$DD \P^{22} | D^2 U \hat{I}^{\circ} U \hat{e}^2 \hat{I}^{\circ} \hat{E} U \hat{a} \hat{e} \hat{a} \P \mathcal{E}^2 \S \P^2 \hat{I} \ddot{a} \hat{a}^2 \hat{I}$

ØÝ³ Ó³ Ï³]³ Ý Ø³ ñÇÝ» è³ Ù³ ÝÇ

² ÈÆü² îÆÎ , ÆÎ ² ð ´ àܲ ÂÂàôܰ ðÆ Ê àÈÆÜ² ÚÆÜ ¾ê° ðܰ ðÆ

ÊàÈÆÜ¾ê°ð²¼²ÚÆÜ ĐÆ ðàÈÆ¼ÆÎÆÜ°îÆÎ²Ü°ì ذʲÜÆ½ØÀ

¶.00.14 - ¦Î »Ýë³ï »ÉÝáťá dz § Ù³ ëݳ Çĩ áõÃl³ Ùµ ùÇÙdz ϳ Ý · Çĩ áõÃláðÝÝ »ñÇ Ã »Ï ݳ Í áôÇ · Çĩ ³ ϳ Ý ³ ëï Ç׳ ÝÇ Ñ³ lóÙ³ Ý ³ ï »Ý³ ÉáëáõÃl³ Ý

ê°Ôز ¶Æð

° ñ^{..} 3 Ý – 2011

НПЦ «АРМБИОТЕХНОЛОГИЯ» НАН РА ГНКО

Мнацаканян Марине Рамановна

КИНЕТИКА И МЕХАНИЗМ ХОЛИНЭСТЕРАЗНОГО ГИДРОЛИЗА

ХОЛИНОВЫХ ЭФИРОВ АЛИФАТИЧЕСКИХ ДИКАРБОНОВЫХ КИСЛОТ

ΑΒΤΟΡΕΦΕΡΑΤ

диссертации на соискание ученой степени кандидата химических наук по специальности 03.00.14 – «Биотехнология»

Ереван - 2011

2ï»Ý3ËáëáðÃÛ3Ý Ã»Ù3Ý Ñ3ëï3ïí»É ¿§Î»Ýë3ï»ËÝáťá Ç3ÛÇ ¶ĐƦ Ö´À (Ý»ñϳÛáðÙë ĐĐ ¶22 §Đ³Üï»Ýë³ï»ËÝáťá C³¦ ¶2î). Cï³Ï³Ý ËáñÑñ¹C ÝCëï áõÙ: ¶Cï 3Ï3ÝÕ»Ï3í3ñ` ù. ·. 1., åñáý»ëáñ Ô.ä.Đ³É»uÛ³Ý ä 3 ßī áý 3 Ï 3 Ý ÁÝ 1 1 ÇÙ 3 Ё áĕÝ » ñ` ĐĐ ¶ 2 2 3 Ï 3 1 »Ù ÇÏ áë, å ñá ý » ëáñ 2. ê. ê 3 ÕĴ 3 Ý ù. · .Ã. Đ.Ô. î áÝCÏ Û³ Ý ÐÐ ¶ 22 úñ. 3Ý3Ï 3Ý 1»Õ3. áñ Í 3Ï 3Ý 2 é³ c³ ï ³ ñ Ï ³ ½Ù³ Ï »ñå áõÃĺáõÝ ùCÙC³ ÎC · Cĩ ³ĩ »ËÝáťá C³ Ĭ³ Ý Ï »Ýĩ ñáÝ 2 ï »Ý3 ĖáëáðÃÚ3 Ý å 3 ßi å 3 ÝáðÃÚáðÝÁ Ì 3 Ú3 Ý3 Éáð ¿ 2011Ã-Ç 1»Ì ï »Úµ»ñÇ 23-ÇÝ, Å. $14^{\underline{00}}$ -ÇÝ ĐĐ \P^{22} §D³Ü »Ýë³ï »ËÝáťá·Ç³ | \P^{2} Î -áõÙ ·áñÍáÕ ĐĐ ´àĐ-Ç 018 Ù³ ëÝ³·Ci ³İ³Ý ËáñÑñ¹Ç ÝÇëi áðÙ: Đ³ ëó»` 0056, ĐĐ, ù, ° ñ^{··3} Ý, ¶ĺjáõncĺj³ Ý ÷ áÕ, 14, Ñ»é/ý³ ùë (+374 10) 65 41 83 2ï »Ý3 ĖáĕáõÃÛ3 ÝÁ Ï 3 ñ»ÉC į Í 3 ÝáÃ3 Ý3 É ĐĐ ¶22 §Đ3 Ũ »Ýë3 ï »ĖÝáÉá. C3 ¦ ¶2Î . ñ3 13 ñ3 ΎáδÜ: ê»ÕÙ3 · ÇñÝ 3 é3 ùí 3 ĺ ¿ 2011Ã. ÝáÛ»Ùµ»ñÇ 23-ÇÝ: Ø³ ëÝ³·Ci ³ l³ Ý ĖáñÑñ¹C·Ci , ù³ ñi áðÕ³ ñ, l. .Ã. ¶.°. ²í »ï Cëáí ³ Тема диссертации утверждена на заседании ученого совета ЗАО «НИИ

Гема диссертации утверждена на заседании ученого совета ЗАО «нии Биотехнологии» (ныне НПЦ «Армбиотехнология» НАН РА). Науный руководитель: д. х. н., профессор

Г.П. Алебян

Оффициальные оппоненты:

академик НАН РА, профессор А.С. Сагиян к.х.н. А.К. Тоникян

Ведущая организация:

Научно-технологический центр органической и фармацевтической химии НАН РА

Защита диссертации состоится «23» декабря 2011 г. в 14⁰⁰ часов на заседании специализированного совета 018 ВАК РА в здании НПЦ «Армбиотехнология» НАН РА.

Адрес: 0056, РА, г. Ереван, ул. Гюрджяна 14, тел/факс (+374 10) 65 41 83

С диссертацией можно ознакомиться в библиотеке НПЦ «Армбиотехнология» НАН РА.

Автореферат разослан «23» ноября 2011 г.

Ученый секретарь специализированного совета, к.б.н. Аветисова Г.Е.

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность проблемы

Одной из важнейших проблем современной биотехнологии является изучение и установление механизмов взаимодействия небольших молекул лигандов с биомакромолекулами, в частности, с ферментами. Выявление закономерностей указанных взаимодействий и их обобщение в значительной степени облегчит задачу поиска новых биологически активных веществ с заданными свойствами. Рассматриваемая задача изучалась и до появления сравнительно новой области науки – биотехнологии и в этом направлении учеными накоплен большой материал. Тем не менее исследования в этом направлении интенсивно продолжаются и непрерывно дополняются данными, раскрывающими новые аспекты механизма обсуждаемых взаимодействий.

Ацетилхолинэстераза (АХЭ ЕС 3.1.1.7) и бутирилхолинэстераза (БХЭ ЕС 3.1.1.8) являются важнейшими компонентами холинэргической системы организма (Karczmar A.G., 2010). Со времен открытия холинэстераз прошло уже почти сто лет и за этот период времени учеными показано, что специфическое воздействие на АХЭ и БХЭ in vivo может привести к диаметрально противоположным результатам. Так, приблизительно полвека назад было показано, что основными мишенями фосфорорганических ядов (боевые отравляющие вещества – зарин, зоман, табун и др., пестициды – *аueфат*, *хлорпирифос*, *малатион* и др.) являются ферменты АХЭ и БХЭ. Рядом авторов было показано, что механизм их действия основан на необратимом ингибировании (фосфорилировании) холинэстераз (XЭ) холинэргических синапсах (Mason H.J., 1993). Выявленный механизм был использован для создания и усовершенствования боевых отравляющих веществ массового поражения. В мирных целях тот же подход используется для создания фосфорорганических пестицидов (Raveh L., Grauver E., Grunwald J. et al. 1997).

Изучение механизмов взаимодействия обратимых ингибиторов с ХЭ позволило разработать специфические препараты, способные защищать организм от воздействия фосфорорганических ядов. А после того, как было выяснено, что патология болезни Альцгеймера (БА) тесно связана с соотношением активностей холин ацетилтрансферазы, (АХЭ) и (БХЭ) в пресинаптических ганглиях мозга, была разработана методология симптоматического лечения этой болезни, основанная на применении специфических обратимых ингибиторов АХЭ и БХЭ (антихолинэстеразных препаратов такрин, ривастигмин, галантамин, донепезил и др.). Установление механизма реакции дефосфорилирования (реактивации) инактивированной ХЭ позволило создать антидоты фосфорорганических ядов. Отметим, что в настоящее время для лечения ряда заболеваний в медицине широко применяются также и другие препараты, которые являются субстратами, ингибиторами, активаторами или реактиваторами ХЭ (Brown J.H., Wetzel G.T., Dunlap J., 1982).

Учитывая огромное пркладное значение ХЭ и их специфических лигандов большое внимание уделяется исследованию закономерностей холинэстеразного катализа. Однако, несмотря на значительные успехи в этой области, по настоящее время не сформулированы модели, позволяющие в полном объеме объяснить особенности холинэстеразного катализа. В частности к этим особенностям относятся отклонения от кинетики Михаэлиса при гидролизе ряда субстратов (активация или торможение), нарушение конкурентности в смесях субстратов, субстратов и обратимых ингибиторов и др.

Нами, при исследовании кинетики ферментативного гидролиза субстратов дихолиновых эфиров (ДХЭ), построенных по принципу "удвоения молекул", для высших членов этого ряда обнаружен новый, ранее не известный тип нарушения кинетики Михаэлиса. Обнаруженные эффекты далеки от простой аддитивности, и современные представления о холинэстеразном катализе не способны объяснить наблюдаемые явления. В данной работе изложены результаты исследований и вероятные модели, способные интерпретировать обнаруженные «аномальные» явления.

Цель работы

Работа посвящена сравнительному исследованию ферментативного гидролиза ДХЭ, под действием бутирилхолинэстеразы (БХЭ), описанию и установлению аномальной кинетики гидролиза высших членов этого ряда, а также обнаружению закономерностей типа структура-действие методами ферментативной кинетики и компьютерного молекулярного моделирования.

Для достижения поставленной цели нами поставлены следующие задачи:

• Кинетические исследования (*in vitro*) – определить значения K_m и V_{max} ДХЭ и МХЭ (монохолиновые эфиры алифатических дикарбоновых кислот) в реакции гидролиза под действием диких форм БХЭ человека и лошади (БХЭ_ч и БХЭ_л соответственно).

• Хроматографические исследования – для исследования стадийности образования моно- и дикарбоновых кислот установить начало образования дикарбоновых кислот в реакционной среде на первой стадии гидролиза высших членов ряда.

• Математический анализ кинетических кривых – провести сравнительный анализ экспериментальных и расчетных (теоретических) кинетических кривых [C] = f (t) (зависимость концентрации реагента от времени) для установления адекватности выбранного механизма исследуемой реакции.

• Компьютерное молекулярное моделирование – с применением компьютерных программ *ChemOffice 2008, Autogrid 4.0, Autodock 4.0, Pymol, MM2* и *MOPAC* выявить вероятные взаимодействия между атомами молекулы субстрата и аминокислотными остатками макромолекулы БХЭ с использованием метода минимизации энергий внутри- и межмолекулярных связей, изолированных молекул лигандов и фермент-лигандных комплексов. Провести визуализацию энергетически более стабильных состояний систем.

Научная новизна

Обнаружен, описан, исследован и интерпретирован новый, аномальный тип кинетики гидролиза ДХЭ под действием диких форм БХЭ человека и лошади.

Показано, что механизм аномалии заключается в нарушении чисто конкурентных отношений между ДХЭ и МХЭ, вследствие чего, на первой стадии, в реакционной среде образуется дикарбоновая кислота.

Предложена схема механизма реакции, объясняющая наблюдаемую аномальную кинетику.

Впервые показано, что ферментативный гидролиз ряда ДХЭ под действием БХЭ зависит от длины метиленовой цепи в кислотном фрагменте и может протекать по

трем разным кинетическим схемам – последовательно, параллельно и последовательно-параллельно.

Практическая ценность

Результаты исследований аномальной кинетики гидролиза ДХЭ под действием дикой формы БХЭ проливают новый свет на механизм взаимодействия двуцентровых лигандов субстратного характера с ферментным белком, что, несомненно, важно учитывать при конструировании потенциальных биологически активных веществ, особенно миорелаксантов кратковременного действия, по принципу "удвоения молекул".

Полученные в работе результаты включены в курс лекций ферментативного катализа для магистров.

Учитывая высокое сродство дихолинового эфира себациновой кислоты к БХЭ, приемлемую максимальную скорость его гидролиза и отсутствие субстратной активации или торможения, данный субстрат, и с большой вероятностью его дитиохолиновый аналог, можно рекомендовать для определения активности БХЭ, особенно, в кинетических экспериментах, проводимых с фосфорорганическими и другими ингибиторами.

На защиту выносятся:

• Результаты кинетических исследований субстратных свойств дихолиновых и монохолиновых эфиров алифатических дикарбоновых кислот при взаимодействии с БХЭ.

 Результаты сравнительного анализа кинетики холинэстеразного гидролиза в ряду дихолиновых эфиров алифатических дикарбоновых кислот (ДХЭ), где показаны особенности ферментативного гидролиза ДХЭ с длинной полиметиленовой цепью.

• Результаты анализа данных, полученных с помощью математических моделей исследуемых реакций, построенных на основании полученных экспериментальным путем кинетических параметров данных реакций.

• Результаты исследований компьютерного молекулярного моделирования комплексов ДХЭ•БХЭ.

• Схема механизма реакции, объясняющая наблюдаемую аномальную кинетику ферментативного гидролиза высших членов ряда ДХЭ.

Личный вклад соискателя.

Собственный вклад включает решение основных задач исследований, поиск и анализ научной литературы по теме, выполнение экспериментальных работ, анализ результатов исследований, оформление научных статей (совместно с соавторами) и диссертационной работы. Постановка основных задач и разработка методологии проводились под руководством проф. Г.П. Алебяна.

Апробация работы и публикации автора по теме диссертации

Результаты работы докладывались и обсуждались на семинарах в лаборатории Инженерной энзимологии «НИИ Биотехнологии». Материалы диссертации докладывались на 15-ом Всемирном Конгрессе по Фармакологии (Пекин, Китай, 2006г.), на Международных Конференциях: «Успехи биотехнологии: перспективы развития в Армении» (Цахкадзор, РА, 2006 г.), «Современное состояние биотехнологии в Армении и роль МНТЦ в ее развитии» (Цахкадзор, РА, 2008 г.) и

на Международном Симпозиуме «Иммунная система мозга: нейрохимические и нейроэндокринные аспекты» (Ереван, РА, 2009 г.).

Структура работы.

Диссертационная работа состоит из введения, постановки задачи, литературного обзора, экспериментальной части, обсуждения, заключения, выводов, 205 наименований цитируемой литературы и приложения. Диссертация изложена на 127 страницах, содержит 43 рисунков, 8 таблиц и 2 схемы.

Публикации.

Основные результаты исследований, изложенные в диссертационной работе опубликованы в 7 научных работах (3 научные статьи и 4 тезиса международных научных конференций).

СОДЕРЖАНИЕ РАБОТЫ

Глава 1. ЛИТЕРАТУРНЫЙ ОБЗОР

В обзоре литературы рассмотрены вопросы о роли ХЭ в организме, развития представлений о структуре и механизме каталитического действия ХЭ, отклонений от "классической" кинетики Михаэлиса в реакциях, катализируемых БХЭ, а также особенности холинэстеразного гидролиза ДХЭ. В данной главе также описываются методы молекулярного моделирования, применяемые при кинетических исследованиях ферментативных реакций.

Глава 2. МАТЕРИАЛЫ И МЕТОДЫ ИССЛЕДОВАНИЙ

Ферментные препараты. В проведенных экспериментальных работах был использован высокоочищенный ферментный препарат БХЭ плазмы крови человека с удельной активностью 730 Е/мл, любезно предоставленный профессором О. Lockridge (Медицинский Центр Университета Небраски), а также лиофильно высушенный ферментный препарат БХЭ из сыворотки крови лошади с удельной активностю 100 Е/мл.

Дихолиновые эфиры алифатических дикарбоновых кислот (ДХЭ_n), общая структура которых приведена на рис. 1., были синтезированы в ИТОХ им. А.Л. Мнджояна.

Рис. 1 Дихолиновые эфиры алифатических дикарбоновых кислот.

Тонкослойная хроматография. Применялись хроматографические пластинки для TCX "Silufol UV254 (Чехословакия).

Аппаратура для *pH-метрических измерений*. Для потенциометрического титрования была использована автоматически регистрирующая система pH-стат марки *TitraLab*[®] (Radiometer Analitical, Франция), снабженная комбинированным электродом, магнитной мешалкой, термокомпенсатром и возможностью подключения к компьютеру (программное обеспечение *TitraMaster85*).

Синтез и очистка монохолинового эфира себациновой кислоты. Синтез и очистка монохолинового эфира себациновой кислоты проведенны с помощью модифицированного нами метода.

Определиние кинетечческих параметров ферментативноых реакций. Скорость ферментативного гидролиза $ДХЭ_n$ определяли pH-метрическим методом измерения концентрации образовавшейся в ходе реакции кислоты. Значения K_m и V_{max} были определены графическим методом Лайнуивера-Бэрка (1/v = f (1/S).

Компьютерное молекулярное моделирование. Работы по молекулярному моделированию проведены по следующей схеме: воспроизведение структурных формул исследуемых соединений в формате 2D (*.cdx) и 3D (*.pdb), минимизация энергий внутримолекулярных связей изолированных структур, минимизация энергий внутримолекулярных связей <u>в</u>(при) условии гидратации, получение соответствующих им пространственно-конформационных изображений, гридинг активного центра макромолекулы (рентгенструктурные характеристики БХЭ человека (<u>1POI</u>) взяты из базы данных белков Brookhaven Protein Data Bank), докинг молекулы субстрата с активным центром БХЭ, визуализация моделированных фермент-субстратных комплексов.

ГЛАВА З. РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЙ

Изучение кинетики ферментативного гидролиза дихолиновых эфиров алифатических дикарбоновых кислот под действием БХЭ_ч

<u>Сравнительный анализ кинетики ферментативного гидролиза ряда ДХЭ_n под действием БХЭ.</u> При исследовании гидролиза ДХЭ под действием БХЭ_ч сотрудниками лаборатории инженерной энзимологии НПЩ "Армбиотехнология" НАН РА было обнаружено, что кинетика ДХЭ с длинной метиленовой цепью (начиная с дихолинового эфира пробковой кислоты – ДХЭ₆) отличается от кинетики, наблюдаемой для членов ряда с более короткой метиленовой цепью (от янтарной до пимелиновой кислот). В отличие от описанного в литературе двухстадийного механизма с четким разделением стадий, где гидролиз МХЭ начинается после полного расходования ДХЭ_n, для субстратов с п>6 на первой стадии наблюдается накопление дополнительного количества кислотного продукта.

Результаты проведенных нами сравнительных исследований ферментативного гидролиза – ДХЭ₂, ДХЭ₄, ДХЭ₆ и ДХЭ₈, приведены на рис.2.

Рис.2 Зависимость накопления кислотного продукта (P) при реакции холинэстеразного гидролиза $ДХЭ_2$, $ДХЭ_4$, $ДХЭ_6 u \, ДХЭ_8$ от времени. Пунктирной линией указано ожидаемое количество кислотного продукта в конце первой стадии. $[ДХЭ_n]_0 = 5 \times 10^{-4} \text{ M}$, $t = 25 \pm 0.5 \,^{\circ}$ C, $pH = 7.6 \pm 0.01$, $БХЭ_4$.

Как видно из данного рисунка, для всех исследованных субстратов, в начале реакции происходит монотонное, практически линейное нарастание концентрации продукта. После накопления определенного количества продукта кинетика реакции меняется, что выражается в резком замедлении скорости гидролиза. При гидролизе субстратов $ДХЭ_2$ и $ДХЭ_4$ после накопления в среде приблизительно 5×10^{-4} М кислотного продукта (что соответствует начальной концентрации диэфира или половине концентрации сложноэфирных групп в данном опыте) скорость реакции практически падает до нуля. Однако, после этого, добавление в реакционную среду дополнительного, большего количества фермента приводит к возобновлению расхода титранта, что свидетельствует о продолжении реакции гидролиза (на рисунке не показано). Таким образом, данная серия опытов свидетельствует о том, что при гидролизе дихолиновых эфиров янтарной и адипиновой кислот, вторая стадия гидролиза (гидролиз МХЭ) протекает после полного исчерпания диэфира в реакционной среде.

При гидролизе такой же концентрации $ДX\Im_6$ или $ДX\Im_8$ падение скорости реакции после завершения первой стадии не столь резкое, как в случае n < 6. Кроме этого, излом на кривых [P] = f(t), свидетельствующий о завершении первой стадии реакции, проявляется при более высоких значениях расхода титранта по сравнению с субстратами, имеющими более короткую метиленовую цепь (n < 6). Наблюдаемый на первой стадии расход титранта приблизительно на 15 – 40 % больше, чем в случае гидролиза $ДX\Im_2$ и $ДX\Im_4$.

Вероятнее всего, такая кинетическая картина может быть объяснена образованием дикарбоновой кислоты на первой стадии гидролиза ДХЭ₆ и ДХЭ₈ или наличием в препаратах этих субстратов примесей, искажающих кинетическую картину.

<u>Кинетика полного ферментативного гидролиза ДХЭ₈ и ДХЭ₆.</u> На рис.3. показана кинетическая кривая реакции полного гидролиза ДХЭ₈ под действием БХЭ₄. Как видно из рисунка, линейное нарастание концентрации кислотного продукта нарушается при достижении концентрации равной приблизительно 7 × 10⁻⁴ М, при исходной концентрации ДХЭ₈ равной 5 × 10⁻⁴ М, т.е наблюдаемый на первой стадии расход титранта на 40 % выше ожидаемого. Начиная с этой точки, скорость реакции плавно убывает и по достижении концентрации продукта равной ожидаемому теоретическому количеству (два эквивалента на 1 моль ДХЭ), скорость реакции практически падает до нуля.

Рис.3. Кинетическая кривая накопления кислотного продукта при полном гидролизе ДХЭ₈ под действием БХЭ₄. Пунктирной линией 1 указано количество кислотного продукта, ожидаемое в конце первой стадии при соблюдении классического механизма, пунктирная линия 2 – соответствует полному гидролизу, а пунктирная линия 3 – наблюдаемому в эксперименте количеству кислотного продукта в конце первой стадии, [ДХЭ₈]₀=5 × 10⁻⁴ М.

Таким образом, полный гидролиз $ДXЭ_8$ показывает, что расход титранта, в пределах погрешности опыта, с большой точностью соответствует ожидаемому количеству. Аналогичная картина наблюдается и при ферментативном гидролизе $ДXЭ_6$, стой лишь разницей, что в этом случае излом наблюдается при ~ 15% -ном перерасходе титранта, а начальная скорость второй стадии несколько ниже. Следовательно, можно утверждать, что наблюдаемая аномалия не связана с наличием неизвестных примесей в образцах препаратов $ДXЭ_6$ и $ДXЭ_8$. Полученные данные TCX также подтверждают отсутствие примесей в препаратах.

<u>Установление наличия дикарбоновой кислоты на первой стадии</u> <u>ферментативного гидролиза ДХЭ₆ и ДХЭ₈</u>. Наличие дикислоты определяли методом TCX. Хроматографический анализ проводили после остановки ферментативной реакции в середине первой стадии добавлением HCI. Согласно полученным результатам, на первой стадии реакции дикарбоновые кислоты обнаружены при гидролизе только ДХЭ₆ и ДХЭ₈.

На основании полученных данных, можно сделать нижеприведенные выводы:

- Для членов рядя ДХЭ, где n ≥ 6, ферментативный гидролиз под действием БХЭ_ч протекает не в соответствии с описанной в литературе схеме.
- Суть отклонения заключается в образовании дикарбоновой кислоты не только во второй стадии, но и в течение первой стадии гидролиза ДХЭ.
- Образование дикислоты не оказывает влияния на линейный характер кинетики реакции на первой стадии гидролиза.
- Наблюдаемая аномалия, очевидно связана с тем, что промежуточный продукт реакции ферментативного гидролиза - МХЭ₈ подвергается частичному гидролизу в течение первой стадии, параллельно с ДХЭ₈.

Описанная кинетика, вероятно, может наблюдаться при соответствующих значениях K_m и V_{max} для ДХЭ и МХЭ, соотношение которых в случае $n \ge 6$ может сильно отличаться от тех же соотношений для ДХЭ с n < 6. В целях проверки этого предположения кинетика ферментативного гидролиза ДХЭ₈ и МХЭ₈ под действием $БХЭ_{4}$ изучена более детально и величины параметров K_m и V_{max} определены с применением нескольких методов. Результаты этих исследований приведены ниже.

<u>Определение K_m и V_{max} <u>ДХЭ₈</u> <u>и МХЭ₈</u>. Определение параметров уравнения Михаэлиса для ДХЭ₈ проводилось методом измерения начальных скоростей. Как видно из рис. 4.а, в координатах Лайнуивера – Берка наблюдается хорошая линейная зависимось (величина достоверности аппроксимации - $R^2 = 0.99$), а значение K_m для ДХЭ₈ равно (3.00 ± 0.38) × 10⁻⁵М. Полученное значение константы Михаэлиса для ДХЭ₈, очень близко к приведенному в литературе значению K_m ДХЭ₂ (4.2 × 10⁻⁵ M, Goedde et al., 1968).</u>

Рис.4. Зависимость скорости реакции гидролиза ДХЭ₈ (а) и МХЭ₈ (б) от концентрации субстрата под действием БХЭч в координатах Лайнуивера – Берка.

Определение параметров уравнения Михаэлиса для МХЭ₈ проводили как методом измерения начальных скоростей (рис. 4.а), так и исходя из кинетической кривой полного гидролиза субстрата. Полученные значения K_m соответственно равны (2.6 ± 0.28) × 10⁻⁴ М и (2.16 ± 0.26) × 10⁻⁴ М. Эти значения K_m для МХЭ₈ больше чем на порядок ниже значения K_m для МХЭ₂ (8.4 × 10⁻³M, Goedde et al., 1968).

<u>Гидролиз смеси ДХЭ₈ и МХЭ</u>8. Реакция ферментативного гидролиза смеси ДХЭ8 и МХЭ8 также исследована в целях дополнительного уточнения значения K_m ДХЭ8. Согласно полученным результатам - $K_{m(MXЭ8)} = 3.52 \times 10^{-5}$ М. Сравнение значений максимальных скоростей ДХЭ8 и МХЭ8, показывает, что соотношение $V_{max(ДXЭ8)}/V_{max}$ (МХЭ8) равно 2.7.

<u>Определение константы ингибирования (K_i) холина</u>. К_i холина определяли путем добавления холина в систему $MXЭ_8 + БХЭ_4$. Как показали результаты, слабое торможение реакции (~ 34%) наблюдается при начальной концентрации холина в двадцать раз превышающей концентрацию $MXЭ_8$. Определенное нами значение константы ингибирования холина равно 4.7 × 10⁻³ М.

<u>Определение k_{cat}.</u> В этих целях максимальные скорости ферментативного гидролиза субстратов сравнены с максимальной скоростью реакции гидролиза бензоилхолина под действием БХЭ_q. Значения k_{cat} приведены в табл. 1.

Таблица 1.

Кинетические параметры суостратов Б

параметр.	метод начальн. скоростей			метод текущ. скорост ей	метод конкурирующи x субстратов (ДХЭ ₈ + МХЭ ₈)	метод начальн. скоростей
субстрат (ингибитор)	$K_m, (10^{-5} \times M)$	k_{cat} , (10 ³ × min ⁻¹)	k_{cat}/K_m , (10 ⁶ × min ⁻¹ M^1)	$\frac{K_m(10^{-5}\times M)}{M}$	$K_m, (10^{-5} \times M)$	$K_{i}, \times 10^{-3} M$
ДХЭ ₈	3.33	16.4	498.7	—	3.21	—
MXЭ ₈	22.2	6.09	27.4	20.2	—	—
Холин	—	_	_	—	—	4.7
бензоилхолин	0.301	14.7	4884	—	_	—
бутирилтиохолин	1.85	24.0	1297.2	—		—
сукцинилдитиохолин	0.3	0.350	116.67	_		_
сукцинилдихолин (ДХЭ ₂)	8.3	0.7113	8.57	_		_
сукцинилдихолин (ДХЭ ₂)	4.2			_	_	_
сукцинилмонохолин	840	_	_	_	_	4.4

Влияние температуры и рН

Учитывая, что температура и pH среды являются факторами, влияющими на кинетику и механизм ферментативных реакций, нами была поставлена задача определения воздействия этих факторов на количественные характеристики, обнаруженной нами аномалии.

<u>Влияние температуры</u>. Реакция гидролиза ДХЭ₂, ДХЭ₆ и ДХЭ₈ исследовалась под действием БХЭ₄ при начальной концентрации субстратов – 5×10^4 M, pH 7.6, в интервале температур 11 ÷ 35° C. На рис. 5 изображены зависимости значений величин глубины излома от температуры в реакциях холинэстеразного гидролиза ДХЭ₆ и ДХЭ₈ в температурном интервале 11 ÷ 35° C Как показывают приведенные на рис.5 результаты, при всех температурах излом наблюдается выше 50 % как для ДХЭ₆ (а), так и ДХЭ₈ (б). достоверная зависимость между глубиной расположения излома и температурой реакционной среды отсутствует. Для ДХЭ₂, при всех температурах излом наблюдается на уровне 50%.

Рис.5. Зависимость значений величин глубины излома (в процентах) от температуры в реакциях холинэстеразного гидролиза ДХЭ₆ (а) и ДХЭ₈ (б) в интервале 11 ÷ 35° С.

Полученные в этих сериях результаты использованы также для оценки энергии активации реакций гидролиза ДХЭ₂, ДХЭ₆ и ДХЭ₈. Хорошая линейная зависимость lgV от 1/Т (рис. 6), наблюдаемая для всех исследуемых веществ, свидетельствует об отсутствии каких-либо осложнений в изучаемой температурной области, в частности изменений лимитирующей стадии, конформационных превращений фермента, инактивации фермента и т.д.

Рис.6. Зависимость скорости холинэстеразного гидролиза ряда ДХЭ от температуры в координатах Аррениуса: ■ – ДХЭ₂, ▲ – ДХЭ₆, ◆ – ДХЭ₈, pH – 7.6 ± 0.01

Энергии активации реакций для исследуемых ДХЭ₂, ДХЭ₆ и ДХЭ₈ определены с помощью уравнения Аррениуса:

$$k = A \cdot e^{-E_a / RT}$$

где k – константа скорости реакции, A – предэкспоненциальный множитель, E_a – энергия активации реакции, R – универсальная газовая постоянная, T – абсолютная температура. Полученные результаты приведены в таблице 2.

Таблица 2.

Значения энергий активации гидролиза ДХЭ₂, ДХЭ₆ и ДХЭ₈ под действием БХЭ₄.

cyőcmpam	ДХЭ2	ДХЭ ₆	ДХЭ8
энергия активации Е _а (ккал/моль)	13.2 ± 0.79	10.7 ± 0.45	10.6 ± 0.45

<u>Влияние рН.</u> Нами изучено влияние pH среды на кинетику холинэстеразного гидролиза $ДХЭ_2$ и $ДХЭ_8$ под действием $БХЭ_4$ в интервале pH 5.5 ÷ 7.6. Измерения скорости реакции ферментативного гидролиза проводились методом непрерывного потенциометрического титрования при постоянном значении pH и при 25 ± 0.1 °C.

На рис. 7 (a, δ) приведены кинетические кривые ферментативного гидролиза, полученные для ДХЭ₂ и ДХЭ₈ при разных значениях pH, в указанном выше интервале.

Рис. 7. Зависимость накопления кислотного продукта (P) при реакции холинэстеразного гидролиза $ДХЭ_8(a)$ и $ДХЭ_2(6)$ от времени при разных pH. $[ДХЭ]=5 \times 10^4 M.$

Анализ кинетических кривых полученных для $ДXЭ_8$ показывает, что в интервале pH = 7.6 ÷ 6.5 глубина расположения излома в конце первой стадии ферментативного гидролиза остается неизменной, однако, при более низких значениях pH, очевидные изломы отсутствуют. Сравнение приведенных кинетических кривых гидролиза $ДXЭ_2$ и $ДXЭ_8$ показывает, что в интервале pH 7.6 ÷ 6.5 начальные скорости гидролиза в случае $ДXЭ_8$ практически не меняются, а в случае $ДXЭ_2$ постепенно уменьшаются. При низких значениях pH для обоих субстратов наблюдается снижение скорости.

Учитывая, что при изменении pH реакционной среды могут изменяться параметры уравнения Михаэлиса, для $ДXЭ_2$ и $ДXЭ_8$ определены значения V_{max} и K_m. Согласно полученным результатам, как для $ДXЭ_2$, так и для $ДXЭ_8$ значения V_{max} , в отличие от значений скоростей, полученных при одной концентрации субстратов - 5×10^{-4} M, меняются в узком диапазоне (в случае $ДXЭ_8 - 1.7$ раза, а $ДXЭ_2 - 2.0$ раза). Что касается значений K_m , согласно полученным данным, как показано в табл. 3, для $ДXЭ_8$ наблюдаемое изменение составляет всего 2.6 раза, а для $ДXЭ_2 - 16$ раз.

Приведенные результаты свидетельствуют, что изменение реакционной способности (k_{cat}/K_m) ДХЭ₂ и ДХЭ₈ в интевале рН 7.6 ÷ 6.5, в основном, определяется и зависит от значения K_m . При всех значениях рН реакционная способность ДХЭ₈ больше, чем ДХЭ₂, а наиболее сильное различие (480 раз) наблюдается при рН 5.5. Что касается интервала значений рН реакционной среды 6.0 ÷ 5.5, то интерпретация этих кинетических кривых, практически не возможна без определения текущих концентраций монохолинового эфира и дикарбоновой кислоты, в течении реакции ферментативного гидролиза ДХЭ₈.

Таблица 3.

		ДХЭ ₈		ДХЭ2			
pН	$K_m(10^{-4} \times M)$	k _{cat} (10 ³ × мин ⁻¹)	k_{cat}/K_m $(10^6 \times Muh^{-1}M^1)$	$K_m (10^{-4} \times M)$	k _{cat} (10 ³ ×мин ⁻¹)	k _{cat} /K _m (10 ⁶ ×мин ⁻ ¹ M ¹)	
7.6	0.33	16.45	498.74	0.83	0.711	8.56	
7.0	0.286	17.97	628.66	1.67	0.608	3.64	
6.5	0.5	19.75	395.2	4.4	0.608	1.38	
6.0	0.523	15.21	290.9	10	0.49	0.49	
5.5	0.86	11.26	130.5	13.3	0.355	0.267	

Кинетические параметры ферментативного гидролиза ДХЭ₂ и ДХЭ₈ под действием БХЭ₄ при разных значениях pH реакционной среды.

В результате проведенных экспериментов выявлено, что ни изменение температуры (11 ÷ 35 °C), ни pH реакционной среды (7.6 ÷ 6.5) не влияют на количественные характеристики аномальной кинетики первой стадии ферментативного гидролиза ДХЭ₈ и ДХЭ₆ под действием БХЭ₄. Ниже приведены результаты исследований ферментативного гидролиза ДХЭ₈ и ДХЭ₆, под действием сывороточной холинэстеразы лошади – БХЭ₄.

Кинетика ферментативного гидролиза дихолиновых эфиров алифатических дикарбоновых кислот под действием БХЭ сыворотки крови лошади (БХЭ ")

<u>Кинетика полного ферментативного гидролиза \underline{XY}_{5} и \underline{XY}_{8} под действием <u>БXЭ₃</u>: На рис. 8 показаны кинетические кривые реакции полного гидролиза \underline{XY}_{6} и \underline{XX}_{8} под действием БХЭ_л.</u>

Рис.8. Зависимость накопления кислотного продукта в реакции ферментативного гидролиза $ДХЭ_6$ (a) и $ДХЭ_8$ (б) под действием $БХЭ_л$ от времени. Пунктирными линиями 1 и 2 указано ожидаемое количество кислотного продукта в конце первой и второй стадий реакции, а пунктирной линией 3 – наблюдаемое в эксперименте количество кислотного продукта в конце первой стадии. $[ДХЭ_6]_0 = 3 \times 10^{-4} M$, $[ДХЭ_8]_0 = 5 \times 10^{-4} M$, $T = 25 \pm 0.5 \,^{\circ}$ C, $pH = 7.0 \pm 0.05$.

зСогласно полученным кривым в обоих случаях имеется выраженный излом, что свидетельствует о двустадийности процесса. Для наблюдения за второй стадией реакции - реакции гидролиза МХЭ₆, в реакционную систему добавлено дополнительное количество фермента (в двадцать раз превышающее начальное количество, что учтено в дальнейших кинетических расчетах). Как видно, при гидролизе ДХЭ₆ и ДХЭ₈ под действием *БХЭ*₃, глубина излома практически вдвое глубже значений, которые зафиксированы для БХЭ₄, и составляют 40 и 78%, соответственно.

Таким образом, при ферментативном гидролизе $ДXЭ_6$ и $ДXЭ_8$, как под действием $БXЭ_4$, так и $БXЭ_1$ наблюдаемая кинетика отличается от кинетики, установленной для низших членов дихолиновых эфиров алифатических дикарбоновых кислот. Наблюдаемое отклонение значительно сильнее выявляется при ферментативном гидролизе под действием $БXЭ_1$

<u>Ферментативный гидролиз МХЭ₈ под действием БХЭ₃</u>. Константу Михаэлиса для холинэстеразного гидролиза МХЭ₈ под действием БХЭ_л определяли методом измерения начальных скоростей (K_m равняется (1.25 ± 0.025) × 10⁻³ M).

<u>Определение константы ингибирования (K_i) холина.</u> Значение $K_i = (1.1 \pm 0.4) \times 10^{-3}$ М для холина определяли аналогично, описанному выше для БХЭ_ч.

Расчет кинетических кривых ферментативного гидролиза дихолиновых эфиров алифатических дикарбоновых кислот под действием БХЭ на основе кинетических параметров

Расчетные кривые двухстадийного ферментативного гидролиза ДХЭ. Экспериментально определенные параметры уравнения Михаэлиса-Мэнтен для ДХЭ и МХЭ нами использованы для математического построения зависимостей изменения концентраций реагирующих веществ от времени. При этом сделаны два важных допущения: отсутствие нарушения конкурентнности между ДХЭ и МХЭ (схема 1), и отсутствие влияния холина на реакцию ферментативного гидролиза субстратов.

БХЭ+ДХЭ 夫 [БХЭ-ДХЭ]

[БХЭ-ДХЭ] — БХЭ+МХЭ+ холин

БХЭ+МХЭ 🔫 [БХЭ-МХЭ]

[БХЭ-МХЭ] → БХЭ + ДК + холин

Схема 1. Последовательная реакция гидролиза ДХЭ под действием БХЭ.

Учитывая сделанные предположения, для проведения расчетов использованы нижеприведенные уравнения, описывающие зависимость скорости реакций от концентраций двух конкурирующих субстратов.

$$V = V_{(MX2)} + V_{(ZX2)} = \frac{V_{\max(MX2)}}{K_{\max(MX2)}} + V_{\max(X2)} \frac{[\underline{MX3}]}{K_{\max(MX2)}} + V_{\max(Z2)} \frac{[\underline{MX3}]}{K_{\max(Z2)}}$$
$$V_{(MX2)} = \frac{V_{\max(MX2)}}{1 + \frac{K_{\max(MX2)}}{[\underline{MX3}]} \cdot \left(1 + \frac{[\underline{MX3}]}{K_{\max(ZX2)}}\right)} + \frac{V_{\max(Z2)}}{1 + \frac{K_{\max(Z2)}}{[\underline{MX3}]} \cdot \left(1 + \frac{[\underline{MX3}]}{K_{\max(ZX2)}}\right)}$$

где V – начальная скорость суммарной реакции для смеси, содержащей МХЭ и ДХЭ; $V_{(MX3)}$ и $V_{(ZX3)}$ – скорости превращений МХЭ и ДХЭ в реакционной смеси субстратов, которые выражаются уравнениями (2) и (3) соответственно; $K_{m(XX3)}$ и $K_{m(XX3)}$ – константы Михаэлиса; $V_{max(XX3)}$ и $V_{max(MX3)}$ – максимальные скорости реакций гидролиза; [MX3] и [ZX3] – концентрации МХЭ и ДХЭ, соответственно.

Для получения доступной проверки зависимости концентрации продукта [*P*] от времени *t* применен численный метод. Расчет значений [*P*] проведен с помощью компьютерной программы Microsoft Office Excel 2003. Для получения кривой [*P*] = f(t) взяты промежутки времени $\Delta t = const$, а их число составляло не менее 500 точек.

ГЛАВА 4. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Сравнительный анализ расчетных и экспериментальных кинетических кривых холинэстеразного гидролиза ДХЭ

Ферментативный гидролиз ДХЭ6 под действием БХЭ". Наложение теоретической и экспериментальной кривых зависимостей накопления кислотного продукта от времени (*[P]* = f(t)) при полном ферментативном (*БХЭ*₁) гидролизе ДХЭ₆ рис. 9. Как видно из приведенного рисунка, теоретическая и показано на экспериментальная кривые до накопления количества кислотного продукта, равного половине от ожидаемого, практически не отличаются. В этой точке расчетная теоретическая кривая показывает резкое снижение скорости реакции, что обусловлено тем, что реакционная способность $ДXЭ_6$ в 4500 раза больше $MXЭ_6$ (Алебян Г.П. автореф. диссертации, 1978 г.). Следовательно теоретический расчет не допускает протекание гидролиза МХЭ₆ до полного исчерпания ДХЭ₆. Однако аналогичное снижение скорости реакции в эксперименте наблюдается значительно позже, при [P] ~ 4.2×10^{-4} M, что на 40 % больше от ожидаемого теоретического расчета. Следовательно, в эксперименте, до полного исчерпания ДХЭ₆ происходит частичный (~ 40%) гидролиз МХЭ₆ и образуется эквивалентное количество дикарбоновой кислоты. Вторая стадия - гидролиз оставшегося количества МХЭ₆, который протекает в отсутствие ДХЭ₆, хорошо описывается теоретической кривой.

Рис. 9. Зависимость накопления кислотного продукта в реакции ферментативного гидролиза ДХЭ₆ под действием БХЭ_л от времени (а - экспериментальная и б – расчетная кривые). Пунктирными линиями 1 и 2 указано ожидаемое количество кислотного продукта в конце первой и второй стадий реакции, а пунктирной линией 3 – наблюдаемое в эксперименте количество кислотного продукта в конце первой стадии. Стрелками указаны точки добавления дополнительного количества фермента: Е – в эксперименте, Е' – условно.

<u>Ферментативный гидролиз ДХЭ₈ под действием БХЭч.</u> Расчетная кривая для ДХЭ₈ показывет, что на первой стадии реакции должно образоваться 8 ÷10%

дикарбоновой кислоты (рис. 10). Образование этого количества дикарбоновой кислоты обусловлено тем, что реакционная способность ДХЭ₈ ~18 раз больше МХЭ₈. Согласно экспериментальной кривой, количество дикарбоновой кислоты почти в 4 раза больше теоретически ожидаемого и достигает почти 40%.

Рис.10. Наложение расчетной (1) и экспериментальной (2) кривых накопления кислотного продукта от времени при ферментативном гидролизе ДХЭ₈ при полном гидролизе двух сложноэфирных связей

<u>Ферментативный гидролиз ДХЭ_n (n < 6)</u>. Согласно полученным нами и литературным данным, для всех членов ряда со сравнительно короткой метиленовой цепью, конкурентность между ДХЭ и МХЭ не нарушается, и не описаны случаи накопления дикарбоновой кислоты в течение первой стадии ферментативного гидролиза, как в случае БХЭ_ч, так и БХЭ_л.

Таким образом, показано, что кинетический механизм ферментативного гидролиза ДХЭ зависит от длины метиленовой цепи в кислотном фрагменте субстрата, а нарушение классической схемы (последовательная реакция) возникает вследствие реализации параллельной реакции. Именно это нарушение нами названо "аномальным" т.к. явлется новым типом нарушения кинетики Михаэлиса.

Важной особенностью последовательных реакций является наличие индукционного периода для конечного продукта – в нашем случае ДК. На рис. 11, для обсуждаемой реакции, приведены теоретически рассчитанные все кривые, при условии соблюдения конкурентных отношений между ДХЭ₈ и МХЭ₈. Приведенная картина, как и следовало ожидать, воспроизводит совокупность зависимостей, характерных для чисто последовательных реакций, в том числе наличие индукционного периода для конечного продукта (рис. 11).

Рис.11. Рассчитанные кривые зависимости концентраций субстратов и продуктов реакции от времени при ферментативном гидролизе ДХЭ₈ под действием БХЭ₄ (при условии соблюдения чисто конкурентных отношений между субстратами ДХЭ₈ и МХЭ₈): (1) – [ДХЭ₈], (2) – [МХЭ₈], (3) – [холин], (4) – [ДК₈]

Для объяснения совокупности полученных данных для ДХЭ с n ≥ 6, нами сделано предположение, что комплекс Михаэлиса [Е•ДХЭ] после гидролиза одной из эфирных связей (иначе необходимо допустить наличие двух эстеразных центров на одну молекулу фермента) переходит в комплекс [Е•МХЭ•холин], который частично распадается, образуя свободный фермент, МХЭ и холин (механизм конкурирующих субстратов), или свободный фермент, ДК и холин (реализация механизма параллельного гидролиза и нарушение принципа конкурентных отношений субстратов). Таким образом, именно второй путь распада и приводит к нарушению конкурентных отношений между ДХЭ и МХЭ.

Предлагаемую нами упрощенную схему первой стадии ферментативного гидролиза ДХЭ можно представить следующим образом (Схема 2), где взаимопревращение комплексов Михаэлиса включено в большие квадратные скобки.

$$E + ДХЭ \Longrightarrow \begin{bmatrix} E \cdot ДХЭ \end{bmatrix} \Longrightarrow \begin{bmatrix} E \cdot MХЭ \cdot x слин \end{bmatrix} \xrightarrow{k_2} E + MXЭ + x олин \\ k_2 & E + ДK + x олин \end{bmatrix}$$

Схема 2. Вероятная схема механизма первой стадии ферментативного гидролиза ДХЭ под действием БХЭ (E – фермент). k₂ – константа реакции по пути соблюдения конкурентных отношений между ДХЭ и МХЭ, k₂. – константа реакции по пути, допускающем параллельный ферментативный гидролиз двух сложноэфирных групп ДХЭ.

Физический смысл включения в большие квадратные скобки комплексов Михаэлиса [Е•ДХЭ] и [Е•МХЭ•холин] (комлекс "а") заключается в том, что пока в реакционной среде имеется значимое количество ДХЭ, то МХЭ, образовавшееся в активном центре фермента, имеет такое же или мало отличающееся значение K_m , какое имеет ДХЭ. Очевидно, что это значение K_m резко отличается от значения K_m , определенного исследованием индивидуального МХЭ. Однако, при этом, вероятнее всего значения V_{max} ДХЭ и МХЭ будут соответствовать тем, которые определены для индивидуальных субстратов.

Прежде, чем продолжить анализ предложенной нами схемы, напомним, что для всех исследованных ДХЭ значения K_m , по крайней мере на порядок ниже, чем для соответствующих МХЭ, а значения V_{max} всегда выше у ДХЭ.

Исходя из приведенной схемы, если:

- k₂ >> k₂', то двухстадийная реакция ферментативного гидролиза ДХЭ протекает без нарушения конкурентных отношений между ДХЭ и МХЭ, т.е. не наблюдается параллельный гидролиз ДХЭ и МХЭ. Такая ситуация реализуется для ДХЭ с n < 6. Об этом свидетельствуют, как литературные данные (Goedde et al., 1968; Алебян Г. П. и соавт., 1977 г.), так и данные полученные нами, в частности приеденные на рис. 2. При этом, во всех описанных случаях, ферментативный гидролиз МХЭ начинается после исчерпания в реакционной среде ДХЭ.
- k₂' >> k₂, то двухстадийная реакция ферментативного гидролиза ДХЭ протекает с полным нарушением конкурентных отношений между ДХЭ и МХЭ, т.е. наблюдается исключительно параллельный гидролиз ДХЭ и МХЭ. Такая ситуация реализуется для ферментативного гидролиза ДХЭ₈, под действием БХЭ_л, когда 80% ожидаемой ДК₈ образуется вследствие параллельного гидролиза ДХЭ₈ и МХЭ₈, как это показано на рис. 8.
- k_2' и k_2 , имеют близкие значения, и если:

а) реакционнная способность ДХЭ намного больше соответствующего МХЭ, то на первой стади гидролиза (до полного исчерпания ДХЭ) ДК накапливается в реакционной среде исключительно за счет параллельного гидролиза ДХЭ и МХЭ. Такая картина получена для ферментативного гидролиза ДХЭ₆, под действием БХЭ_л, как это показано на рис. 9

6) реакционнная способность ДХЭ не намного больше соответствующего МХЭ, то на первой стади гидролиза (до полного исчерпания ДХЭ) ДК накопливается в реакционной среде как за счет параллельного гидролиза ДХЭ и МХЭ, так и по механизму конкурирующих субстратов. Такая картина получена для ферментативного гидролиза ДХЭ₈, под действием БХЭ₄, где 25% ДК₈ образуется по механизму конкурирующих субстратов, а 75% за счет параллельного гидролиза ДХЭ и МХЭ, как это показано на рис. 10

Таким образом, т.к в молекулах ХЭ до сих пор не обнаружен второй каталитический центр, то параллельный механизм ферментативного гидролиза ДХЭ, вероятно, может найти свое объяснение если допустить, что в комплесе [E•MXЭ•холин] длительность пребывания входящих в комплекс частиц (продолжительность жизни комплекса), зависит от размера ДХЭ и увеличивается с возрастанием п. Причем, продолжительность жизни комплекса приобретает критически большое значение при $n \ge 6$, что проявляется в стационарной кинетике, в качестве параллельного ферментативного гидролиза ДХЭ и МХЭ.

Увеличение продолжительности жизни комплекса [E•MXЭ•холин] при возрастании числа метиленовых групп в кислотном фрагменте обсуждаемых субстратов, в принципе можно объяснить "клеточным эффектом", предложенным в середине тридцатых годов Rabinowitch E., WoodW.C. [Э.Амис, влияние растворителя на скорость и механизм химических реакций "МИР", М, 1968, 328 с], для химических реакций в жидкой фазе. Другое объяснение длительного пребывания МХЭ в АЦ фермента можно связать с гипотезой «*черного хода*» (*back door*), описанной в обзоре литературы. Так как диффузия МХЭ через «*черный ход*» тем затруднительнее, чем больше геометрический размер продукта.

Наконец, если предположить, что имеется возможность образования подковообразных структур ДХЭ, то может произойти пространственное сближение сложноэфирных групп, следовательно увеличится вероятность взаимодействия и второй сложноэфирной группы с каталитическим серином.

<u>Влияние температуры и pH на ферментативный гидролз ДХЭ, под действием</u> <u>ХЭ</u>.

Показано, что в реакциях холинэстеразного гидролиза $\mathcal{J}X\mathcal{P}_6$ и $\mathcal{J}X\mathcal{P}_8$, расположение излома на кривых [кислотный продукт] = [P] = f(t) не меняется в температурном интервале 11 ÷ 35 °С (рис.5). Очевидно, такая картина возможна только в том случае, если энергии активации реакций ферментативого гидролиза $\mathcal{J}X\mathcal{P}$ и МХЭ равны, или величина их отличия не првышает погрешность эксперимента. Как ранее показано (Алебян Г.П. автореф. диссертации 1978 г.), при использовании БХЭ_л в качестве катализатора, за исключением дихолинового эфира янтарной кислоты (n = 2), действительно получены практически одинаковые значения энергии активации не только для $\mathcal{J}X\mathcal{P}$ и МХЭ, но и для АХ и БуХ ($E_a = 10.65 \pm 0.05$ ккал/моль).

Что касается влияния pH, то глубину излома на кривых [кислотный продукт] = [P] = f(t) можно определить в узком интервале изменения значений pH – 6.5 ÷ 7.5, так как при более низких значениях на кривых [P] = f(t) прямолинейная часть практически отсутствует.

Как было показано в интервале изменения значений pH – 6.5 ÷ 7.5 глубина излома не меняется ($ДXЭ_8$, $БXЭ_4$). Как показано на рис. 7, реакционная способность $ДXЭ_8$ слабо зависит от значения pH в указанном выше интервале. В этом же интервале pH нельзя было ожидать резких изменений реакционной способности $MXЭ_8$, так как свободная кислотная группа и при pH 6.5 вероятно находится в полностью диссоцированном состоянии.

Нами показано, что описанные в литературе закономерности, касающиеся двустадийности ферментативного гидролиза ДХЭ_n под действием БХЭ, находят свое полное подтверждение только для ДХЭ с n = 2 ÷5 и что субстраты с n \geq 6 ведут себя «аномально».

«Аномалия» обнаруживается, как в случае БХЭ₄, так и БХЭ_л,

- при n ≥ 6 концентрация образовавшегося ДК, на первой стадии ферментативного гидролиза ДХЭ зависит от "n" и тем больше, чем больше число метиленовых групп в ДХЭ,
- качественная картина кинетики реакции на первой стадии гидролиза, до проявления излома на зависимости [P] = [кислотный продукт] = f(t) практически не зависит от "n" (Puc.2).
- концентрация образовавшегося ДК, на первой стадии ферментативного гидролиза ДХЭ не зависит от температуры реакционной среды,
- концентрация образовавшегося ДК, на первой стадии ферментативного гидролиза ДХЭ не зависит от pH реакционной среды в интервале 6.5 ÷ 7.6,

- энергия активации реакции ферментативного гидролиза ДХЭ, за исключением дихолинового эфира янтарной кислоты (n = 2) (для БХЭ_ч E_a = 13.2 ± 0,05 ккал/моль, не зависит от "n" и незначительно отличаются для двух использованных ферментов (для БХЭ_ч E_a = 10.65 ± 0.05 ккал/моль и БХЭ_л E_a = 9.3 ккал/моль) (Алебян Г.П. автореф. диссертации 1978г.),
- наблюдаемая «аномалия» для ДХЭ с n ≥ 6, как качественно, так и количественно не может быть объяснена механизмом конкурирующих субстратов.

Моделирование комплексообразования ДХЭ и МХЭ с БХЭ_ч. Существующие в настоящее время (примененные нами) методы компьютерного моделирования, к сожалению, не позволяют смоделировать процесс химического превращения на активном центре фермента, однако они дают информацию о вероятной структуре фермент-лигандного комплекса и его стабильности. Учитывая сказанное, методы молекулярного моделирования можно считать более плодотворными для изучения систем фермент - обратимые ингибиторы. Однако, если придерживаться модели, предполагающей обязательное образование комплекса Михаэлиса, то и в случае субстратов моделирование может дать полезную информацию. В частности, нами определены структуры комплексов ДХЭ и МХЭ с БХЭч, а также их константы диссоциации.

Учитывая, что в последнее время, рядом авторов предлагается при моделировании особое внимание обращать на сольватированность ферментлигандных систем (Lushchekina S.V, Grigorenko B. L, 2010), а также тот факт, что в литературе имеются сведения о моделировании взаимодействия некоторых ДХЭ с БХЭ без учета сольватации, нами изучено влияние молекул воды на структуру субстратов как в изолированном состоянии, так и в фермент-субстратном комплексе.

В табл. 4 приведены результаты оценки межатомного расстояния четвертичных азотов ($N^+ - N^+$) для каждой молекулы исследованных ДХЭ для четырех различных случаев:

- максимально возможное расстояние при двумерном представлении изолированных структур субстратов без минимизации энергий внутримолекулярных связей (табл. 4, строка 1),
- 2. расстояние, которое соответствует минимуму энергии внутримолекулярных связей негидратированных молекул субстратов (табл. 4, строка 2),
- 3. расстояние, которое соответствует минимуму энергии внутримолекулярных связей гидратированных молекул субстратов (табл. 4, строка 3),
- расстояние, которое соответствует для энергетически более стабильных систем, полученных после комплексования гидратированных молекул субстратов с ферментом (БХЭ₄) (табл. 4, строка 4).

Таблица 4.

	ДХЭ2	ДХЭ4	ДХЭ́ ₆	ДХЭ8	ДХЭ ₁₀
1.	13.3	15.8	18.3	20.8	23.35
2.	12.9	15.3	17.8	20.4	23.35
3.	12.2	11.6	9.7	16.4	23.25
4.	6.5	5.1	6.1	10.9	

Межатомное расстояние четвертичных азотов в молекуле субстрата для ДХЭ в Å, рассчитанное с помошью программы ChemBioOffice 2008

Как видно из приведенных данных, гидратация ДХЭ (строка 3) приводит к ощутимым конформационным изменениям, что выражается в сокращении расстояния между ионами азота. Надо отметить, что конформации ДХЭ с n = 4, 6 и 8 по расчетным данным более чувствительны к гидратации, чем с n = 2 и 10. Сокращение межатомного расстояния для ДХЭ₈ достаточно короткое, а в случае ДХЭ₁₀ оно практически равно нулю. При образовании фермент-субстратного комплекса взаимодействие гидратированных ДХЭ (n = 2, 4, 6 и 8) с ферментом приводит к более ощутимым конформационным изменениям, в молекуле происходит сильное сокращение расстояния между ионами азота.

Несмотря на приближенность проведенных расчетов однозначно можно сказать, влияние молекул воды на состояние системы является очевидным.

В табл. 5 приведены, определенные методом докинг анализа, константы диссоциации, а также величины свободной энергии связи для гидратированных комплексов [Е•ДХЭ] и [Е•МХЭ].

Таблица 5.

Субстрат	Энергия связи, ккал/моль	Константа диссоциации, mM	Субстрат	Энергия связи, ккал/моль	Константа диссоциации, mM
ДХЭ2	- 2. 07	30.0	MXЭ ₂		
ДХЭ4	- 2.59	12.7	MXƏ ₄	- 1.5	85.02
ДХЭ6	- 1.82	45.7	MX36	- 1.34	103.1
ДХЭ8	- 2.55	13.4	MXЭ ₈	- 1.24	122.4

Константы диссоциации а также свободной энергии связи для комплексов [E•ДХЭ] и [E•МХЭ] определенные методомдокинг анализа

Как показывают полученные значения констант диссоциации, в ряду ДХЭ они практически остаются постоянными, что в принципе соответствует данным, полученным экспериментальным путем. Экспериментальным данным также соответствует сравнительно высокие значения констант диссоциации в ряду МХЭ (приблизительно на порядок). Однако в целом все эти значения констант диссоциации, по крайней мере, на три порядка выше значений, полученных экспериментальным путем. Справедливости необходимо отметить. что значения константы лиссопиании ради лля несольватированных комплексов ДХЭ4 и ДХЭ8 с БХЭч также практически не отличаются друг от друга, но имеют значения на 2 порядка ниже. Рассчитанные расстояния между углеродным атомом сложноэфирной группы ДХЭ и каталитическим центром БХЭ, т.е. кислородным атомом спиртовой группировки аминокислотного остатка Ser198 приведены в табл. 6

Таблица 6.

Расстояние между углеродным	м атомом сложноэфирной группы ДХЭ и кислороо) -
ным атомом	м спиртовой группировки Ser198	

		10 1		
Субстрат	ДХЭ2	ДХЭ4	ДХЭ ₆	ДХЭ ₈
(О ^ү _{Ser198} —С _{ДХЭ8}), Å	10.863	12.625	10.408	13.28

*Расстояние между углеродным атомом сложноэфирной группы лиганда и кислородным атомом спиртовой группировки Ser198

Согласно приведенным данным, наиболее стабильные фермент – лиганд гидратированные комплексы имеют пространственную структуру, при которой взаимодействие сложноэфирной группы ДХЭ с каталитическим центром БХЭ не явлется реальным. Применяемый нами подход расчета позволил выявить важную роль молекул воды в формировании [Е•ДХЭ] комплексов и в связи с этим предположить, возможное наличие других центров взаимодействия молекулы ДХЭ с БХЭ.

выводы

1. Проведено сравнительное исследование ферментативного гидролиза дихолиновых эфиров алифатических дикарбоновых кислот (ДХЭ), под действием БХЭ (БХЭч и БХЭл) и установлено, что гидролиз высших членов этого ряда не протекает по общепринятой схеме, описанной в литературе.

2. Показано, что, в отличие от описанного в литературе двухстадийного механизма с четким разделением стадий, где ферментативный гидролиз монохолиновых эфиров (МХЭ) начинается после полного исчерпания ДХЭ, для высших членов наблюдается "аномалия", а именно, на первой стадии гидролиза происходит образование дикарбоновой кислоты (ДК).

3. Количество образовавшейся ДК на первой стадии ферментативного гидролиза высших членов ДХЭ зависит как от источника фермента (БХЭ человека или лошади), так и от числа метиленовых групп в цепи ДК (n), и тем больше, чем больше "n" и не зависит от температуры ($11 \div 35$ °C) и pH ($6.5 \div 7.5$) реакционной среды.

4. Экспериментальным и рассченым путями показано, что при гидролизе высших членов ДХЭ, между субстратами МХЭ в составе комплекса с БХЭ и ДХЭ в реакционной среде имеет место ранее неизвестный тип нарушения чисто конкурентных отношений, вследствие чего более реакционоспособная молекула ДХЭ не в состоянии вытеснить МХЭ из комплекса с ферментом.

5. Описанное нарушение конкурентности, в предыдущем пункте, приводит к механизму, предполагающему пераллельный гидролиз ДХЭ и МХЭ, под действием БХЭ.

6. Впервые показано, что ферментативный гидролиз ряда ДХЭ под действием БХЭ зависит от длины метиленовой цепи в кислотном фрагменте и может протекать по трем разным кинетическим схемам – последовательно, параллельно и последовательно–параллельно.

7. Предложена схема механизма реакции, объясняющая наблюдаемую "аномальную" кинетику.

8. С помощью методов молекулярного моделирования проведен докинг анализ ряда ДХЭ в активном центре (АЦ) БХЭ. Показано влияние гидратации на пространственную структуру ДХЭ_n. Показана роль сольватации молекулы субстрата и фермента при образовании фермент-субстратного комплекса. Показаны структуры возможных фермент-субстратных комплексов, ранее не описанных в литературе.

СПИСОК ОПУБЛИКОВАННЫХ РАБОТ

- Mnatsakanyan M.R., Halebyan G.P. The new view on mechanism of enzymatic hydrolysis of dicarboxylic esters by human butyrylcholinesterase. ActaPharmacologicaSinica. // Abstracts of the 15th World Congress of Pharmacology. Beijing, China, July 2-7, 2006, p. 217.
- Mnatsakanyan M.R., Grigoryan H.A., Halebyan G.P., Lefebvre B., Brasme B., Masson P., Lockrdge O.*New kinetic data on hydrolysis of aliphatic dicarboxylic acid dicholine esters by butyryrlcholinesterase/*Proceedings of the International Conference "Advanced Biotechnology: Perspective of Development in Armenia", Tsakhkadzor, Armenia, July 12-14, 2006, p.28.
- М.Р. Мнацаканян, Л.М. Акопян, Ж.В. Саркисян, В.А. Самокиш, Г.П. Алебян. Аномальнаякинетикагидролизадихолиновыхэфироввысших дикарбоновых кислот под действием бутирилхолинэстеразы. // Биологический Журнал Армении 2007, 59 (3-4), с. 239 – 247.
- Mnatsakanyan M.R., Halebyan G.P., Masson P.Kinetics of enzymatic hydrolysis of dicarboxylic acid dicholine esters by butyrylcholinesterase from human and horse serum//International Conference "State-of the-Art Biotechnology in Armenia & ISTC contribution", Tsakhkadzor, Armenia, September 28-October 02, 2008, book of abstracts, p.95.
- М.Р. Мнацаканян, А.О. Папоян, В.А. Самокиш, Г.П. Алебян. Кинетические особенности гидролиза дихолинового эфира себациновой кислоты под действием сывороточной бутирилхолинэстеразы.// Химический Журнал Армении 2009, 62 (1-2), с. 188-201.
- М.Р. Мнацаканян. "Аномальная" кинетика гидролиза дихолинового эфира пробковой кислоты под действием лошадиной сывороточной бутирилхолинэстеразы.// Биологический Журнал Армении 2009, 61 (3), с. 71-76.
- Mnatsakanyan M.R. Papoyan A.H. Samokish V.A., Halebyan G.P.*Mechanism of* enzymatic hydrolysis of dicholine esters of sebacic acid by human serum butyrylcholinesterase.// International Symposium "Brain immune system: neurochemical and neuroendocrine aspects", Yerevan, Republic of Armenia, 2009, October 6-8, book of abstracts p. 85.

ØÜ² o² Î ² ÜÚ² ÜØ² ðÆÜ^o è² Ø² ÜÆ

$$\begin{split} \$^2 \hat{I}_{y} \hat{J}_{y} \hat{J}$$

2Øöàö2¶Æð

 ٤
 ٤
 ٤
 ٤
 ٤
 ٤
 ٤
 ٤
 ٤
 ٤
 ٤
 ٤
 ٤
 ٤
 ٤
 ٤
 ٤
 ٤
 ٤
 ٤
 ٤
 ٤
 ٤
 ٤
 ٤
 ٤
 ٤
 ٤
 ٤
 ٤
 ٤
 ٤
 ٤
 ٤
 ٤
 ٤
 ٤
 ٤
 ٤
 ٤
 ٤
 ٤
 ٤
 ٤
 ٤
 ٤
 ٤
 ٤
 ٤
 ٤
 ٤
 ٤
 ٤
 ٤
 ٤
 ٤
 ٤
 ٤
 ٤
 ٤
 ٤
 ٤
 ٤
 ٤
 ٤
 ٤
 ٤
 ٤
 ٤
 ٤
 ٤
 ٤
 ٤
 ٤
 ٤
 ٤
 ٤
 ٤
 ٤
 ٤
 ٤
 ٤
 ٤
 ٤
 ٤
 ٤
 ٤
 ٤
 ٤
 ٤
 ٤
 ٤
 ٤
 ٤
 ٤
 ٤
 ٤
 ٤
 ٤
 ٤
 ٤
 ٤
 ٤
 ٤
 ٤
 ٤
 ٤

°ňľ ÷ ádť Ú» ˳ ÝǽÚÇ Ė³ Ėĩ Ù³ Ý Ù³ ėÇÝ į ſĬ³ ládÙ ÑÇ1 ňáťÇ½Ç ³ é³ çCÝ ÷ ádťádÙ ³ é³ ç³ ó³ ľ ÃÃſ ³ ÚÇÝ ³ ñ. ³ ëÇùÇ ³ ľÝѳ Úĩ ³ ſ »ťóádľ Á (15 - 75 % ľ³ Ėſ³ ſ ʾ-Ç Ù»ÃÇť»Ý³ ÚCÝ ßÕó ÚÇ »ňľ ³ ňádĂládÝÇó), áň Á ľ³ ňáŐ į ſ »ñ³· ñí »ť Ùdz ÚÝ ѳ Ù³ å³ï ³ ë˳ Ý ¹Çľ ³ ñµáݳ ÃÃſ Ç ³ é³ ç³ óÙ³ ÝÁ: Æñ³ ľ³ ݳ óſ ³ ſ ùňáÙ³ï á-

. ñ³ ýÇ³ Ϊ³ Ý ³ Ý³ ÍǼÇ[°] i íl³ ÍÝ³ ñÁ Ñ³ ëï ³ i áðl »Ý, áñ ³ é³ çÇÝ ÷ áðláðl ³ Ýç³ i í³ Í Ãà í ³ lÇÝ ³ ñ ³ ëÇùÇ ³ í »lóáðl Á Ñ³ U³ å³ ï ³ ëE³ Ý ¹ ÇÏ ³ ñµáÝ³ ÃÃáðÝ ¿

 \mathbf{D}^{3} Ûi Ý 3 µ $^{\mathbf{N}}$ ñí 3 Í § 3 ÝáÙ 3 ɦ ÑÇ 1 ñáÉǽÇ ⁽¹) $^{\mathbf{N}}$ Ë $^{\mathbf{S}}$ ÝǽÙÇ å $^{\mathbf{X}}$ ñ½ $^{\mathbf{N}}$ 2 $^{\mathbf{N}}$ ³µ $^{\mathbf{X}}$ ÝÙ $^{\mathbf{Y}}$ Ý Ýå³ï³Ïáí Cñ³Ï³Ý³óí»É »Ý ïíÛ³É ëáôuëïñ³ïÝ»ñC ËáÉCÝ;ëûñ³½³ÛCÝ ÑC¹ñáÉC½C ³í»ÉC ËáñÁ ÏCÝ»ï CϳϳÝ Ñ»ï ³½áï áôÃÛáôÝÝ»ñ ևñÓݳϳÝ \times ³Ý³å³ñÑáí áñáßí »É »Ý Ú³ñ¹áð "ÓÇáð íáðʾ-Ý»ñÇ ³½¹»óáðÃÚ³Ùµ µ³ñÓn³ Ëó³ Ý³ ÃÃí C 뻵³ óÇÝ³ ÃÃí Ç ¹ÇËáÉÇÝ³ ÛÇÝ ¿ëûñÝ»ñÇ ÙĊ[…]ÝáôÛÝ ¹Çİ³ ñµáÝ³ ÃÃáôÝ»ñÇ ÚáÝáĖáťÇÝ³ÛÇÝ ¿ëÃ_°nÝ»nÇ NÇ¹náťÇ½Ç ΪCÝ»ï CÏЗÏЗÝ ³é³ÝÓݳѳïÏá₀ÃŮáōÝÝ»ñÁ, ѳBí³ñÏí»Ė »Ý ÏÇÝ»ïÇĬ³Ï³Ý å³ñ³Ù»ïñ»ñÇ ³ ñÅ»ùÝ»ñÁ: òáôló ¿ï ñí »É, áñ »ñl ³ ñ Ù»ÃQÉ»Ý³ĺQÝ BÕÃ³ áōÝ»óáÕ . ʾ-Ý»ñĆ ËáťÇÝ¿ëûñ³½³ÛÇÝ ÑǹñáťÇ½Ç §³Ýáٳɦ ÁÝóóùÇ ³éϳÛáðÃÛáðÝÁ ϳËí³Í ā; ý»nÙ»Ýĩ Ç Í³ áðÙÇó: âÝ³Û³Í, ÓÇáð íáôʾ-Ç ¹»åùáðÙ \hat{E} ¾-Ç ØÊ¾-Ç K_m –Ç ^Ξ πÅ»ùÝ»πÇ ï Ξ πμ»πí áðÙ »Ý Ξ í »έÇ ùΞ Ý 1000 Ξ Ý·ΞÙ, ÑC¹πáťÇ½Ç Ξ éΞ çÇÝ ÷ áðťáðÙ ³ é³ ç³ ó³ Í ÃÃí ³ ÛÇÝ ³ ñ. ³ ëÇùÇ ³ í »Éóáöl Á Ñ³ ëÝáôÙ ¿ 75 %-Ç:

öáñÓÝ³ ľ³Ý ×³Ý³ å³ ñŇáí áñáßí »ť »Ý áðëáðÙÝ³ ëÇňí áÔ ÙÇ³ óáðĀláðÝÝ»ňÇ ËáťÇÝ¿ēûň³ ½³ ŲÇÝ ÑǹňáťÇ½Ç ľ ÇÝ»ï ÇĨ³Ĭ³Ý å³ ñ³ Ù»ï ň»ňÁ ($K_m = V_{max}$) β³ ňùÇ Ã» Ȗϳñ, Ä» ϳñ× Ù»ÃÇɻݳÛÇÝ BÕó áôÝ»óáÕ ³Ý¹³ÙÝ»ñÇ Ñ³Ù³ñ: Ėï ³óí³Í ³ňÅ»ùÝ»ñÁ ѳٻٳï í »É »Ý•ñ³Ï³ÝáôÃÙ³Ý Ù»ç ³Ėϳï íÛ³ÉÝ»ñÇ Ñ»ï:

 $\dot{\phi}$ áñÓݳ ݳ Ý ×³ ݳ å³ ñNáí ëï ³ óí $\ddot{\Im}$ Πʾ-Ý»ñÇ ØÊ¾-Ý»ñÇ ĨÇÝ»ï ÇĨ³ ϳ Ý å³ ñ³ Ù»ï ň»ñÇ ³ ňÅ»ùÝ»ñÇ (K_m V_{max}) û· ÝáðÂŪ³ Ùµ Ĭ³ éáðóí »É »Ý ³ Üē Ùdz óáðÂŪáðÝÝ»ñÇ Ēá£ÇÝ¿ëûň³ ½³ ÜÇÝ Nǹ ňá£Ç½Ç ï »ë³ Ï³ Ý Ñ³ ßí ³ ňĬ³ ÜÇÝ Ĩáñ»ňÁ:

ÆÝāå »ë óáðló ; ï 5 LÇ ë ëï 3 of 3 L 3 L 1 Laðí ÝuÝ »ñÇ í »ñLáðí áð Laðí VÁ, eáðu er - n³ i Ý »ñÇ ÚÇ ; ý »ñÚ »Ýi 3 UÇ Ý ÑÇ ¹ ňáL (2, C) Ú nó 3 Lö 3 U 3 C, Ý 3 NU 3 V 3 L $^$

ÖáñÓÝ3Ï3Ý
×3Ý3 å 3 ñNáí
Ñ 3 ß 3 ñ 3 lộ ý
N 3 lí 3 ñ 3 lộ ý
N 3 lí 3 ñ 3 lộ ý
N 3 lí 3 ñ 3 lộ ý
N 3 lí 3 ñ 3 lộ ý
N 3 lí 3 ñ 3 lộ ý
N 3 lộ 3 n 1 3 lộ ý
N 3 n 1 3 lộ j
N 1 3 lộ j
N 1 3 lộ j
N 1 3 lộ j
N 1 3 lộ j
N 1 3 lộ j
N 1 3 lộ j
N 1 3 lộ j
N 1 3 lộ j
N 1 3 lộ j
N 1 3 lộ j
N 1 3 lộ j
N 1 3 lộ j
N 1 3 lộ j
N 1 3 lộ j
N 1 3 lộ j
N 1 3 lộ j
N 1 3 lộ j
N 1 3 lộ j
N 1 3 lộ j
N 1 3 lộ
N 1 3 lộ
N 1 3 lộ
N 1 3 lộ
N 1 3 lộ
N 1 3 lộ
N 1 3 lộ
N 1 3 lộ
N 1 3 lộ
N 1 3 lộ
N 1 3 lộ
N 1 3 lộ
N 1 3 lộ
N 1 3 lộ
N 1 3 lộ
N 1 3 lộ
N 1 3 lộ
N 1 3 lộ
N 1 3 lộ
N 1 3 lộ
N 1 3 lộ
N 1 3 lộ
N 1 3 lộ
N 1 3 lộ
N 1 3 lộ
N 1 3 lộ
N 1 3 lộ
N 1 3 lộ
N 1 3 lộ
N 1 3 lộ
N 1 3 lộ
N 1 3 lộ
N 1 3 lộ
N 1 3 lộ
N 1 3 lộ
N 1 3 lộ
N 1 3 lộ
N 1 3 lộ
N 1 3 lộ
N 1 3 lộ
N 1 3 lộ
N 1 3 lộ
N 1 3 lộ
N 1 3 lộ
N 1 3 lộ
N 1 3 lộ
N 1 3 lộ
N 1 3 lộ
N 1 3 lộ
N 1 3 lộ
N 1 3

2ї »Ý³ Ёа́ёа́а́ $\overline{\lambda}$ І́3 Ý Ñç ÚÝ³Ї³ Ý ³ П́І́а́о́YùÝ[»]ñÁ Ý[»]ñÍ³ Í3 Ó́ ³ Í ÚÇç³ ½ ³ ÛÇÝ · Çĩ ³ ÅáŌáí Ý»ñáô Ú. ^{*} »Õ³ · »ï Ý»ñÇ 15-ñ¹ ØÇç³ ½ ³ ÚÇÝ Î áÝ · ñ»ёáð Ú (ä »Ï ÇÝ, âÇÝ³ ёї ³ Ý, 2006 Ã.), [°] §Успехи биотехнологии: перспективы развития в Армении ¦ (Ì ³ ÕĬ ³ Óáň, Đ³ Í3 [°] ĕї ³ Ý, 2006 Ã.) §Современное состояние биотехнологии в Армении и роль МНТЦ в ее развитии ¦ (Ì ³ ÕĬ ³ Óáň, Đ³ Í3 [°] ĕї ³ Ý, 2008 Ã.), §Имунная система мозга: нейрохимические и нейроэндокринные аспекты» (° ñ^{°3} Ý, Đ³ Í3 [°] ĕї ³ Ý, 2009 Ã.):

Mnatsakanyan Marine R.

«The Kinetics and Mechanism of Cholinesterase-Catalyzed Hydrolysis of Aliphatic Dicarboxylic Acid Dicholine Esters»

SUMMARY

Keywords – butyrylcholinesterase, choline esters of dicarboxylic acids, «anomalous» hydrolisys, kinetic parameters.

The thesis devoted to the study of features of cholinesterase-catalyzed hydrolysis of aliphatic dicarboxylic acid dicholine esters (DChE) by human and horse butyrylcholinesterase (BChE). The work was carried out in the laboratory of engineering enzymology of SRI "Biotechnology".

It was shown for the first time, that the hydrolysis of DChE homologous series with long methylene chain (starting with suberic acid dicholine ester) by butyrylcholinesterase doesn't run by two-stage mechanism, described in literature, while in case of DChEs with shorter methylene chain, the two-stage mechanism is persisted. It was shown, that unlike the strictly separated two-stage mechanism of enzymatic hydrolysis of this series shorter members, when first stage product dicarboxylic acid monocholine ester (MChE) starts to get hydrolysed after DChE was exhausted from the reaction medium, in case of higher members of DChE series enzymatic hydrolysis, MChE starts to get hydrolysed in the first stage of reaction, when there is DChE in the reaction medium.

The significant excess of acid product formed during the first stage of the hydrolysis (15 - 75 % depending on length of methylene chain) is the evidence of violation from the two-stage mechanism. This excess could be attributed only to the formation of dicarboxylic acid during the first stage of hydrolysis. The data of the conducted chromatographic analysis indicates that the excess of formed acid product conforms to corresponding dicarboxylic acid.

To clarify the mechanism of found "anomalous" hydrolysis detailed kinetic studies of cholinesterase-catalyzed hydrolysis of given substrates have been conducted. The kinetic features of suberic and sebacic acids dicholine esters and monocholine esters (MChE) hydrolysis by human and horse butyrylcholinesterase have been determined experimentally and values of kinetic constants have been calculated. It was shown that the "anomaly" of cholinesterase-catalyzed hydrolysis of DChEs with long methylene chain, does not depend on the source of enzyme. Although in case of horse BChE the ratio of K_m values for MChE and DChE is more than 1000, the excess of acid product during the first stage of hydrolysis is 75 %.

The kinetic parameters (K_m and V_{max}) of cholinesterase-catalyzed hydrolysis have been determined experimentally for compounds both with long methylene chain and short methylene chain. The obtained results have been compared with literature data.

The influence of reaction medium conditions (temperature and pH) on higher DChEs hydrolysis mechanism and kinetic parameters has been studied. The activation energies of studied reactions have been calculated. It was shown that temperature changes between $11 \div 35^{\circ}$ C and pH changes between $6.5 \div 7.6$ do not affect the "anomalous" hydrolysis mechanism.

Experimentally obtained kinetic parameters (K_m and V_{max}) of DChEs and MChEs hydrolysis have been used for construction of theoretical calculated curves.

Analysis of obtained data shows, that if there is competitiveness between monoand dicholine esters, the determined values of K_m and V_{max} could not explain the amount of dicarboxylic acid accumulated during the first stage of reaction. The amount of dicarboxylic acid formed during the first stage depends on the source of enzyme and the length of DChE methylene chain and doesn't depend on temperature (11 ÷ 35° C) and pH (6.5 ÷ 7.5) of reaction medium.

The comparison of experimental results and theoretical curves allows us to assume, that during the first stage of cholinesterase-catalized hydrolysis of DChE series higher members, there is violation of competition between mono- and dicholine esters, which has not been described previously and brings to parallel hydrolysis of DChE and MChE. The new parallel-consecutive mechanism of DChE enzymatic hydrolysis by BChE has been proposed.

The main results of the Thesis were presented in the conferences: The 15th World Congress of Pharmacology (Beijing, China, 2006), The International Conference "Advanced Biotechnology: Perspective of Development in Armenia" (Tsakhkadzor, Armenia, 2006), International Conference "State-of the-Art Biotechnology in Armenia & ISTC contribution" (Tsakhkadzor, Armenia, 2008), International Symposium "Brain immune system: neurochemical and neuroendocrine aspects", (Yerevan, Armenia, 2009).