0, 5, Xs)"
I, =2 .
(190) \/0 0-2 (190757)(5) ds

st Bcex MomenToB Bpemenu t € [1,T| onpenensiercs k, Tak uto t, < t < tgy1
7 BBOAMTCS OIHOUIATOBAs OLUEHKA NCEBIOMAKCUMyMa npasaonomobua (OIIMIT)
PaBEHCTBOM

ﬂz,n = 7§T,7l + \/gHk,n("gﬂn)_lAk,n(éT,n7Xk), k=N + 1, Lo, N

B »sToM ciyuae, omHOmIAroBas OIEHKA IICEBIOMAKCHMYMa ITPABIOTOI00MS

(OIIMII) % .,k = N 4+ 1,...,n, aBasgerca COCTOATENIHHON U aCHMITOTHYICCKH
YCJI0BHO HOPMAJIbHOH (yCTONYIMBAsA CXOAMMOCTH) OIEHKOM, T.€.
_ N Ay (9
572 (D — 0) = & (90) . &(0) = 00,
I(¥o)

Bonee Toro, sra omeHka #aBIgeTcCda acUMITOTAYECKH 3(M(MEKTHUBHON jIsd BCEX
orpaHmdeHHbIX QyHKUU morepb. 3xeck t € [, T u 7 < 7 < T.

e Jloka3bIBAETCS CIIeAyIoNiee HEPABEHCTBO IS BCEX ANIPOKCUMAINIl penreHnst 00-
PATHOrO CTOXACTUIeCKOro auddepeHnuaibHOr0 yPaBHEHNA:

lim lim sup Byl (677 (Vo = Yi) ) 2 Eoo (o, t, X0)&(90)),
e=>0n—+oo |[9—Yg|<e

anst Beex dyuxnmit noreps Buga £(u) = |ul|?, p > 0. 3pecs u (I, t, ) yrosuerso-
pSeT ypaBHEHHIO

ou du o (9,t,x)* 6%u ou
. S t7 a_ — 0 = t7 s Wy 197t7 a. >
ARl s e = A G A A
a u(V,t, X¢) asngerca npoussoaunoii u(v, t, X¢) no 9. Ilpeanosaraerca 1aro xoad-
durmmenTh croxacTuaeckoro mudepeHMaIsHOr0 YPABHEHUS YI0BIETBOPSIOT
ycaoBusaM R.
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o ECIH/I YCIOBUA PETYJIAPHOCTHU BBIIIOJITHEHBI, TOTJa CJAEAYIOINEe alllPOKCUMaIIUuN
* * * ’ * *
}/tk,n - u(tk7th7’l9k,n)7 Ztk,n - uz(tk7th7’l9k,n)U(tk7th719k,n)> tk € [T>T] )

cocrogrenpusl, T.e. Yy, , — Yi, Z , — Z:, aCAMIOTOTHYECKH yCIOBHO HOD-
MaJIbHBL (yCTONYUBAS CXOLUMOCTD)

672 (Vim = Yo ) = (i (t, X0, 90) , & (o)),
67V (Zhy i~ Ziy) = 0 (1, X0, 00) (i (£, X0, 00) , & (90))
+ u;c (ta Xt? 190) <J (t7 Xt? 190) ’ gt (190)>
Pesyubrarsl upejcrasiens B paborax [39], [40].

o Eciin memssecTHas cpemuss QyHKIMS IIyaCCOHOBCKOTO IIPOIECCA ITPUHAJTIEKUT
MHOYKEeCTBY

Fn(R,S) = {A(t) - /Ot)\(s)ds: AeCri(Ry),

/OT[A(’")(t)]th <R 2A() = s} ,

rae moctosaEbie R > 0, S > 0, m > 1, m € N ussecTHbI, TOTA

2m

lim  sup  nEtT (/O Ea(An(t) — A(t)2dt — %/{:A(t)dt) > 1,

n—+00 AEFm (R,S)

31ech KoHcTaHTa 11 umeer Bu

2m
25 T m ) 2m—1

1= (R, S) = (2m — 1)R (fgm

e [lna onenku A, (t) BolENpUBEIEHHAS HIKHAS IPAHANA JOCTHTAETCS, TO €CTh

lim sup  n7RlT (/ Ea(A% (1) — A(t))%dt — l/TA(t)dt> —
n=+0 AeF,, (R,S) 0 " Jo

rJie Mbl MCIHIOJIb3YeM CJiefyioiue 0603Ha9eHus

Ny,

An(t) = A1,7L¢1(t) + Z K2l,nA21,n¢2l(t)+
=1
+oco
+ Z [KQZ,n(A2l+1,n +agi+1) — a21+1] da+1(t),

=1

{qbl}?':"f SABJIAETCA TPUrOHOMeTpuaecKuM 6a3ucom B npocrpancrse La[0, 7], a Ay
aBaAoTca Koddpdunmenramu Pypbe SMUPUHUECKO CpemHel MO OTHOMEHWIO K
sromy Gasucy, a (3mecp 4+ = max(x,0) )

K2l,n = (1 - 2771—[ an) > N, = |:T 11 :| ~ CTZTI*I7
+ 27 ang

o — llé# ST u _ T

"7 |n2r R @m—1)(m—1) PR g o

PesynbTaTsr mpeacTasieHsl B padore [38].
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