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INTRODUCTION

One of the most important challenges in mathematics is to explain the

nature by the means of the available tools. We can only explain such complex

structures by the simpler ones, and this approach is called an approximation.

Approximation theory is a relatively young branch of mathematical analysis,

for it needed the concept of a function. As is well-known, the first approach

to defining a function based on this dependence and to abstract from formulae

was developed by Euler. Euler also solved one the first known problems in

approximation theory. He tried to solve the problem of drawing a map of the

Russian empire with exact latitudes, giving the best possible approximation of

the relationship between latitudes and altitudes.

The main challenge of the theory of approximations is to split complex

functions into simpler ones - approximants. The algorithms of finding these

approximants have a purpose to increase the effectiveness, that is, to minimize

the error. It is also important to construct algorithms that are suitable for

practical problems and applications in various fields.

In a Banach space with Schauder basis it is natural to approximate a func-

tion by the terms of its series expansion. For example, we can approximate a

function by partial sums of its series. In early studies, some linear approxima-

tions were obtained. But in recent years, with the rise of interest in problems

related to Big Data and high resolution images, the usefulness and effective-

ness of non-linear approximations became apparent. In late 1990s, greedy al-

gorithms found popularity. These algorithms are used in applications in im-

age/signal/data processing and in designing neural networks. Important results

have been obtained by R. DeVore, S. Konyagin, V. Temlyakov, P. Wojtaszczyk,
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M. Grigoryan, S. Gogyan, among others.

In this dissertation, we study some interesting problems related to the

Thresholding Greedy Algorithm. Namely, we investigate the value of the quasi-

greedy and democratic constants for the subsystems of the Haar system in

L1[0, 1]d. We also study the behavior of the greedy algorithm, after modifing

the function on a small set.

For any normalized basis Ψ = {ψk}+∞
k=1 in the Banach space X and for any

f ∈ X, we have the following expansion:

f =
+∞∑
k=1

ck(f,Ψ)ψk, (1)

where lim ck(f,Ψ) = 0. Let Λ0 = ∅, and by induction, define the sets of positive

integers Λm such that | Λm |= m, Λm−1 ⊂ Λm, and

min
k∈Λm

| ck(f,Ψ) |≥ max
k/∈Λm

| ck(f,Ψ) | . (2)

Note that the sets Λm are not uniquely determined, but for the purposes of our

paper, it is not essential. We remark that the theorems presented below hold

for any choice of Λm satisfying condition (2). We call the function

Gm(f) =
∑
k∈Λm

ck(f,Ψ)ψk,

the m-term greedy approximant of the function f with respect to the system

Ψ, see [1] and [2] for more details. The approximation method which uses

greedy approximants is called a Thresholding Greedy Algorithm (TGA). To

unterstand the effectiveness of the approximaion with a greedy algorithm we

compare its accurancy with the best m-term approximation error using the

basis vectors. We denote the best m-term approximation as follows,

σm(f,Ψ) = inf
α1,α2,...,αm
k1,k2,...km

‖f −
m∑
i=1

αiΨki‖. (3)
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Definition. (S. Dilworth, N. Kalton, D. Kutzarova, V. Temlyakov) The basis

Ψ is called a greedy basis in X, if there exists C ≥ 1 such that for any m ∈ N

and f ∈ X the following relation holds:

‖f −Gm(f,Ψ)‖X ≤ Cσm(f). (4)

It is also natural to compare the error of the TGA with the best m-term

approximation using the function expansion terms. We denote by σ̃m(f,Ψ) the

following quantity:

σ̃m(f,Ψ) = inf
k1,k2,...km

‖f −
m∑
i=1

cki(f)Ψki‖. (5)

Definition. (S. Dilworth, N. Kalton, D. Kutzarova, V. Temlyakov) The basis

Ψ is called an almost greedy basis in X, if there exists C ≥ 1 such that for any

m ∈ N and f ∈ X the following relation holds:

‖f −Gm(f,Ψ)‖X ≤ Cσ̃m(f). (6)

The smallest value of C for which the inequality holds is called the almost

greedy constant for the system Ψ.

We can also compare the error with the approximation using partial sums.

Definition. The basis Ψ is called a partially greedy basis in X if there exists

C ≥ 1 such that or any m ∈ N and f ∈ X the following relation holds:

‖f −Gm(f,Ψ)‖X ≤ C‖f − Sm(f,Ψ)‖X . (7)

The situation is simple when we replace the Banach space X by the Hilbert

space H. If Ψ is an orthonormal basis for the Hilbert space H with an inner

product (·, ·), then we have

cn(f) = (f, ψn).
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We can estimate the norm ‖f‖ using Parseval’s identity,

‖f‖2 =
∞∑
n=1

|(f, ψn)|2. (8)

It is clear that, in this case, Gm(f,Ψ) is the best m-term approximation with

respect to Ψ:

‖f −Gm(f,Ψ)‖ = σm(f,Ψ). (9)

So, the orthonormal basis in the Hilbert space is a greedy basis.

The authors of [2] show that any greedy basis can be characterized as an

unconditional basis with the additional property of being democratic. Here, we

give a slightly more general definition of democratic systems.

Definition. (V. Temlyakov, S. Konyagin) Let Ψ = {ψk}+∞
k=1 be a normalized

system in X. Then Ψ is called democratic in X if and only if there exists a

constant C such that for any two finite subsets A, B of positive integers with

equal number of elements, i.e. | A |=| B |, the following relation holds:

‖
∑
i∈A

ψi‖X ≤ C‖
∑
i∈B

ψi‖X . (10)

The smallest C for which this inequality holds is called the democratic constant

for Ψ.

Theorem A ( V. Temlyakov, S. Konyagin, [2]). The basis is a greedy basis in

X if and only if it is unconditional and democratic in X.

In [1], the author shows that unconditionality does not imply democracy.

It is known that the two dimensional Haar system H2 = H × H defined as

the tensor product of the one dimensional Haar system H with itself is an

unconditional basis in Lp[0, 1] for 1 < p < ∞. On the other hand, H2 is not

a greedy basis in Lp[0, 1] for 1 < p < ∞, p 6= 2 which means that is not a

democratic basis. So we can conclude that H2 is an unconditional basis in
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Lp[0, 1], 1 < p < ∞, p 6= 2, but it is not democratic. Furthermore, democracy

does not imply unconditionality. Indeed, let X be the set of all real sequences

x = (x1, x2, . . . ) such that

‖x‖X = sup
N∈N
|
N∑
n=1

xn| (11)

is finite. It is easy to check that X is a Banach space endowed with the norm

‖ · ‖X . Next, let ψk = (ψk1 , ψ
k
2 , . . . , ψ

k
n, . . . ) ∈ X for k = 1, 2, . . . , be defined in

the following way

ψkn =

1, for n = k,

0, otherwise.
(12)

Let X0 denote the subspace of X generated by the elements of ψk. It is easy

to see that for any two finite subsets A, B of positive integers with number of

elements m we have

‖
∑
k∈A

ψk‖ = ‖
∑
k∈B

ψk‖ = m. (13)

Which means that ψk is democratic system. On the other hand

‖
∑
k∈A

(−1)kψk‖ = 1. (14)

Finally, from 13 and 14 follows that ψk is not unconditional.

In order to give the characterization of almost greedy bases, we remind the

following definition of quasi-greedy bases.

Definition. (V. Temlyakov, S. Konyangin) A basis Ψ = {ψk}+∞
k=1 is called a

quasi-greedy basis of X if there exists a constant C such that for any f ∈ X

and for any m ∈ N, we have

‖Gm(f)‖ ≤ C · ‖f‖. (15)

In [3], Temlyakov defines the quasi-greedy constant G as the smallest number

such that ‖Gm(f)‖ ≤ G‖f‖ and ‖f − Gm(f)‖ ≤ G‖f‖. He also shows that
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the quasi-greedy basis Ψ = {ψk}+∞
k=1 with a quasi-greedy constant G satisfies

the following inequalities, for any real numbers cj and any finite set of indexes

A,

(4G2)−1 min
i∈A
|cj|‖

∑
k∈A

ψk‖ ≤ ‖
∑
k∈A

ckψk‖ ≤ 2Gmax
k∈A
|ck|‖

∑
k∈A

ψk‖. (16)

It will be convenient for us to define the quasi-greedy constant as the smallest

constant such that ‖f −Gm(f)‖ ≤ G‖f‖.

Theorem B (P. Wojtaszczyk, [4]). The basis Ψ in the Banach space X is a

quasi-greedy basis if and only if for any element f ∈ X, we have

lim
m→∞

‖f −Gm(f,Ψ,Λ)‖X = 0. (17)

If Ψ is an unconditional basis, then for every permutation of natural num-

bers π we have that the
∑+∞

k=1 cπ(k)(f,Ψ)ψπ(k) converges, so we can conclude

that the unconditional bases are quasi-greedy. On the other hand, any quasi-

greedy basis is not necessarily an unconditional basis. Morever, in [2], the

authors constructed the following basis which is quasi-greedy and democratic,

while it is not an unconditional basis. Let X be the set of all real sequences

x = (x1, x2, . . . ) ∈ l2 such that

‖x‖1 = sup
N∈N
|

N∑
n=1

xn√
n
| (18)

is finite. Note, that (X, ‖ ·‖) is a Banach space, where ‖ ·‖ = max(‖ ·‖l2, ‖ ·‖1).

Let ψk = (ψk1 , ψ
k
2 , . . . , ψ

k
n, . . . ) ∈ X for k = 1, 2, . . . , be defined as follows:

ψkn =

1, for n = k,

0, otherwise.
(19)

Next, let X0 denote the subspace of X generated by the elements of ψk. {ψk}

is a democratic and unconditional basis in X0 but it is not quasi-greedy.

The following theorem characterizes almost greedy bases.
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Theorem C (S. Konyagin, V. Temlyakov, [2]). The basis is an almost greedy

basis in X if and only if it is quasi- greedy and democratic in X.

The estimate of the almost greedy constant in terms of democratic and quasi

greedy constants is obtained in [5]. Let K be the almost greedy constant of the

basis, and G and D be the quasi-greedy and democratic constants, respectively,

then

K ≤ 8G4 ·D +G+ 1. (20)

In order to characterize partially greedy bases, we introduce the following

definition of conservative bases.

Definition. A basis Ψ is conservative if there is a constant C such that

‖
∑
k∈A

ψk‖ ≤ C‖
∑
k∈B

ψk‖, (21)

where |A| ≤ |B| and for every m ∈ A and n ∈ B we have m < n.

The following theorem characterizes partially greedy bases:

Theorem D (S. Dilworth, N. Kalton, D. Kutzarova and V. Temlyakov , [5]).

The basis Ψ is a partially greedy basis in X if and only if it is a quasi-greedy

and conservative in X.

The definition implies that partially greedy bases are always ’almost greedy’

which themselves are greedy.

In CAHPTER 1, we study results concerning only the Haar system. Let

H = {hI} be the Haar system (see CHAPTER 1 for the definition). We denote

by Hi = {h(1)
i , h

(2)
i , . . . , h

(2i)
i } the i-th pocket of the Haar system. In [6], the

authors show that the Haar system is not a quasi-greedy basis in L1[0, 1]. They

also prove that if {ni} is an increasing sequence of positive integers such that
ni+1

ni
> 2, then the system

⋃
iHni is a quasi-greedy system in L1[0, 1]. In order

to characterize all quasi-greedy
⋃
iHni systems, Gogyan [7] proves the following

Theorem.
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Theorem E (S. Gogyan, [7]). The system
⋃
iHni is a quasi-greedy system in

L1[0, 1] if and only if sup{j − i : nj − ni = j − i} <∞.

Moreover, [8] characterizes all the quasi-greedy subsystems of the Haar sys-

tem in L1[0, 1]. We denote by S the set of the dyadic intervals, and by H(S)

the length of the longest chain of S.

Theorem F (S. Gogyan, [8]). The system {hI}I∈S is a quasi-greedy system in

L1[0, 1]d if and only if H(S) <∞.

Furthermore, an estimate G(S) ≤ 2(H+2) is obtained for a quasi-greedy

constant in [8].

Democratic subsystems of the one-dimensional and multidimensional Haar

systems in L1[0, 1] and L1[0, 1]d are characterized respectively in [8] and [9].

The definition of the multidimensional Haar system whose elements have cubic

supports is introduced in [9], see also CHAPTER 1. The proof of [9, Theorem

1] implies that the democratic constant satisfies the condition D(S) ≤ 2(H−1)d,

where S is the set of dyadic cubes and H is the length of the longest full chain

of the subsystem, see also CHAPTER 1.

As we can see, the greedy algorithm is rearranging the terms of the expan-

sion in a decreasing order. It has been shown in [6] that the Haar system

is not a quasi-greedy one in L1[0, 1]. There is a more general theorem which

states that for every measurable set E ⊂ [0, 1] with 0 < |E| < 1 there exists a

function f ∈ L1[0, 1] such that

lim
m→∞

‖Gm(f,H)‖ = +∞. (22)

To overcome such kind of problems, one can consider modifying a function

in a small set. In particular, N. Luzin presented the following very important

Theorem.
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Theorem G (N. Luzin, [10]). For any measurable, almost everywhere finite in

[0, 1] function f and any ε > 0 there exists a measurable set E with |E| > 1−ε

and a continuous function g in [0, 1], coinciding with f in E.

Luzin’s idea of changing functions in order to improve its properties has been

studied and developed by many authors, e.g. Menshov, Talalyan, Arutjunjan,

Oskolov, Grigoryan, Gogyan, among others. Below we present some of the

latter mentioned results regarding the convergence of Fourier series and greedy

algorithms.

In [2], the authors prove that there exists a function f0(x) ∈
⋂

1≤p<2

Lp for

which the greedy algorithm with respect to the trigonometric system does not

converge in measure. Grigoryan shows that there exists a set of an arbitrary

small measure such that after by modifying the function in that set, the greedy

algorithm with respect to the trigonometric system of the modified function

converges in measure. Denoting by {an}∞n=−∞ the complex Fourier coefficients

of the function f ;

ak(f) =

∫ 1

0

f(t)e−i2πktdx, (23)

Grigoryan [11] proves the following theorems.

Theorem H (M. Grigoryan, [11]). For every ε > 0, there exists a measurable

set E ⊂ [0, 1] with |E| > 1 − ε such that for every p ∈ [1, 2) and f ∈ Lp[0, 1]

there is a function g ∈ L1[0, 1] with g = f on E such that the greedy algorithm

of the function g with respect to the trigonometric system is norm-convergent

in L1[0, 1], and converges to f on E in metric Lp(E).

Theorem I (M. Grigoryan, [11]). For every ε > 0 there exists a measurable set

E ⊂ [0, 1] with |E| > 1− ε that for every p ∈ [1, 2) and f ∈ Lp[0, 1] there is a

function g ∈ L1[0, 1] with g = f on E, and a permutation of integer numbers

{σ(k)} such that
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1) lim
n→∞

∫ 1

0

|
∑
|k|≤n

aσ(k)(g)ei2πσ(k)x − g(x)|dx = 0,

2) lim
n→∞

∫ 1

0

|
∑
|k|≤n

aσ(k)(g)ei2πσ(k)x − f(x)|pdx = 0

3) |aσ(k)(g)| > |aσ(k+1)(g)|,, for every k ≤ 0,

4)
∫ 1

0

|f(x)− g(x)|dx < ε.

The following two theorems indicate that in the case of the Haar system, we

can modify the function in a small set such that its non-zero terms will be in a

decreasing order, while we are not able to order all the terms monotonically.

Theorem J (S. Gogyan, M. Grigoryan, [12]). For any mea surable set E,E ⊂

[0, 1] with 0 < |E| < 1 there exists a function f0 ∈ L1[0, 1] such that if f ∈

L1[0, 1] coinciding with f0 on E, then the sequence {|cn(f)|}∞n=1 cannot be

monotonically decreasing, where cn(f) is the n-th coefficient of the Haar system

normalized in L1[0, 1].

Theorem K (S. Gogyan, M. Grigoryan, [12]). For any 0 < ε < 1, there

exists a measurable set E ⊂ [0, 1] with |E| > 1− ε, such that for any function

f ∈ L1[0, 1] there is some f̃ ∈ L1[0, 1] coinciding with f on E and all non-zero

terms of the sequence {cn(f̃)} are arranged in a decreasing order.
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CHAPTER 1

ON QUASI-GREEDY CONSTANT

ON QUASI-GREEDY CONSTANT
It is well known from [6] that the Haar system is not quasi-greedy, so it is

natural to investigate the subsystems of the Haar system. The authors of [6]

also give an example of a quasi-greedy Haar subsystem. Later, Gogyan [13]

characterizes all the quasi-greedy subsystems of the Haar system in L1[0, 1].

To formulate this result we first recall the definition of the Haar system.

We denote ∆1 = ∆
(0)
0 = [0, 1]. For j = 1, 2, . . . , 2i and i = 0, 1, 2, . . . , the

intervals

∆2i+j = ∆
(j)
i =

[
j − 1

2i
,
j

2i

)
,

are called dyadic intervals. Let us donate the set of all dyadic intervals by D.

Every dyadic interval is a union of two dyadic intervals, namely ∆n = ∆2n−1 ∪

∆2n. These two intervals are called the left and right halves of the interval ∆n,

respectively. To each dyadic interval corresponds exactly one function of the

Haar system, which is given by

hn(t) = h
(j)
i (t) = h∆n(t) =


2i, t ∈ ∆2n−1,

−2i, t ∈ ∆2n,

0, otherwise.

13



We also assume h1 = h∆1
≡ 1. The set of the functions H = {hn}∞n=1 is called

a Haar system. Below we present the plots of a few terms of the Haar system.
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Figure 1.1
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Figure 1.2
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Figure 1.3
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For any f ∈ L1[0, 1], the coefficients of the expansion are determined as

follows,

c1(f,H) = c∆1
(f,H) =

∫
[0,1]

f, (1.1)

and

cn(f,H) = c∆1
(f,H) =

∫
∆2n−1

f −
∫

∆2n

f, n ≥ 2, (1.2)

For the set A, A ⊂ D we denote by HA = {hI}I∈A and LA = span(HA),

where the closure is taken with the L1[0, 1]-norm. For any I,J ∈ D with

J ⊂ I, denote

C(I,J ) = {∆ ∈ D : J ⊆ ∆ ⊆ I} (1.3)

which is called a chain [14]. The length of the chain C(I,J ) is the number of

elements in the chain. Figure 1.4 represents the graph of dyadic intervals. For

example the nods 1, 2, 3, 4 are compose a chain, while the nods 5, 6, 7 do not.

Figure 1.4

Denote H(A) the length of the longest chain in subsystem A, see [14]. The

following theorem was proved in [13].
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Theorem 1 (S. Gogyan, [13]). For the set A, A ⊂ D, the Haar subsystem HA
is a quasi-greedy basis in LA if and only if H(A) < +∞. Moreover, for every

m ∈ N and f ∈ LA,

‖Gm(f)‖ ≤ 2H(A)‖f‖.

In this chapter, we improve the estimate for the quasi-greedy constant HA.

Theorem 2. Assume there exists a subsystem of a Haar system HA which is

a quasi-greedy subsystem in L1[0, 1]. Then, for the quasi-greedy constant GA,

we have the following estimate,

H(A)

16
≤ GA ≤ 2H(A) + 1.

For sake of convenience of the presentation of the proof of Theorem 2, below

we introduce some notations.

We write, for f ∈ L1[0, 1],

‖f‖∆ =

∫
∆

| f |,

and we write ‖f‖ if ∆ = [0, 1]. We also make the following notations,

sp(f) = {∆ : c∆(f) 6= 0},

PI(f) = f −
∑
J⊆I

cJ (f)hJ , for any I ∈ D.

Note that the function PI(f) is constant on the set I, and coincides with f

outside I. For a finite set of dyadic intervals S, S = {I1, I2, . . . , Ik}, we denote

PS(f) = PI1
(PI2

(. . . (PIk(f)) . . .).

We also remark that the function PS(f) does not depend in which order the

operators PIi, 1 ≤ i ≤ k are applied.

We will use the monotonicity property of the Haar system in L1[0, 1], that

is, for any positive integers m and n, with m ≥ n we have the relation

‖Sm(f)‖ ≥ ‖Sn(f)‖, (1.4)
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where

Sk(f) =
k∑
i=1

ci(f)hi.

For any f ∈ L1[0, 1] and a dyadic interval ∆n = [a, b), we define

C1(f,∆n)(t) =

f(t) : t /∈ ∆2n,

f(t− b−a
2 ) : t ∈ ∆2n,

and

C2(f,∆n)(t) =

f(x) : x /∈ [a, a+b
2 , )

f(x+ b−a
2 ) : x ∈ [a, a+b

2 ).

In fact, the operators C1(f,∆n) and (C2(f,∆n)), introduced in [7], copy the

function f from the left (right) half of the interval ∆n to the right (left) half of

it.

Below, we recall several lemmas from [14] which will be used to prove Theorem

2.

Lemma 1. ([14, Lemma 1]) For any I ∈ D and f ∈ L1[0, 1], we have

‖f‖I ≥| cI(f) | . (1.5)

Lemma 2. ([14, (8)]) Let f ∈ L1[0, 1] and | c∆(f) |≤ 1 for any ∆ ∈ D. Then,

for every I ∈ D,

‖PI(f)‖I ≤ 1. (1.6)

Lemma 3. Let f, g ∈ L1[0, 1] such that ‖f + g‖ > 0, and let

‖f‖ = B‖f + g‖.

Then, one of the following inequalities holds

‖C1(f,∆n)‖ ≤ B‖C1(f + g,∆n)‖, (1.7)

‖C2(f,∆n)‖ ≤ B‖C2(f + g,∆n)‖, (1.8)
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for any interval ∆n = [a, b), n > 1. Moreover, equalities in (1.7) and (1.8)

hold at the same time.

Next, for any functions f, g ∈ L1[0, 1], ‖f + g‖ > 0 and ∆n, we define

C(f, g) =

(C1(f,∆n), C1(f,∆n)) : if (1.7) is true and C1(f + g,∆n) 6= 0

(C2(f,∆n, C2(g,∆n))) : otherwise.
(1.9)

Lemma 4. Let f, g ∈ L1[0, 1] and ∆n ∈ D be such that

i) ∆n /∈ sp(f), ∆n /∈ sp(g),

ii) sp(f) ∩ sp(g) = ∅,

iii) ‖f‖ > 0, ‖f + g‖ > 0,

iv) H(sp(f + g)) <∞.

Then, for the functions (f ′, g′) = C((f, g),∆n), the following conditions hold:

a) ∆n /∈ sp(f ′), ∆n /∈ sp(g′),

b) ck(f ′) = ck(f) and ck(g′) = ck(g) for any k with ∆k 6⊂ ∆s, where ∆s is

the half of the interval of ∆n where the values of f and g are copied.

c) cI(f ′) = cI+µ(∆n)
2

(f ′) and cI(g′) = cI+µ(∆n)
2

(g′), for all I ⊂ ∆2n−1

d) sp(f ′) ∩ sp(g′) = ∅,

e) H(sp(f ′ + g′)) ≤ H(sp(f + g)),

f ) ‖f ′‖ > 0, ‖f ′ + g′‖ > 0,

g) ‖f ′‖
‖f ′+g′‖ ≥

‖f‖
‖f+g‖.
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Now, we are ready to present the main Lemma which will be useful to prove

Theorem 2.

Lemma 5. Let p and q be polynomials with respect to the Haar system satis-

fying the following relations:

i) sp(p) ∩ sp(q) = ∅,

ii) the function q is constant on all dyadic intervals where the function p is

constant,

iii) ‖p‖ > 0 and ‖p+ q‖ > 0,

iv) H := H(sp(p+ q)) <∞,

v) | cI(p) |≥ 1 for any I ∈ sp(p),

vi) | cI(q) |≤ 1 for any I ∈ sp(q),

vii) p
∣∣
I+

= p
∣∣
I−

and q
∣∣
I+

= q
∣∣
I−

for any I, I /∈ sp(p + q). Then, for any

I /∈ sp(p+ q),

‖p‖I ≤ (2H + 1) · ‖p+ q‖I + 1, p
∣∣
I= const, (1.10)

‖p‖I ≤ (2H + 1) · ‖p+ q‖I − (2H − 2), p
∣∣
I 6= const. (1.11)

Proof Let S be the set of all dyadic intervals I for which cI(p + q) = 0 and

the function p + q is not constant on the dyadic interval whose left or right

half is I. We prove the statement of the lemma by an induction on ord(I,S),

I ∈ S, where we refer for the definition of ord to [14]. If ord(I,S) = 0, then

p|I = Const. Next, using Lemma 2 for q, we obtain

‖p‖I ≤ ‖p+ q‖I + ‖q‖I ≤ ‖p+ q‖I + 1 ≤ (2H + 1) · ‖p+ q‖+ 1. (1.12)

Suppose that statement holds for I with ord(I, S) < i, and let us show that it

is true for I with ord(I, S) = i. Note that p|I 6= Const, and it follows from
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condition vii) that p
∣∣
I+
6= Const and p

∣∣
I−
6= Const. Denote by I1, I2, . . . , Ik

the maximal elements of S which are contained in I+ and p
∣∣
Ij
6= Const, j =

1, 2, . . . , k. Similarly, denote by J1,J2, . . . ,Jm the maximal elements of S

which are contained in I+ and p
∣∣
Jj

= Const, j = 1, 2, . . . ,m. Then, note that

I+ = ∪kj=1Ij ∪ ∪mj=1Jj. (1.13)

Let us consider the case when Jj and Js are the left or right halves of some

dyadic interval J . Then, by the assumption of the Lemma, we have cJ (p) 6= 0,

and therefore ‖p + q‖J ≥ 1. Next, using Lemma 2 for q, we obtain that

‖q‖J ≤ 1. Hence,

(2H + 1)‖p+ q‖J̃ − ‖p‖J̃ > 2H‖p+ q‖J̃ − 1 > 2H − 1 > 2H − 2. (1.14)

Thus, relation (1.11) holds on the interval J . Denote by Ik+1, Ik+2, . . ., Is
the set of the unions of all pairs in the sequence J1,J2, . . . ,Jm whose unions

are dyadic intervals. Next, denote by K1, K2, . . ., Kl the set of the remaining

intervals. For the intervals Ii we obtain the inequality (1.11), and for intervals

Ji we obtain the inequality (1.10). Note, that from the construction it follows

that l ≤ s(H − 1), and we deduce that

‖p‖I+
=

s∑
i=1

‖p‖Ii +
l∑

i=1

‖p‖Ji <

(2H + 1)
s∑
i=1

‖p+ q‖Ii − s(2H − 2) + (2H + 1)
l∑

i=1

‖p+ q‖Ji + l ≤

(2H + 1)‖p+ q‖I+
− (H − 1).

(1.15)

Condition vii) of the Lemma implies that ‖p‖I = 2‖p‖I+
, ‖p+q‖I = 2‖p+q‖I+

,

and therefore,

‖p‖I ≤ (2H + 1)‖̇p+ q‖I − 2(H − 1), (1.16)

which concludes the proof.
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Proof Theorem 2 First, let us prove the right hand-side of the inequality,

i.e. GA ≤ 2H(A) + 1. Assume f 6= 0. Note that it is enough to consider the

case when Gm(f) 6= f . Denote

p =
Gm(f)

max {| c∆n
(f −Gm(f)) |: ∆n ∈ sp(f −Gm(f))}

, (1.17)

q =
f −Gm(f)

max ({| c∆n
(f −Gm(f)) |: ∆n ∈ sp(f −Gm(f))}

, (1.18)

We need to find an estimate for the value of ‖p‖
‖p+q‖ . Since p is a polynomial and a

Haar system has the property of monotonicty, then, without a loss of generality,

we can assume that q is also a polynomial. We have that H(sp(p + q)) < ∞.

Consider the dyadic intervals which do not belong to sp(p + q) and on which

the function p+ q is not constant. We arrange these intervals in an increasing

order (in the sense of measure), and denote them by J1,J2, · · · ,Jk. Let

(p′, q′) = C(C(· · · (C((p, q,J1),J2), · · · Jk). (1.19)

Since the functions p′, q′ satisfy all the conditions of the main Lemma, we obtain

that
‖Gm(f)‖
‖f‖

≤ ‖p′‖
‖p′ + q′‖

≤ 2H + 1. (1.20)

Now, we proceed to prove GA ≥ H
16 . Assume that there exists a chain with

a length H in the subsystem S. For the sake of simplicity assume that

{h(1)
n , h

(1)
n+1, . . . , h

(1)
n+H−1} ⊂ S. Consider the function f =

∑n+H−1
i=n h

(1)
i . Below

is the graph of function f :
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∑H−1
k=0 2n+k

1
2n+H

1
2n

x

y
f

Figure 1.5

Note that

‖f‖ = 2− 1

2H−1
≤ 2. (1.21)

Letm =
[
H
2

]
, and consider the following realization of the greedy algorithm

Gm(f) =
∑m−1

i=0 h
(1)
n+2i. For Gm(f), one has

‖Gm(f)‖ ≥ m

4
. (1.22)

Therefore,

‖Gm(f)‖ ≥ H

16
‖f‖, (1.23)

which yields that ‖Gm‖ ≥ H
16 .

This result can be generalized for multidimensional case by using techniques

of the proof of Theorem 2. There are two generalizations of the Haar system in
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L1[0, 1]d. We consider the multidimensional Haar system whose elements have

cubic supports, and we first recall the definition of this system. The dyadic

interval is the interval of type
[
j−1
2n ,

j
2n

)
, with 1 ≤ j ≤ 2n, n ≥ 0. For a dyadic

interval I =
[
j−1
2n ,

j
2n

)
⊂ [0, 1), we write

r
(0)
I (t) =


1
|I| : t ∈ I

0 : t /∈ I
, r

(1)
I (t) =


1
|I| : t ∈

[
j−1
2n ,

2j−1
2n+1

)
− 1
|I| : t ∈

[
2j−1
2n+1 ,

j
2n

)
0 : t /∈ I

,

(1.24)

For dyadic intervals I1, I2, . . . , Id of the same length, the cube

I = I1 × I2 × . . . Id (1.25)

is called a dyadic cube. ByDd we denote the set of all dyadic cubes of dimension

d. To remind definition of multidimensional Haar system we need one more

notation. Denote

M = Dd × {1, 2, . . . , 2d − 1}. (1.26)

To each element (I, j) ∈ M corresponds one element of the multidimen-

sional Haar function h(j)
I , which is defined in the following way

h
(j)
I (x) =

d∏
i=1

r
(εk)
Ik (xk), (1.27)

where x = (x1, x2, . . . , xd) ∈ [0, 1]d and numbers εk ∈ {0, 1} are defined by

the representation j =
∑d

k=1 εk2
d−k. The set of functions h(j)

I together with

h
(0)

[0,1)d
≡ 1 is a multidimensional Haar system.

Now, for any I,J ∈ Dd with J ⊂ I, denote

C(I,J ) = {∆ ∈ Dd : J ⊆ ∆ ⊆ I} (1.28)

which is called a chain [14]. The length of the chain C(I,J ) is the number of

elements in the chain. Also we will say that J is a son of I iff J ⊂ I and
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µ(J ) = 2−dµ(I). By the term complete chain Cd(I,J ) we mean the following

set

Cd(I,J ) = {(∆, k) ∈M : J ⊆ ∆ ⊆ I, 1 ≤ k ≤ 2d − 1}. (1.29)

By length of chain Cd(I,J ) we mean the length of the chain C(I,J ). Also,

for S ⊂ M denote by GS the quasi-greedy constant constant for the system

{h(j)
I }(I,j)∈S in L1[0, 1]d. We also put H(S) the length of the longest chain in

subsystem S.

In this work, we improve the estimate for the quasi-greedy constant GS in

L1[0, 1]d as follows.

Theorem 3. Assume there exists a subsystem of the Haar system

{{h(j)
I }I∈S}

2d−1
j=1 , which is a quasi-greedy subsystem in L1[0, 1]d. Then, for the

quasi-greedy constant GS, we have the following estimate:

‖GS‖ ≤ 2d(H − 1) + 1. (1.30)

For I ∈ Dd, we denote

PI(f) = f −
∑

J∈Dd,J⊆I

2d−1∑
j=1

c
(j)
J (f)h

(j)
J .

We emphasize that when J = [0, 1)d, we allow j to take the value 0 to ensure

that h(0)

[0,1)d
is counted. Note that the function PI(f) is constant on the set

I and coincides with f outside I. Before presenting the main lemma in the

multidimensional case, we proceed by recalling a few lemmas from [8] which

are generalization for the multidimensional case.

This lemma we will use in next section too.

Lemma 6. ([8, Lemma 1]) For any f ∈ L1[0, 1]d and I,J ∈ Dd with J ⊆ I,

we have

‖f‖ ≥| c(i)
J | for all 1 ≤ j ≤ 2d − 1. (1.31)
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Lemma 7. ([8, Lemma 2]) Let f ∈ L1[0, 1]d and | c(i)
∆ |≤ 1 for any ∆ ∈ Dd,

and 1 ≤ j ≤ 2d − 1. Then, for every I ∈ Dd,

‖PI(f)‖I ≤ 1

Next, let I1, I2, . . . , I2d be the sons of I, I ∈ Dd, and define the

d−dimensional vectors tik from the conditions Ik = Ii + tik. Then, for any

function f we define

Ci(f, I) =


f(t); if t 6∈ I,

f(t); if t ∈ I,

f(x+ tik); for x ∈ Ii for some 1 ≤ i 6= k ≤ 2d.

(1.32)

In fact, the operator Ci are copy operators for multidimensional case.

Lemma 8. Let f, g ∈ L1[0, 1]d such that SP (f + g) 6= ∅, and let

‖f‖ = B‖f + g‖ (1.33)

Then,

‖Ci(f, I)‖ ≥ B‖Ci(f + g, I)‖, for some 1 ≤ i ≤ 2d, (1.34)

or

‖Ci(f, I)‖ = B‖Ci(f + g, I)‖, for all 1 ≤ i ≤ 2d. (1.35)

Lemma 9. Let f, g ∈ L1[0, 1]d and I ∈ Dd be such that

i) I 6∈ SP (f) and I 6∈ SP (g),

ii) sp(f) ∩ sp(g) = ∅,

iii) sp(f + q) 6= ∅.

Then, for the functions

(f ′, g′) = C((f, g),∆) = Ci((f, g),∆) (1.36)

the following conditions hold:
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1) ∆n /∈ SP (f ′), ∆n /∈ SP (g′),

2) c(j)
J (f ′) = c

(j)
J (f) and c(j)

J (g′) = c
(j)
J (g) for all J ,J 6⊂ I \ Ii,

3) for any J ⊂ I \ Ii there exist J̃ ∈ Ii, that c(j)
J (f ′) = c

(j)

J̃ (f) and

c
(j)
J (g′) = c

(j)

J̃ (g) for all 1 ≤ j ≤ 2d − 1,

4) sp(f ′) ∩ sp(g′) = ∅,

5) sp(f ′ + g′) 6= ∅,

6) ‖f ′‖
‖f ′+g′‖ ≥

‖f‖
‖f+g‖,

7) H(SP (f ′ + q′)) ≤ H(SP (f + g)).

Here we present the main lemma.

Lemma 10. Let p and q be polynomials with respect to the multidimensional

Haar system satisfying the following relations:

i) sp(p) ∩ sp(q) = ∅,

ii) the function q is constant on all dyadic intervals where the function p is

constant,

iii) [0.1)d 6∈ SP (p+ q),

iv) ‖p‖ > 0 and ‖p+ q‖ > 0,

v) H := H(SP (p+ q)) <∞,

vi) | c(j)
I (p) |≥ 1 for any I ∈ SP (p) and 1 ≤ j ≤ 2d − 1,

vii) | c(j)
I (q) |≤ 1 for any I ∈ SP (q) and 1 ≤ j ≤ 2d − 1,

viii) For any I 6∈ SP (p + q) and 1 ≤ k ≤ 2d we have Ck(p, I) = p and

Ck(q, I) = q.
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Then,
‖p‖
‖p+ q‖

< 2d(H − 1) + 1 (1.37)

We skip the proof of Lemma 10 since it follows the same pattern as the

proof of Lemma 5. Then, the proof of Theorem 3 directly follows from Lemma

10, applying the same techniques of the proof of Theorem 2.

ON DEMOCRATIC CONSTANT
Democratic bases have important role on classification of greedy type bases.

Democratic subsystems of the 1-dimensional and multidimensional Haar sys-

tems in L1[0, 1] and L1[0, 1]d are characterized respectively in [8] and [9]. In this

section we use the definition of the multidimensional Haar system presented in

Section 1.

For S ⊂ M denote by D(S) the democratic constant for the system

{h(j)
I }(I,j)∈S in L1[0, 1]d.

Theorem 4 ([9]). Let S ⊂ M be given and let H be the length of longest

complete chain in S (we assume it’s equal to +∞ if there are arbitrary long

complete chains). Then {h(j)
I }(I,j)∈M is democratic in L1[0, 1]d if and only if

H < +∞.

From the proof of the theorem one may conclude that democratic constant

satisfies to the condition D(S) ≤ 2Hd. In this section we improve this result

by proving following theorem.

Theorem 5. Let S ⊂ M and S contains complete chains having maximal

length H. Then D(S) < 2d(2d − 1)(H + 1).

Below, we recall several lemmas which will be used to prove Theorem 5.

Lemma 11 ([9], Lemma 2). Let f ∈ L1[0, 1]d, and I,J ∈ Dd be such that:
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1) |c(i)
I (f)| ≤ 1 for any (I, i) ∈M,

2) I is a son of J ,

3) c(i0)
J (f) = 0 for some 1 ≤ i0 ≤ 2d − 1.

Then,

‖PI(f)‖I ≤ 1− 2−d. (1.38)

We proceed with presenting the main Lemma which will be useful in the

proof of Theorem 5.

Lemma 12. Let Λ ⊂M and let H be the length of the longest complete chain

in Λ. Then,

‖
∑

(I,i)∈Λ

h
(i)
I ‖ ≥

| Λ |
2d(2d − 1)(H + 1)

. (1.39)

Proof Let

{I1, I2, . . . , Ik} = {I : ∃1 ≤ i ≤ 2d − 1, (I, i) ∈ Λ}.

According to the definition we have k ≥ |Λ|
2d−1

. Without loss of generality, we

may assume that

if for 1 ≤ i < j ≤ k one has Ij ∩ Ii 6= ∅, then Ij ⊂ Ii and for all

i < s < j one has Is ⊂ Ii.

Put f0 = 0 and for 1 ≤ s ≤ k denote

fs =
∑

i≤s,j, (Ii,j)∈Λ

h
(j)
Ii .

Again, without loss of generality, we may assume that if Ii and Ij are sons

of It with respect to {Ii} (with i < j) then

‖ft‖Ii ≥ ‖ft‖Ij .
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Note, that

‖
∑

(I,i)∈Λ

h
(i)
I ‖ = ‖fk‖ =

k∑
i=1

(
‖fi‖ − ‖fi−1‖

)
.

From the monotonicity of the Haar system and definitions of fi it follows

that all terms in the brackets are non-negative. To complete the proof of the

Lemma it remains to show, that at least 1
H+1 of them have value at least

2−d. Indeed, consider an arbitrary sequence Ii, Ii+1, . . . , Ii+H . By taking into

account the definition of H, we can state that they do not form a complete

chain in Λ. It follows from construction that for at least one j, i < j ≤ i + H

we have one of following cases:

i) Ij ⊂ Ij−1 and Ij is not a son of Ij−1. Consider a dyadic cube J whose son

is Ij. According to Lemma 6, we have

‖fj‖Ij ≥ 1

and according to Lemma 11, we have (since (J , 1) /∈ Λ)

‖fj−1‖Ij ≤ 1− 2−d.

Since fj−1 and fj coincide outside Ij we conclude

‖fj‖ − ‖fj−1‖ ≥ 2−d.

ii) Ij is a son of Ij−1 and for some t, 1 ≤ t ≤ 2d− 1 we have (Ij−1, t) /∈ Λ. This

case is similar to the previous case. According to Lemma 6, we have

‖fj‖Ij ≥ 1

and according to Lemma 11 we have

‖fj−1‖Ij ≤ 1− 2−d.
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Since fj−1 and fj coincide outside Ij, we conclude

‖fj‖ − ‖fj−1‖ ≥ 2−d.

iii) Ij ∩ Ij−1 = ∅. In this case we have

‖fj−1‖Ij ≤
1

2
,

therefore,

‖fj‖Ij − ‖fj−1‖Ij ≥
1

2
.

Lemma is proved.

The proof of the Theorem then easly follows from the lemma.

Proof Let A ⊂ S and |A| = n. Note that it is enough to estimate the norm

‖
∑

(Ii,ji)∈A h
(ji)
Ii ‖.

We have, by Lemma 12, that

‖
∑

(Ii,ji)∈A

h
(ji)
Ii ‖ ≥

n

2d(2d − 1)(H + 1)
. (1.40)

Also, by the triangle inequality, we get

‖
∑

(Ii,ji)∈A

h
(ji)
Ii ‖ ≤ n. (1.41)

Finally, by (1.40) and (1.41), we have that

D(S) < 2d(2d − 1)(H + 1), (1.42)

and this concludes the proof.
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CHAPTER 2

MODIFYING FUNCTION

It is an old idea to improve the property of the function, by changing its values

on some small set. The first fundamental result in this direction was obtained

by N. Luzin in [10]. He proved that any finite function can be changed on

the set of given positive measure such, that it becomes continuous. Later, D.

Menshov and others proved several fundamental theorem that any measurable

function can be changed (’corrected’) on the set of given small measure such,

that its Fourier series by trigonometric function converges uniformly (see [15]).

Later, many results in this direction are obtained by P. Ulyanov, A. Ta-

lalyan, M. Grigoryan and others. Here we continue the research developed by

M. Grigoryan in his series of articles. In [12] the following two theorems were

proved.

Theorem L (Theorem 3, [12]). For any measurable set E,E ⊂ [0, 1] with a

measure 0 < |E| < 1, there exists a function f0 ∈ L1[0, 1] such that if some

function f ∈ L1[0, 1] coincides with f0 on E, then the sequence {|cn(f)|}∞n=1

cannot be monotonically decreasing, where cn(f) is the n-th coefficient of a

Haar system normalized in L1[0, 1].

[12] also presents the following Theorem.

Theorem M (Theorem 4, [12]). For any 0 < ε < 1 there exists a measurable

set E ⊂ [0, 1] with |E| > 1 − ε such that for any function f ∈ L1[0, 1] there
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exists some f̃ ∈ L1[0, 1] coinciding with f on E and such that all non-zero

terms of the sequence {cn(f̃)} are arranged in a decreasing order.

Note that it follows from these theorems that one can modify a function

such that all the non-zero terms of the series of coefficients with respect to the

Haar system are arranged in a decreasing order, even though we are not able

to order all of the terms monotonically.

The analogous questions were considered for other bases and in other spaces.

For the space C(0, 1) of continuous on [0, 1] functions and for Faber-Schauder

system some interesting results are obtained by M. Grigoryan and A. Sargsyan

in [16]. Let’s remind the definition of Faber-Schauder system. Definition and

notations are due [16].

The Faber-Schauder system is the sequence of functions Φ = {φn}+∞
n=0, de-

fined on segment [0, 1], in which φ0 ≡ 1, φ1(x) = x on [0, 1] and for n = 2k + i,

k = 0, 1, 2, . . ., i = 1, 2, . . . , 2k one has

φn(x) = φ
(i)
k (x) =


0, x /∈ [ i−1

2k
, i

2k
],

1, x = 2i−1
2k+1 ,

is linear and continious on[ i−1
2k
, 2i−1

2k+1 ] and [2i−1
2k+1 ,

i
2k

]

The following definition is also due [16].

Definition. Let Ψ is a basis in a Banach space X and let 0 < t ≤ 1. We say

that coefficients of f ∈ X are t-monotone with respect to Ψ if and only if for

any integer 1 ≤ n < m one has either

cm(f) = 0,

or

| cn(f) |≥ t· | cm(f) | .
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The following theorem is proved in [16].

Theorem N (M. Grigoryan, A. Sargsyan, [16]). For every ε ∈ (0, 1) there

exists a measurable set E ⊂ [0, 1] with measure µ(E) < 1−ε, such that to each

function f ∈ C[0, 1] one can find a function g ∈ C[0, 1] that coincides with f

on E and coefficients of whichâĂŹs expansion by the Faber-Schauder system

are t-monotone for all t ∈ (0, 1
2)].

Also, in 2013 the following theorem was proved.

Theorem O (M. Grigoryan, V. Krotov, [17]). Let {an} is a decreasing sequence

of real numbers such, that

lim
n→∞

an = 0,

and
∞∑
n=1

an
n

= +∞.

Then for any ε with 0 < ε < 1 and for any measurable and almost everywhere

finite (on [0, 1]) function f there exists a function f̃ ∈ C[0, 1] with the following

properties:

i) µ{f̃ 6= f} < ε,

ii) an = cn(f̃) for all n with cn(f̃) 6= 0, where cn(f̃) is the n-th Faber-

Schauder series coefficient of function f̃ .

In [12] authors were asking a question either if exists a basis such, that after

correcting the function the sequence of Fourier-series coefficients are ordered in

decreasing order. In this chapter we show, that this question has positive

answer. The example of such an basis is constructed in [18]. In this chapter we

prove the following theorem.

Theorem 6. There exists a normalized basis Ψ = {ψn}∞n=1 in L1[0, 1] such that

for any ε, 0 < ε < 1 there exists a measurable set E ⊂ [0, 1] with a measure
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|E| > 1 − ε such that for every function f ∈ L1[0, 1] there exists a function

f̃ , f̃ ∈ L1[0, 1] which coincides with f on E and all of the terms of the sequence

{cn(f̃)} are arranged in a decreasing order.

To prove Theorem 6 we construct the basis with required property and

adopt ideas from [12] The basis with required property is constructed in [18]

when the sequence {Mi}∞i=1 is increasing very fast, e.g. Mi = 22i. In this

chapter we assume that Mi = 22i.

Let us split the Haar system into two subsequences, {bi} and {φi}, where

bi = h
(2)
i , i = 1, 2, . . . . Next, denote N0 = 0 and Ni =

∑i
k=1Mi =

∑i
k=1 22k .

[12] investigates a system of functions F =
{{
f(i,j)

}Mi

j=0

}∞
i=1

which is defined in

the following way:

f(i,0) = φi −
1

Mi + 1

∑
Ni−1+1≤k≤Ni

bk,

f(i,j) = f(i,0) + bNi−1+j, j = 1, 2, . . . ,Mi.

It is noted in [12] that the system {f(i,j)} is a basis in L1[0, 1]. Here we

remark some properties of the system F and numbers Mi, which will be useful

in the further discussions.

2 ≤ ‖f(i,j)‖ ≤ 3, (2.1)

φi =
1

Mi + 1

Mi∑
j=0

f(i,j), (2.2)

i∑
j=1

Mj

Mi+1
<

2

Mi
< 2−i. (2.3)

Lemma 13. Let the dyadic interval ∆ =
(
k−1
2n ,

k
2n

)
, real numbers 0 < ε <

1, γ 6= 0, δ0 > 0, δ1 > 0, δ2 > 0 and positive integer A are given such, that

∆ ∩ (0, ε) = ∅.

Then there exists a polynomial

P =
B∑
i=A

Mi∑
j=0

c(i,j)f(i,j) (2.4)
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such that

i) the sequence {c(i,j)} is positive and monotonically decreasing, also all of

them are less than δ0,

ii) µ
(
∆ ∩ {| P − γ |< δ1}

)
= µ

(
∆ ∩ {| P + γ |< δ1}

)
= µ(∆)

2 ,

iii) ‖P‖L∞([0,1]\∆) < δ1.

iv) Partial sums of (2.4) are increasing on [ε, 1] by L1 norm,

Proof Let’s choose enough big α and divide ∆ into 2α equal dyadic intervals.

Each of them corresponds to some Haar function.

x

y

Figure 2.1

x

y

Figure 2.2
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Assume these Haar functions are φs+1, φs+2, . . ., φs+2α. Each of them has

maximal absolute value 2n+α. It’s obvious, that

p1 =
2α∑
i=1

γφs+i
2n+α

is equal to γ on one half of ∆ and is equal to −γ on other half. Consider the

function

P =
γ

2n+α

(
s∑

i=A

φi
Ms − 1

+
2α∑
i=1

φs+i

)
= p2 + p1. (2.5)

Let’s estimate p2. Since φi = ht for some positive integer t, where i < t < 2i,

and ht has maximal absolute value between t and 2t, we can state, that

‖φi‖∞ ≤ 4i,

therefore

‖p2‖∞ ≤
γ

2n+α

s∑
i=A

‖φi‖∞
Ms − 1

≤ 2γs2

2n+α(Ms − 1)
≤ γ2−α.

Since α can be chosen arbitrary big, we may guarantee, that ‖p2‖∞ is as

small as we want. We conclude, that P = p1 + p2 is mainly focused on interval

∆ and satisfies to the requirements ii) and iii) of current lemma. Note, that in

above inequality we estimated also the partial sum’s absolute value, but with

j index taking all values. Note, that in the sum by j all coefficients are equal

and since the Haar system is monotone basis, then the estimation holds also

for all partial sums.

Now, let’s investigate the coefficients of (2.5). By putting formulas for φi

into (2.5) we get

P =
s∑

i=A

Mi∑
j=0

γ

(Ms − 1)2n+α(Mi + 1)
f(i,j) +

2α∑
i=1

Mi∑
j=0

γf(s+i,j)

2n+α(Ms+i + 1)
. (2.6)
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The sequence of coefficients in each sum is decreasing, sinceMi is increasing

sequence. It remains to compare the last coefficient in the first sum and the

first coefficient in the second sum. Their division is equal

γ

(Ms − 1)2n+α(Ms + 1)
:

γ

2n+α(Ms+1 + 1)
>
Ms+1

M 2
s

= 1.

Lemma 14. Let the dyadic interval ∆ =
(
k−1
2n ,

k
2n

)
, real numbers 0 < ε <

1, γ 6= 0, δ0 > 0, δ1 > 0, and positive integer A are given such, that ∆∩(0, ε) =

∅.

Then there exists a polynomial

P =
B∑
i=A

Mi∑
j=0

c(i,j)f(i,j) (2.7)

such that

i) the sequence {c(i,j)} is positive and monotonically decreasing, also all of

them are less than δ0,

ii) µ
(
∆ ∩ {| P − γ |< δ1}

)
> (1− ε)µ∆µ,

iii) ‖P‖L∞([0,1]\∆) < δ1.

iv) Partial sums of (2.4) are increasing on [ε, 1] by L1 norm,

Proof Let’s apply Lemma 13 with the parameters given in this lemma. Then

we get a polynomial

P0 =

A1∑
i=A

Mi∑
j=0

c(i,j)f(i,j), (2.8)

for which

i) the sequence {c(i,j)} is positive and monotonically decreasing, also all of

them are less than δ0,
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ii) µ
(
∆ ∩ {| P0 − γ |< δ1

2 }
)

= µ
(
∆ ∩ {| P + γ |< δ1

2 }
)

= µ(∆)
2 ,

iii) ‖P0‖L∞([0,1]\∆) <
δ1
2 .

iv) Partial sums of (2.4) are increasing on [ε, 1] by L1 norm,

Now let’s consider the set {∆∩ {| P + γ |< δ1}. It has the half measure of

∆ and is a finite union of dyadic intervals (their number is 2α, where α is the

parameter used in the proof of previous Lemma). Let’s denote these intervals

by ∆1, ∆2, . . ., ∆2α. Now let’s apply Lemma 13 with the following parameters

2γ as value of γ, the smallest non-zero coefficient of P0 as δ0, δ14 as δ1, δ24 as δ2

and A1 + 1 as A. Then we get a polynomial

P1 =

A2∑
i=A1+1

Mi∑
j=0

c(i,j)f(i,j), (2.9)

for which

i) the sequence {c(i,j)} is positive and monotonically decreasing, also all of

them are less than δ0,

ii) µ
(
∆1 ∩ {| P1 − 2γ |< δ1

22}
)

= µ
(
∆1 ∩ {| P1 + 2γ |< δ1

22}
)

= µ(∆1)
2 ,

iii) ‖P1‖L∞([0,1]\∆1) <
δ1
22 .

iv) Partial sums of (2.4) are increasing on [ε, 1] by L1 norm,

Then we apply Lemma 13 for ∆2 by choosing the smallest non-zero coeffi-

cient of P1 as δ0, 2γ as γ, δ123 as δ1, and A2 + 1 as A. Then we get a polynomial

P2 =

A3∑
i=A2+1

Mi∑
j=0

c(i,j)f(i,j),

for which
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i) the sequence {c(i,j)} is positive and monotonically decreasing, also all of

them are less than δ0,

ii) µ
(
∆2 ∩ {| P2 − 2γ |< δ1

23}
)

= µ
(
∆2 ∩ {| P2 + 2γ |< δ1

23}
)

= µ(∆2)
2 ,

iii) ‖P2‖L∞([0,1]\∆2) <
δ1
23 .

iv) Partial sums of (2.4) are increasing on [ε, 1] by L1 norm,

Inductively, let’s apply Lemma 13 for ∆i by choosing the smallest non-zero

coefficient of Pi−1 as δ0, 2γ as γ, δ1
2i+1 as δ1 and Ai + 1 as A. Then we get a

polynomial

Pi =

Ai+1∑
i=Ai+1

Mi∑
j=0

c(i,j)f(i,j),

for which

i) the sequence {c(i,j)} is positive and monotonically decreasing, also all of

them are less than δ0,

ii) µ
(
∆i ∩ {| Pi − γi |< δ1

2i+1}
)

= µ
(
∆i ∩ {| Pi + 2γ |< δ1

2i+1}
)

= µ(∆i)
2 ,

iii) ‖Pi‖L∞([0,1]\∆i) <
δ1

2i+1 .

iv) Partial sums of (2.4) are increasing on [ε, 1] by L1 norm,

Now, denote

∆̃ = ∆1 ∪∆2 ∪ . . . ∪∆2α,

and

P̃ = P0 + P1 + . . .+ P2α.

Note, that P̃ is ’close’ to γ on half part of ∆̃ and is ’close’ to −3γ on other half

part of ∆̃. Also P̃ is ’close’ to γ on the set ∆ \ ∆̃.
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Now, let’s consider the half part of ∆̃ where P̃ is close to -3γ (denote this set

∆. This set is finite union of dyadic intervals. For each such a dyadic interval

apply lemma 13 with 4γ as γ. The choice of A, δ0 and δ1 is done as above. So

we get a set of functions, such, that their sum is ’close’ to 4γ on half part side

of ∆ and −4γ on other half part. Outside of ∆ their sums is ’close’ to 0. By

doing this process in total ν times we get a sequence of functions. Denote by P

their sum. According to the construction this function has all properties, that

are required in the Lemma. Just we need to ensure, that 2−ν < ε.

Lemma 15. Let the function

Q =

γi on ∆i

0 otherwise

and 0 < ε < 1 are given, where {∆i}ni=1 is a set of disjoint dyadic intervals,

such that Q = 0 on [0, ε]. Then for every real numbers δ0 > 0, δ1 > 0, and

positive integer A there exists a polynomial

P =
B∑
i=A

Mi∑
j=0

c(i,j)f(i,j) (2.10)

and a set E ⊂ [0, 1] with µ(E) > 1− ε, such that

i) the sequence {c(i,j)} is positive and monotonically decreasing, also all of

them are less than δ0,

ii) {| P −Q |> δ1}
⋂
E = ∅,

iii) ‖P‖L∞([0,1]\
⋃
i ∆i) < δ1.

iv) Partial sums of (2.10) are increasing on [ε, 1] by L1 norm.

Proof By applying the Lemma 14 for the function which is equal to γ1 on ∆1

and is equal to 0 outside of it we get a polynomial P1 of the form
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P1 =

A1∑
i=A

Mi∑
j=0

c(i,j)f(i,j)

which satisfies to the conditions

i) the sequence {c(i,j)} is positive and monotonically decreasing, also all of

them are less than δ0,

ii) µ
(
∆1 ∩ {| P1 − γ1 |< δ1

2 }
)
> (1− ε)µ(∆1),

iii) ‖P‖L∞([0,1]\∆1) <
δ1
2 ,

iv) partial sums of are increasing on [ε, 1] by L1 norm,

Denote

E1 = ∆1 \ {t ∈ ∆1 : | P (t)− γ1 |>
δ1

2
}.

From the above estimation follows, that µ(E1) ≤ εµ(∆1).

Denote by δ̃1 the smallest non-zero coefficient in the expansion of P1. Then,

by applying the Lemma 14 for the function which is equal to γ2 on ∆2 and is

equal to 0 outside of it we get a polynomial P2 of the form

P2 =

A2∑
i=A1+1

Mi∑
j=0

c(i,j)f(i,j)

which satisfies to the conditions

i) the sequence {c(i,j)} is positive and monotonically decreasing, also all of

them are less than δ̃1,

ii) µ
(
∆2 ∩ {| P2 − γ2 |< δ1

22}
)
> (1− ε)µ(∆2),

iii) ‖P2‖L∞([0,1]\∆2) <
δ1
22 ,

iv) partial sums of are increasing on [ε, 1] by L1 norm,
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Denote

E2 = ∆2 \ {t ∈ ∆2 : | P (t)− γ2 |>
δ2

2
}.

By iterating, after i-th step (2 ≤ i ≤ n − 1) denote by δ̃i the smallest

non-zero coefficient in the expansion of Pi. Then, by applying the Lemma 14

for the function which is equal to γi+1 on ∆i+1 and is equal to 0 outside of it

we get a polynomial Pi+1 of the form

Pi+1 =

Ai+1∑
i=Ai+1

Mi∑
j=0

c(i,j)f(i,j)

which satisfies to the conditions

i) the sequence {c(i,j)} is positive and monotonically decreasing, also all of

them are less than δ̃i,

ii) µ
(
∆i+1 ∩ {| Pi+1 − γi+1 |< δ1

2i+1}
)
> (1− ε)µ(∆i+1),

iii) ‖Pi+1‖L∞([0,1]\∆2) <
δ1

2i+1 ,

iv) partial sums of are increasing on [ε, 1] by L1 norm,

Denote

Ei+1 = ∆i+1 \ {t ∈ ∆i+1 : | P (t)− γi+1 |>
δ1

2
}.

Finally, denote

P =
n∑
i=1

Pi

and

E = [0, 1] \

(⋃
i

∆i \ Ei

)
.

It is obvious that the sequence {c(i,j)} is positive and monotonically de-

creasing, also all of them are less than δ̃i. Also we have

µ(E) = 1−
n∑
i=1

µ(∆i \ Ei) ≥ 1− ε
n∑
i=1

µ(∆i) ≥ 1− ε.
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Now let’s estimate | P −Q |. For t ∈ ∆i \ Ei, 1 ≤ i ≤ n we have

| P (t)−Q(t) |≤
n∑

j=1,j 6=i

‖Pi‖L∞(∆i)+ | Pi(t)−Q(t) |≤

n∑
j=1,j 6=i

δ1

2i
+
δ1

2i
< δ1.

And for t /∈
⋃
i ∆i we have P (t) = 0.

Proof of the Theorem. Let Q is the set of all functions that are step-

by-step constant, all values are rational, constant intervals are dyadic and the

number of constant intervals is finite. Consider the set Q × N+. Order it in

some way. For any (qn, An) ∈ Q×N+ there exists a polynomial pn with respect

to {f(i,j)} such that

pn =
B∑

i=An

Mi∑
j=0

c(i,j)f(i,j),

and a set En, En ⊂ [0, 1] with µ(En) > 1− ε2−n is such that

i) the sequence {c(i,j)} is positive and monotonically decreasing, also all of

them are less than the smallest non-zero coefficient of pn−1,

ii) µ
(
| qn − pn |< ε

2n+1}
)
> 1− ε2−n,

iii) partial sums of are increasing on [ε, 1] by L1 norm.

Finally denote

E =
⋂
n

En.

Note that

µ(E) = 1− µ
(⋃

n

([0, 1] \ En)
)
> 1−

∑
n

ε2−n = 1− ε.
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Now we prove that the set E satisfies to the requirements of the Theorem.

Let f0 ∈ L1(0, 1) is given. Choose small enough δ and choose a function q̃1 ∈ Q

such that

‖f0 − q̃1‖ <
δ

2
.

Then, consider the function g1 which is defined from the condition g1 = pk1
,

where (qk1
, 1) = (q̃1, 1). According to the construction we have

g1 =

B1∑
i=1

Mi∑
j=0

c(i,j)f(i,j)

where c(i,j) is decreasing, partial sums are increasing as well as

µ(|g1 − q̃1| >
δ

2
)
⋂

E = ∅.

Then we have

‖f0 − g1‖L1(E) ≤ ‖f0 − q̃1‖+ ‖g1 − q̃1‖L∞(E) ≤ δ.

Now, denote f1 = f0 − g1. Choose a function q̃2 ∈ Q such that

‖f1 − q̃2‖ <
δ

22
.

Let’s chose g2 which is defined from the condition g2 = pk2
, where (qk2

, B1 +

1) = (q̃2, B1 + 1). According to the construction we have

g2 =

B2∑
i=B1+1

Mi∑
j=0

c(i,j)f(i,j)

where c(i,j) is decreasing and all of them are smaller than the smallest non-zero

coefficient of g1, partial sums are increasing as well as

µ(|g2 − q̃2| >
δ

22
)
⋂

E = ∅.

Then we have

‖f1 − g2‖L1(E) ≤ ‖f1 − q̃2‖+ ‖g2 − q̃2‖L∞(E) ≤
δ

2
.
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By continuing this process infinitely many times we get a series g1+g2+. . . which

converges to f0 on E. Also the series is convergent itself, since its monotonic

and bounded by 2‖f0‖.
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CONCLUSION

The main results of the current thesis are:

1. The quasi-greedy constant of the quasi-greedy subsystems of the Haar

system in L1[0, 1] is estimated. The previously known exponential G <

2H estimate has been improved linearly:

H

16
≤ G ≤ 2(H + 1).

2. The democratic constant of the democratic subsystems of the multi-

dimensional Haar system in L1[0, 1]d is also estimated. The previously

known exponential D < 2Hd estimate has been improved linearly:

D < 2d(2d − 1)(H + 1).

3. There exists a basis such that for any function f ∈ L1[0, 1], after modify-

ing it on a set of a small measure, its expansion coefficients with respect

to that basis form a monotonically decreasing sequence.
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