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INTRODUCTION 

 

Currently, X-ray diffraction is one of the most important subjects in the study of solid state physics. 

Gaining information about the actual structure of materials is an important task of condensed matter 

physics. X-rays help to solve the structural problems and also identify the physical properties of the 

solids. The use of electromagnetic radiation with angstrom wavelength represents a number of new 

high-precision methods for studying the properties and structure of crystalline and non-crystalline 

materials and biology. 

X-ray diffraction experiments can be performed with both synchrotron and standard lab x-ray 

sources. The resolution of lab sources is higher but the intensity is much lower than synchrotrons. 

The synchrotron is an extremely powerful source of X-rays which are produced by highly energetic 

electrons moving in a large circle in the synchrotron. The radiation produced in this way has 

properties of polarization, high brilliance, high intensity and wide spectrum. 

 However, the study of fast processes requires monochromatic and collimated radiation with high 

intensive in wavelength of angstrom range. For monitoring single crystals in the technology of 

microelectronics and also testing non-destructive martial, first of all, there are the X-ray diffraction 

methods. For example, using x-rays for studying the effect of external influences on the structure of 

crystals, which are great interest in the technology in the field of microelectronics, instrument 

Engineering and nanotechnology. Relatively accessible and simple change of defects under the 

influence of external factors can make these effects controllable. Such studies are required to adjust 

composition, structure and defects of crystalline order to obtain single crystals with the desired 

physical  properties. 

Studying the structure and properties of different single crystals by X-ray diffraction methods is 

basic and informative. At the present time for research in this area, it is essential to have a strongly 

monochromatic and highly collimated and also sometimes polarized X-ray beam with a large 

luminosity, which is also controllable. 

Relevance of the topic  

Obtaining electromagnetic radiation with angstrom wavelength range and controllable parameters is 

one of main subjects in studying the structure of condensed matter and new materials. 
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Understanding the physics of diffraction of the radiation with wavelength of angstrom in the 

crystals under external influences is very important, because it leads to more simple and reliable 

methods for the study of fine structural changes in crystals with high degree of perfection, 

dislocation-free single crystals, and also identifying new useful properties of single crystals under 

external influences. 

Dislocation-free single crystals are increasingly applied in various fields of modern science and 

technology. For example, single crystals of semiconductors (silicon, germanium, gallium arsenide, 

lithium niobate, quartz, etc.) are grown on industrial scale and are widely used in microelectronics 

as the electronic components to create large-scale integrated circuits for computers and automated 

systems. Monochromatic and collimated beams of high-intensity are also necessary for checking the 

perfect grown single crystals. X-ray diffraction methods are used in the first place as anon-

destructive testing. Another area of research that has rapidly developed in recent years associates to 

the topographic methods in order to study the perfect crystals and some defects in the crystals. 

Optics of X-ray diffraction is a new branch of physics. Since the refractive index of X-rays in solids 

is not very different from one, unlike optics, the creation of X-ray focusing systems seems 

impossible. However, in conditions of diffraction, energy flux changes at around the Bragg angle 

with a very small change in the direction of the incident beam near the Bragg angle. This fact is an 

excellent property to create X-ray focusing systems under the conditions of diffraction. 

Since the coefficient of linear absorption in wavelength of angstrom range is very large, and the 

passage of the waves through the thin and flat samples are strongly absorbed, creating the elements 

of optics will require a strong incident beam ,which of course can have a negative effect on single 

crystals. Therefore, the subject is to study the interaction of radiation with condensed matter under 

various external influences in order to maximize the intensity of the reflected beam. Research on 

this problem presented in the thesis, which is useful and necessary. 

The purpose of work  

Obtaining effective control parameters x-rays and thermal neutrons; research and identification of 

new models of interaction and distribution of radiation in perfect single crystals in the presence of 

external factors (acoustic fields, temperature gradient)and obtaining the beams of intense coherent 

and monochrome . 
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The scientific novelty of work 

The values of imaginary and real parts of coefficient of Fourier expansion of polarizability (    

and    ) for ADP and KDP crystals have been extracted by usage formula of integrated intensity of 

reflection in crystals with weak deformation [113]. 

reflectivity single crystal of ADP is measured at the position of the Laue reflection under the 

influence of temperature gradient perpendicular and parallel to the reflecting atomic planes with    

µt1 (where - µ the linear absorption coefficient, t -thickness of the crystal).A theoretical 

interpretation has been given for the reduction of the reflection coefficient and appearance of a 

minimum in curve of integrated intensity with temperature gradient [108,111,115]. 

The practical value 

On the basis of the results of researches of new phenomena in the propagation of X-rays(XR), 

synchrotron radiation (SR)and thermal neutrons(N) in perfect single crystals under external 

influences, several elements of gamma-optics are developed and implemented. 

X-ray monochromator (without harmonics) is created under the scheme Laue, has almost maximum 

luminosity and greatly improves monochromatic beam compared with Bragg monochromator. 

With the help of effect of the full transfer, the continuous beams in the angstrom range can be 

filtered with a small energy range. 

Based on the phenomenon of the full transfer and complete transparency, most of the elements of 

gamma optics are designed and created. Collimating monochromators, selective filters, modulators, 

lenses, etc., which can be widely used in science and technology, as well as in biology and 

medicine. Based on these studies and obtained results, the problem of space-time control of 

radiation in angstrom range solved by acoustic fields and temperature gradient. The results obtained 

in the thesis help develop the theory of the interaction between radiations in angstrom range with 

matter under external influences. 

The main points, to be defended 

1-The behavior of the integrated intensity of diffracted beams of X-ray from a single crystal of 

ammonium dihydrogen phosphate (ADP) in the Laue geometry under the influence of the 

temperature gradient applied perpendicular to the reflecting atomic planes.  
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2-The behavior of the integrated intensity of diffracted beams of X-ray from single crystals of 

ammonium dihydrogen phosphate (ADP) and quartz in the Laue geometry under the influence of 

the temperature gradient applied parallel to the reflecting atomic planes.  

3- The method of extraction of values the imaginary and real parts of Fourier expansion coefficient 

of polarizability (    and    )of ADP and KDP crystals.  

4-The comparison between experimental and theoretical rocking curves of reflectivity for ADP 

crystal under influence of temperature gradient in Laue-case geometry. 
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CHAPTER 1.  Study of the intensity of reflected and transmitted beams of 

X-ray passing from the crystal 

1.1 Introduction and overview of the literature 

1.1.1 X-ray scattering from perfect and near-perfect crystals 

After the discovery of X-ray diffraction by crystals, different theories proposed for to describe the 

interaction of radiation with matter. The x-ray diffraction on crystals helps us to study the properties 

of the X-rays, the structure, physical and chemical properties of crystals. Because of this, the x-ray 

diffraction method is considered as a unique and powerful method for studying materials and 

different phenomena. The task of researchers is that the based on the diffraction pattern a substance 

get right conclusions about its structure.  

We can inversely solve the problem with help of theoretical prediction of the exact diffraction 

pattern and obtain configuration (location) of atoms in the unit cell of the substance. One of these 

theories is the kinematic scattering theory that can describe different behavior of diffracted X-ray 

beam with associate to the parameters of the crystal lattice. We present main results that have 

been obtained by the kinematic theory of X-ray scattering[1-2]. 

Kinematic theory 

The kinematic theory is basis on the general assumptions of the scattering of electromagnetic waves 

by scattering centers (atoms in the lattice).Solving the problem of the resulting secondary wave at 

the point located in distance greater than the size of the crystal, some assumptions are made. First, 

the interaction between the incident and secondary waves neglected and assumed speed of the X-ray 

wave in the crystal is equal to the speed of light in vacuum. This assumption leads to small errors in 

the locations of the diffraction maximum.  

Second, supposed the incident wave only once scattered in the crystal. This assumption is valid for 

crystals of small size. 

Third, the interaction of the wave with matter   neglected due to the small size of crystal. For this 

reason, the kinematic theory assumes that the amplitude of the wave received by every diffracting 

center in the crystal is same. Law Bragg can be easily obtained by this theory 

                                                           ,                                                         (1.1) 

Where d(hkl)- distance between atomic planes (hkl), θ-Bragg angle for a reflection, n-a number of 

integer,-wavelength of beam. 
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     In the kinematic theory, the intensity of the diffracted radiation at a point to distance R from the 

crystal, is given the following [1, 3]  

                                        
  

 

  

              
 

             
              

 

             

             
 

            
                                   (1.2)                                               

Where 

                                                                                                                     ,                                         (1.3) 

        - Incident vector,    - scatter vector   ,       - vectors of lattices, F0- amplitude of the scattered 

wave from an unit sell, which depends on the nature of the atoms in the sell and on the relative 

positions of atoms, R - the distance between the observed point and the crystal,         - the 

number of unit cells are in the directions   ,       respectively.  

Fig.1.1shows dependence the intensity distribution respect with number of cells in the crystal. As it 

is seen, when number N decreases the intensity distribution become wider, i.e. the width of intensity 

distribution is directly related to the size of diffracting crystals. 

 

Fig.1.1Effect of the number of cells on the intensity distribution   

The expression 
              

 

             
 has a value of maximum, equal   

 , when value of         is equal an 

integer number    Therefore diffracted intensity reach their maximum when   

     =h,       =k,      =l                                                                                    (1.4) 
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 These three equations are called the Laue conditions.  Then maximum (1.2) obtained the following 

                          
  

 

  
  ,                                                                           (1.5) 

Where N =           . The intensity of maximum      observed in a certain small angular region 

in the direction of selective reflection.  

Dynamic theory 

Simultaneously with development of the kinematic theory, other theory so-called dynamic theory of 

X-ray diffraction in perfect crystals was developed by Darwin. In Darwin's dynamic theory, X-rays 

reflected from the crystal was considered as a steady flow of multiple reflections from parallel 

planes.  

At each lattice plane, the incident wave generates a reflected and a transmitted wave. Each one of 

these in turn generates reflected and transmitted wave each time when it crosses from an atomic 

plane. Darwin compared his theoretical results with the experimental measurements and found them 

disagreement both with respect to the value of the reflected intensity and with respect to the width 

of the reflection domain which was very much larger than predicted. For explanation of this 

difference, Darwin concluded that this disagreement is due to the imperfection of the crystal, for 

that reason he suggested model of diffraction by a conglomerate of crystalline blocks (mosaic) and 

phenomena of extinction. Bragg and Ewald further refined this model. They considered that real 

crystals are made of mosaic of small blocks more or less missoriented with respect to one another, 

where each block is a perfect structure. In addition, they applied correction of primary extinction in 

dynamical theory. Darwin’s theory leads to the same expressions of the reflectivity as the Ewald-

Laue theory, but is not easily adaptable for calculation of energy paths and, for that reason, has been 

seldom used in the later developments of the dynamical theory. However, that is useful in the case 

of layered media or in the case of surface diffraction. 

Laue introduced the concept of a continuous distribution of electron density in the crystal instead of 

concept of localization of electrons around the nucleus. This theory was confirmed by number of 

fundamental studies [1-5]. These theories were further developed in [6,7]. 

Kato [8] classified the dynamical theory of X-ray scattering into three types: a) the theory of 

Darwin, b) the theory of  Ewald, c) the theory Laue. 
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In Darwin's theory, scattering elementary units are atomic plane and taken into account the 

interaction of waves propagating in the crystal from the first layer to the subsequent layer.  

Ewald developed this theory, but his theory has a much wider scope than Darwin’s theory. One of 

the important results this theory was the introduction of the notion of wavefields. Ewald proposed 

point dipoles are scattering units, which localized in the crystal lattice.   Dipoles within matter under 

external electromagnetic field have to oscillate. As a result, dipoles emit secondary electromagnetic 

waves with a frequency equal to the frequency of the exciting field. This process supports the 

propagation of the incident beam in media. In this theory, Ewald predicted interference effects with 

scattering x-rays. 

In contrast to Ewald’s dynamical theory which discusses the interaction of an electromagnetic wave 

with a distribution of discrete dipoles, Laue’s basic assumption is the consideration to the electric 

negative and positive charges which are continuously distribution throughout volume of the crystal. 

Therefore the dielectric susceptibility, or polarizability, of the medium for x-rays can be considered 

asthe distribution of continuous in throughout volume of the crystal which is proportional to the 

electron density, i.e.the whole crystal was considered as scattering element. 

The Maxwell's equations were used for propagated waves inside the crystal by Ewald and Laue’s 

dynamical theories of x-ray diffraction. Later, Zachariasen developed this theory [7] and obtained a 

formula which it predicted existence of the anomalous transmission of x-rays in crystals which 

µt   . 

In 1959, Kato and Lang experimentally discovered the interference effect by the investigation ofx-

ray scattering at the wedge-shaped sections of the crystals [9]. Kato with analyze the experimental 

data, showed that a certain type of the interference pattern created by the spherical waves in 

crystals, he developed a version of the dynamical theory in the incident of spherical waves [10]. 

 

The calculation of the scattering intensity as the kinematic and dynamic theories eventually leads to 

the determination of the ability of radiation scattering by atomic lattice structure. Moreover, it is 

known that the share of nuclei in the scattering process is very small and can be neglected. 

Therefore, we can assume that the amplitude of wave diffracted by a crystal is the sum of the 

scattering waves from the appropriate electron in n atoms of a cell. This amount is determined by 

the expression  

                                                                                                                                     (1.6)            
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where N is number of unit cells in the crystal, ae is the amplitude of the wave scattered by a free 

electron, Fhkl is called structure factor of the reflection from the planes (h, k, l) (in general,Fhkl is a 

complex number). 

Reflectivity in Kinematic theory 

The integrated reflectivity P is the ratio of the total energy received by detector, while the crystal is 

rotated, divided by the intensity of the incident beam and by the cross-section of beam Fig.1.2 

 

 

Fig.1.2cross-section of the beam diffracted by a small crystal 

According to kinematic theory, the integrated reflectivity Rk from atomic planes(hkl) of a thick 

absorbing crystal in the case of transmission geometry is given by [2]:  

Rk=
  

    
 .
          

 

       
 
  

  
       

  
 

     
       

   

     
               (1.9) 

 

Where - absorption coefficient, V - volume of the unit cell,    - structure factor,  - wavelength of 

incident beam, t - crystal thickness. This expression is also used for neutrons diffraction, but not 

quite well for high-energy electrons and certainly not so for low-energy electrons [2]. 

Reflectivity in Dynamic theory 

According to the dynamic theory, the integrated reflectivity Rd   in the case of reflected geometryfor 

thick and non-absorption crystal is obtained following 
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                                       Rd=
 

   

  

   
  

   

      
 
  

 
        ,                                                (1.10)  

Where C is polarization factor and in case of transmission geometry is following 

                                        Rd=
  

   
  

   

       
 
  

 
          

      

 
      ,                  

(1.11)  

Where   (z) is the zeroth-order Bessel function and   so-called Pendellosung distance and its value 

in case of the symmetric is  

   
          

          
=

       

         
,                                            (1.12) 

R is called the classical radius of the electron. The integrated reflectivity in the dynamic theory is 

proportional to        and   .When crystal thickness increases to large values, term of integration 

tends toward 1. Therefore, integrated reflectivity in the dynamic theory is proportional to        

and    , in contrast to the value of integrated reflectivity given by kinematic theory, which is 

proportional to        
  and   .When ratio      tends toward zero, (1.11) is converted to 

Rd=
  

    
 .

    

      
 
  

  
       

  
 

     
   (1.13) 

That is equivalent to the expression (1.9) obtained in kinematic theory. Therefore, kinematic theory 

is a good approximation when crystal thickness is much smaller than  .We know which to perfect or 

not perfect, a crystal depends on conditions of diffraction. Freund showed this fact by experience 

[11]. He studied the integrate reflectivity of the (222) reflection with different wavelengths for 

several copper crystals with different degrees of perfection. In fig1.3Samples B1 to B4 are with 

dislocation densities 2 10
4
, 4 10

4
, 7 10

4
, 2 10

7
 dislocations/cm

2
, respectively and sample C1 is a 

dislocation-free.the wavelength vary from 0.03 to 1.66 A˚(the short wavelength are -rays).As can 

be seen sample C1 behaves like a perfect crystal for wave lengths greater than 0.1 A˚ but seems 

quite imperfect for wavelength smaller than about 0.07 A˚. Samples B1, B2 and B3 behave nearly 

like a perfect crystal for wavelengths above the K absorption edge of copper while for a wavelength 

of about 0.01 A˚ they behave like an ideal mosaic crystal. Sample B4 behaves essentially like a 

mosaic crystal. these results can be interpreted by Pendellosung distance which increases with the 

decrease of wavelength and coherent domains in the sample appear smaller as wavelength becomes 

shorter, as the result sample behave like a imperfect crystal(Fig.1.3) 
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Fig.1.3 Variation integrated reflectivity with wavelength for (222)reflection 

of several copper crystals with different degrees of perfection. 

        

When a crystal deform in a controlled way, it is possible, to determine between the perfect and the 

ideally imperfect crystal cases. These investigations began under the influences of external forces 

on the X-ray diffraction. The first works in this field were carried out in 1931 [12-14]. However, the 

first theoretical works, which tried to explain the results, were in 1961 [15-16]. One of these 

theories is the theory of Penning-Polder, which was modeled from propagation of light beams 

through inhomogeneous media. The paths of wave fields in deformed materials are bent, as light 

rays in a region with varying index of refraction, these paths and the variations of the reflected 

intensity are calculated using ray theory based on modification of dynamical theory and Fermat’s 

principle. This theory is valid when the deformation of crystal be small enough. Condition of 

validity this theory (sometimes called ray theory) is following 

 

                                         
       

      
 

 

  
                                                                               (1.14) 

Where h–reciprocal lattice vector, u – deformation vector,   - Pendellosung distance (or extinction 

distance) and       - coordinates in long of incident and reflected directions. 

More description about it, can find in [15]. The case of arbitrary deformations was considered in 

[16], it give a set of equations for solving the problem of propagation of x-ray in any kind of the 

deformed crystal.  
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1.1.2. The effect of the external influence on the parameters of the reflected and transmitted           

x-ray beams  

As it is known the intensity of the diffracted X-ray beams changes under the influence of external 

forces, such as the temperature gradient, the acoustic vibrations, mechanical stress, elastic 

deformation, pulse pounding, dc voltage, etc. 

Studies were carried out both in the anomalous transmission (t ~ 10) [17,18] and in non-normal 

transmission (t ~ 1) [12-14, 19] of X-rays through a crystal. 

The study of behavior of the intensity of the transmitted beam anomalously  under external 

influences showed that these effects lead to the decrease in the intensity of  transmitted and 

diffracted beams until vanish [18,20]. 

In addition to these studies, many studies carried out on the effect of acoustoelectric oscillation and 

bent crystals on the intensity of the diffracted X-rays [21, 22, 46, 69, 70,82-97]. The main results 

Briefly obtained in some of these studies, are given following:   

In [21] was shown that the Debye-Waller factor describes correctly the Borman effect acoustic 

suppression only within the short-wave range (λs  τ, λs ultrasonic wavelength, τ extinction length).         

In [22] the rocking curves of Silicon-crystal were measured with a high angular resolution under 

conditions of the Borman effect resonant suppression by transverse ultrasonic vibration. It was 

shown that on the curves deep minima appear whose positions depend on the vibration frequency. 

The many interesting theoretical and experimental results obtained in the field of dynamic X-ray 

scattering in distorted and bent crystals [20-22, 97-104]. We only mention them the following: as 

anomalous transmission of X-rays is obtained only from perfect single crystals, any effects that lead 

to the distortion of a perfect crystal violate conditions of the anomalous transmission. Consequently, 

the decrease of the intensity of the transmitted and diffracted beams is as a function of the degree of 

distortion, and in the case of strong distortions, they disappear. This is in good agreement with the 

theory of dynamic scattering of X-rays in thick crystals (µt    . With respect to the fact, this 

dissertation is devoted to the study of external influences on the intensity of the transmitted, 

absorbed and diffracted X-ray in non-anomalous mode (     . Therefore the following is more 

detailed about the results of studies of external influences on the intensity of X-rays for this case. In 

this area, many studies have been performed such as [12, 13,19,23-37,66,67] which related to the 

X-ray scattering from crystals of piezoelectric. For the first time in [12] observed changes in the 

intensity of the diffracted X-rays by applying an alternating voltage with the resonance frequency 
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on the quartz piezoelectric crystal. As result of researches determined that the intensity of the Laue 

reflections with the white radiation in the presence of vibration in the piezoelectric quartz is more 

than the intensity of the reflections of the crystal without vibration. 

In [23] the crystal was set in the position of Bragg reflecting and exposed vibration. The results of 

this work showed that intensity and line broadening change.  

In [24-26], the intensity of the reflected beam was almost no change in the excitation of the crystal 

with the second harmonic frequency of the crystal. 

In [27]was investigated which different cuts of the crystals may change intensity of the Laue 

reflections. In [28] considered the dependence of the intensity of the diffracted X-ray beam on the 

applied voltage. This dependence is shown in Fig 1.4. As is seen from the figure, the intensity of the 

reflection increases up to a certain value of electric field. Further increase in voltage leads to a 

decrease in the intensity of the reflected X-ray beam. 

 

Fig.1.4.The intensity of the reflected beam versus the voltage of electric field of resonant frequency. 

 

After a long pause of research (about 30 years) under the influence of piezoelectric effect in 

reflection of Laue geometry, the new phase of similar studies began. As will be seen follows, this 

was due to the appearance of new advanced features of X-ray radiation. Ref. [19] shows the 

dependence of the intensity of the diffracted X-rays on the value of the current due to the applied 

electric field (Fig.1.5). It shows that the intensity of the diffracted beam increases with the increase 

of the current up to a certain value and then it will close to saturation position.  In this work used 

from MoKα radiation and the thickness of the quartz plate was chosen such that µt=1. The 
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experimental results confirm the prediction of the dynamic theory of weak deformation of the non-

absorbing crystal. 

 

Fig.1.5.The intensity of the diffracted beam with the current 

(in mill amperes) applied to quartz crystal[19]. 

 

Later in [29] considered to dynamical theory of X-ray diffraction in crystals with one-dimensional 

modulated electron density.  It obtained approximate expressions for the diffraction amplitude in the 

case of Laue and Bragg with modulation harmonically and the assumption that modulation does not 

affect in frequency of the crystal.  

The effect of vibrations on the intensity of scattering of X-rays from the piezoelectric crystal has 

been studied in [30-37]. In [30-34] have shown that when vibration is applied the perpendicular to 

the primary beam and the crystal is thick enough, doublet Laue spots disappears and increases the 

intensity of the reflections. In [35] has studied the diffraction of X-rays from the oscillating quartz 

plate and pictures taken topographs in the vibration of the crystal. 

In [69, 70], X-ray diffraction was experimentally studied in the Laue geometry in a germanium 

crystal carrying a ultrasonic wave that creates an alternating lattice deformation along the sample 

surface. 

Authors [78] proposed and implemented a method for measuring rocking curves via the ultrasonic 

modulation of the lattice parameter. This method was based on the interaction of long- wavelength 

with X-rays in crystals.  
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After the discovery of the effect of complete transfer of X-rays from the direction of the 

transmission to the direction of the reflection [36], in work [37] with use of Takagi’s equation 

presented an estimation of quantitative from changes in the intensity of the transmitted and reflected 

beams. 

Thus, the summary of the results above, we can say that the excitation of the crystal by the acoustic 

waves is increased intensity of the diffracted X-ray intensity and the amount of increase depends on 

the amplitude of the applied voltage. 

Similar results were obtained in the thermal neutron diffraction [38-46], under external influences 

on the sample. 

In the continue of this section, we review the works which relate to effects of the temperature 

gradient and other types of external influences on distribution and intensity of the diffracted X-ray 

beam from a single crystal. In [36, 47-49], the studies are devoted to effect of the temperature 

gradient on the Laue spots. The pattern obtained under the influence of the temperature gradient 

compared with pattern without the temperature gradient and was found that the splitting of the Laue 

reflections disappears and their intensity increases. 

The study of the effect of the temperature gradient on the intensity of X-ray reflections showed that 

the intensity of X-ray reflections strongly depends on both the magnitude and direction of the 

temperature gradient (the angle between the gradient vector and the normal to the reflecting atomic 

planes), and the arrangement of the gradient and diffraction vectors (parallel or antiparallel [ 51]). 

The authors[47] showed that the weak temperature gradient(~15 ° C /cm) change the intensity of 

the Laue reflections corresponding to those planes, which are vertical (or close to vertical) to the 

temperature gradient vector. It was also shown that the beam exited from the part of the perfect 

crystal undergoes a greater change in intensity than the beam which exit from part of imperfect the 

crystal. The effect of gradient also depends on the value of the distance between atomic planes 

(see[47, 48,51]). 

In [52], which is mainly experimental, the different theories about the propagation of X-rays in a 

slightly deformed crystals was compared and Temperature gradient was elected for deformation of 

the crystal by the author .Because, the mathematical expressions for such deformation are rather 

simple, and on the other hand, strain is easily controlled experimentally. 
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The study of the influence of temperature gradients (~100 c˚/cm) on the x-ray scattering in crystals 

found a new wave field [49]. Experimental evaluation of the intensities of the primary and the new 

wave fields are in good agreement with theoretical predictions. 

Dynamical diffraction in a crystal with distortions is the sum of dynamic scattering in perfect 

regions of crystal and scattering on the distortions. This allowed Takagi [53] to create a separate 

theory that describes the process of dynamical diffraction inside the crystal distorted. 

The authors [17,68] solved the thermal conductivity equation for two and three dimensional cases in 

respect to experimental conditions. They obtained expression for the displacement function which 

satisfies Takagi equation. 

Ref. [83] Studied the dynamics of changes in the intensity Laue reflected beam while the value of 

the temperature gradient continuously changes. It established high sensitivity of intensity X-ray 

beam with a parallel arrangement of diffraction vector and the gradient vector at t ~2. 

In [106], experimentally and theoretically was investigated the behavior of the interference 

coefficient of absorption of X-ray in the quartz crystal under the influence of temperature gradient 

in Laue geometry and was shown that with the increase in temperature gradient, the coefficient of  

absorption of X-ray suddenly decreases until it reaches its minimum value at a certain value of 

temperature gradient. 

[107] investigated the cross section of transmitted X-ray beam diffracted by reflecting atomic 

planes of quartz single crystal in Laue geometry for different values of temperature gradient applied 

to the crystal and was shown that the angular width of a fully pumped X-ray beam depends on the 

distance between the source and the studied sample and decreases with the increase in this distance. 

Now, we consider  several types o fexternal effects created on a crystal and lead to changes in the 

intensity of the diffracted beam. From this viewpoint the work of [14] is interest, it showed a 

significant increase in the intensity of the reflected X-ray emission from single-crystal quartz when 

it is placed between the plates of a capacitor, with a constant voltage (50-100 kV /cm). In 

[54]confirmed the main experimental results observed in[14].At the same time present a model to 

explain this effect and this effect was named by the authors piezoelectric effect of quasi-mosaicity. 

 In [54] demonstrated a significant increase in the luminosity of the diffraction of X-ray beamsat 

work with two-crystal spectrometer, when the two crystals was applied dc voltage, the total increase 

in the intensity of the reflected beamwas20-30 times while width of the lines was not changed. The 
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intensity of the diffracted beam begins to increase with switching voltage and the process continues 

much long time (several hours). 

The amplification of the Bragg reflection from a quartz crystalline a strong electric field(U / 

t>10
5
kV/ cm) was observed in [55].When turning off the electric field, intensity of the reflection  

took the original value. 

In [56] studied the reflectivity of the quartz and ADP crystals in two forms: the ordinarily and 

chemically polished crystals. It demonstrated that in the shortwave region, reflective qualities of 

ordinary crystals higher than chemically polished crystals. With increasing wavelength, chemically 

polished crystals have stronger reflectivity. 

In [57] studied the character of the diffracted beam from a crystal under influence of the 

compression of strike. It is shown that the moment of strike at the maximum intensity of the line is 

almost unchanged, and the line width greatly increases. 

In addition to  he above, there are a large number of papers devoted to dynamical X-ray scattering 

in bent crystals elastically.  

Note that we have listed in the review of the mentioned works, which are most similar to the topics 

of this dissertation. As can be seen from the analysis of these studies ,in references there are not 

often data concerning structure and changes in the intensity of the transmitted and reflected beams 

and absorption in the presence of a temperature gradient and the acoustic field when µt  . 

1.2 Basic equations of dynamic X-ray diffraction rays and thermal neutrons [81-83] 

 

X-rays as the short wavelength electromagnetic waves and thermal neutrons reveal the dual nature 

of the interaction with matter, namely reveal the properties of both particles and waves. X-ray is 

electromagnetic radiation, and in dynamic scattering on the crystal lattice is considered from the 

point of view optical wave. So, naturally, the phenomenon of diffraction by a crystal lattice is based 

on classical Maxwell's theory, even though the medium is described by quantum-mechanical 

quantities, namely the Schrödinger electron charge density and current density. For an electron 

interact with an electromagnetic field, Schrodinger current density is defined                         

                                                       j 
  

  
    ,                                                     

and accordingly                                      
  

    
      ,                                                        
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Where ν is frequency and     is electric field intensity of X-ray waves. So the medium have a 

dielectric constant and polarizability following: 

          
  

    
      and                 

  

    
,                        (1.21) 

Note that the relations (1.18) and (1.19) are considered as microscopic quantities, i.e. taking place at 

each point in space, because polarization vector      , the field intensity      , the displacement vector       

and the charge distribution density    are functions of the coordinates.  

     The wave equation for the vector of the electric induction      , according to Maxwell's equations 

would be: 

                                  ,                           (1-22) 

Where k = υ / c = 1 / λ is the wave number in vacuum and  λ is wavelength of radiation.  

Let N be the average number of electrons per unit volume, so that the average charge density is 

equal to  

     ,                                             (1-23) 

therefore 

 
  

    
 

   

      
,                                                   (1-24) 

Inserting values of 
  

   
           ,                аnd            ,  we find that   

                                                                                    
  

    
     .                                                    (1.25) 

Hence (1.35) have  

                                                                   
  

    
  .                                                           (1.26) 

As a result, the polarizability of the medium is a periodic function of the coordinates, which is the 

Schrödinger charge density       space lattice of the crystal. 

Now we consider the basic principles of neutron diffraction waves [83], in particular thermal 

neutrons waves. Neutrons are considered as neutral particles. Recently the most accurate 

measurements show that the electric charge of the neutron        . The neutron lifetime,   = 886 

s [5], is much longer than the time of a neutron within a scattering experiment. The neutron is 

electrically neutral but has a magnetic moment                               
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μ =  γ  ,                                                                (1.27) 

Where γ = 1.913 and the nuclear magneton is given by μN = eħ/mP where mp is mass of proton. The 

neutron magnetic moment is coupled antiparallel to its spin, which has the value s = 1/2. 

The neutron interacts with nuclei via the strong nuclear force and with magnetic moments via the 

electromagnetic force. 

In neutrons scattering experiments, neutrons behave as particles when they are created, as waves 

when they scatter, and again as particles when they are detected. 

 The neutrons source is nuclear reactions. Bombarding a target by accelerated particles such as 

electrons, protons or deuterons is one way creation of the neutron. In these reactions, the output 

neutron is defined as one neutron for one incident particle. For large number of neutrons are used 

nuclear fission or nuclear fusion. 

For the coherent interaction of neutron waves with condensed matter, it is necessary kinetic energy 

of thermal neutrons be ~ 25meV, because it is the range of energy, which is necessary for the 

excitation of many condensed matter. Based on de Broglie wavelength 

  
 

 
                                                 (1.28) 

Where P is neutron momentum, for such neutrons, λ is same order of interatomic distances, which 

is necessary for phenomena of coherent neutron scattering and observing interference phenomena 

and the neutron diffraction in crystal lattice. Meanwhile, for many reactions of fission and fusion 

neutron energy distribution is concentrated around the energy several mev. For the selection of 

thermal neutrons (~ 25meV) from this distribution and reduce the number of cold (<10meV) and 

hot neutrons (> 100meV) are used moderator, which due to inelastic scattering are removed cold 

and hot neutrons. The characteristic pattern of distribution of the number of neutrons with 

respective energy after the moderator which is quite well described by the Maxwell distribution 

(see. Fig 1.6) 
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Fig. 1.6 The energy distribution of neutrons after moderator [83].  

The distribution pattern of Figure 3 shows one of the characteristics of neutron beams, namely, 

fairly large width of energy distribution of beams. 

In the many problems in dynamic neutron scattering on the crystal lattice, in particular in study the 

interference phenomena (pendulum effect, primary extinction, interference contrast arises in 

different multi-chip systems, etc.) it is necessary to neutron beams with a high degree of 

monoenergetic. In addition, neutron beams are emitted in a fairly wide angular range. 

Consequently, collimation of these beams are especially need in works that are based on the plane-

wave approximation of dynamical scattering of neutron, such as registration of the rocking curves 

and plane wave topography, etc.  The spatial concentration (focus) of neutron beams is very 

important, besides the above-mentioned features, neutron beams are wide enough in the spatial 

distribution. The latter feature becomes very important with consideration energy power of neutron 

sources which are much lower than the X-ray sources. 

 In contrast distribution of X-rays, which are described by Maxwell's equations and lead to the wave 

equation (1.22), the distribution of neutron waves, in particular, the thermal neutrons is described by 

the Schrödinger equation 

          
     

  
              (1.29)                                           

Where   is neutron mass, E is the total energy of the neutron and       is the scalar potential of the 

medium. According to the relation of de Broglie have  

     

  
      

  

 
 
 

,                                                   (1.30) 

Where λ is de Broglie wavelength of neutron in vacuum, we can say that 
     

  
            

corresponds to the term              in (1.22). 

The characteristic of the medium in this case is exactly the scalar potential      , which describes 

the interaction of neutrons with nuclei of the atoms of the medium. Based on the theory of neutron 

diffraction pseudo potential Dirac is 

      
  

    
             ,                                                 (1.31) 
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Where   is neutron scattering length,           is Dirac delta function,      is radius-vector and the 

summation is over all    , i.e. over all the nuclei of the medium.  

Naturally in Dirac pseudo potential (1.31) the scattering centers are considered as point, unlike X-

rays, which the scattering centers distribute as continuous density      . This, one of the 

characteristic when consider in the neutron diffraction waves. The potential (1.31) is a periodic 

function of the coordinates of the crystal lattice which can be represented as a Fourier series: 

          
           

 ,                                                   (1.32) 

Where the summation is over all vectors      reciprocal lattice, and the Fourier coefficients of 

  defined as 

   
 

  
                     
  

                                   (1.33) 

Where  is the unit cell volume, and the integration is performed over the entire volume   . with 

consideration of (1.31) we obtain  

   
    

    
               

              
  

 
    

    
           

           ,                 (1.34) 

The coefficient of Fourier – Dirac's pseudo potential can be represented as     

                                 
    

    
     

             
   

 
    

    
   ,                                                    (1.35)                                      

Where Fh is the structure factor for the vector     reciprocal lattice or reflecting atomic planes with 

Miller indices (hkl). Note that so defined the structure factor for neutrons is long. 

X-rays interact with the medium by the Thomson scattering and susceptible to the electron density 

distribution in the medium, which is a periodical function of the coordinates of the crystalline 

medium. Therefore, the characteristic value of the interaction of X-rays with the crystal determine 

with structure factor which is            where   is Fourier components of the density      of 

elementary charge.  

  The structure factor for x-rays is defined as: 

                   
          ,                                                     (1.36) 
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Where        is atomic factor or form factor of atom j at position      . For X-ray diffraction structure 

factor    is ratio of the amplitudes of the diffracted beam for one unit cell to the scattering 

amplitude for a free electron. 

As a result, comparison of the two cases, the scattering of X- rays and neutrons, can be changed to 

the replacement of    (for neutrons) to    
   for x-rays, (              is the classical radius 

electron). 

Both equations (1.22) and (1.29) describe the propagation of X-ray and neutron waves, respectively, 

which are in the form of an inhomogeneous wave equation and a special solution that vanishes at 

infinity and has a similar form for both equations. For x-rays, this solution has the form 

     
 

  
 
                              

 
   ,                                           (1.37) 

Where           is the distance between the points with the radius vectors   and   , and      
 

 
 

is time delay of the scattered wave at the point   and   . For neutron waves similar solution can be 

written as: 

         
    

  
 
                  

 
   .                                                   (1.38) 

The general solution of the inhomogeneous wave equations, according to well- known theorem of 

differential equations with partial derivatives can be represented as the sum of the general solution 

of the homogeneous wave equations and partial solutions (1.39) and (1.40), respectively: 

                         
 

  
 
                            

 
  ,                                    (1.39) 

 

                 
    

  
 
           

 
  ,                                          (1.40)  

Where             and          the general solution of the homogeneous wave equations corresponding 

to (1.36) and (1.37) with              .  

In the special case which the time dependence of the wave fields              and         are 

represented in the form of     , i.e. wave fields are considered as monochromatic (1.39) and (1.40) 

are converted to the form: 
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         ,                              (1.41) 

             
    

  
 
          

 
         ,                                    (1.42)  

where   
 

   
   and   

 

 
 
  

 
 
 
  

are wave numbers in vacuum X-ray and neutron waves, 

respectively. 

Equation (1.41) is an integro-differential, and (1.42) integral equation. Integral terms representto 

scattered among the area, considering to the multiple scattering inside the medium, in particular, the 

crystalline medium. The main differences between the processes of scattering of X-ray and neutron 

waves are in both equations characteristic functions       and      . For X-ray, this function is 

proportional to the electron charge density       and the basic process of the scattering is Thomson 

scattering of electromagnetic waves by electrons and thus is characterized by the Thomson 

scattering length
  

   
            . For neutron scattering waves due to the interaction of 

neutrons with the nuclear of area 

 and under the assumption of a point scattering center due to the smallness of the effective distances 

          of nuclear interactions, the characteristic function of this interaction is the pseudo 

potential of the Dirac i.e. 

                                                                                                 
      

  
     .                                   (1.43) 

The second major difference is that, the wave of the photons are described by vector wave 

functions, while the wave function       of neutrons is scalar that shown in (1.39, 1.40).  

Other characteristics of the two fields are very similar. For example, the refractive index can be 

represented for both wave fields in a similar form 

                                                                   n = 1-δ.                                                         (1.44)  

Nuclear scattering length in the same order as the Thomson length, but each atom has Z electrons 

and only one nuclear. On the other hand   
 

 
     is of the same order for x-rays and thermal 

neutrons, as a result δ is of the same order for both radiation       . 

     Now the features of the neutron absorption at the medium in comparison with the absorption of 

x-rays are described briefly. The absorption of waves as x-ray and neutron waves are described by 

the refractive index of the imaginary part  
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                                                                   .                                                                   (1.45)  

The real part    for both radiations can be                                                                                      

                                                             ,                                                                                 (1.46)  

and the imaginary part describes actual loss of wave energy due to photo absorption, incoherent 

scattering and inelastic scattering:                               

                                                        
     

      
                                                     (1.47)   

Where   is the number of atoms of various substances make the substance:   
    

         
   are 

interactions cross section of photo absorption, incoherent and inelastic, respectively. The average 

density of scattering can be written as  

 

                                                              .                                                                                   (1.48) 

Relation between      and absorption coefficient μ is for  

                                                                 ,                                                                                (1.49)  

Finally we have                                      

                
  

  
      

 

  
 .                            (1.50)                

We estimate the ratio 
  

  . For neutron cross-section of absorption   is inversely proportional to k, 

so both the parameter δ and   , vary as      and their ratio is independent of k 

             

  
  

 
 

  
 

  
                                             (1.51) 

where          is elastic scattering cross section and     
     

  
 is cross section for a certain 

selected as the initial value of    (usually    
 

  
  corresponds to the wave number for neutrons 

with a velocity        
 

 
accordingly the length of de Broglie wave    

 

    
      ). 

Since
  
 

  
  , аnd        

  , it is obvious that      and the contribution of the conventional 

absorption is negligible in the interaction of neutrons with matter[98 ].  

 For X-ray have 
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,                                                                       (1.52)                                                             

  
  

  
      .                                                            (1.53) 

So that the ratio  

                                                                    
   

 
 

   

     
 .                                                                       (1.54) 

In turn, the photo absorption cross section of X-rays is 

                                                                               
 
 
  

 
 
 

  .                                                     (1.55) 

So have 

                                                               
  

 
 

  
 
  

    
 
  

 
 
 

     .                                                     (1.56). 

And since   
 

 is ranges 0.1- 0.01and   
  

 
  , the absorption becomes important for relatively heavy 

elements.  

           As a result of the above description, we can conclude:  

1. The equations describing the propagation of x-rays and neutron beams in the medium, including 

the crystals, are similar. 

2. The main difference between these two cases is negligible absorption of the neutrons while X-ray 

absorption is significant in crystals. 

3. Point the nature of the spatial distribution of the scattering centers for neutrons and unclear 

distribution of these centers for the X-ray beam. The latter considered the characteristic parameters, 

namely, the Fourier coefficients of the electronic charge distribution for X-ray waves and the 

pseudopotential of Dirac for interaction of neutrons with the nuclei of the lattice atoms. 

Reasons using neutrons diffraction 

Neutron scattering is one of the most powerful experimental methods, to study the structure and 

dynamics of materials on the nanometer scale. Neutrons determine where the atoms are and what 

the atoms do [3]. 

40 years ago, neutron scattering was a strange tool for solid state physicists and crystallographers, 

but today it is used as wide as Biology, Earth Sciences, Planetary Science, Engineering and 
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nanoscience. In brief, neutrons are used in all scientific fields that deal with condensed matter. 

Although the neutron scattering is expensive technique.   

The X-ray scattering is selected for the study of atomic and nanometer-scale structure in materials. 

X-ray sources are by more access and are, especially synchrotron X-ray sources, much stronger than 

neutron sources. Hence, X-rays have the first rule in experiments. 

Neutrons diffraction have preferred over X-rays in four general points: 

1. Thermal neutrons have a wavelength (2Å) similar to inter-atomic distances, and energy (20 meV) 

similar to elementary excitations in solids. 

Thus can simultaneously obtain information about the structure and dynamics of materials and e.g. 

measure dispersion relations (dependence of energy-wavelength) of excitations. 

2. The neutron scattering cross section varies randomly between elements and even between 

different isotopes of the same element. Thus can use neutrons to study light isotopes. In particular, 

this is important for hydrogen, which is almost invisible with X-rays.  

3. Since neutrons penetrate in matter easily, neutron scattering can be performed for the study very 

big samples up to 10 cm thickness, depending on its elemental composition. 

4. With consider to property of the neutron magnetic moment , neutrons scatter from magnetic 

structures or magnetic field gradients. Unpolarized neutrons are used to determine the period and 

amount of the atomic magnetic moments, while scattering of spin-polarized neutrons can determine 

the direction them. 

In most cases, neutron scattering is performed with other experimental techniques; often neutron 

scattering as one of the final techniques be used before conclusions. 

1.3. Description of deformed space lattice with weak deformation 

If crystal lattice is deformed continuously, operation of X-ray in the lattice is similar to the 

propagation of light waves in an inhomogeneous medium with continuously changing refractive 

index. This approach to the help of dynamical diffraction of x-rays has been developed for the first 

time in the work of Penning and Polder [15] and Kato [16] who considered the problem of X-ray 

trajectories of wave packets in a Bragg diffraction grating. 

When the deformation is small enough, each small region of the crystal lattice can be considered as 

perfect with the effective local disorientation from the Bragg condition. Naturally, this 
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disorientation is a function of coordinates in the lattice. In this case, it is assumed that each point 

with the radius vector    simply shifted from its position to a new position (see Fig. 4) 

                 ,                                                                 (1.57) 

where         displacement vector, depending on the origin. It is assumed that during this 

displacement, distribution of the density of the scattering material (electron charge density for X-

rays, the potential of nuclear forces for neutron beams or the potential of the Coulomb field of 

atoms in the electron waves) do not undergo changes during such a displacement, i.e. their values 

only shifting from    point to point        . Equation (1.57) can be rewritten as 

                    ,                                                            (1.58)          

if the coefficients of the stress tensor 

                                                                    
   

   
             ,                                               (1.59) 

With approximation can write 

                                                                                   (1.60) 

 

 

 

 Fig .1.7 The relationship between the radius vectors            and the displacement vector          

 

Before deformed crystal, equation of a plane of the family of direct lattice planes(hkl) is 

H≡         =N             (N = 0, 1, ….n),                     (1.61) 

reciprocal lattice vector     can be defined as the gradient of H. 

A 
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                                                      (1.62)   

For the deformed crystal equation of atomic planes (1.61) and (1.62) are transformed into 

                               .                         (1.63)         

This equation determines the transformation of the atomic planes in the resulting deformation, and 

by analogy with (1.62) reciprocal lattice local vector can be defined as 

                                    ,                           (1.64)  

which naturally depends on the coordinates and represents the local reciprocal lattice vector.  

        Obviously, the local change of the reciprocal lattice vector 

                                                      ,                                        (1.65)   

is also a function of the coordinates, and its small changes           will be determined by the second 

derivatives with respect to the coordinates in the form and its components are 

                                                                   
             

      
    .                                                                  (1.66) 

The dynamic theory is valid if this quantity be small with respect to the width of the dispersion 

surface, that is smaller than    . If the spatial size of the wave packet be of the order of the 

extinction length 

                                                                                     ,                                                                   (1.67) 

The condition of validity of the dynamic theory can be written as 

 

              

      
 

 

  
 ,                                                                 (1.68)        

and changes in the reciprocal lattice vector, must satisfy the condition: 

           
 

  
 .                                              (1.69) 

From the point of view of the Bragg diffraction, the lattice deformation leads to a local rotation of 

the atomic planes and local changes in the interplanar spacing. Rotate the atomic planes changes the 
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relative orientation of the beam and the planes. If before deformation, angular displacement from 

the exact Bragg condition is 

       ,                                                                 (1.70) 

where θ is glancing angle of the beam relative to the planes, and    is the angle at the exact Bragg 

condition, the Bragg angle after deformation   determined as follows: 

  
     

  

 
    ,                                                     (1.71)  

where Δdis amount of change in d-spacing. In turn, the angular displacement    from the Bragg 

angle after deformation is defined as 

          
 ,                                               (1.72) 

Where    is the angle between the incident beam and planes after deformation, which obviously 

depends on the angle of rotation of the plane due to deformation.  

  From Figure 5 it is clear that in the general case 

            ,                                                           (1.73) 

Where α is angle between the normal to the atomic planes before         and after deformation         , 

φ is the angle between the normal plane              and the normal to the diffraction plane. 
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Fig.1.8 Effective 

disorientation beam with respect to the atomic planes before and after deformation 

Thus, the effective local disorientation from the Bragg condition, due to the deformation of the 

determinant as follows: 

             
  

 
    ,                                         (1.74)   

The main function the process of diffraction by a lattice is the distribution function of the  scattering 

centers of the lattice. For x-rays,this characteristic function is three-dimensional periodic 

polarizability       and for neutron waves is the periodic potential of the nuclear in the 

lattice.Following is an example of X-rays, consider the features description of these functions in a 

continuously deformed crystal. Considering (1.60-1.62), and assuming that the deformation of the 

lattice not change electron charge density, i.e. charge density at the point     perfect crystal one by 

one into the point        in a deformed crystal, it is possible for  three-dimensional Fourier series of the 

function           write 

               
                               

 ,                             (1.75)  

With consideration to the local reciprocal lattice vector which defined by (1.74) have 

 χ         
         

  ,                                       (1.76)  

or     
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deformation 
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 .                                                (1.77) 

This means that the crystal itself is perfect, but the atomic planes turn or shift relative to each other. 

  

Deformation of Crystal by temperature gradient 

The condition (1.69) is a condition for the weak deformation. If the crystal be under influence of the 

constant temperature gradient, the vector function of the displacement        is given as[15 ] 

                       
  

 
                                                               (1.78) 

where α is coefficient of linear thermal expansion of crystal. In this case, the plane perpendicular to 

        are bent, and the radius of curvature is defined as: 

             
  

 ,                                                                 (1.79)   

where the sign of reduce of curvature is determined by the relative orientation of the vectors     and 

        . The parallel plane to the temperature gradient remains flat but are distributed in the form of 

a fan relative to each other. As a result, if the reciprocal lattice vectors      and gradient         be 

along the same line, i.e. or parallel or antiparallel and the scattering plane be y = 0, we have 

        
 

  
         .                                                        (1.80) 

In this case, conditionof validity of the dynamic theory (1.68) becomes: 

                                                             
 

  
 

 

  
  or    

  

 
 .                                                        (1.81) 

If the temperature gradient and the reciprocal lattice vector mutually perpendiculars have 

                                                                                                                                                           
     

  
        ,

              

      
                                             (1.82) 

where         are coordinate system associated with the Cartesian (x, z) in the case of symmetric 

Laue diffraction relations 

                                                                 .                                                 (1.83) 
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Equation (1.82) indicates that this lattice deformation does not affect the propagation of the X-ray 

wave field in the medium and wave field not feel strain field while reflecting atomic planes are not 

parallel, and the interplanar spacing varies from point to point.  

Two types of deformation of the crystals are shown schematically in Fig.1.9. 

 

 

 

 

 

 

 

 

 

 

Fig. 1.9A schematic picture of the deformation of the crystal :a) undeformed crystal, 

 b)  deformed crystal when             c)deformed crystal when             

 

1.3.1 Dynamic diffraction of X-ray beam in a crystal with weak deformation 

 

We consider a symmetric Laue case with crystal oriented near the Bragg condition and the 

reflecting atomic planes are normal to the incidence surface of the crystal.The wave field of the 

crystal lattice is represented as a superposition of waves with the quasi-amplitudes  (r) and   (r) 

[16]: 

                                    (r)=  (r)       +  (r)       ,                                                               (1.85) 

                                               (                    ,                                                                                                 (1.86)  

                                                              
  

 
 ,                                                                                     (1.87) 
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where χ
 
is the mean polarizability of the lattice.According to the Huygens–Fresnel principle [72], 

the quasi-amplitudes    and   of wave field, stand for the transmitted and reflecting waves, are 

related by influence functions     Gj(x, z) ( j= 0,h) determining the influence of primary radiation 

 
 
       at the point            of the input surface  plane (z = 0) of crystal on the field in observation 

point P(x, z) in the scattering plane: 

 
 
      =                

 
              ,               (1.88) 

Where the integration is on      cross section coinciding with the incidence surface of the crystal. 

The x-axis of reference system is taken parallel to the incidence surface of crystal, and z-axis is 

directed along the internal normal to that surface. Besides that, oblique coordinate axes (so, sh) shall 

be also used below with axes parallel to wave vectors    and   of the transmitted and diffracted 

waves in the lattice (fig.1.10).  

The transition from one reference system to the other is made by means of transformations (1.83 ) 

 

 

 

 

 

 

 

 

 

 

 

Fig .1.10 Diagram of reference systems, S is a point source of radiation, p is observation point 

 

   In the case of a constant strain gradient, the scalar product           is a quadratic function of 

so and sh 
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                                                                    =   so sh.                                                                                                                                                                            (1.89) 

The propagation of X-ray wave packages in the lattice is described by wave equations that follow as 

a consequence from the Takagi equations [73]. For the reflected beam with quasi-amplitude   this 

equation is described in the form: 

                        
    

       
    

   

   
      – α   =0                                                                              (1.90) 

Where  σ=πkcΧh,   =πkc    ,   =
          

   
  in fact    determines  deviationfrom the Bragg angle that is 

due to the lattice deformation, c is the polarization factor equal to 1 or cos2θBfor different  

polarization states of the radiation,χ
 

and χ
  
are Fourier coefficients of crystal polarizability in the 

directs (h)and (  ) vectors of  the reciprocal lattice, k =1/λ is the wave number of radiation in 

vacuum. 

With substitution Z= i  so sh in equation (1.90), that become to the well-known equation for 

confluent hypergeometrical function [74] 

                                     
    

   
+( 1   

   

  
+(1-

    

  
)  =0. (1.91)                                                                              

Solution of this differential equation can presented in term of Whittaker function 

 

      

 
 

                                                                                                       
 

                                                                                                       
 

                                                                                                                                                                                     

where                                                                                              
      

  
       

1.3.2 Asymptotic solution 

 

We can note that the argument of the Whittaker function is written in the form [75] 

        –i   )so sh                                                                        (1.94) 

From expression (1.94) it is clear that the parameter of crystal lattice deformation α introduces an 

additional imaginary part, which in its turn implies an additional attenuation or vice versa an 

amplification of the field amplitude which is not connected with the usual  phenomena of radiation 

absorption in the crystal. This can be clearer if we consider the asymptotic behavior of solution 
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(1.92) far away from the edges of the Bormann delta (so sh =0) and weak deformations, i.e. under 

the following assumptions 

   

   
    and   

   

   
                                                                        (1.95) 

After some calculation, the asymptotic of         obtain following 

              
 

 
 
   

          –  α         
 

 
                                       (1.96) 

Expression of the quasi-ampitudes in terms of a cosine function is a result of the coherent 

superposition of two wave modes of weakly and strongly absorbing fields in the lattice [76],two 

beams which is characterized by two exponential functions with complex arguments: 

 

         
 

 
            

 

 
            

 

 
     

(1.97) 

Now, it is necessary we expand arguments of exponential functions, 

      =  
  

      
 

  

      
    =

 

      
                                                      (1.98) 

After some calculation have 

                                                      
     

 
                                                                                      (1.99) 

where P= tanθ/tanθBis a parameter determine the angular shift from the Bragg condition of the 

corresponding plane-wave component in the Fourier expansion of the incident beam[79,80 ] .  

With notice to              and                  , For second part of argument have 

           –       =                                               
 

 
                          (1.100) 

In usual cases, when the radiation frequency is much higher than to the natural frequencies of the 

absorption K-edge of the crystal substance, have 

                                                      ,                                                                                           (1.101) 
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With approximation is obtained 

                                                              ≅              
                                                 (1.102) 

  Then for (1.100) have  

      –       =                                    
 

 
                          

  4                                                                                                                                                          

(1.103) 

Where φ is phase difference between             . 

Finally, we obtain simplified argument of exponential functions of (1.97), following 

           –           =                             
 

         
 
     

 
                (1.104) 

Imaginary part of (1.104) represents the interference coefficient of attenuation with an additional 

term which is created by the lattice deformation 

                                                                    
 

         
 .                                                      (1.105) 

Note that the first terms of the interference attenuation (1.105) determines the Borrman effect and 

describes phenomenon of inelastic interaction of the wave with lattice atoms, while the second term 

does not contain dependent parameters to such phenomena.This term represented extinction 

phenomenon, i.e. screening of atomic planes of a given reflection, when some planes reflect the 

radiation so strong that they exclude the role of other planes in formation of the wave field in the 

crystal. Expression(1.105) represented to amplify or suppress the interference attenuation  depend 

on the sign of α i.e. on the sign of curvature of atomic planes of the corresponding reflection. 
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CHAPTER2 

Methods of working 

2.1.Research devices and attachments 

For the performance of this thesis, were used X-ray diffractometerURS-50 im, DRON-3m and X-

ray source with a tungstenanodeRUP-120-5-1. Diffractometer URS-50im and DRON-3m were used 

for single-crystalline the reflecting position and recording the intensities of the diffracted and 

transmitted beams. 

 

 

 

 

Fig.2.1 Photo of DRON-3m 

 In order to Set crystal in reflecting  position, we used from goniometricheadGP-14(Fig.2.2 ) and 

GP-4.Goniometricheadprovideto rotate sample around the horizontal axis, andGUR-5 and GUR-8 

provide to rotate sample around a vertical axis.  
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Fig.2.2 goniometricheadGP-14 

Thus, the GP-14and GUR-8 made possible to rotate the crystal about  two the perpendicular axes 

and to regulate reflected beam at the Bragg angle for any family of atomic planes such that detector 

,which located in horizontal plane, could only register  beam  in the plane. We used from special 

chip carrier which fitted on goniometer head(Fig.2.3) 

 

Fig.2.3Chip carriers-crystal. 1-crystal, 2-cooling tube, 3- chip carrier, 

4 –heater, 5clips. 

The sample was rotated by GUR-8 around a vertical axis with accuracy twenty seconds of arc. A 

rectangular holder of slit is used in moving position of the horizontal and vertical planes and rotate 

around a horizontal (along the propagation direction of the primary beam) axis (Fig.2.4). This 
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mobility allows bringing the slit in the vertical position (i.e. parallel to the entrance slits, which 

placed before the monochromator and have size of 0.1x 10mm
2
).This piece enables to separate 

    and     lines, as well as to reduce the background. 

 

                    Fig.2.4 Diagram of movable slit. 

Studies performed on samples of symmetric and asymmetric Laue reflections as the scheme (1.1), 

and in the scheme (1, -1). 

The entrance slits are not enough lock on the monochromators of standard. This leads to frequent 

adjustment of the monochromator due to accidental vibrations. Overcoming this limitation was 

added an adjusted retainer to the entrance slit of the monochromator of goniometer GUR-8.The 

presence of this pace  not only eliminates problem of the goniometer, but also allows the position of 

the entrance slit become mutable and obtain a beam of radiation from any part of the focus X-ray 

tube. Optimal location of entrance slit was determined by rocking curves(shown in Figure 2.5), 

which output be a maximum radiation. 
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                            Fig.2.5Rocking curveslines Mo   andMo    

The X-ray beam incident on the sample after the monochromator, has a cross-section of 0.1x 

10mm
2
(0.03x 10mm

2
, 0.01 × 10mm

2
) with a minimum angular divergence horizontally twenty 

seconds.  

During the experiments used x-ray tubeBSV-6,BSV-29 with the anodes Mo and Ag on the 

diffractometerURS-50im, DRON-3m. The Tube voltageBSV-6 Mo varied from10 to30 kV and the 

anode current was a constant value 10 mA. The voltage and current of anode on the tube BSV-29 

Ag were40 kVand20 mA, respectively. The characteristic lines and spectrum of X-ray tubes with 

the anodes Mo and Ag are shown in Table 2.We used from the scintillation counters for measuring 

intensity of the X-ray and the photographic method for registration ofthe x-ray beam. For obtaining 

topography of the diffracted x-ray beams, is used from x-ray films of RT-1, RT-2 and etc. (see 

Table 1). 

During the work used from different monochromator such asquartzSiO2,silicon Si and germanium 

Gein Bragg and in the Laue geometry. Some property of these single crystals is given in Table 3. 

The cross-section of incident X-ray beam on the sample was a rectangular shape with 

dimensions0,01 x10mm
2
, 0,05 x10 mm

2
, 0,1 x10 mm

2
, 0,25 x10 mm

2
.Distance from the focus of X-

ray tube to the sample in the diffractometer URS-50 was 20 cm.  
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For creating the necessary value of the temperature gradient, we made a special microheater. It is 

formed from a nichrome wire of 0.3 mm diameter, which is wound around a porcelain core with 

uniform step. Moreover, the thickness of the porcelain core is of the order of the crystal thickness.  

Heater was located just in near of crystal (see Fig. 2.6).This piece connected to a variable voltage 

source. The required temperature gradient on the crystal is created by varying the output voltage. 

The temperature at different points of the crystal was measured by a copper-constantan 

thermocouple with accuracy 0.5 ° C.In addition, the chip carrier (Fig.2.3, Fig. 2.6)was equipped 

with a tube, which made it possible o cool opposite side of the crystal. This operation carried out by 

water, which flowed through tube.  

 

Fig.2.6 Photo of Chip carriers-crystal 

During the studies of the behavior of the diffracted and transmitted X-ray beams under the influence 

of the temperature gradient, for protection of x-ray film from the warm of heater was used from a 

suitable barrier(Figure 2.7). 
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Fig.2.7Diagramthe experiment on the effect   gradient ton the X-ray diffraction in a quartz crystal: 1 - quartz 

crystal,2 -barrier, 3 - primary beam absorber, 4 – catch position of the reflections, 5 - screen (X-ray film), 6 - 

primary beam, 7 - diffracted beam, 8 - the transmitted beam, 9 - heater, 10 – movable slit. 

Ultrasonic resonator 

Figure 2.8 shows diagram of the experimentof the effectof ultrasonic vibrations on the intensity of 

the diffracted and transmitted X-ray beams. The ultrasonic vibrations are operated on crystal by 

means of high-frequency amplifier. 
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Fig.2.8Diagramof the experiment of the effect ultrasonic vibrations on the quantitative and spatial                                                      

distribution of the transmitted and reflected X-ray beams. 

 

The numerals in diagram of Fig.2.8show1- the X-ray source, 2 - germanium crystal  or quartz, 3 - 

ADP crystal,4,5 -goniometricconsoles,6 -high-frequency generator G4-158, 7- high-amplifier, 8 - a 

dual-trace oscilloscope C1-69, 9 - conductive electrodes, 10 - scintillation counter for record of 

diffracted and transmitted beams, 11 – x-ray film, 12 – absorber for the transmitted beam. This 

scheme with the use double-crystal spectrometer made it possible to study the effect of ultrasonic 

waves in the diffracted and transmitted of the X-ray beams. 

The diagram crystal resonators shown in Fig. 2.9, which experiments were performed by it. The 

crystal is connected to the high-frequency amplifier by two electrical electrodes of the resonator.  

Figures 2.10-12 show photos of various ultrasonic resonators. 
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Fig. 2.9ultrasonicresonator:  vertical and horizontal projection of the resonator. 

1-crystal,2-crystal holder, 3- electrical contacts, 4 - screws. 

 

 

Fig. 2.10 Photo of goniometric head with ultrasonic resonator 

 

Fig.2.11 photos of Quartz ultrasonic resonators 
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Fig.2.12photos of ADP ultrasonic resonators 

Hot- air blower 

In other the experiment, we needed to increase temperature of one of the two major surface crystal 

uniformly. We made a hot- air blower handmade. As Fig2.13 shows, flow of air is produced by afan 

and air passes through a glass tube. Inside tube, there is a metallic filament that connects to a 

voltage source.  The air temperature of around filament rises when the electric current crosses from 

filament and hot air exits from the other end of the tube. We were able to change the air temperature 

of flowing by changing voltage. With impacting hot air to crystal, front surface of crystal uniformly 

heated. 

 

Fig.2.13 hot- air blower,1-electrical fan, 2-voltage source, 3-filament, 

4-base of filament,5-glass tube 
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2.2. Preparing and improving samples 

 

We were used large crystal piece for preparing of samples (ADP, SiO2).The crystals were polished 

so that geometric surface of them was coincided to lattice planes with matching thirty seconds of 

arc. The work is done by the following way: 

First, the orientation of the crystal was determine, then the crystal was polished to parallel of the 

desired atomic planes next with the rotation of the crystal around the normal to the geometry 

surface of the sample (the horizontal axis) conditions for reflection of x-ray was provided and was 

obtained different of angles diffraction from + to - , where  is angle between the geometric 

and the atomic planes and  is Bragg angle for the atomic plane. The process of polishing and 

checking of sample was continued until the angle  tends to zero. As the sample was rotated around 

the horizontal axis at all the situations there was a reflection. Then the crystal was cut with the 

appropriate thickness by machine K-4 with a rotating diamond disc to thickness of 0.1 mm. The 

thickness of the crystal was selected for a given wavelength of radiation so that the product t takes 

the necessary value. 

In the study of diffraction effects in the  Laue case must take into account the absorption of single 

crystals. For qualitative and quantitative evaluation of changes in the intensity of the reflected and 

transmitted beams under the influence external force must was define the product t, where  is 

linear absorption coefficient for given wavelength of the radiation and t is thickness of crystal. The 

absorption coefficients are calculated for composite substances by formula following  

 

 
=

 

     
 
   

 .      
  

  
       

  

  
         

  

  
  (2.1) 

In the formula,           are number of atoms from a kind in the compound, k is number of 

different kinds of atoms,           are atomic weights of the chemical elements that make up the 

compound, 
μ 

  
 is mass absorption coefficient of elements. The mass absorption coefficient 

μ 

  
  for 

some chemical elements is given in the book Guinier [58].Table 4 shows the linear absorption 

coefficients of some crystals for radiation of W   , Ag   , Mo   , Cu    andFe   .The value 

of t depends on the nature of the effect of external factors [17, 82].According to Ref. [83], the 

optimum of thickness for which we obtain the maximum intensity of the diffracted beam, that is 

which the intensity due to the absorption reduce to half. So the thickness o the crystal is determined 

by t = 0.69. 
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2.3-characteristics of crystals used 

 

A) Quartz samples 

Quartz is a crystalline form of silicon dioxide (SiO2). It is a hard, brittle, transparent material with a 

density of 2649 kg/m
3
and melting point of 1750° C. Quartz is insoluble in ordinary acids, but 

soluble in hydrofluoric acid and in hot alkalis. If quartz is heated up to 573° C, its crystalline form 

changes. The stable form above this temperature is known as high-quartz or beta-quartz, while the 

stable form below 573° C is known as low-quartz or alpha-quartz. For resonator applications, only 

alpha-quartz is used. When it is said quartz, it refers to alpha-quartz. 

Today, quartz is grown artificially to specified dimensions. Crystal orientation is controlled and 

purity is uniformly high.  

Alpha-quartz belongs to the crystallographic class 32, and it is a hexagonal prism with six cap faces 

at each end. The prism faces are designated m-faces and the cap faces are designated R and r-faces. 

The R-faces are often called major rhomb faces and the r-faces are minor rhomb faces.  Both left-

hand and right-hand crystals occur naturally and can be distinguished by the position of the S and X 

faces. 

 

Fig.2.13schematic of quartz                         

As shown in Fig.2.13 alpha-quartz crystal has a single axis of three-fold symmetry (trigonal axis), 

and it has three axes of two-fold symmetry (diagonal axes) that is perpendicular to that trigonal 

axis. The digonal axes have 120° angel with each other and are polar axes, that is, a definite sense 
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can be assigned to them. The presence of polar axes implies to absence of a center symmetry which 

it is necessary condition for the existence of the piezoelectric effect. The digonal axes are also 

known as the electric axes of quartz (x-, y-axis). In crystal with fully developed natural faces, the 

two ends of each polar axis can be differentiated by the presence or absence of the S and X faces. 

When pressure is applied in the direction of the electric axis, a negative charge is developed at that 

end of the axis modified by these faces. The trigonal axis, also known as the optic axis (z axis), is 

not polar, since the presence of digonal axes normal to it implies that the two ends of the trigonal 

axis are equivalent. Thus, no piezoelectric polarization can be produced along optic axis.  In the 

rectangular coordinate systems, the z-axis is parallel to the m prism faces.  

A plate of quartz  which its major surface is perpendicular to the x-axis, is called an X-cut plate. 

Rotating the cut 90 degrees about the z-axis gives a Y-cut plate with the y-axis now perpendicular 

to the major surface. Since a quartz crystal has six prism faces, three choices exist for the x- and y-

axis. The selection is arbitrary becausethey have identical behaves. 

 

Fig .2.14 x-cut and y-cut Quartz plates 

Quartz is an optically active material. When a beam of polarized light passes along the optic axis, 

rotation of the plane of polarization occurs which the amount the rotation depends on the traversed 

distance in the material. The concept of the rotation can be used to distinct between the two forms 

of left quartz and right quartz. In left quartz the plane of polarization rotates anti-clockwise when 

seen by an observer looking towards the source of light, and in right quartz it rotates clockwise. The 

most grown quartz crystals are right quartz, whereas in natural left- and right- quartz crystals 

areabout equally. The either form can equally well be used in the manufacture of resonators, but 

material which left and right forms are mixed, which is called optically twinned material, cannot be 
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used. On the other hand, electrically twinned material is all of the same hand, but contains regions 

where the sense of the electric axis is reversed, thus reducing the overall piezoelectric effect. Such 

material is also not suitable for resonator application. The presence of twinning and other defects in 

natural quartz crystal is the major reason for the shortage of suitable natural material, and the 

absence of twinning in grown quartz is one of its main advantages. If alpha-quartz is heated to 

above 573° C, the crystalline form changes to beta-quartz, which has hexagonal instead trigonal 

symmetry. With cooling to down 573° C, the material reverts to alpha-quartz, but in general will be 

found to electrically twinned. By the same token, the application of large thermal or mechanical 

stresses can induce twinning, so it is necessary in resonator processing to avoid any such thermal or 

mechanical shocks. 

Reflecting relative power of the atomic planes of quartz is shown in Table3. The atomic 

plane(10   )has maximum value reflectivity .For obtaining diffraction in case of symmetric Laue 

fromt he atomic plane(10   ),it is necessary to take a slice of crystal which the atomic plane (10   ) 

be perpendicular to the large surface of plate. The X-cut one of these planes, which is perpendicular 

to the plane of the atomic (10   ), is shown in (Fig.2.15). 

 

Fig .2.15 Faces of the quartz crystal  
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For the study of diffraction of quartz, the crystal shape must be direct parallelepiped and large 

surface coincide with the X-cut. In Figure2.16 is shown relative position of the planes perpendicular 

to the X-cut. 

 

 

Fig.2.16diagrammatic representation of the relative 

position of the planes perpendicular to the X-cut. 

 

After cutting crystal with diamond disc, for smoothing rough edges the parallelepiped we have to 

polish all its facets. As a result of these operations on the face of the crystal arise mechanical 

tensions. These tensions were removed with assistance of concentrated hydrofluoric acid (HF)at 

room temperature for several hours. After the chemical processing, the crystal was washed by water 

and was dried. The crystal dimensions were adjusted to optimal values by polishing and etching.  

the crystal thickness was measured by a micrometer. 

B) ADP crystal 

Ammonium dihydrogen phosphate (ADP), or monoammonium phosphate, NH4H2PO4, belongs to 

system of tetragonal crystal with   2m symmetry. It has the tetramolecular unit cell with parameters, 

a = b = 7.510Å and c = 7.564Å [59].  
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                                                      Fig.2.17 Diagram ADP crystal 

 

 

 

 

 

 

 

 

 

 

 

 

                                     Fig.2.18 Schematic ADP crystal with 45
0
 z-cut plate 

 

We used from ADP crystals with x-cut; Figure2.19 shows relative position ofthe planes 

perpendicular to theX-cut. 

At room temperature ADP crystals are piezoelectric. Piezoelectric crystals have been thoroughly 

investigated for more than 120 years, for applications their actuator and sensor. In the 1950s,the 

ADP crystals largely replaced with quartz and Rochelle Salt crystals in transducers. The ADP 

crystal has nonlinear optical and electro-optical properties and also it is widely used in X-ray 

monochromators [60] and also in the field of optics due to its birefringence properties. 
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 Fig. 2.19diagrammatic representation of the relativeposition of the planes perpendicular to the X-cut.  

This material has negative uniaxial optical symmetry with typical refractive indices no=1.522 and 

ne=1.478 at optical wavelengths [61]. 

C) Other crystals 

In separate studies were used perfect single crystals of Si, Ge, for monochromatic beams of 

anomalous transmission. Methods of processing these crystals are similar to the method of 

processing of quartz.  

2.3.1Some information about the used substances and the radiations 

 

In this work often required different parameters of the used substances. The tables and figures 

following are the information about the substances which are used for the work. 

 

Table. 1Characteristics of X-ray films used [63]. 

Type of 

film 

    Relative     sensitivity Sensitivity 

to visible 

light 

contrast Resolution 

of the 

lines mm 

Sensitivity when 

working with 

screen 

λ=0.45Å MoKα 

0.7Å 

CuKα 

1.54Å 

PT-1 100 100 100 100 3.0 70 100 

PT-2 33 38 41 450 3.0 75 350 

PM-1 26 30 37 400 2.5 75 300 

PM-2 40 44 52 500 2.8 75 400 
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PM-3 39 47 60 350 2.7 78 300 

 

 

Table.2 X-ray spectral characteristics of some metals[62]. 

 

element emission 

line 

The 

relative 

intensity 

from the 

intensity 

of 

theKα1in

% 

Wavelength, 

mÅ 

The 

excitation 

energy 

keV 

Wavelength 

difference    

=     

    mÅ 

The 

difference 

between the 

excitation 

energy 

ofKα1, 

Kα2eV 

The line 

width,λ 

mÅ 

W    

    

    

24.8 

100 

57.8 

185. 181 

209. 010 

213. 828 

67. 2443 

59. 31824 

57. 9817 

 

4,818 

 

1337 

 

43,2 

37,4 

Ag    

    

    

28.4 

100 

52.2 

497.685 

559.407 

563.798 

24.94 

22.16 

21.99 

 

4,39 

 

172 

 

8,6 

8,7 

Mo    

    

    

26.5 

100 

52.5 

632.288 

709.3 

713.59 

19.608 

17.479 

17.374 

 

4,29 

 

105 

 

5,86 

6,18 

Cu    

    

    

20 

100 

50.7 

1392. 218 

1540. 562 

1544. 398 

8. 90529 

8. 04778 

8. 02779 

 

3,84 

 

20 

 

2,31 

3,21 

Fe    

    

    

16.7 

100 

50.6 

1756. 61 

1936.042 

1939. 98 

7. 05798 

6.40384 

6.39084 

 

3,94 

 

13 

 

2,653 
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Table. 3Bragg angles of some of the atomic planes of single crystals ofSiO2, Si, Ge, and the coefficients of thermal expansion in the direction 

perpendicular to these planes, the used crystals [62]. 

Material Indices of 

reflection(hkil) 

Distance 

between 

planes d, 

Å 

The 

relative 

intensity 

                                                Bragg angle Thermal 

expansion 

coefficient 

x10
-6

 cm / 

° C 

Ag Kα1 Mo Kα1 Cu Kα1 

1 2 3 4 5 6 7 8 

 

 

 

 

 

 

SiO2 

 

(1010)  

(1011)  

(2020)  

(4041)  

(2021)  

(3032)  

(2023)  

(1012)  

4.24 

3.34 

2.12 

1.042 

1.975 

1.254 

1.372 

2.28 

5 

10 

5 

5 

5 

7 

9 

5 

3°47´ 

             4°48´ 

7°35´ 

15°34´ 

8°8´ 

12°53´ 

11°45´ 

7°3´ 

4°47´ 

6°6´ 

9°37´ 

15°55´ 

10°21´ 

16°27´ 

15° ´ 

8°57´ 

10°28´ 

13°20´ 

21°16´ 

47°39´ 

22°57´ 

37°54´ 

34°08´ 

19°44´ 

7.8 

10.3970 

7.8 

8.0527 

8.7094 

10.9525 

11.7535 

12.6404 
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(1013)  

(1014)  

(1015)  

1.656 

1.285 

    1.046 

- 

6 

  6 

9°43´ 

12°34´ 

15°30´ 

12°23´ 

16°02´ 

19°50´ 

27°52´ 

36°08´ 

47°23´ 

13.56303 

14.0082 

14.1849 

 

Table 3. 

1 2 3 4 5 6 7 8 

 

 

 

 

 

 

SiO2 

 

(3410)  

(1210)  

(2420)  

(3630)  

(2202)  

(0001)  

(0002)  

(0006)  

1.1779 

2.45 

1.226 

0.82 

1.67 

5.405 

2.7 

0.9 

0.81 

7 

5 

5 

- 

5 

- 

- 

- 

- 

13°43´ 

6°33´ 

13°11´ 

19°56´ 

9°38´ 

2°58´ 

5°57´ 

18°6´ 

20°11´ 

17°32´ 

8°20´ 

16°50´ 

25°35´ 

12°17´ 

3°45 ´ 

7°32´ 

23°10´ 

25°55´ 

40°49´ 

18°19´ 

38°54´ 

69°53´ 

27°30´ 

8°18´ 

16°34´ 

58°48´ 

71°55´ 

7.8 

7.8 

7.8 

7.8 

10.4 

14.6 

14.6 

14.6 

8.4 
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(5052)  

(0003)  

1.8 - 8°56´ 11°21´ 25°20´ 14.6 

Si 

 220  

 111  

1.902 

3.111 

10 

10 

8°27´ 

5°9´ 

10°46´ 

6°33´ 

23°55´ 

14°21´ 

- 

- 

ADP 

(001) 

 

(101) 

 

(020) 

 

(111) 

 

(102) 

 

(112) 

 

(103) 

 

(230) 

 

(410) 

 

(411) 

7.55 

 

5.32 

 

3.75 

 

4.34 

 

3.37 

 

3.07 

 

2.38 

 

2.08 

 

1.82 

 

1.77 

 

2 ˚ 7ʹ 

 

3˚  1ʹ 

 

4 ˚ 16ʹ 

 

3˚  42ʹ 

 

4˚  45ʹ 

 

5˚  13ʹ 

 

6˚ 43ʹ 

 

7˚  43ʹ 

 

8˚  50ʹ 

 

9˚  6ʹ 

2˚  41ʹ 

 

3˚  49ʹ 

 

5˚  25ʹ 

 

4˚  41ʹ 

 

6 ˚ 2ʹ 

 

6˚  37ʹ 

 

8˚  32ʹ 

 

9˚  49ʹ 

 

11˚  14ʹ 

 

11˚   34ʹ 

5˚  51ʹ 

 

8˚  19ʹ 

 

11 ˚ 51ʹ 

 

10˚  13ʹ 

 

13˚  12ʹ 

 

14˚  30ʹ 

 

18˚  50ʹ 

 

21˚  44ʹ 

 

25˚  2ʹ 

 

25˚  49ʹ 

 

Ge  220  
 10 

10 

7°56´ 

4°54´ 

10°07´ 

6°14´ 

23°26´ 

13°38´ 

- 

- 
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 111  



 
 

61 
 

Table. 4 The coefficient of linear absorption of X-rays with different wavelengths[58]. 

 

Radiation 

line 

Linear absorption coefficient (cm
-1

) 

Si SiO2 Ge ADP Air: N2 -78% 

      , O2 -22%    x10
-3 

WKα1 0.745 0.665 11.186  0.24 

AgKα1 7.823 5.1 181.1 2.47 0.68 

Mo Kα1 15.61 10.4 339.83 5.0 1.17 

Cu Kα1 140.5 92.6 371.98 50.4 10.87 

Fe Kα1 270.28 175.2 686.08 89.5 21.16 

 

 

Table. 6 Elasticitymodules of single crystals[64]. 

Material Elastic module 

 10
10

 , dyn/cm
2 

SiO2 
С11         86,80 

С14        -18,04 

Si 
С11         130,0 

С12         49,0 

Ge 
С11         165,0 

С14          64,0 

ADP 

С11           61.17  

С33           32.8 

С12           7.2 
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Table. 7 Some of used parameters of crystals [64]. 

 silicon quartz ADP Germanium 

Formulas   Si SiO2 NH4H2PO4     Ge 

Density g/cm
3 2,3283 2,65 1.8 5,32674 

Space Group  

Fd3m 

D3-32 

P31-21 

     Fd3m 

Unit cell 

parameters  

 

5,4307 

a=4,9138 

c=5,4052 

a=7.50 

b=7.58 

 

5,65749 

Melting 

temperature
0
С 

 

1412 

 

1470 

 

190 

 

958,5 

Warm.expansion   

10
-6

K
-1 

 

15,6 

 

8,6 

  

2,6 

Cleavage 111 1011  111 
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Table. 8 The value of extinction depth 0 (in mm) in the diffraction of different radiation 

(symmetrical reflection). [65] 

 

Material Reflection 

(hkl) 

Radiation 

AgKα MoKα CuKα 

 

 

 

Si 

111 

220 

422 

333 

444 

54,1 

46,5 

62,4 

92,8 

88,7 

42,4 

36,6 

48,2 

71,5 

66,9 

18,4 

15,4 

16,4 

23,2 

6,43 

 

 

 

Ge 

111 

220 

422 

333 

444 

23,6 

19,25 

26,2 

39,8 

36,8 

18,6 

15,2 

30,6 

29,1 

29,1 

8,64 

7,0 

8,1 

11,2 

5,8 
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Table. 9 Some characteristics of the x-ray tubes [63]. 

Tube 

type 

Number 

of 

windows 

Exit 

angle, 

degrees 

Focusmm
2 

Anode 

voltage, 

kV max 

Current 

mAmax 

Power 

kW actual projection 

BSV-6 2 2 2,5х5 2,5х0,2 45 15 0,45 

BSV-7 2 3 0,1х2 0,1х0,1 45 2,5 0,11 

BSV-21 3 3 0,4х10 0,1х10 60 40 0,8 

BSV-25 3 3 0,4х10 0,1х10 60 40 0,8 

BSV-27 3 3 0,4х10 0,1х10 60 40 0,8 

BSV-29 3 3 0,4х10 0,1х10 60 40 0,8 
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Chapter 3 

The x-ray diffraction from single crystals under the influence of temperature 

gradient 

 

Investigationsinto features of the x-ray diffraction under the influences of external factors such 

as temperature gradient and acoustic wave are of interest to solid state Physics, and particularly, 

crystallography because they make it possible to obtain highly monochromatic and intense x-ray 

beams controllable in space and time.  

3.1 The x-ray diffraction from ADP crystal under the influence of temperature 

gradient applied perpendicular to reflecting atomic planes 

In the first part of the work, we investigated the dependence of the intensity of the diffracted x-

rays from single crystal of ammonium dihydrogen phosphate (ADP) with different thickness in 

the Laue geometry while direction of temperature gradient was perpendicular to reflecting 

atomic plane[110, 113]. 

 Ammonium dihydrogen phosphate (ADP) and potassium dihyrogen phosphate (KDP) are 

piezoelectric and their structure is tetragonal with      symmetry, but ADP has some properties 

which is qualitatively different from KDP .The low temperature transitions ADP is ant 

ferroelectric while KDP is ferroelectric.  At room temperature the elastic stiffness constants c11 

and c33 of ADP are in the ratio of 2:1 while they are almost equal for KDP. The most interesting 

difference is between the coefficients of thermal expansion. In the KDP, the coefficient along the 

c axis is greater than that in a perpendicular plane while in ADP is reverse [114] 

 

3.1.1 Experimental methods 

 

 The experiments were performed by the X-ray diffractometer DRON-3M ,x-ray tubes used 

BSV-29 with anodes Ag or Mo. Focal spotsizeswerehorizontally0.4mmandvertically8mm. 

Fig.3.1 shows scheme of experiment.   
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                                                                                      Fig.3.1The experimental scheme.  
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The monochromized beam of x-ray radiation was produced by anomalous transmission from 

atomic planes (220) of a perfect Ge single crystal with the thickness 0.6 mm and coefficient of 

linear absorption 181cm
-1

 for AgKα line and 340 cm
-1

 for MoKα line, respectively.The 

monochromatic x-ray beam had horizontal angular divergence 3" and the vertical collimation 

was performed by Soler slits. Monochromized and collimated x-ray radiation passes through a 

special slit with size ≈0.05×10 mm
2
, which placed at the distance of 10 mm from the Soler slit 

and enabled to separate (in Bragg geometry) monochromized lines Kα1 and Kα2 .The thickness 

of studied crystal ADP selected 1.3 and 2.5 mm with a linear absorption coefficient of 2.75 

cm-1 and 5.4 cm-  f    g α         α  l         p    v ly  

We used a variable hot filament for producing temperature gradient. Filament located near 

and parallel to small surface of crystal. The temperature of surface of the single crystal is 

measured by a copper-                    pl  w           y  f       ℃  

The direction of the temperature gradient was opposite direction of vector 

diffraction.However, we note that the value of the integrated intensity of the reflected 

beam is independent of the direction of the temperature gradient [67, 77]. When 

diffraction vector is inverse direction of the vector of the temperature gradient, diffracted 

beam would be focusing and if they be same direction, reflected beam would be defocusing. 

Integral intensity of the diffracted X-ray beam was measured with use of scintillation counter 

with FEU-85 and standard recording block BR-1 available in the collection of X-ray 

diffractometer DRON-3M. 

3.1.2 Experimental results 

 

We studied experimentally the variations  of the integrated intensity of reflected beams 

from different atomic planes such as (100), (110),(101), (002), (420) and (220) of ADP crystal 

under the influence temperature gradient for two different thickness 2.5 mm and 1.3mm. The 

results of the experiment are shown in Table 3.1 . 

 

Table 3.1Dependence of the integrated intensity of reflected beam from the atomic planes (hkl) 

single crystal of ADP on the thickness of the crystal and on the temperature gradient ,K : 

coefficient of amplification 
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We obtained coefficient of amplification of the intensity of the beam reflected from atomic 

planes. The amplification coefficient, K, is defined as the ratio of the reflected beam 

intensity in the presence of temperature gradient, in the point where intensity saturation 

begins, to the intensity in the absence temperature gradient [109]. The value of this 

coefficient is various for different atomic planes and different thickness. The coefficient of 

amplification at reflection from the planes (100) had the highest value and reflection from 

the planes (420) with thickness of 2.5 mm had the lowest value. 

  
    

         

 Intensity             

 

t=2.5mm t=1.3mm 

(100) (110) (101) (002) (420) (220) (002) 

0 1400  4400 7000 3300 11000 6300 

1.5 1100  3900   10000  

3 1200 1600 4000   9500 6600 

4.5 2100  5300   9600  

6 3400 2500 6700 10000 4500 10000 7200 

12 5000 3600 12000 15000 5900 17000 9500 

18 6600 4200 17000 21000 7000 24000 11100 

24 9700 5800 22000 25000 9500 35000 12500 

30 13000 7500 24000 30000 11000 42000 14900 

36 17000 9000 26000 35000 12500 47000 15400 

42 20000 10200 30000 39000 14000 55000 16000 

48 26000 11500 33000 44000 14800 62000  

54 28000 14000 32000 48000 16800 68000  

60 30000 15000  67000 17500 74000  

66 34000 18000  77000 18300   

72 36000 20000  80000 19000   

78 38000 27000  81000 20000   

84 40000 29000  66500 20800   

90  32000  88500 21500   

96    90000    

К 28.6 20 7.3 12.9 6.5 6.7 2.5 
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With usage of experimental data of Table 3.1, graphs of intensity of reflected radiation 

versus the temperature gradient are plotted for different reflecting atomic planes (Figures 

3.2 – 3.8). 

 

 

Fig.3.2 Dependence of the integrated intensity of reflected beam on the temperature 

gradient for the atomic plane (100),t= 2.5 mm. 
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Fig.3.3 

Dependence of the integrated intensity of reflected beam on the temperature 

gradient for the atomic plane (101),t= 2.5 mm. 

 

 

 

Fig.3.4 Dependence of the integrated intensity of reflected beam on the temperature 

gradient for the atomic plane (101), t= 2.5 mm. 
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Fig.3.5 Dependence of the integrated intensity of reflected beam on the temperature 

gradient for the atomic plane (002), t= 2.5 mm. 

 

 

Fig.3.6 Dependence of the integrated intensity of reflected beam on the temperature 

gradient for the atomic plane (420), t= 2.5 mm. 
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Fig.3.7 Dependence of the integrated intensity of reflected beam on the temperature 

gradient for the atomic plane (220), t=1.3 mm. 

 

 

Fig.3.8 Dependence of the integrated intensity of reflected beam on the temperature 

gradient for the atomic plane (002),t=1.3 mm. 
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As in Fig.3.2, Fig.3.3, Fig 3.4 and Fig3.7 are seen, first intensity of the reflected beam reduces 

by about 10%, and then uniformly increases with increasing temperature gradient. We will 

theoretically explain this phenomenon in the next section. 

Fig.3.9 shows topography Picture of diffraction from the reflecting atomic plane (100) in 

absence and presence of temperature gradient.  

 

 

 

Fig.3.9 Topography of diffraction from the reflecting atomic plane (100), 

a) Absence of  temperature gradient, b) presence of temperature gradient 

 

As can be seen in conditions absence of temperature gradient, intensity of diffracted beam is low 

while with applying temperature gradient to crystal, the intensity of diffracted beam increases. 

Also Fig.3.10 and Fig.3.11 show topography of diffraction for reflecting atomic planes (110) and 

(200). 

a b 
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Fig.3.10 topography of diffraction from reflecting 

atomic plane (110), 

a) absence of  temperature gradient, b) presence of temperature gradient 

 

 

 

 

 

Fig.3.11 Topography of diffraction from reflecting atomic plane (200), 

a) absence of  temperature gradient, b) presence of temperature gradient 

 

 

 

3.1.3 Theoretical analysis of experiment 

 

A crystalline the absence of internal stresses, under the influence o fa uniform temperature 

a b 

a b 
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gradient  T, will deform and the lattice planes perpendicular to   Tare curved with radius of 

curvature  which given by 

 

                                                                     (3.1) 

Where   islinear coefficientof thermal expansion. The sign of the curvature of the planes is 

determined by the relative orientation of the diffraction vector and          .Atomic planes 

parallel with vector of  T remains flat, but distributed in the form of a fan with respect to each 

other. 

The vector function u(r) of displacement of atoms of deformation field is given in the form  

                 
 

 
                                                           (3.2) 

Where r is the position vector of the considered point. Obviously, the displacement function is a 

quadratic function of position. 

As it is seen in figure 3.12, the coordinate system is chosen as the axis x is opposite diffraction 

vector h and the axis z is in along of  normal to input surface of the crystal. 

 

Fig.3.12 bending reflecting atomics plane due to temperature gradient 
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Curved radius of reflecting atomic planes of lattice, perpendicular to temperature gradient, is 

obtain by (1.79)      

                                                  =
 

 
                                                             (3.3) 

Also have 

                                                     r = x  +y  +z                                                                         (3.4) 

Now with Substituting above quantities in (3.2), parameter localdeviation from theBragg 

scattering in plane (y=0) obtain 

                                                
 

  
                                                                            (3.5) 

Where h= h(-    is vector of  the reciprocal lattice of the crystal . 

In section1.3.2, an asymptotic solution of the dynamical theory has been explained based on the 

Takagi’s approach in weakly deformed crystals. Our experimental conditions with presence of 

temperature gradient make it possible, using from asymptotic solution [80,110]. In according 

(1.68), condition of validity dynamical theory is 

       

      
  

  

  
    

                                                         (3.6) 

Where    (        ) is Fourier – expansion of the microscopic polarizability of the crystal for 

atomic plane hkl. With notice (3.5), we have  

       

      
 

 

  
                                                                    (3.7) 

After some calculation, maximum of curvature radius of atomic planes according to (3.6) is 

 

    
   

       
 
  

  

        
 
 ,                                                         (3.8) 

Where      is interplanar spacing of the reflecting planes. With assumption            

                          
  have  

     cm,                                                                               (3.9) 
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On the other hand, if the maximum value of the applied temperature gradient be ΔT / ΔX 

≈100deg/cm for ADP crystal with coefficient of linear thermal expansion      ℃  , the 

radius of curvature of the reflecting planes will obtain following 

    
     

  
 
  

        ,                                                            (3.10) 

From comparison of the Expressions (3.9) and (3.10), we conclude that inour experimental 

conditions can start from the assumption of a weak the deformation field and use the theoretical 

results obtained in [80,110] (see 1.3.2). 

According to dynamical theory, the integrated intensity of reflection in the symmetric Laue-

diffraction geometry may be represented by the formula following [2]  

     
      

       
 
  

  

        
 

     
            ,                                            (3.11) 

Where    is intensity of incident beam, μ is the linear absorption coefficient of the crystal for the 

given radiation,    is the Bragg angle,       is the modified Bessel function,  hr and χhi are the 

real and imaginary parts of the Fourier expansion coefficient of polarizability, respectively. 

Under conditions of weak deformation in crystals and relation (105), it should replace term 

          by           
 

        
  in formula of integrated intensity. Then (3.11) become to 

     
      

       
 
  

  

        
 

     
          

   

        
  ,                        (3.12) 

Hereα is parameter of crystal deformation. The value ofαunder the influence of temperature 

gradient is equal with 

  
  

 

  

  
 ,                                                             (3.13) 

Where a is the linear coefficient of thermal expansion and h is the vector magnitude of the 

reciprocal lattice of the crystal. The sign of α is determined by the sign of R in (3.3). 

The expression (3.12) represents the integrated intensity   depends on the temperature gradient. 

In the case α   , the integrated intensity initially decreases with increasing value of α (or  

  

  
) until reaches to a minimum and then begin to increase, Figure 3.13 shows variations 

integrated intensity versus temperature gradient in this case. 
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Fig.3.13 variations relative integrated intensity with temperature 

gradient, α    ,(101) ADP crystal, theoretical 

According to (3.12) in the case α   , the integrated intensity increases with increasing 

value of α(or 
  

  
 ). Figure 3.14 shows dependence integrated intensity on α in this case. 

 

Fig. 3.14 variations the relative integrated intensity with temperature gradient, α   , theoretical 
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As be seen theoretical results obtained by relation (3.12) are consistent with practical 

observations for ADP crystal in condition weak deformation. 

 

3.1.4 Calculation of   and   , real and imaginary parts of Fourier-coefficients of 

polarizability, of ADP crystal 

 

In section 3.1.2,the practical results of the variations of the integrated intensity of reflected 

beams from different atomic planes of ADP crystal under the influence temperature gradient 

were represented. As can be seen, there are a minimum in graph of the integrated intensity some 

atomic planes such as (100), (101) and (220). In the other hand, in case α 0formula (3.12) 

represents which the integrated intensity has a minimum and this inconsistent with practical 

observations above mentioned. The modified Bessel function in (3.12) will be minimum when its 

argument is equal to zero i.e. 

                                                
 

        
  ,                                                                     (3.14) 

               
 

      
 ,                                                            (3.15) 

And with usage of (3.13) have 

           
  

       
 
  

  
 
   

,                                                   (3.16) 

 

 
  

  
 
   

is value of temperature gradient which causes the integrated intensity be minimum. 

Now we can extract values of     and   by usage from relations (3.16), (3.13) and experimental 

data which obtained in section 3.1.2 .Table 3.2 shows summery practical results of integrated 

intensity for some reflecting atomic planes ADP crystal [115] 
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Table 3.2 Dependence of the integrated intensity of reflection from atomic planes of ADP crystal 

on the applied temperature gradient and thickness of crystal 

 

 

 

  
           ) 

Intensity             

 

t=2.5mm t=1.3mm 

 

(100) 

 

(101) 

 

(220) 

0 1400 4400 11000 

1.5 1100 3900 10000 

3 1200 4000 9500 

4.5 2100 5300 9600 

6 3400 6700 10000 

12 5000 12000 17000 

18 6600 17000 24000 

 

For atomic plane (101), the value of the integrated intensity will be minimum when the 

temperature gradient is equal to1.5 
   

  
 .With substituting amounts λ=k

-1
 =0.56×10

-8
cm, d=h

-

1
=5.3×10

-8
cm, a=1.97×10

-5
K

-1
and  

  

  
 
   

 1.5 
   

  
 in relation (3.16) have 

                                                              2.2 10
-16

,                                                          (3.17) 

Now, we obtain ratio between intensities in
  

  
  

   

  
 and 

  

  
    

   

  
 

   
 

     
           

    

        
  

   
 

     
           

      

        
  

= 
    

    
     ,                                    (3.18) 

For solving the equation (3.18),it was used Taylor series expansion of modified Bessel function 

about the point zero. 

        
  

 
 

  

  
 

  

    
                                                         (3.19) 
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Using first two term of modified Bessel function, equation (3.18) become to 

  
 

 

     
           

    

        
  

 

 
      

     
 

     
           

      

        
  

 

 
                             (3.20) 

Solving the system of two equations (3.17) and (3.20) have 

     =0.14     ,       =0.16     ,                                            (3.21) 

 

We repeat the same way for atomic plane (100).The integrated intensity of the atomic plane 

(100)will be minimum when the temperature gradient be equal to 1.5 
   

  
. With substituting 

amounts λ=k
-1

 =0.56×10
-8

cm, d=h
-1
=7.5×10

-8
cm, a=1.97×10

-5
K

-1 
and  

  

  
 
   

 1.5 
   

  
in 

relation (3.16) have 

                10
-16

,                                                                (3.22) 

Ratio of the intensities in
  

  
  

   

  
 and 

  

  
    

   

  
  is equal to 

 

   
 

     
           

    

        
  

   
 

     
           

      

        
  

= 
    

    
     ,                                    (3.23) 

By doing the similar calculation of above mentioned have 

     =0.44     ,       =0.35     ,                                            (3.24) 

Finally for atomic plane (220), the integrated intensity will be minimum when the temperature 

gradient be equal to 3 
   

  
 .With substituting amounts λ=k

-1
 =0.56×10

-8
cm, d=h

-1
=2.65×10

-8
cm, 

a=1.97×10
-5

K
-1

and  
  

  
 
   

 3
   

  
 in relation (3.16) have 

               10
-16

,                                                                       (3.25) 

Ratio of intensities in
  

  
  

   

  
  and   

  

  
    

   

  
  

 is equal to 
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= 
     

    
     ,                                    (3.26) 

By doing the similar calculation of above mentioned have 

     =0.28     ,       =0.32     ,                                            (3.27) 

Table 3.3 shows obtained values of    and      

Table 3.3.The values of  χih and χrh of different atomic planes for ADP crystal . 

ADP             

(100) 0.44      0.35      

(101) 0.14      0.16      

(220) 0.28      0.32      

 

 

3.2 Investigation of rocking curve of ADP single crystal under the influence of 

temperature gradient applied perpendicular to reflecting atomic planes 

 

In this section, we present the rocking curve of reflection, transition and total intensity of ADP 

crystal under influence of temperature gradient applied perpendicular to reflecting atomic plane 

in Laue-case geometry[116]. Practical results of reflectivity are compared with theoretical results 

which have been obtained based on the asymptotic solution of dynamical diffraction of X-ray 

wave in crystals with weak deformation. 

3.2.1 Experimental results 

 

Experimental studies were performed with the scheme of two crystals. The x-ray tube BSV-Mo 

27 was used as a source radiation. Experiment carried out for reflecting atomic plane (002) of 

ADP crystal with thickness of 1.9 mm in presence of a temperature gradient of perpendicular to 

the reflecting atomic planes. The intensity of passing beams of x-ray was recorded by a 

scintillation counter. Figures3.15up to 3.18 show the rocking curves of reflectivity from atomic 

plans (002) of ADP crystal for different values of the temperature gradient. 
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Fig. 3.15The rocking curve of reflectivity from (002) ADP crystal in absence of temperature gradient. 

 

 

Fig. 3.16The rocking curve of reflectivity from (002) ADP crystal in presence of temperature gradient, 

ΔT/Δx=6   deg/cm 
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Fig. 3.17.The rocking curve of reflectivity from (002) ADP crystal in presence of temperature gradient, 

ΔT/Δx=12  deg/cm. 

 

 

 

Fig. 3.18 The rocking curves of reflectivity from (002) ADP crystal in presence of temperature gradient, 

ΔT/Δx=18  deg/cm 
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As be seen, the reflectivity increases with increase of the value of the temperature gradient, but 

the width of rocking curve slightly increases. Table 3.4 shows the value of intensity at Bragg 

angel (Δθ= 0) and FWHM of rocking curves. 

 

Table 3.3T 

he values of maximum intensity and FWHM of rocking curves for different temperature gradient 

ΔT/Δx 

 (deg/cm) 

 

0 

 

6 

 

12 

 

18 

 

Imax 

 

0.27 

 

0.34 

 

0.41 

 

0.47 

FWHM  

(×10
-5

rad) 

 

4.6 

 

5 

 

5.2 

 

5.6 

 

We also measured the rocking curves of transmitted intensity beam and the total intensity of the 

transmitted beams. 

The intensity of transmitted X-ray was recorded by scintillation counter. Figures3.19 up to 3.22 

show the rocking curves of transmitted beam of ADP crystal for different values of the 

temperature gradient applied to the crystal. 

 

Fig. 3.19 The rocking curves of transmitted beam from ADP crystal in absence of temperature 

gradient 
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Fig. 3.20 The rocking curves of transmitted beam of ADP crystal in presence of temperature 

gradient, ΔT/Δx=6 deg/cm 

 

 

Fig. 3.21 The rocking curves of transmitted beam of ADP crystal in presence of temperature 

gradient, ΔT/Δx=12 deg/cm 
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Fig. 3.22 The rocking curves of transmitted beam of ADP crystal in presence of temperature gradient, 

ΔT/Δx=30 deg/cm 

As be seen, the intensity of transmitted beam at Bragg angel (Δθ =0) decreases with the increase 

of the temperature gradient, which indicate the phenomena of transfer of the X-ray intensity from 

the transmission direction to the reflection direction in Laue geometry. 

    For measurement of the total intensity of transmitted and reflected beams, we put counter near 

the crystal in order to both reflected and transmitted beam at the same time arrived in counter 

(fig 3.23). 

 

 

 

 

Fig. 3.23 scheme of measurement of total intensity 

Figure 3.24 shows the dependence of the total intensity of X-ray on the deviation from the Bragg 

angle for different values of temperature gradient applied to the crystal. 
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Fig. 3.24 The rocking curve of passing the total intensity from (002) ADP crystal in absence temperature 

gradient 

 

 

Fig. 3.25 The rocking curve of the passing total intensity of (002) ADP crystal in presence temperature 

gradient, ΔT/Δx=6 deg/cm 
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Fig. 3.26The rocking curve of the passing total intensity of (002) ADP crystal in presence temperature 

gradient, ΔT/Δx=12   deg/cm 

 

 

Fig. 3.27The rocking curve of the passing total intensity of (002) ADP crystal in presence temperature 

gradient, ΔT/Δx=30 deg/cm 
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the absorption interference coefficient of X-rays in ADP crystals under effect of temperature 

gradient. This phenomenon also observed for quartz single crystal. Ref. [81] showed for quartz 

single crystal with the increase of the temperature gradient, the interference coefficient of 

absorption of X-ray at certain value of temperature gradient has a minimum value. 

 

3.2.2 Theoretical analysis of reflectivity 

The reflectivity of symmetric Laue geometry without influences of external force is defined by 

the formula following [2]: 

 

   =
 

   
     

       
×        

 

     
       

         

     
         ,                                           (3.28) 

 

  =(        )×
 

     
 ,                                                               (3.29) 

Where θB is the Bragg angle, μ is the linear absorption coefficient of the crystal, p is deviation 

parameter from Bragg angel, χhi and χhr the imaginary and real parts of Fourier coefficient of  

crystal polarizability, respectively. We already described that in our experimental conditions can 

start from the assumption of a weak deformation field and use the theoretical results obtained in 

[110](see 1.2.2). Under conditions weak deformation in crystals, it should replace term       by 

       
 

        
 in reflectivity formula. Hereα is parameter of crystal deformation and under 

the influence of the temperature gradient is equal to 

 

  
 

  
  

  

 

  

  
 ,                                                        (3.30) 

Where his the magnitude of diffraction vector of corresponding with reflecting atomic plans. 

Expression (3.29) under the influences of the temperature gradient is converted to  

  =          
   

        
 ×

 

     
 ,                                                    (3.31) 
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The sign of α is determined by the sign of R in (3.3). The behavior of reflectivity dependence on 

sign of α. with considering of (3.28) and (3.31), It is obvious in case α  , with increase of 

temperature gradient, reflectivity initially drops to a minimum and then begins to increase. This 

phenomenon was explained in section 3.1.3. In case α 0, reflectivity increases with the increase 

of the temperature gradient. The experimental results of reflectivity obtained from atomic planes 

(002) ADP crystal correspond to the latter case. 

Calculation of      and     

We measured the value of reflectivity in absence temperature gradient at exact Bragg angel 

(p=0) and then substituted the obtained value in the equation (3.28) and calculated the value of 

    following 

              

Also with measurement of Darwin width and usage of definition below  

    
      

      
 ,                                                               (3.32) 

Value of     was estimated 

            , 

 

Attaining rocking curve of reflectivity in presence temperature gradient-theoretically 

For simplicity, we ignored from term of cosine in (3.28). Theoretical formula of reflectivity was 

obtained by Relations (3.28) and (3.21) for atomic plane (002) of ADP crystal with thickness 

1.9mm under the influences of temperature gradient. Figures 3.28 up to 3.31 show theoretical 

and experimental Rocking curves of reflectivity for different values of temperature gradient. 
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Fig. 3.28 The rocking curves of reflectivity from (002) of ADP crystal in absence temperature gradient, 

solid curve: Experimental, dotted curve: theoretical 

 

 

Fig.3.29 The rocking curves of reflectivity from (002) of ADP crystal in presence gradient dT/dx=6 

deg/cm, solid curve: experimental, dotted curve: theoretical 
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Fig.3.30 The rocking curves of reflectivity from (002) of ADP Crystal in presence temperature gradient 

dT/dx=12 deg/cm, solid curve: experimental, dotted curve: theoretical 

 

 

Fig. 3.31 The rocking curves of reflectivity from (002) of ADP crystal in presence temperature gradient 

dT/dx=18deg/cm, solid curve: experimental, dotted curve: theoretical 

 

As can be seen, the values of theoretical reflectivity at exact Bragg angel approximately 

correspond to practical results. On the other hand, width of theoretical rocking curves not 

considerably changes with the increase of temperature gradient while in practical case width of 

rocking curves have slightly increase. 
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3.3 The X-ray diffraction on single crystal of ADP under the influence of      

temperature gradient applied parallel to reflecting atomic planes  

 

In this part of the work, we continue our investigation about dependence of the intensity of the 

diffracted X-rays from single crystal of ammoniumdihydrogen phosphate(ADP) and quartz in the 

Laue geometry when direction of temperature gradient is parallel to reflecting atomic planes. 

In this case, the temperature gradient causes the shape of atomic planes of perpendicular to 

large surface of crystal change as fan-shape. 

3.3.1 Experimental methods 

 

The experiments were performed by the X-raydiffractometerDRON-3M.  X-ray tubes BSV- 29 

with anodes Ag and Mo were used as sources radiation x-ray. Focal spot sizes were 

0.4mmhorizontallyand8mm vertically. The tube voltage and current were 40kV and 20 mA 

respectively. The intensity of diffracted beam was measured with a scintillation counter.T he 

temperature of surfaces of single crystals was measured with a copper-constantan 

thermocouple with accuracy ± 0.5℃.The thickness of ADP crystal and quartz was 1.88mm 

and3 mm respectively. Fig.3.13 shows scheme of experiment. As be seen, we used a handle 

hot-air blower for increase of temperature of front surface of crystal. Using this device had this 

advantage, which all front surface of crystal heated uniformly. This device was introduced in 

second chapter. With applying this device, the entrance surface was the hotter than the exit 

surface of the single crystal because the front surface is only heated by warm air. 
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                                                                                                              Fig.3.32 Scheme of experiment 
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3.3.2 Experimental results 

We experimentally studied the phenomenon of pumping of the passing intensity from the 

transmission direction to the reflection direction for atomic plane (002) of ADP crystal with Mokα1 

and Agkα1 lines and also for atomic planes (10  0), (10   ), (21  1) quartz with Agkα1 line under the 

influence of the temperature gradient parallel to reflecting atomic planes. Thickness of single 

crystal of ADP and quartz selected 1.88 mm and 3 mm, respectively. The linear absorption 

coefficient of ADP is 2.75 cm-1 and 5.4 cm-1 for Agkα1 and Mokα1 lines, respectively. The linear 

absorption coefficient of quartz is 10.4 cm-1 for Mokα1 line. The results of the experiment are 

shown following: 

Table 3.4The integrated intensity of reflected beam from the atomic plane (002) of ADP crystal in 

presence temperature gradient. t=1.88mm , K : coefficient of amplification 

 

∆T/∆x (deg/cm)      Intensity     (pulses/s) 

Mokα1 Agkα1 

0 9857 10000 

9 12857 16000 

14 14714 18000 

19 16714 23000 

27 18571 25000 

33 20571 
 

K 2 2.5 
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Table 3.32The integrated intensity of reflected beam from different the atomic planes of quartz in 

presence temperature gradient. t=3mm , K : coefficient of amplification. 

 

 

 

 

 

 

 

 

 

 

 

 

We obtained the amplification coefficient of the intensity of the beam reflected from atomic planes. 

The amplification coefficient K is defined as the ratio of the intensity of reflected beam in the 

presence  temperature gradient, in the point where intensity of saturation begins, to the intensity 

without temperature gradient [109]. As be seen the value of this coefficient is various for different 

atomic planes and different length wave. 

With usage of experimental data of Table 3.4, the graphs of the integrated intensity of the reflection 

versus the temperature gradient have been plotted for the atomic plane (002) single crystal of ADP. 

∆T/∆x  

(degree/cm) 

                Intensity     (pulses/s) 

(21  1) (10  0) (10   ) 

0 1900 1698 1400 

18 2200 1754 1460 

23 2600 1811 1570 

40 3100 1886 1660 

63 4000 2452 1860 

93 5000 2924 2100 

106.6 5600 3773 2600 

K 2.9 2.2 1.9 
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Fig. 3.33 Dependence of the integrated intensity of reflected beam on the temperature 

gradient for the atomic plane (002) of ADP crystal , Agkα line, t=1.88 mm. 

 

Fig. 3.34 Dependence of the integrated intensity of reflected beam on the temperature 

gradient for the atomic plane (002) of ADP crystal , Mokα line, t=1.88 mm. 
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Also with usage of experimental data of Table 3.5, the graphs of the integrated intensity of the 

reflection versus the temperature gradient were plotted for different atomic planes single crystal of 

quartz. 

 

Fig. 3.35 Dependence of the integrated intensity of reflected beam on the temperature 

gradient for the atomic plane (10-11) of quartz crystal , Mokα line, t=3 mm 

 

 

Fig. 3.36 Dependence of the integrated intensity of reflected beam on the temperature 

gradient for the atomic plane (10-10) of quartz crystal , Mokα line, t=3 mm 
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Fig. 3.37 Dependence of the integrated intensity of reflected beam on the temperature 

gradient for the atomic plane (21-31) of quartz crystal , Mokα line, t=3 mm 

 

As seen in above graphs, the integrated intensity of the reflected beam increases almost 

linearly with increase of the temperature gradient. The integrated intensity increases more 

than twice for atomic plane   (002) of ADP, and about three times for the atomic plane (213_1) 

of quartz but none of them are not saturation. 

3.3.3 Theoretical analyses 

 The crystal under the influence of the temperature gradient applied perpendicular to the front 

surface of the crystal deforms as shape is shown in Fig 3.38[115]. The axis of curvature is parallel 

to the Y- axis and R is the radius of curvature.  
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Fig.3.38 diagram of the deformed crystal under the influence of 

temperature gradient perpendicular to front surface 

In this situation, the reflecting atomic planes reshape as fan-shape and make a small angle φ with 

the axis Z. In absence of the temperature gradient, the angle is equal to zero. The scalar 

product      is the main parameter that determines the behavior of the wave field in the crystal. 

Where    is reciprocal lattice vector for the family of atomic planes (hkl), and     is displacement 

vector. 

The under conditions uniform temperature gradient, the lattice planes perpendicular to  T are 

curved with a radius R, where according to (1.79) is equal to 

 
                                                                              (3.33) 

Here a is coefficient of linear thermal expansion of the crystal. The atomic planes parallel to T 

remain flat but become taper with respect to each other. The displacement vector is given by: 

                 
 

 
                                                                  (3.34) 

Where  ris the position vector of the considered point. The vector of temperature gradient is 

obtained from(3.33): 

     =
 

 
                                                                             ,(3.35) 

Also have 

                                                                   r = x  +z    ,                                                                (3.36)     

Under the conditions of constancy of the applied temperature gradient, components of the 

displacement vector obtain following [15] 

                  
 

 
  

 

 
         

 
 
   ) ,                                               (3.37) 

   
  

 
  ,                                                                                            (3.38) 

   
     

 
  ,                                                                                      (3.39) 
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Now, we obtain the scalar product between the reciprocal lattice vector h and the displacement 

vector deformation field u(r) that this product determines the behavior of the wave field in the 

lattice. 

h.       
   

 
  

     

  
                                                                    (3.40) 

Where  =
  

  
 is factor asymmetrical as    and   are direction cosines for the incident and reflected 

directions, respectively. In case φ=0 ( =1), considering to (3.40 ),  the second term vanishes and the 

wave field propagates in the crystal without feeling the strain. However, even small shifts of 

symmetric diffraction geometry, are considerable. Even if φ ≈ 0.5 degrees, it is significant from the 

point of view of the formation of the diffraction of the wave field in the lattice. 

We in subsection 3.1.2 represent formula of integrated intensity of reflection (3.11) that under the 

influences of temperature gradient and condition weak deformation becomes to (3.12).  

Now we calculate α for new conditions this experiment, according to definition have 

  
       

      
 ,                                                                                            (3.41) 

Where 

           X= (             ,      z= (                                                                                         (3.42) 

With usage of (3.42), expression (3.41) becomes 

h.       
                          

 
  

     

  
               

                
      (3.43)  

After doing calculation and usage of (3.41) have 

  
      

  
  

       

 

  

  
 ,                                                                     (3.44) 

With substituting (3.44) in expression (3.12), formula of the integrated intensity is obtained 

following 

     
      

       
 
  

  

        
 

     
          

       

        

  

  
  ,                                  (3.45) 
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According to (3.45), the integrated intensity is as a temperature gradient (orα ) which in case       

  

  
  , in the certain temperature gradient has a minimum  

  

  
 

     

       
           ,                                                               (3.45) 

Note that due to the smallness of the parameter α, minimum the integrated intensity is very close to 

the value α = 0, and this minimum is observed relatively clear in fig3.35 and fig 3.37 

. The rest of the formula (3.45) fairly well describes the experimental dependence of   to
  

  
. 

 

Conclusion 

 

1. We investigated the dependence of the integrated intensity of diffracted beams of X-ray 

from a single crystal of ammonium dihydrogen phosphate (ADP) in the Laue geometry 

under influence temperature gradient. It is found that the integrated intensity of reflected 

beam almost linearly depends on magnitude of the temperature gradient applied 

perpendicular to the reflecting atomic planes up to saturation but when direction of 

diffraction vector is opposite direction of the temperature gradient for small values of the 

temperature gradient,with increase of the temperature gradient, the integrated intensity 

initially reduced by about 10% and then monotonically increases. Finally, the observed 

phenomenon was describable by theoretical analysis based on the asymptotic solution of 

dynamical diffraction of X-ray. 

2. In a certain temperature gradient applied perpendicular to the reflecting atomic planes,it was 

observed that the integrated intensity of reflected beam of X-ray from single crystal of 

ammonium dihydrogen phosphate (ADP) in the Laue geometry has a minimum value. We 

succeed in extracting values of    and     the imaginary and real parts of coefficient of 

Fourier expansion of polarizability for ADP crystal by using the formula of integrated 

intensity of reflection in crystals with weak deformation. 

 

 

3. We measured rocking curves of the reflectivity for ADP crystal under the influence of 

temperature gradient in Laue-case geometry and observed that an increase in the 

temperature gradient lead to an increase of reflectivity and also a slight increase in width of 
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rocking curves. We used the asymptotic solution of dynamical diffraction of X-ray wave in 

crystals with weak deformation and our theoretical results were consistent with experimental 

results. 

 

4. The reflecting atomic planes deform to fan-shaped when the temperature gradient vector is 

applied parallel to the reflecting atomic planes and perpendicular to the front surface of 

crystal. We investigated the effect of the fan-shaped deformation on the integrated intensity 

of the reflected beam from single crystals of ammonium dihydrogen phosphate (ADP) and 

quartz (SiO2) in the Laue geometry. Experimental results show that with the increase ofthe 

temperature gradient, the integrated intensity of the reflected beam increases more than 

100% for different atomic planes .A theoretical analysis has been given to explain the 

experimental results. 
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