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INTRODUCTION 

 

 In 2011 the scientific community celebrated the 50th anniversary of the demonstration of 

second harmonic generation (SHG) of light by a ruby laser pulse in a quartz crystal [1]. This 

discovery immediately became a hot focus of physics research and intense interest was observed 

over the next decades. Alongside with the development of various types of lasers, SHG set the 

foundation of nonlinear optics as a separate branch of physics. Nicolas Bloembergen much 

contributed in formulation of the main approaches of the theory of nonlinear optics and the 

development of laser physics [2-5], and his study led to an award of Nobel Prize in physics in 1981 

(shared with Arthur Schawlow and Kai Siegbahn). SHG was also one of the major topics of physics 

research in Armenia since 1967. Particularly, the phenomenon was intensively studied in the 

Institute for Physical Research of Armenian National Academy of Sciences, Yerevan State 

University, Yerevan Physics Institute and Laser-Techniques R&D Company. 

 Development of the theory of SHG is still of high importance. Despite of focused attention 

and intensive efforts in this field [1-13], there is no systematic method to construct uniformly valid 

analytical solutions to the basic set of equations governing the process in the first approximation. 

Forced by significant mathematical singularities hidden in the governing equations, the analytical 

discussions are usually limited to very specific approximations applicable to limited ranges of 

involved parameters (nonlinear susceptibility, phase mismatch and spatial coordinate). However, 

recent breakthrough in the theory of molecule formation via photoassociation [14-17] and Feshbach 

resonance [18-23] of cold atoms in degenerate quantum gases led to a substantial progress in the 

understanding of the corresponding nonlinear mathematical problem. The suggested new methods 

and approaches could be applied for investigation of the SHG in different types of nonlinear media.  

 More detailed, the object of our study is the second harmonic generation in optical materials 

with specific dependence of )()2( x  nonlinearity, for which no analytical solutions were possible to 

obtain so far. The behavior of the system for two types of nonlinear media is investigated: the basic 

resonance-crossing models of Landau-Zener [24-27] and Demkov-Kunike [28, 29]. The choice of 
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these specific configurations is caused by the desire to achieve as high conversion efficiency as 

possible. It is well known that in the linear case the Landau-Zener crossing allows up to 100% 

transition to the second state, and it was expected that the conversion coefficient (i.e., transfer of the 

energy from the fundamental wave to the second harmonic) will be high for nonlinear Landau-

Zener model as well.  

 The Landau-Zener configuration is characterized by a phase mismatch that linearly varies in 

the direction of the propagation of the fundamental mode in an infinite medium with constant 

nonlinearity. However, the Landau-Zener model is overly idealized; hence, we consider other 

configurations promising high conversion efficiency that are close to real physical situations. 

Among the term-crossing models known from the linear theory, the Demkov-Kunike model is the 

most realistic one, since it implies nonlinear bell-shaped localization of the nonlinearity and a phase 

mismatch of finite variation that quasi-linearly crosses the resonance. This is a rather good 

approximation for a finite length nonlinear medium. 

 In the present study, we systematically examine the weak and strong interaction regimes of 

resonance crossing both for Landau-Zener and Demkov-Kunike models. The principal results are 

obtained by applying rather counterintuitive methods; however, we succeeded in developing simple 

approaches and derived compact analytical solutions for the problem under consideration for both 

of the chosen configurations. It turns out that in the limit of weak interaction the proposed solution 

is represented as a transformed solution of the corresponding system of linear equations. As regards 

the opposite limit of strong coupling, here the dynamics of the system is more complicated. The 

results show that in this regime the solution to the problem is written using a two-term ansatz 

involving three variational parameters. This ansatz can be applied to treat other configurations. 

 The obtained results indeed confirm that a Landau-Zener transition is able to provide 

complete conversion. However, our solution shows that for the Demkov-Kunike model it is 

impossible to transfer the whole energy of the system to the second-harmonic wave, as it is the case 

for the Landau-Zener model. Still, very high conversion coefficient is predicted. 

 The developed method and the obtained results are general and can be applied to many 

analogous problems because the involved type of the quadratic nonlinearity is generic for all the 
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bosonic field theories. For instance, the results are applicable in photoassociation of an atomic 

Bose–Einstein condensate, in controlling the scattering length of an atomic condensate by means of 

Feshbach resonance, and generally in field theories involving a Hamiltonian with a 2:1 resonance.  

 The results of this study allow various practical applications, such as optimal design of 

nonlinear frequency converters and doublers, including the proper choice of nonlinear crystal and 

its dimensions, the best phase matching configuration and the design of optical cavity, which are 

modern and widespread problems of practical importance in situations ranging from research and 

development of telecommunication systems to optical tool design where understanding of dynamics 

of phenomenological flow of the process in physically realized conditions is needed.  

 In Chapter 1 we demonstrate that under certain conditions the behavior of second harmonic 

generation in a quadratic-nonlinear medium and the dynamics of ultracold atom-molecule formation 

in electromagnetic fields during photoassociation and Feshbach resonance are mathematically 

equivalent and can be described by the same set of two coupled nonlinear differential equations of 

the first order.  

 Using an exact nonlinear Volterra integral equation, we show that the linear two-state 

problem with normalization 4/1  is an analog to the nonlinear two-state problem. Further, we define 

and discuss several models for the problem and examples of their physical interpretations. The 

importance and unique role of Landau-Zener (LZ) and Demkov-Kunike (DK) models for 

investigation of level crossing problems are discussed. 

 In Chapter 2 we analyze a quadratic-nonlinear version of the Landau–Zener problem. In 

cold molecule formation the model describes the case, when the Rabi frequency is constant and the 

detuning linearly-in-time crosses the resonance. Two different approximations are proposed for 

weak and strong interaction regimes. In the weak interaction limit, using an exact third-order 

nonlinear differential equation for the molecular state probability or second harmonic waves’ 

intensity, we propose an approximation written as the solution of the corresponding linear problem 

with modified parameters.  

 Considering the strong interaction regime, we propose an approximation written as a sum of 

two functions, namely, a solution of a limit fourth-order polynomial equation and a scaled solution 
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to the analogous linear Landau-Zener problem with modified parameters. We derive an expression 

for the final intensity of the second harmonic at the exit from the medium (or for final transition 

probability to the molecular state, if photoassociation terminology is used). 

 In Chapter 3 we examine the spatial dynamics of second harmonic generation or the 

temporal dynamics of the atom-molecular system for Demkov-Kunike model. In cold molecule 

formation the model is defined by quasi-linear-in-time term-crossing detuning and bell-shaped 

pulse. We extend the approach developed for the case of the Landau-Zener model and propose an 

ansatz for the weak interaction regime as a scaled solution to the corresponding linear problem with 

some effective parameters. We also suggest an analytical expression for the scaling parameter, 

assuming that the parameters involved in the solution of the linear problem are not modified.  

 Further, we demonstrate that the approximate expression for the molecular state probability 

in the case of strong coupling can be effectively written as a sum of two terms; a solution of the 

limit first-order nonlinear differential equation and a scaled solution to the linear DK problem with 

fitting parameters defined through a variational procedure. We conclude by presenting a unified 

description of weak, intermediate, and strong nonlinearity regimes of the large-detuning case. 

 The main results of this dissertation have been published in 3 articles in peer reviewed 

journals, 3 conference proceedings and 2 conference abstracts. These results are as follows: 

 A compact analytical theory describing the dynamics of the physical system with high 

accuracy and applicable for the whole range of input Landau-Zener parameter’s variation is 

constructed for quadratic-nonlinear two-state problem for the Landau-Zener model.  

 A variational approach is developed for the Landau-Zener model for the strong interaction 

regime. The results reveal a remarkable observation that in this coupling limit the resonance 

crossing is mostly governed by the nonlinearity while the coherent oscillations coming up 

soon after the resonance has been crossed are principally of linear nature. 

 A two-term ansatz is proposed, describing the dynamics within the nonlinear Demkov-

Kunike model. The proposed approximation, written as a scaled solution to the linear 

problem associated to the nonlinear one we treat, contains fitting parameters which are 

determined through a variational procedure. We suggested analytic expressions for the 
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parameters. The absolute error of the constructed approximation is less than 
5103   for the 

final transition probability while at certain time points it might increase up to 
310

. 

 Three distinct interaction regimes (weak, moderate and strong coupling) of dynamics are 

shown to occur in a nonlinear Demkov-Kunike level crossing process at large final detuning. 



9 

 

CHAPTER 1. THE NONLINEAR TWO-STATE PROBLEM, BASIC MATHEMATICAL 

APPROACHES 

 

In the present chapter we define and analyze the general properties and the applicability range of 

the basic quadratic-nonlinear two-state problem we consider in the present thesis. 

We demonstrate that under certain conditions the second harmonic generation in a quadratic-

nonlinear optical medium, as well as the dynamics of ultracold atom – molecule transitions in 

quantum degenerate gases subject to laser photoassociation or magnetic Feshbach-resonance are 

in the first approximation mathematically equivalent and can be treated in the framework of this 

basic quadratic-nonlinear two-state problem. 

The governing set of equations for this problem is represented by two coupled nonlinear differential 

equations of the first order involving two input functions, the pair of which is referred to as 

configuration. The physical meaning of the functions involved in a configuration for the two 

processes, second harmonic generation and cold atom association, is discussed and the physical 

quantities standing for these functions in each case are mentioned. Several particular 

configurations, referred to as models, known from the linear theory are listed and the importance of 

Landau-Zener and Demkov-Kunike models for investigation of level crossing problems is discussed. 

A Volterra integral equation of the second kind for the second state’s probability is derived for 

models with constant and variable amplitudes. General properties of the derived equation are 

discussed. It is noted that the equation may provide a systematic way to attack the nonlinear 

problem in the case of small enough Landau–Zener parameter. 

 It is shown that the linear two-state problem with normalization 4/1  is an analog to the nonlinear 

two-state problem under consideration, namely, it is shown that in the limit of vanishing 

nonlinearity the solution to the nonlinear problem tends to the solution of this linear problem. The 

solutions of the associated linear two-state problem in terms of the Gauss hypergeometric functions 

are presented. 
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1.1. Second harmonic generation. A basic nonlinear two-state problem. 

 Second harmonic generation in a quadratic nonlinear medium is the first nonlinear optical 

effect observed soon after the invention of powerful sources of coherent light radiation, the lasers. 

The phenomenon was widely explored due to the many interesting applications. Besides of its 

practical use, SHG as a basic nonlinear process can be used to demonstrate many characteristics of 

nonlinear optics like intensity dependence, phase-sensitivity, etc. Besides, the analytical solutions of 

SHG are applicable in various fields of physics as well and therefore are of wide interest. 

 The creation of second harmonic, corresponding to the elementary process of the creation of 

a new quantum with double energy by the annihilation of two light quanta was first observed by 

Franken and co-workers [1]. Although in the radiofrequency and microwave range of the 

electromagnetic spectrum the multiple photon absorption and harmonic generation have been 

observed much earlier, but it is for the optical region, that phase relationships between the waves 

propagating in the nonlinear medium play especially important role. 

 The optical response of a material is expressed in terms of the induced polarization P . For a 

linear material the relation between the polarization and the electric field E of the incident radiation 

is linear: EP
)1(

0 , where )1(  is the linear susceptibility. 

 In nonlinear optics, the response of the material can be described as a Taylor expansion of 

the material polarization P  in powers of the electric field E :  

  ...3)3(
0

2)2(
0

)1(
0

)(
0   EEEEP  n

n

n
, (1.1) 

where )(n  corresponds to the tensor of the n -th order nonlinear process. For most practical 

applications that consider a specific nonlinear process in a well defined direction, the tensor can be 

reduced to a single effective nonlinear coefficient. For the second harmonic generation, we consider 

only second order term and the resulting nonlinear polarization is:  

  jiijkk EEP
)2(

0
NL

 , (1.2) 

where 
NL

kP  are components of material polarization ( zyxk ,, ). The harmonic input field is given 

by   .,.cceAE ti
ii     (1.3) 
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where iA is a field amplitude at a given position, and ω is the frequency.  

 The resulting second order non-linear polarization is: 

  )( **2**22

0

NL

jiji

ti

ji

ti

jiijkk AAAAeAAeAAP    . (1.4) 

As we can see the non-linear polarization contains a component that radiates at twice the frequency 

of the input light. There is also another component at frequency zero, characterizing an effect 

known as optical rectification. Further we will ignore this DC electrical field and discuss only the 

second harmonic. 

 In most of materials second harmonic generation cannot be observed due to the important 

symmetry aspect of the Taylor expansion. All even-order coefficients must disappear for media 

with inversion symmetry, since the symmetry inversion operation rr


  changes sign of 

PP


  and EE


 , but leaves the inversion-symmetric media unaffected, which is possible 

only when 0)( n  for even n . Therefore, second harmonic generation can be observed only in a 

very specific class of nonlinear media, since most materials have inversion symmetry. 

 The rough estimate of the light intensity required for observation of harmonic generations is 

the following. The intensity of a higher order scattering process will be smaller than the scattering 

in the next lower order process by a factor  

   

2

2

0

2

~


























nat

l

WW

eEa

E

E
 (1.5) 

if the scattering is due to electric dipole-type transitions [3]. lE  is the electric field in the light wave 

and cmVEat /103 8  is a measure of the average atomic electric field acting on valence 

electrons, a  is the atomic radius, and nWW 0  is the average excitation energy of the atom. In 

practice nonlinear effects are observable for   102
10~/ 

atl EE  or cmVEl /103 3 , which 

corresponds to light intensity of 
2/25.0 cmMW , that is available even in unfocused laser beams.  

 Because of the relative strength of the nonlinear coefficients it is logical that the first 

nonlinear optical process to be discovered was second-harmonic generation, in which a small 

fraction of the incident laser light is converted into light at twice the incident frequency (Fig. 1.1). 
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Figure 1.1. Second harmonic generation in a nonlinear medium. 

 

 

 Let us consider the relatively simple case, the generation of second harmonic for plane 

waves. The limit of plane wave can be achieved in practice when a laser beam is wide enough to 

neglect focusing effects. The plane wave with wave vector k


 
of incident light with frequency ω is 

proportional to
rki

e



. For simplicity we assume ,(0,0, )zk k  , that is the fundamental and 

second harmonic beam propagate in the positive z  direction. The nonlinear polarization creates a 

dipole emitter that radiates at twice the fundamental frequency at every position in the non-linear 

crystal, and at every time the relative phase of these dipoles is given by the non-linear polarization 

generated by the fundamental wave:  

    zkizik zz ee  ,, 22

 . (1.6) 

 The plane waves emitted in the forward direction are plane-waves at double the frequency 

and have the form 
zik ze 2,
. The overall efficiency of this process in the forward direction is 

obtained by adding all contributions from different positions. This leads to the following integral 

that gives the conversion efficiency per unit length of the process (in terms of intensity): 

  

2
2

2

2
2

2 2/

)2/sin(

L

1

L

1
2













 



Lk

Lk
dzedz

z
ee

L

o

kziL

o

ikki z  , (1.7) 

where L , thickness of nonlinear medium, extends from 0z  to Lz  ,  22 kkk 
 
is the wave 

vector mismatch of the process. The maximum value 1  is obtained, when 0k . 

 In the limits of coupled-plane wave approach and the approximation of slowly varying 

envelopes, the equations describing two interacting waves with amplitudes 1A  and 2A  propagating 
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in the positive direction of a spatial t  axis in a nonlinear medium are as follows [3] 
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 (1.8) 

The detailed derivation of this set of equations from Maxwell’s equations is given in Appendix 1. 

The theory can be applied to a wide variety of phenomena where nonlinearities play a role. It should 

be noted that several assumptions are made throughout the treatment, e.g., only monochromatic 

waves with perfectly defined propagation vector are considered. 

 The intrinsic nonlinear properties of electrons and ions bound in atoms, molecules, and 

dense media can be connected with the macroscopic properties of Maxwell’s field quantities in 

nonlinear dielectrics. This permits a detailed description of the coherent nonlinear scattering 

processes in terms of macroscopic, nonlinear susceptibilities. The interaction between coherent light 

waves leads to a rigorous solution which shows that it is possible for the idealized cases to convert 

power completely from some frequencies to others.  

 The set (1.8) of two coupled nonlinear equations is encountered in many processes, and its 

canonical representation (Zener’s form) we adopt is as following: 
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
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 

.
2

)(

,)(

11
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aae
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da
i

aaetU
dt

da
i

ti

ti





 (1.9) 

The system describes interacting waves with amplitudes 1a  and 2a , propagating in the positive 

direction of a spatial t -axis, 1a  is the complex conjugate to 1a , the real function )(tU  is 

proportional to the second-order optical susceptibility of the medium (usually variable) )()2( t , and 

)(t  is the phase difference between the waves involved, i.e., its derivative is the wave number 

mismatch: 212 kkt  . Below, we put tt 02)(   , thus adopting the notation 210 22 kk  ; the 

factor 2 before 0  is introduced here just for convenience. The initial conditions considered below 

is 1)(1 a , 0)(2 a , so that we assume that there is no seed of second harmonic at the 
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entrance into the medium. 

 System (1.9) assumes a lossless medium. In accordance with that, the system possesses a 

motion integral which expresses the conservation of the field power flow, or, equivalently, the 

number of particles (photons) involved in the frequency conversion process. We normalize this 

integral to unity: 

  1const2
2

2

2

1  aa , (1.10) 

so that 
2

2ap   effectively acts as a measure of the conversion efficiency. 
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1.2. Photoassociation and Feshbach resonance of ultracold atoms 

 Quantum degenerate gases (Bose-Einstein condensates and Fermi-gases) of ultracold atoms 

and molecules have become a dynamically developing research domain due to recent experimental 

and theoretical achievements (see, e.g., [30-34]).  The domain essentially rests on two fascinating 

discoveries. At first Steven Chu, Claude Cohen-Tannoudji, William D. Phillips developed methods 

to cool and trap atoms with laser light [35-37]. Afterwards, in 1995, based on this discovery and 

further theoretical and experimental advancements, three groups could experimentally observe 

Bose-Einstein condensation (BEC) by cooling alkali atoms (rubidium at JILA - Eric A. Cornell and 

Carl E. Wieman, sodium at MIT - Wolfgang Ketterle, lithium at Rice University - Randall G. Hulet) 

confined in traps to ~10
−7

 K [38-40] (the phenomenon of condensation at ultra-low temperatures 

was theoretically predicted by Satyendra Nath Bose and Albert Einstein in 1924-1925 [41, 42]). 

Both discoveries were highly appreciated and researchers were awarded Nobel Prizes in Physics in 

1997 and 2001 correspondingly. 

 BEC can be considered as a state of matter of dilute gases of weakly interacting bosons 

confined and cooled to temperatures near absolute zero. A large fraction of bosons will occupy the 

lowest possible energy state, and many fascinating quantum effects can then be observed on a 

macroscopic scale. The BEC not only proved Einstein’s proposed theory, but also opened large 

possibilities to study quantum mechanics, and in particular, the theory of matter based on wavelike 

properties of elementary particles. In quantum mechanics all particles with mass m and temperature 

T  can be characterized as wave packets with the de Broglie wavelength )/(2 2 TmkBdB   . By 

decreasing temperature of atoms, it is possible to make dB  comparable with the interatomic 

separation and achieve overlapping of atoms. In this case, bosonic atoms become indistinguishable; 

the wave nature of each atom is coherent with that of every other and a gas of atoms with the same 

quantum-mechanical state forms a BEC. Quantum-mechanical waves extend across the sample of 

condensate and microscopic becomes macroscopic. Due to realization of BEC in dilute ultracold 

gases of neutral alkali-metal atoms many important nonlinear phenomena occurring in many-body 

quantum systems can be tested experimentally. 
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 A further even more appealing step was to create molecular BEC [43-46], since due to the 

complex internal structure of molecules the new range of properties and thus new important 

applications can be observed and studied, for instance, processes referred as “superchemistry” [47], 

quantum computation and information processing [48, 49], high precision molecular spectroscopy 

and precision measurements [50-54]. 

 Standard laser cooling techniques used for atoms only freezes the centre-of mass motion of a 

quantum object and therefore are inefficient in the case of molecules, since molecules possess 

rotational and vibrational degrees of freedom. Several approaches are developed to overcome this 

problem. The most widely used ones are the optical laser photoassociation, when excited molecule 

is formed by two colliding atoms interacting with a laser field [14-17, 55] and magnetic Feshbach 

resonance, which occurs when the energy of a bound molecular state is equal to the total energy of a 

colliding pair of atoms, which can lead to atom-molecule transitions during collision [18-23]. 

Consequently, the Raman photoassociation and magnetic Feshbach resonance have become the 

standard tools to create cold molecules starting from ultracold atomic gases [48, 56, 57]. 

 The above-discussed photo- and magneto-association processes based upon the two-mode 

association scheme for an effective quantum two-state system are also described by the set of 

coupled equations (1.9). In this case 1a  and 2a  represent the free atomic and bound molecular 

states' probability amplitudes, respectively. In photoassociation, )(tU  is the Rabi frequency, and 

)(t  is the detuning modulation function, defined as the integral of the frequency detuning. The 

Rabi frequency is proportional to the amplitude of the laser field, and the detuning t  is defined as 

)(21 tLt   , where 21  is the frequency corresponding to the atom-molecule transition, and 

L  is the frequency of the laser field. The system once again describes a lossless process, and the 

equation (1.10) is the normalization to unity of the total number of particles. 

 Thus, all three above discussed processes are governed by the same set of equations (1.9), 

and hereafter we will refer to it as a basic nonlinear two-state problem. This nonlinear two-state 

problem was always in the center of attention and was studied from various sides and by different 

groups of researchers [58-69]. We will discuss and analyze various approximations and models 
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proposed for this system. 

 In the table below we brought parameters of the canonical representation (so called Zener’s 

form) of the problem for the processes we analyze; second harmonic generation, cold molecule 

formation via photoassociation and magnetic Feshbach resonance. Using this table, mathematical 

approximations and conclusions made for one set of parameters can be transferred to other 

processes and physical parameters. 

 

Table 1. Definition of parameters of the canonical representation (Zener’s form) for second 

harmonic generation, photoassociation and Feshbach resonance. 

 

 Second Harmonic Generation Photoassociation Feshbach Resonance 

U  
second order  

nonlinear susceptibility 

Rabi frequency  

of laser field 

square root of the  

magnetic-field width 

of the resonance 

t  phase mismatch frequency detuning magnetic field  

1a  fundamental wave’s amplitude atomic state’s 

probability amplitude 

atomic state’s 

probability amplitude 

2a  second harmonic wave’s 

amplitude 

molecular state’s 

probability amplitude 

molecular state’s 

probability amplitude 

2

2ap   
conversion efficiency transition probability transition probability 

t  spatial coordinate temporal coordinate temporal coordinate 
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1.3. Volterra integral equation for the models with constant and variable field amplitude 

 In the present section we derive, following the lines of [58], a Volterra integral equation [70] 

written for arbitrary field configuration that will play an important role in further developments. 

The integral equation is obtained using the Fubini method [70] that in its turn is based on the formal 

application of the Lagrange’s method of constant variation. 

 First, we obtain some useful relations that straightforwardly follow from (1.9). We multiply 

the equations of system (1.9) by each other and get the equation 

  
2

112

2

21
2

aaa
U

aa tt  . (1.11) 

Then we divide the first equation of the system (1.9) by the complex conjugated second equation 

that gives us the following relation: 

  tt

t

t a
a

a
a

a

a

a

a
2

1

2
1

1

2

2

1 22  . (1.12) 

By putting (1.12) into (1.11) we get the equation  

  
4

1

2
2

2
4

a
U

a t  . (1.13) 

This equation can be straightforwardly obtained by taking modulus square of the second equation of 

(1.9). 

 Now, we turn to the modulus and arguments of the complex amplitudes 2,1a  

  

.)(

,)(

)(
22

)(
11

2

1

ti

ti

etra

etra








 (1.14) 

Equation (1.13) written in the new variables has the following form 

  22
2

22

22
2

2

2 )21(
4

r
U

dt

d
r

dt

dr

















 
. (1.15) 

Note that in the variables (1.14) the normalization condition is written as 

  12 2
2

2
1  rr . (1.16) 

 We introduce the following notations: 
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2

2rp  , 
dt

d
rq 22

22


 . (1.17) 

In the new notations equation (1.15) is rewritten as follows: 

  ppUq
dt

dp 222

2

)21( 







. (1.18) 

 First we discuss, following [58], the constant-amplitude case const0 UU . In this case, 

for the derivative of equation (1.15) we have 

   













 22

2

2
22

2222
2
2

2
0 21  




r

r
rrrrU  (1.19) 

(here, the dot indicates the derivative with respect to time). 

 Now via elimination of one of the dependent variables of the system (1.9) and using (1.10) 

we obtained the following nonlinear equations of the second order: 

    021
2

1

2

1

2

11 







 aa

U
a

U

U
ia t

t
ttt  , (1.20) 

    021 2

2

2
2

22 







 aaUa

U

U
ia t

t
ttt  . (1.21) 

In the case of constant amplitude, equation (1.21) is simplified: 

    021 2

2

2
2

022  aaUaia tttt  . (1.22) 

Using (1.14) we obtain the following useful relations: 

   2222
2   irrea

i
t  , (1.23) 

   2
22222222 22   rirrirea

i
tt  . (1.24) 

After substituting the relations (1.23)-(1.24) and (1.19) into the equation (1.22) we arrive at the 

equation 

     2
2

2222
2

2222

22

2
2

2 2224
2

2


 



rrrirrr

rr

r
i t 














 . (1.25) 

In notations (1.17), this equation is written as 

      pqqipqip
p

q
tt 




  . (1.26) 
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 After differentiation of (1.18) and taking into account (1.26) we obtain an equation: 

  )1281(
2

2
2
02

2

2

pp
U

q
dt

dq

dt

qd t
t

t

tt 






, (1.27) 

which can be solved using the variation of constants method. It can easily be seen that the general 

solution of the homogeneous part of the equation (1.27) [if we equate to zero the right-hand side of 

the equation (1.27)] has the following form: 

  ))(sin())(cos( 21 tCtCq   , (1.28) 

and the Wronskian of the fundamental solutions tt qqqqW 1221   is equal to t , hence the general 

solution of the inhomogeneous equation (1.27) can be written as 

  













 

t

t

dxxpxp
U

xCttq

0

))(12)(81(
2

))(sin())(cos()( 2
2
0

1   

  













 

t

t

dxxpxp
U

xCt

0

))(12)(81(
2

))((cos))((sin 2
2
0

2  . (1.29) 

 In the force of the relation (1.26) the differentiation of this equation leads to an integro-

differential equation 

 
t

t

dxxpxp
U

xttCtC
dt

dp

0

))(12)(81(
2

))((cos))((cos))((cos))((sin 2
2
0

21   

   
t

t

dxxpxp
U

xt

0

))(12)(81(
2

))((sin))((sin 2
2
0 . (1.30) 

The constants 2,1C  should be determined from initial conditions. Below we consider the case, when 

the molecular state probability p  satisfies the initial condition 0)( 0 tp , i.e. at the beginning of 

the process the condensate was completely atomic. 

 After integrating the equation (1.30) we obtain the equation 















  

t

t

x

t

dxdyypypyx
U

tCCtSCtp

0 0

))(12)(81))(((cos))((cos
2

)()()( 2
2

0
21   

    














t

t

x

t

dxdyypypyx
U

0 0

))(12)(81))(((sin))((sin
2

2
2
0  , (1.31) 
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where we introduced the following notations: 

   dxxtC
t

t



0

)(cos)(  ,   dxxtS
t

t



0

)(sin)(  . (1.32) 

 Finally, the integration by parts leads (1.31) to a nonlinear Volterra integral equation  of the 

second kind [58] 

   
t

t

dxxpxpxtK
U

tCCtSCtp

0

))(12)(81)(,(
2

)()()( 2
2
0

21  , (1.33) 

where the kernel ),( xtK is given by the expression 

         )(sin)()()(cos)()(),( xxStSxxCtCxtK    . (1.34) 

 After working out the first term of the integrand in (1.33) we finally arrive at the following 

Volterra integral equation of the second kind: 

   
t

t

dxxpxpxtKUtftp

0

))(
2

3
)()(,(4)()( 22

0 , (1.35) 

where the forcing function f  is given by the expression 

   )()(
4

)()()( 22
2
0

21 tStC
U

tCCtSCtf   . (1.36) 

 Thus, we have shown that for all the models defined by the constant amplitude 

const0 UU  (and arbitrary detuning )(tt ) the probability of molecular state p  satisfies 

Volterra integral equation (1.33) of the second kind. 

 Now we derive, following [58], an integral equation for the models with arbitrary varying 

amplitude )(tU  and detuning )(tt . It can be easily seen that the initial system (1.9) can be reduced 

to an equivalent system with constant field amplitude. Indeed, consider the following 

transformation of the independent variable t : 

  td
U

tU
tz

t

t




 
0 0

)(
)( . (1.37) 

Since )(tU  is a sign preserving function, )(tz  is a monotonic function and the mapping (1.37) is 

one-to-one. 



22 

 

 The latest statement is a consequence of the class property theorem. In order to prove this 

we consider any integrable class of the nonlinear two-level problem. It is clear that in any class one 

can always find a representative for which the amplitude is constant: 

  const)( 0
* UzU . (1.38) 

Indeed, let a representative of a class be given by an amplitude )(tU  and detuning )(tt . Thus, the 

other representatives of the class will be determined by the formulas, where we consider )(zt  

transformation: 

  
dz

dt
tUzU )()(*  , (1.39) 

  
dz

dt
tz tz )()(*   . (1.40) 

On the function )(zt  we impose the condition that (1.38) must be satisfied. From (1.39) one can 

easily determine the function )()( 1 zttz   that is given by the formula (1.37). From the formula 

(1.38)-(1.40) it follows that 
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)())(( 0
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tzU
ttz ttz   . (1.41) 

Thus, hereafter when we write « z » we refer to the variable for which the initial system of equations 

is written in the form 
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 (1.42) 

[ )(* z  should be determined from (1.41)]. The differential equation for the probability, written in 

terms of the variable z , takes the following form: 
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. (1.43) 

 Since the present study is mostly dedicated to the strong interaction limit, we make an 

important remark, concerning this limit. The nonlinear terms in Eq. (1.43) are proportional to the 
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field intensity 2
0U . Hence, one may expect that the strong nonlinearity regime corresponds to high 

field strengths. 

 Using the results of the previous section, in particular the formula (1.32)-(1.34), one can 

write an integral equation equivalent to (1.43): 

   
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where 
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         )(sin)()()(cos)()(),( ****** zzSzSzzCzCzzK    , (1.46) 

and the forcing function )(* zf  is now defined by the expression 
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 Now, in the formula (1.44)-(1.47) we return to the physical variable t and obtain an integral 

equation written for a physical model defined by arbitrary amplitude and detuning: 
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And the forcing function should be written as 
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 Let us now compare the nonlinear and linear problems. In the integral equation (1.48) whole 

nonlinearity is “concentrated” in the term 
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It is then understood that the linear analog of the integral equation (1.48) is the equation 
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 By means of differentiation of (1.52) it can be easily shown that it is equivalent to the 

following differential equation of the third order: 
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 It is known that the canonical linear two-state problem is written as [71, 72]: 
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where index “L” emphasizes the linearity of the system. Its first integral is the quantity: 
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From system (1.54) one obtains an equation for the second state’s probability 
2
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 (1.56) 

 By comparing equations (1.53) and (1.56) we notice that if we apply 4/1LI  in (1.55) then 

(1.53) and (1.56) will coincide. Thus, we conclude that system (1.54) is the linear analog of the 

nonlinear system (1.9) (we stress again that one should keep in the mind the supplementary 

normalization constraint 4/1LI ). 

 It is then understood that this linear problem should present a reasonable approximation for 

the nonlinear problem under consideration in the case of vanishing nonlinearity. An important 

further extension is that, as we show below, the solution to the linear problem can be appropriately 

modified to construct a much more advanced approximation to the nonlinear problem. This 



25 

 

extension is achieved by modifying the parameters involved in the linear solution. In the light of 

these observations, the solutions of the linear problem present a considerable interest for our 

research. For this reason, here after we discuss the solution of the linear problem for several models 

which present interest from the physical point of view. 

 Discussing now the general properties of the derived integral equation (1.35), we note that if 

the forcing function )(tf , and the kernel, ),( xtK , are bounded, one may apply the Picard’s 

successive approximations, 
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to construct a sequence of functions )(tpn , which, according to the general theory, converges 

uniformly everywhere to a limit function )(tp  that is the unique solution of the equation. Since the 

conditions used are quite general, the Volterra integral equation (1.35) or (1.44) may provide a 

systematic way to attack the nonlinear system (1.9) in the case of small enough Landau–Zener 

parameter  . 

 However, the convergence of Picard’s series (1.57) is very slow [58]. To demonstrate this, 

note that by rearrangement of the terms the Picard’s solution can be presented as a power series 

expansion in  . This expansion accounts for the orders of the involved terms explicitly. 

Substituting  2
2

10 pppp   into equation (1.35) and equating coefficients at the same 

powers of   we get 00 p  and, successively, 
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[Of course, 1p  is the forcing function of the Volterra equation (1.35): 

4/)(4/)]()([ 22
1 tftStCp   .] Now, since all the ip  tend to finite, in general nonzero values at 

t  it is understood that any finite sum, being a polynomial in  , is not restricted at  . 

Furthermore, it can even take negative values. For instance, for the Landau–Zener model 

4/4/)(1  tfp  at t  so that 1p  starting from 65.0  already exceeds the maximum 

2/1  allowed by the normalization, and the next approximation, 2
2

1 pp   , becomes less than 
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zero when 65.0 . 

 Thus another approach is preferred. Note first that 0p , 1p  and 2p  satisfy the same 

equations as the corresponding terms of the expansion in the linear case. Hence, we are leaded to 

apply to the initial integral equation (1.35) the substitution upp L  , Lp  being the scaled linear 

solution (i.e., the linear solution with normalization 4/1LI ). Then we have 

  dxupupxtKup
t

LLL 


 ])(12)(81)[,(
2

2
. (1.61) 

Canceling the terms belonging to the linear problem leads to a new Volterra integral equation of 

Hammerstein type, 

  dxuupxtKdxpxtKu
t

L

t

L 


 ]
2

3
)31)[(,(4),(6 22  , (1.62) 

with changed forcing function that is of the order of 3 . It is then understood that this forcing 

function should lead to much faster converging approximations. Indeed, we now try an expansion of 

the form 

   3
3

2
2

10 uuuuu  . (1.63) 

Since ~Lp  at small  , we conclude that 0210  uuu . For the next term, however, we get 

an important result: 

  dxpxtKu
t

L


 2
3

3 ),(6 . (1.64) 

Noting that )( 4
3

3  Ouu  , we finally arrive at a principal result: 

  dxpxtKu
t

L


 2),(6 . (1.65) 

This is the desired form of the first correction term. Thus, finally, we obtain that in the first 

approximation the solution to the nonlinear problem in the weak interaction regime is written as 

  dxxpxtKtptp
t

LL
2])()[,(6)()( 



  . (1.66) 

This is numerically proven to be a good approximation. For the Landau–Zener model, up to 5.0  

the comparison with the numerical solution to system (1.19) gives practically indistinguishable 

graphs. And it also works well as a satisfactory first approximation even up to 1~ . 
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1.4. Various models of medium configuration 

 As we have seen, the problems of SHG and cold atom photoassociation can be represented 

as a quadratic-nonlinear quantum two-state problem. The solution of this problem depends on the 

input functions. In the case of SHG these functions are the nonlinear susceptibility and phase 

mismatch, that is U (x) and  (x), respectively. This pair of U  and   is called configuration model 

and determines the behavior of the system. These functions may vary in many different ways. 

 The aim of this work is to analyze the dynamics of the second harmonic generation for 

optical media with various dependences of nonlinear susceptibility and phase mismatch. The choice 

of the specific configurations that we apply is not accidental: they represent essentially different 

physical situations which are of practical interest. We list some useful models and describe their 

main characteristics. Further we concentrate on the models providing the most effective transition – 

the resonance crossing models. The Landau-Zener and Demkov-Kunike models are key models for 

this purpose.  

 The case of constant nonlinear suscectibility and constant detuning presents the simplest 

possible configuration:  

  0UU  ,   0 t . (1.67) 

This is the Rabi model [71-73]. The exact solutions of the Rabi problem both in the linear and 

nonlinear cases are known [73, 74]. In the linear case, the conversion efficiency is always an 

oscillatory, periodic function of the spatial coordinate. In the nonlinear case the solution 

dramatically differs from this behavior in the exact resonance case 0t : in this case, the 

nonlinear conversion efficiency demonstrates monotonic increase. 

 In practical applications better conversion efficiencies are acheived by application of 

resonance-crossing models. The most basic and thus the most important model, which has many 

practical applications, is the model of constant nonlinearity and linearly resonance-crossing 

detuning known as the Landau-Zener model [24-27] (Fig. 1.2). Configuration functions for this 

model are given as: 

  0)( UtU  ,   tt 02  . (1.68) 
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We note, that in the case, when the qualitatively most important part of the interaction is being 

realized in the close vicinity of the resonance any model with non vanishing amplitude and 

approximately liner-in-variable resonance crossing can be effectively approximated by the Landau-

Zener model. For this reason it is considered as a standard reference to be compared with.  As we 

will concentrate in term-crossing models, the LZ model is of crutial interest for this thesis. The 

methodology for finding the solution for this model will be discussed in detail in the next chapter. 
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Fig. 1.2. The Landau-Zener model. Solid line is the Rabi frequency, dashed line is the detuning. 

 

 

  Despite its fundamental nature the Landau–Zener term-crossing model describes a very 

degenerate, physically unrealizable process. For example, in SHG constant nonlinearity means 

infinite in space nonlinear medium. Similarily, linearely increasing phase mismatch stends for 

unlimited energy differencies in infinities. From mathematical point of view this divergence leads to 

considerable troubles in contrast to other models. Nevertheless, this model is proven to be 

applicable for a wide range of physical conditions. 

 To overcome the infinite nonlinearity complication, a model of localized nonlinearity can be 

suggested - the Rosen-Zener model [75] (Fig. 1.3) - which can be considered as a generalisation of 



29 

 

the Rabi model:  

  
)/(ch

)( 0

t

U
tU  ,  02)(  tt . (1.69) 

Similarity with the Rabi model can be easily verified by tending   to infinity. Thus, the Rosen-

Zener model serves as a physicaly realizable prototype for all non-crossing models. 
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Fig. 1.3. Rosen-Zener model. Solid line is the Rabi frequency, dashed line is the detuning. 

 

 

 Further, there exists a model that has all the virtues of the Landau-Zener model and is free 

from its shortcomings. Such a model is the first Demkov-Kunike model [28-29] (Fig. 1.4): 

  
)/(ch

)( 0

t

U
tU  ,  )/(tanh2)( 0  ttt  . (1.70) 

This model also describes the passage of the system through the resonance, but in this case  

  0)(lim 


tU
t

,  02)(lim  


tt
t

, (1.71) 

( 0 ) and the Rabi frequency given by (1.70) is a quadratic integrable function: this ensures the 
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satisfaction of the physical constraint that the laser pulse must have finite energy. The first 

Demkov-Kunike model is a straightforward generalization of the Landau-Zener model. To prove 

this we fix t , take  02

~
  and tend the parameter   to infinity. As a result, we obtain  

  0)( UtU  , 
  

tt 0

~
2  . (1.72) 
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Fig. 1.4. Demkov-Kunike model. Solid line is the Rabi frequency, dashed line is the detuning. 

 

 The exponential resonance crossing model by Nikitin [76] is another generalization of the 

Landau-Zener resonance passage with a following Rabi-like interaction. It is sometimes referred to 

as an ''anti Demkov'' model. The model is defined by the following nonlinear susceptibility and 

phase mismatch: 

  0)( UtU  ,  )1( at
t e , (1.73) 

where the crossing point is adjusted to coincide with the origin. 

 Note, that this model differs from the well-known second Nikitin-exponential model [77] 

with an exponential susceptibility: 
ateUU  0 . For the Nikitin model there are two distinct 

interaction schemes: the so-called Nikitin’s positive model (Fig. 1.5) and Nikitin’s negative model 

(Fig. 1.6)  with positive and negative a  respectively. As we mention above, this model incorporates 

LZ and Rabi models, obviously near the resonance the phase mismatch behaves as the Landau-
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Zener linear detuning, att   [see (1.73)],while for at /1  and for at /1  in Nikitin’s 

positive and negative models, respectively, the phase mismatch is practically constant like in the 

Rabi model. 
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Fig. 1.5. Nikitin’s positive model. Solid line is the Rabi frequency, dashed line is the detuning. 
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Fig. 1.6. Nikitin’s negative model. Solid line is the Rabi frequency, dashed line is the detuning. 

 

 For reference and comparison purposes, a few more models with known analytic solutions 
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for linear two-state problem are listed below.  

 Figure 1.7 presents the model of two delayed pulses: 

  2
2

21
2

1 /)(
20

/)(
10

 tttt
eUeUU


 ,  0 t . (1.74) 

 The parabolic-crossing model is represented in the Figure 1.8: 

  0)( UtU  ,  
222

0 att   . (1.75) 

 Consideration of multiple crossings leads to several new phenomena. Periodic crossings are 

one of the most interesting of those (Fig. 1.9): 

  0)( UtU  ,  tt 00 sin  . (1.76) 
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Fig. 1.7. Two delayed pulses. Solid line is the Rabi frequency, dashed line is the detuning 
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Fig. 1.8. Parabolic model. Solid line is the Rabi frequency, dashed line is the detuning 
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Fig. 1.9. Periodic crossing model. Solid line is the Rabi frequency, dashed line is the detuning 

 

Another nontrivial possibility leading to several new features in the behavior of the system is the 

bichromatic model involving two laser fields of different color (Fig. 1.10): 
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 
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  (1.77) 
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with const2,1 U , const2,1  . 
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Fig. 1.10. The bichromatic Rabi model. Solid lines are the Rabi frequencies, dashed lines are the 

detunings 2,1 . 

 

 In this research, we concentrate our discussion on two models: the Landau-Zener and 

Demkov-Kunike, since these are the ones which provide high conversion efficiency and also they 

can serve as a basis for discussion of all other resonance-crossing models, i.e., the results obtained 

for them can be extended to other models. For only several models discussed above the exact 

analytical solutions are known. The solutions are usually written in terms of hypergeometric 

functions. Two classes of hypergeometric functions are mainly used: Kummer (confluent) and 

Gauss hypergeometric functions. The solution for the Landau-Zener model is given in terms of 

confluent hypergeometric functions 11 F  [24, 25]. For the Demkov-Kunike and Rosen-Zener 

models the exact solution to the linear problem is given in terms of the Gauss hypergeometric 

functions 12 F  [28, 29]. These two models are unified by the circumstance that they originate from 

the same integrable class [78, 79]. We present here the derivation of the solution for this class. 
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1.5. Solution of the linear two-state problem in terms of the hypergeometric functions 

 Consider the familiar linear time-dependent two-state problem (here, for convenience, we 

skip the index indicating linearity): 

  












 

.)(

,)(

1
)(2

2
)(1

aetU
dt

da
i

aetU
dt

da
i

ti

ti





 (1.78) 

The quantity const
2

2

2

1  aa  is the first integral of this system. 

 From the point of view of atom optics the system (1.78) describes interaction of an isolated 

atom with optical laser radiation [71, 72]. In this case 21  in the definition of the detuning is the 

frequency that corresponds to the transition between the two levels in the atom. 

 It is known that the system (1.78) is obtained by application of many approximations. We 

list them below: 

1. The laser field is described classically. 

2. The electro-dipole approximation is assumed. 

3. The laser radiation is considered to be strictly monochromatic. 

4. Quasi-resonant approximation is applied: it is assumed that 21 t , hence only two chosen 

energetic levels of the atom are effectively involved in the interaction. 

5. Rotating wave approximation is made: in the obtained equations the rapidly oscillating terms are 

removed. As a result the shifts of the energetic levels are not taken into account. 

 By elimination of 
2a  from (1.78), an equivalent differential equation of the second order is 

derived 

  01
2

11 







 aUa

U

U
ia t

t
ttt  . (1.79) 

Now, our aim is to find such functions )(tU  and )(t  for which the system (1.78) has an exact 

analytic solution. Following [78, 79] we look for functions that can be found by reduction of a 

second order integrable equation, say, 

  0)()(  uxguxfu xxx  (1.80) 
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to (1.79) via transformations of the dependent and independent variables 

  )(txx   (1.81) 

  1)()( axxu  , (1.82) 

where the function )(tx  that determines the transformation of the independent variable is a 

complex-valued function of the real variable: )()()( tibtatx  . 

 Now, we make an important statement that is known as the theorem of the class property of 

integrable cases of the two-level problem [78, 79]. Let us consider the formal solution of the system 

(1.78) depending on the complex variable x , i.e. we make formal change xt   in the system 

(1.78) and rewrite it as follows: 
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 (1.83) 

 Let us suppose, that we managed to find a solution )(*
2,1 xa  of this system for some functions 

)(* xU  and )(* x . Then, one can state that for a model given by the following Rabi frequency  

  
dt

dx
xUtU )()( * , (1.84) 

and detuning 
dt

dx
xt xt )()( *   (1.85) 

the solution to the system (1.78) is given by functions ))((*
2,1 txa , where )(tx  is arbitrary complex-

valued function. This statement is known as the class property theorem [78, 79]. It can be easily 

proved by direct substitution. The only constraint that is imposed on the function )(tx  when 

considering physical models is that the Rabi frequency )(tU  and the detuning )(tt  must be real 

functions. Thus the class property permits one to split the set of the integrable models )(tU  and 

)(tt  into a number of independent classes and each of the classes will contain an infinite number 

of integrable models. The models { )(* xU , )(* xx } are referred to as basic integrable models. Since 

the class property automatically takes into account the transformation of the independent variable, 
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hereafter when obtaining integrable models we apply to the equation (1.80) only the transformation 

of the dependent variable (1.82). This transformation reduces (1.80) to the following equation 

  02 *
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Now we compare it with the equation 
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and demand coincidence of (1.86) and (1.87). This leads to the following system of nonlinear 

equations: 
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 (1.88)  

from which we determine the functions )(* xU , )(* xx  and )(x . 

 Let us now consider the above described scheme, taking as an initial equation the Gauss 

hypergeometric equation [78-979]: 
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In this particular case the system (1.88) is written as 
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 (1.90) 

From the structure of (1.90) we conclude that it is worthwhile to make the following choice: 

   )1( xx  , (1.91) 
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 We start the analysis of the system (1.90) with the determination of the values of the 

parameters 2,1k  in (1.93). So we multiply the both sides of the second equation of system (1.90) by 

22 )1( xx  . After that the right-hand side of it will be a quadratic polynomial in x . From the 

demand that the left-hand side of it also must be a quadratic polynomial in x  we obtain the 

following constraints on the parameters 2,1k : 

  2122240 2121  kkkk . (1.94) 

Now we multiply the both sides of the same equation by 2x , where 0 , and tend x  to zero. 

The right-hand side of the equation will tend to zero, and from the demand that the left-hand side of 

it also must tend to zero we obtain the following inequality:  

  022 1  k . (1.95) 

In (1.95) we apply the limit transition 0 : as a result, the strict inequality (1.95) will turn to the 

not strict inequality 

  11 k . (1.96) 

In the same manner one can obtain the condition 

  12 k . (1.97) 

Besides, it follows from the structure of (1.90) that the parameters 2,1k  adopt only integer and half-

integer values. 

 It can be easily seen that the hypergeometric equation is invariant with respect to the 

transformation xx 1 ; hence such  21 , kk  pairs that can be obtained via transposition of the 

parameters  21 , kk  are not independent. 

 Thus, finally, we obtain four independent  21 , kk  pairs, i.e. four basic models. The detuning 

is given by the formula (1.92), and the Rabi frequency is defined as 
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Substituting (1.91)-(1.93) into (1.90) we easily obtain the following system of equations: 
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that determine the link between the input and output parameters of the problem. 

 Applying different forms of transformations )(txx   to the basic models (1.98) and (1.92) 

one obtains numerous physical models. Importantly, the last of the derived basic solutions defines a 

model that we use in this study, the Demkov-Kunike model: the choice 2/))/tanh(1( tx   leads 

to the configuration 

  
)/(ch

)( 0

t

U
tU  ,  )/(tanh2)( 0  ttt  . (1.100) 

 Unlike the solution of the Demkov-Kunike problem, the solution of the Landau-Zener 

problem is given in terms of Kummer confluent hypergeometric function 11 F  [24, 25]. However, 

as we have mentioned previously, the Demkov-Kunike model is a generalization of the Landau-

Zener model. This generalization is achieved by a limiting procedure applied to the parameters of 

the Demkov-Kunike model. When applied to the solution of the Demkov-Kunike problem, this 

procedure is equivalent to coalescence of two singularities of the Gauss hypergeometric function. 

The Gauss function is then reduced to the Kummer hypergeometric function and thus the solution to 

the Landau-Zener problem can be obtained from the solution to the Demkov-Kunike problem. 
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Summary of Chapter 1 

 In this chapter we presented mathematical representation of a basic nonlinear two-state 

problem as a set of two coupled nonlinear differential equations of the first order. We have shown 

that under certain conditions the same mathematical system describes both the dynamics of 

ultracold atom – molecule transitions during photoassociation and Feshbach resonance and second 

harmonic generation in a quadratic nonlinear optical medium. Using an exact Volterra integral 

equation for the second state’s probability, we have demonstrated that a linear two-state problem 

with normalization 4/1LI  is an analog of the nonlinear two-state problem we study. We have 

presented the solutions of the associated linear problem in terms of the Gauss hypergeometric 

functions. Discussing the general properties of the derived Volterra integral equation, we noted that 

the equation may provide a systematic way to attack the nonlinear problem in the case of small 

enough Landau–Zener parameter. We have defined and discussed several external field 

configurations for cold molecule formation and various nonlinear susceptibilities and phase 

mismatch in an optical medium for second harmonic generation. For further investigation we 

choose two configurations, which presumably should allow high conversion efficiency: the 

nonlinear Landau-Zener and Demkov-Kunike models. We presented the solution to the linear 

Demkov-Kunike problem in terms of the Gauss hypergeometric functions. 
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CHAPTER 2. NONLINEAR LANDAU-ZENER PROBLEM 

 

We present in detail and analyze a quadratic-nonlinear version of the Landau–Zener problem. If 

SHG terminology is applied, the Landau-Zener model presents the situation when the phase 

mismatch varies along the direction of propagation of interacting waves, being a linear function of 

the spatial coordinate. In cold molecule formation it describes the case, when the Rabi frequency is 

constant and the detuning linearly crosses the resonance in time. We propose different 

approximations for various interaction regimes. 

For the case of weak interaction we develop a variational approach which enables us to construct 

an accurate analytic approximation describing the spatial dynamics of second harmonic wave (or 

the time dynamics of the molecular state) using an exact third-order nonlinear differential equation 

for second harmonic wave’s intensity (or molecular state probability). We show that the constructed 

approximation written as the solution of the corresponding linear problem with modified 

parameters quantitatively well describes many characteristics of the dynamics of the system. In 

particular, it provides a highly accurate formula for the final intensity of the second harmonic (or 

for the final transition probability to the molecular state). 

In the strong interaction regime we reveal a remarkable observation that the resonance crossing is 

mostly governed by the nonlinearity while the damped coherent oscillations coming up soon after 

the resonance has been crossed are basically of linear nature. Thus, we propose an approximation, 

written as a sum of two functions, namely, a solution of a limit fourth-order polynomial equation 

and a scaled solution to the analogous linear Landau-Zener problem with modified parameters. 

The constructed approximation turns out to have a larger applicability range (than it was initially 

expected) covering the whole moderate coupling regime for which the proposed solution accurately 

describes all the main characteristics of the system’s evolution except the amplitude of the coherent 

oscillation, which is rather overestimated. We also derive an analytic expression for the final 

intensity of the second harmonic at the exit from the medium (or, equivalenly, for the final transition 

probability of the molecular state). 
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Overview 

 For the sake of generality, in this chapter we use the terminology applied in cold atom 

association in degenerate quantum gases. As we have mentioned in Chapter 1 coherent molecule 

formation in ultracold gases by applying associating optical or magnetic fields under certain 

experimental conditions [80, 81] can be described by a basic mean-field time-dependent two-level 

problem, defined by the following set of coupled nonlinear equations (see also [82-86]): 

  ,
2

)(
,)( 11

)(2
21

)(1 aae
tU

dt

da
iaaetU

dt

da
i titi     (2.1) 

where t  is the time, 1a  and 2a  are the atomic and molecular state probability amplitudes, 

respectively, 1a  denotes the complex conjugate of 1a . The real functions )(tU  and )(t  are the 

characteristics of the applied field. Under the conditions considered in the present research the two 

techniques, the photoassociation and Feshbach resonance, are mathematically equivalent; for 

definiteness, in what follows we use the photoassociation terminology. In photoassociation, )(tU  is 

referred to as the Rabi frequency of the associating laser field, and )(t  is the frequency detuning 

modulation function for which the derivative, )(tt , is the detuning of the laser field frequency 

from that of transition from the atomic state to the molecular one (the alphabetical index denotes 

differentiation with respect to the mentioned variable).  

 The theoretical efforts to describe the dynamics of cold molecule formation within 

photoassociation and Feshbach resonance techniques have mostly been focused on the treatment of 

the Landau-Zener (LZ) model. In order to achieve high conversion efficiency, one has to apply a 

level-crossing field configuration [80]. Then, as it is well appreciated, the Landau-Zener model 

inevitably comes up as a natural starting point for studying such models and serves as a prototype 

for other level-crossing models. For this reason, this model has been a subject of intensive 

investigations over the last years (e.g., see Refs. [58-69]). Hwever, despite the large interest to the 

model, so far there was no reasonable approximation, which accurately describes the behavior of 

the system during and after the resonance crossing. Our goal was to construct an accurate analytic 

approximation applicable for characterization of the time evolution of the molecular state 

probability for the whole variation range of the LZ parameter. 



43 

 

Differential equation for the molecular state probability for the nonlinear LZ model 

 We treat here the basic case when the evolution of the system starts from the pure atomic 

state, so that the initial conditions for 
2

2ap   are 

  0)( p ,  0)( tp ,  0)( ttp , (2.2)  

System (2.1) describes a lossless process, i.e., conserves the total number of particles, which we 

choose as normalized to unity: 

  1const2
2

2

2

1  aa . (2.3) 

Note that  1,0
2

1 a , whereas  21,0
2

2 a . After eliminating one of the dependent variables 

from system (2.1) we obtain the following nonlinear equations of the second order for the atomic 

and molecular states’ probability amplitudes, respectively: 
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Hence, instead of the two coupled first-order equations (2.1) one may work with one second-order 

equation [either (2.4) or (2.5)]. However, it turns out that it is more convenient to deal with one 

equation, written for the molecular state probability 
2

2a . It can be shown that all other involved 

variables are then expressed in terms of this quantity. 

 It can be shown by direct differentiation that the transition probability 
2

2ap   satisfies the 

following relations: 
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Furthermore, it can be checked by straightforward differentiation that the function 
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satisfies the relation 

  
U

p
Z t

tt

2
 . (2.9) 

Then, differentiation of equation (2.7) followed by some algebra yields the following nonlinear 

ordinary differential equation of the third order for the molecular state probability [92]: 
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 (2.10) 

It is worth stressing that the normalization condition (2.3) is incorporated in this equation. 

 The derived equation is considerably simplified for the models with constant field 

amplitude: 0)( UtU  . In this case we have the equation [91,92] 
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which can be rewritten in the following factorized form [91]: 
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This equation serves as a starting point for the development presented below. 

 For the LZ model, equation (2.12) is written as [91] 
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where we have passed to the dimensionless time, 0/ tt  , and have introduced the conventional 

LZ parameter 
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2
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U
 . (2.14) 

The linear counterpart of the nonlinear system (2.1) reads 
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Accordingly, for the second state probability 
2

2LL ap   of the linear problem we have the 
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equation [compare with Eq. (2.13)] 

  04)84(
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Note that when deriving Eq. (2.16) the normalization constraint 1
2

2

2

1  LL aa  has been taken 

into account. This linear differential equation is exactly solvable, and we denote as LZp  the solution 

which satisfies the initial conditions: 0)( Lp , 0)( Ltp , 0)( Lttp . This solution can 

be written in terms of the confluent hypergeometric functions [87]: 
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where   is the Euler gamma-function [87] and 11 F  is the Kummer confluent hypergeometric 

function [87]. The limits of LZp  for 0t  and t  are written as 
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2.1. Weak interaction regime for the nonlinear LZ model 

 Now we examine the weak coupling limit of the association process, which corresponds to 

the weak associating fields with the Rabi frequency being 10 U . This limit has been previously 

discussed by several authors both in the context of photoassociation and Feshbach resonance (see, 

e.g., [58-69]) and an accurate formula for the final transition probability to the molecular state at 

t  has been proposed [58, 60]. However, the whole time dynamics of the system has not been 

treated in detail. 

 In this section, following [88-91], we try to construct an approximate solution of the 

equation (2.13) using the solution LZp  to the linear equation (2.16). To do this, we consider the 

linear equation (2.16) with an auxiliary parameter * : 
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and try to approximate the solution to the exact equation (2.13) as follows: 

  ),( **

0 tpCp LZ  . (2.22) 

 As it is seen, apart from a simple pre-factor *C , we have here introduced an effective LZ 

parameter * . After substituting this expression into the left-hand side of equation (2.13) and 

taking into account that function ),( * tpLZ   satisfies equation (2.21), we get some remainder: 
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where )(tr  is the notation for 
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It is obvious that if the remainder R  is identically zero, then the function 0p  given by equation 

(2.22) is the exact solution to equation (2.13). Hence, it is intuitively understood that a way to 

proceed is to try to minimize R  by means of appropriate choice of *  and 
*C . 

 To do this, we first note that, since the function ),( * tpLZ   is bounded everywhere, the 
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function R  is bounded almost everywhere. The exception is the resonance crossing point 0t , 

where, due to the term t/1  in the operator 









tdt

d 1
, in general, R  diverges. Therefore, as a first 

step, we eliminate this divergence, i.e., we require *  and *C  to satisfy the equation 0)0( r . 

Explicitly, this equation is written as 
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 To find appropriate values of parameters *  and *C  we need to introduce one more 

equation. Of course, in order to construct an approximation as simple as possible, one may first try 

to avoid variation of both auxiliary parameters and to attempt to get a simpler, one-parametric 

approximation instead. A natural choice is then to fix  *  and vary *C  alone. Equation (2.25) 

then immediately yields: 
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with )0(LZP  given by Eq. (2.20). Numerical examination reveals that this approximation works 

only for very small  , of the order of 210 . For 25.0  the error is about 5% and for 1  it 

becomes 20%. This result shows that we have to consider two-parametric fit, hence, we do need a 

second equation to determine the parameters *  and *C . 

 For derivation of the second equation we write the (exact) solution to the initial equation 

(2.13) as 

  upp  0  (2.27) 

and examine the exact equation for the correction term u . This equation is written as 
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Now, considering the correction u  as sufficiently small (since the zero-order approximation 0p  is 

supposed to be sufficiently close to the exact solution) one arrives at the needed second equation: 
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The details of derivation of this equation are presented in Appendix 2. 

 Thus, the values of parameters *  and *C , for which the function (2.22) approximates the 

exact solution to equation (2.13) are determined by equations (2.25) and (2.29). One may 

numerically solve these equations and further compare the proposed approximation (2.22) with the 

numerical solution to the exact equation (2.13). The comparison is shown on Fig. 2.1. It is seen that 

the coincidence is quite good – some deviation is observed only for the several first oscillations 

occurring after resonance-crossing and we see that the deviation becomes visible for relatively large 

 : 13.0   . In the meanwhile, several important characteristics of the process, such as the final 

transition probability (at t ) and the frequency of oscillations are determined with high 

accuracy. As is seen, it is the amplitude of oscillations that displays significant deviations from the 

numerical result. However, it can be shown that there exists a modification of the applied 

variational method which is potent to provide essential improvement of the result. 

 

 

   

Fig. 2.1. Comparison of the solution (2.22) (dotted lines) with the numerical solution to equation 

(2.13) (solid lines) at a) 0.25 , b) 0.64 . 
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 The system of equations (2.25) and (2.29) for determination of optimal values of the 

parameters *  and *C  can be solved by approximate methods. In order to do this, we first 

eliminate *C  from the system. Next, we show that with the increase of   the function )(*   first 

monotonically increases starting from 0)0(*   and further monotonically decreases to zero at 

2 . The function reaches its maximal value at 0.454 . The corresponding auxiliary 

parameter *  then adopts the value 0.124max
*  . A sufficiently good approximation for the 

function )(*   is given by the following formula: 
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




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
 . (2.30) 

Comparison of the derived formula with the numerical result is shown in Fig. 2.2. It is seen that the 

approximation for the interval ]1,0[  (i.e., the whole weak interaction limit) is rather good. 

Furthermore, we apply equation (2.30) to calculate the function )(* C  using equation (2.25). 

Comparison of the resultant approximation with the numerical result for )(* C  is shown in Fig. 

2.3. As it is seen, the graphs are practically indistinguishable.  

 An analytic expression for *C  as a function of   can be constructed starting from equation 

(2.25) and applying, for example, successive iterations. Indeed, rewrite equation (2.25) in the 

following form 

 

Fig. 2.2. Function )(*   [dotted line – formula (2.30)]. 
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Fig. 2.3. Function ),()( **   LZpC . 
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Now, as a zero-order approximation we put in the right-hand side of this equation 0)0*( C . As a 

result, we get an expression that is already a good approximation. By applying further iterations, we 

conclude that an accurate approximation for all 1  is given by the formula 

  
)0,()(75.1
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The graph of this function is visually indistinguishable from the numerical solution. The 

substitution of )(*   from Eq. (2.30) into this formula shows that function )(* C , in contrast to the 

function )(*  , monotonically increases on the segment ]1,0[ . 

 The final transition probability to the molecular state at t  for the weak interaction 

limit, according to Eq. (2.22), is ),()()( **   LZpCp . It is namely this function that is shown 

in Fig. 2.3. Note finally that the direct comparison shows that on the whole segment ]1,0[  

expression (2.32) produces a final transition probability that accurately matches the formula derived 

in Refs. [58, 60]. 
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2.2. Strong interaction regime for the nonlinear LZ model 

 Now, following [88, 91], we consider the strong interaction regime, i.e., the case when the 

Landau-Zener parameter is large (equivalently, the field intensity 2
0U  is large enough or the 

detuning sweep across the resonance is sufficiently slow, that is the sweep rate o2  is small). 

Hence, the second term in the square brackets in Eq. (2.13) adopts, in general, large value. Since for 

large t  the last term of the equation also adopts large value, we suppose that the leading terms in 

Eq. (2.13) are the last two so that we neglect, for a while, the term ttp  thus arriving at a limit 

nonlinear equation of the first order. This equation admits two trivial stationary solutions, 2/1p  

and 6/1p , and a nontrivial one. Unfortunately, for the initial condition 0)( p  the nontrivial 

solution diverges as t  [59], hence, it cannot be directly applied as a proper initial 

approximation. In Ref. [59], an appropriate initial approximation was constructed via combination 

of the nontrivial solution with the trivial one 2/1p . Using the constructed function as a zero-

order approximation, the nonadiabatic transition probability has been calculated and it appeared that 

the final transition probability is expressed as a power of the Landau-Zener parameter [59, 60] in 

contrast to the familiar exponential prediction of the linear theory [24-27]. However, this approach 

is rather complicated and it does not provide a clear treatment of the time dynamics of the 

association process. Here we make a step forward proposing a much simpler treatment of the 

problem that gives comprehensive understanding of the whole time evolution of the system [88-91]. 

To achieve this goal, we use an extended limit equation [88, 91] which differs from that used in 

Ref. [59] by a term of the form tA / , where A  is a constant which is supposed to be small 

compared with other involved terms in order not to change the leading asymptotes. Due to this 

modification of the limit equation, we manage to construct a simple two-term approximation that 

accurately describes the whole time dynamics of the system. Importantly, the constructed solution 

reveals the main characteristics of the process in a simple and natural manner. 

 The extended limit equation, involving an adjustable constant A , is written as 
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This equation is integrated via transformation of the independent variable followed by interchange 

of the dependent and independent variables. This results in a polynomial equation of the fourth 

degree for the limit solution )(0 tp : 
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where 0C  is the integration constant and 
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For the initial condition 0)(0 p  it holds 00 C . Note that at 0A  the quartic equation (2.34) 

reduces to a quadratic one since in this case three of the four parameters 2,1 , 2,1  become equal, 

2/1212   . The solution of this quadratic equation diverges at t . However, for a 

positive A  the solution of the quartic equation (2.34) defines a bounded, monotonically increasing 

function which tends to a finite value less than 2/1  when t  (Fig. 2.4). This solution has all 

the needed features to be used as an appropriate initial approximation for constructing a solution to 

the problem. It is thus understood that introduction of the parameter A  is, indeed, an essential point. 

 

 

Fig. 2.4. The limit solution )(0 tp  for positive 0A  and a fixed  . 
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 Consider the properties of the limit solution )(0 tp  defined by Eq. (2.34) with 00 C . The 

final value )(0 p  is easily found by noting that the left hand-side of Eq. (2.34) goes to zero as 

t . It is then seen that should be 0)(0 p  or 10 )( p  or 20 )( p . Since )(0 tp  

is a monotonically increasing function with 0)(0 p  and since 2/12  , we deduce that 

10 )( p . In the similar way we find that 10 )0( p . Thus, 

  


A
p

6
1

6

1

3

1
)0(0  ,    

22

1
)(0

A
p  . (2.36) 

To determine the appropriate value of the parameter A , we substitute ),(0 Atp  into the exact 

equation for the molecular state probability (2.13) and examine the remainder 
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Obviously, the better the approximation 0p  is the smaller the remainder is. Now note that if 

0)0(0  Ap
tt

 the remainder diverges at the resonance crossing point 0t  while it is finite for all 

other points of time. Therefore, we eliminate this divergence by requiring A  to obey the equation 

  0)0(0  Ap
tt

. (2.38) 

After some algebra, this equation is rewritten as 
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The approximate solution of the derived equation can be constructed by Newton’s successive 

approximations starting, e.g., from 0A . It turns out that the first approximation is already good 

enough. Thus, we put 0A  in the right-hand side of the equation and obtain 

  
9

4
A . (2.40) 

 This value of A  leads to a good zero-order approximation )(0 tp . Numerical simulations 

show that for large   this function accurately describes the time evolution of the system in the 

interval covering the prehistory (up to the resonance point) and an interval after the resonance has 
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been crossed. However, after that, 0p  misses several essential features of the process. Indeed, for 

instance, the coherent oscillations between atomic and molecular populations which come up at a 

certain time point after the resonance has been passed are not incorporated in this solution. 

Furthermore, the final transition probability at t  predicted by 0p  is always lower than what 

is shown by the numerical solution of the exact equation. 

 It is understood that the shortcomings of the suggested limit solution are due to the 

singularity of the procedure we have applied to obtain it. Indeed, we have constructed 0p  by 

neglecting the term ttp  in the square brackets in Eq. (2.13), i.e., the two highest order derivative 

terms of the equation. Of course, when determining the appropriate value of A  via imposing Eq. 

(2.38), we have taken into account these terms (in fact, to some extent). Yet, this was an indirect 

procedure and we have convinced that it is not enough. 

 Therefore, to improve the result, we need a correction that accounts for the second and third 

order derivatives of p . However, this is not an obvious task because the equation obeyed by the 

correction term 0ppu   is still an essentially nonlinear one. Moreover, at an attempt to linearize 

the exact Eq. (2.13) using 0p  as a zero-order approximation and supposing the correction u  to be 

small as compared with 0p : 0pu  , we arrive at a complicated equation with variable coefficients 

(depending on 0p ) the solution of which is not known. We now introduce an approach that enables 

one to overcome these difficulties. Importantly, the resultant solution not only correctly accounts 

for the higher order derivate terms in the equation for correction term u  but also takes into account, 

to a very good extent, the nonlinear terms. The constructed solution displays much more improved 

results. It both accurately treats the oscillations and well fits the final transition probability. For the 

most part of the variation range of the Landau-Zener parameter 1 , the resultant graphs are 

practically indistinguishable from the numerical solution. 

 Consider a correction u  defined as 

  upp  0 . (2.41) 

This function obeys the following exact equation:  
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Taking into account the initial conditions discussed here, we impose: 

  0)( u ,    0)( tu ,    0)( ttu . (2.43) 

Since the limit solution )(0 tp  is supposed to be a good approximation, the correction u  is expected 

to be small. So, we neglect, for a while, the nonlinear term 26 u  in Eq. (2.42) thus arriving at a 

linear equation. Despite the fact that we now have a linear equation, there is only little progress 

since the solution of the derived equation in the general case of variable )(0 tp  is not known. 

However, note that for constant 0p  one can construct the solution using the scaling transformation 

  v
p

A
u

)31(2 0



. (2.44) 

As a result, in this case we get a linear Landau-Zener problem for v  with an effective Landau–

Zener parameter )31( 0
* p  . This observation gives an argument to make a conjecture that the 

exact solution of Eq. (2.42) can be approximated as: 
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where ),( * tpLZ   is the solution of the linear Landau-Zener equation with an effective Landau-

Zener parameter * : 
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satisfying the initial conditions (2.2). This solution is conveniently written in terms of the Kummer 

hypergeometric functions.  

 This proves to be a good conjecture. The numerical simulations show that one can always 

find *C , * , and A  such that the approximate solution (2.45) accurately fits the numerical solution 

of Eq. (2.42). Now, in order to derive analytic formulas for fitting parameters *C  and * , we 

substitute expression (2.45) into the exact Eq. (2.42) and aim at minimization of the remainder 
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via appropriate choice of these parameters. 

 The first term in the curly brackets is a product of two functions. The function 
),(

),(
*

*





LZ

LZ

P

tP
 is 

an increasing (though oscillating) function that starts from zero at t  and noticeably differs 

from zero only for time points 0t . On the other hand, the function ])31([4 *
0   p  is a 

monotonically decreasing function that tends to a large, since   is a large parameter, final value at 

t  (see Fig. 2.5). It is then understood that this term is highly suppressed if one chooses 

   ))(31( 0
*  p . (2.48) 

Note that for 1  this gives  2/*    (2.49) 

so that for large  , *  becomes a large negative parameter. Interestingly, this choice of *  leads to 

other relevant observations. First, it is known that 
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1),(lim *  
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 etPLZ

t
, (2.50) 

hence, in the case of negative *  the function ),( * LZP  grows exponentially with * . 

Consequently, with this choice of *  the second term in the curly brackets in Eq. (2.47) is also 

essentially suppressed. Second, in contrast to positive * , for negative *  the Landau-Zener 

function ),( * tPLZ   starts to noticeably differ from zero not merely for non-negative time points 

0t  but exclusively for those of the order of or larger than 2/*  (see Fig. 2.5). 

 Hence, the first term in the curly brackets in Eq. (2.47) is even smaller than it was initially 

expected. Thus, the choice (2.48) essentially suppresses the first two terms in Eq. (2.47). 

 Regarding the two last terms in Eq. (2.47), one should minimize them with respect to the 

parameter *C . This implies the condition  
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Fig. 2.5. Behavior of functions ])31([4 *
0   p (dashed line) and ),(/),( **  LZLZ PtP . 

 

Since the last term of this equation is proportional to (large)   and 
),(

),(
*

*





LZ

LZ

P

tP
 is an increasing 

function of time, it is understood that the “worst” point is t . Hence, we look for minimization 

at t . This immediately leads to the following value for *C : 

  
6

* A
C  . (2.52) 

This result, together with relation (2.48), is of considerable general importance. Indeed, we see that 

though we use a solution of a linear equation, ),( * tPLZ  , the parameters of this solution, * and *C , 

are essentially changed due to the nonlinear terms involved. 

 The obtained formulas (2.48) and (2.52) present a rather good approximation. As it can be 

checked numerically, the solution (2.41), upp  0 , with 0p  being the exact solution of the limit 

equation (2.33) and u  being a linear Landau-Zener function qualitatively well describes the process. 

This solution can be then used as an initial approximation for linearization of the initial equation 

(2.13). However, more elaborate approaches can be suggested. An immediate observation, e.g., is 

that if we try the approximation (2.41), (2.45) without imposing the initial restriction that the 

introduced parameter A  is already determined by Eq. (2.38), one may modify the latter equation to 

determine a value of A  which will take into account the correction term u . The development of this 
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approach leads to the following formulas for *  and *C : 

  














1

1ln
2

* , (2.53) 

  
3

*

27

1

4

1


C . (2.54) 

 These formulas define a fairly good approximation. Indeed, starting already from 3 , the 

produced graphs (Fig. 2.6) are practically indistinguishable from the numerical solution of the exact 

Eqs. (2.1). The derived approximation notably improves the accuracy of the previous approximation 

of Ref. [59]. However, importantly, it is applicable far beyond the strong interaction limit and 

provides a sufficiently good description also for intermediate regime of moderate field intensities 

(or sweeping rates) down to 1  and even slightly less ( 195.0   ) (Fig. 2.7). Though in this 

regime the predicted amplitude of oscillations differs from that displayed by the numerical solution, 

it is seen from Fig. 2.7 that the approximation correctly describes many properties of the system’s 

time evolution including the effective transition time, the final transition probability, and the period 

of atom-molecule oscillations. 

 

Fig. 2.6. Molecular state probability vs. time at 4  (dashed line – approximate solution with 

parameters (2.40), (2.53), and (2.54), dotted line – limit solution). It is seen that in the strong 

coupling limit 1  the prehistory of the system and the resonance crossing are basically defined 

by the limit solution 0p  while the atom-molecule oscillations are described by the correction u . 
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Fig. 2.7. Molecular state probability vs. time at 1  (dashed line – approximate solution with 

parameters (2.40), (2.53), and (2.54), dotted line – limit solution). The limit solution 0p  is small so 

that it is the “correction” u  that basically defines the time evolution of the system in the regime of 

moderate coupling 1 . 

 

 This is, indeed, a rather unexpected result, especially, if one notes that at moderate coupling 

5.11    the function )(0 tp  is very far from the exact solution, as it is seen from Fig. 2.7. An 

immediate conclusion following from this result is that it is not the limit solution 0p  that basically 

defines the time evolution of the system in this regime but the “correction” u  which was during our 

calculation envisaged to be small as compared with the limit solution. 

 Let us note in conclusion that the obtained formulas show that the final probability of the 

molecular state is given by the simple formula 

  *
1)( Cp   . (2.55) 

Hence, the formula derived in Refs. [59, 60] for the strong coupling limit 1  is modified to 

include also the intermediate regime of moderate coupling 1  as follows 
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Thus, for the quadratic nonlinear interaction we have discussed here the final probability for the 

system to stay in its initial all-atom state, )(21)(
2

1  pa , is not given by an exponential as 

predicted by the linear Landau-Zener theory [24-27]. Instead, in the limit of strong coupling it is a 

linear function of the sweep rate  1~2 0  if the leading order of the approximation is discussed 

[59, 60]. This linear dependence of the non-transition probability on the sweep rate is confirmed to 

occur also by many-body calculations [61-69]. Note, finally, that formula (2.56) suggests the next 

approximation term as )27/(1 3 . The general formula for the final Landau-Zener transition 

probability applicable to the whole variation range of the Landau-Zener parameter, ),0[   , is 

derived in [89]. Remarkably, this formula is written in terms of elementary functions only. 
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Summary of Chapter 2 

 

 In this chapter, we have examined the second harmonic generation in a quadratic nonlinear 

optical medium and coherent photo- and magneto-association of cold atoms with formation of cold 

diatomic molecules in the framework of the nonlinear Landau-Zener two-state model. In the context 

of SHG, the Landau-Zener configuration models the situation when the second-order susceptibility 

doesn’t change along the direction of propagation of the interacting waves, while the wave number 

mismatch varies linearly in this direction. For the cold molecule formation, the external field 

configuration is defined by linear-in-time term-crossing model, when the Rabi frequency is constant 

and the detuning linearly in time crosses the resonance. 

 For the weak interaction regime, we have proposed a basic functional form of the 

appropriate approximation, written in the form of a modification of the solution to the 

corresponding linear LZ problem with two scaling parameters involved. One of these parameters is 

a simple pre-factor while another one serves as an effective LZ parameter. We have shown that by 

an appropriate choice of these parameters the proposed solution well describes the main 

characteristics of the exact solution to the problem in the whole time domain. 

 We have constructed relevant equations for determination of the introduced auxiliary 

parameters. The approach for the derivation of these equations is as follows. The proposed zero-

order initial approximation generates an inhomogeneous term (which is referred to as remainder) in 

the exact equation for the next approximation. The further idea was, first, to suppress the divergence 

of this remainder observed in the resonance-crossing point. Furthermore, second, we minimized the 

correction term by suppressing, as much as possible, the influence of the remainder on the forming 

of this next approximation term. 

 We have derived an accurate analytic approximation to the solution of the formulated 

equations for the scaling parameters. As expected, the pre-factor 1C  is a slowly varying, 

monotonically increasing function of the LZ parameter. In the meantime, the dependence of the 

effective LZ parameter 1  on the input LZ parameter   turns to be non-trivial. As   increases, the 

function )(1   first monotonically increases (  1 ) starting from 0)0(1  , reaches its maximal 
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value, 0.124max1  , at 0.454  and further monotonically decreases reaching zero at 2 . 

 Using the constructed approximation, we have examined the weak coupling limit of the 

association process, which corresponds to the weak associating fields: 1 . This limit has been 

previously discussed by several authors. In particular, in Ref. [58, 88] a formula for the final 

transition probability at t  has been derived. Here we go beyond the previous studies and 

treat the whole time dynamics of the system. The results are inspiring. The constructed solution 

qualitatively correctly describes the main characteristics of the evolution of the molecular state 

probability as a function of time for the supposed range of variation of the LZ parameter: ]1,0[ . 

Furthermore, the behavior of the system before and during the resonance crossing and the frequency 

of the oscillations of the transition probability that start soon after crossing the resonance, as well as 

the final transition probability to the molecular state are determined with high accuracy. The present 

result for the final transition probability improves the accuracy of the previous approximation [58, 

60] by order of magnitude. 

Only the amplitude of the oscillations displays visible deviations from that of the numerical 

solution. The deviation is mostly pronounced for several first oscillation periods and becomes rather 

significant when the LZ parameter approaches unity.  

Further, using an exact third-order nonlinear differential equation for the molecular state 

probability, we have presented an effective variational method for constructing the approximate 

solution to the problem in the strong coupling limit corresponding to the large values of the Landau-

Zener parameter, 1 . In the case of photoassociation this implies that the intensity of the 

applied laser field is large enough or, equivalently, the sweep rate across the resonance is 

sufficiently slow. In the case of SHG this limit supposes strong nonlinear susceptibility or, 

equivalently, slow variation rate of the phase mismatch. 

We have shown that the approximation describing spatial dynamics of second harmonic’s 

intensity and time evolution of the molecular state probability can be written as a sum of two 

distinct terms. In terms of cold molecule formation, in the strong coupling limit the first term, being 

a solution of a limit first-order nonlinear differential equation, effectively describes the process of 
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the molecule formation while the second one, being the scaled solution to the linear Landau-Zener 

problem (but now with negative effective Landau-Zener parameter as long as the strong coupling 

limit of high field intensities or, equivalently, slow sweeping rates is considered), describes the 

oscillation which comes up some time after the system has passed through the resonance. From this, 

one can conclude that in the strong coupling limit the time dynamics of the atom-molecule 

conversion consists of the essentially nonlinear process of resonance crossing followed by atom-

molecular coherent oscillations that are principally of linear nature. The possibility to make such a 

decomposition is quite surprising since the Hamiltonian of the system is essentially nonlinear. 

 The constructed approximation describes the molecule formation process with high 

accuracy. For 3  the produced graphs are practically indistinguishable from the exact numerical 

solution (Fig. 2.6). Interestingly, the approximation rather well works also in the regime of 

moderate coupling down to 1  (Fig. 2.7) and slightly less: 195.0   . It correctly describes 

many properties of the system’s time evolution including the effective transition time, the final 

transition probability, and the period of the atom-molecule oscillations. The only noticeable 

discrepancy is that the approximate solution overestimates the amplitude of the oscillations [the 

largest deviation is observed at the points of maxima and minima of the probability )(tp  within the 

time interval covering several first periods of oscillation]. The applicability of the proposed 

approximation to the intermediate regime of moderate coupling is, indeed, a rather unexpected 

result because at 5.11    the limit solution )(0 tp  is very far from the exact solution, hence, it is 

not the limit solution that mostly defines the evolution of the system in this regime. Using the 

approximation one can find the main characteristics of the association process such as the tunneling 

time, the frequency of the oscillations of the transition probability that start soon after crossing the 

resonance, as well as the final transition probability to the molecular state. In particular, we have 

confirmed that the non-transition probability in the leading approximation order is a linear function 

of the sweep rate. In addition, we have found that the next approximation term is )27/(1 3 . 

 Finally, we note that the presented approach is not restricted to the Landau-Zener model 

only [91]. It can be generalized to other time-dependent level-crossing and non-crossing models too 
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[92, 93]. Also, it can be adopted to explore other nonlinear regimes beyond by the Landau-Zener 

model [94-95]. Importantly, the developed approach allows one to treat the extended version of the 

nonlinear two-state problem, when higher-order nonlinearities involving functions of the transition 

probabilities of the states are added to the basic two-state system. For example, one can analyze the 

role of the inter-particle elastic scattering which is described by Kerr-type cubic nonlinear terms 

[96-98]. A successful example of such an application is presented in [98], where it is shown that the 

inclusion of the cubic-nonlinear terms results in modification of the limit equation to a fifth order 

polynomial equation for the transition probability, a root of which serves as a highly accurate 

generalized Landau-Zener transition formula applicable for the whole variation range of the 

involved scattering parameters [98]. Hence, the general conclusion is that the developed method 

may serve as a general strategy for attacking analogous nonlinear two-state problems involving the 

generic quadratic nonlinearity as discussed here. 
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CHAPTER 3. DEMKOV-KUNIKE MODEL FOR COLD ATOM ASSOCIATION 

 

In the present chapter we study the spatial dynamics of SHG and the temporal dynamics of 

molecule formation for the case when system’s configuration is defined by the quasi-linear level 

crossing Demkov-Kunike model. In nonlinear optics it describes a situation, when the second-order 

susceptibility varies with the spatial coordinate as hyperbolic secant, and the phase mismatch 

changes as hyperbolic tangent. In cold molecule formation via photoassociation the model is 

characterized by a bell-shaped pulse and finite variation of the frequency detuning. 

We generalize the mathematical approach developed for the case of the weak interaction regime of 

the Landau-Zener model and apply it to the nonlinear Demkov-Kunike problem. The presented 

approximation, written as a scaled solution to the linear problem associated to the nonlinear one 

we treat, contains fitting parameters which are determined through a variational procedure. 

Assuming that the parameters involved in the solution of the linear problem are not modified, we 

suggest an analytical expression for the scaling parameter. 

Analyzing the process in the weakly oscillatory regime, which models a situation when the peak 

value of the coupling is large enough and the resonance crossing is sufficiently fast, we construct a 

highly accurate ansatz to describe the spatial dynamics of second harmonic generation (temporal 

dynamics of the molecule formation) in the mentioned nonlinearity regime. The absolute error of 

the constructed approximation is less than 5103   for the final second harmonic wave’s intensity 

(transition probability) while at certain time points it might increase up to 310 . The proposed 

ansatz applies to all the values of the coupling constant, hence, it presents a unified description of 

weak, intermediate, and strong interaction limits of the fast sweep regime.  



66 

 

Overview 

 As it was mentioned above, though the Landau-Zener model has several attractive features, 

the most important of which for us is the high conversion efficiency predicted by this model, it has 

some drawbacks. For instance, in the case of photoassociation the LZ model describes a situation 

when the two quantum states are coupled by an external optical field of constant amplitude and a 

variable frequency, which is linearly changed in time. But it is unrealistic to have a constant 

coupling that never turns off or infinite energies at t . A model that has all the virtues of the 

Landau-Zener model and is free from its shortcomings and can be considered as a physical 

generalization of the Landau-Zener model, is the first Demkov-Kunike quasi-linear level-crossing 

model of a bell-shaped pulse (vanishing at t ) and finite detuning [28-29].  

 In this chapter, we analyze a level crossing process defined by the Demkov-Kunike model 

and compare the derived results with those for the Landau-Zener model. 

 We investigate the spatial dynamics of second harmonic generation and temporal dynamics 

of coherent molecule formation via photo- or Feshbach-association of ultracold atoms. We consider 

the common case when there is no initial seed of second harmonic. In cold atom association 

terminology, this situation corresponds to a condensate initially being in all-atomic state (under 

contemporary conditions one faces this case most frequently), while for SHG it means that there is 

only fundamental mode at the entrance of the medium with second order nonlinear suscectibility.  

 The weak interaction limit of the nonlinear DK problem, corresponding to small values of 

the coupling constant (second-order nonlinear susceptibility in the case of SHG and Rabi frequency 

of the associating field in the case of cold atom association), has been previously discussed in [99]. 

Applying Picard’s successive approximations to the nonlinear Volterra integral equation, an 

analytical formula for the final conversion coefficient or probability of transition to the molecular 

state has been obtained. However, the temporal dynamics of the system has not been discussed in 

this study. 

 The strong interaction limit of the DK model, corresponding to large values of the coupling 

constant, has been studied in [94, 95, 100]. In [94, 95], it has been shown that the strong interaction 

limit of the DK problem is effectively subdivided into two different interaction regimes 
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corresponding to slow and fast sweep through the resonance. When the passage through the 

resonance is slow, the system exhibits large-amplitude Rabi-type oscillations between interacting 

waves’ intensities or atomic and molecular states’ populations. In the opposite limit, in the case of 

the fast enough crossing of the resonance, only weak, damped oscillations between the involved two 

states are observed. It should be mentioned here, that the Landau-Zener model reveals only one type 

of behavior: in this case only weak oscillatory regime occurs. 

 In Ref. [100], an approximate solution to the nonlinear DK problem in the large sweep rate 

regime of the strong interaction limit has been constructed. This approximation, defined as a 

solution of a first-order nonlinear equation, contains a fitting parameter which has been determined 

through a variational procedure. However, the constructed approximation misses several essential 

features of the association process such as the coherent oscillations between atomic and molecular 

populations which arise after the system has passed through the resonance. Here we further examine 

the model and construct the next approximation to the problem by using the previous solution as a 

zero-order approximation. The resultant approximation contains fitting parameters that we 

determine combining analytical and numerical methods. The numerical simulations show that the 

absolute error of the constructed formula is less than 5103   for the final transition probability 

while at certain time points it might increase up to 310 . The proposed approximation turns out to 

be of rather wide applicability: it equally applies to weak, intermediate and strong coupling cases of 

the fast sweep regime of the process. 
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3.1. A physically realizable crossing model 

 As we have already mentioned above, in the most of the theoretical developments the 

dynamics of the system has typically been treated by the constant-amplitude linear level-crossing 

Landau-Zener model. However, the actual external field configuration applied in the cold atom 

association experiments (see, e.g., also [101-105] and references therein) is different from that 

defined by the LZ model. Hence, for understanding of the physics underlying these experiments, it 

is important to study how the variation of the laser pulse’s shape and the frequency detuning affects 

the nonlinear dynamics of the system. The field configuration we discuss below is the first 

Demkov-Kunike (DK) quasi-linear level-crossing model [28,29], characterized by a bell-shaped 

pulse and a finite variation of the detuning: 

  )/(sech)( 0 tUtU 
,
 (3.1) 

  )/(tanh2)( 0  ttt  , (3.2) 

where   is a positive parameter. The DK model is considered as a natural physical generalization of 

the LZ model. Fig. 3.1 demonstrates that this model is a physical generalization of the LZ model. 

Without loss in generality we put 1  in what follows. 

 

 

Fig. 3.1.a. Solid curves - the first Demkov-Kunike model: )(sech0 tUU  , )(tanh2 0 tt   , dotted 

lines - the Landau-Zener model: 0UU  , tt 02  . 
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 We start with a numerical simulation of the conversion efficiency. It is clearly seen from 

Fig. 3.1.b that for DK model there are two different regimes - oscillatory and non-oscillatory. The 

oscillatory regime is the case for very small phase mismatch 0 1  , while for 0 1   the conversion 

efficiency reveals only weak (almost negligible) oscillations. Furthermore, for the latter weak-

oscillatory regime one can distinguish two limits, one of which corresponds to relatively small 

second order nonlinear susceptibility (and large enough phase mismatch), while the other limit 

corresponds to large nonlinear susceptibility (again, provided large enough phase mismatch). Below 

we investigate these regions in details and present relevant analytic approximations for each of the 

non-oscillatory limits. Of particular interest is the region of the parameters where the conversion 

efficiency is close to unity (Fig. 3.1.c). 

 

Fig. 3.1.b. Numerical simulation of conversion efficiency as a function of the second order 

nonlinear susceptibility 0U
 
and the phase mismatch t  for the Demkov-Kunike model. 

 

   

Fig. 3.1.c. Uniform layer represents the region for more than 95% conversion efficiency. 
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 The treatment we present here is based on the following exact equation for the molecular 

state probability 
2

2ap  : 
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First we simplify this equation, applying transformation of the independent variable 
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reducing Eq. (3.3) to the following constant-amplitude form: 
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where the effective detuning *
z  is defined as 

  )(
)())(( 0*

tU

U
ttz tz  

. (3.6) 

 In the case of the DK model, the relations (3.4) and (3.6) take the following form: 

  2
)(Arctan2)(
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, (3.7) 
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* zz   . (3.8) 

If the physical variable t  is used for *
z , it becomes 

  )(sinh2))(( 0
* ttzz   . (3.9) 

Note that the resonance crossing point 0t  is mapped into the point 0z . 

 A linear problem associated to the nonlinear problem at hand can be defined by removing 

the nonlinear terms from equation (3.3). It can be checked that the obtained linear equation is 

obeyed by the function 
2

2LL ap  , where La2  is determined from the linear set of equations 
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with the normalization constraint 

  4/1
2

2

2

1  LLL Iaa . (3.11) 

From the quantum optics point of view this system describes coherent interaction of an isolated 

atom with an optical laser radiation. 

 Next, we write the exact solution of the linear set (3.10), satisfying the initial conditions 

1)(1 a  and 0)(2 a , hence, normalized as 

  1
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1  LDKDK Iaa . (3.12) 

This solution is given as follows: 
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where 2/))tanh(1()( ttx  , and );;,(12 xF   is the Gauss hypergeometric function. 

Accordingly, the probability of transition to the second level is written as 

  

2

2DKDK ap  , (3.15) 

and the final transition probability is given by the formula 

    0
22

0
2
0

22

2 sechcos1)()(   Uap DKDK . (3.16) 

It can be easily seen that the solution of the set (3.10), normalized to 4/1  [according to the 

normalization condition (3.11)], is given as 
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3.2. Weak interaction regime for the nonlinear DK model 

 Now we examine the weak interaction regime of the nonlinear DK problem [106]. This 

regime describes the case when the number of molecules, formed during the association process, is 

small. For the DK model, it corresponds to the weak coupling limit ( 10 U , 0 ) and the very 

large detuning regime of the strong coupling limit ( 10 U , 00 U ). 

 To develop better intuitive understanding of the problem at hand, we examine the exact 

equation for the molecular state probability (3.3). The nonlinearity is determined by the current 

value of the transition probability p . Hence, one may expect that if p  remains small enough (note 

that, anyway, 2/1p ) the role of the nonlinearity will be rather restricted. In this case, neglecting 

the nonlinear terms in equation (3.3), we get the linear equation, satisfied by the function 

2

2LL ap 
 
[see Eqs. (3.15) and (3.17)]. Studying now the solution of the linear two-state problem 

)(tpL  we see that, if the dimensionless peak coupling 0U  is small enough ( 10 U ), or if it is 

much smaller compared to the sweep rate through the resonance ( 00 U ) then the function Lp  

does not attain large values. From this one can infer that in these cases the transition probability 

defined by the nonlinear two-state problem is close to that defined by the linear two-state problem. 

This observation suggests that in the weak interaction regime the dynamics of the system could be 

described by the scaled solution of the linear problem, but, with some effective parameters *
0U , 

*
0 : 
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Such a conjecture for the weak coupling limit of the LZ model was made in Ref. [90] where an 

accurate analytic approximation written in terms of the scaled solution to an auxiliary linear LZ 

problem with some effective LZ parameter had been constructed and analytical expressions for the 

introduced parameters had been determined. Preliminary numerical analysis shows that the function 

(3.18) is capable to provide high enough accuracy without modification of the detuning parameter 

0 . Hence, hereafter we put 0
*
0   . Note that for the variational ansatz (3.18) the approximate 

expression for the final transition probability is defined by the value of *C  only. 
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 To develop general principles from which the fitting parameters *
0U  and *C  could be 

determined, we insert the suggested ansatz 0p  into the transformed equation for the molecular state 

probability (3.5) and consider the behavior of the remainder 
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It is obvious that the better approximation 0p  is the smaller remainder R  will become [it would be 

identically zero if 0p  is the exact solution to Eq. (3.5)]. Thus, we try to minimize the remainder via 

appropriate choice of the fitting parameters *C  and *
0U . We first note that, since the function 

),( *
0 tUpDK  is bounded everywhere, the function R  is bounded almost everywhere. The exceptions 

are the resonance crossing point )0(0  tz  and the points )(2/  tz  , where, due to the 

term ** / zzz   in the operator )//( **
zzzdzd  , in general, R  diverges. Since when passing to the 

physical variable t  the singularities of the remainder R  at 2/z  disappear, we choose to 

eliminate divergence at the resonance crossing point 0z , i.e., we require *
0U  and *C  to satisfy 

the equation 0)0( r . Explicitly, this equation is written as  
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To find appropriate values for 
*
0U  and *C  we need to introduce one more equation. Of course, in 

order to construct an approximation as simple as possible, one may first try to avoid variation of 

both auxiliary parameters and try to get a simpler, one-parametric approximation instead. A natural 

choice is then to fix 0
*
0 UU   and vary *C  alone. Equation (3.21) then readily gives: 
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As it follows from Eqs. (3.13)-(3.14), the explicit expression for )0(DKp  can be written as: 
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Numerical analysis shows that the constructed approximation (3.18), with 0
*
0   , 0

*
0 UU   and 

*C  defined according to Eq. (3.22), accurately describes the temporal dynamics of the molecule 

formation in the weak coupling limit. Further, we compare the derived approximate expression for 

the final transition probability (3.22) with that calculated in Ref. [99]: 
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The derived formula (3.22) for the final transition probability, approximation (3.24) of Ref. [99], 

and the result of numerical simulation are shown in Fig. 3.2. As we see, in the weak coupling limit 

10 U  the derived formula works slightly well than the one defined by Eq. (3.24). On the other 

hand, numerical analysis shows that in the very large detuning regime of the strong coupling limit  

( 10 U , 00 U ), the formula (3.24) has wider applicability range than formula (3.22). However, 

importantly, in addition to providing an expression for the final transition probability in the weak 

interaction regime, the presented method also accurately treats the temporal dynamics of the 

molecule formation (Figs. 3.3 and 3.4). 

 

 

Fig. 3.2. Final transition probability for 00 U . Solid line – numerical result, dashed line – 

approximate formula (3.22), dotted line - formula (3.24). 
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Fig. 3.3. Molecular state probability versus time for 5.20 U , 700  . 

For considered values of parameters, the numerical result and the approximate formula (3.22) are 

undistinguishable. Dotted line is the final transition probability given by Eq. (3.24). 

 

 

 

 

 

Fig. 3.4. Molecular state probability versus time for 3.00 U , 01.00  . 

The numerical solution and the approximate formula (3.22) produce practically undistinguishable 

graphs. Dotted line is the final transition probability given by Eq. (3.24). 
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3.3. An ansatz for the nonlinear DK model 

 Though the maximal value attained by the function p  is equal to 2/1 , we conventionally 

refer to p  as to the molecular state probability. For gaining a better intuitive understanding of the 

molecule formation in the large sweep rate regime of the strong interaction limit ( 1 , 

  01 ), in Fig. 3.5 we show the numerical plot of the molecular state probability in the 

mentioned interaction regime as a function of time. 

 In Ref. [100], the approximate solution of the exact equation for the molecular state 

probability (Eq. 3.3) has been constructed by neglecting the two higher order derivate terms and 

adding to the truncated equation a term of the form 
** / zzzA  , where A  is an adjustable parameter. 

Thus, the zero-order approximation to the problem has been chosen as a solution of the following 

nonlinear equation of the first order: 
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Fig. 3.5 The probability of the molecular state versus time for the DK model in the large sweep rate 

regime of the strong interaction limit. 

Solid line - 100 , 100  , dotted line - 100 , 40  . 
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 The arguments to construct this approximation have been based on the fact that in the large 

sweep rate regime of the strong interaction limit the parameters   and 0  are supposed to be large. 

As it has been shown in [100,107], the exact solution of the augmented limit equation (Eq. 3.25), 

satisfying the imposed initial condition 0)(0 tp , is given as a solution of the following 

polynomial equation of the fourth order: 
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Eq. (3.26) defines a quartic algebraic equation for determination of )(0 tp . Note that 

  10 )0( p    and   10 )( p . (3.28) 

 The limit solution )),((0 Atzp  is a monotonically increasing function that starts from zero at 

t , reaches some value less than 6/1  at 0t  and tends to a finite positive value less than 2/1  

for t  when 2/0  A  (see Fig. 3.6). An analytical expression for the parameter A  has 

been suggested. However, in the present development we do not specify the value of A , but 

consider it as a fitting parameter. 

 To proceed further, we now try to construct the first-order approximation to the problem 

using the limit function 0p  as a zero-order approximation. To do that, we make the change of the 

dependent variable 

  upp  0  (3.29) 

in the exact equation for the molecular state probability (Eq. 3.5). This transformation leads to the 

following exact equation for the correction term u : 
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Fig. 3.6. The limit solution )(0 tp  [Eqs. (3.26)-(3.27)] vs. time for 3,9.0,05.0,0A  and 25 . 

 

 Since the function 0p  is supposed to be a good approximation for the molecular state 

probability p , the correction u  is supposed to be small. Thus, if we neglect the nonlinear term 

26 u , the exact equation (3.30) for u  will be linearized. By comparing the resultant linear 

equation with that obeyed by the second state probability DKP , calculated within the linear theory 

of nonadiabatic transitions, we see that if we consider 0p  as a constant, the solution of the 

linearized equation will be given as a scaled solution to the linear DK problem with modified 

parameters. This observation gives an argument to make a conjecture that the exact solution of Eq. 

(3.30) can be approximated as 
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where ),,( *
0

* tPDK   is the solution to the linear DK problem with effective parameters * , 
*
0 , and 

pht  being an extra temporal shift.  

 By combining Eqs. (3.29) and (3.31) we arrive at the following principal conjecture [107-

109]: an accurate approximation describing the time evolution of the molecular state probability can 

be written as a sum of the solution of the limit equation (3.25) and a scaled solution to the linear 
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DK problem with modified parameters: 
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This conjecture is well confirmed by numerical analysis; the numerical simulations show that one 

can always find A , *C , * , and 
pht  such that the function (3.32) accurately fits the numerical 

solution of the exact equation for the molecular state probability (3.3). Furthermore, the simulations 

indicate that there is no need to modify the detuning parameter 0 . It also turns out that we may put 

0pht . Further numerical analysis shows that the absolute error of formula (3.32) is less than 

5103   for the final transition probability. For arbitrary times, its absolute error is commonly of the 

order of 45 1010   , and for the points of the first few maxima and minima of the function )(tp  

(at certain values of the input parameters   and 0 ) the deviation may increase up to 310 . 

 Examining the role of the two terms in the approximate expression for the molecular state 

probability (3.32), we see that the first term, being a solution of the nonlinear equation (3.25), 

effectively describes the process of the molecule formation while the second one, being the scaled 

solution to the linear DK problem, describes the oscillations which arise some time after the system 

has passed through the resonance (see Fig. 3.7). From this, one can conclude that in the strong 

coupling limit the dynamics of the atom-molecule conversion effectively consists of the nonlinear 

resonance crossing followed by atom-molecular coherent oscillations that are principally of linear 

nature. The possibility to make such decomposition is not trivial since the governing set of 

equations is essentially nonlinear. 

 One of the essential virtues of Eq. (3.32) is that it provides a simple expression for the final 

transition probability written in terms of the parameters A  and *C : 
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Fig. 3.7. Molecular state probability p , the limit solution 0p  determined from Eq. (3.25), and the 

scaled solution to the linear DK problem with modified parameters ( 49 and 5.50  ). 

 

 

 To study the asymptotic behavior of the fitting parameters A  and *C  in the limit  , 

we substitute the trial function (3.32) into the exact equation for the molecular state probability 

(3.5) and consider the behavior of the remainder 
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 (3.34) 

It is seen that for 1  the first term of the remainder is highly suppressed if we choose the fitting 

parameter *  as 

  ))(31( 0
*  p . (3.35) 

Then taking into account the value of )(0 p  [see Eqs. (3.27)-(3.28)], we have: 
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Hence, we conclude that for 1 , *  is a (large) negative parameter. 

 Regarding the two last terms of Eq. (3.34), one should minimize them with respect to the 

parameter *C . This implies the condition  
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Since the last term is proportional to (large)   and ),( * tPDK   is an increasing function of time, the 

“worst” point is t . Hence, we look for a minimization at t . This immediately leads to 

the following value for *C : 

  
6

* A
C  . (3.38) 

 Thus, we have constructed approximate expressions for the fitting parameters *C  and *  in 

the case of large values of the peak laser field intensity and large values of the sweep rate through 

the resonance ( 1 , 01  ). Note that the parameters *C  and *  still depend on of the fitting 

parameter A . 

 Summarizing the presented analysis, we have arrived at the following limit expressions for 

the fitting parameters: 

  1 ,       4/),( **  DKPC ,   * ,  2/A  (3.39) 

  1 ,       6/* AC  ,   ))(31( 0
*  p ,   

3
027


A . (3.40) 

These are the starting asymptotes that we want to generalize to achieve a uniformly valid 

description of the process applicable for the all values of involved input parameters of the problem. 
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3.4. Unified description 

 In the present section, we make an attempt to construct unified expressions for the fitting 

parameters A , *C , and * , that is, we try to determine the functions ),( 0A , ),( 0
* C , and 

),( 0
*   such that the ansatz 
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CtApp  (3.41) 

provides an appropriate approximation to the solution of the problem in the whole range of 

variation of the input Landau-Zener parameter  . 

 We first try to construct a general expression for the principal parameter A  (it is shown 

afterwards that all other introduced parameters are expressed in terms of this parameter). So far, we 

have succeeded in gaining information about the asymptotic behavior of the function A  at small 

and large limiting values of the parameter  . Having in the mind the asymptotes discussed above, a 

possible version is the following smooth function: 
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Obviously, this choice of the function ),( 0A  is not unique. It is also possible to choose it, e.g., as 
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What is the best choice remains a question. It turns out that an appropriate function can be proposed 

using the Gauss hypergeometric function. Below we address this question in detail. 

 As regards the determination of function ),( 0
* C , we note that a possibility comes up 

when one considers a function of the following structure: 

  




),(4

),(

0

*
*

f

AP
C DK 

 , (3.44) 

where ),( 0f  should be a slowly varying function such that 2/1),( 0 f  at 0 , in order 

to fulfill the limit given by Eq. (3.39). 
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 As we show here, it is possible to considerably improve the suggested phenomenological 

formulas (3.42)-(3.44) for the fitting parameters by means of a combination of analytical methods 

and numerical simulations. This allows us to determine specific forms for the functions ),( 0A , 

),( 0
* C , and ),( 0

*   such that the ansatz (3.41) provides a highly accurate approximation. 

 To do this, we replace the hyperbolic tangent by a Gauss hypergeometric function which has 

a behavior qualitatively similar to that of the function  0
2/3 2/tanh   but contains some 

adjustable parameters which we could define via fitting suggested functions ),( 0A , ),( 0
* C , 

and ),( 0
*   to the numerical data. Extensive simulations lead to the following result: 
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and  ))(31()331( *
1

*  pC  , (3.47) 

where   and 1  are some parameters which depend on the value of the detuning parameter 0 . The 

behavior of A , 
*C , and *  as a function of the input parameter   is shown in Figs. 3.8-3.10. 

 Let us first discuss the behavior of the fitting parameter A . Fig. 3.8 suggests that there exist 

three distinct interaction regimes: weak, intermediate and strong interaction regimes. In the weak 

interaction regime, corresponding to small values of the input parameter  , the fitting parameter A  

abruptly increases reaching its maximal value at a point max  . At sufficiently small values of   

the behavior of the parameter A  is given by the linear asymptote 2/ . With increasing values of 

 , the parameter A  starts to deviate from this asymptote, always remaining smaller than 2/ . 

Such a behavior is observed also in the case of the Landau-Zener model, and it can be shown that 

this behavior is common for all the level-crossing models. Hence, we conclude that the specific 

character of the models is not much revealed in the weak coupling regime. For this reason, we will 

refer to the weak interaction limit 1  as the fundamental limit of weak coupling regime. 
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Fig. 3.8a. Fitting parameter A  as a function of   for 5.50  . 

Filled circles are the result of the fit while the solid line corresponds to the formula (3.45). 

Linear dependence at large lambda is observed. The circled region is shown in Fig. 3.8b. 

 

 

 

        
 

Fig. 3.8b. Parameter A  as a function of   for 5.50  . Weak coupling corresponds to 0  . 

Filled circles are the result of numerical fit while the solid line corresponds to the formula (3.45). 
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 Further, for minmax   , where min   is the point where the function A  has a 

minimum, the function )(A  rapidly decreases. We refer to this regime as the intermediate 

interaction regime. Finally, for min  , which corresponds to the strong interaction regime, the 

function A  increases with  . To gain a better insight into the behavior of the function A  in the 

strong interaction regime, let us consider the asymptotic expansion of the function A  at 
2
0  : 

  







 0
0982051.0

0 )5.0(

)(173456.0





A .  (3.48) 

The structure of Eq. (3.45) suggests that for min   the leading asymptotic term of this 

expansion is determined by the product of the second term in the brackets and the hypergeometric 

function. Numerical simulations show that for min   the slope of the term linear in   is always 

positive. In particular, for 5.50  , we have 5365.0 , hence, for min   00192897.0A . 

An important observation now concerns the very structure of Eq. (3.48). We see that in the 

transitional region between the weak and strong interaction regimes the function )(A  is 

approximated as a sum of the hyperbola  /0 , a constant and a linear function. It is known that in 

the case of the LZ model the asymptotic behavior of the parameter A  for 1  is given by a 

hyperbola, )9/(4  , only. For this reason, the hyperbola in the asymptotic expansion (3.48) can be 

interpreted as the LZ “imprint”, while the particular character of the DK model is related to the term 

linear in   in Eq. (3.48). This term is mostly expressed in the strong interaction limit min   

where it becomes the leading asymptotic term. 

 Consider now the behavior of the function )(* C  (Fig. 3.9). From Eq. (3.46) one readily 

gets that for 
2
0   
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 The dependence of the fitting parameter *  as a function of   is shown in Fig. 3.10. 
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Fig. 3.9. Fitting parameter *C  as a function of   for 5.50  . 

 

 

Fig. 3.10. Fitting parameter *  as a function of   for 5.50  . 

 

 

 Now we discuss the dependence of the final transition probability )(p  on the parameter 

  (see Fig. 3.11). Taking into account Eqs. (3.27), (3.33), (3.45), and (3.46), we arrive at the 

following asymptotic expression for large values of   ( min  ): 
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 Numerical simulations show that the fitting parameters   and 1  are of the same order, 

hence, the expression in the brackets is a positive quantity. This remarkable result shows that in the 

case when the external field configuration is defined by the DK model, it is impossible to convert 

all the atoms of the system into molecules. Further, we compare the obtained expression (3.50) with 

the formula describing the final transition probability in the linear case (3.16). As we see, in the 

linear case for any value of the detuning parameter 0  there exist values of the parameter n   

such that 1),( nDKP  . These values n  are defined from the condition 2/2
0 nn   , where 

n  is an integer number. In contrast to the linear case, in the nonlinear case, it follows from formula 

(3.50) that for any given 0  (recall that 10  ), it is impossible to find a value of the parameter 

n   such that 1),( np  . This limitation in the conversion efficiency can be interpreted as a 

saturation effect due to the nonlinearity. 

 Comparison of the suggested analytic formulae for A , *C , and )(p  with numerically 

fitted values for 5.50   are shown in the Figures Fig. 3.12-3.14. It is seen that the proposed 

approximation provides absolute error of the order of 310  for the final transition probability 

)(p  (we should keep in mind that this is the result produced by analytic approximations (3.45)-

(3.47) for the variation parameters A , *C , * , not the ansatz (3.32); the ansatz itself provides much 

better fit, of the order of 
510

, if the parameters are properly chosen numerically). 

 

Fig. 3.11. Final transition probability )(p  versus   for 5.50  . 
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Fig. 3.12. Comparison of formula (3.45) for A  with numerically fitted values for 5.50  . 

 

 

Fig. 3.13. Comparison of formula (3.46) for 
*C  with numerically fitted values for 5.50  . 

 

 

Fig. 3.14. Comparison of formula (3.50) for final transition probability with numerical results. 
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Summary of Chapter 3 

 In this chapter, we have studied the second harmonic generation and cold molecule 

formation using the quasi-linear level-crossing Demkov-Kunike model, characterized by a bell-

shaped coupling constant and finite variation of the detuning. Within the framework of the second 

harmonic generation, the Demkov-Kunike model implies that both second-order susceptibility and 

wave-number mismatch change along the direction of propagation of interacting waves; while the 

former function changes according to a hyperbolic-secant law, the latter one varies according to a 

hyperbolic-tangent law. 

Using cold molecule formation terminology, analyzing the case of large detuning ( 10  ), 

we have shown that there exist three different interaction regimes: the weak coupling 

(corresponding to the case when the intensity of the applied laser field is small, 0  ), the 

opposite strong coupling (corresponding to the case of large field intensity, 0  ) limits, and 

the intermediate regime, when the detuning and the field amplitude are of the same order. A 

common feature of the three interaction regimes is that in all these cases the time dynamics of 

molecule formation is weakly-oscillatory if initially the system consists of only atomic Bose-

Einstein condensate (only weak, damped oscillations between the atomic and molecular populations 

are observed and that occurs only after the resonance has been crossed). Using an exact third-order 

nonlinear differential equation for the molecular state probability, we have developed an effective 

variational method which has enabled us to construct a highly accurate approximate solution of the 

problem, which is equally applicable for the description of the association process in all the 

mentioned interaction regimes of the large-detuning case. 

We have shown that the approximate expression for the molecular state probability can be 

represented as a sum of two distinct terms. The first term is defined as a solution to the limit first-

order nonlinear differential equation, while the second one is a scaled solution to the linear DK 

problem with modified parameters. The constructed solution incorporates three auxiliary fitting 

parameters, A , 
*C , and 

* , the appropriate choice of which ensures that it provides an accurate 

approximation. First, we have analytically found asymptotic expressions for these parameters in the 
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case of vanishingly weak )1(   and very strong laser field intensity )1(  . Further, taking 

into account the obtained asymptotic expressions, we have combined analytical and numerical 

methods to find expressions for the fitting parameters ),( 0A , ),( 0
* C , and ),( 0

*  , valid in 

the whole range of variation of  . 

 Studying the behavior of the fitting parameter A , we have revealed the main characteristics 

of the three interaction regimes. In the weak interaction regime, corresponding to small values of 

the input parameter  , the fitting parameter A  abruptly increases first following the linear 

asymptote 2/  and then deviates from it, always remaining smaller than 2/ . It can be shown that 

such a behavior of the parameter A  is common for all the level-crossing models. Hence, we 

conclude that the specific character of a model is not strongly revealed in the weak coupling regime. 

For this reason, we refer to the weak interaction limit 1  as the fundamental limit of weak 

coupling regime. Studying further the behavior of the function )(A  we see that there exists an 

interval ),( minmax   where the parameter A  rapidly decreases. We refer to this regime as the 

intermediate interaction regime. Finally, we have seen that for min   which corresponds to the 

strong interaction regime the function A  increases linearly with  . 

 Further analysis of the function )(A  has shown that the transitional region between the 

weak and strong interaction limits can be approximated as a sum of the hyperbola  /0 , a 

constant, and a linear function. Comparing this decomposition with the results for the LZ model, we 

see that in the case of the LZ model the asymptotic behavior of the parameter A  for 1  is given 

as a hyperbola, )9/(4  , only. For this reason, the hyperbola in the asymptotic expansion of A  can 

be interpreted as the LZ “imprint”, while the “true individuality” of the DK model is related to the 

linear in   term of the asymptotic expansion for )(A . This term mostly manifests itself in the 

strong interaction limit min   where it becomes the leading asymptotic term. 

 Examining the role of the different terms in the approximate expression for the molecular 

state probability, we have seen that in the strong coupling limit the first term, being a solution to the 

limit nonlinear equation, effectively describes the process of the molecule formation while the 
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second one, being a scaled solution to the linear DK problem (but now with negative effective *  

in the strong coupling limit), describes the oscillations which come up some time after the system 

has passed through the resonance. From this, one can conclude that in the strong coupling limit the 

dynamics of the system consists of the process of nonlinear resonance crossing followed by 

coherent oscillations that are principally of linear nature. The possibility to make such 

decomposition is not trivial since the Hamiltonian of the system is essentially nonlinear. 

 The constructed approximation describes the process with high accuracy. The ansatz 

provides an approximation whose absolute error is less than 5103   for the final transition 

probability. For arbitrary time points, its absolute error is commonly of the order of 410 , and for 

the points of the first few maxima and minima of the function )(tp  (at certain values of the input 

parameters   and 0 ) it may increase up to 310 . 

 Using the constructed approximation one can readily find the main characteristics of the 

process such as the tunneling time, the frequency of the oscillations that start soon after the crossing 

of the resonance, as well as the conversion efficiency. For example, studying the final conversion 

efficiency, we have seen that in the case when the external field configuration is defined by the 

Demkov-Kunike model, it is impossible to achieve 100% conversion. This limitation on the 

conversion efficiency can be interpreted as saturation caused by the nonlinearity. In this connection 

it is interesting to recall the predictions made by the constant-amplitude linear level-crossing 

Landau-Zener model according to which the conversion efficiency asymptotically tends to 100% 

with coupling growing infinitely or, equivalently, sweep rate decreasing infinitesimally. It might be 

concluded that this substantial difference in the obtained results is caused by the configuration 

effects. Since the configuration defined by the Demkov-Kunike model is physically realizable, in 

contrast to that defined by the Landau-Zener model, we conclude that the Demkov-Kunike model 

provides more accurate description of system’s dynamics. 
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MAIN RESULTS 

 

 An analytical theory describing second harmonic generation with high accuracy was 

constructed for the Landau-Zener model characterized by phase mismatch linearly varying in the 

direction of fundamental mode propagating through infinite medium with constant nonlinearity.  

 It was shown, that the growth of the conversion coefficient is mostly governed by an 

essentially nonlinear first order differential equation, while the damped oscillations of harmonics’ 

intensities occurring after the resonance crossing are characterized by a scaled solution of an 

analogous linear problem. 

 It was demonstrated, that, despite expectations, the scaled solution of the analogous linear 

problem, which is the part of the approximate solution of the nonlinear Landau-Zener model for 

SHG, in the strong interaction region is described by a negative effective Landau-Zener parameter. 

 It was shown, that the scaling factor of the linear solution involved in the variational ansatz 

is determined by the auxiliary parameter of the solution of the nonlinear limit equation, which 

indicates that the nonlinearity of the problem is directly expressed in this term as well. 

 A two-term ansatz describing, with high accuracy, the spatial dynamics of the conversion 

coefficient at second harmonic generation through the first Demkov-Kunike configuration is 

constructed for the relatively large finite values of phase mismatch.  

 The appropriate choice of the variational parameters involved in the proposed ansatz ensures 

that the constructed approximation describes the numerical solution of the problem with absolute 

accuracy higher than 10
-3

.  

 It was shown, that in the case of large nonlinearities one of the terms of the ansatz 

effectively describes the resonance crossing, and the other term describes the damped oscillations of 

second harmonic’s intensity, which are observed soon after the resonance crossing 

 It was revealed, that during second harmonic generation through the Demkov-Kunike model 

with large finite values of phase mismatch, the spatial dynamics of conversion coefficient has three 

distinct behavioral regions corresponding to weak, medium and strong nonlinearities. 
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APPENDIX 1 

 

Any electromagnetic process in the medium is described by Maxwell’s equations:  

  
tc 




B
E

1
,   0 B  (A1.1) 

  ,
14

tcc 




D
jH


   4 D  (A1.2)  

where E and H are intensities of electric and magnetic fields, D  and B are electric and magnetic 

field inductions,   is electric charge density, j  is current density. The constitutive relations, which 

specify the response of bound charge and current to the field are: 

  PED 4 , (A1.3) 

  MHB 4 , (A1.4) 

  Ej  , (A1.5) 

where P  and M  are polarization and magnetization of medium.  

If we neglect the magnetic response of the medium, that is if we consider 0M , the 

optical response of a material is characterized in terms of the induced polarization P . For a linear 

material the relation between the polarization and the electric field E of the incident radiation is 

linear: 

  EP
)1(

0 , (A1.6) 

where )1( is the linear susceptibility. In nonlinear optics, the response of the material can be 

described as a Taylor expansion of the material polarization P  in powers of the electric field E :  

  ...,3)3(
0

2)2(
0

)1(
0

)(
0   EEEEP  n

n

n
 (A1.7) 

where )(n corresponds to the tensor of the n-th order nonlinear process.  

Now we derive the equation for the generation of second harmonic. From Eq. (A1.4) we 

have HB  . Applying   operation to both left-hand and right-hand sides of equation (A1.1), we 

get
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 (A1.8) 

Combining equations A1.2, A1.3 and A1.8, and considering 0j , we obtain: 
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 (A1.9) 

 Let us decompose the polarization into two parts: 

  
NLL PPP  , (A1.10) 

where L
P depends linearly on the electric field, and NL

P  term is a nonlinear part of polarization. 

 Considering EP 0
L 

 
and 00 41   , we obtain:  
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.  (A1.11) 

Then Equation A1.9 is rewritten as follows: 
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 (A1.12) 

Let the spatial variation of the electric field and nonlinear polarization be only in direction 

of one of the axes (for instance, z axis). Then  

  2
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 (A1.13) 

and equation (A1.12) becomes 
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 (A1.14) 

Let us assume we have a monochromatic wave of frequency ω  perpendicularly falling on 

the surface 0z  of the half-infinite medium 0z . We suppose that waves with a fundamental 

frequency ω
 
and its harmonics can propagate in the medium.  

The propagating waves in the medium can be written in the following form: 

  ,)() )()( tirtir
r ezez    E(EE

 

 (A1.15) 

where ,))(() *)()( zz rr
E(E   and the dependence of polarization and electric field are given by 

equation (A1.2). Considering only the second order dependence, for polarization components we 
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have: 
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 (A1.16) 

where sω

 

and rω can have both negative and positive values, indexes r and s differ the waves in the 

medium by their frequencies. 

For second harmonic generation we are interested in the polarization components on the 

fundamental ω  and second harmonic ω2  frequencies. For clarity we will consider, that the field 

with the fundamental frequency is along some direction b , and the field of second harmonic is 

along the direction a . Then from the equation A1.16, we will obtain that the non-linear polarization 

on the second harmonic is: 

  ,))(,())(,( 22)1(22)1(NL ti
babb

ti
babba eEeEP    

 

 (A1.17) 

and non-linear polarization on the fundamental frequency:  

  .),2(2),2(2
)1()2()1()2(NL ti

babab
ti

bababb eEEeEEP    

 

 (A1.18) 

In A1.18 the factor 2 arises due to the existence of two similar terms containing tie 
 and tie   in 

the equation (A1.16), when we take , s ,2 r  and , r

 

.2 s  

After incorporating new quantities )(zAr and )(* zAr :  
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 (A1.19) 

then instead of (A1.15) we should write: 

   ,)()(
)(*)( tzki

r
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rrr
rrrr ezAezA

 
 eE

 

 (A1.20) 

where re

 

is an elementary vector in the direction of .rE  

If to write the complex quantity )(zAr  as ,)(
)(zi

rr
reEzA




 

where rE  is the real value, then for 

the wave propagating in the medium, we will obtain the following equation: 

   .)(cos ztzkE rrrrrr   eE

 

 (A1.21) 

In the isotropic case by inserting equations (A1.17) and (A1.18) into the (A1.14) and 

considering waves in the form of (A1.15), we will obtain the following equations for amplitudes of 
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wave and its second harmonic by equating the terms for exponents with the same indexes: 
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where ,01 


c
k    .

2
02 



c
k   

It should be noted, that in this case we obtain two pairs of equations complex conjugated 

with each other.  

Taking into account, that ),2(),(   bababb  , and incorporating new coefficient 

),(
2

2



 abb

c
k  , we obtain more compact equations (A1.22)-(A1.23):  
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 (A1.25) 

Now we will replace complex amplitudes E with corresponding indexes according to the 

equation (A1.19) and considering that complex amplitudes )(zAr  are varying quite slowly, so that  

r
r kA

z

A





. 

 By substitution of (A1.19) into the equations (A1.24), (A1.25), we can neglect the second 

derivatives 
2

2

z

Ar




. Resultant two equations for complex amplitudes could be obtained in the form 

of a system: 
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 (A1.26) 

The condition r
r kA

z

A





 means quasistationary approximation; meaningful deviation of 
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the field is noticeable on the distances, far larger than the wavelengths.  

Equation (A1.26) can be written the following way: 
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APPENDIX 2 

 

 Consider equation (2.27) obeyed by the correction term u : 

  04)12248(
2

1 22
0 

















 ttt utruupuu

tdt

d 
. (A2.1) 

The initial conditions for u  are 

  0)( u ,   0)( tu ,   0)( ttu . (A2.2) 

Now, examining Eq. (2.24), we see that since the solution LZp  to the linear LZ problem is a quasi- 

step-wise function, the remainder r  can be presented as a sum 

  321 rrrr  , (A2.3) 

where const)(1  rr , 2/))tanh(1(202 trr   with const)()(20  rrr . It is then 

understood that the last term, 3r , is a relatively small, oscillating quantity. Therefore, supposedly, 

this term can be neglected. 

 Furthermore, if the approximate solution 0p  is supposed to be good enough so that 

2/10  pu    1.0u    uu 2 , then we can linearize equation (2.27) by neglecting 

the quadratic term 212u . Then, since the remaining equation is linear, we may expect that 

)()()()( 332211 rurururu  , where 1u , 2u  and 3u  are the solutions to the linearized equations 

written for the remainders 1r , 2r  and 3r , respectively, satisfying the same initial conditions (A2.2). 

We have mentioned above that 3r  is expected to be small as compared to 1r  and 2r . Moreover, 

since it is also an oscillating function, then )( 33 ru  should be small as compared to )( 11 ru  and 

)( 22 ru . Numerical experiments confirm this assumption. Therefore, we neglect the term )( 33 ru . 

 The auxiliary linear differential equations for 1u  and 2u  are 
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, (A2.4) 

    04248
2

1
2

2
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ttt
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d 
. (A2.5) 

 In the weak interaction limit the probability of molecule formation p  is small, hence, the 
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approximate solution 0p  is also relatively small. This means that we can neglect the term 1024 up  

in equation (A2.4), and, as a result, we will get an equation for 1u  [compare with equation (2.21)]: 
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. (A2.6) 

The exact solution to this equation is  2/)(11 LZpru  , therefore ),()2/()( 11   LZpru . 

 It is also possible to construct a good approximation for the solution to equation (A2.5) for 

the function 2u . As a result of the construction (using the method “from the inverse”) we arrive at 

the approximation 

  ),()4/()( 202   LZpru . (A2.7) 

 The behavior of functions )(1 tu  and )(2 tu  is shown on Fig. A2.1. As it is seen, the 

correction 21 uuu   will be significantly suppressed and, hence, u  will be essentially suppressed 

if we require canceling of )(1 u  and )(2 u : 

  0)()( lim21 


uuu
t

. (A2.8) 

This condition is equivalent to the relation 0)4/()2/( 201   rr . The latter means that the 

following equation should hold: 

  0)()(  rr . (A2.9) 

 

 

  

Fig. A2.1. Functions )(1 tu  and )(2 tu  for 0.0625 . 
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 More detailed examination of the roles of 1r , 2r  and 3r  in formation of the correction u  

shows that for further suppression of the latter we should add in the derived equation a small 

correction that is of the order of 3 . Finally, we arrive at the following relation: 

  )(
2

)()( 2  LZprr


. (A2.10) 

Explicitly, this equation is written as 
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 (A2.11) 

The derived equation is the second equation required for determination of the auxiliary parameters 

1  and 1C . 
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