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GENERAL DESCRIPTION OF THE WORK

Relevance of topic. The prediction of nontrivial properties of the vacuum state is among
the most interesting results in quantum field theory. The vacuum is defined as a state of a
quantized field with zero number of quanta. By taking into account that the field operator
does not commute with the operator of the number of quanta, from here it follows that in
the vacuum state the field is subject to quantum fluctuations. The properties of the vacuum
state are manifested in its response under external influences, such as external electromagnetic
and gravitational fields. In addition, for a large number of physical problems one needs
to consider a quantum field in backgrounds having boundaries. The boundaries may have
various physical nature: surfaces of conductors and dielectrics in quantum electrodynamics,
the surfaces separating two different phases, domain walls, different types of horizons in
gravitational physics, branes in string theory and in braneworld scenarios. The presence of
boundaries gives rise to the modification of the spectrum for vacuum fluctuations of quantum
fields. As a consequence of that the vacuum expectation values of physical observables are
shifted by an amount depending on the geometry of boundaries and on boundary conditions
imposed on the field operator. This effect is referred as the Casimir effect. It has been
investigated for a large number of boundary geometries [1,2] and has been confirmed by high-
precision experiments.

A similar effect, referred as topological Casimir effect, arises when the boundary conditions
originate from the nontrivial spatial topology. A number of fundamental theories are formulated
in backgrounds with nontrivial topology (Kaluza-Klein theories, supergravity, string theories)
and it is of interest to investigate the properties of the vacuum state for the corresponding
geometries. For example, the string theories are formulated in background of (1+9)-dimensional
spacetimes and it is assumed that the six spatial dimensions are compactified. As a consequence
of that the background geometry has nontrivial topology. The geometries with compact spatial
dimensions may play also an important role in inflationary models of the early expansion of
the Universe [3], by providing proper initial conditions for the start of accelerated expansion.
The physical effects arising as a consequence of compactification of spatial dimensions include
topological mass generation, instabilities in interacting field theories and symmetry breaking.
The topological Casimir effect provides a mechanism for stabilization of moduli fields in models
with extra dimensions. Those fields are related to the lengths of compact dimensions and their
expectation values determine the values of effective physical constants. In order to escape the
variations of the constants, the expectation values should be stabilized. The Casimir energy
related to the nontrivial spatial topology can also play the role of dark energy driving the
accelerated expansion of the universe at recent epoch. The topological issues also play an
important role in effective theories describing a number of condensed matter systems [4,5].

Among the most important directions in the investigation of both the boundary-induced
and topological Casimir effects is the dependence of the properties of the vacuum on the local
geometry of background spacetime. These investigations require the knowledge of complete
set of modes for quantum fields in those geometries, obeying the boundary and periodicity
conditions. These modes can be explicitly found for highly symmetric background spacetimes
only. In particular, the investigation of quantum effects in maximally symmetric spacetimes has
attracted a great deal of attention. This allows to form an idea of the effect of the gravitational
field on various physical processes for more general background geometries. The maximally
symmetric spacetimes are solutions of the Einstein equations with zero (Minkowski spacetime),
positive (de Sitter spacetime) and negative (anti-de Sitter spacetime) cosmological constants.



Because of the high symmetry, a large number of problems in quantum field theory are exactly
solvable on those backgrounds. The corresponding effects in de Sitter (dS) and anti-de Sitter
(AdS) spacetimes include the vacuum polarization and the creation of particles in gravitational
fields. These effects play an important role in the early Universe cosmology, in black hole
physics and in braneworld models with extra dimensions.

The aim of the thesis is to investigate the influence of the gravitational field and nontrivial
spatial topology on the vacuum expectation values of physical observables for scalar, fermionic
and electromagnetic fields. We have considered:

- Mean field squared and the vacuum expectation value of the energy-momentum tensor
for a charged scalar field in dS spacetime with a part of spatial dimensions compactified
to a torus.

- Casimir densities for a charged scalar field induced by a plate with Robin boundary
condition in dS spacetime with compact dimensions.

- Vacuum expectation value of the current density for a charged fermionic field in locally
AdS spacetime with a compact subspace in the presence of a brane and abelian gauge field.

- Boundary-induced quantum effects for the electromagnetic field in AdS spacetime for a
general case of spatial dimension.

Scientific novelty. Closed analytic expressions are derived for the vacuum expectation
values of the scalar field squared and of the energy-momentum tensor in dS spacetime
having compact dimensions for general values of the phases in periodicity conditions. The
expectation values are periodic functions of the magnetic flux enclosed by compact dimensions.
For lengths of compact dimensions smaller than the curvature radius of the background
geometry, the behavior of the vacuum characteristics is essentially different from that for the
locally Minkowski bulk. The influence of planar boundary with Robin boundary condition
is investigated on the vacuum expectation values. It is shown that the effects of gravity
are essential at distances from the boundary larger than the dS curvature radius. As a
consequence of the time-dependence of the background metric, the vacuum energy-momentum
tensor has a nonzero off-diagonal component that describes energy flux along the direction
perpendicular to the boundary. The complete set of modes are obtained for a Dirac spinor
field in AdS spacetime with compact spatial dimensions in the presence of a brane parallel to
the AdS boundary. By using these modes, the vacuum expectation value of the fermionic
current density is investigated. The corresponding results are applied to higher-dimensional
generalizations of the Randall-Sundrum type braneworld models with compact dimensions and
to electronic subsystem in curved graphene tubes, described by the Dirac model in the long-
wavelength approximation. The electromagnetic field vacuum fluctuations are investigated in
AdS spacetime in the presence of a boundary parallel to the AdS horizon. The boundary-
induced contributions in the vacuum energy density and stresses are exponentially suppressed
at distances from the boundary larger than the AdS curvature radius. This is in clear contrast
to the case of the Minkowski bulk where the decay of the Casimir densities, as functions of the
distance, is as power-law.

Practical importance. The Hadamard function for a charged scalar field in the geometry of
a plate in dS spacetime can be applied for the investigation of other characteristics of the vacuum
state, such as the expectation values of the charge and current densities. The mode functions
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for a fermionic field can be used for the investigation of the finite temperature effects on the
current density in AdS spacetime with compact dimensions and also for the evaluation of the
expectation value of the energy-momentum tensor. The results for the fermionic current density
can be applied to other planar condensed matter systems, described in the long-wavelength
approximation by the Dirac model.

Basic results to be defended:

1. Closed expressions are derived for the topological contributions in the vacuum expectation
values of the field squared and energy-momentum tensor for a charged scalar field in dS
spacetime with a part of spatial dimensions compactified on a torus. Depending on values
of the phases in the quasiperiodicity conditions along compact dimensions, the vacuum
energy density and stresses can be either negative or positive.

2. The boundary-induced parts in the mean field squared and in the vacuum expectation
value of the energy-momentum tensor are explicitly extracted in the geometry of
planar boundary in dS spacetime with compact dimensions. These parts dominate near
the boundary and in that region the effects of gravity are weak. The influence of
the gravitational field is essential at distances from the boundary larger than the dS
curvature scale. The vacuum energy-momentum tensor has an off-diagonal component
that corresponds to energy flux normal to the boundary.

3. The fermionic modes are found in locally AdS spacetime with compact dimensions in
the presence of a brane parallel to the AdS boundary and of a constant gauge field.
By using these modes, the effects of a brane on the fermionic current density are
investigated. The direction of the current density depends on the magnetic flux enclosed
by compact dimensions. Near the AdS horizon the total current is dominated by the part
corresponding to the geometry in the absence of the brane. The current density vanishes
on the AdS boundary and is finite on the brane. Applications are given to Z,-symmetric
braneworld models. Two types of boundary conditions for fermionic fields on the brane,
imposed by the Z,-symmetry, are specified. The results for a three-dimensional spacetime
are applied for the investigation of the edge effects on the ground state current density
induced in curved graphene tubes.

4. The effects of gravity and a planar boundary on the local properties of the electromagnetic
vacuum are investigated in AdS spacetime with an arbitrary number of spatial dimensions.
The boundary-induced contribution in the vacuum expectation value of the energy-
momentum tensor is separated. In spatial dimensions larger than three, at large
distances from the boundary these contributions, as functions of the proper distance,
are exponentially small.

Approbation of the work. The results of the thesis were reported at the conferences
"Modern Physics of Compact Stars and Relativistic Gravity" (Yerevan, 2015), "The XXIII
International Scientific Conference of Young Scientists and Specialists 2019" (Dubna, Russia,
2019) and have been discussed at the seminars of the Chair of Theoretical Physics of Yerevan
State University and of the INFN National Laboratory of Frascati (Frascati, Italy).

Publications. Six papers are published on the topic of the thesis.

Structure of the thesis. The thesis consists of Introduction, four Chapters, Conclusion and
the list of references. It contains 125 pages, including 19 figures.



CONTENT OF THE THESIS

In Introduction the scientific literature related to the topic of the thesis is reviewed, the
relevance of the topic is argued, the aim of the work, the scientific novelty and the practical
value are presented, the basic results to be defended are described.

In Chapter 1 the vacuum polarization for a charged scalar field is investigated in locally
dS spacetime with toroidally compactified spatial dimensions. The background geometry is
described by the line element

D
ds? = dt? — */e Z(dwl)Z. (1)
=1

For the coordinates x, = (2%, ..., z7), as usual, we take —o0o < 2! < o0, I = 1,...,p, whereas

the remaining coordinates x, = (2P*!,...,2P), with ¢ = D — p, are compactified to a torus
T9 = (S1)? with the lengths of the compact dimensions L;: 0 < 2! < L, l = p+1,...,D.
Hence, for the spatial topology one has R? x T9. In terms of the conformal time 7 = —ae~*/*,
—o0 < 7 < 0, the line element (1) is written in a conformally-flat form. The corresponding field
equation reads

(D.D" +m® + &R) p(z) = 0, (2)

where R = D(D+1)/a?is the Ricci scalar of the background spacetime. We assume the presence
of a classical abelian gauge field A, and the gauge extended covariant derivative operator is given
by D, = V,+ieA,, with e being the charge of the field quanta. The topology is nontrivial and it
is required to specify the periodicity conditions for the field operator along compact dimensions.
We consider generic quasiperiodic boundary conditions with general phases oy, [ = p+1, ..., D:

Sp(t7 Xp, Xq + Llel) = eial@(tv Xps Xq)7 (3)

where e; is the unit vector along the dimension z!. For the gauge field we will assume that

A, = const. Though the corresponding field tensor vanishes, the nontrivial topology of the
background spacetime gives rise to the Aharonov-Bohm type effect on the expectation values
of physical observables. The shift in the phases due to the gauge field may be presented as
eA L, = =27 ®; /Py, where &, is the flux enclosed by the circle corresponding to the /th compact
dimension and ®, = 27 /e is the flux quantum.

In Section 1.2 the vacuum expectation value of the field squared is evaluated assuming that
the field is in the Bunch-Davies vacuum state. The mean field squared is presented in the form
(oM pq = (peNas + (pet)., where (pp')4s is the expectation value in the uncompactified
dS spacetime and (p¢'). is induced by the comactification to a torus. The divergences in the
coincidence limit are contained in the part (') 45 and the renormalization is required for that
part only. The topological part (pp'),. is an even periodic function of the magnetic fluxes @,
with the period equal to the flux quantum. It depends on the phases «; and on A; in the form of
the combination &; = oy +eA;L;, | = p+1, ..., D. In the model with a single compact dimension
2P (¢ =1, p = D — 1) the expression for the topological part is simplified to

4at=Ppb oo = cos(nap)

Ty —

(pp")e = m/{) dz 2g,(nz) ; WfD/Q—l(nLDz)a (4)
where n = |7|, v = [D?/4 — D(D + 1)¢ — m2a2]1/2, g(z) = K, (z)[I_,(z) + I,(z)] and f,(x) =
'K, (x), with I, (z) and K, (z) being the modified Bessel functions. For a conformally coupled
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scalar field, ¢ = ¢ = (D — 1)/(4D), the problem on dS bulk is conformally related to the
problem on the locally Minkowski bulk with spatial topology R? x 7. The result could be

obtained from the corresponding result in the Minkowski bulk (denoted here by AT@Q)% )) by

using the standard relation A, (p2),, = (n/a)?~*A(p2)$"). The topological contribution in
the vacuum expectation value depends on n and L;, i = p + 1, ...D, through the ratio L;/n. By
taking into account that, for a fixed » the quantity L,; = aL;/n is the proper length of the ith
compact dimension, we see that the ratio L;/n is the proper length of the compact dimension
measured in units of the dS curvature scale.

In Section 1.3 the vacuum expectation value of the energy-momentum tensor is investigated.
Similar to the case of the field squared, it is decomposed as (T}*),, = (T¥)as + (TF)., where
(TF)4s is the vacuum energy-momentum tensor in uncompactified dS spacetime and (TF). is
induced by the comactification to a torus. From the maximal symmetry of the Bunch-Davies
vacuum state it follows that (T¥)4s = const - §F. The off-diagonal elements of the topological
part (TF). vanish. In the problem with a single compact dimension x” the diagonal components
are presented as (no summation over )

40(7171) D

<Tzi>c = WD/QZI /0°° dz ZQV(TZZ) ; %Pm(n[@z), (5)

where the functions P)(z) are linear combinations of the functions fp—1(z) and fp/s(z)
with coefficients depending on z. In the Minkowski bulk the stresses along uncompactified
dimensions are equal to the energy density. This property is a consequence of the invariance
with respect to the Lorentz boosts along uncompact dimensions. For the dS bulk, the topological
contributions to the stresses along uncompact dimensions, in general, do not coincide with the
energy density.

In the left panel of figure 1, for the fixed value L/n = 1, we have plotted the topological
contributions (T}),. to the vacuum expectation values versus ap = & for the D = 4 model with
a single compact dimension. The numbers near the curves correspond to the value of the index
i. For L/n = 1 the graph for the stress (T7). is close to the curve for the energy density (this is
not the case for larger values of L /n) and we have not presented it. The full and dashed curves
correspond to ma = 0.5 and ma = 2, respectively. In particular, from the graphs we see
that the sign of the topological contribution to the vacuum energy density can be controlled by
tuning the magnetic flux enclosed by the compact dimension. In the right panel of figure 1 the
dependence of the topological contribution to the energy density on L/ (proper length of the
compact dimension measured in units of «) is displayed for the same model. The numbers near
the graphs correspond to the value of ma. For the full and dashed curves one has @ = 0.27 and
& = 0.97, respectively. For ma = 2 the parameter v is purely imaginary and the oscillatory
decay of the vacuum expectation value for large values of /7 seen in accordance with the
asymptotic analysis given above. In the limit L/n — 0 the vacuum expectation values behave
like 1/(L/n)P*.

If the proper length of the compact dimension is much smaller than the dS curvature
scale, the effects induced by gravity are small and the vacuum densities are related to the
corresponding ones for a massless field in Minkowski spacetime with compact dimensions by the
standard conformal relation. For a fixed values of the lengths of compact dimensions, this limit
corresponds to the early stages of the cosmological expansion (¢ — —o0), and the topological
Casimir densities behave as e~(P+Vt/«_ The effect of gravity on the vacuum expectation values
is essential for proper lengths of the compact dimensions larger than the dS curvature radius. In
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Figure 1: The topological parts in the vacuum energy-momentum tensor versus the phase & (left
panel) and the topological parts in the vacuum energy density as a function of the ratio L/n
(right panel) for the D = 4 model with a single compact dimension.

this limit and for positive values of the parameter v, the topological parts ate suppressed by the
factor e~(P=2")t/« Hence, in this limit the total vacuum expectation value is dominated by the
uncompactified dS parts. For purely imaginary v, the damping of the topological contributions
is oscillatory with the amplitude decaying as e~P*/<. For fixed values of the lengths L;, the limit
under consideration corresponds to the late stages of cosomological expansion, ¢t — +occ.

In Chapter 2 the influence of a planar boundary is investigated on the local properties of
the vacuum state for a charged scalar field in locally dS spacetime with compact dimensions.
Here the background geometry and the field equation are the same as that we have considered
in the Chapter 1. The presence of a planar boundary at 2 = 0 is assumed on which the field
obeys the Robin boundary condition

(14+8Dp)e =0, =0, (6)

with a constant coefficient 5. The properties of the vacuum state are encoded in two-point
functions. As such the Hadamard function is taken. The latter can be split into two parts:

GO (z,7) = GV (z,2') + GV (z,2'), where G\ (z, 2') is the Hadamard function for locally dS
spacetime with compact dimensions when the boundary at 2 = 0 is absent and G,(,l)(a:, x') is

induced by the boundary at 27 = 0. The boundary-induced contribution in the Hadamard
function is presented in the form

D/2
1) (7777 ) ikp_ 1A% kg Ax u(zP+aP) ﬁu +1
G, (z,2') = 2p7TpVaD T /dkp_ e 18%e- 12 a q/ due—"@"+ m

X LK, (my)I-(n'y) + L(n'y)] + [I_V(ny) + LK, (1Y)} ez, (7)

where k =, /k2 | + k2.

In Section 2.2 the vacuum expectation value of the field squared is investigated. Similar to
the Hadamard function, the mean field squared is decomposed as (pp ™) = (™) + (L™,
where (pp™), is the vacuum expectation value in the dS spacetime with compact dimensions
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without boundaries, and (p¢™), is induced by the boundary at ¥ = 0. The latter one is
presented in the form

ol—p—(p+1)/2 o0
. p 2 2 P\j(0)
(0= T T 2, G R ), ®)

where A\ (nz) = 7P [\ dz 2(1 — 22)®=3)/2g, (nzz). For a conformally coupled massless scalar
field the problem under consideration is conformally related to the corresponding problem in
Minkowski spacetime with compact dimensions. The expression for the vacuum expectation
value of the field squared is further simplified for special cases of Dirichlet and Neumann
boundary conditions with the values § = 0 and 5 = oo, respectively. The boundary-induced
part in the vacuum expectation value of the field squared is a function of the ratio «? /5. The
latter is the proper distance from the boundary «z? /n measured in units of the curvature radius
a. It is shown that the influence of the gravitational field on boundary-induced contribution is
weak for points close to the boundary, whereas at proper distances larger than the dS curvature
radius the effect of gravity is crucial.

In Section 2.3, a decomposition for the expectation value of the energy-momentum tensor
is provided, (Tix) = (Tu)o + (Tir)s, and explicit expressions for the boundary-induced
contributions are given. The expectation values (7F), are even periodic functions of the
magnetic fluxes enclosed by compact dimensions with the period equal to the flux quantum.
They depend on L;, 8, z? and 7 through the dimensionless ratios L;/n, /1, «” /n, where L;/n is
the proper length of the compact dimension in units of the dS curvature scale « and 27 /7 is the
proper distance from the plate in the same units. Compared to the problem with the absence of
the plate, an important difference is the appearance of the off-diagonal component

(v ;ﬁ)‘ﬂz / dza? [ + k3, f( x2+kﬁq,xp)[(f—i) n&,+§] h{ (nz), (9)

[t is induced by the plate and corresponds to an energy flux along the direction perpendicular to
the plate. For a conformally coupled massless field the energy flux vanishes. This result could
also be directly obtained on the base of that for a conformally coupled field the problem in
locally dS spacetime is conformally related to the corresponding problem in locally Minkowskian
spacetime and in the latter problem the energy flux is zero. Depending on the values of the
parameters, the flux can be either positive or negative, corresponding to the flux direction
from or to the boundary, respectively. In the early stages of the cosmological expansion,
corresponding to large values of the parameter 7, the flux density (77) behaves as (n/a)P.
At late stages of the expansion the parameter 7 is small and the behavior of the flux density
is essentially different for positive and imaginary values of v. In the first case, corresponding
to relatively small values of ma (the mass of the field quanta measured in units of the inverse
curvature scale 1/«), the flux density decays monotonically, like (n/a)?*'=2, n — 0. For
purely imaginary v, the decay is oscillatory.

In Chapter 3, the properties of the vacuum state for a charged fermionic field ¢ (z) are
investigated in locally AdS spacetime with an arbitrary number of toroidally compactified spatial
dimensions. The line element is given by

ds? = e/ daida® — dy? = (a/z)? (nirda'da® — d2*), z = ae?’®, (10)
where i,k =0,1,...,D — 1, —o0 < y < 400, 0 < z < o0, and n;; is the Minkowskian metric
tensor in D-dimensional subspace. The subspace (z',...,2P~!) has the topology R x T,
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Figure 2: The energy flux density versus the distance from the brane (left panel), and as a
function of the phase in the periodicity condition along compact dimension (right panel) for a
conformally coupled scalar field with Dirichlet boundary condition.

q = D — p — 1, with the lengths of compact dimensions L;, i = p+1,...,D — 1. Along those
dimensions the field obeys quasiperiodicity conditions with phases «;, similar to (3). The second
sort of boundary condition is imposed by the presence of a brane parallel to the AdS boundary
and located at y = yo. We consider the bag boundary condition (1 + iy#n,)y(z) = 0, with n,
being the corresponding normal, that is the most popular condition used for the confinement
of fermions in a variety of situations. In addition to the background gravitational field, we
also assume the presence of a constant abelian gauge field A,. Yet another kind of boundary
condition should be imposed on normalizable irregular modes at the timelike boundary of
the AdS spacetime corresponding to z = 0. We consider a special case of allowed boundary
conditions corresponding to the bag boundary condition on a hypersurface close to the AdS
boundary with the subsequent limiting transition to the AdS boundary.

Because of the global nature of the vacuum in quantum field theory, the expectation values
of local physical observables are sensitive to the boundary conditions on the field. Assuch a local
observable we consider the fermionic current density j* = eiy*¢. The vacuum expectation
values for the charge density and for the components of the current along uncomapct dimensions
vanish: (j#) =0 for u=0,1,...,p. The brane divides the space into two regions with different
properties of the vacuum and we consider the vacuum expectation values for the components of
the current along compact dimensions in these regions separately. Complete sets of solutions of
the Dirac equation in both these regions are found. The dependence of the modes on the radial
coordinate y is expressed in terms of the cylinder functions Z,,,+1/2(Az), where m is the field
mass. The vacuum expectation value of the current density is decomposed as (j!) = (j')o+ (5')s,
where (j'), is the current density in the geometry without the brane and (;'), is induced by the
brane. The contribution (j'), was investigated in [6] and we are mainly concerned about that
part (j')s.

In the region between the brane and AdS boundary, 0 < z < z, z = ae*/?, the eigenvalues
of the quantum number X are roots of the equation J,,,_1/2(A2) = 0. In order to extract the
contribution induced by the brane, we apply to the series over these eigenvalues in the mode-
sum for the current density the Abel-Plana type summation formula. For the component along
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the /th compact dimension this contribution is given by

NeA,zP*2 p=1 Koo
(1) = — b Zkz/ duw (u? — k) * Kina12(uz0) 2 (uz)—[iw_%(uz)],

V GDJFI kg [ma—l/Z(UZO) ma+3
(11)
where N = 2[(P+1)/2] k:(2q) =yt ~or1 kg = (np4a,.. ., np1), and
4 —(p+1)/2 2 ; ~i
APZL L e R T S (12)

I'((p+1)/2)

It is an odd periodic function of &; and an even periodic function of the remaining phases a;,
i # 1, with the period equal to 27. For a massless field the result on the locally AdS bulk
is conformally related to the corresponding result on a locally Minkowski bulk in the region
between two parallel planar boundaries. The latter are conformal images of the AdS boundary
and of the brane. For a massive field, we have also checked the limiting transition to the
corresponding result in the problem with a single boundary on a locally Minkowski spacetime,
considered in [7]. On the AdS boundary, both the brane-free and brane-induced contributions
to the current density tend to zero as zP*?me+1, An important feature that distinguishes the
vacuum expectation value of the current density from the vacuum expectation value of the
energy-momentum tensor is the finiteness of the former on the brane. For the investigation of
the near-brane asymptotic we have provided an alternative representation. For z > L, and
at distances from the brane corresponding to z; — z > L;, the brane-induced contribution

(0)
behaves as (j'), o zPe 070 / (29 — 2) P2 with k0 = Y71 G2/L2, |Gi| < 7, and it
is mainly localized near the brane in the region 2, — z < L;. For a fixed observation point,

when the brane is close to the AdS horizon, the brane-induced current density is suppressed

L;

by the factor ¢ 0™, If the length of the /th compact dimension is much smaller than the
lengths of the remaining dimensions, the leading term in the expansion of the component (;'),
coincides with the current density in the model with a single compact dimension 2! when the
remaining compact dimensions are decompactified. If, in addition, one has ; < z, — z, then the
brane-induced current density decays like e~2(z0—=2)l%l/Li_ This feature is seen in figure 3. In the
opposite limit of large values for L;, the brane-induced current density along the corresponding

_ (02 — &2/ L2

. . . 0)2 0)2
dimension is suppressed by the factor exp[—L;/A\3/22 + k92 1, where £ @

(¢=1)> (g—1)

and X = ) is the smallest positive root of the equation J,,q—1/2(A2) = 0.
In the region between the brane and the AdS horizon, z, < z < oo, the eigenvalues for A
are continuous. The expression for the brane-induced contribution to the vacuum expectation

value of the current density in this region is given by

NeA,zP+? p=1 ], (uzp)

1 2 2 5 ma+1/2 0 2 2

<] >b = VaD+1 E kl/k duu — k(q)) m Kma+ ( Z) - Kma—%(UZ) .
@ ma

(13)
For a massless field, the problem is conformally related to the corresponding problem on a locally
Minkowskian spacetime with a single boundary and the brane-induced contribution vanishes
in the R-region. In the case of a massive field and at large distances from the brane (z > z, L;,
points near the AdS horizon), that contribution is suppressed by the factor ™20 . In this
region the total current density is dominated by the brane-free part. For a fixed observation
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Figure 3: The brane-induced charge flux along the compact dimension, a” nl(l) (7", as a function

of the rescaled length L/z, for separate values of the phase & = 27/3 (a), @ = 7/2 (b), & = 7/3
(c). For the mass we have taken ma = 2 and z/z, = 0.95.

point, when the brane location tends to the AdS boundary, z, — 0, the brane-induced current
density tends to zero as z3™*"'. If the length L, is much smaller than the lengths of the
remaining compact dimensions and also L; < z — z, similar to the case of the L-region, the
brane-induced current decays as e~2(:=20)ll/Li " [n the opposite limit of large values for L,
the asymptotic behavior of the current is essentially different depending on the phases in the
periodicity conditions along the remaining compact dimensions. If at least one of the phases
Qi |a;| <, i # 1, is different from zero, the leading term in the asymptotic expansion has an

exponential suppression like e~ k1), n the case &; = 0, the decay of the current density as a
function of L; is power law for both massive and massless fields.

In Z,-symmetric braneworlds of the Randall-Sundrum type the geometry is composed
by two copies of the R-region related by the Z,-symmetry identification. Depending on the
transformation of the field under the Z,-reflection two types of the boundary conditions on
the brane are obtained. The first one corresponds to the bag boundary condition. The current
density in this case coincides with that investigated above with an additional factor 1/2, related
to the presence of two copies of the R-region. For the second boundary condition the expression
for the brane-induced vacuum expectation value of the current density is obtained from (11) by
the replacements / = K of the modified Bessel functions with an additional coefficient 1/2.
Now, in the range of the mass ma < 1/2, the brane-induced current density does not vanish in
the limit when the brane tends to the AdS boundary.

In odd-dimensional spacetimes the mass term for a field realizing the irreducible
representation of the Clifford algebra breaks the invariance with respect two of the C-, P-and 7-
transformations. Models invariant under these transformations are constructed by combining
the fields realizing two inequivalent representations of the Clifford algebra. We have shown
that, if the phases in the quasiperiodicity conditions are the same for these fields, they give
the same contribution to the total current density in this kind of models. From the point of
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view of applications of fermionic models in condensed matter physics, an important special
case corresponds to three-dimensional spacetime (D = 2). An example of physical realization
of those models is graphene. The background topology in this model is nontrivial for carbon
nanotubes and nanoloops (cylindrical and toroidal topologies, respectively). The phase for the
fermionic field along compact dimension of the nanotube depends on the chirality of the tube.
For deformed tubes with z-dependent radius, the resulting current is obtained from general
formulas taking D = 2 and ap = 0 for metallic tubes and ap = +27/3 for semiconducting
tubes, respectively. For semiconducting tubes, the upper and lower signs stand for the spinors
corresponding to the points K, and K _ of the graphene Brillouin zone. As a consequence of the
cancellation of the contributions from these spinors, the total current vanishes in the absence
of the magnetic flux ¢ threading the tube.

In Chapter 4 the influence of a plate parallel to the AdS boundary on the properties of the
electromagnetic field is studied. The corresponding line element has the form (10) and the plate is
located at z = 2. On it the field obeys the boundary condition n*F};, , =0, where n* is the
normal vector to the plate, F;, |, isthe dual of the field tensor F,, = 9,4, (r)—0,A,(z). For
D = 3 this corresponds to the perfectly conducting boundary condition. The complete sets of
the electromagnetic field mode functions are found in both the regions 0 < z < zpand 2z, < z <
oo. In theregion 0 < z < 2, the eigenvalues of the radial quantum number ) are solutions of the
equation Jp/>_1(Az) = 0. The two-point functions for the vector potential, (A4, (x)A,(z)), and
for the field tensor, (F,,(x)F,,(x)), are decomposed into the boundary-free (the plate is absent)
and plate-induced contributions. On the base of that, a similar decomposition is obtained for
the vacuum expectation value of the energy-momentum tensor: (7*) = (T})o + (T}*),. For
points outside the plate the renormalization is required for the boundary-free part (7*), only.
Because of the maximal symmetry of the background geometry, the latter is proportional to
the metric tensor, (T*)y = const - §.

The boundary-induced contribution (7*), is diagonal and the corresponding components in
the region zy < z < oo are given by the expression (no summation over )

(D= Ipa(@)
e e el A o ST

where GY (u) = vK2_, (u)+ (v — 1) K2(u) for p = 0,1,..., D—1,and G (u) = (v+ 1)[K2(u) —
K7 ,(u)]. The expression for (7%), in the region 0 < 2 < z is obtained from (14) by the
replacements [, = K,. As seen from (14), the vacuum stresses along the directions parallel
to the plate, (T), u = 1,..., D — 1, are equal to the energy density. This result could also be
directly obtained on the base of the Lorentz invariance of the problem with respect to the boosts
along the directions parallel to the plate. In the region z; < z < oo, the boundary-induced
contribution vanishes for D = 3. We could expect this result from the conformal relation to the
corresponding problem in Minkowski bulk with a single plate. In the region 0 < z < z, the
plate-induced contribution does not vanish for D = 3. This is related to the fact that in that
region the problem with D = 3 is conformally related to the problem in the Minkowski bulk
with two plates, where the second one corresponds to the AdS boundary z = 0. For D > 4, we
have (T}), < 0for ! = 0,1, ..., D — 1, in both the regions on the right and on the left of the plate,
whereas (T5), < 0 for zp < 2 < oo and (T5), > 0 for 0 < z < 2.

The boundary-induced vacuum expectation value (14) depends on z and z; in the form of
the ratio z/z, which is related to the proper distance from the plate, y — yo, by z/zy = ev=%)/e,
Hence, for a given proper distance, the vacuum expectation values do not depend on the location
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of the boundary. The latter property is a consequence of the maximal symmetry of the AdS
spacetime. It can be seen that the boundary-induced contributions in the vacuum expectation
value of the energy-momentum tensor obey the continuity equation V,(T7*), = 0 which for the
geometry under consideration takes the form >P+19, (=" (TE),) + D(1?);, = 0.

At distances from the plate larger than the AdS curvature radius one has y — yo > « and,
hence, z/zy > 1. To the leading order, (T), ~ 2(1 — 1/D){TE5), o (2/2)?>P and the plate-
induced parts are suppressed as functions of the proper distance by the factor e~(P=2)/v=vo)/a,
At small distances from the plate, compared with the AdS curvature radius, one has |y —yo| < a
and, hence, |1 — 29/z| < 1. In this case, to the leading order we get (T}, ~ (y — yo)(T3)s/a
and
(D= 1D(D =3)I'(D +1)/2)

2(47T)(D+1)/2|y _ yO|D+1 ’

The leading term for the energy density does not depend on the curvature radius a and coincides
with the corresponding result for the plate in Minkowski spacetime. Hence, in this region the
effect of gravity on the boundary-induced energy density is small.

(T)y ~ —

CONCLUSIONS

1. The influence of compactification of spatial dimensions on vacuum fluctuations for a
charged scalar field in locally dS spacetime is investigated. For lengths of the compact
dimensions smaller than the curvature radius of the space the effect of the gravitational
field on the vacuum expectation values of the field squared and energy-momentum tensor
is weak. In the early stages of the cosmological expansion the topological parts dominate
in the expectation values.

2. Depending on the mass and on the curvature coupling parameter of the field, at late
stages of the expansion the topological contributions in the expectation values decay
monotonically or damping oscillatory. Unlike to the locally Minkowskian background
geometry with compact dimensions, for dS spacetime the vacuum effective pressure
along uncompact dimensions is not equal to the energy density and the vacuum energy-
momentum tensor, as a source of the gravitational field, is not of the cosmological constant

type.

3. The vacuum expectation values of the field squared and energy-momentum tensor
induced by a planar boundary in dS spacetime with compact dimensions are studied.
Near the boundary the main contribution to the expectation values comes from the
vacuum fluctuations with small wavelengths and the influence of the gravitational field
is small. The effect of the gravity on the boundary-induced expectation values in the
energy density and pressures is essential at distances from the boundary larger than the
de Sitter curvature radius. Depending on the values of the parameters the vacuum energy
density can be either positive or negative.

4. In addition to diagonal components of the vacuum energy-momentum tensor, the
presence of a boundary induces an off-diagonal component that describes energy flux
along the normal to the boundary. The flux can be either positive or negative,
corresponding to the flux direction from or to the boundary. For a conformally coupled
massless field the energy flux is absent.
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5. The influence of a brane on the vacuum expectation value of the current density
is investigated for a charged fermionic field in background of locally AdS spacetime
with an arbitrary number of toroidally compact dimensions and in the presence of a
constant gauge field. The vacuum expectation values for the charge density and the
components of the current density along uncompact dimensions vanish. The brane-
induced contributions in the components along compact dimensions are mainly located
near the brane and vanish on the AdS boundary and on the horizon. Applications
are given to Zy-symmetric braneworlds of the Randall-Sundrum type with compact
dimensions for two classes of boundary conditions on the fermionic field. In these models
the vacuum currents along compact dimension are sources of magnetic fields in the
uncompact subspace.

6. In odd spacetime dimensions, the fermionic fields realizing two inequivalent irreducible
representations of the Clifford algebra and having equal phases in the periodicity
conditions give the same contribution to the vacuum current density. Combining the
contributions from these fields, the current density in odd-dimensional C-,P- and T-
symmetric models is obtained. In the special case of three-dimensional spacetime, the
corresponding results are applied for the investigation of the edge effects on the ground
state current density induced in curved graphene tubes by an enclosed magnetic flux.

7. The electromagnetic field two-point functions and the vacuum expectation value of the
energy-momentum tensor are investigated in AdS spacetime in the presence of a plate
parallel to the AdS horizon. For spatial dimension larger than three, the boundary-
induced vacuum energy density is negative and the normal stress corresponds to positive
pressure in the region between the plate and the AdS horizon and the negative pressure
in the region between the plate and the AdS boundary. At distances from the plate
larger than the AdS curvature radius the effect of gravity is crucial and the boundary-
induced contributions are exponentially suppressed. For points near the plate the
contribution of the vacuum fluctuations with the wavelengths much smaller than the AdS
curvature radius dominates and the boundary-induced vacuum expectation values, in the
leading order, coincide with the corresponding vacuum expectation values for a plate in
Minkowski bulk.
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uUeNeush,

Uwnbuwjununipymunid htmwgnunjwo tu pjuunmwihu Julnimdh hwnynipjniuutinp ng-
nphyhwy mnwyninghwyny nti Uhnwntiph m wunh-ntt Uhnntiph mupwénipjniuutinnid,
tpp wnu Gu twb vwhdwuubp: Opubtu Juinmdh jupbnp nuy punipwgpbp, nh-
nwnlywd Gu nuymh punwyniun b Butinghw-hdwnijuh piugnph yuyniniduwyhu dhohuub-
np uqupuwp m fEupudwguhuwuu puymtph hwdwp b hnuwuph fjunnmpjwu Jw-
nintdwghu dhohup thgpwynpywo $ipdhnuwghu nupnh hwdwp: dwlninidwghu dhohuub-
nnid pwgwhwjn Yhpwyny wnwuduwuguwo tu mnyninghwjwuwu n uwhdwuubipny dw-
Juoywd dwutinp b htmwgnunywd £ npwug yuppp wuwpwdtinmptiph wpdtiputinh wmwpptip
uwhdwuwiht mhpnyputipnid: Luuwupyywd Gu jhpwnnmpjniuutipp Ynudninghwju un-
ntyubipnud, ppw wpjuwphubiph dnpbjubipnid b gpudpbiuyht vwunjunnnujubpnud:

1. bnmwgnunywo L mwpwowljuu swhnqujuwunipmuutiph Yndyuyunhdhughuwgh
wqnbtignipyniunp (njuy nt Uhnwntinh mwpuwowdwdwiwynid jhgpuynpywd uljuyjunp
nuynh Juymnduhu $nmumughwubtph Jpu:  Undwwlyun suthbtiph’ nwpu-
onipjwu Ynpnipjuu ownwynhg thnpp tpupnipniuutinph hwdwp, gpuyhnwghnu
nuonh wqnpbgnipjniup nuywmh punwlinum b Lutipghw-hdwnyuh ptugnph Juw-
Ynimidwyhu dhohuutinh ypw pny) E: Unudninghwljuu punwupawuydwu Jun thnyipnid
nnynnghwlywu utipnpnudutipp gipuynmd Gu Juynindwyhu dhohuutipnid:

2. Yujujwd nuynh quuqyuohg b Ynpnipjut juwh yupudtinphg' punupduldwi
n1 thnytipmd yuyninidwyhu dhohuutinnmd wnwninghwjuu uvbpppmidubipnp dwpnid
tu Unununntu Juu oughpwghnu Ytpwny: b mwppbipnipyniu ndyuyun swthnnujw-
umpymuutpny njuy Uhuynuyn $nuwiht tpypuswhmpjuu’ nt Uhmnbtph mw-
puwowdwdwuwlh hwdwp ny yndyulun swhnpujuwunipynivutinh tpuwyupny yuw-
Yninidwyhu Edumnhy dupnidp hwjwuwn sk Eutipghwjh fumnnipyuup, b yuyniniduwhu
Futinghw-piwnijuh ptuqnpp, npujtu gpui huughnt upnh wnpynip, Ynudnnghu-
Juu hwunmwwmniuh mhwh $E:

3. NMunduwuhpywd tu nupnh punwlynmun b Eutipghw-hdwynuh phugnph’ nw-
puwodwjuwu uwhdwuny dwjwowd Juynimdwyhu dhohutipp Yndyuwulun swthn-
nuyuwunipyniuutipnny nti Uhnntiph nupwdwdwdwuwynid: Uwhdwuhu dnn Juw-
Uninidwyhu dhohuutinh hhduwwu utpnpnudp ywydwbuwynpywd £ thnpp wyp-
ph tpupnipjudp Juiynimdwhu $nmjumuwughwutipny b gpuyhwmwghnu nuywnh
wqnbgnipiniup thnpp L Spughnwghuyh wqnbignpyniup Futipghugh oy
U upmuubtiph’ vwhdwuny dwfuédwsd dhohtiutiph Yypw bwluw § uwhdwuhg' nt
Uhwnwntinh Ynpnipjw gunwynhg utd htinwynpmipiniuutinh ypw: Ywjujwo yupw-
Utinptiph wpdtiputiphg' Juynmuught Eutipghwyh fummppymtup Jupnn & jhutg npo-
Juu jud puguuwui:

4. Jwlnimdwjhu Eutinghw-hdwnyup ptugnph wugniiwgqowght pununphsutinhg pw-
gh, uwhdwuh wnuynipyniup dwljuond £ ny wuljniuwugowhu punwnnphy, npp ujw-
pugpnd L uwhdwuhu nnnuhwjwg Lutinghuwyh hnup: <nupp Yupnn £ jhuby npw-
Juu Jud puguuwlui’ hwiwwyunmuwujuwubng vwhdwihg jud nhyh vwhdw
hnuph ninnmpjmuutiphtu: Unudpnpd juuywo gpnuljuu quuqyuony nuymh hw-
dwp Futinghwyh hnupp pugujuynid E:
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5. dbmwgnunjwo L ppwith wgntignipyniup hnuwuph jumnipjut yuynimdwyhu thohuh
Ypw judwjwluu pyny mnpnhnuw) jndyulumhbhjugyuo swhnnujuunipgjniuub-
nny njuw) wunh-nk Uhnntiph nmupuwdwdudwtwymyd” hwunwnm mpudwswutw-
jhu nuymh wnjuynipjudp: Lhgph funmnipjut b hnuwiiph junmpjuu’ ng Ynduyulun
swhnnulwunpjmuutph tpuwjupny pwnunphsubiph Juynimdwyhu  dhohuubtipp
qnyuund tu: Undyuyun swhnnujuunipjniuutinh tpuyupny pununphsutipnid
ppwuny dwlwoyws utipppmudutinp hhduwljuwunmd mbnuwjuwgywo tu ppwuh ppow-
Juypnid b gpnjuiunid Gu wunh-nt Uhnwnbtiph uwhdwuh b hnphgnuh ypw: Bipduo
tu Yhpunmpnmuubp yndyuun swhnnujuunipimuutipnyg (rwunu-Untunpnidh
nhwh Ze-hwdwswth ppuwu wpjuwphubipnd $tpdhnuwyht nuymh Yypw tplynt np-
wh bgqpuyht wuwydwuutinh hwdwp: Uju dngbjubipnid jndyulun swthnnujuuniyejuu
tpyujupny Juyniniduwyht hnuwupubtipp hwunhuwund Gu ny jndyujn Gupwnw-
npwonipiniunid dwquhuwlwu nuyntiph wnpjnin:

6. Swpwdwdwdwuwyh Yhuwm swhnnujuunyeyniuutinh hwdwn, $pdhnuwyhu nuont-
np’ hpuuuwgutyng {h$npnh hwupwhwyyh tpynt wuhwdwpdbp sptipgnn utipju-
jugnidutin b Wupppujuwunpjuu yuydwuutpnd mubuwnyg hwjwuwp thnytip,
Jwlininduwyhtu hnuwuph junnipniunid mwihu Gu unyu ubpnpnudp: Uhwdnplgny
wju nupwtph utpppmuubpp’ vnwgywsd £ jhun swhnnujuimpjudp C—, P— U
T—hwdwswth dnnbjubpnid hnuwuph funnpmup: Gnwswith nmupuwdwdwdwuwyh
dwutwynp nypnid hwdwwywmwujuwu wpnniuputippn jhpwnywd tu Ynpuguo
gpudbiugh fjunnnjujutipmd’ hhduwuu Jhawymd dwguhuwlwu hnupny dw-
Juoywd hnuwuph fjunnipyuu ypw tiqptinh wqnpbgnipyniup htimwgnutynt hwdwnp:

7. Canwgqnunyuo bu Ljaunpudwquhuwjuu puowh Gpyjnught $muyghwutipp
Lutinghw-hdwniuh ptugqnph Juyninmduwghu dhohup wunh-nt Uhnntiph mwpw-
dwdwdwuwlymu® Ytipohuhu hnphgnupht gmquhtin vwhdwuh wnuynipjudp: Sw-
puwonipjulu swhnnulwunipjuwu tptiphg Utd wpdtputinph hwdwp vwhdwuny dw-
Juoywo yuynindwyh utipnghwh fumnnipynmup puguuwywu E, hul unpdw) jupyw-
onipjniup hwdwwywunwujuwund £ npujuu dupdwu uvwhdwuh mt hnphgnuh dhol
whpnypnd b puguuwluu Gupdwtu’ uwhdwuh m wunp-nt Uhnntiph wmwpw-
ompjw gph vholt mhpnypnid: Uwhdwuhg' wumh-nt Upnnbph Ynpnipjuu jw-
nwynhg o htnwynpnipjmuutinh ypw gpuyhwnwghwh wgnbignipyniup bujuu
L, hu] vwhdwuny dwjwoywd ubpppnudutipu Epuwynutughw) thnpp Gu: Uwhdw-
uht Unn Ytwmbph hwdwp qbpulynnd E wunh-ntt Uhnmwnbph Ynpnipjuu w-
nwiynhg thnpp wihph tplupnipyudp Juinindwihs ppmljnnuughwitiph Wtipnpoup,
U uwhdwuny dwlwdywd Juyninmdwhu dhohuutinp, wnwohtu Unnwynpnipjudp,
hudpujunmid Gu Uhuynjuym Gpipuwswthnipimunmd phpetnh hwdwp hwduww-
nwujuwt yuynimdwyhu dhohuutinh htin:
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CUMOHSH JTABU]L

BAKYYMHbBIE KBAHTOBBIE D®®EKTbI B UCKPUBJIEHHBIX I[TPOCTPAHCTBAX,

MH/IYLIUPOBAHHBIE TOIIOJIOTMEN

B muccepranmy nccienoBaHbl CBOWCTBA KBAHTOBOTO BaKyyMa B IIpOCTpaHCTBax Jie Currepa u
anTu-1e CuTTepa C HETPUBUAJIBHOW TOIOJIOTMEN NPU HAJIMYUM I'paHUL. B KayecTBe BaXKHBIX
JIOKAJIbHBbIX XapaKTEPUCTUK BaKyyMHOIO COCTOSHMS PacCMOTPEHbI BaKyyMHbIE CpeIHUe
KBaJipaTa I0JIsl ¥ TEH30pa SHEPTUU-UMITYJIbCa [JIS1 CKAJIIPHOTO U JIEKTPOMAarHUTHOTO TIOJIEH U
BaKyyMHO€ CpefjHee INIOTHOCTU TOKa JJIsl 3apsKeHHOro (epMUOHHOTO TOJIA. $SIBHO BbIJIE€TIEHBI
YaCTH BaKyyMHBIX CpPeJHHMX, MHIYLIVMPOBAHHbIE TOIOJOTHEN W TPaHMIAMU U HCCIIEOBAHO
UX TOBEJlEHUE B pa3jMYHbIX I'PaHUYHBIX O0JIACTAX 3HaueHW! MapameTpoB. O6CyXmaroTcs
IIPWIOKEHNS B KOCMOJIOTMYECKMX MOZENSX, B MoAensx OpaH MUPOB U B rpadeHOBbIX
HaHOTPYOKax.

L.

UccrnemoBaHo — BAMSHUE KOMMAKTU(DUKAIMK IPOCTPAHCTBEHHBIX H3MepeHUN Ha
BaKyyMHble (IYKTyanuu [UIs 3apsDKEHHOTO CKaJIIPHOIO IOl B JIOKAJIbHOM
[IpoCTpaHCTBe-BpeMeHu e Currepa. [lid UIMH KOMITAKTHBIX U3MEPEHWN, MEHBIINX
panuyca KpHUBU3HBI IPOCTPAHCTBA, BIMSHUE PABUTALMOHHOTO IIOJIS HAa BaKyyMHbIe
CpefHue KBaJpaTa IOJI U TeH30pa SHepruu-uMIlysbca ciaboe. Ha paHHMX cTagusx
KOCMOJIOTYECKOTO PACIIMPEHUs] TOMOJIOTUYECKHe YacTU AOMHUHHUPYIOT B BaKyyMHBIX
CpeIHUX.

. B 3aBucMMocT: OT Macchl U ITapaMe€Tpa CBA3A KPUBU3HDBI II0JISI, Ha MO3OHUX CTaJUsIX

pacCIIMpeHusl TOINOJIOTUYECKUE BKJIAZbl B BaKYYMHBIX CPEIHUX 3aTyXalOT MOHOTOHHO
WA OCUWUIAIIMOHHO. B oTnmume OT JI0KaJbHO-MUHKOBCKOM (POHOBOM T€OMETPUU C
KOMITaKTHBIMU W3MEPEHUSIMU, [JI1 MPOCTPaHCTBa-BpeMeHu Ae Currtepa 3ddeKTUBHOE
IaBJIeHWE BaKyyMa BJOJIb HEKOMITAKTHBIX U3MEPEHUN He PaBHO IUIOTHOCTU SHEPIUU, a
TEH30p SHEPTUU-UMITYJIbCa BaKyyMa, KaK UICTOYHUK IPaBUTAL[IOHHOTIO I10JIs, HE IBJISETCS
WCTOYHMKOM THIIa KOCMOJIOTMYECKON ITOCTOSIHHOM.

. HSY‘IQHI)I BaKyyMHbIE€ CPEOHUE KBaIpaTa IIOJIsI MW TEH30Pa OSHEPIrUU-NMITYJIbCa,

MHIYIMPOBaHHbIE IIJIOCKOM TpaHullel B IPOCTpaHCTBe-BpeMeHn pe Currepa ¢
KOMIIaKTHBIMU M3MepeHUsIMU. BOnM3M rpaHuIbl OCHOBHOM BKJaJ B CpelHUE BHOCST
BaKyyMHble (QIYKTyallud C MaJIbIMA JUJIMHAMU BOJIH W BIIMSHME T'PaBUTAI[IOHHOIO
noyig Majo. BrusHue rpaBUTalMM Ha WHAYLUMPOBaHHbIE IPaHUIEN IUIOTHOCTb SHEPIUU
U JaBJIEHUS CYIIECTBEHHO Ha PAcCTOSHHUAX OT TPaHMIpbI, OOJIBIIMX I10 CPaBHEHUIO
C paguycoM KpHUBU3HBI NpocTpaHcTBa Ae Currepa. B 3aBUCMMOCTA OT 3HaueHMM
IIapaMeTpOB, BaKyyMHas IUIOTHOCTb SHEPIMUA MOXET ObITb KaK IOJIOKUTENIbHOM, TaK U
OTpHLIATEIbHOM.

B noronHeHue K [uaroHaaIbHbIM KOMIIOHEHTaM BaKyyMHOTO TeH30pa SHEPrUU-UMITyJIbCa,
HaJM4yKe TPaHWIbl MHAYIMPYET HEHYIEeBYI0 HeANaroHaJbHYI0 KOMIIOHEHTY, KOTopas
ONMCHIBAET TIOTOK SHEPIUU BIOJIb HOpPMaNM K rpaHune.  [loTok MoXeT O6bITh
TIOJIOKUTENTbHBIM HII OTPULIATEIbHBIM, YTO COOTBETCTBYeT HAaIlpaBlIeHHIO IIOTOKAa OT
TPaHUIIbI WY K rpaHuIe. 111 KoHPOPMHO CBSI3aHHOTO 6€3MaCCOBOTO TIOJISI IIOTOK SHEPIUH
OTCYTCTBYeT.

. MccnepoBaHo BnusiHUE 6paHbI Ha BaKyyYMHO€ CpenHee INIOTHOCTU TOKa IJIS 3apPsiKEHHOT'O

depMuoOHHOrO 10Nl Ha (oHE JIOKAJIbHOTO IPOCTPAHCTBAa-BpeMeHU aHTU-Ie Currepa
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C IPOU3BOJIbHBIM YHUCIIOM TOPOUIAJIbHO KOMIAKTHBIX H3MEpeHWH U TpU HaIUuyuu
IIOCTOSIHHOTO ~ KaJIMOPOBOYHOIO  ITOJIA. BakyyMHble CpefiHUe IUIOTHOCTH 3apsna
U KOMIIOHEHT IUIOTHOCTM TOKa BJOJIb HEKOMIIAKTHBIX W3MEpPEHUI paBHbI HYIIIO.
WupyuupoBaHHble 6paHOM BKJIaJbl B KOMIIOHEHTaX BJOJIb KOMIIAKTHBIX MU3MEpEHUI B
OCHOBHOM JIOKAJIM30BaHbl BOMM3M OpaHbl U MCYE3al0T Ha IpaHulle aHTH-Ae Cutrrepa u
Ha ropusoHTe. JlaHbl IPUIIOKEHUS K Zo-CUMMETPUYHBbIM OpaH-MupaM Tuna Panpmania-
CyHIpyMa ¢ KOMIIAKTHbIMU M3MEPEHUSIMU [IJIS1 IBYX KJIACCOB IPaHUYHbBIX YCIIOBUM Ha
depMuoHHOe nonie. B 3TuX Mopensix BaKyyMHbIE TOKU BJIOJIb KOMITAKTHBIX M3MEPEHUMN
SIBJISIFOTCS. ICTOYHUKOM MarHUTHBIX I0J1ell B HEKOMITAaKTHOM TTOJIIPOCTPAHCTBE.

. B HeYeTHbIX IPOCTPaHCTBEHHO-BPEMEHHBIX U3MEPEHUSX (PEPMHOHHBIE  IIOJI,
pealnusylonyie JiBa HEIKBMBAJICHTHBIX HEIPUBOOUMBIX IIPEACTaBIECHUS anredpbl
Kmuddopaa 1 nmetomue paBHble $asbl B yCIIOBUSIX IEPUOAUYHOCTH, TAIOT OIUHAKOBBIN
BKJIaJl B BaKyyMHYIO IUIOTHOCTb Toka.  CyMMMpOBaHWEM BKJIQJIOB I3THUX IoJel
IoJyYyeHa IUIOTHOCTb TOKAa B HeYeTHOMepHbIX C'—, P— ©u T —CAMMETPUYHbBIX
Mogensax. B yacTHOM cilydae TpeXMEepHOro IPOCTPaHCTBA-BPEMEHM COOTBETCTBYIOLIVE
pe3ynbTaThl IPUMEHSIOTCS U1 MCCIIeAOBaHUs KpaeBbIX 3((EKTOB Ha IIOTHOCTb TOKA
OCHOBHOTO COCTOSIHWS, WHIYIMPOBAaHHYIO IIPMWJIOXKEHHbIM MAarHUTHbIM IIOTOKOM B
nepOpMHUPOBAHHBIX I'PaPEeHOBBIX TPyOKax.

. UccnepoBanuch AByXTOYedyHble (QYHKIUM SJIEKTPOMAarHUTHOIO IIONIS M BaKyyMHOe
CpenHee TEH30pa SHEPTUU-UMITYJIbCa B IIPOCTPAHCTBe-BpeMeHM aHTH-nIe CHTTepa Ipu
HaJIMYWUY TPaHHULIbL, TapaJIJIeNIbHOM TOPU30HTY aHTH-1e CutTepa. 11 MPpOCTPaHCTBEHHOTO
u3MepeHus: 6oIblle TpexX, MHIYIMpPOBaHHAS I'PaHULEN BaKyyMHas IUIOTHOCTb SHEPIUU
OTpHLATEIbHA, a HOPMaJIbHOE HAIIPSDKEHUE COOTBETCTBYET IIOJIOKUTEIIBHOMY JIAaBJIEHUIO
B 00J1aCTM MEXJY TpaHUIEed U TOPA30HTOM U OTPULATEIbHOMY [ABJIIEHUIO B 00J1aCTH
MeXJy pacCMaTpUBAaeMOW I'paHMIEN M IPaHULEN MpocTpaHCTBa aHTU-Ae Currepa. Ha
PacCTOSHUAX OT TIpaHMIbI, OONBLIIMX IIO CPAaBHEHUIO C PaJAyCOM KPUBU3HbI aHTHU-IE
Currepa, BIMsiHYAE IpaBUTALUM SIBJISIETCS CYIIECTBEHHBIM M OOYCIIOBIIEHHbBIE TPaHUIIEN
BKJIaZ[bl 3KCIIOHEHIIMAJIbHO Majbl. 19 To4yek BOIM3M TpPaHUIbl AOMUHHUPYET BKJIas
BaKyyMHBIX QIIYKTyalluil ¢ JJIMHAMU BOJIH, 3HAUUTEIbHO MEHBIINX pafuyca KPUBU3HbI
a"Ty-ne CuTTepa M WHIOYIWPOBaHHbIE TPaHUILlENl BaKyyMHbIE CpPEIHMAE B BeOyLIEM
NIOPSIAKE COBMAJAIOT C COOTBETCTBYIOLIMMM CPEJHUMM [JI TPaHUIBl B TE€OMETPUU
MUHKOBCKOTO.
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