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Abstract

In this thesis first of all we present the holomorphic factorization for-
malism. This formalism allows to describe generalizations of Coulomb
and oscillator models via introduction of complex variables. First of
all we discuss this scheme on well known examples of TTW and PW
systems. Then we do this for higher dimensional cases. We do the so
called oscillator-Coulomb reduction procedure using the holomorphic fac-
torization formalism. Moreover we discuss also curved spaces namely the
spherical and pseudospherical generalizations. Finally we describe some
examples of superintegrable models using this formalism.

After this we concentrate on the complex analogue of the Smorodinsky-
Winternitz system interacting with an external magnetic field. Firstly
we discuss the usual real N-dimensional Smorodinsky-Winternitz system.
The main result we have obtained for the real case is the convenient form
of the symmetry algebra. Then we introduce the complex analogue of this
system, and write down the its hidden symmetries. We also obtain im-
portant result for this model, namely the symmetry algebra and quantum
solutions. Eventually we compute the symmetry algebra for the general-
ized MICZ-Kepler system using the results we have obtained before for
the C2-Smorodinsky-Winternitz system.

Moreover we introduce the complex projective analogue of the Rosochatius
system in an external magnetic field. Here again we see that it is super-
integrable, since it has hidden constants of motion. We write have found
also its symmetry algebra, classical and quantum solutions. Namely we
find solutions for the classical equations of motion, wavefunctions and the
energy spectrum.

Finally we formulate the Supersymmetric generalizations of C" - Smorodin-
sky -Winternitz and CP"-Rosochatius models. For this purpose we have
introduced SU(2|1) supersymmetrization which allows to construct weak
N = 4 superextensions of systems on Kéhler manifolds interacting with an
external magnetic field. We introduce SU(2|1)-Supersymmetric mechan-
ics. Using this formalism one can find supersymmetric models on K&hler
manifolds using the fact that all these systems can be viewed as SU(2|1)-
Kéhler oscillator with different Kéahler potentials. Then we have shown
Kahler potentials which give rise to SU(2|1)-Supersymmetric extensions
of CV-Smorodinsky-Winternitz and CP"-Rosochatius systems.



Relevance and motivation

Integrable models are crucial for modern theoretical and mathemati-
cal physics. Due to the fact that different physical phenomena can have
similar mathematical description, exactly solvable models can be used in
many different areas. One can see that using these models huge amount
of (both macroscopic and microscopic) physical phenomena can be de-
scribed. Moreover integrable models can have applications even in other
disciplines, due to the fact that system of integrable differential equa-
tions arise in other subjects e.g. mathematics, computer science, biology
etc. The thesis is devoted to superintegrable extensions of oscillator and
Coulomb models with an inverse square potential. Integrable models with
inverse square potential are studied for few decades. Due to this fact they
are well studied and there are many important results about these sys-
tems. Namely the Calogero-model has unique properties and due to that
nowadays this is an important system in mathematical physics. On the
other hand projective spaces have also interesting properties . Due to the
fact that they are maximally symmetric spaces it is important to consider
physical systems on these spaces. Unfortunately these two branches of
mathematical physics are disconnected now. Complex analogs of Calogero
model are not studied well and attempts to construct complexification of
Calogero-like models haven’t succeeded yet.

Aim of the dissertation

Main goal of this thesis is to construct superintegrable generalizations
of oscillator and Coulomb with an inverse square potential. Develop new
formalism and study the properties of constructed models. We also focus
on generalizations on Kihler manifolds (C and CPY ) of oscillator with
an inverse square potential.

e Develop a holomorphic factorization formalism, which is a conve-
nient framework for constructing and working with oscillator and
Coulomb like models namely with generalizations with an inverse
square potential.

e Introduce complex generalization of Smorodinsky-Winternitz sys-
tem. This is a generalization of oscillator with an inverse square



potential. We also study the properties of this system. Also our is
to find its constants of motion and solve it.

e Introduce a non-trivial superintegrable model on a complex-projective
space, namely the analogue of Rosochatius model on complex pro-
jective space, find its conserved quantities, and explicit solutions

o Via presenting the technique of SU(2|1)-Supersymmetric mechanics
we show that supersymmetric extensions of these systems can be
constructed.

Novelty of the works

Formalism of holomorphic factorization is developed. Holomorphic fac-
torization is done for TTW and PW systems. We also showed the rela-
tionship of constants of motion found via this formalism and the result
known before. Several results for oscillator and Coulomb like models are
rewritten using this formalism.Using this formalism isospectral models of
Calogero model are found here.

Many crucial results are found here also for Smorodinsky-Winternitz
model. As we know even for real case symmetry algebra of Smorodinsky
Winternitz model was not written in a convenient form. Introduction
of complex version in presence of an external magnetic field is also nov-
elty. Moreover symmetry algebra and quantum solutions for the complex
Smorodinsky model is also done here. Another important result is the
derivation of the symmetry algebra of generalized MICZ-Kepler system.

Another important novelty is the introduction of superintegrable model
with an inverse square potential on complex projective space ((C]P’N -Rosochatius
system). Conserved quantities of this model and the algebra they form is
also an important result for us. Needless to say that classical and quantum
solutions of this model is another important result.

Although formalism of Ké&hler superoscillator was introduced before,
we gave explicit expressions of the Kéhler potential, which give rise to
the supersymmetric generalization of complex Smorodinsky and complex
projective Rosochatius models.



Practical value

o Holomorphic factorization formalism can be used to investigate oscillator-
like and Coulomb-like models, namely the generalization related to
the Calogero model.

e In condensed matter physics models on complex projective spaces
are strongly related with the quantum Hall effect. Particularly four-
dimensional Hall effect can be related with the systems in CP3.

e In High energy physics their role cannot be overestimated. These
systems can be viewed as simplified toy models for field theoretical
complicated models in high energy research. Our particular exam-
ple of Calogero model is an example of conformal mechanics. It
is well known that conformal symmetry has a crucial role in mod-
ern high energy research. In this context supersymmetrization of
these systems is also important. Moreover Calogero-like models are
strongly related with AdS2/CFTi correspondence. For this purpose
supersymmetric extensions also have a crucial practical value.

« C'-Smorodinsky-Winternitz system is a popular model for the qual-
itative study of the so-called quantum ring , and the study of its
behaviour in external magnetic field is quite a natural task. Respec-
tively, C¥-Smorodinsky-Winternitz could be viewed as an ensemble
of N quantum rings interacting with external magnetic field. So
investigation of its symmetry algebra is of the physical importance.

« CPY-Rosochatius system does not split into a set of N two-dimensional
decoupled systems. Instead, it can be interpreted as describing
interacting particles with a position-dependent mass in the two-
dimensional quantum rings.



Content

CHAPTER 1

This chapter is an introduction and we introduce some general con-
cepts are discussed. We give a brief discussion of Hamiltonian mechanics.
We discuss well known examples of maximally superintegrable models,
namely the oscillator and Coulomb systems. We discuss mechanical mod-
els interacting with an external magnetic field, and introduce action angle
variables. Moreover we give a short review on Ké&hler manifolds and dis-
cuss maximally symmetric examples of it, namely complex Euclidean and
complex projective spaces. Also a short description of supersymmetric
mechanics is given.

CHAPTER 2

The goal of this chapter is to present "holomorphic factorization” to
the superintegrable generalizations of oscillator and Coulomb systems on
N-dimensional Euclidean space, sphere and two-sheet hyperboloid (pseu-
dosphere). For this purpose we parameterize the phase spaces of that
system by the complex variable Z = p, + 1v/2Z/r identifying the radial
phase subspace with the Klein model of Lobachevsky plane, and by the
complex variables u, = v/I,e'®* unifying action-angle variables of the
angular part of the systems.

Analyzing these deformations in terms of action-angle variables, it was



found that they are superintagrable iff the spherical part has the form

1N 2
I=3 (; ka1a+co> (1)

with co be arbitrary constant and k, be rational numbers . So different
angular parts give different oscillator-like and Coulomb-like models. We
formulate, in these terms, the constants of motion of the systems under
consideration and calculate their algebra. Besides, we extend to these
systems the known oscillator-Coulomb duality transformation.

The Trembley-Turbiner-Wintenitz (TTW) system, invented a few years
ago, is a particular case of the Calogero-oscillator system. It is defined
by the Hamiltonian of two-dimensional oscillator, with the angular part
replaced by a Poschl-Teller system on circle: Although the TTW and PW
systems are particular cases of the Calogero-type models, they continue
to attract enough interest due to their simplicity. In particular, a couple
of years ago, it was suggested a specific representation for the constants
of motion of the TTW and PW systems (including those on sphere and
hyperboloid) , called a ”holomorphic factorization”. conserved quantities
are presented and the symmetry algebra can also be computed.

So now we will briefly present some results we have found using this
formalism. Holomorphic variables obey the following Poisson brackets:

- W(Z —2Z)? _
2,0} = ——— "2 U, Uy} = —104p, 2
(2.2} 2V/2T {ua, 0} ’ )
{Z,ua} = ,UGQGM7 {Z’ﬁa}:ﬂaQaM’ (3)
22T 20/ 2T
where Qg = Qq(I) = (,;Iiz.For conformal mechanics Ho = é + T% we can

write conserved quantities
{Ze™ Hoy =0 iff  {A,V2I}=—1. (4)

where A is the angle-like variable, conjugate with v/27 .

Evidently, its real part is the ratio of Hamiltonian and its angular part
and does not contain any new constant of motion. Nevertheless, such a
complex representation seems to be useful not only from an aesthetical
viewpoint, but also for the construction of supersymmetric extensions.



Note that we can write down the hidden symmetry generators for the
conformal mechanics, modified by the oscillator and Coulomb potentials
as well. The Hamiltonian of the N-dimensional oscillator and its hidden
symmetry generators look as follows:

w?r? 2 23T e,
Hose = H ) Mzsc =\Z" - = ama7 5
"t (#-F%s) o

The Hamiltonian and hidden symmetry of the Coulomb problem are de-
fined by

i Coul Y e m
oul — N a = - a 6
Heow = Ho NG M (Z 2\f> U (6)

where

ko= ~%  ma,ne€N. (7)
Ma

So, we extended the method of ”holomorphic factorization” initially
developed for the two-dimensional oscillator and Coulomb system, to the
superintegrable generalizations of Coulomb and oscillator systems in any
dimension. For this purpose we parameterized the angular parts of these
systems by action-angle variables. To our surprise, we were able to get, in
these general terms, the symmetry algebra of these systems. Notice, that
above formulae hold not only on the Euclidean spaces, but for the more
general one, if we choose Z be the system with a phase space different

from TSV 1.
We describe oscillator Coulomb correspondence in terms complex vari-
ables introduced here. We will use ”untilded” notation for the description
of oscillator, and the ”tilded” notation for the description of Coulomb

system.

T ~

MZ i:Z’ A = 2A

NI

Moreover we have considered spherical and pseudospherical deformations
of these systems and found conserved quantities for above mentioned mod-
els on these curved spaces using the so called k-deformation formalism.
Holomorphic variable has the following form

Dx e
Z = /|n|2x L V2
st T

Z:

)



Moreover deformed symmetry algebra is also found.
Examples of the spherical parts are also discussed, namely for

1 ja—l

T==jn, o =p2_ 4+ —2e=t =1,...N—-1 9
5IN Ja =Pa-1t g g a 9)
and )
1 2 Ja+1 Foa
Z=>F,.., F,=P —=ar= 10
2 ! e 6o F cos? 6, + sin® 6, (10)

We have found u, for these systems, so the holomorphic description can
be easily used.

CHAPTER 3

The one-dimensional singular oscillator is a textbook example of a sys-
tem which is exactly solvable both on classical and quantum levels.The
sum of its N copies, i.e. N-dimensional singular isotropic oscillator is,
obviously, exactly solvable as well. It is given by the Hamiltonian

2 2,2
7

N 2
g=>"n, =0 5% Y% (11)
=1

2 22 2

It is not obvious that in addition to Liouville Integrals I; this system pos-
sesses supplementary series of constants of motion, and is respectively,
maximally superintegrable, i.e. possesses 2N — 1 functionally indepen-
dent constants of motion. All these constants of motion are of the second
order on momenta. It seems that this was first noticed by Smorodin-
sky and Winternitz. For this reason this model is sometimes called

10



Smorodinsky-Winternitz system and we will use this name as well. No-
tice also that Smorodinsky-Winternitz system is a simplest case of the
generalized Calogero model(with oscillator potential) associated with an
arbitrary Coxeter root system. Thus, one hopes that observations done
in this simple model could be somehow extended to the Calogero models.
There is a well-known superintegrable generalization of the oscillator to
sphere, which is known as Higgs oscillator.

About fifty years ago it was noticed that this system possesses addi-
tional set of constants of motion given by the expressions

2 2
9;T;
2 b
J

2,2

9i Tj

lij = LijLji — == —
i

. {I;, H} =0, (12)
where L;; are the generators of SO(N) algebra.

The generators I;; provides additional NV — 1 functionally independent
constants of motions and so this system is maximally superintegrable.
These generators define highly nonlinear symmetry algebra,

{Ii, ik} = 655 Sik — 0iSij,  {Lijs I} = 056 Tij1 + 0inTjrt — 6t Tiks — 0a T
(13)
where

2
SE = —16(LI;Li; + I2g? — I7g? + %Ifj — g2g2w?) (14)

Thn = —16(L Ll + gilis + g3 T + gi I — g3 g3gr)-  (15)
The generators S,zj and Tfjk are of the sixth-order in momenta and an-
tisymmetric over i, j, k indices. The above symmetry algebra could be
written in a compact form if we redefine the generators. Quantum-
mechanically the maximal superintegrability is reflected in the dependence
of its energy spectrum on the single,“principal” quantum number only.

Moreover we consider simple generalization of the Smorodinsky-Winternitz

system interacting with constant magnetic field. It is defined on the N-
dimensional complex Euclidian space parameterized by the coordinates
z% by the Hamiltonian

N 2
H = Z <7Taﬁ'a + gaza + w2z“2a> , {7a, zb} = Oab, {Ta,To} =1Bdas
a=1

Za
(16)
The (complex) momenta 7, have nonzero Poisson brackets due to the
presence of magnetic field with magnitude B. We will refer this model as

11



CV-Smorodinsky-Winternitz system.It can be interpreted as a sum of N
two-dimensional singular oscillators interacting with constant magnetic
field perpendicular to the plane. For sure, in the absence of magnetic
field this model could be easily reduced to the conventional Smorodinsky-
Winternitz model, but the presence of magnetic field could have nontrivial
impact which is studied in this chapter. So, our main goal is to inves-
tigate the whole symmetry algebra of this system. Set of hidden con-
stants of motion defined in complete analogy with those of conventional
Smorodinsky-Winternitz system:

2_bzb 2 _aza
9oz Z gp2"Z
s bzbzb ) {Iap, H} =0,  a#b (17)

I = LoyLvs + (

with L,; being generators of SU(N) algebra. Also symmetry algebra is
computed in this chapter, which has more complicated form, but after
redefinition it will have the similar form to the symmetry algebra of the
real Smorodinsky-Winternitz model with redefined symmetry generators.

Let us briefly discuss the number of conserved quantities. We have N
real functionally independent constants of motion (I,). Moreover let us
mention that I, is also real, and although it has N (/N —1)/2 components,
the number of functionally independent constants of motion is N — 1.

In addition to this, the complex system has N real conserved quantities
(Laa). So the total number of constants of motion is 3N — 1 and it is
superintegrable (but not maximally superintegrable). Especially if N =1
the system is integrable. For N = 2 the system is superintegrable, but it
has only one additional constant of motion (minimally superintegrable).

Quantization will be done using the fact that C™-Smorodinsky-Winternitz
system is a sum of two dimensional singular oscillators. This allows to
write the wave function as a product of N wave functions and total energy
of the system as a sum of the energies of its subsystems. So the initial
problem reduces to two-dimensional one. After solving the Schrédinger
equation one can find the energy spectrum and wavefunction of this sys-
tem. The wavefunction contains a hypergeometric function. As it was
mentioned in contrast to the real case it depends on N + 1 quantum
numbers, namely n and m, .

N N N
[ B 492\ Bh
Etot = § E"ay’ma = hy[w? + T<2n+N+ E mg + %)“FT E Ma,
a=1 a=1
(

a=1
18)
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Since CY-Smorodinsky-Winternitz system has manifest U(1) invari-
ance, we could apply its respective reduction procedure related with first
Hopf map S° /St=8 2 which is known as Kustaanheimo-Stiefel transfor-
mation, for the particular case of N = 2. Such a reduction was performed
decade ago and was found to be resulted in the so-called “generalized
MICZ-Kepler problem” suggested by Mardoyan a bit earlier. However
the initial system was considered, it was not specified by the presence of
constant magnetic field, furthermore, the symmetry algebra of the reduced
system was not obtained there. Hence, it is at least deductive to perform
Kustaanheimo-Stiefel transformation to the C*-Smorodinsky-Winternitz
system with constant magnetic field in order to find its impact (appearing
in the initial system) in the resulting one. Furthermore, it is natural way
to find the constants of motion of the “generalized MICZ-Kepler system”
and construct their algebra.

For this purpose we have to choose six independent functions of initial
phase space variables which commute with that generators,

ZORT + TORZ

qx = 20kZ, Pk = , k=1,2,3 (19)

22z
where o, are standard 2 x 2 Pauli matrices. Matrix indices are dropped
here. This transformation is called Kustaanheimo-Stiefel transforma-
tion.To get the Coulomb-like system we fix the energy surface or re-
duced Hamiltonian, Hsw — Esw = 0 and divide it on 2|¢g|. Then we
get the expression, which defines the Hamiltonian of “generalized MICZ-
Kepler problem”. Hence, we transformed the energy surface of the reduced
C?-Smorodinsky-Winternitz Hamiltonian to those of (three-dimensional)
“Generalized MICZ-Kepler system”. Additionally it has an inverse square
potential and this system has an interaction with a Dirac monopole mag-
netic field which affects the symplectic structure.

2 2 2 2
p S g1 g2 i
Homicz = — + + + - (20)
. 2 2lg® " gl(lgl+as)  lal(lal —gs) lal

Surprisingly, the reduced system contains interaction with Dirac monopole
field only, i.e. the constant magnetic field in the original system does not
contribute in the reduced one. All dependence on B is hidden in s and ~,
which are fixed, so the reduced system does not depend on B explicitly.

13



One can also perform the reduction for conserved quantities and we can
find that

I — I B 1
= 12 2+Z(L22—Lu), L=5(Len~Lu), J=I (21)

z

where non-calligraphic letters are the symmetry generators of the initial
C?-Smorodinsky-Winternitz model. Using this relationship we also found
the symmetry algebra of the generalized-MICZ-Kepler system. The only
non-zero commutator is the following one

{7y =5 (22)
where
§* = ez [A(T+5 (22~ 2)) = (168 + (L +9)?) (g2 + (£~ 5)°)]

2

(s +c+9?) (Z+7) — (46 + (£ - 9) (T-7)

~4(7+ %(1:2 - ) (2-7)(z+7) (23)

CHAPTER 4

The maximally superintegrable spherical counterpart of the Smorodinsky-
Winternitz system is defined by the Hamiltonian suggested by Rosochatius
in 1877. It is a particular case of the integrable systems obtained by re-
stricting the free particle and oscillator systems to a sphere. It was studied
by many authors from different viewpoints, including its re-invention as a

14



superintegrable spherical generalization of Smorodinsky-Winternitz sys-
tem. Rosochatius model, as well as its hybrid with the Neumann model,
attract a stable interest for years due to their relevance to a wide cir-
cle of physical and mathematical problems. Recently, the Rosochatius-
Neumann system was encountered, while studying strings, extreme black
hole geodesics and Klein-Gordon equation in curved backgrounds.

In this chapter we propose a superintegrable generalization of Rosochatius
(and Smorodinsky-Winternitz) system on the complex projective space
CPY. It is defined by the Hamiltonian

N 2 N

_ _ (ﬂ'ﬁ') =+ (Z’]T)(Eﬁ') 2 _ 2 Wy 2 2
e = (142 DL EDEE o e+ 30 ) D et
(24)

and by the Poisson brackets providing the interaction with a constant
magnetic field of the magnitude B

_ za b

(o) =y ()= (o) =B (P - 220,

(25)
We will call it CPY-Rosochatius system. Rescaling the coordinates and
momenta as 79z% — z%, 74 /7o — T, and taking the limit ro — co,we — 0
with 73w, = ga kept finite, we arrive at the CY-Smorodinsky-Winternitz
system discussed in the previous chapter. The model has N manifest
(kinematical) U(1) symmetries with the generators and hidden symme-
tries with the second-order generators I;; = (Ioq, Iab) defined as

2 b=b aza
T 2 _a-a Wq 22 % 22 %
Toa = Joadoa +wpz"2" + ——, Tap = Japdva + wa——r + W o5 -
0 Z zZ0Z z
(26)

For sure, the symmetry algebra written above can be found by a di-
rect calculation of the Poisson brackets between the symmetry genera-
tors. However, there is a more elegant and simple way to construct it.
Namely, one has to consider the symmetry algebra of C¥*!-Smorodinsky-
Winternitz system (Part IIT) with vanishing magnetic field, and to reduce
it, by action of the generators 2(p;u‘ —p;@’), u'@’ , to the symmetry algebra
of CPM-Rosochatius system.

As was already noticed, the S™-Rosochatius system is maximally su-
perintegrable, i.e. it has 2/N —1 functionally independent constants of mo-
tion. On the other hand the CP-Rosochatius system has 2N — 1+ N =

15



3N — 1 functionally independent integrals. Hence, it lacks N integrals
needed for the maximal superintegrability. This situation is similar to
the Smorodinsky-Winternitz system, which is not surprising since it is
the flat limit of the Rosochatius model. We present the Hamiltonian in
these coordinates and the angular part has the form of the Péschl-Teller
potential. Now we have the spherical coordinates and in this coordinate
system separations of variables can be done. After this we write classi-
cal solutions and wavefunction and the energy spectrum. It is worth to
mention that the wavefunction is written in terms of the hypergeometric
function, like for the Smorodinsky-Winternitz system. As was expected
the energy spectrum depends on N + 1 quantum numbers.

CHAPTER 5

Now we want to construct N/ = 4 supersymmetric generalizations of
CV-Smorodinsky-Winternitz and CPY-Rosochatius systems. As was men-
tioned U(1) invariant structure of these models allowed us to introduce
an external constant magnetic field without violating the symmetries of
the initial system. So for supersymmetric extensions of these models we
want to keep this interaction.

We define the supercharges and the symplectic structure of the SU(2|1)-
Superoscillator in the following form

Q% = e™/? cos AO™ + ¢ /?sin A O, (27)
{7ra7 Zb} - 627 {TF(“ 775;} = _FZc'qcav

{71'117 7_1'1,} = i(BgaE + iRaEcrincaﬁi)v {Waa> 77?3} = 9ab5g~ (28)

16



where ~
0% = men** + z&zaaKeaﬂﬁg (29)

cos 2\ = L sin 2\ = — 2]

VAw]Z + B2 VAW + B2’

Now we can present the supersymmetic algebra SU(2|1)

w = |wle™ (30)

{Q*,Q"1=0, {Q.,Qs} =0, (31)

{Q% Q) = 63 Hose +VAWP + B RS {Q%RE} = —155Q"+ 585Q°
(32)

{Q% Hosc} = 1y [ [w]? + B{ Q% {R3%,Hosc} =0 (33)

{R§,RY} = 10RS — 105 R}, (34)

where R-charges and the Hamiltonian are as follows
Ra_ _ aafb_z(sa _avy=b 35
8 =960 "5 — 593945771y (35)

a7 — 1 Ao — C —
Hose = g b(ﬂ-ﬂﬂ-b + ‘w‘28¢1K85K) - iRaEcJU 772/'7 ﬂng

 BR a4 SRR + g, (36)
Let us remind that Kahler potential is defined up to (anti-)holomorphic
function, so that the above superesymmetrization involves, not a single
Hamiltonian, but a family of Hamiltonians parameterized by arbitrary
holomorphic function. Now we present Kéhler superoscillator for the CN-
Smorodinsky-Winternitz system. We define it by the Kéhler potential

K =22+ 2 logz" + %2 10g 2°. (37)
w w

In that case the Hamiltonian decouples to the sum of N weak supersym-
metric C'-Smorodinsky-Winternitz systems. On the other hand Kéhler
potential

N

N
1
K:log(l—l—zé)—mZ(walogz“—i—walogéa), W:wo—&—Zwa, (38)

a=1 a=1
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generates supersymmetric extension for the CPY.

In Conclusion the main results are discussed.
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Udthnthmd

* Ltphuyugqwsé Ehnpnunpd puljinnphqughuyh nplwghqup: Uyu pnpdwihqup
Py Ewnwghu bjupugpt) Ynynt b oughjjuunnp hwdwlupgbpp Ynduy Epu
thnthnjuwluuttpp tbpdmésdwt uhgngnd:

+ Ulqpnud Ukp putiwmplyty Bup wyu ujutidw TTW U PW hwdwlupgtnh
hwdwp, wyinthbnb punhwipugply pupdp swhnpujunpini niakgng
hudwljupgbph hudwnp:

+ Quunwpyk) Eoughpjuwunnp-Ynint nhnniljghwt oginuugnpstyng hnjndnpd
dulpnnphquighuih $npulurhqup:

+ Luttuplyl) Eu wyju hwdwupgbph pughwtpugmdutpp Ynpugus
wnwpwdnpnLiitph hwuwp, fwutwynpuybu udbphl b thulinnubtphly
nkupkpp:

* Thuwnpyyt Eunpny umykphtinntigpynn hwdwlwupgtnh opptimlyntip
oquugnpstiny wyu $npdwihqup:

+ Rutiunlyty k puquusuth hpuwljuwh Udnpophifuh-dhtuntpihg hwdwlupgp
b unnwgyt) k uhutwnphugh hwipuwhwohyp wyu hwdwlwpgh hwdwp:

+ Ulipdméyty £ Udnpnnuhluh-9htunbpthg hwdwlunpgh Ynduy kpu hwdwnpdtp
hwdwlwng , thpuyugyt] wwhwwinnn dkdmpimuubkpp, husybu
twh ipubg juquws uhutwnphugh hwbipwhwohyp:

* Rutiuply) kwju hwdwjupgh pyuiinugndp, unwgyty kit whpuyht
Iniuljghwt b Eubkpghuygh uykljunpp:

+ Unwugqus wpmyniuputiph ogum pjudp hwoyyty E puinhwpugdus Uhus-
Ghuy kp hwdwlupgh vhdinphugh hwtpwhwohdn:

+ LUkpuméyk) k nunjuownhniu hwdwlupgp Ynduy kpu ypnyknhyg

nwpwdmpniuutph Ypuw, tipjuyugyt) b owpddwt hunbkgpuyukpp,
uhutinphuyh hwipwhwohyn:

+ Lmdkny Zwdnjnnt-8wlnphh hwjwuwpnifubkpp uvinwugy ) i puuwufjui
ndnitfubipp:
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+ Lutwuplyt Eyndwkpu ypnyknhy nunfjuminhniu hwdwljupgh putitnugnidp,
gyt E Spnphuginh hujuwuwpmup b unwgybibt wihpwyhtt dntujghwbpp

m Fubpghuyh uykupp:

* Ljupugpws £ N=4 pnij] Umytpuhutnphl vbhwtthjut Ykpjut
wnwpwdnipintuknh Jpu:

+ Rutiuplyty ESU2|1) Lwlnwnth uunhpp uynthtnb Unugbpuputnphly
SU(2|1) Yt kpywb oughjuwnnpp:
+ Uju Uninbgudwt uhgngny Yunmgyt) b Yndyy ipu Udnpnghulh-Jdhunbpihg

b Yndyy ipu wpnnljnhy rnunfjuwnhniu hwdwljupgbph unty kpuhdtinnphly
punhwipugnudubp:
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Pesiome

e IIpencrasien dpopmasuzm rosomopdHoil pakropuzanuu. 1ot GopMaIn3M
TO3BOJISIET HAM OIUCHIBATH CUCTEMBI Ky/TOHA 1 OCIIMILIISITOPA TOCPEICTBOM
BBEJICHUsI KOMILJIEKCHBIX I1€PEMEHHbBIX.

e Cuauajia MbI 00Cyzkaa/m 3Ty cxemy i cucteM TTW u PW, a 3aTem
00001mAIN 71T MHOTOMEPHBIX CHCTEM.

e Penyxius ocrmsuaropa-Kysona Obl1a BBIIOTHEHA € UCIIOJIL30BAHIEM
dopmasm3ma rosoMopdHoit haKTOpU3AINY.

o O6cy)manch 000BIEHUST ITUX CHCTEM [IJISI HCKPUBJIEHHBIX IPOCTPAHCTB,
B 9aCTHOCTHU, chepUyIecKue U ICeBA0CHOPUIECKHe CIIyIan .

e PaccMmarpuBasinch HEKOTOPBIE IPUMEPBI CYEePUHTErPUPYEMBIX CHCTEM
C UCITOJIB30BaHmeM (hopMasm3Ma roioMOpGHOH (haKTOPU3AIIAT.

e O6CcyzKIaach BellleCTBeHHAs MHOTOMepHast cucteMa CMOPOINHCKOTO-
Bunrepcruna u 6b11a oty dena ajaredbpa CMMMETPUH JJIsE 9TOM CHCTEMBL.

o B BBeIeHIT KOMILIEKCHIN aHaor cucreMbl CMOpoauHCKOro-BuaTepHuIa,
BBEJIEHBI COX PAHSIOIIUIICS BUIMIUHBI U 00pa3yIomiics: aarebpa CMMMETPUU.

e O6CyX)IaeHO KBAHTOBAHUE STOM CHCTEMBI, TIOJTyYeHbI BOJTHOBAasT (OYHKITHS
U SHEPreTUYeCKuil CIeKTp.

e Broina Boruuciena ajredpa cumerpun 0606mennoit cucrembr MUKII-
Kemnep.

o Cucrema Pocoxarmyc ObLta BBEIEHA B KOMILIEKCHOM ITPOEKTHBHOM
MIPOCTPAHCTBE, OUJIM TPEICTABIEHBl UHTErPAJIbl JIBUKEHUsI, aJrebpa
CUMMETPUHN.

e Pemas ypasuenus [amonrona- Ako6u ObLIN MOJTYYIEHBI KJIACCHIECKUE
peIlleHus.

o O6Cy)1a7I0Ch KBAHTOBAHUE CUCTEMBI, TIOJTy9€HbI PEIIeHNsT Y PABHEHUS
IIpenunrepa, BoHOBbIE (DYHKIUN U SHEPIE€TUIECKUN CIIEKTP.

e Omnucana ciabas N = 4 cynepcummerpuydHas Mexanuka B KesrepoBbix
[IPOCTPAHCTBAX.
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e Crauama obcyxnanace SU (2|1) samaua Jlanmay, a 3aTeM CynepCUMMETPHIHBINH
SU (2|1) ocpunnarop Kesurepa.

e Biaronapst TakoMy mOIXOIy OBLIM IIOCTPOEHBI CYIIEPCUMMETPUTHBIE
0000611eHs KOMILIIEKCaHOo# crucreMmbl CMOpOIuHCKOro-BruHTepHIa 1 KOMILIEKCHOI
TPOKEKTUBHOI cucTembl PocoxaTtmyca.
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