<L SUU PLDNPUUShYU3h B4 UdSNUUSUsSuuUL mrNerLsULENh
hLUShSNhS

Twunjwu Ytwyhp <wlynpp
uLd4SuuLs PURUULUUULUYPS CUTYUNYLEN <hULYUD LNN
ULSE13UY4 eNUL3UUL <UNMHU4uUNrgh Jdru

5.13.05 «Uwpbtdwnhlwlwu dnntGjwynpnid, pwjhu dbpnnutip W dpwagnptph
hwdwhputip» dwutwghwnipjwdp nbuthywlwu ghunniejniuubnh pEYUWSNLH
ghunwlwt wunhbwuh hwjgdwtu wnbuwfununipnlu

Shunwlwu ntYwdwp’
<L FUU wlwnbdhynu, n.qg.n.
Q. < huwswwnpjwu
Gpuwu - 2016

INSTITUTE FOR INFORMATICS AND AUTOMATION PROBLEMS OF NAS RA

Davit Hakob Danoyan

SECURE MULTI-PARTY COMPUTATIONS BASED ON NOVEL OBLIVIOUS
TRANSFER PROTOCOL

Thesis for obtaining candidate degree in technical sciences in specialty 05.13.05
“Mathematical modelling, numerical methods and software complexes”

Supervisor:
Academician of NAS RA, Doctor of Technical Sciences

G. H. Khachatryan

Yerevan - 2016

Table of Contents
INtrOdUCTION. ... ceei e 4
List Of PUDIICAtIONS ...ceuniiieiie e 8
Chapter 1. Backgroundccoouuiiiiiiiiieiiiie e 9
1.1 Common Definitions........ooeiiiiiiiiiiiiieiiiie e 9
1.1.1 Security and randomness...........ccuuviiuiiiiiniiiiiiinii e 9
1.1.2 Symmetric-key cryptography.........ccccoeeviiiiiiniiiiiiiiiineiiieeeennn, 11
1.1.3 Public-key cryptography..........cccoeeeuiiiiiiiiiiiiiiiiieiinecieeee, 16
1.1.4 Homomorphic encryptioncccceuiiiiiiiiiiiiiiiiiiniiiecieceineen. 19
1.2 Secure COMPULAtIONSiiiiiieiiee e 21
OVEIVIEW ..ttt et e e e 21
1.2.1 Security models.........coouviiiiiiiiiiiiii e 22
1.2.2 Oblivious transfer..........cooviiiiiiiiiiiie e 28
1.2.3 Function representations............ccceuveeiiiiiiiiiiniiineiineeieeiinen, 31
1.2.4 Secure two-party computation.............ccceveeiiiiiiiieiiineeiieennn. 32
1.3 White-box cryptography..........c.oeeeuiiiiiiiiiiiiiii e 34
1.3 OVEIVIEW e et e e e e ean 34
1.3.2 Attacks in white-box context..........ccooeeiiiiiiiiiiiiiiii . 37
Chapter 2. Extending White-Box Oblivious Transfer..............ccccoeeeiiennnn.e. 41
OVEIVIBW .. ettt e e e 41
2.1 Oblivious transfer protocols............ccceviuiiiiiiiiiiiiiiiie e 41
211 Rabin’s OT .oeniiie e 42
2.1.2 EGL 1-out-of-2 oblivious transfercccccceviiiiiiiiniiineiinnnnn. 45
2.1.3 NP 1-out-of-2 oblivious transfer..............cccceeiiiiiieiiiniineiinnn, 49
2.1.4 NP 1-out-of-n oblivious transfer..............cccoeevviiiiiiiniineinne. o1
2.2 White-box oblivious transferccooiiiiiiiiiiiiiiniin 53
2.2.1 1-0ut-of-n WBOT ..o 54

2.2.2 T-0ut-0f-2 WBOT ..ot 35

2.3 WBOT extension protocols...........ccuueiiineiieiiineiiieiiineiieeieeeieeeen. 56
2.3.1 Proof of correctnesscoeeeuiiiiiiiiiiiiiiiiiniiie e 39
2.3.2 Proof of SECUTItYiiiiiiiiiiiiiii e 60

Chapter 3. SMC Framework using WBOTccooiiiiiiiiiiiiiiiieeen, 62

OVBIVIEW ...t 62

3T COMPIEE .. 63
300 INPUt [aNGUAZE .. .eeveeeiiiee e 66
3.1.2 Implementation detailsccooveiiiiiiiniiiieii e 68
31,3 OPtiMIZatiONScveeiineiiee e 70
3.1.4 Post-processing stage for multiparty computations /70

3.2 Multiparty computation moduleccoooiiiiiiiiii /2
.21 OVEIVIEW ittt /2
3.2.2 GMW Protocolcouuiiiiiiiiiiie e /3
3.2.3 OPtiMIZatiONSceuneiiiieiieii e /8
3.2.4 Experimental resultsccoooiiiiiiiiiiiiiiiiii 82

3.3 Extension 1o GMW ... 85
3.3.1 Collaboration between competing services.............cc...cccuuneenn. 86

CONCIUSION ..t 91
Table Of FIGUIES ... couniiei e 93
REFEIENCES ... 94

Introduction

Secure computations were introduced by Yao in searching for a solution for
the Millionaires problem, with two millionaires wanting to find out who is the
richest of them without revealing to each other or any other party their actual
possessions. In 1982 Yao published a two-party protocol known as garbled
circuits’ (GC) protocol for this problem, which still serves as the basic
approach to the problem of secure two-party computation.

A generalized version of the above problem is called secure multiparty
computation. Suppose mutually distrustful parties P,,...,B, are willing to
cooperate for computation of a function, which is preliminarily agreed upon,
with their secret input data. The computation might not include any trusted
parties and nothing should be revealed to any party or coalition of parties
about someone’s input beyond what could be implied from the function output
itself.

First protocols solving secure multiparty computation problem were the GMW
by Goldreich, Mlcali and Widgerson and the CCD protocol by Chaum, Crépeau
and Damgard in 1987 and 1988 respectively. Although being intended for the
same problem, these protocols have many differences, among which are the
security assumptions and function input method. Later several other protocols
were suggested for the problem, some of which are described in the thesis.
Although the mentioned protocols and problems were of only a theoretical
interest at time of their introduction, the advancements in information
technologies in recent decades brings those into the field of practical interest.
The first ever framework implementing secure computations was introduced in
2004 is known as Fairplay. It is based on Yao’s GC protocol and proved that
secure function evaluation (often referred as SFE) can be used in practice.

Moreover, several enhanced implementations for GC protocol and also for
4

multiparty computations were developed in the following years.
Implementations of GMW protocol were also proposed in different security
settings, along with practical applications in online marketplaces [9]. Not to
mention the implementation of SMC in real financial transactions for an
auction held in Denmark in 2008. Other applications of SMC were also
proposed for data mining, genome research and electronic voting.

Secure multiparty computation frameworks were introduced in the last decade
and can be improved in implementation level and protocol design by applying
novel software development and cryptographic techniques and technologies.
As building blocks of those protocols are improved, they also can be integrated
into available compatible frameworks for overall performance and security
enhancement. Most of the protocols operate on Boolean or arithmetic circuit
representations of functionalities. As underlying cryptographic primitives are
usually used homomorphic encryption and oblivious transfer protocol. A novel
approach based on white-box cryptography to the latter was proposed
recently, which significantly enhances its performance. Integration of the
protocol with other state-of the-art techniques into an oblivious transfer based

SMC framework might also improve the overall performance.

The purpose of the thesis is to design and implement a generic framework for
secure multiparty computation, construction of an extension protocol to white-
box oblivious transfer protocol which will decrease the required invocation
count of the latter, resulting in enhancement of the overall performance of the
applications based on the framework and design of applications using the
framework’s capabilities. The lifecycle of implemented framework consists of
the following stages:

. The participants of computation input a program implementing their

desired function described in a high level programming language.

. A single pass Boolean circuit implementing the same function is being
generated by the compiler module of the framework.
. The generated circuit is being executed securely based on GMW SMC

protocol.

The subjects of this research are development of secure multiparty
computation framework, oblivious transfer protocol extensions and privacy-

preserving applications based on SMC framework.

The results are important for the following scenarios of practical interest:

. The framework consists of separate modules, which allows to integrate
or replace those with new developments in the field, resulting in enhancement
of overall performance.

. The framework can be used for implementing secure voting and rating
systems, as well as for research in bioengineering.

. The proposed extension for GMW protocol adds computationally passive

parties.

The results of the thesis have been presented and discussed in

. Regular seminars of the chair of Discrete Mathematics and Theoretical
Informatics of Yerevan State University,

. 10th International Conference on Computer Science and Information
Technologies CSIT-2015, (September 28 - October 2, 2015, Yerevan,
Armenia),

. 10th Annual Scientific Conference of the Russian-Armenian (Slavonic)
University, (November 30 - December 4, 2015, Yerevan, Armenia),

. Regular seminars in “Applied Cryptography Laboratory” of AUA.

The scientific novelty of the thesis includes design and implementation of a

generic framework for secure multiparty computation, which:

. uses white-box cryptography based oblivious transfer instead of public-
key methods in field of SMC;
. constructs an extension protocol to white-box oblivious transfer (WBOT)

that reduces required WBOT invocation count;

. enables participation of computationally passive participants.

The implemented framework for secure multiparty computations is implanted
by “SHANT COMPU” LTD within the software implementations for IPSC -
Institute for Political and Sociological Consulting for development of

anonymous rating system and is being tested at the point.

The main points presented for the defense are:

. An SMC framework using white-box cryptography techniques securely in
semi-honest adversarial model.

. Justification of the performance enhancement compared to existing

implementations.

. An extension for white-box oblivious transfer protocol.

. An extension for GMW SMC protocol allowing computationally passive
participants.

. An application for combining competing services into unified ordering

system securely.

List of publications

A. H. Jivanyan, G.H. Khachatryan, T. V. Sokhakyan and D. H. Danoyan.
Acceleration of Secure Function Evaluation Protocol. Computer Science and
Information Technologies (CSIT), 2015, pp 115-118.

D. H. Danoyan and T. V. Sokhakyan. A Generic Framework for Secure
Computations. Proceedings of the Russian-Armenian (Slavonic) University #2,

Physical-Mathematical Sciences, 2015, pp. 14-21.

D. H. Danoyan. Extending White-Box Cryptography Based Oblivious Transfer
Protocol. Proceedings of the Yerevan State University #1 (239), Physical and
Mathematical Sciences,2016, pp. 40-44.

D. H. Danoyan, "Secure Multiparty Computations for Collaboration Between
Competing Service Providers", Transactions of [|IAP of the NAS RA,
Mathematical Problems of Computer Science, vol. 45, pp. 59-66, 2016.

Chapter 1. Background

This chapter includes basic definitions and notations used in the dissertation.
Background information in the domain of secure computation and oblivious
transfer protocols, along with introduction to cryptographic primitives used as
building blocks in our and alternative frameworks or essential for their

analysis.

1.1 Common Definitions

In this section we define and describe cryptographic primitives and
terminology, which will be used throughout the thesis. Most of the definitions
are common to the field and can be found in literature. For full background

and additional information [28, 29, 70] can be used.

1.1.1 Security and randomness

Several security levels are defined for cryptosystems or algorithms security.
Schemes with information-theoretic security provide secureness which does
not depend on the computing power of the attacker — thus the attacker cannot
break the scheme even while possessing unlimited computing abilities, because
the information available to him throughout the processing of the scheme is
not sufficient for making conclusions about the encrypted data, so
cryptoanalytic techniques do not help here.

In the special case called perfect security of the above defined security level,
the result of the encryption algorithm doesn’t provide any information on the
original message text if the secret key is not available. In this case for each

message M from the message space must exist a secret key k, such that

E(m k) = c.

Where E' is the encrypting function of the perfectly secure scheme.

Another security level for practical purposes that is weaker than the above
mentioned levels is called semantic security. A widely spread definition of the
latter is provided below, as can be found in many sources:

A cryptosystem is semantically secure if any probabilistic, polynomial-time
algorithm (PPTA) that is given the ciphertext of a certain message m (taken
from any distribution of messages), and the message's length, cannot
determine any partial information on the message with probability non-
negligibly higher than all other PPTA's that only have access to the message
length (and not the ciphertext) [49].

Although, semantic security doesn’t guarantee secureness in information-
theoretic model, it is considered enough for many applications, among which
are many widely known encryption schemes, which are based on assumptions

that some problems’ solutions are computationally hard.

Suppose we have two random variables A(k, x) and B (k, x) where the k € K
is a security parameter and X €X is an input parameter. Let

A={A(k,X)}xexxex and B ={B(k,x)}xexrex be the distribution

ensembles for the variables. We say that A and B are computationally
indistinguishable from each other, if for any non-uniform probabilistic

polynomial time algorithm D the following is true:
|PP[D (A(k:x)) — 1]xeX _ PP[D (B(.IC,X)) — 1]xEX| < S(k)

Where 6(k) is a function that can be considered negligible in k, which means

that for every polynomial p(k) exists a K, so that for every

K> K,80k) <1/,

In other words A and B are that no probabilistic polynomial time algorithm

(PPTA) can discriminate between them (with non-negligible probability).

10

Claude Shannon defined two basic properties (called confusion and diffusion)
a cypher should possess to be considered secure.

The Confusion property is present, if encryption algorithm alters the plaintext
in such a manner, that the ciphertext differs radically from it.

The Diffusion property stands for the fact, that alteration of a single character
of the plaintext will result in many changes in the ciphertext. If no or weak
diffusion is applied through the encryption process, the cryptanalysis of the
scheme would be much easier, with using slightly changed plaintexts for
finding out the initial plaintext for given ciphertext.

These are the definitions commonly used in literature that can be found in [28,
/72, 73] and elsewhere.

1.1.2 Symmetric-key cryptography

Symmetric-key cryptography involves the encryption/decryption techniques
where both the sender and the recipient have the same key (see Fig. 1). Also
encryption schemes with not identical keys in possession of encrypting and
decrypting parties are categorized as symmetric-key schemes if the keys are
easily derivable from each other.

Symmetric-key scheme is a pair of algorithms used by parties - E: K X M — C
and D: K X C — M, where K is the key space, M is the message space and C

Is the ciphertext space. The sender uses the encryption algorithm E to encrypt

the message meM using the key keK and transmits ¢ = E(k, m) to recipient.
The recipient decrypts the ciphertext with the same key k and gets the initial
message text: m = D(k,c). To making the scheme practical, the secret key

should be protected from the eavesdroppers. The parties should agree upon

the key in advance or have a secure method of communication.

11

Plaintext Encryption Ciphertext
Algorithm

T

Secrét key

l

Decryption
Algorithm

Ciphertext Plaintext

Fig. 1: Symmetric-key systems
Symmetric-key encryption schemes use either block or stream ciphers, both of

which are widely used. Brief descriptions and use cases can be found below.

1.1.2.1 Block Ciphers
Definition: Block cipher with n-bit block and k-bit key is a pair of methods
(E, D) where the following properties are satisfied.

E:{0,1}* x {0,1}" - {0,1}",D: {0,1}* x {0,1}™ — {0,1}"
D(k,E(k,m))=m, ke{0,1}, me{0,1}™

The key size is independent of the block size, while the plaintext and ciphertext
are of equal length. As the latter two are from the same space, we can infer
that the secret key is used by the encryption algorithm to make a permutation
over the message space.

By definition a block cipher can be applied to encrypt messages of fixed length
only. However, plaintexts required to encrypt are usually significantly longer

than the key length. Extension of the scheme to handle longer plaintexts is

12

done by dividing them to block sized portions, which are processed one by
one.

If the block size is not a multiplier of plaintext length, the last block will be a
short one, which should be somehow extended to match the size rule. Just
appending zeros in the end is not an acceptable solution, because it may result
in ambiguous situation for the receiver while decrypting. There were
developed several padding techniques to overcome this problem that were
proved later to be vulnerable [2, 3]. Currently there is a standardized

technique for padding secure against padding oracle attacks [2].

1.1.2.2 Substitution-Permutation Networks

For managing long plaintexts iterated block ciphers are used. The encryption
Is done in several rounds and each round is the application of the round
function to one message block. The round function is invertible and in some
schemes is fed with different keys in each round to strengthen security. The
sequence of operations used is called a substitution-permutation network
(SPN), a sketch of which can be found in Fig. 2.

Using the same key to encrypt all blocks will result in vulnerability, because in
case of repeating blocks the deterministic encryption algorithm will output the
same ciphertext. Having a significant amount of ciphertext the attacker can
spot patterns and get advantage. To avoid this security leak several techniques
have been developed to add randomness and result in different ciphertext for
same message.

Block cipher operation modes specify the exact way of applying block cipher to
message. The most trivial mode of operation is the Electronic Codebook mode.
In this mode the message is divided to blocks of a defined size and encryptions

is applied to each block independently.

13

KEY

PLAINTEXT

T Ko
NP,

N B Ot 0 A W

T T TIIT T

P

0 A B A
any K
NP,

N B Ot 0 A W

T I TIIT TT[]

P

(TTT —TTTT —fTTT TTT]
any K,
NP,

N B Ot 0 A W

[TTT TTTT TTIT TTT]
sy K5
NP,

CIPHER TEXT

Fig. 2: Substitution-Permutation Networks [71]

Decryption is done the same way. The advantage of this mode is the
independence of each step from the other one, which results in possibility to
parallelize both encryption and decryption and save time. However the flip side
of the coin is the feasible attack based on patterns in ciphertext corresponding
patterns. The adversary can also gain advantage by correctly guessing the

message organization. An example of this is attack based on header

14

information or other data expected to be at certain positions, when the

attacker knows that the message is a file type.

1.1.2.3 Stream Ciphers

Another basic type of symmetric encryption is the so called stream cipher. As
can be derived from the name, in this flavor the messagetext is not divided into
blocks, but is rather encrypted in a “stream” bit by bit. A pseudo-random bit
sequence is being generated using the symmetric key, which is thereafter used
to alter the messagetext bits. In the primitive case each bit of messagetext is

encrypted by XOR-ing it with appropriate bit of the generated keystream.

18 |17 |16 13 8 0

22 |21 |20 10 7 0
L¢ B !
[N N
AN AN Y U

Fig. 3: Stream cipher [71]

It would be inappropriate to state, that stream ciphers can be considered as
block ciphers where the block size is 1 bit, because here the keystream
generation is carried out linear shift registers and the secret key is used as a

seed for the pseudorandom generator. But this type of ciphers have an

15

obvious advantage against block ciphers regarding the processing of data
shorter than the block cipher block length. In this case, the block cipher has to
apply several techniques to avoid simple attacks, while stream ciphers work

perfectly on this type of data.

1.1.3 Public-key cryptography

The common definition of public key cryptography, which can be found in
literature is the following:

Public-key cryptography, or asymmetric cryptography, is any cryptographic
system that uses two kinds of keys: public keys which are distributed among
several parties (or publicly) and private keys which are only known to the
owner [/1].

Each key from the key-pair is intended for a different purpose - the public key
Is used to encrypt messages (so encryption can be done by any party
possessing the public key) and the private key is used for decrypting the
messages encrypted with the paired public key (so only the key owner can
decrypt messages encrypted by the asymmetric encryption scheme) [71].
However, the strength and security of a public-key encryption scheme depend
on the generation of private key, which are difficult to be derived from their
public key due to computational impracticality. This nature of cryptography
scheme delegates the problem of security to maintenance of the secrecy of the
private key and distribution of the public key does not disrupt the security of
the encryption scheme in any way.

The symmetric encryption is vulnerable, since the secret key should be agreed
upon and the agreement process might be exposed to adversaries. In 1976
Diffie and Hellman published a new asymmetric-key cryptosystem which
offered a practical method for symmetric key exchange without using a prior
shared secret. This method of key exchange is based on exponentiation in a

finite field and is known as Diffie-Hellman key exchange [26].
16

Asymmetric cryptographic schemes usually utilize cryptographic algorithms,
security of which is based upon hardness assumptions of some mathematical
problems, for which no efficient solutions are known. These include but are
not limited to discrete logarithm calculation problem, integer factorization
problem, etc.

As the computational cost of public-key based encryption is very high, the
common use case of it is encryption of small data blocks. As private channels
are not required for key exchange, this schemes are are typically used for
symmetric encryption key exchange, i.e. the exchange is secure and is not
compromised. The transferred symmetric keys can be utilized for the
encryption of large amounts of data, which would take several orders of
magnitude more computation time if it was encrypted with public key. [72].

In Fig. 4: Key generation key generation process is described. A large random
number is usually used for the generation of two keys to be used as public and

private keys for the asymmetric encryption scheme.

Large Random Number

Key Generation

Fig. 4: Key generation
1/

Diffie-Hellman key exchange is a specific method of securely exchanging
cryptographic keys over a public channel and was one of the first public-key
protocols[26]. The exchange process involves 2 parties, A and B. First, the

parties agree upon integers g and P, where P is a large prime (typically at
least 512 bits) and g is a primitive root modulo p. The numbers g and p might

be shared with other parties. The parties A and B choose large random

numbers a and b correspondingly as their private keys. A computes
A = g?(mod p), which is being transmitted to B, while B computes
B = g®?(mod p), which is being transmitted to A.

Then, both parties compute key K = g° (mod p) which is common for

them. A finds K with the following formula:
K = B%(mod p) = (g°)(mod p)
While B uses:

K = A”(mod p) = (¢g%)* (mod p)

The shared key K is available for A and B only it can be used for information
exchange without other parties compromising it. In order to do so, adversaries
should find K = g%? (mod p), with the knowledge of g,p,A = g*(mod p)
and B = g°(modp) only. This can be done by getting a from

A= g*(modp) and b from B = g°?(mod p). So, the described attack

comes to solution of the discrete logarithm problem, which is considered a
hard problem for large primes. Computing the discrete logarithm of a number

modulo P roughly takes as much computation time as the prime product

factorization p, hardness of which is the underlying security assumption of the

18

RSA, thus providing security level to the Diffie-Hellman key exchange protocol
similar to RSA cryptosystem.

Plaintext

v

Encrypt

v

Ciphertext

Plaintext

Fig. 5: Asymmetric key encryption scheme workflow

1.1.4 Homomorphic encryption

The class of encryption schemes that highly depend or are based on the
principles of homomorphism is called homomorphic encryption. Where the
term homomorphism is the mapping of two algebraic structures, where certain
operations remain valid. To demonstrate this, we will consider the

messagespace where a certain operation () is defined between the plaintexts
and another operation (2), which is defined between the ciphertexts. We will

call an encryption scheme (ENCyey; Decyey), where Ency,,, is the encryption
method and Decy., is the decryption method, homomorphic, if for any

messages My ,M; from messagespace the below formula is correct:

19

Dec(Enc(mc,) () Enc(ml)) = my O my.

A flavor of homomorphic encryption is called additively homomorphic because

of homomorphism is satisfied over the addition operation, so the () is addition
operation in messagespace and (9) is the addition operation over the

ciphertexts. However, if the ciphertexts can be processed in a limited way only
(not every operation can be carried out over the ciphertexts that will result in
encryption of the plaintext derived from the same operations applied to
appropriate plaintexts or vice-versa) the cryptosystem is called partially
homomorphic encryption scheme, otherwise, iIf any operation carries
homomorphic nature, the encryption system is called fully homomorphic.
Known encryption schemes based on partial homomorphism include but are
not limited to the original RSA [17] and ElGamal [27]. There have been
developed specific protocols for secure computation of some functions based
on partially Homomorphic cryptosystems [82 - 84]. Anyway, the limited
number of operations that can be carried out over the ciphertexts, greatly
limits the way of interaction and creates obstacles for carrying out secure
multiparty computations. On the other hand, fully homomorphic cryptosystems
[85], which can support for example operations of multiplication and addition,
allows evaluation of circuits with any depth and keeping the size of the
cyphertext independent from the generating function complexity, can be useful
for generic function evaluation. These three properties were suggested by
Rivest et al. in [85] and the first prototype of it was developed in [86] by
founding the scheme on somewhat homomophic cryptosystem, where the
operations are supported, but evaluation of circuits is limited, in terms of the
cicuit depth. With use of such a scheme Gentry applied the so called
bootstrapping technique, because while the maximum depth of the underlying
somewhat homomorphic cryptosystem exceeds the scheme’s decrypting

operation circuit, the homomorphically decrypting operation can be applied on

20

the ciphertext, resulting in a new ciphertext, which can be processed in more
ways. This technique is explained in detail in the original paper of Gentry,
which is referenced above.

The idea of somewhat homomorphic encryption was later utilized in several
other cryptosystems [87, 88]. This cryptosystems are able to process circuits
with any depth, however the maximum depth should be known when the secret
key is being chosen.

Fully homomorphic encryption schemes have usage not only in computations
carried out on encrypted input, but also in other applications as reusable
garbled circuits [90], verifiable computing [91], and homomorphic signatures
[92]. However, the fully homomorphic encryption schemes available now are
too impractical for utilization in secure computations, but some protocols are
being developed out of theoretical interest, because this type of schemes are

able to provide information-theoretic security for the secure computations.

1.2 Secure computations

Overview

Secure computation protocol is a process specified two or more mutually
distrustful participants who want to cooperate upon computing a function with
their inputs, while keeping their inputs secret from each other and any other
entity. In this section we provide security definitions, adversarial models and
also introduction to two types of secure computations - secure two-party
computation and secure multiparty computation, with implementing protocol
examples of those.

Participants of secure computation expect to emulate through protocols of
secure computations a trusted party, to whom they would send their secret
inputs without being concerned about the security and that trusted party would
send them the result of computations, without revealing secret at any stage of

the overall process. So, parties not concerned with the implementation details

21

of protocol can treat it as a virtual trusted party. Security and correctness of
protocols are often backed with putting their operation into comparison with
the same functionality implemented with presence of a trusted party. This

approach is referred to as real/ideal model paradigm (Fig. 6).

© O ©O=O

“r

R
& w =
-

Fig. 6: Real/ideal models

First secure computation protocol was introduced by Yao in [30] for the two-
party setting and later came out several protocols for the multiparty setting [1,
5]. We will discuss the specifics of two-party and multiparty settings after

defining security models.

1.2.1 Security models

Adversary is an entity, who tries to attack a secure computation protocol
execution. An adversary might have various motivations and purposes for
attacking SMC protocols, such as gaining knowledge of private data, altering
protocol output for one or more participants or even abort the protocol
execution. A participant is called corrupted, if it is controlled by an adversary.
There are several properties that a protocol should hold for being secure

against an adversary. However, a protocol can be secure against one type of

22

an adversary, but insecure against another. Different adversarial models will
be discussed later in this section. For now, we present some properties a
protocol is required to demonstrate to be interpreted secure against a fixed
adversary.

e Secure computation protocol should keep privacy: None of the
participants should obtain any more information, than is specified by
protocol and/or can be inferred directly from her input and protocol
output. An example, of learning information about other participants
output without cheating without compromising protocol’s security is
deducing that all participants had bits lower, than the winning bid’s value
in a protocol implementing auction.

e Secure computation protocol should guarantee correctness of output. All
parties involved in protocol execution should be sure of the result he got
Is not questionable. For the example of auction, every participant is
guaranteed that the outputted winning bid is the highest of inputs.

e Protocol also should guarantee independence of inputs: Inputs of
corrupted participants should not depend on other parties’ inputs.

e Non-corrupted participants should be guaranteed to obtain their
respective outputs after the execution of the protocol, so the corrupted
ones should not be able to abort the protocol (also this property is
omitted for several protocols, where the execution is being aborted to
prevent the adversary to access private information).

In the following sections we will define and discuss the usual adversarial

models applied to secure computations.

23

1.2.1.1 Semi-honest model

A protocol is called secure in semi-honest security model (or secure against
semi-honest adversary model) if participation of semi-honest adversaries in the
protocol execution does not compromise the security of the other participants.
A semi-honest adversary (also often referred as honest-but-curios) informally
speaking, in a secure computation protocol a party demonstrating semi-honest
behavior follows the protocol properly, although it tries to cheat and get
additional information by means not restricted by the protocol. This means,
that he sends messages, executes required functionality, but records his
computational activity and also all communication he was involved in. In other
words, the semi-honest adversary is honest with regards to following the
protocol, but not “fully” honest, because she does not miss a chance to gain
additional information not present in the protocols output.

Also there are several properties that can be incorrectly attributed to semi-
honest model, because of wrong interpretation of its definition. Accordingly,
secure computation protocols should be designed in a way to avoid such

assumptions inconsistent with security.

Collusions are not precluded in semihonest model

While considering semi-honest adversarial model, we assume that all parties
strictly follow the protocol. The adversaries in this model can try to get
additional information from the communication without breaking the protocol.
Actually this definition also doesn’t exclude the possibility of two or more
parties being in agreement or even controlled from one source. Here we bring
an example of a protocol secure against not colluding adversaries but leaks
data when two parties cooperate.

Consider n parties, each one with a single integer input x; 0 < i <n,
desiring to compute the sum of their inputs xo + ...+ X,_;. First party

chooses a random value r and passes Yo = Xg + T to second party. Each
24

party P; gets some value y;_ifrom P;_;, which is in fact r + xo + - + x;_4,
add its own input X; to the current value and passes it to the next party. The
last party P,,_; adds its input to the value he got from previous party and
passes it to Py. Py, the only one knowing the value T, gets the sum by
subtracting from ¥, _; and sends it to all other participants. Obviously this

protocol is secure when all parties are isolated.
However, when two parties, that are not aligned consecutively, are in
cooperation with each other, they can get additional information on inputs of

other participants. Consider P; and P; i <j —1 are under control of an

adversary. During the protocol evaluation gets two current values y;_; and

Vi-1- Using this advantage he can calculate
Yi-1 — ¥i-1 = Xiy1 + ...+ X;_1. This is obviously a security leak and

therefore the above protocol is not secure against adversaries with semi-

honest behavior.

Protocol workflow depends on the input

Many functions can be implemented with use of several different algorithms
and the choice of the latter often is based on efficient use of execution time,
memory, or network communication However, in case of secure computation
some of the very efficient approaches may be sacrificed to gain security. Here
we bring one of the frequently referred examples showing that the protocol
workflow depends on the input.

For the sake of simplicity, the example is provided for the two party case.
Consider participants desiring to find out if their secret messages of the same
length are equal. A ftrivial method for solving this problem can bethe
execution of bitwise comparison (compare appropriate bits of the parties’
inputs from the most to the least significant), execution of which is stopped

with negative answer, if in any step non-equal bits are found and a positive
25

answer is outputted, after all appropriate bits have been compared and been
equal. This means that if the most significant bits of the secret messages differ,
the algorithm will cease after only one comparison operation executed and
only I comparison operations will be executed, if the messages differ in the [-
th position.

So if messages differ in the [-th position, the executing party can obviously

deduce, that the first [— 1 bits of the secret messages match, however, this

information cannot be gained, while the computation is done in the so called
ideal execution model, where the inputting participants provide secret
messages and the learn the results only. The guilt of the information leak is
definitely the heavy dependence of the algorithm flow on the secret messages

being compared.

Information leaks with deterministic encryption

Data encryption or hash function application on it does not always provide
guarantees for privacy. The encryption or hashing method chosen may cause
data leak during some computations. Below we bring a simple private set
intersection algorithm, which shows the mentioned vulnerability appears to be
real.

Two parties wish to find out the common elements of their private sets

containing secret messages in their possession, which are {x1,...,x;} for the

first party and {¥,, ..., ¥,} for the second one. A non-colliding hash function

which also appears also deterministic can be viewed as a secure method to be
applied for hiding the items. So, the parties encrypt all of the elements in their
private sets with the use of the mentioned hash function and put the resulting
encrypted list in a shared location, where each of them searches the elements
of the opponents encrypted set in his own and if an element is found in both

encrypted sets, than each party looks up the original item in the initial set and

26

marks it as common. The intersection of the private sets can be found in this
way, but there are some methods of finding out more information, than the
protocol intends to give. If the messagespace of the sets elements is appears to
be of a small size, each of the parties can apply the hash function on all
messages in the space and after the encrypted set of the opponent appears in
their shared location, he can easily deduce all original elements of the latters’
set.

Even in case of a huge messagespace, information leak is also possible. In this
case the attacking party can search in the set of the opponent for select items
he is interested in.

Both of the leak cases provided above are the result of using a deterministic
function for encrypting secret messages, which results in information leak,
which is impossible in the ideal execution model, where the parties are
provided with input and output data only. For avoiding such situations,
encrypted items that should at some point be shared with other parties should

be encrypted with semantic security guaranteed encryption schemes.

1.2.1.2 Malicious model

The security of protocols should be considered in so called malicious
adversarial model, if the participants of the protocol desire to gain information
from the other parties even at the cost of deviating from the protocol.
Sometimes this security model is referred as active adversarial model also.
There are no any rules regulating the behavior of a malicious participant, so
he can deviate from the steps of protocol in arbitrary manner, which can
result in different problems as information leak, wrong output of protocol or
ceased execution of protocol.

A malicious attack known as “selective failure attack” is comprehensively
discussed in the work of Mohassel and Franklin presented in [75]. The attack is

used against the evaluator in the Yao’s garbled circuits secure two-party

27

computation protocol by a malicious circuit generating party, which sends
wrong wire labels to the evaluator during the execution. After the evaluation is
completed, the malicious party finds out, if a preliminarily determined input bit

of the evaluator is O or 1, depending on successfulness of the evaluation.

1.2.1.3 Covert adversaries

The protocols designed to be secure against malicious adversaries are very
slow in comparison with the ones secure in the semi-honest model. But the
latter protocols are not applicable for many real life scenarios, where parties
of the secure computation are not guaranteed to strictly follow the protocol. So
a security model placed in the middle of passive (semi-honest) and active
(malicious) adversarial models both in terms of security and effectiveness of
the protocols was introduced to cover the cases, where the attacker may
deviate from the protocol, but the deviations are somehow limited. This
security model often referred as covert adversarial model introduced and
described in details in [76, 77]. In this model, a cheating participant is
captured with some probability, but still can learn additional information about
the opponent’s inputs.

Aumann and Lindell [76] constructed an example of two-party protocol with
covert security the performance of which is a small factor less compared with
baseline Yao’s garbled circuits protocol. For further details we refer the

reader to original publication of Auman and Lindell.

1.2.2 Oblivious transfer

The oblivious transfer (OT) protocols is extensively used during secure
computations. The initial idea of OT is introduced by Rabin [18]. This protocol
involves two parties the sender and the receiver. According the original
description, the sender sends a message to the receiver and remains oblivious

whether it got to the receiver or not, while the receiver gets the message with

28

probability % The modern form of OT protocol being widely used and known

as 1-out-of-2 oblivious transfer (OT.') is introduced by Even et al. [12]. As

previous form, it involves two parties the sender and the receiver. But here the

sender has two indexed secret elements x, and x, having I bit length, and the
receiver has a secret selection bit . At the end of protocol execution the
receiver holds the element x, being unaware of x;g, without leaking anything
about selection bit . A generalized form of OT;' protocol is 1-out-of-n oblivious
transfer (OT,}). Here instead of operating on two elements and selection bit the
sender and the receiver hold n indexed secret elements and secret selection
index 0=i<n. Formally 0T, can be expressed in following
OT((xq,) Xn-1),i) = (4,%;). Namely the sender (first participant) gets no
output, and the receiver gets x; only.

Another generalization of OT protocol is m X OT,}. Here the sender has

database of m pairs of [bit strings (x2,x2),0 < i < m, and the receiver holds

vector of selection indexes (1, ..., 7,1). At the end of protocol execution the

sender has no output, and the receiver has elements x?, 0=i<m.

1.2.2.1 OT extension

The functionality m x OT,} described in previous section is equivalent of m
virtual executions of OT,! protocol. In 1996 Beaver introduced OT extension
[74]. This technique works by replacing m direct executions of OT,! protocol by
small number of base executions allowing perform the rest of data exchange
using only symmetric cryptography primitives which are order of magnate

faster compared with public key (PK) operations. Essentially it reduces number
of performed PK operations from 0(m) to O(k), where k is the security
parameter. Conceptually, this method is similar to usage of PK cryptography,

when instead of processing a large message using expensive PK operations a

29

hybrid encryption scheme is used where PK operations are performed only for
symmetric key exchange, and the later key is used to process large message
efficiently.

Until 2003 this method has only theoretical interest as the original
construction is not much efficient to satisfy real world needs. A better
implementation of OT extension is proposed by Ishai et al. [/8], requiring only
three hash function invocations for each extended OT execution in semi-honest
model (PK operations are used during base OT executions only). Further
improved implementation is provided by Asharov et al. [79, 80].

Providing OT protocol security in malicious model has an expensive overhead
compared with semi-honest implementation. For example OT extension secure
in malicious model, provided by Nielsen et al. [23] is almost two times slower
compared with original implementation which is secure only in semi-honest

model.

1.2.2.2Private information retrieval

Private information retrieval (PIR) is a cryptographic protocol intended for a
client to choose an item to be obtained from a database without revealing
information about the item he requested. PIR was introduced by in [15] and
[23] using a single database for information-theoretic and computational
security respectively.

In terms of requirements private information retrieval is a lighter version of

1 —out —of —n OT, because here the database is not secured against

client with respect to restriction of getting information about other items.

Implementations of this cryptographic primitive can be found in [18, 73].

30

1.2.3 Function representations
Secure computation protocols operate on a specific representation of the
function, which is desired to be computed. When the desired functionality is
already agreed upon, the participants of the secure computation need it to be
described in a generic way. The most widely spread methods for representing
a function are:

e Generating a Boolean circuit,

e Generating an arithmetic circuit.
Several secure computation protocols exist utilizing this representations.
1.2.3.1 Boolean Circuits
Boolean circuit is a very popular representation for a function, when it needs
to be computed securely. Several protocols, including the so called GMW for
multiparty computation and Garbled circuits for two-party computations are
based on this representation of function. The formal definition, which is
common in literature follows:

Definition: An n-arity gate g™ is a Boolean function which maps {0,1}" input
bits to a bit called an output, namely, g™:{0,1}" — {0,1} [68].

The Boolean circuits are constructed using a universal set of binary
operations, like XOR, AND and OR.

Definition: A Boolean circuit having 1 inputs, m outputs and v internal gates
is a directed acyclic graph (V,E) with |[V|=m +n+ v nodes and |E]|

edges. Each node corresponds to an internal gate, an input or an output. Two
nodes are connected with an edge if and only if there is a wire connecting

corresponding gates. [68].

1.2.3.2 Arithmetic circuit
The other widespread function representation method is using arithmetic

circuits, where the directed acyclic graph of the appropriate function is

31

consisted of nodes, which are operation over a ring < R,X, +>. Nodes with

no incoming edges are the input gates, and those who don’t have outgoing
edges are respectively the output gates of the circuit. The advantage of
arithmetic circuits over Boolean circuits is usually the circuit size, which

increases dramatically, if the function operates on a very large ring.

1.2.4 Secure two-party computation

As the world is getting more and more connected in many real world
scenarios, parties with different and potentially conflicting interests have to
interact. Examples of this are citizens and governments (electronic passport
and electronic id), patients and health insurers or medical institutions
(electronic health card, e-health services), or companies and service providers
(cloud computing). In the mentioned context questions of paramount
importance are the architecture and the ability of an underlying
communication system to fulfil varied security and privacy requirements of the
involved parties.

Protocols for secure computations enable two or more mutually distrustful
parties to communicate and evaluate some commonly agreed functionality with
private inputs from all participants. Yao pointed out that secure two-party
computation protocols can be utilized for computation of arbitrary computable
function [30].

Yao’s protocol remains one of the most actively studied methods for secure
computations. Although Yao never published a precise protocol, the very first
real world implementation of secure two-party computation [37] used Yao’s
basic garbled circuit approach, and it remains the primary paradigm for the
plenty of 2PC implementations that have been developed during the past
eleven years [59 - 61].

32

Yao’s protocol is very efficient in terms of two-party computations. Many
applications are known, where it’s essential to keep the data inputted by the
participants private.

Efficient secure two party computation methods give a chance for collaboration
to distrustful parties. Several applications were modelled based on two-party
computation protocols. Biometric identification [62] and genome research, as
well as analysis carried out over private databases are developed also, along

with applications to online auctions [36], contract signing [12], etc.

1.2.4.1Yao’s garbled circuits protocol
Yao’s garbled circuit protocol allows two mutually distrustful parties with

inputs X and ¥ to evaluate any computable function f(x,¥y) on their input

values without giving away any side information on the secret inputs, except
what can be inferred from the output itself.
The main idea is that one of the participants (called generator) generates an

scrambled version of the Boolean circuit € computing the function f, and the

second party (called evaluator) evaluates the circuit. Note that reverse
engineering techniques are not applicable to garbled circuit, thus the
evaluator does not learn any intermediate value.

Suppose the generator has a Boolean circuit € with 2 fan-in gates computing
the function f. At the first step the generator fixes some integer k and assigns
two random looking bit strings w® and w* to each wire of circuit C (label w?
conceptually encodes value b € {0, 1} for the wire w). Then for the gate g

having output wire Wi and input wires w;, w; generator prepares garbled

table with following entries:
33

g(bjb'}
Enc , », (w, 7"77)
W I'l.”i-"'IP k
i W

where Enc is an encryption scheme fixed by generator. The collection of all

garbled gates is called garbled circuit.

1.2.4.2 Generator

Then the generator passes garbled circuit and mapping for the labels for the
output wires to the evaluator. An interesting feature of garbled circuit protocol
is that the generator is aware all associations between input values on input
wires, so and it is able to transmit the garbled circuit construction to the other
party. To obtain wire labels for his input the evaluator runs OT protocol

described afterwards with the generator.

1.2.4.3 Evaluator
The evaluation of garbled circuit is done in a hierarchical way. Given

labels w; and w; of input wires of garbled gate g the evaluator decrypts the
appropriate entry of garbled table using keys w; and w;. When labels of all

output wires are computed the evaluator sends the function output value to

the generator using provided mapping for output wires.

1.3 White-box cryptography

1.3.1 Overview

In this section we first bring several attack contexts and analyze the
differences, after which we concentrate on the white-box attack model and

show several vulnerabilities that were among those that motivated the

34

introduction of white-box cryptography. Those include but are not limited to
entropy attack and key-whitening attack, which are briefly described below.
White-box implementations of symmetric ciphers are motivated by the fact that
nowadays vulnerability of an encryption scheme does often originate from the
algorithmic construction of the latter, but the environment, where the scheme
is operating on. Considering the diversity of computing devices and the
operating systems of those, guarantees of general security for users cannot be
assumed. But encryption/decryption functionalities are currently executed in
those various environments in a regular manner for logging in to different
services, private communications, financial transactions and more. Also, much
information is being kept on remote servers which can also be considered as
untrusted in the user's perspective. So existence of methods which enable the
user to utilize secure operations in untrusted environments is a very relevant
problem.

White-Box cryptography was introduced by Chow et al. in [66], where white-
box version of the AES encryption scheme was constructed. The term white-
box is used to emphasize, that no secrets appear in the implementation and
the encryption process is available to be viewed by the attacker thoroughly. In
the references paper several methods for overcoming vulnerabilities in white-
box attack model were presented. In another work of the same authors a
white-box implementation of DES cipher was also described [66].

While in this thesis we use white-box cryptography in the context of oblivious
transfer and secure multiparty computations, there are traditional fields of
applications for it also. Those include software executions on remote servers
or cloud services and cryptographic methods utilized on smart-cards [63, 64].
For the construction of secure multiparty computation protocols we use a
white-box implementation of the block cipher SAFER+ [33], but any other

white-box encryption scheme can be used also.

35

Another widely spread application field of white-box cryptography is digital

e

Fig. 7: White-Box implementation of a block cypher

rights management (DRM).

\ 4
Block cipher

encryption

The security problems with DRM applications are, in contrast to the others is
that the untrusted party is the end user, and the content provider is
considered as the party seeking security. Malicious clients try to extract the
encryption keys used for protecting the paid content after they buy it (common
examples of such are TV-shows, computer games and electronic books, which
are downloaded by the user fully or partially encrypted and are decrypted
locally after user purchases license) and later redistribute it or sell to other
parties illegally, resulting in financial losses for the service/content provider.

In the black-box attack model the attacker has visibility of input/output data of
the software. In the white-box model, on the contrary, the attacker has full
visibility of the software execution, because the software operates in an

environment fully controlled by him. This gives the attacker to observe the

36

intermediate results of the software execution and memory read/write
operations by using debugging or disassembling tools. In the process the
attacker can recognize the decryption operation and find out the secret key.

In 2004 Billet, Gilbert and Ech-Chatbi showed that the secret key hidden in
the original white-box implementation of AES can be extracted in 230 work
steps of their algebraic cryptanalysis [67]. This paper also inspired several
other white-box implementations of symmetric ciphers to be constructed

resistant to this and other attacks presented later.

1.3.2 Attacks in white-box context

Several attack techniques on symmetric-key encryption schemes are known
that can be prevented with use of white-box cryptography constructions,
although other prevention strategies are also available and described. Firstly,
the entropy attack [45] by Shamir and van Someren is presented, after which
another attack is presented known as key-whitening attack [44] by Kerins and
Kursawe. The last attack we consider is a more recent technique based on

acoustic noise produced by computing devices published in [48].

Entropy attack

Ideally, an encryption scheme should enable two parties to communicate and
transmit secret messages over untrusted environments such as public
networks, shared memory or untrusted computing devices and be assured that
no one is able to intervene to the communication or steal the secret
information. There are great advancements in symmetric-key cryptographic
schemes that along with the enhancement of computing powers take little
effort and time to secure the communication.

The main requirement for the execution of symmetric-key operations is that
both communicating parties have agreed upon a secret key, which should be

used for encryption and decryption. Obviously, the secret key should not be

37

easily guessed by the attacker, so it should be chosen randomly from key
space.
Randomness of a key is measured by entropy [43]. The higher is entropy, the

more reliable is the secret key.

Il
FFF.FIIII::
TmAy
|-|-H|-:.

M

-'EM*!,I,- TR

.-. ‘.E!i‘-" filinodolh

h .'."' 'rr':r'rr -'.

|I'|||'I|n

ilTh r"l'ﬂl ||||b

ol TR
3 ey
b L

T AL

h ' Foid

Fig. 8: Memory dump graphical representation [45]

Shamir and van Someren invented an attack [45] on symmetric encryption
schemes using the fact of the secret key having high entropy. They chose the
way of seeking the hidden secret key in the memory of the program, instead of
trying to compute it.

It turns out, that in “neighborhood” of such structured data as binary
representations of compiled code and other non-secret information the secret
key with high entropy is easily recognized. This approach can be applied, in
situations, where the attacker has access to random access memory and/or
hard disk.

38

Key whitening attack

This attack technique is applied to a narrower range of symmetric ciphers,
which is the block ciphers that use key whitening. As described in previous
sections, block ciphers usually have several rounds of operation and the key
whitening technique, which is generating a new round key from the master key
for every round, is important for defense against exhaustive search or other
attacks. Kerins and Kursawe constructed an easy attack [44] on block cipher
implementations, where the key whitening technique is applied.

The attack is not applicable to all such ciphers, because another requirement
for vulnerability against this attack is that the S-Boxes of the cipher should
static. As the S-Boxes of all major substitution permutation network block
ciphers are publicly known, an attacker can easily find those in the program
binaries. As the attacker may have the capability of also modifying the memory,

he can substitute the original S-boxes with so, that she would get advantage.

Fig. 9: SPN round

If the S-Box is replaced with zero matrix, S(x) would be a zero vector and any

permutation of it would also be zero, so ky, @ P(S(x)) = 0, which means

the hacked program will output the key, resulting in a successful attack.

39

This attack can be prevented with the use of block ciphers, where the S-boxes
are key dependent, such as Blowfish [46]. Another approach is to use various

verification methods for protecting the program from being modified.

40

Chapter 2. Extending White-Box Oblivious Transfer

Overview

In this chapter we discuss the cryptographic primitive called Oblivious Transfer
(OT). We bring some historical information about the generation of the
concept and its different flavours. Also description and verification of most
basic OT protocol variants are presented accompanied by efficiency analysis
and optimization/modification techniques. The first paragraph is dedicated to
OT protocol by Rabin with its development into 1 — out —of —2 OT. Several
schemes are given along with discussion of their relationships. Second
paragraph is about 1— out —of —mnoblivious transfer. Various construction
techniques are brought accompanied by deliberation of performance and
efficiency issues. In the third paragraph we present a novel approach to the
concept of OT introduced in [20] based on White-Box Cryptography and
consider its efficiency and security in comparison with the traditional
techniques. The final fourth paragraph we dedicate to oblivious transfer
extensions. We bring the motivation of applying those and present Beavers
seminal approach to the problem. Other extension techniques are also
discussed and our novelty of constructing extension for white-box
cryptography based OT protocol [52] is presented, along with its correctness

and security proofs.

2.1 Oblivious transfer protocols

The oblivious transfer as a cryptographic primitive was first introduced by
Rabin in [10], which is considered as the seminal paper on oblivious transfer.
A very similar idea laid behind [16] which was independently developed in early

seventies. Wiesner’s paper, which was first rejected by IEEE ITS and after

41

being published a decade later it introduced the quantum cryptography. The
suggested primitive was called conjugate coding which was encoding two
messages in a way that only one of them could eventually be retrieved after
transmission. Rabin, on the other hand, designed a protocol for exchanging
secrets between two parties asynchronously (not using simultaneous exchange
techniques) and without participation of trusted parties. While implementing
this protocol he brought another two party protocol, in which first party
transmits information to the second and stays completely unaware whether the
she received the information. Later another protocol was developed related
protocol was proposed by Even, Goldreich and Lempel called

1 — out — of — 2 oblivious transfer, which currently is usually referred as

OT. Although the latter differs from Rabin’s OT in terms of functionality, these
two are equivalent (proved in [13]). Further improvements in terms of
performance efficiency and security requirements were developed, usually
based on the EGL version of OT concept. This version lies behind many recent
implementations of Yao’s Garbled Circuits protocol for secure two-party
computations, where oblivious transfers are used for getting the garbled

values of users’ input. Also, on 1 —out —of — 2 OT are based also some
generalizations, such as 1 —out —of —n OT and k — out — of —n OT,

introduced for applications to more advanced problems such as secure
multiparty computations.
None of the currently known OT protocols is developed from scratch - all of

them are constructed on some assumptions.

2.1.1 Rabin’s OT

The oblivious transfer protocol by Rabin was introduced as a tool for two
parties committing an exchange of secrets. In the OT one party appears as
sender and the other one as receiver. The sender sends the product of two

primes chosen by himself to receiver and after the interaction the receiver gets
42

the factorization of the number received with probability % This problem

assumes that factorization is a hard problem to solve, so the receiver cannot

compute the factorization having the product. The protocol is presented below:

OT Protocol.

Step 1:
Sender chooses large primes p and ¢, computes and sends g = p * q to

Receiver.

Step 2:
Receiver chooses 15 < N4 randomly, computes ¢ = Tg' mod ns and transfers

to Sender.

Step 3:
Sender finds an 75 such that ?"52 = ¢ mod ng (for calculation of 15 sender uses

a square root extraction algorithm using the fact that she has the factorization

of ns [11]) and sends 75 to Receiver.

Receiver computes g = gcd(ns, rg — 15) (greatest common divisor).

1
Pr[g =porg=q] ZE,

So Receiver will find out the factorization of ng with % probability and Sender

will stay unaware whether the factorization was found out.

2.1.1.1 EOS Protocol
Rabin constructed a protocol for exchange of secrets (EOS) based on the one

presented below also presented in [10]. It allows two parties to pass their

: . 3 :
secrets to each other with at success possibility of " Here we will present the

43

EOS protocol of Rabin also. Consider two parties A and B holding secret bits
Sa4 and Sp respectively, want to exchange their secret bits. The secrets are
passwords to files F4 and Fg, which are destroyed, when wrong password is
used for access. Also, 4 is notified if F4 is accessed, and B is notified if Fg is
accessed. Files aren’t accessed by chance, so if F4 is accessed, then B
definitely found out A’s secret and also, passwords are used instantly, so if B
finds out 54, A becomes aware of it. In fact we can allow file access by chance,

if we assume that the file owner is notified whether the file was destroyed or
not.
Each of the parties also holds a public key for encrypting and signing

messages. A signs each message sent to B with K4 and B signs with Kg.
As a first step A and B invoke OTs using the protocol described above. We
denote with pa, G4 the primes chosen by A and with pg, gp the ones chosen

by B.
Ny = Pag*qyq and Np = Pp * (5.

After the oblivious transfers were made the probabilities for B knowing the
oL . oL 1
factorization of 4 and A knowing the factorization of ng are both . We

indicate with Ug if B found out the factorization of 14:

On = {0 if ng(nA:TA — TE) = Pa OT (g
B — :
1 otherwise

’

where 75 is the randomly chosen number by B (as receiver) during the Step 2
and T4 is the number computed by A(as sender) during Step 3 of OT protocol.
Uy is defined similarly for the opposite OT invocation with B as sender and A.

B computes the XOR of its secret with the indicator of ny4’s factorization

44

knowledge €5 = Sp €D Up and sends it in a signed message to A. A computes
and sends £4 to B in a similar manner.

Finally, A generates a random message M4 and places S4 as in the center of
that message. After, A sends E,, (m4) in a signed message to B, where E;, ,
is the encryption algorithm (with n4 as key) of any public-key encryption
scheme, where the factors of n4 are required for decryption. Similarly, B

sends B, (mgp) to A.

Theorem:

The probability of failed secrets’ exchange with the EOS protocol is i.

Proof. If A gets notification that F4 is accessed, she deduces that B knows the
factorization of n4(he wouldn’t attempt otherwise), so ¥ = 0, which means

that 4 also finds out S5, because she has
£Ep :'!951 6355 :SE‘-

This means, that the secrets are exchanged even if only one of the
participants found out the factorization of the number it received.

As, the probability of neither side knowing the factorization due to OT protocol

.1 . A |
Is 2, SO the probability of the EOS protocol fail is (5) =,

2.1.2 EGL 1-out-of-2 oblivious transfer

In [12] Even et al. developed another version of oblivious transfer which had a
different way of operation compared to Rabin’s definition. Here the protocol
Is, again, executed between two parties, one of which acts as sender and the

other one as receiver. In Rabin’s version the sender sent information to

45

receiver and stayed oblivious whether the latter got it right (found the
factorization) or not and the receiver didn’t have any impact on the final
action. The difference here is that the sender definitely knows that the receiver
got some information, but she is not aware what information exactly she got.
Also in this variant the sending party has two messages, one of which the
receiver eventually gets, using his own input to the protocol. Most importantly,
the information transmitted via Rabin’s protocol is factorization, while here the
messages can be chosen arbitrarily. The point is that in the EGL version also
known as 1 —out —of —2 oblivious transfer, the sender inputs two
messages (m;, m,) into the protocol. The outputs of the protocol is that the

sender outputs Mg, where s is available exclusively to the receiving party

only.The latter outputs nothing (see figure). The oblivious nature of the

protocol is that the receiver gets no information about m;_; and the sender
stays oblivious about which message she has sent i.e. the selection index s.

Interestingly, the Rabin OT can be implemented easily using any

1 —out —of — 2 OT protocol. The point is that in the latter case the sender
stays oblivious about the selection index i.e. after the protocol execution the
o . 1 :
sender can make a guess on it with probability of = To construct Rabin’s OT
from this one we just need to make one of the messages in possession of
sender public. After the protocol execution the receiver, who doesn’t know
: : L1
which of the messages she knows, will get the secret message with >
probability.
Now we describe the EGL OT protocol defined generically, after which we will

present the Naor-Pinkas 1 —out —of —2 OT protocol[19] as a specific

implementation. The generic nature of this protocol is that even it requires

any public-key scheme encryption scheme having two binary operations x EH y

and x H ¥ defined on its message space M,,, as follows:

46

e The association x — x H ¥ is a permutation on M,,, for every x.
e The association y — x H ¥ is a permutation on M,,,, for every y.
e xMHy)By=x, foreveryxandy.

The operations can be defined in any way, while satisfying the above
conditions. In case of using RSA[17] as the underlying encryption scheme, the

above operations can be defined as:

xHy=x+y)mod NxHy=(x —y)mod N,

Where N is the modulus of RSA. In case of schemes with message space
consisting from all Boolean vectors, bitwise XOR might be used for both

operations.

EGL OT2 Protocol

Inputs:
Sender: secret messages My, M;

Receiver: selection bit o

Step 1:
Sender chooses an encryption scheme (E,,D,,) with message space M,,,

where both E},; and D,, are permutations on M,, , along with two random

messages Mg, My € M, and sends the three items to Receiver.

Step 2:
Receiver randomly chooses 1 € {0,1} and a message k € M,,, and sends q to

Sender, where

q = Em(k) H m,

Step 3:
47

Sender computes k; = D,,(q H m;), for i € {0,1} and sends m; and mj,

and randomly chosen value s to Receiver, where
m::' — MD EH ks: mi — Ml Hﬂ k.‘i‘@l

The above protocol works correctly in the semi-honest model i.e. when both

parties follow the protocol. [12] also shows cheating from both parties can be

detected by other participants with a probability of % After the execution

Receiver is able to read one of the secret messages (more specifically M g,

and has no information on the other message and Sender is unaware of which

message she has read.

m’s%, = Msg,r B ksgs@r) = Msgr H k-

From Step 3 we have

ky = Dn(q Bmy) = Dip(Ep (k) Bm, Bm,) = Dp(En (k) = k.
k was chosen by the receiver in Step 2, so she can compute

M.gr = m;;{—Br H k.

So receiver should compute m; H k for i € {0,1} and recognize the secret

message from those values she got. The last statement is valid if the messages
used satisfy the definition of recognizable secret with respect to a one-way

function f, which is:

Definition: A message m from message space M, is a recognizable secret to f

if f(m) is the only information known about M.

48

So having the values of the one-way function on secret messages, receiver can
recognize a message from a random sequence.

Interestingly, s sent in Step 3 to Receiver can be used by the latter for finding

out the index of message received, so its transmission can be avoided, if that

information is not required.

2.1.3 NP 1-out-of-2 oblivious transfer

Another improvement to EGL OT protocol is the Naor-Pinkas 1-out-of-2 OT (a
revision of [22]), which is now used as basic protocol in many applications and
enhancing protocols[20, 21]. The distinctiveness of this protocol lies behind the
capability of Receiver for deciding upon the index of Sender’s input message
she prefers to get. Actually, this feature can be also implemented with slightly
changing the EGL T1-out-of-2 OT protocol so that the Sender generates and

sends S to Receiver on an earlier stage, so that the latter choses 7 in a way to
make s 1 his desired index. This property can be very useful for

straightforward applications, where the receiver doesn’t know the information
items Sender possesses, but has some meta-information, that helps to decide
which item she needs. To conclude, here Sender has two information

items/secret messages M; and M;, only one of which he is ready to share with

Receiver, but on the other hand, the receiving party has the capability to
choose with his selection bit which of the messages she wants to get, but
doesn’t want Sender to become aware of it, while providing the required item.
Also, this protocol by Lindell and Pinkas has a two-stage operation and doesn’t
require existence of a random oracle. The security of this protocol relies on
decisional Diffie-Hellman computational hardness assumption, which states,

that for a group G which is cyclic and has order n and generator g, having the

ab

g? and gb, where a,b € Z,, are chosen randomly, g®° is computationally

49

indistinguishable from g°, where ¢ € Z, is also chosen randomly. Below we

present the protocol.

NP OT2 Protocol.

Inputs:
Sender: secret messages Mg, My

Receiver: selection bit o

Auxiliary input:

Both Sender and Receiver share knowledge of a group G of order n and a
generator g for that group. We will also assume, that mg, and m; are

associated with some elements of G.

Step 1:
Receiver randomly chooses three integers a, b, ¢ € [0,n — 1] and composes a

tuple A depending on the value of o

Incase 0 =0, 1= (g9%9" 9%,9°).
Incase o =1, 1= (g% g%, g%, 9%).
After constructing 4, she sends it to Sender.

Step 2:
As g% g%, g° and g? are some integers, we denote the received tuple as

(x,¥, 29,21). Note, that

ab c

Zg = 9, Zop1 — 4.

Sender randomly chooses Ug, U, Vo, 71 € [0, — 1] and computes the below

values for lg, 11, ko, k1:

50

ED = yUo xg“ﬂj ED = y¥1 xg”l

iUy

u
ko = Zﬂﬂ * yro, k, = Z, # yr1

The values ky and k; are used to encrypt the secret messages, so Sender
computes using G’s multiplication operator ¢ = my * kg and ¢; = my * ky,
as m;, k;-s are G’s elements, for i € {0,1} and transmits pairs (ly,¢y) and
(11, c1) to Receiver as the finalization of the Step 2.

The information Receiver got through communication, along with her own

parameters are sufficient for computing the desired value of m, with formula
_ by—1
Mg = Cg * (Eﬂ') :

As c; =mgs*ks;, we only need to show, that 2=k, where

k, =2z,9 =yvo

b _ u b voxbh __ U xAxD voxbh __ Ug Vo o
EE—X‘T * gla™? = gte x#glot? = z *ya_kg_

Soc, * (1) = c, k' = my*ky, k' = m, m

2.1.4 NP 1-out-of-n oblivious transfer

The OT protocols described in previous paragraph handle scenarios with two
parties, one of which holds two secrets which are two large primes in case of
Rabin’s protocol, recognizable secret messages in case of Even’s et al. 1-out-
of-2 protocol and secret messages in case of Naor-Pinkas 1-out-of-2 protocol.
But in real life applications there are situations, where the sender holds more
than two secrets and the receiver stills needs one of the secret messages. Here
we will describe a conceptual development of the oblivious transfer protocol

introduced by Brassard, Crépeau and Robert in [24] known as All-or-Nothing

o1

Disclosure of Secrets (ANDOS) or 1 —out —of —n oblivious transfer

protocol. As might be expected, this flavor of OT handles the scenario with
multiple secret messages input from Sender.

We again, consider two parties one of which (denoted as Sender) has n secret

messages and wishes the other party (denoted as Receiver) to gain no
information but one secret message. Receiver, on the other hand, wants to
obtain a certain element from the possession of the Sender, but doesn’t want
to disclose any information about the element received to Sender. Sender is
assumed to be honest in terms of evading the transmission of the secret
messages, but she is assumed to be interested in the selection index of
Receiver.

The protocol we present below is also implementing 1 —out —of —n

oblivious transfer functionality. It was introduced in [19] and is considered a
starting point or for many variations invented later. This protocol doesn’t
require for the sender to have a publicly available value or public-key. Instead
it requires a semantically secure encryption system similar to EIGamal [27] and
its security relies on the decisional Diffie-Hellman computational hardness
assumption [23]. The protocol also avoid random oracle model by using
probabilistic hashing instead of random oracle, in order to map the secret
messages to the subgroup of protocol operation. For the sake of the simplicity,

we will assume that the secrets are from G.

NP1 —out—of —noOT

Inputs:
Sender: n secret messages My, My, ..., My,.

Receiver: selection index o € [1,1]

Auxiliary input:

52

Both Sender and Receiver share knowledge of a group G of order n and a

generator g for that group.

Step 1:
Receiver randomly generates g, gb and chooses ¢g, ¢4, so that ¢, = ab and

€1 —¢ is chosen randomly. A tuple (x,y, Zy) is transmitted to Sender, where

x=g% y=4g° z=g

Step 2:
As g% g°, g° are some integers, we denote the received tuple as (x,¥, Zg).

Note, that

z, = g%, z=g°+g)for1<j<n

Sender randomly chooses u;, v; € [0,n —1],for 0 <i<n and computes

the below values for I;, k;, for 0 < i < n:
IEI: qui*g”i,ki :z;ii *}’Uifor{] <i<n.

The values k; for 0 < i < n are used to encrypt the secret messages, so
Sender computes using G’s multiplication operator ¢; = m; * k;, as my, ki-s
are G’s elements, for 0 < i < n and transmits pairs ([;,c;) to Receiver as
the finalization of the Step 2.

After getting the pairs transmitted by Sender in Step 2, Receiver is able to
correctly compute the desired secret message in a similar manner to the NP

0TS with the formula mg = ¢, * (12)71.

2.2 White-box oblivious transfer

A novel approach of the oblivious transfer problem was demonstrated by

Jivanyan and Khachatryan in [20]. Two new protocols based on the concepts of
53

1—out —of —2 and 1 —out —of —n OT were introduced with their

implementations having dramatically enhanced performance and require less
communication between parties. The main reason lying under the
improvement is elimination the use of traditional public-key cryptosystems.
Instead, here the encryptions are made with use of white-box cryptographic
(WBC) techniques. Previously, WBC was mainly used as a tool for software
protection and digital rights management [47].

With a white-box implementation of a symmetric key cryptographic scheme
one can spread the encryption table of his scheme, so that everyone can
encrypt messages, but while the secret key and/or the decryption table are in
his possession, no one is able decrypt those messages but the owner if the
scheme is secure.

Below two protocols are presented inspired by EGL OT; and NP OT,;. In
protocols we denote with Gen the algorithm responsible for generating white-

box tables for selected secret key with the underlying encryption scheme.

Ency stands for the white-box encryption algorithm using tables T. Dec is the

decryption algorithm of underlying encryption scheme, using a secret key.

2.2.1 1-out-of-n WBOT

Inputs:
Sender: n [-bit secret messages My, M5, ..., My, where [and is known to the

Receiver.

Receiver: selection index o € [1,1]

Pre-computation:

Sender generates a secret key k and with the use of tables generation
algorithm Gen constructs T = Gen (k) - the white-box encryption tables and

sends T to Receiver.

o4

Step 1:
Sender generates n random values m;, My,..., My € {0,1} and sends

them to the Receiver.

Step 2:
Receiver generates random 1 € {0,1}" and encrypts it with help of the white-

box encryption tables T. The encrypted value is XOR-ed with m, and the

result v to Sender, where v = m, B Encr(r).

Step 3:
Sender computes n candidates 13,73, ... , T, of T, where

1; = Dec.(v @ m;), i €[1,n],
and transmits n messages M;, M3, ..., M}, to Receiver, where
M; — ML-EBTI-, EE[]_,H]

Receiver computes M, = M, @ 1.

2.2.2 1-out-of-2 WBOT

Inputs:
Sender: 2 [-bit secret messages My, M, where [and is known to Receiver.

Receiver: selection bit o € {0,1}

Pre-computation:

Sender generates a secret key k and with the use of tables generation
algorithm Gen constructs T = Gen (k) - the white-box encryption tables and

sends T to Receiver.

Step 1:
55

Sender generates a value ¢ € {01} randomly and transmits it to Receiver.

Step 2:
Receiver generates a value 7 € {0,1}' randomly and transmits m, to Sender,

where My is one of the values defined the following way:
m, = Ency(r), my_, = ¢ @ Encr(r).
Ency(r) is the encryption of r with the white-box tables T,

Step 3:
With use of my Server computes m; = My (P ¢ and transmits two messages

M], M; to Receiver, where M{ = M; @ Dec.(m;), i € {0,1}.

Receiver computes M, = M; @ r.

2.3 WBOT extension protocols
Here we will show the construction of extension for white-box cryptography
based oblivious transfer protocol. These protocols are considered in the

random oracle model. H: [m] X {0,1}* — {0,1}™ is a correlation robust hash
function and G:{0,1}* —» {0,1})™ is a pseudorandom number generator,

where K is a security parameter defined preliminarily.

Definition: The m-times 1 —out —of —n WBOT functionality for [-bit
vectors. denoted m X WBOT), is defined in the following way: The sender S

holds m pairs of vectors {xf,le}. The receiver R has m selection bits

(To,T1s--+»Tm—1). After the invocation of the protocol R should have m

56

vectors {x;j} while staying oblivious of the other vectors and R stays unaware

of the selection bits.

The Protocol O presented below replaces m X WBOT; with k X WBOT,,

resulting the same output with less [-bit WBOT invocations.

Protocol O:

Inputs:
S: m pairs of [-bit vectors (xf,le)

R: vector of selection bits T = (79, T4, -+ -, Tm—1)

Step 1:
S initializes a k-bit vector srandomly

R initializes a m X kmatrix Twith the random oracle

Step 2:
WBOT is invoked where R has the role of sender inputting (t;,t; b 1),

where 0 < i < k and § has the role of receiver with input s.

Step 3:
S sends mpairs of [-bit vectors (yf,yjl) to R, where

y}'?:xjﬂ > H(}'; q}-), and y}-l=le B HU,q; +s)

Where q; is the j™™ row of the matrix received by S in Step 2 with columns ¢°

R outputs z; = }}Tj D H(,t;).

S57

Tm)(k Qka

T=[t".]tk] Q=1[q"..1g"]
q-=t'Ds;*r
4=t Ds*1

Fig. 10: WBOT extension intermediate tables

Protocol 1 replaces m X WBOTwith k X WBOT}, resulting in reduction of
both, WBOT invocation count and length.

Protocol 1:

Inputs:
S: m pairs of [-bit vectors (xf,le)

Rir = (rg,T1,--,Tm—-1)

Step 1:
S initializes a random k-bit vector s

R initializes k pairs of random k-bit vectors {k;, k;'}
WBOT is invoked where R plays sender with inputs {kf,kil},i € [0,k)and S

plays receiver with input s.

58

Step 2:
m X k matrix T is constructed, where t* = G(k{)

Rsendsu’ = t' @ G(k;) P rtoS foralli € [0,k)
S defines m X k matrix @, where ¢* = s; * u' @ G(k;")

Step 3:
S sends m pairs of vectors (yf,yjl) to R, where

y}"} — x}!} ﬂa HU,Q‘}.) and y}l — fol $ HUJQ} $ S)

R outputs z; = }}Tj ® H(,t)

Provided with WBOT proved secure with semi-honest participants (both
parties strictly follow the protocol, but try get more information “legally”)[14] it
is easy to show, that these extensions are secure in random oracle model.
Below is provided the proof of correctness of Protocol 1. Protocol O can be

proved correct with similar considerations.

2.3.1 Proof of correctness

What we need to prove is that z; = x;j

first of all, let’s find a relation between q;and t;
inStep2q' =s; *u' @Gk ,ut = t'DGki)Drandti= G(k).

from these three formulas we get:

i =s5;% (G B GCEHDT) DB Gk
=5 G(k)) B s;*G(k}) B si =T B Gk

when s; = 0,5; * G(k?) D s; * G(kfl) 3% G(kfi) = G(k?),

59

when s; = 1,5, * G(k{) @B s; * G (k) B G(k;") = G(kY), so
(" =si* T @Gk =s; T Dt

therefore q; = s = 1; D ;.
now let’s apply this result to z; = }}Tj b H(,t;)

case 1: 1, =0
z; = y}?’ © H(j,t;)and from Step 3, yf = X}p @ H({,q;), so

0o _ T

z; = y}.l & H(j,t;)and from Step 3, }'jl = le B H(,q; Ds),so

zy=x ©H(,q;Bs) © H(.t)
=x'QHU,s*Dt; Ds) © HU L) =% =x

from both cases we get z; = x;j , so Protocol 1works correctly. ®

2.3.2 Proof of security

We will show the secureness of the sender and the receiver separately lying on

the security of the underlying oblivious transfer protocol, which is, in our case

secure in the semi-honest adversarial model.

Receiver’s security: All the information available to the sender appearing to be

corrupted during the protocol execution are the intermediate u‘-s and also the

k oblivious transfer execution outputs, where he plays the receiver.
60

In simulated mode we assume s chosen randomly by Sender is uniform, from
{0,1}* are chosen k bit vectors {k;'} uniformly and, finally, from {0,1}* m-bit
vectors {u'} are also chosen uniformly.

. 5 . .
In the real execution s and {k;'} are chosen uniformly (as done in the
simulated mode). The intermediate messages u' are selected as

ut = G(k)) D G(k}) D r, and with respect to the security of underlying

i

oblivious transfer protocol, the Sender doesn’t know kil_ , therefore,

1_ M
G(k; ") is cannot be revealed, so the information available to the Sender in

real and simulated executions cannot be distinguished.
Sender’s security:
All the information available to the sender appearing to be corrupted during

the protocol execution are the message pairs {(y°,7")} sent to him in the last

step of the protocol.
In simulated mode we assume the corrupted receiver to choose the chooses

the matrix T along with the values {(k%k!)}, computes the values

bl

" 7 uniformly. As the

-
y. ! =x

; : (B H(j,t;) and chooses the other values }}1—

i _
y; s are computed similarly in real and simulated modes, the receiver gains

: 1-7; :
no advantage here. The weak point could be the values Y; Tj, but with respect

to the used correlation robust hash function, those values are either

indistinguishable in real and simulated execution modes.

61

Chapter 3. SMC Framework using WBOT

Overview

This chapter contains the description, analysis and experimental results for our
secure multiparty computation framework presented in [50, 51, 53]. Here are
presented some existing implementations of SMC frameworks in comparison to
our approach. Building blocks for our framework are described along with the
framework lifecycle description and secure multiparty computation protocol by
Goldreich, Micali and Widgerson (GMW). This chapter also contains
description of compiler into our framework for generating single pass Boolean
circuits from higher level function description. The chapter is finalized with
presentation of our modified version of GMW protocol enabling participation
of parties passive in terms of their engagement in the computation process.
The protocol is justified with an application example for combining competitor
service providers into a single ordering system in a privacy preserving

manner.

Function determination

Boolean circuit generation

|

Secure evaluation of circuit

Fig. 11: Lifecycle of the SMC framework.

62

Most existing implementations of secure multiparty computations rely on an
arithmetic-circuit representation of the function, where VIFF [89] is a
prominent example with comparably good performance and downloadable
code. There are also Boolean circuit based approaches to the problem, most
known of which are FairplayMP [54] and GMW protocol implementation by
Choi et al., which will is taken as a comparison, because the available
implementation of FairplayMP has input size limited to 16 bits and each party
limited to only one input. VIFF and other arithmetic circuit based frameworks
are suitable for outsourcing applications, where the computing parties have
different computing power and also are reportedly slower, than Choi et al.
GMW framework.

3.1 Compiler

GMW as well as several other secure computation protocols, takes as an input
the Boolean representation of the function, which is intended to be computed
[1, 30]. Some of those protocols were implemented during recent years,
descriptions of which can be found in [31, 32] and elsewhere. Along with the
framework implementations, several application scenarios based on those
frameworks were implemented and even embedded in real life applications,
some of which are computing market clearing prices in Denmark [35],
auctions [36], contract signing [37], etc. All of the implemented frameworks
have dependence in terms of execution time and communication cost on the
circuit dimensions of the representation of the desired function, whatever
application it is intended to be used for. However, building a binary or an
arithmetic circuit implementing the desired functionality is not a trivial task, as
it requires expert knowledge in circuit construction, verification and the
exclusive properties of the protocol being used even if we ignore the huge size
of circuits implementing non-trivial functions. There are software tools for

electronic design automation, that can handle these tasks, but the applications

63

of our framework are not limited to being designed by computer scientists or
EDA experts, so our framework includes a compiler, which is responsible for
the generation of Boolean circuit which will implement the function provided in
a special high level programming language as an input to it.

The first ever implemented secure computation framework, intended for
secure two-party computations Fairplay [37] includes a compiler that generates
Boolean circuits based on the high level description of the desired function.
For the function description Secure Function Description Language (SFDL)
[38] is used. As this was the first implementation of such framework with the
compiler also being a unique development, it has some problems with
efficiency, because it takes a lot of time to generate a Boolean circuit even for
not complicated functions. In some cases the compiler is also unreliable,
because during the testing of it we faced termination of processing of AES-128,
which is a very basic operation to compute securely. On a machine with 48GB
random access memory out-of-memory error is reported after 23 minutes of
processing in [35]. So, for being independent from implementation problems
and inefficiency of the existing Boolean circuit generator, we implemented our
compiler, which worked perfectly on the circuits the Fairplay compiler failed
even with computers with much lower computational resources [51]. The
Boolean circuit generation for AES-128 was handled with 8GBs of random
access memory (six times less) on a i5-5200U 2.2 GHz CPU [51, 535].

Our purpose during the development of the compiler was to make it applicable
for any secure computation framework (specifically, we have different modes
of operation for circuit generation for garbled circuit protocol and for GMW
protocol). We allow the users to configure the compiler greatly for resulting in
more efficient circuit constructions for specific applications, but the compiler
itself is general purpose and does not concentrate on specific protocol or
application, like Huang et al. implemented in [39]. Although, the experiments

carried out on the compiler were done through secure multiparty computation

64

protocol of Golreich et al., which is the underlying protocol of the framework
implementation presented in this thesis and also with Yao’s Garbled circuits
protocol, which is the underlying protocol of the framework implementation
presented in cooperation with Sokhakyan presented in paper [50, 51, 55].

The two approaches differ greatly in terms of priorities of the generated
circuits’ size and depth properties. Specifically, the GMW protocol works
faster on low depth circuits, even if the overall count of the gates is slightly
larger, but in case of Yao’s protocol, the circuit depth has no significance, so
we configure the compiler properly, for generating convenient circuits for
both cases.

Although many techniques were obtained from hardware design principles for
circuit constructions, the circuits used for secure computations differ
dramatically from those. The main point of the generated circuits is that they
have to be single pass and not change values of any wire during the execution.
The single-pass property of the Boolean circuits is taken into account in the
designs of secure computation protocols. We used special circuit constructions
for generation low-depth Boolean circuits described in detail in section
3.2.3.3. To be more specific, low-depth sub-circuits are preferred over low-
size sub-circuits, some of which are demonstrated in Table 1.

The GMW, as well as garbled circuits protocol spend very little computational

resources on computation of XOR gates (usually they are considered to be
evaluated “for free”). The case of AND gate is radically different, because

most of the execution time spent during evaluation with GMW protocol is spent

on the computing of these gates, so the less AND gates are present in the

circuit, the less is the execution time. A figure demonstrating two circuits with

different number of AND gates implementing same operation is demonstrated

in Fig. 12.

65

Fig. 12: Two alternative circuits computing function (c®b)®(a®db)®b

3.1.1 Input language

Here we will provide a brief description of the input language of our compiler.
The inspiration and base of the language we use is the Secure Function
Definition Language (SFDL) [38]. Our input language is capable to avoid
function composition for computing primitive functions - here those can be
described in global space. With several modifications this language handles
definition of very complicated functionalities.

The desired functionality can be described in several files, which are being
included into each other. However, the final processing is carried out upon
one file, containing the whole descriptions. The included files may have
variables with coinciding names, which can result in error prone situations.
For this reason, we rename all variables, when including new files to not have
name collisions.

66

We also have several modifications against SFDL regarding supported
operations. The most prominent difference from SFDL is that the high-level
programming language described here has no variable types, so they are
being declared by simply mentioning them, in contrast to SFDL, where there’s
certain syntax defined, which is compulsory to use for variable declaration.

The condition operations are supported in the traditional manner:

o if <expr_ 1> then
< expr_2 >

end

o if <expr_l> then
< expr_2 >
else
< expr_3 >
end
where < expr_ 1> is a valid Boolean expression and < expr_2 > with
< expr_3 > are sets of valid language expressions.
As the generated circuit should be a single pass Boolean circuit, the variable
assignments should be carried out in a similar way, which means that no
variable changes its value, instead a new variable is being introduced each time
an assignment is carried out.
To demonstrate this we will consider a trivial example of variable incrementing

a:= a + 1. In this case a new variable @’ is introduced which carries the
valuea + 1.

Our language also supports iterations and function calls. As a single pass
Boolean circuit should be constructed, we limit the number of iterations, so

one could never produce an infinite loop.

67

The difference from SFDL regarding function declarations is that we are able
to present only return type for the function. The function calls are placed
inline, whenever available just like as C++ template function instantiation,
which is thoroughly discussed in [81].

Input and output in the high level language of our compiler are emphasized
with the method given below:

defvar < var =:= input.<p = { < length =},

where << var = is the variable name, < p = is the participant owning the input
and < length > is the input length.

output. << p == < expr >,

where < p > Is the participant owning the output and < expr > is a valid

expression regarding considered language.

3.1.2 Implementation details

Program pre-processing

Circuit generation

L

Optimization

L

Circuit post-processing

Fig. 13: Compilation stages
In the generation phase an temporary circuit implementing the function is
constructed, which is usually very inefficient. Next comes the optimization
phase, where the inefficient circuit is transformed to an efficient one by
applying several optimizing techniques. And the last phase - post-processing,

68

is applied for GMW protocol specific circuit constructions and reorders gates
in output files to enable better parallelization.

Gate Generator

Gate Queue

Gate Writer

Boolean Circuit

Fig. 14: Compiler circuit generator structure

The phase of circuit generation is divided into several sub-phases, as can be
seen in Fig. 14. The gate generation stage is responsible for the initial gate
construction, which are being passed to gate writer through a queue.

A major improvement upon the compiler included in Fairplay framework, our

compiler doesn’t keep the full circuit in the memory, which results in
processing of large circuits with relatively modest RAM. Every phase of
compiler operates on the circuit with a chunk-based approach. However, the
more of the circuit is contained in memory, the more efficient the
optimizations will be applied, so we enable configuring the compiler with
providing maximum memory amount that is allowed to utilize. The best results
in terms of time-complexity with different storage types was achieved while

using memory mapped files.

69

3.1.3 Optimizations

Removal of inverters and identity gates

While generating the Boolean circuit for the desired functionality, the compiler
may end-up generating inverters and identity gates. This can be present in
situations, where in the high-level description of the function a variable is
being incremented by constant or is a part of a logic expression. The identity
gates are removed trivially, while the inverters are creating more problems.
When removing those, we expect that some other gates may be transformed
into inverters.

Removal of unused gates

As the last stage of front-end produced circuit optimizations, the gates having
no impact on output wires generated during the generation phase are being
removed from the circuit. Although keeping them will not result in any kind of
malfunctioning of the circuit, they are totally needless, because of the lack of
effect on the output wires. By removing these gates, we save precious
computational resources that would be used for evaluation of those.

The circuit is being passed in down-up mode, meaning we take the output
gates and pass to upper gates (marking them as alive) only when they are
connected (have input) to gates being considered. When no continuation of the
processing is possible, we stop and take to the final version only the gates
being marked during the processing.

3.1.4 Post-processing stage for multiparty computations

An additional stage of circuit processing was added to make specific
arrangements reasonable for secure multiparty computations only. The post
processing unit modifies the output file structure in a way to enable efficient
retrieval of gates on the same level, so that they can be processed in parallel
and make possible efficient multithreaded execution of oblivious transfers for

AND gate computations.

/70

3 B3 ORI ORI ORI ORI ORI ORI ORI

|5 % Ty B

[T S =

[AR T % T S T e T W e TR &

[T S =

[PR T % T S T T Y e Y &

[LT ¥ S =

queues 0;
foreach (g in input gates)
begin
push (g, Q):
end
push (dummy gate, Q)
while (empty(Q) == fals=se)
do
g = degque(Q):
if (dummy (g})
begin
if (empty(Q) '= false)
begin
push (g, Q)
end
end
el=e
begin
foreach(s g in successors(g))
begin
if (exported(s g} == false)
begin
push(s g, Q):
end
end
end
export (g)
end

Fig. 15: post-processing of Boolean circuit

The specifics of GMW protocol is that all AND gates require communication

between parties for share based computations, and through the topologic
order of the circuit, circuit evaluation cannot pass forward to gates if both
inputs shares of those gates are not available (one or more of gates, upon

whose output the inputs of the gate in question depends). As XOR gates are

evaluated for free (no communication required), multithreaded evaluation of

AND gates will speed up the circuit evaluation.

/1

The purpose of this post-processing step is to sort gates in output file in a way

to maximize the count of AND gates available at a time for evaluation, so we

output gates in “levelled” order — no child gate appears before parent gate
and dummy gates, are artificially added to the output file as markers for
initiation of bulk evaluation, as in this sorting order inputs shares of gates
listed between two markers are available for computation. Pseudo-code
demonstrating high level implementation of the post-processing step is shown
in Fig. 15.

The following definitions are used in code:

successors(g) - set of successors of gate g (gates, where output wire of g is
an input wire),

input_gates - set of input gates of circuit,

dummy_gate - marker for distinguishing levels of gates.

As seen in the pseudo-code from the figure, gates are being written to file in

special layered order.

3.2 Multiparty computation module

3.2.1 Overview

As we have already mentioned in previous sections, secure multiparty
computation (SMC) are intended to help several mutually distrustful parties
wish to compute a common function without trusted parties, where inputs are
provided by each of them and they do not want to disclose those inputs to
other participants. A few protocols were suggested for solving the SMC
problem. The approaches usually differ with the choice of the initial

assumptions, underlying cryptographic primitives and security levels.

72

3.2.2 GMW protocol

The GMW protocol introduced by Goldreich, Micali and Widgerson in [1], is
intended for computation of any function that is possible to represent as a
single pass Boolean circuit, where the permitted operations (circuit gates) are

XOR and AND. As the protocol avoids the engagement of trusted third

parties, communication is required between all pairs of participants.

i I
Boolean circuit distribution
'
i T
Generation of secret
shares for inputs

M .y

// \\

[Distribution of owned shares] [Collection of others shares }

———

[Evaluation of circuit

based on shares

\

[Distribution output shares] [Collection of output shares }

———

Assembling of
output shares

Fig. 16: Circuit evaluation flow from a participants’ perspective

Unlike the Yao’s garbled circuits protocol, where one party is the circuit
generator and the other party is the circuit evaluator, here all the parties are
possess the circuit locally and each of them plays an evaluator with input
shares of himself and the other participants. Below we will present the building
blocks of the protocol as secret sharing and 1-out-of-4 oblivious transfer, after

which we will thoroughly analyze GMW protocol and each of its steps. At last
73

we will discuss optimization techniques we have applied in our implementation
of this protocol and compare our performance to the others in terms of

experimental results.

3.2.2.1 1-out-of-4 Oblivious Transfer
For implementing oblivious transfer protocol executions for the framework, we

use white-box oblivious 1 — out — of —n described in section 2.2.1 in the

extended version (section 2.3), to achieve best performance.

3.2.2.2 Secret Sharing

Fach party generates n shares for each input wire W (Sy,1, ..., Swn) randomly
so, that B}, s,; = S,. Share generation doesn’t really require much effort
to satisfy the above equation. Party P; generates n-1 shares randomly for all
other parties P;,i # j. To comply to the equation, she just has to adjust its

own share correspondingly —
Swj — (ﬂai:f:j Swi) @ Sw-

After the share generation, each share s,,; is sent to corresponding participant
P;. Now, having shares for all input wires, each participant proceeds to circuit
evaluation. After the evaluation, each participant P; would have its own value
Swi, SO for each output wire w of the circuit we again will have an n-tuple
(Sywis -, Swn). To be combine those values into a single value for each wire

the protocol suggests specific way of gate evaluation, according which the n-
tuples of for each output wire will play as shares of parties, and the final value

will be computed with formula

_ n
Sw = izlswi-

74

As the circuit consists of XOR and AND gates only, below we provide the

methods for both gates’ evaluation that should be used for all input,
intermediate and output gates of the circuit and show they operate as

expected.

3.2.2.3 Gate Evaluation
As already mentioned previously, the GMW protocol operates on a single pass

Boolean circuit constructed with use of XOR and AND gates. Each participate

holds her secret share for each input wire of the circuit and computes the
circuit gate by gate using appropriate evaluation method. In the process of
evaluation, one computes her share of values on all intermediate wires of the
circuit. This means, that even in case of abortion of protocol in an
intermediate phase, if one has the capability to collect the shares of wires
already computed by all participants, she can get the true values on those
wires by combining all shares. Below we present the evaluation methods of

available gates with proof of their validities.

Evaluation of XOR gates

Fig. 17: XOR gate

Suppose we have an XOR gate with 1 and v input wires and an output wire
w. All parties already have their shares for the values on input wires

(Sy1s-rSun) and (Syq,...,Spn). Each party P; computes the value of the

75

output wire the following way: Sy = Syu; @ Syu; . The n-tuple (Sy1, -, Swn)

would be a valid sharing for w’s value, because:

Sw = ?:1 Swi = ?:1 (Sui 63 Svi) — (ﬂa?:l S’ui) 63 (ﬂa?:l Sui)
= 5, D s,

Evaluation of AND gates
u v

Fig. 18: AND gate

Suppose we have an AND gate with input wires 4 and v and an output wire
w. The shares of gate’s input values of u and v are (Sy1,...,Sun) and

(Sy1,---» Sun). The gate’s output value s,, should be computed so, that
Sw = Sy @ Sy = (ﬂa?:l Sui) ® (ﬂa?:l Svi) —
= (i1 (52 ® 541)) D (Bi<j ((Sui @ 5v;) D (547 ® 511)))-

The first sum @B, (5, ® s,;) can be computed locally for every

participant, but for evaluation of the second sum one should communicate with
other participants. To avoid collection of individual shares of other parties,

oblivious transfer protocols are used for AND gate evaluation in the following
way.

P; has to interact with several P;-s to compute each element of the sum

Di<; ((Sui X Suj) D (Su}' X Sm’))'

76

{i.j}

i
P; generates a random value 7 {73

and composes four values with 7;-"* and its

shares for input wires of the gate being computed s,,; and s,,;.
fi,j} 1,53 {i.j} {i.j}
Y, U sy, D sy, 1D sy D sy

After, the parties invoke a 1 —out —of — 4 oblivious transfer with P; as

receiver and P; as sender. P; requests one of the abovementioned values with

its index composed of its shares for the input wires s,;,S,;. P; computes the

required sum with the received value Ti{i‘j ;

T;:{LJT} ﬂ} -}}{1’}} — (Sui @ SU_,T) 63 (Su} ® SUI:)

(Proved in [29] section 7.5.2.2.)

So P; , after getting all ?}.{L”T}—s from all parties with j = i, can compute its

share for the output wire w.
Swi = (Sui ® Sm’) 63 (EBL’{;’ ((Sui ® Suj) ﬂg (Suj ® Sui))

Given the methods of share based evaluation of both type gates, each party
computes the circuits’ output value shares. The computation of the full value of
an output wire can be done after each participant sends the result of its
computations to others.

Note, that computation of an XOR gate share values is free in terms of

network communication and almost free, in terms of computation (n XOR
operations). However, the computation of AND gates takes G) oT

invocations.

77

3.2.3 Optimizations

3.2.3.1 White-Box oblivious transfer
Oblivious transfer is an essential cryptographic primitive heavily used in secure
computations. Yao’s garbled circuit based two-party protocol [12], GMW

protocol considered in this paper and others also. It was introduced by Rabin

. . . 1
in [13] as a protocol where the sender sends a message to receiver with >

probability and does not reveal if the receiver got the message or not. A
modified version of this protocol was introduced later by Even et al. in [14],
currently known as the basic 1-out-of-2 OT protocol. This protocol assumes

that the receiver has a selection bit s€{0,1} and the sender has two bits
my, My € {0,1} . After protocol execution the receiver gets m; and nothing
about 1M _. and the sender does not reveal s.

Unfortunately this protocol depends on public-key operations, which require
exponentiation operations which are pretty expensive, considering the huge
amount of OT operations required for secure computations(in Yao’s protocol
OTs are used for all input bits of one of the participants, in GMW OTs are
used for all AND gates). In [11] was introduced a new approach to OT using

white-box cryptography techniques instead of public-key operations, allowing
to reduce cost of an OT in several orders of magnitude, in case of many

invocations, as reported.

3.2.3.2 WBOT extension

Another optimization technique for reducing the OT invocation count in secure
multiparty computation frameworks is OT extension introduced by Beaver in
[74] and later enhanced by [/8]. Beaver also defined a method for
preprocessing oblivious transfers preliminarily to use later with help of

relatively cheap operations [34, 35]. We have constructed similar optimization

/8

for white-box OT, enabling the reduction of the required OT invocation count

to fixed security parameter. The details of the extension can be found in [52].

3.2.3.3 Low-depth circuit construction

In secure computation protocols based on binary circuits the count of gates is
of a great importance and directly affects the execution time. In GC protocol
for the two-party setting by virtue of optimization techniques (free-XOR [41])
and GMW protocol for multi-party secure computations by definition

computation of XOR gates takes little effort and the evaluation efficiency of
AND gates affects the overall computation greatly.
In GMW protocol unlike the GC two-party protocol, the count of AND gates is

not the only parameter affecting the performance. Depth of the circuit being
evaluated has crucial effect on performance also: the deeper is the circuit- the
worse is performance for circuit evaluation of same depth. For overcoming
this issue we added special circuit building constructions with slightly larger
overall gate count but less depth specially for lowering circuit overall circuit
depth. Some details of those circuit constructions can be viewed in Table 1.

We use several replacements for extensively used functionalities like addition,

squaring and comparison.

Computing the addition

The most common method used for addition of [-bit numbers is the Ripple-
carry adder ADDL., overall gate count and depth of which are linear with

respect to I: S(ADD}.) = D(ADD}.) = 1 [42]. Although the overall size

of the adder is considered minimal for this case, we are more concerned with
the depth property of the circuit, because in our implementation of the GMW
protocol we can compute many and gates in parallel, but the parallel

executions are limited to the gates on the same level in circuit i.e. not

79

depending on each other. For those purposes we prefer using circuit

with larger size, but lower depth.

Table 1: depth and overall size of circuit building blocks [8]

Circuit | Size S | Depth D

Addition

Ripple-carry ADD/SUB/,. £ ¢

Ladner-Fischer ADDY - 1.256[logq £] + £ 2[logs £] + 1

LF subtraction SUB] 1.250[log, €1 + 2 2[log, £] + 2

Carry-save ADDYZ) f + S(ADD") D(ADD*)+1

RC network ADD!” In —£+n— [loggn] — 1 Moggn — 1] + £

A (£,n) fn — 20 +n — [logy n] [loggn — 1]

CSA network ADD.J) _S(ADD?‘J}[_%E ,..1] _|_l:h::ﬂ[}[}fj‘_r._]L,g2)

Multiplication

RCN school method MUL%,- 207 — f 20 -1

CSN school method MULG sy | 262 + 1.25¢log, £] — £ + 2 3[log, £] + 4

RC squaring SQR%- = 20 -3

LF squaring SQR] - €<+ 1.256[log, £] — 1.56 — 2 3[log, £] + 3

Comparison

Equality EQ" f—1 [log, £]

Sequential greater than GT% £ ¢

D& C greater than GTY, - 30 — [log, £] — 2 [log, £] + 1

Selection

Multiplexer MUX" £ 1

Minimum MIN'-™ (n—1)(S(GT")+) log, n](D(GT")+1)

Minimum index MIN{ (n— 1)(S(GT*)+£+ logyn])| [log, n](D(GT*)+1)

Set Operations

Set union U° £ 1

Set intersection M’ 4 1

Set inclusion C° 20 — 1 [log, £] + 1

Count

Full Adder count CNT 4 20 — [log,] — 2 [log,]

Boyar-Peralta count CNTp £ —dpy(f) |log, £]

Distances

Manhattan distance DSTY, 2S8(SUB*)+S(ADD"™))+1 |D(SUB")+D(ADD"*)+1
QTR oQ [TSI rL

Euclidean distance DSTE; +;‘£TSBE fi_;fﬁtggia 6 —]:?L?QLIE‘-]LQ,

Ladner-Fischer Adder

blocks

The Ladner-Fischer adder ADD}; [56] also referred as parallel prefix has

logarithmic depth and implements the addition of two [-bit values x; and ;.
80

The adder has size S(ADDEF) = 1.25[[log, [+ and depth
D(ADD}z) = 2[log,]+ 1. The speciality of Ladner-Fischer adder is the

evaluation of several carry bits in simultaneously. A bit p; ; for parity and a

carry bit ¢; ; are computed for all nodes positions varying 1 < i < [and

levels varying 0 < j < [log, l].

Parity and carry bits are computed by the adder in the zero level with gates

Pio= X @ yiandcipo = x; & ;.
For subsequent levels, those bits are represented in the following way:

Pij = Pij—1 @ prjrandc; = (0, —1® cj—1)® .
Where k is the node which is responsible for propagation of the carrying bit
to position I.

Finally, the adder computes the resulting sum in the following way at the level
number [log,] + 1:

Si+1 = Ciflogy 1, Si = Pio D Ci—1log,(i-1)]

for]_ < 1 < E, and 51 — pl,ﬂ‘

Squaring an integer

A number can be squared with multiplying it with itself, so a circuit
construction for multiplication can be used for implementing this operation.
However a fast parallel squarer construction SQR} was presented by Yoo et
al. which has better size properties compared to the multiplication based

circuit. In this approach the improvement is made using the common squaring

81

by multiplication Yi_, 25 (x'x;) with use of carry-save and Ladner-Fischer

adders [58].

S(SQR}) =12 + 1.251[log, 1] — 1.51 — 2

21, [i

D(SQR!) = D(ADDCS;] + D(ADDZ) +1 = 3[log, 1] + 3.

Comparison
Two comparing operators are used in our circuit constructions which are
equality check operator and greater-than operator. The standard equality

circuit has [— 1 bit comparisons, so has linear size [41]. It can be modified to

play-off manner circuit to reduce its depth to logarithmic complexity.

Greater-than operator checks if its first operand is graeter than the second, so
it can be implemented like in [42] with linear size and depth. However
logarithmic complexity for depth can be achieved her also with the help of

greater-than circuit GTZ . constructed in [57] with

S(GTpe) = 31l — [log, 11 — 2 and depth D(GTS.) = [log, 1]+ 1.

3.2.4 Experimental results

In this section some experimental results are presented displaying
improvements of our protocol compared to Choi et al. implementation of GMW
protocol [9]. This implementation was the best available GMW based approach
to multiparty computation.

We made comparison of several results of the same function’s Boolean circuit
generated by our compiler. The function evaluated is basically a secure peer

rating system, which allows several users to rate each other by some factors

82

and find out only the final results of the rating, without revealing the individual
ratings to each other or other entities.

The experiments were made in a network of 10 devices with from 4 to 8 GB of
RAM and 4™ generation Intel Core i5 CPUs. The computers were connected
via 1Gb Ethernet. In Fig. 19 we show the comparison of results on circuit with
5, 10, 50 and 100 participants in our implementation versus GMW protocol
implementation by Choi et al. with the OT extension of the latter disabled, to
demonstrate the improvement of our framework against the traditional GMW.
The improvement in its significant part is the result of using white-box
cryptography based oblivious transfer protocol in its extended version
described in chapter 2.

In Fig. 20 we compare our results with the ones got on the full optimized
implementation of Choi et al.. Here we also find significant improvement which

is explained by the use of WBOT and its extension.

Choi GMW vs. our work

24
—— Choi GMW === gL work

18

12

execution fime (sec)

_—

20 A0 B0 80 100

number of participants

Fig. 19: Choi et al. un-extended vs. our implementation

83

We computed the execution time for both platforms in a similar way. While the
individual execution times for each participant can be computed easily, the
overall performance of the platform can be assessed in several ways. For the
deployment of our platform we used shared locations for keeping non-secret
information. The Boolean circuit outputted by our compiler is shared among
the participants along with a file containing information about the state of
users (state file).

Choi GMW ext. vs our work

12
—— Choi GMW gL work

execution fime (sec)
[5x]

20 A0 &0 a0 100

number of participants

Fig. 20: Choi et al. vs. our implementation. Both extended

Each participant registers its IP and corresponding communication port, after
it’s ready for the computation (has the Boolean circuit along with generated
secret shares for its inputs). We take the starting point of execution time the
edit of the state file after which all parties are marked as ready. As the finish of
the execution we take the timestamp of the state file edit, after which all
parties are marked as finished. An interesting problem to consider is avoiding
all shared means for completely decentralizing the execution of our platform

even in terms of non-secret information.

84

3.3 Extension to GMW

Here we introduce a secure multiparty computation protocol intended for
computations including active and passive participants. The active parties have
private input and expect output from the computation, as regular participants
described in the context of GMW protocol. Passive participants have their
private inputs to the function being computed and also expect output, but do
not want to participate in computation. This protocol is motivated by the
scenarios, where several parties cooperate to compute a function while
keeping the privacy of their inputs, but one or more of the parties are not
willing to be directly involved in the evaluation processes due to lack of
computational resources, low bandwidth connection, limited networking
capabilities or other reasons. The passive participants might use mobile
devices, which nowadays usually do not lack computational power, but have
limited battery life which is being heavily used during wireless network
communications.

Having implemented this protocol we can also assume having a tool for secure
outsourcing application via constructing a special platform on this protocol,
with only one party of the first type is allowed e.g. has input, but does not want
to participate in computation (further we will refer to those as non-computing
parties) and the others is of the second type e. g. has no input to the function
being computed.

The proposed protocol is based on GMW SMC protocol with an alternative
approach to secret sharing [7]. Here the secrets are shared between parties
willing to partake in the computation (further we will refer to those as

computing parties) only i.e. if there are overall n + m participants in the
computation with only m computing parties, only n secret shares would be

generated for any argument, which would be shared between computing

parties only.
85

We will assume that not all of the computing parties are being engaged in
adversarial behaviour, because as non-computing parties do not hold shares
for their own inputs, their secrets might be recovered by computing parties if

those are maliciously cooperating.

3.3.1 Collaboration between competing services

Here we will describe the process of combining multiple delivery services into
a unified platform that involves several members. In fact the application
described is suitable for using in different contexts like combining any delivery
or transportation services where the members are service providers, who do
not want to disclose their current locations or the locations they are available
to cover within fixed time to their competitors, but eager to cooperate with
them to have their share in unified ordering system, thus increasing their
order counts and service efficiency.

Concerning the motivation of client to use the unified system, let’s compare
the actions needed for getting the fastest service. In case of having an access
to the unified application, the client just has to give the application her location
and confirm the order. All the computation and decision processes are
completed without the clients’ involvement. In absence of such a system one
should contact several service providers (possibly with different interfaces),
give them her location, compare the offers of different providers, find the best
of them and finally put an order. In the latter case the client also has to trust
the information she got from service providers. Suppose the service providers
are taxi service companies with one or more cabs and the client has no
priorities for choosing particular service other than fast pick-up.

Taxi services do not want to make their locations visible to rival companies to
avoid them getting advantage by better positioning of their cabs (for example,

this can be done by a company with significantly more cabs). All cab locations

86

are also hidden from the client, because a competitor can possibly act as a
client to find out others’ cab locations and get advantage.

Having the application scenario described we show several methods as
candidates for the secure computation itself. These methods are basically
computing the minimum value of distances between client as one point, and

provider instances as candidates for the second point. Different distance

measurement algorithms are presented below.

4 s Marcus
Jy s M) o The Cathedral Church & GarveyPark ¢ O”’e,
' 4 & of St: John the Divine S < Koy
/ ~ ’
& -3 7 > e g Azl
¥/ .8 % s B X
V| Lo & 5 DT
& & 5 7 3 ¢
!/'}:" < ? §J £ & V-'
y 5 Y& 77 k)
{f & s’ A3 & 6{/7 ¢ v
W s & < Se 3
I s § F W o
| & S &
/] & S &
H .
) & 3 ‘ EAST HARLEM
/.".‘:'7 3 — M}
’1,/ 11/‘96
y % Sy Museum of the o
& o City of New York €10, p
s g & SERALES &
£ S AT s ¢ S
§ § Q
o s 9 S &
(| s & o B & & Q.
§ & < & X &
SDEDR g ~ S
UPPER 5 x o y
WEST SIDE. S & :
> 3 quper Hewitt &g /,,}:/
= Smithsonian Design... 6t m”
@ Sy
S 2 -
% < / /
"y MANHATTAN a o K y/
'~ |I
an Museum [} T, e 92nd Street Y oS (
tural History eue Galerie New Yor é
The Metropolitan 2 m >
Museum of Art X & (=]
S ‘95(/7 ¥ =
; E R O & %
& > < N
[M] TR oy R \
S & /
Al
Zerrg, UPPER > /4
cep AST SIDE ; ;:'.‘"é
s &~ ,-’/ 5
% 9 % “Sep R
o '1;’\ > S 4N
¥ 7 &>/ ¥ & A
N * .
O & y Socrates/=,
Central Park Zoo & [ENOX HILL 0 Y / Sculpture Park
é &> BBl The NoguchiMuseum & &
5»9//) el 7:9, <)]
SN St ;. —;s
£ o 4 ~
~ &y
%Google : &
The Museum . £ & 3y
f Modern A €65 y/ & -
of Modern Art Es. X5 V- Map data 22016

Fig. 21: Taxi service car locations and client location

87

3.3.1.1Distance Measurement

The main purpose of this application is to find the nearest item in the unified
database of locations to a submitted location. With the computation securing
method already appointed, we still need to have accurate location detecting
and network connection hardware for the service providers and individual
cabs. In this work we consider the mentioned hardware implemented in a
black-box manner - we do not the technical and efficiency details of those. We
also assume that the computing parties also have identical maps and their
locations follow common coordinate system, to avoid misinterpretation of
function arguments.

Considering the distance measurement we have several methods as candidate.

For Euclidean and Manhattan distances Depth efficient circuits were used from
[8].

3.3.1.2 Euclid Distance

The most general version of the distance measurement function is computation
of the Euclid distance between the customer and all provider instances (e.g.
cabs). With the coordinates given in two dimensional format, the customer’s

location denoted as (x,,¥.) and for i-th provider instance (x;,y;) considering

m provider instances, the following function should be computed to determine

the “winning” bid:

I;Iéifll((xc —x)?+ (e —¥:)?).

Although, this distance measurement method will be very precise in case of

services operating in seas and oceans or drone deliveries, it’s accuracy can be

88

very poor in case of taxi or delivery services in most cities street maps or for

similar problems in any grid-like structures.

.
3.3.1.3 Manhattan Distance
A2 Marcus 3
G M} o The Cathedral Church & GarveyPark o Ythg,
5 » of St: John the Divine X = 7
5 o, & X . o
5 70y \3 A D et A
¢ & ’ Sy P - R RN
055 b" y S o @
S & X3
"’;"7 "—‘— ?‘} b })G ,S\k\ Qb
5 2 2 & A
v 3 R 7 @ v
S He 8 v St~
X S Py
IS S & B3
> U o
R =
O
v & =
M)
"%
% o
\\« u/ LL 1
3 05
s s & 0 o @
o & s S .\A
O 5 o &
) —V O &
S e S ¢
> Vi ooS
S S >
O 2
> Cooper Hilh
= Smithsonian Des
& S, [14]
e
'7) Y 2 - \‘1
S MANHATTAN \v—
D
an Museum ; A
> oy R
tural History Neue Galerie New York |
The Metropolitan %
Museum of Art Y)
2 '\;\. z
i T & ®
v &
(M} X &
= B
& \33" v_&
2errg ey
9Ce oy &
& S
A &
& &)
<) \Q‘\
& & K
& £ > &
Socrates ¢
7 A
Central Park Zoo & JOX [0 Sculpture Park)
W The NoguchiMuseum & %%,
“9p 2
S', ~
=
-
:’—}
& 5.
Map data 22016

&g, o
%Google

The Museum L

of Modern Art E ¢ 630,

Fig. 22: Manhattan (dashed) versus Euclid distance (solid)

This distance measurement algorithm is also called taxicab distance which

intuitively fills the accuracy gap mentioned for Euclid distance measurement.

89

The distance in this method is the sum of absolute differences of the Cartesian

coordinates. In this case the desired function is:
min(|x, — x;| + [y. — ;D).
1<-m

This algorithm is very simple and has a small circuit representation and,
therefore, is efficient in terms of performance, but unfortunately it cannot be

considered as a general purpose method.

3.3.14 Graph Approach.

Another method for fixed traffic map but with rather irregular structure can
be introduced with graph construction for specific maps, where grid-oriented
Manhattan approach is not effective. This technique assumes the parties have
once preprocessed the map they are going to cooperate upon and generated a
graph-map for it. The generated graph should be an oriented and weighted.

The graph vertices are crossroads on the map and an edge (4, B) is present
in the graph between vertices A and B, if there’s a direct route without

crossroads (not involving any other vertex) connecting those on the real map

with traffic allowed in A — B direction. The weights are non-negative numbers

assigned to the graph edges, equal to the distance between corresponding
crossroads.

Upon our function computation we can also add special marked vertices for
the client and provider instances or simply mark their nearest nodes as
special, depending on the map specifics.

With this graph construction our desired function to compute the nearest
provider instance will be with use of Dijkstra’s algorithm [10] for finding
shortest path in graphs. The algorithm will terminate upon finding any node

marked as special.

90

Conclusion

In this thesis the design and implementation of a generic framework for secure
multiparty computation were described, along with construction of its building
blocks, including an extension protocol to white-box oblivious transfer protocol
which decreases the required invocation count of transfers, resulting in
enhancement of the overall performance of the applications based on the
framework. The lifecycle of implemented framework consists of the following
stages:

. The participants of computation input a program implementing their
desired function described in a high level programming language.

. A single pass Boolean circuit implementing the same function is being
generated by the compiler module of the framework.

. The generated circuit is being executed securely based on GMW secure

multiparty computation protocol.

The implemented framework consists of separately developed compiler and
computation module, which are of general purpose and can be used in other
frameworks or be replaced in future with enhanced versions easily. The
underlying oblivious transfer protocol is also replaceable with other
implementations for satisfying stronger security requirements than in the
semi-honest model or for achieving better performance. The current
implementation displays increased performance compared to existing
implementations. The advantage was mainly achieved by virtue of applying a
novel oblivious transfer protocol based on white-box cryptography in the
extended version as a building block in the implementation of Goldreich-Micali-
Widgerson (GMW) protocol for secure multiparty computations offering
security in semi-honest adversarial model.

91

A compiler, which generates Boolean circuits optimized for GMW protocol for
any function defined in special high level language is included in the
framework, enabling users without expert knowledge in Boolean circuit
construction to interact with the framework effectively.

Also an extended version of the GMW protocol was introduced, which enables
participation of computationally passive entities in the process by only
providing inputs to the function and getting output of the protocol execution.
Applications scenarios for traditional and extended versions of the

implemented protocol utilizing the framework were suggested and justified.

92

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

Table of Figures

1: Symmetric-Key SyStemS....c...viiiiniiiiiiiiie e 12
2: Substitution-Permutation Networks [71].......ccooieiiiiiiiiiiiiiiiniiiineeenn. 14
3: Stream CIPher [71] oo 15
4: Key GENEratioNccuuiiiiiii ittt 17
5: Asymmetric key encryption scheme workflow.......................co.eie. 19
6: Real/ideal modelsco.iiiiiiiiiiiiii 22
/: White-Box implementation of a block cyphercoiiil. 36
8: Memory dump graphical representation [43]cccoeeeiiiiiiiiniennnn.e. 38
9 SPN rouNd ..o 39
10: WBOT extension intermediate tablesc...ccoooiiiiiin . 58
11: Lifecycle of the SMC framework.cooviiiiiiiiiiiiiiiiiie 62
12: Two alternative circuits computing function (c®b)Q(a®b)®b.......... 66
13: Compilation StAZESuvveuuneiiiiieiiie e 68
14: Compiler circuit generator Structurec.ocooveiiiiiineiieeninennnn.. 69
15: post-processing of Boolean circuit...........c..ccoveiiiiiiiiiiiiiinee. /1
16: Circuit evaluation flow from a participants’ perspective /3
17: XOR At e 75
T8: AND Gate ..uiiniiie e /6
19: Choi et al. un-extended vs. our implementation 83
20: Choi et al. vs. our implementation. Both extended 84
21: Taxi service car locations and client location.............cc...coeeeeiinn. 87
22: Manhattan (dashed) versus Euclid distance (solid)...............c.ccccun.... 89

93

test4.doc#_Toc453676730

[1]

[2]

[3]

[4]

[5]

[6]

7]

References

O. Goldreich, S. Micali, and A. Wigderson. How to play any mental
game. In STOC ’87: Proceedings of the nineteenth annual ACM
symposium on Theory of computing, pages 218-229, New York, NY,
USA, 1987. ACM.

K.G. Paterson; G.J. Watson. "Immunising CBC Mode Against Padding
Oracle Attacks: A Formal Security Treatment". Security and

Cryptography for Networks — SCN 2008, Lecture Notes in Computer
Science (Springer Verlag), pp. 340-357, 2008.

S. Vaudenay, "Security Flaws Induced by CBC Padding Applications to
SSL, IPSEC, WTLS...". Advances in Cryptology — EUROCRYPT 2002,
Proc. International Conference on the Theory and Applications of

Cryptographic Techniques (Springer Verlag), pp. 534-545, 2002.

M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness theorems
for noncryptographic fault-tolerant dist ributed computations. In 20th
Annual ACM Symposium on Theory of Computing, pages 1-10. ACM
Press, 1988.

D. Chaum, C. Crépeau, and |. Damgard. Multiparty unconditionally
secure protocols. In 20th Annual ACM Symposium on Theory of
Computing, pages 11-19. ACM Press, 1988

R. Cramer, |. Damgard, and J. Nielsen. Multiparty computation from
threshold homomorphic encryption. In Birgit Pfitzmann, editor,
Advances in Cryptology — EUROCRYPT 2001, vol. 2045, pp. 280-300,
2001.

A. Shamir. "How to share a secret." Communications of the ACM 22, no.
11, pp.612-613, 1979.

94

[8]

[9]

[10]

[1]

[12]

[13]

[14]

[19]

[16]

[17]

[18]

T. Schneider and M. Zohner. "GMW vs. Yao? Efficient secure two-party
computation with low depth circuits.” In Financial Cryptography and Data
Security, pp. 275-292. Springer Berlin Heidelberg, 2013.

S.G. Choi, K-W. Hwang, J. Katz, T. Malkin, D. Rubenstein. “Secure
multiparty computation of Boolean circuits with applications to privacy in
on-line marketplaces.” Dunkelman, O. (ed.) CT-RSA 2012. LNCS, vol.
7178, pp. 416-432. Springer, Heidelberg, 2012.

M. O. Rabin, “How to Exchange Secrets by Oblivious Transfer”,
Technical Memo TR-81, Aiken Computation Laboratory, 1981

M. 0. Rabin. Digitalized Signatures and Public-Key Functions as
Intractable as Factorization, MIT/LCS/TR-212, 1979.

S. Even, O. Goldreich and A. Lempel. “A Randomized Protocol for
Signing Contracts.” Communications of the ACM, 28(6):637{647, 1985.

M. Fischer, S. Micali and C. Rackoff. “A secure protocol for oblivious

transfer”, presented at Eurocrypt’84 but missing in the proceedings.

J. Kilian. “Founding Cryptography on Oblivious Transfer”. In 20th STOC,
pages 20-31, 1988.

B. Chor, E. Kushilevitz, O. Goldreic and M. Sudan. "Private information
retrieval." Journal of the ACM (JACM) 45, no. 6, 965-981, 1998.

S. Wiesner, “Conjugate coding,” SIGACT News, vol. 15, no. 1, pp. 78-
88, 1983.

Rivest, R.; Shamir, A.; Adleman, L.. "A Method for Obtaining Digital
Signatures and Public-Key Cryptosystems". Communications of the ACM
21 (2): 120-126, 1978.

C. Gentry and Z. Ramzan. "Single-database private information retrieval
with constant communication rate." In Automata, Languages and

Programming, pp. 803-815. Springer Berlin Heidelberg, 2005.

95

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

M. Naor and B. Pinkas. "Efficient oblivious transfer protocols." In
Proceedings of the twelfth annual ACM-SIAM symposium on Discrete
algorithms, pp. 448-457, 2001.

A. Jivanyan and G. Khachatryan “Efficient Oblivious Transfer Protocols
based on White-Box Cryptography”. AUA Internal Reports, 2013.

Y. Lindell and B. Pinkas. "Secure multiparty computation for privacy-
preserving data mining." Journal of Privacy and Confidentiality 1, no. 1,
20009.

M. Bellare and S. Micali. "Non-interactive oblivious transfer and
applications." In Advances in Cryptology—CRYPTO’89 Proceedings, pp.
547-557. Springer New York, 1989.

E. Kushilevitz, and R. Ostrovsky. "Replication is not needed: Single
database, computationally-private information retrieval." In focs, pp.
364. IEEE, 1997.

G. Brassard, C. Crépeau and J.-M. Robert “All-or-Nothing Disclosure of
Secrets”. Proc. Advances in Cryptology - Crypto '86, Springr-Verlag
LNCS 263 (1987), 234- 238

D. Boneh, “The Decision Diffie-Hellman Problem”, Proc. of the Third
Algorithmic Number Theory Symposium, Springer-Verlag LNCS 1423
(1998) 48-63.

W. Diffie and M. Hellman, New directions in cryptography, IEEE Trans.
Inform. Theory, vol. 22(6), 1976, 644-654.

T. ElGamal, “A public key cryptosystem and a signature scheme based
on discrete logarithms”, Proc. Advances in Cryptology - Crypto 84,
Springr-Verlag LNCS 196 (1985), 10-18.

O. Goldreich, “Foundations of Cryptography: Volume 1, Basic Tools”,
Cambridge University Press, 2007.

96

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

O. Goldreich, “Foundations of Cryptography: Volume 2, Basic
Applications”, Cambridge University Press, 2009.

A. Yao, “How to Generate and Exchange Secrets”, 27th Annual

Symposium on Foundations of Computer Science - Toronto, 1986.

V. Kolesnikov and R. Kumaresan, “Improved Secure Two-Party
Computation via Information-Theoretic Garbled Circuits”, Security and

Cryptography for Networks - 8th International Conference, 2012.

A. Shelat and C.-H. Shen, “Fast two-party secure computation with
minimal assumptions”, 2013 ACM SIGSAC Conference on Computer and

Communications Security- 2013.

J. Massey, G. Khachatrian and M. Kuregian, “Nomination of SAFER+ as a
Candidate Algorithm for Advanced Encryption Standard (AES),”
represented at the first AES conference, Ventura, USA, August 20-25,
1998.

D. Beaver. “Precomputing oblivious transfer.” In Advances in Cryptology
| Crypto 95, volume 963 of LNCS, pp. 97-109. Springer, 1995.

Bogetoft P., Christensen D. L., Damgard I., Geisler M. et al. “Secure
multiparty computation goes live”, Financial Cryptography and Data
Security, Springer - 2009, p. 325-343.

G. Di Crescenzo, “Private selective payment protocols”, Financial
Cryptography - 2001.

D. Malkhi, N. Nisan, B. Pinkas and Y. Sella, “Fairplay - Secure Two-
Party Computation System”, Proceedings of the 13th USENIX Security
Symposium - August 9-13, 2004.

SFDL Specification - Version 2.0 - Septempber 4, 2008.
[Online].Available:http://www.cs.huji.ac.il/project/Fairplay/FairplayMP/SF
DL2.0.pdf.

97

[39]

[40]

[41]

[42]

[43]

[44]

[49]

[46]

[47]

Y. Huang, D. Evans,]. Katz and L. Malka, “Faster Secure Two-Party

Computation Using Garbled Circuits”, USENIX Security Symposium -
2011.

C. E. Shannon, :A symbolic analysis of relay and switching circuits”,
American Institute of Electrical Engineers, Transactions of the - 1938 -
vol. 57, no. 12 - p. 713-723.

V. Kolesnikov and T. Schneider, “Improved Garbled Circuit: Free XOR
Gates and Applications”, Automata, Languages and Programming, 35th

International Colloquium - 2008.

V. Kolesnikov, A.-R. Sadeghi, and T. Schneider. "Improved garbled
circuit building blocks and applications to auctions and computing
minima." In Cryptology and Network Security, pp. 1-20. Springer Berlin
Heidelberg, 2009.

C.E. Shannon. “A mathematical theory of communication”. The Bell
System Technical Journal, 27:379-423, 623-, july, october 1948

T. Kerins and K. Kursawe. “A cautionary note on weak implementations
of block ciphers”. In 1st Benelux Workshop on Information and System
Security (WISSec 2006), page 12, Antwerp, BE, 2006.

A. Shamir and N. van Someren. “Playing “Hide and Seek” with Stored
Keys”. In Proceedings of the Third International Conference on Financial
Cryptography (FC 1999), volume 1648 of Lecture Notes in Computer
Science, pages 118-124. Springer-Verlag, 1999

B. Schneier. “Description of a New Variable-Length Key, 64-bit Block
Cipher (Blowfish)”. In Proceedings of the International Workshop on
Fast Software Encryption (FSE 1993), volume 809 of Lecture Notes in
Computer Science, pages 191-204, London, UK, 1994. Springer-Verlag.

W. Michiels and P. Gorissen. “Cryptographic Method for a White-Box
Implementation”. U.S. Patent Application 2010/0080395 Al, Filed
November 9, 2007.

98

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[59]

[56]

D. Genkin, A. Shamir and E. Tromer. "RSA key extraction via low-
bandwidth acoustic cryptanalysis." In Advances in Cryptology-CRYPTO
2014, pp. 444-461. Springer Berlin Heidelberg, 2014.

S. Goldwasser and S. Micali. "Probabilistic encryption & how to play
mental poker keeping secret all partial information." In Proceedings of
the fourteenth annual ACM symposium on Theory of computing, pp.
365-377. ACM, 1982

A. Jivanyan, G.H. Khachatryan, T. V. Sokhakyan and D. H. Danoyan.
“Acceleration of Secure Function Evaluation Protocol”. Computer
Science and Information Technologies (CSIT), 2015, pp 115-118.

D. H. Danoyan and T. V. Sokhakyan, “A Generic Framework for Secure
Computations”. Proceedings of the Russian-Armenian (Slavonic)
University #2, Physical-Mathematical Sciences, 2015, pp. 14-21.

D. H. Danoyan, “Extending White-Box Cryptography Based Oblivious
Transfer Protocol”. Proceedings of the Yerevan State University #1
(239), Physical and Mathematical Sciences,2016, pp. 40-44.

D. H. Danoyan, “Secure Multiparty Computations for Collaboration
Between Competing Services”. Mathematical Problems of Computer
Science #2, 2016.

A. Ben-David, N. Nisan, and B. Pinkas. “FairplayMP: A system for secure
multi-party computation”. In 15th ACM Conf. on Computer and
Communications Security, pp. 257-266. ACM Press, 2008.

T. V. Sokhakyan, “A user configurable compiler for secure computation
framework” In Proceedings of Engineering Academy of Armenia, Vol.
13, N. 1, 2016, pp. 138-142.

R. Ladner and M. Fischer, "Parallel prefix computation." Journal of the
ACM (JACM) 27, no. 4 (1980): 831-838.

99

[57]

[58]

[59]

[60]

[61]

62]

[63]

[64]

[65]

). Garay, B. Schoenmakers and]. Villegas. "Practical and secure
solutions for integer comparison." In Public Key Cryptography-PKC
2007, pp. 330-342. Springer Berlin Heidelberg, 2007.

J. Yoo, K.F. Smith, and G. Gopalakrishnan. "A fast parallel squarer based
on divide-and-conquer." Solid-State Circuits, IEEE Journal of 32, no. 6
(1997): 909-912.

T. K. Frederiksen, T. P. Jakobsen,]J. B. Nielsen, P. S. Nordholt and C.
Orlandi, "MiniLEGO: Efficient Secure Two-Party Computation from
General Assumptions.", EUROCRYPT, 2013.

Y. Huang, J. Katz and D. Evans, "Quid-Pro-Quo-tocols: Strengthening

'

Semi-honest Protocols with Dual Execution,’
Security and Privacy, SP 2012, 21-23 May, 2012.

IEEE Symposium on

Y. Lindell, B. Pinkas and N. P. Smart, "Implementing two-party
computation efficiently with security against malicious adversaries," in

Security and Cryptography for Networks, Springer, 2008, pp. 2-20.
D. Evans, Y. Huang, J. Katz and L. Malka, "Efficient privacy-preserving

biometric identification," in Proceedings of the 17th conference Network
and Distributed System Security Symposium, NDSS, 2011.

D. Boneh, R.A. DeMillo, and R.]J. Lipton. "On the importance of checking

cryptographic protocols for faults." In Advances in Cryptology—
EUROCRYPT’97, pp. 37-51. Springer Berlin Heidelberg, 1997.

P. Kocher, . Jaffe, and B. Jun. Differential Power Analysis. In “Advances
in Cryptology - CRYPTO ’'99”, Lecture Notes in Computer Science
(1999), 388-397.

S. Chow, P. Eisen, H. Johnson, and P.C. van Oorschot. White-Box
Cryptography and an AES Implementation. In “Selected Areas in
Cryptography: 9th Annual International Workshop, SAC 2002”, Lecture
Notes in Computer Science (2003), 250-270.

100

[66]

[67]

[68]

[69]

[70]

[71]
[72]

[73]

[74]

[73]

S. Chow, P. Eisen, H. Johnson, and P.C. van Oorschot. A White-box DES
Implementation for DRM Applications. In “Digital Rights Management:
ACM CCS-9 Workshop, DRM 20027, Lecture Notes in Computer
Science (2003), 1-15.

O. Billet, H. Gilbert, and C. Ech-Chatbi. Cryptanalysis of a White Box
AES Implementation. In “Selected Areas in Cryptography: 11th

International Workshop, SAC 2004”, Lecture Notes in Computer
Science (2005), 227-240.

H. Vollmer, “Introduction to Circuit Complexity,” Berlin, Springer,
1999.

E. Allender, M. Loui, and K. Regan, “Complexity classes,” In M. Atallah,
editor, “Algorithms and Theory of Computation Handbook”, ch. 27, CRC
Press, 1999.

W. Stallings. “Cryptography and Network Security”, 4th Edition.
Pearson Education India, 2006.

https://en.wikipedia.org/

N. Ferguson and B. Schneier. Practical cryptography. Vol. 23. New
York: Wiley, 2003.

H. Lipmaa. "First CPIR protocol with data-dependent computation.” In
Information, Security and Cryptology-ICISC 2009, pp. 193-210.
Springer Berlin Heidelberg, 2009.

D. Beaver. Correlated Pseudorandomness and the Complexity of Private
Computations, STOC 1996: 479-488

P. Mohassel and M. Franklin. "Efficiency tradeoffs for malicious two-
party computation." In Public Key Cryptography-PKC 2006, pp. 458-
473. Springer Berlin Heidelberg, 2006.

101

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

Y. Aumann and Y. Lindell. Security Against Covert Adversaries: Efficient
Protocols for Realistic Adversaries. In 4th TCC, Springer-Verlag (LNCS
4392), pages 137-156, 2007.

C. Hazay and Y. Lindell. "Efficient protocols for set intersection and
pattern matching with security against malicious and covert adversaries."
In Theory of Cryptography, pp. 155-175., 2008.

Y. Ishai,]J. Kilian, K. Nissim and E. Petrank. "Extending oblivious
transfers efficiently." In Advances in Cryptology-CRYPTO 2003, pp. 145-
161. Springer Berlin Heidelberg, 2003.

G. Asharov, Y. Lindell, T. Schneider, and M. Zohner. "More efficient
oblivious transfer and extensions for faster secure computation." In
Proceedings of the 2013 ACM SIGSAC conference on Computer &
communications security, pp. 535-548. ACM, 2013.

G. Asharov, Y. Lindell, T. Schneider, and M. Zohner. "More efficient
oblivious transfer extensions with security for malicious adversaries." In
Advances in Cryptology--EUROCRYPT 2015, pp. 673-701. Springer,
2015.

ISO/IEC. (2014). ISO International Standard ISO/IEC 14882:2014(E) -
Programming Language C++. |International Organization for
Standardization (ISO). Retrieved from https://isocpp.org/std/the-

standard.

M. Osadchy, B. Pinkas, A. Jarrous and B. Moskovich. "Scifi-a system for
secure face identification." In Security and Privacy (SP), 2010 IEEE
Symposium on, pp. 239-254. IEEE, 2010.

A. Miyaji and M.S. Rahman, “Privacy-preserving data mining in presence
of covert adversaries”. In Advanced Data Mining and Applications (pp.
429-440). Springer Berlin Heidelberg, 2010.

H. Carter, C. Amrutkar, |. Dacosta and P. Traynor, “For your phone

only: custom protocols for efficient secure function evaluation on mobile
102

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

devices," Journal of Security and Communication Networks (SCN), vol. 7,
no. 7, pp. 1165-1176, 2014.

R. Rivest, L. Adleman and M. Dertouzos, “On data banks and privacy
homomorphisms,” in Proceedings of the IEEE Annual Symposium on

Foundations of Computer Science, 1978.

C. Gentry, “Fully homomorphic encryption using ideal lattices,” In
Proceedings of the Annual ACM Symposium on Theory of Computing,
2009.

Z. Brakerski and V. Vaikuntanathan, “Fully homomorphic encryption
from ring-lwe and security for key dependent messages,” in CRYPTO,
2011.

R. Cramer, |. Damgard and J. Nielsen, “Multiparty computation from
threshold homomorphic encryption,” in EUROCRYPT, 2001.

|. Damgard, M. Geisler, M. Krgigaard, and J. Nielsen. “Asynchronous
multiparty computation: Theory and implementation”. In 12th Intl.
Conference on Theory and Practice of Public Key Cryptography - PKC
2009, volume 5443 of LNCS, pp. 160-179. Springer, 2009.

S. Goldwasser, Y. Kalai, R. Popa, Vaikuntanathan V. and N. Zeldovich,
“Succinct functional encryption and applications: Reusable garbled
circuits and beyond,” in Proceedings of the Annual ACM Symposium on

Theory of Computing, 2013.

R. Gennaro, C. Gentry and B. Parno, “Non-interactive veriable

computation: Outsourcing computation to untrusted workers,” in
CRYPTO, 2010.

S. Gorbunov, V. Vaikuntanathanand D. Wichs, “Leveled fully

’

homomorphic signatures from standard lattices,” in Proceedings of the

Annual ACM Symposium on Theory of Computing, 2015.

103

