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General description

Topicality: Reconstruction of a bounded convex body over its cross sections is one
of the main tasks of geometric tomography, a term introduced by R. Gardner in [1]. In
the mentioned field of mathematics one tries to identify an unknown geometrical object
by data from its lower dimensional sections (such as lines or hyperplanes) or projections
onto them. Tomography is mainly engaged in the description of the subclasses of cross
sections of a body which can reconstruct the body (see [2]).

However, calculation of the geometrical characteristics of the cross sections is often a
difficult task. Reconstruction of convex bodies using random sections makes it possible to
simplify the calculation, since one can use the technics of mathematical statistics in order
to estimate geometrical characteristics of random sections. Quantities characterizing
random sections of the body D carry some information on D and if there is a connection
between geometrical characteristics of D and probabilistic characteristics of random
cross-sections, then by a sample of results of experiments one can estimate the geometric
characteristics of the body.

The question of the existence of a bijection between bounded convex bodies and chord
length distribution functions of these bodies was made by German mathematician W.
Blaschke (see [3]). This question has received a negative answer (see [4]): it is constructed
two non-congruent bounded convex 12-gons with the same chord length distribution. One
possible way of treating this problem is to consider subclasses of the class of convex bodies
for which the chord length distribution provides sufficient information to distinguish
between non-congruent members (see [5] and [6]). Gates in [5] showed that triangles
and quadrangles can be reconstructed from their chord length distributions. Similarly, a
hypothesis about existence of one-to-one correspondence between orientation dependent
chord length distributions and bounded convex bodies can be considered. The concept
of orientation dependent chord length distribution function is closely connected with the
notion of covariogram which has a great importance for investigation of bounded, convex
bodies.

The covariogram of a convex body D is a function giving the volume of the intersection
of the body with its translation. G. Matheron conjectured that in the plane the
covariogram determines D within the class of all planar convex bodies, up to translations
and reflections in a point.

The first partial solution of Matheron’s conjecture gave Nagel (see [7]), who proved
that every planar convex polygon is determined within all planar convex polygons by its
covariogram, up to translations and reflections. In [9] the authors observed how much
of the covariogram information is necessary for the uniqueness of the determination and
also extended the class of bodies for which the conjecture was confirmed. In 2009 G.
Averkov and G. Bianchi showed that every planar convex body is determined within all
planar convex bodies by its covariogram, up to translations and reflections (see [10]).

The covariogram problem in the general case (n > 4) has a negative answer, as
in [8] Bianchi constructed two convex bodies, which cannot be obtained from each
other through a translation or a reflection, with the same covariogram in n-dimensional
Euclidean space (n > 4). It has also known that every convex polytope in 3 dimensional
Euclidean space is determined by its covariogram, up to translations and reflections (see
[11]). However, in R3 the covariogram problem in the general case is still open.
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The convexity is essential for such reconstruction problems. The authors of [12]
have given an example of two non-congruent and non-convex polygons with the same
covariogram.

The covariogram problem appears independently in other contexts. Adler and Pyke
(see [14]) asked whether the distribution of the difference X — Y of two independent
random points X, Y uniformly distributed over D determines D up to a translation or a
reflection.

The forms of covariogram for subclasses of convex bodies also allows us to understand
new properties of covariogram, what functions can be covariograms of convex bodies,
what properties does the covariogram have and what geometric properties can be
understood in the covariogram.

It is considered in the dissertation a random segment L(w) in R™ with fixed direction
and length under the assumption that L(w) intersects bounded convex body D. The
connection between covariogram and the distribution of the random length of L(w)
is obtained. A necessary condition for orientation dependent chord length distribution
function as a function of maximal chord is obtained. A class of parallelograms for which
the necessary condition does not satisfied is constructed. A question of recognition of
convex bodies in R? from orientation dependent chord length distribution function in
finite directions is also considerd.

Objective:

1) Obtaining the explicit form of covariogram for subclass of convex domains.

2) Providing a connection between covariogram and orientation dependent random
segment distribution function.

3) Finding a necessary condition for orientation dependent chord length distribution
function to be a function of maximal chord.

4) Considering a recognition problem of convex bodies from orientation dependent
chord length distribution function in finite directions.

Research methods: Methods from Integral and Stochastic Geometry and
Probability Theory.

Scientific novelty: All result presented in the dissertation are new.
Practical and theoretical significance: The main results of the work are of
theoretical nature but also have possible practical applications in crystallography.

Approbation: The results are presented in the scientific seminars of Stochastic
and Integral Geometry in the Chair of Probability Theory and Mathematical Statistics
of Yerevan State University, in the Institute of Mathematics of National Academy of
Sciences of Armenia and in the Institute of Mathematics of Friedrich Schiller University,
Jena, Germany. Also, results are presented in the conferences ” Armenian Mathematical
Union, Annual Session dedicated to 1400 anniversary of Anania Shirakatsy, 2012,
Yerevan”, ” Armenian Mathematical Union, Annual Session dedicated to 90 anniversary
of Rafael Alexandrian, 2013, Yerevan”, ”Second international conference Mathematics
in Armenia: advances and perspectives, 2013, 24 - 31 August, Tsaghkadzor”, ” Armenian
Mathematical Union Annual Session, 2014, Yerevan”, ” International science and applied
conference: actual problems of mathematical modeling and computer science, 2015, 1524
May, Sochi” and ” Armenian Mathematical Union, 7th Annual Session dedicated to the
100th anniversary of Professor Haik Badalyan, 2015, Yerevan”.



Main results of the dissertation are published in five papers; references can be
found in the end of this booklet.

Structure and volume of dissertation: the dissertation is written on 77 pages;
consists of an introduction, four chapters, conclusion and the list of 45 cited references.

Overview and main results

Let R™(n > 2) be the n-dimensional Euclidean space, D C R™ be a bounded convex
body with inner points and V;, be n-dimensional Lebesgue measure in R".

Definition. (see [13]). The function
C(D,h) =Vo(DN(D+h), heR",

is called the covariogram of D. Here D+ h = {x + h, © € D}. C(D,h) is also called set
covariance of D.

The definition of covariogram is given by G. Matheron, who formulated it for more
general sets, and even for functions.

Denote by S"! the (n — 1)-dimensional sphere of radius 1 centered at the origin in
R™. We consider a random line which is parallel to v € S~ ! and intersects D, that is
an element from

Q1 (D, u) = {line which is parallel to u and intersect D}.

Let IIr,. D be the orthogonal projection of D on the hyperplane u' (u® is the
hyperplane with normal u and passing through the origin). A random line which is
parallel to u and intersects D has an intersection point (denote by z) with IIr, . D. We
can identify the points of IIr,. D and the lines which intersect D and parallel to u. It
means, that we can identify (D, u) and IIr,. D. Assuming that the intersection point
z is uniformly distributed over the convex body Ilr,. D we can define the following
function:

Definition. The function

Voci{z € Ur oD : Vi(g(D,u,z) N D) < t)}
b(D,u)

FD,u,t) =

is called orientation dependent chord length distribution function of D in direction u at
point t € R, where g(D,u,z) - is the line which is parallel to u and intersects Ilr, . D
at point x and b(D,u) = V1 (IIr,. D).

Now we can provide Matheron’s Lemma, where the connection between the
covariogram and the orientation dependent chord length distribution function is observed.
One can introduce every vector h € R™ by h = (u,t), where u is the direction of h, and
t is the length of h.



Lemma 1. (see [13]). Let u € S™ ' and t > 0 such that D N (D + tu) contains inner
points. Then C(D,u,t) is differentiable with respect to t and

_ 9C(D,u,t)
ot

At t = 0 the right-hand derivative exists, and the same equation holds.

— (1 - F(D,u,t)) - b(D, ). (1)

From (1) it is easy to see, that

o0C(D,u,t)

b(D,u) = — 5

t=0

The explicit form of covariogram help us to solve many probabilistic problems (see
[29]), like calculation of explicit forms of orientation dependent chord length distribution
function. In the Chapters 1 and 2 of the dissertation the explicit formula for covariogram
and orientation dependent chord length distribution function is obtained for every triangle
and parallelogram.

Let G, be the space of all lines g in R". A line g € G,, may be determined by its
direction u € S™7! and its intersection point  in the hyperplane u'. The density du*
is the volume element du of the unit sphere S"~! and dz is the volume element of u™ at
z. Let u(-) be the locally finite measure on G, invariant under the group of Euclidian
motions. It is well known that the element of u(-) up to a constant factor has the following
form (see [15], [16])

u(dg) = dudz

Denote by O, the surface area of the n-dimensional unit sphere (note that Op = 2). For
each bounded convex body D, we denote the set of lines that intersect D by

D] ={g € Gn, gND # 0}
We have (see [3]) On—2V_1(0D)
w(D) = =5y

where 0D is the boundry of D.
A random line in [D] is one with distribution proportional to the restriction of p to [D].

Definition. The function

p({g € [D], Vi(gnD) < t})
([D])

is called chord length distribution function of D.

F(D,t) = , where te€R'

The determination of the chord length distribution function has a long tradition of
application to collections of bounded convex bodies forming structures in metals and
ceramics. The series of formulae for chord length distribution functions may be of use in
finding suitable models when empirical distribution functions are given (see [17]). The
results concerning certain infinite cylinders in which the bases of cylinders are a regular
triangle or a rectangle are in [18] and [19]. In [20] considered infinite cylinders with regular
pentagonal and regular hexagonal bases.



From the definition of the chord length distribution function of D, in order to calculate
F(D,t), we have to calculate the following expression:

n(D,t) = p({g € [D], Vi(¢ND) < t})

To obtain the explicit formula for the chord length distribution function is an easy
task only in the case when D is a disc. In 1961 Sulanke obtained F'(D,t) for a regular
triangle [21] and in 1988 F(D,t) is obtained for a rectangle [22] by Gille. The method,
which is using d-formalism in Pleijel identity (see [23]), allowed to calculate the chord
length distribution functions for a regular pentagon (see [24]) and regular hexagon (see
[25]). In [26] an elementary expression for the chord length distribution function of a
regular polygon is given. Moreover, using the inclusion-exclusion principle and the Pleijel
identity, an algorithm for calculation of chord length distribution function for a bounded
convex polygon is obtained (see [27]). It is also obtained a formula for the chord length
distribution function of a lens (see [28]).

In this dissertation a new method is introduced for calculation of p(D,t) (see [34]
and [35]). This method is based on Matheron’s Lemma and integration of the derivative
of covariogram:

w(D,t) = /O7T b(D,u) - F(D,u,t)du

In Chapter 2 this method is used in order to obtain the explicit forms of chord length
distribution functions for every triangle and for every parallelogram. For the chord length
distribution function we obtain 3 cases of triangles and 7 cases of parallelograms.

One of the main results in the dissertation is the result from [36], which is providing
the connection between the covariogram and orientation dependent distribution of the
length of a random segment (see Theorem 3). We consider random segment L(w) with
length I > 0, which is parallel to the fixed direction « € S™~! and intersects D, and a
random variable

|L|(w) = Vi(L(w) N D), weQr(D,u)
where
Qr(D,u) = {segment with length [, which is parallel to u and intersect D}.

Every random segment L(w) lies on a line g(D, u, z), therefore L(w) can be specified by
the coordinates (g(D,u,x),y), where y is the one-dimensional coordinate of the center
of L(w) on the line g(D,u,z) (as the origin on the line g(D,u,z) we take one of the
intersection points of g(D,u,z) and D). Using the mentioned notations we can identify
Qr (D, u) with the following set:

l l
QL(D,U):{(x,y)IJSGHTuLD, y e —§7X(D,u7.’l‘)+§:|},

where x(D,u,z) = Vi(g(D,u,z) N D).

Qr (D, u) does not depend on which one of the intersection points of g(D,u,z) ND is
taken as the origin. Which of two directions is considered as a positive direction, follows
from the explicit form of range of variation of y. Further, we set

Byt = {(z,y) € Qu(D,u) : |L|(z,y) <t}, teR,
It is obvious, that Q (D, u) and Bjy" are measurable subsets of R".
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Definition. The function

Va(Bp") /
= drd
Va(Qe(Dw) ~ Va(Qr(D,w) Jpue
is called orientation dependent distribution of the length of a random segment L in

direction uw € S"7', where dx is the (n — 1)-dimensional Lebesgue measure and dy is
the 1-dimensional Lebesgue measure.

Fipy(D,u,t) =

It is obtained in the Chapter 3 of the dissertation the following five Theorems:
Theorem 1. Let uw € S ! and t > 0. Then
0 for t <0,

Fluy (D, ) = b(D,u) |2t + F(D,u, t)( fo (D,u, 2)dz

<t <
V,.(D) + 1b(D, u) for Ostsli,

1 for t>1.

In [30], [34] and [35] the explicit forms of orientation dependent chord length
distribution function for triangles, ellipses, regular polygons and parallelograms is
given correspondingly, therefore, using Theorem 1 we get elementary expressions for
Fi(D,u,t) for the mentioned planar convex domains.

If we have Fj (D,u,t) we can reconstruct orientation dependent chord length
distribution function F(D,u,t) on the interval [0,1).

Theorem 2. Let u € S" ' andt € [0,1). Then

V;.(D) + Ib(D, u)

F(D,u,t) = (1= t)b(D, u)

1/ I’
{F”J‘(D,u,t)—km/o F‘L|(D,u,z)dz} +1—m

The connection between the distribution function of the random variable |L|(w) and
covariogram over the interval [0,{] is given in Theorem 3:
Theorem 3. Letu € S™* and t € [0,1]. Then

1 oC(D,u,t)
Va(D) +1b(D, u) ot

Fr(D,u,t) = )] fC(D,u,t)+Vn(D)+lb(D,u)}

The values of Fir|(D,u,t) equals 0, when t <0 and equals 1, when t > 1.

If we have F|,|(D,u,t), we can get the values of the derivative of covariogram with respect
to t over the interval [0,1).

Theorem 4. Let u € S"™ ' and t € [0,1]. Then

_9C(D,u,t) _ 1’b(D,u)  Va(D)+1b(D,u) 1 /t
It - (l-t)Q 1—¢ F‘\L|(Dau7t)+l_t 0 F|L‘(D,U,Z)d2

for all t over the interval [0,1).

Finally, it is obtained the connection between the distribution function of the length of
random segment within D and chord length distribution function of D in R":

8



Theorem 5. For every bounded convex body D the following equation holds:

0 for t<0,
Fo(D.t) = Opn—2V,—1(0D) <2t+F(D,t)(l —1) —f(f F(D,z)dz)
1/(D,t) = for t€]0,1],
(n—1)0p-1Vo(D) 410y —2V,,—1(0D)
1 for t>1.

Under the assumption, that F'(D,t) has a density, Theorem 5 is the result from [32].

The relationships between the covariogram and the orientation dependent chord
length distribution function of a cylinder and those of its base is established in [31]. Due
to these relationships one can find expressions for the covariogram and the orientation
dependent chord length distribution function of a cylinder with parallelogramar, elliptical
and triangular bases.

An interesting property of orientation dependent chord length distribution function
and covariogram is observed in Chapter 4. In some cases C(D,u,t) and F(D,u,t) of
convex body D depends on maximal chord tmqs (D, u) in direction w.

It is proved in [34] that the covariogram of triangle AABC has the following form:

2
C(AABCu t) = { © (1= mmlimom) 1€ 0 tan(AABC,w)
0, £ > tmax(AABC, )

where S is the area of AABC.
In [34] also shown that orientation dependent chord length distribution function of
AABC has uniform distribution for every direction u on the interval [0, tmax(AABC, u)].

0, t <0,
I'_‘(AAABCV7 u, t) = m, te [07 tmax(AABC, ’U,)],
1, t > tmax(AABC, u),

A natural question arises (see [37]), in which cases are there functions G1(z1,x2) and
G2(x1,x2) of two variables such that

C’(D7 u, t) = Gl (tmaﬂc (D7 ’LL), t)

and
F‘(D7 u, t) = G2 (tmaz (Da U), t)

In Chapter 4, the question formulated above is partially answered, i. e. a necessary
condition for orientation dependent chord length distribution function as a function of
maximal chord is obtained.

Theorem 6. If orientation dependent chord length distribution function depends on u
through tmaz(D,u), then for any two directions ui,us € S™~ ', such that

tnLa,m(D7 ul) = tmax (D7 u2)

we get
b(D,ul) = b(D,UQ)

9



Chapter 4 considers a question of recognition of convex bodies from orientation
dependent chord length distribution function in finite directions, where an example of
two non-congruent triangles is constructed with the same orientation dependent chord
length distribution functions in finitly many given directions.

Theorem 7. For any finite subset A C S*, there exist two different triangles with the
same orientation dependent chord length distribution function for any u € A.

Theorem 7 provides a counterexample of an open problem formulated in [33].
Let (p, @) be the polar coordinates of the foot of the perpendicular to g € G2 from the
origin O. Let ¥ be a translation invariant measure on the space G2. The element of
translation invariant measure up to a constant factor has the following form (see [16]):

9(dg) = dpm(dy)

where dp is the 1-dimensional Lebesgue measure and m is a finite measure on S*.
Consider two independent and identically distributed lines g1 and g» meeting D.
Denote by A the set of all pairs (g1, g2) intersecting inside D:

A={(g1,92) € [D] x [D]: 91 Ng2 € D}

We assume that the lines are distributed by translation invariant measure ¥. Let Pp(A)
be the probability of A, defined by the following way:

9 x 9)(A)
Pp(A) = W x9)(4)
(9([D]))?
It is obtained those translation invariant measures generating random lines, for which
Pp(A) achieves its maximum in the case of disc and rectangle. It is also shown that

for every p from the intervral [0, %] and for every square there is a measure generating
random lines such that Pp(A) = p (see [38]).
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Withnthwghp

Unpbkbwhinunipyjul dte  phypupyud &b mopmghy  uvwhdwlwthwy Jdwpdhbbtph
hwjuwiwuwbuwhtt  pimpwgphshtinph  nunuibwuhpmpyub npnp  hwpgtp  Ynjuphngpudh
thongny: Wptwuinunipymibnud uypugyty bb htplywy wpnymbpbbpp

o Nwpyywd Ll Ynquphngputh b ninnnipynibhg Jupnqwd jwph Gplupnipjud puphdwui
dmbyghwyh pugwhwpp phuptipp Gowblyymbitph U gmquhtpwgdtph hwdwp: Lul
hwoyquwd k juph tpupnipyud pwphudwb $nibyghwyh puguwhwyp phupp inwblyynibbtph
U gniquhtinwgdbtiph hwdwp: Lwph Gpupmpjubt pupjudwd $nidyghwjh phuwblynibhg
uypuinud Gbp tiptip nhiyp towbljub b jnp ntyp qniquhtinugdh hwdwn:

Yhypupyyuwd b Shpuwd mnnmpgmb b bpupmpynid mbtgnn L(w) wugpuihwui hwgjudsp
R"™m, npp hunpnud £ D monig vwhiwbwihwy dwpdhbp:

e Unugywd Lt Yuy Yndwphngpuwih b |L|(= Gpupmpymb L N D) wwqpuhwjwb
dbdnipywl pwphiiwld $nibyghwgh dhol gubugwd ¢—h hwdwn [0, I]-hg.

1 oC(D,u,t)

Fip (D u,t) = V(D) + 1b(D, u) { ot

(I—1t)—C(D,u,t)+ Vo (D) + lb(D,u)}
e Unugywd L Juuy |L|-h pwpuiwd U monmpymbhg Jupwd wph bpjupnipyub
puphuiwl $mbyghwyh dhel [0, 1) hupwdh ypuw.

V(D) + 1b(D, u) 2
(I —t)b(D,u) (I—1t)2

e Unpugywd t juy D-0 hwpnn yupuwhwui hwgpgudh pwofudwb $nibghuyh b D-h
lwph Gpyupnipyui pupfuiwd $mbyghwyh dhou R™-nud:

0 tipp t <0,
On—2V,_1(6D) (2t +F(D,t)(I—1t) — fg F(D, z)dz)

('I’L —_ 1)On_1Vn (D) + lOn—QVn—l(aD)
1 tpp ¢ > 1.

1 t
F(D,U,t) = |:F|L\(D7u7t) + m/o ‘F‘L|(D7u’ Z)dZ:| +1-

F|L\ (D7 t) =

tpp t € [0,1],

e Uwwgmgywd t (ypbu [34]), np towblyjuwd Yynjwphngpudp b minnmpjmbhg Jupu]wd
lwph Gplupmpjui puhudwd $mbyghwd juhwd Gh v mnnmpnihg tmes (D, u)
dwpuhdw] juph dhongny:

e Gt ninnnipgymbhg Jupujwd wph tplupnipyub puphudwt $ndyghwd jupjud L
ninnipintig tmax (D, u)-h dhengny, wuw gubluguwd uy, us € S™~ 1 mynnupymbtkph
hwdwp wjbwhuhb, np

tmaz (D, u1) = tmaz (D, u2)
htiplumd k
b(D,u1) = b(D,uz) :

o Guinnigywd L gniquhbtinwgqdbtiph nwu, npniig hwdwp sh pujwpupynmd mnnnipjnibhg
Quiuwd (uph Gphupnput pupiiwd $mblghwh’ mnnnipyniihg dwpupdwy (wph
thongny Jupuqwd thbbnt hwdiwp wbhpudboy wwydwbn:
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e Upugyuwd L puguuwlwi wywypuufuwd [33]-md abwlbpupwd htyplywy pbngph hwdwp.
gnympymb mbh wpynp A = {u1, ug, ..., um } nnnmpgmbdbph Jepowynp puwquinipymb
wylybiy, np hwiwwyupuuwt F(D, u1, t), F(D, ug,t), ..., F(D, um, t) ninnmpjmbhg
Jupqwd jwpp tplupnipyud puwphudwd $mblghwbtipp dhwpdtipnptitt Yybpuyubquta
uwhdwbwthwl ninnighy phpnypen:
bpl A C S'-0 mynmpymbitph Yapounnp bhpwpuqinpgmb b, www Shogp Gupbih
L Qunnmgt) tpynt qpruppbp towblyymb, npnig hwdwp nnnmpnibhg Juhijwd jwph
tpupnipyui pupfuiwd $mbyghwdtpp hwdpbytmy b pnpnp w-tph hwiwp A-hg:

o Ntipugmpyuwd b hwppnipjuid dbe wiwh b dhunptivwly pwppuwd ninhnbbtph gnuyg,
npnip hwypmd G D momghy vwhdwbuwhwy phpnyep: Yhypupyud £ D-h dbpumd
nuhnbbph hwgtine Pp(A4) hwjuwiwlwinpniip: Spowbh b nipnudyjub hudwp
Jupnigqwd b yupuwhwlub mnhnbbtpp ghbitipuginn gnuquhtin pinuithnpunieynibiitinh
fudph  GYupduwdp  hwugpupuinhp swhtp, npnig hwdwp Pp (A)-0 ppmimy E hp
utidwgny wpdtipp:

8nyg L yppdwd, np guiugwd p € [0, 3] hwdwp b gublugwd punwynunt hwdwnp

gnympymi nibh wwypuwhwwd ninhndbpp ghbbpuging sunh wybytu, np Pp(A) = p:
Upnymbpbbpp thpuyugdwd Gb [34]-[38] woluwpubpbbpnud:

AnaHoranus

B nmuccepranuu paccMaTrpuBaiOTCs HEKOTOPBIE BOIIPOCHI KACAIOIIUECS HCCIIEIOBAHUS
BEPOSITHOCTHBIX XaPAKTEPUCTUK OTPAHUYEHHBIX BBIMTYKJIBIX TEJI C MOMOIIBIO0 KOBapHO-
rpamMMbl. [loydens! ciienyromnue pe3yabTaThl:

e SIBHBIE BBIpAsKEHUsI KOBAPUOTPAMMBI M 3aBUCAIIEH OT OpueHTanuun (OYHKIIUNA pac-
IIp€JIeJIEHN JUIMHBI XOP/IBI JJIsl JII0OOT0 TPEYTOJbHUKA U IIapasljIeJIorpaMMa. Takke
TIOJTyIYEHBbI SIBHBIE BBIPpaKEHUs I (DYHKIIMKM DPACIPEIEIEHUs JJINHBI XOPIbI Tpe-
yroJibHUKa ¥ napaJsuiegorpamma. C Touku 3peHust BUga (QyHKIUN PACIPEIeIeHIsT
JUIMHBI XOPJbI MIOJIyYaeM TPU TUIla TPEYTOJBHUKOB M CEMb THIIOB IaPaJIIEIOIDaM-
MOB.

Paccmorpen caygaitabrii orpe3ok L(w) B R"™ ¢ pUKCMPOBAHHBIMA HAIPABJICHUEM U JIJTA-
HOI npu ycaosur, 4To L(w) mepecekaeT orpaHUYeHHOE BBIMYKJIoe Tesio D.

e CB#3b MeXKJy KOBAPHOTPAMMON M pachpeiesieHneM Cilydaiinoit Besuuanust |L|(=
nmaa LN D) g t € [0,1]:
1 oC(D, u,t)

Fr(D,u,t) = V(D) + Ib(D, w) 5 (l—t)—C(D,u,t)+ V(D) + Ib(D,u)

e Cesi3p Mexxay pacupeneseHueM |L| u saBucsieil or opueHTtanun GyHKOueil pac-
[IpeJIesIeHnsl JIMHBL XOp/bl Ha uaTepsane [0,1).

16



Va(D) 4 1b(D, u) 1 /t 12

—— "\ F(D,u,t) + —— Fr (D d 1—-——
(= 0b(D, u) 1L (D,u, )+l—t ; iL|(D,u, z)dz| + EDE

e CBs3b Mex Iy DyHKIMENH paclipeieseHus JJIMHbL CJIyYalHOrO OTPe3Ka, I1ePeceKaro-
mero D u dyuknueit pactnpesnenenus jaymnbl xopasl D B R™:

F(D,u,t) =

0 nnsat <0,
On—2V,—1(0D) <2t + F(D,t)(I—t) — fot F(D, z)dz)

(n — 1)On71Vn(D) + lOn72Vn71(aD)
1 st t > 1.

Fip(D,t) =

ns t € [0, 1],

B [34] nokaszano, 9TO KOBapHOrpaMMa U 3aBUCSIIIAsl OT OPUEHTAIMN (DYHKIUS pacipeie-
JIEHUs JIJIUHBI XOPJbI JJIsl TPEyTOJbHUKA ABJIAIOTCA (DYHKIMSAMU MaKCUMAJbHONR XODIbI
tmaz (D, u) B HAIIDABJIEHUH U.

e Eciu 3aBucsamas or opueHTaun PyHKIUsS PACIPEIEICHA IJIUHbI XOPIbl 3aBUCUT
OT HAIIPABJIEHUS TOJBKO 9€PE3 tmaq (D, u), TOrma 1yist Jro0bIX IBYX HAIIPABJICHUI
Ui, U2 € gn—1 TAKUX, ITO

tmaac(D7 ul) = tmaz (D7 u2)

cremyer
b(D, u1) = b(D, uz).

e [IpuBeen Kacc mapaJsIeIorpaMMOB, JIJIsi KOTOPBIX HE BBIMTOJIHSIETCS HEOOXOINMOe
YCJIOBUE TOT'O, YTO 3aBUCAINAsl OT OPUEHTAINKU (PYHKIUMUS PACHPEIEIEHUs] JITUHBI
Xop/ibl O6bLTa OBl (DYHKITHEH 3aBUCHIIEN OT MAKCUMAJIBHON XOPJIBI.

e Tlosyuen oTpunaTEIbHBINA OTBET HA CJIELYIONLyIO pobiaeMy u3 [33]: cymecrsyer m
MHOKECTBO KOHeUHbIX HampasiaeHuit A = {u1,ug, ..., Um } TAKOE, YTO COOTBETCTBY-
ot Habop suavenuit F(D,uq,t), F(D,uz,t), ..., F(D, um,t) 3aBucamux oT opu-
enTanu (QYHKIUH paclpee/IeHus JTJITHBI XOPAbl OJHO3HAYHO OMPEIENSIOT OTpa-
HUYEHHYIO BBIMYKJIYIO 00J1aCTh?

Ecitn A - KOHEYHOe TI0/[MHOKECTBO HAIIpaBJIeHHi u3 S, To Beeria MOKHO HOCTPO-
HUTh JBa PA3JINIHBIX TPEYTOJbHUKA, JJII KOTOPLIX 3HAYEHUS 3aBUCAIINX OT OPUEH-
Taruu GYHKIUNA pacIpeIeseHus JJINHbl XOP/bl COBIIAJIAIOT st Bcex u € A.

e Paccmorpena BepositHocTh Pp(A) TOro, 9To JBE HE3aBUCHMBIE U OJMHAKOBO DacC-
IIpe/ieJIeHHbBIE NIPsIMbIE, ITIePeCeKaIOIINe IIOCKYIO BBITYKJIyIo obsiacts D nMeroT To4-
Ky nepecedenusi BHyTpu D. CTposTcs TpaHC/ISAIIMOHHO-UHBAPUAHTHBIE MEPHI, T€HEe-
pUpYIOLIHe CIydaitHble IpsiMble, IPH KOTOPbIX Pp(A) mocruraer MakcuMmyma JJlst
JIUCKA W IPSIMOYTOJIbHUKA.

ITokazano, 4ro st Kaxaoro p € [0, %] ¥ JUTS KaXKJ0TO KBaJIpaTa CyIIeCTBYET Mepa
reHepupyIonas cJaydaiiHble NpsiMble Takas, 410 Pp(A) = p.

Pesynbrarer npeacrasiaenst B padorax [34]-[38].
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