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0.1. Advances and Historical Trends 
 

We initial the work by reviewing the advances and the historical trends of melting and 

freezing process and their mathematical modeling which they were prepared by different 

researchers in this area. Conservation laws were applied by physicians to construct the 

mathematical formulation of melting and freezing process for different types of materials. 

Stefan problem is famous between researches that it describes the behavior of ice block 

and its temperature distribution during the phase transition process. 

 

0.2. Stefan Problem 
 

When the boundary between solid and melted phase is moving in time we call them free 

boundary problems, hence the Stefan problem is free boundary problem. Suppose the semi-

infinite ice block in one-dimension where its initial temperature is 𝑢(𝑥) = 0 for 𝑥 ∈
[0, +∞). If the heat flux 𝑓(𝑡)  at the left part of ice block causes it to melt where 𝑥 = 𝑠(𝑡) 
is the boundary between two phases, we will have the Stefan problem as finding 𝑢 and 𝑠 
such that 

 

    
𝜕𝜃

𝜕𝑡
=

𝜕2𝜃

𝜕𝑡2
   𝑖𝑛   {(𝑥, 𝑡): 0 < 𝑥 < 𝑠(𝑡), 𝑡 > 0} 

    −
𝜕𝜃

𝜕𝑡
(0, 𝑡) = 𝑓(𝑡), 𝑡 > 0 

    𝜃(𝑠(𝑡), 𝑡) = 0 

    𝑠′(𝑡) = −
𝜕𝜃

𝜕𝑥
(𝑠(𝑡), 𝑡), 𝑡 > 0 

    𝜃(𝑥, 0) = 0, 𝑥 ≥ 0 

    𝑠(0) = 0 

 

0.3. Obstacle problem 
 

Obstacle problem is another important problem in the free and moving boundary problems 

topic. The aim of this problem is to look for the equilibrium of an elastic membrane whose 

boundary is constrained to hold above a given obstacle. Obstacle problem is applied in the 

fluid filtration, constrained heating, optimal control, financial mathematics and some other 

scopes. To introduce the mathematical definition of the Obstacle problem assume that 

1. 𝐷 ⊂ ℝ𝑛 is an open bounded domain with smooth boundary 𝜕𝐷 

2. a smooth function 𝑓(𝑋) on 𝜕𝐷 

3. a smooth function 𝜑(𝑋) defined on 𝐷 such that 𝜑(𝑋)|
 
𝜕𝐷 < 𝑓(𝑋) for every 𝑋 ∈ 𝐷, 

and also define 𝐾 to be the closed convex set 

𝐾 = {𝑢(𝑋) ∈ 𝐻1(𝐷): 𝑢(𝑋)|
 
𝜕𝐷 = 𝑓(𝑋) , 𝑢 ≥ 𝜑} 

The solution to the obstacle problem is the unique function 𝑢0 that minimizes the Dirichlet 

integral 

𝐷(𝑢) = ∫(∇𝑢)2𝑑𝑋

 

𝐷

, 

for every 𝑢 ∈ 𝐾. 
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Shoshana Kamin in 1958 prepared the first proof of the existence and uniqueness of the 

generalized solution of the Stefan problem in three-dimension [1], [2]. Her work was 

followed by Oleink, O. A. and he generalized the proof in the work a method of solution 

of the general Stefan problem in 1960 [3]. Meirmanov prepared comprehensive 

mathematical information about the Stefan problem in the text book of the Stefan Problem 

in 1992, and also for existence and uniqueness of solution of Stefan problem and its 

regularity it is recommended to refer to Daniele Andreucci’s recently works. 

 

The study of free boundary problems consists of two separated parts: 

1) the study of the topological structure 

2) the study of differentiable structure 

 

The first techniques were constructed on analytic continuation of a conformal mapping and 

requiring topological knowledge of the free boundary and analyticity of the data. Also 

Convexity of the boundary and concavity of the obstacle is imposed to obtain the necessary 

topological structure conditions. The techniques based on differentiable structure were 

developed by H. Lewy in the works [4], [5], and [6], then later in the linear case those 

works were applied by H. Lewy and G. Stampacchia [7], [8] and D. Kinderlehrer continued 

the topic in the minimal surface case. Also D. Kinderlehrer investigated the application of 

Quasi-conformal extensions where he supposed a prior topological behavior, then earned 

the 𝐶(1,𝛼) character of the free boundary [10], [11], [12]. 

 

Luis Caffarelli has had great role in developing the theory of free boundary problems, in 

particular he researched the regularity of free boundaries in the article [13]. When we 

consider the energy minimizing function over the set of functions bigger than an obstacle 

we confront the regularity of the free boundary problems. Different researchers have 

produced mathematical works in this scope. Caffarelli in [14] proved that in a three-

dimensional filtration problem, the free surface is the class of 𝐶1, and all the second 

derivatives of the variational solution are continuous up to the free boundary, on the non-

coincidence set, also he proved that the variational solution is a classical one, and he 

prepared necessary hypothesis which the free boundary is as smooth as the obstacle. He 

recommended the strong use of the geometry of the problem where it implied that the free 

boundary was Lipschitz, and the Laplacian of the obstacle was constant. 

 

In the article [14] he treated the general nonlinear free boundary problem, then he proved 

that if 𝑋0 is a point of density for the coincidence set, in a neighborhood of  𝑋0, the free 

boundary is a 𝐶1 surface and all the second derivatives of the solution are continuous up to 

it. Also he considered one phase Stefan problem and proved that for a fixed time 𝑡0, the 

point 𝑋0 is a density point for the coincidence set then in a neighborhood in space and time 

of (𝑋0, 𝑡0) the free boundary is a surface of class 𝐶1in space and time and all the second 

derivatives of the solutions are continuous up to the free boundary, hence the solution is a 

classical one in that neighborhood. 
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Caffarelli in the work the obstacle problem revisited [15] reviewed some basic properties 

of obstacle problem and now we mention some vital parts of his work. He proved that 𝑢0 

stays between 

 

𝜆1 = min𝑓(𝑋) , 𝜆2 = max(𝑓(𝑋), 𝜑(𝑋)) 
 

Also 𝑢0 is superharmonic, and support ∆𝑢0 ⊂ {𝑢0 = 𝜑}, and 𝑢0 is continuous. Mean value 

theorem leads to some properties of harmonic and superharmonic functions and the article 

refer them: 

 

1) Harnack inequality 

If 𝑣 is harmonic and non-negative in 𝐵1, then for 𝑅 < 1 

 

sup
𝐵𝑅

𝑣 ≤ 𝐶(𝑅) inf
𝐵𝑅
𝑣 

 

2) Derivative estimate 

If 𝑣 is harmonic in 𝐵1(0), then 

 
|∇𝑣(0)| ≤ osc

𝐵1(0)
𝑣 

 

3) Other derivative estimate 

 

|𝐷(𝑘)𝑣(0)| ≤ 𝐶(𝑘)
1

𝑟𝑘
osc
𝐵𝑟(0)

𝑣 

 

4) If 𝑣 is a superharmonic in 𝐷, then 𝑣 cannot have a local minimum in 𝐷, unless 𝑣 is 

constant. 

 

5) If 𝑣 is continuous in 𝜕𝐵1, then there exists a unique harmonic function 𝑣, such that 

 

𝑣|
 

𝜕𝐵1 = 𝑓 

 

Then he proved that 𝑢 is as regular as 𝜑 in 𝐶1,1, in the other words if 𝜑 has a modulus of 

continuity 𝜎(𝑟), then 𝑢 has modulus of continuity 𝐶𝜎(2𝑟). The same result holds between 

∇𝜑 and ∇𝑣. 

 

H. Brezis and D. Kinderlehrer in [16] investigate the following problem within the 

assumptions: 

1) Ω ⊂ ℝ𝑛 is a bounded, connected, and open 

 

2) 𝑎𝑖(𝑃) is a locally coercive 𝐶2 −vector field, where 𝑃 = (𝑝1, … , 𝑝𝑛) 
 

3) 𝜓 is the obstacle function of class 𝐶2(Ω), where 𝜓 ≤ 0 on 𝜕Ω, 
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then they prove that the problem 

 

𝑢 ∈ 𝐾, 

∫𝑎𝑗(𝐷𝑢)𝐷𝑗(𝑣 − 𝑢)𝑑𝑋
 

Ω

≥ 0   ;  ∀𝑣 ∈ 𝐾, 

 

has the compact solution of class 𝐶1,1(𝑀) for any 𝑀 ⊂ Ω, where 

 

𝐾 = {𝑣: 𝑣 𝑖𝑠 𝐿𝑖𝑝𝑠𝑐ℎ𝑖𝑡𝑠, 𝑣 ≥ 𝜑, 𝑣|
 
𝜕Ω = 0} 

 

Also they distinguished the subsets 𝐷 = {𝑋: 𝑢 = 𝜑} and Ω ∖ 𝐷, therefore 

 

1) 𝑢 = 𝜑   on   𝜕𝐷 ∩ Ω 

 

2) ∇𝑢 = ∇𝜑   on   𝜕𝐷 ∩ Ω 

 

3) 𝐴(𝑢) = −𝜕𝑖(𝑎𝑖(∇𝑢)) = ∑𝑎𝑖𝑗(∇𝑢)𝑢𝑖𝑗 = 0   in   𝑊 = Ω ∖ 𝐷, where 𝐴 is elliptic. 

 

Caffarelli and Riviere in the paper smoothness and analyticity of free boundaries in 

variational inequalities [14] in 1976 assumed that 

 

1) 𝜑 ∈ 𝐶4(Ω) 
 

2) 𝐴(𝜑), ∇(𝐴(𝜑)) do not vanish simultaneously 

 

3) 𝑋0 ∈ 𝜕𝐷 ∩ Ω, 

 

then 𝐴(𝜑) < 0 in a neighborhood of 𝑋0. Thus they concluded that locally there are 

 

1) An open set W, and a ball 𝐵𝑙(𝑋0) 
 

2) 𝜑 ∈ 𝐶4(𝐵𝑙(𝑋0)), and 𝐴(𝜑) < 𝜆0 < 0   on   𝐵𝑙(𝑋0) 

 

3) 𝑢 ∈ 𝐶1,1(𝐵𝑙(𝑋0)), and 𝑢|
 

𝐵𝑙(𝑋0) ∖ 𝑤 = 𝜑 

 

4) 𝑢 ≥ 𝜑   on   𝐵𝑙(𝑋0), and 𝐴𝑢 = 0   on   𝑊 ∩ 𝐵𝑙(𝑋0) 

 

They defined 𝑣 = 𝑢 − 𝜑 that 𝑣 satisfies 𝐵𝑙′(𝑋0), 
 

𝑎𝑖𝑗(∇𝜑)𝐷𝑖𝑗(𝑢 − 𝜑) = 𝑓 > 0    on   𝑊 ∩𝐵𝑙′(𝑋0) 

 

They showed that near (𝜕𝑊) ∩ 𝐵𝑙′(𝑋0) 
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𝑎𝑖𝑗(∇𝜑) 𝐷𝑖𝑗(𝑢) = 𝑎𝑖𝑗(∇𝑢) 𝐷𝑖𝑗(𝑢) + 𝑂(𝑑(𝑋, 𝜕𝑊)) = 𝑂(𝑑(𝑋, 𝜕𝑊)), 

 

then 

 

𝑎𝑖𝑗(∇𝜑) 𝐷𝑖𝑗(𝑢) ∈ 𝐶
1
2(𝐵𝑙′(𝑋0)) 

 

0.4. Heat Transfer 
 

In the scope of heat transfer and its mathematical simulation in three-dimension Raymond 

Viskanta and Aydin Ungan in 1986 prepared a paper which they presented a numerical 

approach to derive the modeling of circulation and heat transfer in an electrically boosted 

glass tank [22]. The simulation includes the equations 

 

∇. (𝜌�⃗� ) = 0 

 

∇. (𝜌�⃗� 𝑢) = ∇. (μ∇𝑢) −
𝜕𝑃

𝜕𝑥
+
𝜕

𝜕𝑥
(𝜇
𝜕𝑢

𝜕𝑥
) +

𝜕

𝜕𝑦
(𝜇
𝜕𝑣

𝜕𝑥
) +

𝜕

𝜕𝑧
(𝜇
𝜕𝑤

𝜕𝑥
) 

 

∇. (𝜌�⃗� 𝑣) = ∇. (μ∇𝑣) −
𝜕𝑃

𝜕𝑦
+
𝜕

𝜕𝑦
(𝜇
𝜕𝑣

𝜕𝑦
) +

𝜕

𝜕𝑧
(𝜇
𝜕𝑤

𝜕𝑦
) +

𝜕

𝜕𝑥
(𝜇
𝜕𝑢

𝜕𝑦
) 

 

∇. (𝜌�⃗� 𝑤) = ∇. (μ∇𝑤) −
𝜕𝑃

𝜕𝑧
− 𝛽𝜌0𝑔(𝑇 − 𝑇0) +

𝜕

𝜕𝑧
(𝜇
𝜕𝑤

𝜕𝑧
) +

𝜕

𝜕𝑦
(𝜇
𝜕𝑣

𝜕𝑧
) +

𝜕

𝜕𝑥
(𝜇
𝜕𝑢

𝜕𝑧
) 

 

∇. (𝜌�⃗� 𝑇) = ∇. (
𝑘𝑒𝑓𝑓
𝑐
∇𝑇) 

 

To investigate the influence of electric field on convection of electrically conducting fluids 

they enforced the Maxwellian equations into their modeling within the momentum and 

energy conservation equations. The Maxwellian equation is 

 

∇ × �⃗� (𝑡) = 0 

 

The electric potential 𝜓(𝑡) were used to achieve 

 

�⃗� (𝑡) = −∇𝜓(𝑡), 
 

where 

 

𝜓(𝑡) = 𝜓𝑚(cos(𝜔𝑡 + 𝜃) + 𝑗. sin(𝜔𝑡 + 𝜃)) 
 

One essential part of their modeling included the boundary conditions of 
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𝜕

𝜕𝑛
𝑅𝑒 𝜓 =

𝜕

𝜕𝑛
𝐼𝑚 𝜓 = 0, 

where 

 

𝑅𝑒 𝜓 = 𝜓𝑚 cos 𝜃𝑖 
 

𝐼𝑚 𝜓 = 𝜓𝑚 sin 𝜃𝑖 
 

Finally they presented that electric boosting has convenient influence on the melting 

circulation and heat transfer. Also they create an efficient iterative method to deriving 

numerical solution which it has high speed to get the result, that is, they reduced the 

computer running time. 

 

0.5. Navier-Stokes Equations 
 

The classical model of fluids was applied in physics based on a set of partial differential 

equations, where it known as the Navier-Stokes equations. Navier in 1822 derived the 

equations for homogeneous incompressible fluids from a molecular argument [24]. 

Inviscid fluids are fluids with zero viscosity, and the physicians didn’t understand this 

concept before 1822 when it was introduced by Navier. 

 

𝜌 (
𝐷𝑢

𝐷𝑡
− 𝑋) +

𝑑𝑃1
𝑑𝑥

+
𝑑𝑇3
𝑑𝑦

+
𝑑𝑇2
𝑑𝑦

= 0, 

 

𝑃1 = 𝑝 − 2𝜇 (
𝑑𝑢

𝑑𝑥
− 𝛿), 

 

𝑇1 = −𝜇 (
𝑑𝑣

𝑑𝑧
+
𝑑𝑤

𝑑𝑦
), 

 

3𝛿 =
𝑑𝑢

𝑑𝑥
+
𝑑𝑣

𝑑𝑦
+
𝑑𝑤

𝑑𝑧
. 

 

Poisson assumed the same arguments in 1829 and got the equations for compressible fluid 

[25]. These well-known equations were originally obtained in the 1843 by Saint Venant 

and Stokes in 1845 on the basis of conservation laws (momentum conservation law) [26], 

[27]. 

 

𝜌 (
𝑑𝒖

𝑑𝑡
− 𝑿) = 𝑑𝑖𝑣(𝑻), 

 

𝑻 = (−𝑝 −
2

3
𝜇 𝑑𝑖𝑣(𝒖))𝟏 + 2𝜇𝑫[𝒖], 
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𝑑𝒖

𝑑𝑡
=
𝜕𝒖

𝜕𝑡
+ (𝒖. ∇)𝒖, 

 

𝑫[𝒖] =
1

2
[∇𝒖 + ∇𝒖T], 

 

The theory of potential flow for a viscous fluid was discovered by Stokes in 1850. The 

problem considered by Stokes was solved exactly by using the linearized Navier-Stokes 

equations by Lamb in 1932, but his work didn’t include potential flow assumption [28]. 

 

By the assumption of sufficient randomness in microscopic molecular processes they could 

be earned from molecular dynamics as well as from cellular automata of the kind. Since 

1960s computers have been strong enough to prepare large computations, then it has 

become increasingly common to see numerical results given far into the turbulent regime 

- leading sometimes to the assumption that turbulence has somehow been derived from the 

Navier-Stokes equations. In the mathematical analysis of the Navier-Stokes has never 

established the formal uniqueness and existence of solutions. Indeed, there is even some 

evidence that singularities might almost inevitably form, which would imply a breakdown 

of the equations, and perhaps a need to account for underlying molecular processes. 

 

0.6. Finite Element Method 
 

Finite element method is considered as one of the convenient mathematical techniques for 

the computer solution of complex problems. It is applied in wide different areas like civil 

engineering, mechanics, heat conduction, geo-mechanics, etc. Finite element method is a 

numerical approach to obtain an approximate solution to elliptic partial differential 

equations, that it converts the boundary value problem into a set of easily solvable algebraic 

equations. There are three basic steps during the procedure, first the problem must be 

formulated in the variational form, then by discretization of the domain the system of 

algebraic equations is obtained and at last the classical technique would be applied to get 

the numerical solution of the system. 

 

In 1909 Ritz developed a method for the approximate solution of problems [44]. His work 

consists of minimization of functional where every unknown produces the system of 

equations within new unknown coefficients that must be determined. In 1943 Courant 

improved the Ritz method by introduction of the specific linear functions that they are 

defined over triangular regions [45]. He eliminate the main restriction of the Ritz function 

(the functions are used by Ritz must satisfied to the boundary conditions). The Ritz 

procedure with Courant functions is very similar to the finite element method. Because of 

the absence of the strong computers they didn’t happen essential develops in the Courant 

time, since large-scale computations were necessary for the essential progress in this scope. 

 

Finite element method has gotten its amazing developing when Argyris [46], Turner [47], 

and Hrennikov [48] published their articles. Zienkiewicz and Cheung in 1967 published 

the first textbook about FEM, and they called it “The Finite Element Method in Structural 

and Continuum Mechanics”, and it includes the theory and applications of FEM [49]. Also 
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the method has been applied in the field of structural mechanics by researchers. Now FEM 

is applied in wide different area like heat conduction problems, fluid dynamics, electric 

and magnetic fields, and other branches. 

 

0.7. Properly Elliptic Equation 
 

Many important problems of the elasticity theory, hydrodynamics, signal processing and 

other fields of science and engineering are reduced to the investigation of elliptic partial 

differential equations. Solutions of elliptic equations are also the steady solutions of 

diffusion equations, and describe the stable condition of the phenomenon when time tends 

to infinity. Such equations, as all other partial differential equations, have many solutions, 

therefore, we must consider these equations with some kinds of initial or boundary 

conditions providing uniqueness (or finite dimension) of the solution of the corresponding 

boundary value problem. Physical conditions in technical problems reduced to Laplace 

equation (for example the potential equation of electrostatics) define the natural boundary 

conditions (Dirichlet, Newman, etc.) provided correctness of the boundary value problem 

for one differential equation with real constant coefficients. 

 

For a long time it was supposed, that the same kind of boundary conditions may be posed 

for the elliptic systems of partial differential equations. But in 1948 A.V. Bitsadze 

presented an example of an elliptic equation with complex coefficients (or second order 

elliptic system of PDE with real coefficients) for which the Dirichlet problem is not correct 

[70]. After that, in works of N. E. Tovmasyan [71-75], E.V. Zolotareva, A.I.Volpert [76-

78] and others it was shown, that all classical boundary value problems are correct only for 

properly elliptic equations. After that, in works of I. A. Bikchantaev [79], A. P. Soldatov 

[80], W. I. Wendland, N. E. Tovmasyan, M. M. Sirajudinov and others, many correct 

boundary value problems for improperly elliptic equations were formulated and 

investigated. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Chapter 1. 

 

Basic Definitions 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 1. Basic Definitions  11 

 

 

1.1. Introduction 
 

Mathematical modeling of heat transfer (Transport Phenomena) is applied by researchers 

to investigate the environment of the furnaces during the melting process and turbulent 

conditions inside them, because it has the advantages of reasonable cost and applicable 

exactness. In the present work we will earn the mathematical modeling of transport 

phenomena in three-dimension for the especial furnaces with cylindrical shapes, that in the 

business area, they are called Garnissage furnace. According to their physical shapes we 

will demonstrate the mathematical equations of heat transfer in three-dimension, and then 

we will search for its numerical solution. 

 

In this stage we will perform some rules of physics, that is, the mass, momentum, and 

energy conservation laws to gain three essential partial differential equations; that is, the 

continuity, Navier-Stokes, and heat conduction equations. The melting process in the 

Garnissage furnace starts when we impose enough heat to the solid ingredient materials by 

electrical boosters inside the furnace, but the heat transferring by electrical boosters 

couldn’t melt the whole materials and whenever the central parts are melted the parts far 

from the boosters still is solid, then the boundary between the solid and liquid parts are 

moving during the melting process. One basic work is to achieve the mathematical 

modeling of free boundary between the solid and liquid materials, and therefore more 

exactly determine the physical shape of furnace. 

 

In the first chapter we review some basic definitions of physics that they are necessary in 

the modeling process, then we prepare the details of the mathematical modeling that 

includes the performing of the conservation laws to construct the continuity, Navier-

Stokes, and heat conduction equations. Also the Stefan condition is convenient tool to 

describe the behavior of the free boundary and the details of the construction in one 

dimension is available in the remainder of this chapter, but we will handle three-

dimensional version of the Stefan condition in this research. 

 

The space of functions have key role in the theory of partial differential equations, in 

particular Sobolev spaces are the most important in this topic. We finish the first chapter 

by introducing some necessary definitions and properties of Sobolev spaces in special 

order. In the second chapter we define stream function in two dimension and then we gain 

the mathematical modeling of heat transfer according to stream function. The modeling 

based on stream function has its sufficient advantages and there is complete description 

about the modeling process, variational approach and weak formulation, and numerical 

solution of the transport system. 

 

Mathematical modeling in the cylindrical coordinate system has been shown in third 

chapter. According to Garnissage tank shape and its symmetric properties this coordinate 

system would be valuable to apply these properties and then we earn the conservation 

equations in the cylindrical coordinate system, so the Stefan condition. After modeling 

process we follow the variational approach to convert the system of equations into the weak 

formulation. For expressing the system in the variational formulation we will exert 

sufficient smooth test functions with small support. 
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Finally in the fourth chapter we will discrete the domain to special mesh cubes that they 

are divided into 24 tetrahedrons. To follow the finite element method we compute the 

piecewise continuous test function according to 24 tetrahedrons, and then we try to 

determine values of coefficients in the linear and nonlinear final system of equations that 

is prepared in the approximation process. In this stage there are different integrals and we 

will divide the integrals based on tetrahedrons. At last we will derive the system of 

equations that they are combination of linear and nonlinear, thus to solve the system 

numerically the Newton’s method would be recommended. 

 

1.2. Mathematical Modeling 
 

In this chapter we will prepare the mathematical modeling of flow and heat transfer in 

three-dimension. To achieve the mathematical modeling we invoke the conservation laws 

of physics, that is, the mass, momentum and energy conservation laws to drive the transport 

phenomena system. Transport system includes the continuity equation, Navier-Stokes 

equations, and energy equation. We will apply some thermal characteristics to make the 

modeling more realistic, and at the end we earn the free boundary conditions that they are 

another important part of our work to introduce the complete numerical approach for 

solving the transport system of partial differential equations. Before any mathematical 

work we need some basic physical definitions. 

 

1.3. Basic Definitions 
 

In this part we state some basic definitions of physics that they were applied during the 

modeling process, then we start by pressure. 

 

Pressure 

Pressure p is defined as the force/area acting normal to a surface. If ∆𝐴 is an infinitesimally 

small surface and ∆𝐹𝑛 is given normal force, then 

 

𝑝 = lim
∆𝐴→0

∆𝐹𝑛
∆𝐴

 

 

 
𝑝 =

𝑑𝐹𝑛
𝑑𝐴

 
 

(1.3.1) 

 

The pressure 𝑝(𝑥, 𝑦, 𝑧, 𝑡) can vary in space and time, so the pressure is a time-varying scalar 

field. 

 

Density 

Density 𝜌 is defined as the mass/volume, for an infinitesimally small volume. 

 

𝜌 = lim
∆𝜈→0

∆𝑚

∆𝜈
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𝜌 =

𝑑𝑚

𝑑𝜈
 

 

(1.3.2) 

 

Like the pressure, density 𝜌(𝑥, 𝑦, 𝑧, 𝑡) is also a scalar field. 

 

Velocity 

Consider a fluid element as it moves along. As it passes some point, its instantaneous 

velocity is defined as the velocity at that point. This velocity is a vector with three separate 

components, and will in general vary between different points and different times. 

 

 𝑽(𝑥, 𝑦, 𝑧, 𝑡) = 𝑢(𝑥, 𝑦, 𝑧, 𝑡)𝑖 + 𝑣(𝑥, 𝑦, 𝑧, 𝑡)𝑗 + 𝑤(𝑥, 𝑦, 𝑧, 𝑡)𝑘, (1.3.3) 

 

so 𝑽 is a time-varying vector field, whose components are three separate time-varying 

scalar fields 𝑢, 𝑣, and 𝑤. 

 

Speed 

Speed is the magnitude of the velocity vector. 

 

 𝑉(𝑥, 𝑦, 𝑧, 𝑡) = |𝑽| = √𝑢2 + 𝑣2 + 𝑤2 
 

(1.3.4) 

 

In general the speed is a time-varying scalar field. 

 

Steady and Unsteady Flows 

If the flow is steady, then 𝑝, 𝜌, and 𝑽 don’t change in time for any point, and hence can be 

given as 𝑝(𝑥, 𝑦, 𝑧), 𝜌(𝑥, 𝑦, 𝑧), and 𝑽(𝑥, 𝑦, 𝑧). If the flow is unsteady, then these quantities 

do change in time at some or all points. 

 

Eulerian type Control Volume 

In this case volume is fixed in space, and fluid can freely pass through the volume’s 

boundary. 

 

 

 

 

 

 
(1.3.5) 

 

 

Lagrangian type Control Volume 

Volume is attached to the fluid, and it is freely carried along with the fluid, and no fluid 

passes through its boundary. 
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(1.3.6) 

 

 

Mass of Fluid 

Consider a small patch of the surface of the fixed control volume. The patch has area A, 

and normal unit vector �̂�. The plane of fluid particles on A at time t given by 

 

 ∆𝜈 = (𝑽. �̂�)𝐴𝑡, 
 

(1.3.7) 

 ∆𝜈 = 𝑉𝑛𝐴𝑡, (1.3.8) 

 

where 𝑉𝑛 = 𝑽. �̂� is the component of the velocity vector normal to the area. 

 

 

 

 

 

 

 

 

 
(1.3.9) 

 

The mass of fluid in swept volume, which passed through the area during the ∆𝑡 interval, 

is 

 

 ∆𝑚 = 𝜌∆𝜈 

 

(1.3.10) 

 ∆𝑚 = 𝜌𝑉𝑛𝐴∆𝑡 (1.3.11) 

 

Mass Flow 

The mass flow is defined as the time rate of mass fluid passing through the area. 

𝑚′ = lim
∆𝑡→0

∆𝑚

∆𝑡
 

 

 𝑚′ = 𝜌(𝑽. �̂�)𝐴 

 

(1.3.12) 

 𝑚′ = 𝜌𝑉𝑛𝐴 (1.3.13) 
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Mass Flux 

The mass flux is defined as the mass flow per area. 

 

 𝑚′

𝐴
= 𝜌𝑉𝑛 

 

(1.3.14) 

 

Viscosity 

Viscosity is a measure of a fluid's resistance to flow. It describes the internal friction of a 

moving fluid. 

 

Stress 

The force per unit area applied to an object. Objects subject to stress tend to become 

distorted or deformed. 

 

Dynamic Viscosity 

Dynamic viscosity 𝜇 is a measure of the ratio of the stress on a region of a fluid to the rate 

of change of strain it undergoes. 

 

Kinematic Viscosity 

Kinematic viscosity 𝜗 is a measure of the rate at which momentum is transferred through 

a fluid. It is the dynamic viscosity divided by the density. 

 

 𝜗 =
𝜇

𝜌
  

(1.3.15) 

 

Shear Stress 

Shear stress 𝝉 is the form of stress that subjects an object to which force is applied to skew, 

tending to cause shear strain. It is the component of stress coplanar with a material cross 

section. Shear stress arises from the force vector component parallel to the cross section. 

 

 
𝝉 =

𝐹

𝐴
 

 
(1.3.16) 

 

The applied force is proportional to the area and velocity gradient in the fluid 

 

 
𝐹 = 𝜇𝐴

𝜕𝑽

𝜕𝑦
 

 
(1.3.17) 

 

Let 𝜇 is the dynamic viscosity of the fluid, and 𝑽 is the velocity of the fluid along the 

boundary, and y is the height above the boundary. Then the shear stress, for a Newtonian 

fluid, at a surface element parallel to a flat plate is 

 

 
𝝉 = 𝜇

𝜕𝑽

𝜕𝑦
 

 
(1.3.18) 
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(1.3.19) 

 

If  

 
𝝉 = (𝜏𝑖𝑗)𝟑×𝟑 = (

𝜏11 𝜏12 𝜏13
𝜏21 𝜏22 𝜏23
𝜏31 𝜏32 𝜏33

) 
 

(1.3.20) 

 

are the stress components on an infinitesimal cubic fluid element, and �̂� is the unit 

outward normal vector to the surface, then surface stress is 

 

 𝝉. �̂� (1.3.21) 

 

Incompressible Flow 

Incompressible flow refers to a flow in which the material density is constant in fluid. If 

the fluid is incompressible and viscosity is constant across the fluid, the equation of stress 

can be written in terms of an arbitrary coordinate system as 

 

 
𝜏𝑖𝑗 = 𝜇 (

𝜕𝑢𝑖
𝜕𝑥𝑗

+
𝜕𝑢𝑗
𝜕𝑥𝑖

) 
 

(1.3.22) 

 

 

 

 

 

 

 

 

 

(1.3.23) 

 

where 𝑢𝑖 is the fluid's velocity in the direction of axis 𝑖, and 𝑥𝑗 is 𝑗th spatial coordinate. 

Let 𝑰 is the unit 33  matrix, and 𝑝 is the pressure. Total stress tensor 𝝈 can be defined as 

 

 𝝈 = −𝑝𝑰 + 𝝉 (1.3.24) 
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𝜎𝑖𝑗 = −𝑝𝛿𝑖𝑗 + 𝜇 (

𝜕𝑢𝑖
𝜕𝑥𝑗

+
𝜕𝑢𝑗
𝜕𝑥𝑖

), 
 

(1.3.25) 

 

where 

𝛿𝑖𝑗 = {
0 ; 𝑖 ≠ 𝑗
1 ; 𝑖 = 𝑗

 

 

Momentum Flow 

The momentum flow as defined 

 

Momentum Flow = (Mass Flow)  (Momentum/Mass), 

 

where the Momentum/Mass is the velocity vector 𝑽, then 

 

 Momentum Flow = 𝑚′𝑽 =  𝜌(𝑽. �̂�)𝐴𝑽 = 𝜌𝑉𝑛𝐴𝑽 (1.3.26) 

 

 

 

 

 

 

 

(1.3.27) 

 

Momentum Flux 

The momentum flux is defined as the momentum flow per area. 

 

 Momentum Flux = 𝜌(𝑽. �̂�)𝑽 = 𝜌𝑉𝑛𝑽 (1.3.28) 

 

Material Derivative 

In continuum mechanics, the material derivative (or substantial derivative) describes the 

time rate of change of some physical quantity for a material element subjected to a space 

and time dependent velocity field. Suppose that 𝜑(𝑥, 𝑦, 𝑧, 𝑡) is time-varying scalar field, 

the material derivative of 𝜑 is defined as 

 

 𝐷𝜑

𝐷𝑡
=
𝜕𝜑

𝜕𝑡
+ 𝑽. (𝛻𝜑), 

 

(1.3.29) 

where ∇ is gradient. 

 

For time-varying vector field 𝑼(𝑥, 𝑦, 𝑧, 𝑡) it is defined as 

 

 𝐷𝑼

𝐷𝑡
=
𝜕𝑼

𝜕𝑡
+ 𝑽. (𝛻𝑼), 

 

(1.3.30) 

where ∇ is covariant. 
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Enthalpy 

The heat absorbed by a material under constant pressure is a thermodynamic quantity called 

the enthalpy. 

 

 𝑑𝑒 = 𝑐𝑑𝜃, (1.3.31) 

 

where 𝜃 is temperature, and 𝑐 is specific heat. 

 

Heat Flux 

The amount of heat crossing a unit area per unit time is called the heat flux. 

 

 𝒒 = −𝑘𝑒𝑓𝑓𝛻𝜃, (1.3.32) 

 

where 𝑘𝑒𝑓𝑓 is the thermal conductivity of the material, and it is varying with temperature. 

 

Heat Flow Rate 

The heat flow across a surface of area 𝐴, represents the heat crossing the area 𝐴 in the 

direction normal to the surface per unit time. 

 

 (𝒒. �̂�)𝐴 = −𝑘𝑒𝑓𝑓𝛻𝜃. �̂�𝐴 (1.3.33) 

 

 

1.4.  Equation of Continuity 
 

For earning the continuity equation we exert the mass conservation law to the finite fixed 

control volume as the following relation 

 

 𝑑

𝑑𝑡
(Mass in volume) = Mass flow into volume,  

(1.4.1) 

 

then by using the relations (1.3.10) and (1.3.12) we gain 

 

 𝑑

𝑑𝑡
∭𝜌𝑑𝜈 =∯𝜌𝑽. (−�̂�)𝑑𝐴 

 

(1.4.2) 

 

The negative sign is necessary because �̂� is outward. According to Gauss’s theorem we 

rewrite the integral equality (1.4.2) as 

 

 
∯𝜌𝑽. �̂�𝑑𝐴 =∭𝛻. (𝜌𝑽)𝑑𝜈, 

 

(1.4.3) 

 

now we insert the value of (1.4.3) into (1.4.2), and thus 

  

 
∭(

𝜕𝜌

𝜕𝑡
+ 𝛻. (𝜌𝑽))𝑑𝜈 = 0 

 

(1.4.4) 
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The relation (1.4.4) must hold for any control volume and in particular for every 

infinitesimal control volume at every point in the flow, then 

 

 𝜕𝜌

𝜕𝑡
+ 𝛻. (𝜌𝑽) = 0 

 

(1.4.5) 

 

The equation (1.4.5) is called the Continuity Equation. Since for the steady flow density 

doesn’t vary in time, then the equality (1.4.5) is stated as 

 

 𝛻. (𝜌𝑽) = 0, (1.4.6) 

 

and also for low-speed flow (incompressible flow), steady or unsteady, the density 𝜌 is 

constant and we express the equation (1.4.6) as 

 

 𝛻. 𝑽 = 0, (1.4.7) 

 

which the equality states that the velocity field has zero divergence for low-speed flow. 

 

1.5. Equation of Momentum 
 

Based on Newton’s second law, and by applying the impulse of a force 𝑭 to some mass, 

during a short time interval 𝑑𝑡, a momentum change 𝑑𝑷𝑎 in that affected mass is produced. 

Now we apply this rule for a fixed control volume. 

 

 𝑑𝑷𝑎
𝑑𝑡

= 𝑭, 
 

(1.5.1) 

then 

 𝑑𝑷𝑎
𝑑𝑡

+ 𝑷𝑜𝑢𝑡
′ − 𝑷𝑖𝑛

′ = 𝑭 
 

(1.5.2) 

 

 

 

 

 

 

 

(1.5.3) 

 

In the equation (1.5.2), 𝑷 is defined as the instantaneous momentum inside the control 

volume. 

 

 
𝑷(𝑡) =∭𝜌𝑽𝑑𝜈 

 

 

(1.5.4) 

By evaluating a surface integral of the momentum flux over the entire boundary we have 
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𝑷𝒐𝒖𝒕
′ − 𝑷𝒊𝒏

′ =∯𝜌(𝑽. �̂�)𝑽𝑑𝐴 
 

(1.5.5) 

 

Applied Forces 

The force 𝑭 consists of two types: 

 

1. Body forces. These act on fluid inside the volume. Gravity is the most important 

body force. 

 
𝑭𝑔𝑟𝑎𝑣𝑖𝑡𝑦 =∭𝜌𝒈𝑑𝜈 

 

(1.5.6) 

 

2. Surface forces. These act on the surface of the volume. Pressure and Viscous are 

two important surface forces. 

 
𝑭𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 =∯𝑝(−�̂�)𝑑𝐴 

 

(1.5.7) 

 

 

 
𝑭𝑣𝑖𝑠𝑐𝑜𝑢𝑠 =∯𝝉. �̂�𝑑𝐴 

 

(1.5.8) 

 

 

 

 

 

 

 

 

 

 

 

(1.5.9) 

 

Integral Momentum Equation 

Substituting all the momentum (1.5.4), momentum flow (1.5.5), and all forces (1.5.6), 

(1.5.7), and (1.5.8) into Newton’s second law (1.5.2) we gain the integral momentum 

equation as 

 𝑑

𝑑𝑡
∭𝜌𝑽𝑑𝜈 +∯𝜌(𝑽. �̂�)𝑽𝑑𝐴 = −∯𝑝�̂�𝑑𝐴 + 

∯𝝉. �̂�𝑑𝐴 +∭𝜌𝒈𝑑𝜈, 

 

 

 

(1.5.10) 

 

then by using Gauss’s theorem and gradient theorem we earn 

 

 
∭(

𝜕(𝜌𝑽)

𝜕𝑡
+ 𝑽. 𝛻(𝜌𝑽) + 𝛻𝑝 − 𝛻. 𝝉 − 𝜌𝒈)𝑑𝜈 = 0 

 

(1.5.11) 
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The integral equation (1.5.11) must hold for any control volume and in particular for every 

infinitesimal control volume at every point in the flow, then 

 

 𝜕(𝜌𝑽)

𝜕𝑡
+ 𝑽. 𝛻(𝜌𝑽) = −𝛻𝑝 + 𝛻. 𝝉 + 𝜌𝒈 

 

(1.5.12) 

 

For low-speed flow the density is constant and we get the momentum equation (1.5.12) as 

the following 

 

 
𝜌 (
𝜕𝑽

𝜕𝑡
+ 𝑽. 𝛻𝑽) = −𝛻𝑝 + 𝛻. 𝝉 + 𝜌𝒈, 

 

(1.5.13) 

 

 
𝜌
𝐷𝑽

𝐷𝑡
= −𝛻𝑝 + 𝛻. 𝝉 + 𝜌𝒈, 

 

(1.5.14) 

 

where 
𝐷

𝐷𝑡
 is the material derivative. Also by inserting total stress tensor (1.3.24) we achieve 

 

 
𝜌
𝐷𝑽

𝐷𝑡
= 𝛻. 𝝈 + 𝜌𝒈 

 

(1.5.15) 

 

Let the velocity vector 

 

 𝑽(𝑥, 𝑦, 𝑧, 𝑡) = 𝑢(𝑥, 𝑦, 𝑧, 𝑡)𝑖 + 𝑣(𝑥, 𝑦, 𝑧, 𝑡)𝑗 + 𝑤(𝑥, 𝑦, 𝑧, 𝑡)𝑘, (1.5.16) 

 

and the acceleration vector 𝒈 = 𝑔𝑥𝑖 + 𝑔𝑦𝑗 + 𝑔𝑧𝑘, we can rewrite the Navier-Stokes 

equations (1.5.12) as the following partial differential system 

 

 𝜕(𝜌𝑢)

𝜕𝑡
+ 𝛻. (𝜌𝑢𝑽) = −

𝜕𝑝

𝜕𝑥
+ 𝜇 (∆𝑢 +

𝜕(𝛻. 𝑽)

𝜕𝑥
) + 𝜌𝑔𝑥 

 

(1.5.17) 

 

 𝜕(𝜌𝑣)

𝜕𝑡
+ 𝛻. (𝜌𝑣𝑽) = −

𝜕𝑝

𝜕𝑦
+ 𝜇 (∆𝑣 +

𝜕(𝛻. 𝑽)

𝜕𝑦
) + 𝜌𝑔𝑦 

 

(1.5.18) 

 

 𝜕(𝜌𝑤)

𝜕𝑡
+ 𝛻. (𝜌𝑤𝑽) = −

𝜕𝑝

𝜕𝑧
+ 𝜇 (∆𝑤 +

𝜕(𝛻. 𝑽)

𝜕𝑧
) + 𝜌𝑔𝑧 

 

(1.5.19) 

 

1.6. Equation of Energy 
 

Assume that 𝑒 be the thermal energy per unit mass in the volume. To earn the energy 

equation we perform the Conservation of energy law that it states 

 

Rate of Increasing of Energy in Volume = Rate of Heat Flux into Volume 

                          + Rate of Work by Surface Force 

                          + Volumetric Heat Source, 
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then we insert the values of (1.3.31), (1.3.32), and (1.3.33) into the energy conservation 

equality and we derive 

 

 𝐷

𝐷𝑡
∭𝜌𝑒𝑑𝜈 = −∯𝒒. �̂�𝑑𝐴 +∯(𝝉. 𝑽). �̂�𝑑𝐴 +∭𝑆𝑑𝜈 

 

(1.6.1) 

 

Now we apply divergence theorem for the equality (1.6.11) and we gain 

 

 𝐷

𝐷𝑡
∭𝜌𝑒𝑑𝜈 = −∭𝛻.𝒒𝑑𝜈 +∭𝛻. (𝝉. 𝑽)𝑑𝜈 +∭𝑆𝑑𝜈, 

 

(1.6.2) 

 

and 

 
∭(𝜌

𝐷𝑒

𝐷𝑡
+ 𝛻. 𝒒 − (𝝉: 𝛻𝑽) − 𝑆)𝑑𝜈 = 0 

 

(1.6.3) 

 

The integral equality (1.6.3) establish for each control volume and specially for every 

infinitesimal control volume at every point in the flow, then 

 

 
𝜌
𝐷𝑒

𝐷𝑡
+ 𝛻. 𝒒 − (𝝉: 𝛻𝑽) − 𝑆 = 0 

 

(1.6.4) 

 

Suppose that the flow is steady and any quantities depend on time, then by inserting the 

values of (1.3.31) and (1.3.32) into the relation (1.6.4) we gain 

 

 𝜌𝑐𝑽. 𝛻𝜃 = 𝛻. (𝑘𝑒𝑓𝑓𝛻𝜃) + (𝝉: 𝛻𝑽) + 𝑆  

(1.6.5) 

 

If the thermal conductivity 𝑘𝑒𝑓𝑓 is constant, we could restate the equation (1.6.5) as 

 

 𝜌𝑐𝑽. 𝛻𝜃 = 𝑘𝑒𝑓𝑓∆𝜃 + (𝝉: 𝛻𝑽) + 𝑆  

(1.6.6) 

 

1.7. Stefan Condition 
 

In the free boundary problems the boundary between solid and liquid phase changes in any 

time, and an important part in the modeling process is to prepare convenient model for 

moving boundary, and in this section we want to describe how we could earn the Stefan 

condition by separating the domain Ω = (0, 𝑙) to solid and liquid phase, then define 

 

𝐿𝑖𝑞𝑢𝑖𝑑 = {(𝑥, 𝑡): 0 < 𝑥 < ℎ(𝑡), 𝑡 > 0} 
 

𝑆𝑜𝑙𝑖𝑑 = {(𝑥, 𝑡): ℎ(𝑡) < 𝑥 < 𝑙, 𝑡 > 0} 
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(1.7.1) 

 

where 𝑥 = ℎ(𝑡) is the free boundary between solid and liquid parts (1.7.1). Hence we have 

the heat equation as 

𝜃𝑡 = 𝛼𝐿𝜃𝑥𝑥  ;  0 < 𝑥 < ℎ(𝑡), 
 

𝜃𝑡 = 𝛼𝑆𝜃𝑥𝑥  ;  ℎ(𝑡) < 𝑥 < 𝑙, 
where 

𝛼𝐿 =
𝑘𝐿
𝜌𝑐𝐿

 

𝛼𝑆 =
𝑘𝑆
𝜌𝑐𝑆

 

Assume that 𝜃𝑀 is the melt temperature, then we can express the total enthalpy as 

 

 

𝐸(𝑡) = 𝐴(∫ (𝜌𝑐𝐿(𝜃(𝑥, 𝑡) − 𝜃𝑀) + 𝜌𝐿)𝑑𝑥

ℎ(𝑡)

0

+ ∫ 𝜌𝑐𝑆(𝜃(𝑥, 𝑡) − 𝜃𝑀)𝑑𝑥

𝑙

ℎ(𝑡)

), 

 

 

 

 

(1.7.2) 

 

and here L is the latent heat of the material. Now we differentiate the integral equation 

(1.7.2) by t and we get 

 
1

𝐴

𝑑𝐸

𝑑𝑡
=  𝜌𝑐𝐿(𝜃(ℎ(𝑡), 𝑡) − 𝜃𝑀)ℎ

′(𝑡) + 𝜌𝐿ℎ′(𝑡) + ∫ 𝜌𝑐𝐿𝜃𝑡(𝑥, 𝑡)𝑑𝑥

ℎ(𝑡)

0

 

−𝜌𝑐𝑆(𝜃(ℎ(𝑡), 𝑡) − 𝜃𝑀)ℎ
′(𝑡) + ∫ 𝜌𝑐𝑆𝜃𝑡(𝑥, 𝑡)𝑑𝑥

𝑙

ℎ(𝑡)

 

 

 

 

 

 

(1.7.3) 

 

In the integral equality (1.7.3) we set 𝜃(ℎ(𝑡), 𝑡) = 𝜃𝑀, then we have 
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1

𝐴

𝑑𝐸

𝑑𝑡
= 𝜌𝐿ℎ′(𝑡) + ∫ 𝜌𝑐𝐿𝜃𝑡(𝑥, 𝑡)𝑑𝑥

ℎ(𝑡)

0

+ ∫ 𝜌𝑐𝑆𝜃𝑡(𝑥, 𝑡)𝑑𝑥

𝑙

ℎ(𝑡)

, 

 

 

(1.7.4) 

 

in this stage we replace 𝜃𝑡(𝑥, 𝑡) by 𝜃𝑥𝑥 (𝑥, 𝑡) from the heat equation in the relation (1.7.4) 

and we reach to 

 

 
1

𝐴

𝑑𝐸

𝑑𝑡
= 𝜌𝐿ℎ′(𝑡) + ∫ 𝜌𝑐𝐿𝛼𝐿𝜃𝑥𝑥 (𝑥, 𝑡)𝑑𝑥

ℎ(𝑡)

0

+ ∫ 𝜌𝑐𝑆𝛼𝑆𝜃𝑥𝑥 (𝑥, 𝑡)𝑑𝑥

𝑙

ℎ(𝑡)

, 

 

 

(1.7.5) 

 

and finally we get 

 

 

 1

𝐴

𝑑𝐸

𝑑𝑡
= 𝜌𝐿ℎ′(𝑡) + 𝑘𝐿𝜃𝑥 (ℎ(𝑡), 𝑡) − 𝑘𝐿𝜃𝑥 (0, 𝑡) + 𝑘𝑆𝜃𝑥 (𝑙, 𝑡)

− 𝑘𝑆𝜃𝑥 (ℎ(𝑡), 𝑡) 

 

 

(1.7.6) 

 

Suppose the boundary conditions 

 

 𝑞(0, 𝑡) = 𝑘𝐿𝜃𝑥 (0, 𝑡), 
 

𝑞(𝑙, 𝑡) = 𝑘𝑆𝜃𝑥 (𝑙, 𝑡), 

(1.7.7) 

 

 

(1.7.8) 

 

also the global heat balance states that 

 

 𝑑𝐸

𝑑𝑡
= 𝐴(𝑞(0, 𝑡) − 𝑞(𝑙, 𝑡)), 

 

(1.7.9) 

 

then by enforcing the boundary conditions (1.7.7) and (1.7.8), and the global heat balance 

(1.7.9), the equality (1.7.6) could be restated as 

 

 𝜌𝐿ℎ′(𝑡) = −𝑘𝐿𝜃𝑥 (ℎ(𝑡), 𝑡) + 𝑘𝑆𝜃𝑥 (ℎ(𝑡), 𝑡) (1.7.10) 

 

The equation (1.7.10) is called Stefan condition and it expresses that the velocity ℎ′(𝑡) of 

the free boundary ℎ(𝑡) is proportional to the jump of the heat flux across the free boundary. 

If we choose only the melting process the Stefan condition (1.7.10) is shown as 

 

 𝜌𝐿ℎ′(𝑡) = −𝑘𝐿𝜃𝑥 (ℎ(𝑡), 𝑡) (1.7.11) 

 

Assume the domain Ω ∈ ℝ3, and its boundary 𝜕Ω, then the Stefan condition (1.7.11) in 

three- dimensional case could be stated as (see [41]) 

 

 [𝛻𝜃]−
+. 𝒏𝑥 = −𝜆𝒘.𝒏𝑥 = 𝜆𝑛𝑡   on 𝜕𝛺, (1.7.12) 
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where (𝒏𝑥, 𝑛𝑡) is the normal vector to the free boundary 𝜕Ω, 𝒘 is the velocity of the free 

boundary, and 𝜆 > 0 is the latent heat. 

 

1.8. Heat Transfer Equations within Boundary Conditions 

 

Now we will summarize the heat transfer equations, and prepare boundary conditions. 

 
Continuity equation 

𝜕𝜌

𝜕𝑡
+ ∇. (𝜌𝑽) = 0 

 

 
Navier-Stokes equations 

𝜌 (
𝜕𝑽

𝜕𝑡
+ 𝑽. ∇𝑽) = −∇𝑝 + ∇. 𝝉 + 𝜌𝒈 

 

 
Energy equation 

𝜌𝑐𝑽. ∇𝜃 = 𝑘𝑒𝑓𝑓∆𝜃 + (𝝉: ∇𝑽) + 𝑆 

 

 
Stefan condition 

[∇𝜃]−
+. 𝒏𝑥 = −𝜆𝒘.𝒏𝑥 = 𝜆𝑛𝑡   on Γ, 

 

where 

Ω1 = {𝜃 > 𝑇1}, Ω2 = {𝜃 < 𝑇1}, Γ = {𝜃 = 𝑇1},  
 

In the other words Ω1 is the liquid phase, Ω2 is the solid phase, and Γ is the free boundary 

between the liquid and solid phase. 

 
Other boundary and initial conditions 

 

 𝜃|𝛤 = 𝑇1 

 

 

 𝜃|𝑡=0 = 𝜓(𝑥),  𝑥 ∈ 𝛺1 

 

 

 𝜃|𝑡=0 = 𝜑(𝑥),  𝑥 ∈ 𝛺2 

 

 

 𝑽|𝛤∪𝛺2 = 0 

 

 

 

1.9. Sobolev Spaces 
 

In this section we will introduce the class of spaces that they play major role in the theory 

of modern partial differential equations, that is, Sobolev spaces. First we start by the weak 

derivative concept that was constructed on integration by parts relation. 
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Weak Derivative 

Suppose that Ω ⊂ ℝ𝑛 is a domain and 𝑢 ∈ 𝐿1(𝜔), for each bounded open set 𝜔 (�̅� ⊂ Ω), 

then we call 𝐷𝛼𝑢(𝑥) the weak derivative of 𝑢 if 

 

 
∫𝐷𝛼𝑢(𝑥). 𝑣(𝑥)𝑑𝑥

 

𝛺

= (−1)|𝛼| ∫𝑢(𝑥). 𝐷𝛼𝑣(𝑥)𝑑𝑥

 

𝛺

   ;  ∀𝑣 ∈ 𝐶0
∞(𝛺), 

 

 

(1.9.1) 

 

where 𝑪0
∞(Ω) is the space of smooth functions (infinitely differentiable) on Ω with small 

support, and 𝐷𝛼 is 

 

𝐷𝛼 = (
𝜕

𝜕𝑥1
)
𝛼1

(
𝜕

𝜕𝑥2
)
𝛼2

…(
𝜕

𝜕𝑥𝑛
)
𝛼𝑛

=
𝜕|𝛼|

𝜕𝑥1
𝛼1𝜕𝑥2

𝛼2 …𝜕𝑥𝑛
𝛼𝑛
, 

 

which multi-index 𝛼 = (𝛼1, 𝛼2, … , 𝛼𝑛) ∈ ℕ
𝑛, and |𝛼| = 𝛼1 + 𝛼2 +⋯+ 𝛼𝑛. 

 

Sobolev Space 

We define Sobolev space 𝑊𝑝
𝑘(Ω) of order k as 

 

 𝑊𝑝
𝑘(𝛺) = {𝑢 ∈ 𝐿𝑝(𝛺) ∶  𝐷

𝛼𝑢 ∈ 𝐿𝑝(𝛺), |𝛼| ≤ 𝑘}, (1.9.2) 

 

where k is non-negative integer, and 𝑝 ∈ [1,∞]. 
 

Sobolev Norm 

Sobolev space 𝑊𝑝
𝑘(Ω) is equipped with the norm that is called Sobolev norm and it is 

defined as 

 

‖𝑢‖𝑊𝑝𝑘(𝛺) = (∑ ‖𝐷𝛼𝑢‖𝐿𝑝(𝛺)
𝑝

|𝛼|≤𝑘

)

1
𝑝

 ; 1 ≤ 𝑝 < ∞, 

 

 

(1.9.3) 

 

and when 𝑝 = ∞ we define 

 

 ‖𝑢‖𝑊∞𝑘 (𝛺) = ∑ ‖𝐷𝛼𝑢‖𝐿∞(𝛺)
|𝛼|≤𝑘

 
 

(1.9.4) 

 

Now we introduce an important special case when we choose 𝑝 = 2, then the space 𝑊𝑝
𝑘(Ω)  

would be a Hilbert space within inner product 

 

 (𝑢, 𝑣)𝑊𝑝𝑘(𝛺) = ∑ (𝐷𝛼𝑢, 𝐷𝛼𝑣)

|𝛼|≤𝑘

 
 

(1.9.5) 

 

In this special case we use the notation 𝐻𝑘(Ω) instead of 𝑊𝑝
𝑘(Ω). Let’s immediately focus 

on 𝐻1(Ω) and its norm, then 
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𝐻1(𝛺) = {𝑢 ∈ 𝐿2(𝛺) ∶  

𝜕𝑢

𝜕𝑥𝑗
∈ 𝐿2(𝛺), 𝑗 = 1,2,… , 𝑛}, 

 

(1.9.6) 

 

and we define its related norm as 

 

‖𝑢‖𝐻1(𝛺) = (‖𝑢‖𝐿2(𝛺)
2 +∑‖

𝜕𝑢

𝜕𝑥𝑗
‖
𝐿2(𝛺)

2𝑛

𝑗=1

)

1
2

 

 

 

(1.9.7) 

 

The other important space of functions is 𝐻0
1(Ω) where it includes the functions in 𝐻1(Ω) 

that they are vanished on the boundary 𝜕Ω. We define 𝐻0
1(Ω) as the closure of 𝐻1(Ω) in 

the norm of ‖. ‖𝐻1(Ω). Indeed 𝑢 ∈ 𝐻0
1(Ω) if and only if 𝑢 ∈ 𝐻1(Ω), and there exists the 

sequence 𝑢𝑚 ∈ 𝐶0
∞(Ω) such that 

lim
𝑚→∞

𝑢𝑚 = 𝑢 

 

Let’s assume that Ω has smooth boundary 𝜕Ω, it is easy to show that 

 

 𝐻0
1(𝛺) = {𝑢 ∈ 𝐻1(𝛺) ∶ 𝑢 = 0 𝑜𝑛 𝜕𝛺} (1.9.8) 

 

This class of functions are applied when the Dirichlet boundary condition is supposed for 

a partial differential equation. Also we note that 𝐻0
1(Ω) is a Hilbert space within the same 

norm and inner product as 𝐻1(Ω). 
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2.1.   Stream Functions 
 

We start the work by deriving the mathematical modelling of heat transfer in Garnissage 

furnace in two-dimensional case based on stream functions. This modelling will apply the 

mass, momentum, and energy conservation laws to achieve the continuity, Navier-Stokes, 

and heat conduction equations, and to illustrate the moving boundary between the solid 

and liquid phase we exert the Stefan condition. We will state the system according to stream 

functions, and then by weak formulation. Finally we invoke the finite element method to 

gain the numerical solution of the system. 

 

Definition 

Suppose that 𝑽 = (𝑢, 𝑣, 0) is the velocity vector field of two-dimensional flows such that 

𝑽 = ∇ × 𝝍, where 𝝍 = (0,0, 𝜓); then we call 𝜓 the stream function. The stream function 

could be stated as 

 

(𝑢, 𝑣, 0) = ||

𝑖 𝑗 𝑘
𝜕

𝜕𝑥

𝜕

𝜕𝑦

𝜕

𝜕𝑧
0 0 𝜓

|| 

 

                 = (
𝜕𝜓

𝜕𝑦
,−
𝜕𝜓

𝜕𝑥
, 0), 

 

then we state the velocity vector components based on the stream function as 

 

 
𝑢 =

𝜕𝜓

𝜕𝑦
 

 

 

(2.1.1) 

 
𝑣 = −

𝜕𝜓

𝜕𝑥
 

 

(2.1.2) 

 

Before any mathematical details we need to transfer the continuity, Navier-Stokes, and 

energy conservation equation to the system according to stream function 𝜓. We will do 

this converting process in the next three sections. 

 

2.2. Continuity Equation 
 

Let’s assume the flow is steady and has low speed, then from relation (1.4.7) we have the 

continuity equation as ∇. 𝑽 = 0, then 

 

 𝜕𝑢

𝜕𝑥
+
𝜕𝑣

𝜕𝑦
= 0, 

 

(2.2.1) 

 

 now we replace the velocity components from (2.1.1), (2.1.2) into the equality (2.2.1), 

since we have supposed 𝜓 ∈ 𝐻0
1(Ω), then 
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𝜕

𝜕𝑥
(
𝜕𝜓

𝜕𝑦
) −

𝜕

𝜕𝑦
(
𝜕𝜓

𝜕𝑥
) =

𝜕2𝜓

𝜕𝑥𝜕𝑦
−
𝜕2𝜓

𝜕𝑥𝜕𝑦
= 0, 

 

Theorem 2.1. The stream function 𝜓 automatically satisfies in the continuity equation. 

 

Due to theorem 2.1 we will omit the continuity equation in the transport system in this 

section. 

 

2.3.   Navier-Stokes Equations 
 

Let’s focus on the Navier-Stokes system in two dimension that in this case the velocity 

vector field is 𝑽 = (𝑢, 𝑣), and assume that the fluid is Newtonian, then stress is 𝜇
𝜕𝑽

𝜕𝑦
, where 

𝜇 is the dynamic viscosity, and also for the steady flow 𝜇 is constant, then we could rewrite 

the relations (1.5.17) and (1.5.18) as 

 

 
𝜌 (𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
) = −

𝜕𝑝

𝜕𝑥
+ 𝜇∆𝑢 + 𝜌𝑔𝑥 

 

(2.3.1) 

 

 
𝜌 (𝑢

𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
) = −

𝜕𝑝

𝜕𝑦
+ 𝜇∆𝑣 + 𝜌𝑔𝑦 

 

(2.3.2) 

 

We divide the equations (2.3.1) and (2.3.2) by density and we earn 

 

 
𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
= −

1

𝜌

𝜕𝑝

𝜕𝑥
+ 𝜗∆𝑢 + 𝑔𝑥, 

 

(2.3.3) 

 

 
𝑢
𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
= −

1

𝜌

𝜕𝑝

𝜕𝑦
+ 𝜗∆𝑣 + 𝑔𝑦, 

 

(2.3.4) 

 

,where 𝜗 =
𝜇

𝜌
 is the kinematic viscosity. In this stage we differentiate the equation (2.3.3) 

respect to y and (2.3.4) respect to x, then we gain 

 

 𝜕𝑢

𝜕𝑦

𝜕𝑢

𝜕𝑥
+ 𝑢

𝜕2𝑢

𝜕𝑥𝜕𝑦
+
𝜕𝑣

𝜕𝑦

𝜕𝑢

𝜕𝑦
+ 𝑣

𝜕2𝑢

𝜕𝑦2
= −

1

𝜌

𝜕2𝑝

𝜕𝑦𝜕𝑥
+ 𝜗

𝜕

𝜕𝑦
(∆𝑢) 

 

(2.3.5) 

 

 𝜕𝑢

𝜕𝑥

𝜕𝑣

𝜕𝑥
+ 𝑢

𝜕2𝑣

𝜕𝑥2
+
𝜕𝑣

𝜕𝑥

𝜕𝑣

𝜕𝑦
+ 𝑣

𝜕2𝑣

𝜕𝑥𝜕𝑦
= −

1

𝜌

𝜕2𝑝

𝜕𝑥𝜕𝑦
+ 𝜗

𝜕

𝜕𝑥
(∆𝑣) 

 

(2.3.6) 

 

We subtract the equality (2.3.6) from (2.3.5), then we achieve 

 

 𝜕𝑢

𝜕𝑦

𝜕𝑢

𝜕𝑥
+ 𝑢

𝜕2𝑢

𝜕𝑥𝜕𝑦
+
𝜕𝑣

𝜕𝑦

𝜕𝑢

𝜕𝑦
+ 𝑣

𝜕2𝑢

𝜕𝑦2
−
𝜕𝑢

𝜕𝑥

𝜕𝑣

𝜕𝑥
− 𝑢

𝜕2𝑣

𝜕𝑥2
− 
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𝜕𝑣

𝜕𝑥

𝜕𝑣

𝜕𝑦
− 𝑣

𝜕2𝑣

𝜕𝑥𝜕𝑦
= 𝜗

𝜕

𝜕𝑦
(∆𝑢) − 𝜗

𝜕

𝜕𝑥
(∆𝑣) 

(2.3.7) 

We continue the process by inserting the values of velocity components from (2.1.1) and 

(2.1.2) into the differential equation (2.3.7) and we derive the equality respect to stream 

function 𝜓 as 

 

 𝜕𝜓

𝜕𝑦

𝜕3𝜓

𝜕𝑥𝜕𝑦2
−
𝜕𝜓

𝜕𝑥

𝜕3𝜓

𝜕𝑦3
+
𝜕𝜓

𝜕𝑦

𝜕3𝜓

𝜕𝑥3
−
𝜕𝜓

𝜕𝑥

𝜕3𝜓

𝜕𝑦𝜕𝑥2
= 

 

𝜗 (
𝜕4𝜓

𝜕𝑥4
+ 2

𝜕4𝜓

𝜕𝑥2𝜕𝑦2
+
𝜕4𝜓

𝜕𝑦4
), 

 

 

 

 

(2.3.8) 

 

and we simplify (2.3.8) as 

 

 𝜕𝜓

𝜕𝑦

𝜕

𝜕𝑥
(
𝜕2𝜓

𝜕𝑥2
+
𝜕2𝜓

𝜕𝑦2
) −

𝜕𝜓

𝜕𝑥

𝜕

𝜕𝑦
(
𝜕2𝜓

𝜕𝑥2
+
𝜕2𝜓

𝜕𝑦2
) = 𝜗∆2𝜓, 

 

(2.3.9) 

 

and finally we state the relation (2.3.9) as 

 

 𝜕𝜓

𝜕𝑦

𝜕

𝜕𝑥
(∆𝜓) −

𝜕𝜓

𝜕𝑥

𝜕

𝜕𝑦
(∆𝜓) = 𝜗∆2𝜓 

 

(2.3.10) 

 

Theorem 2.2. The momentum conservation equation for incompressible Newtonian fluid 

in two-dimension based on stream function is stated as 

 
𝜕𝜓

𝜕𝑦

𝜕

𝜕𝑥
(∆𝜓) −

𝜕𝜓

𝜕𝑥

𝜕

𝜕𝑦
(∆𝜓) = 𝜗∆2𝜓 

 

2.4.   Energy Conservation Equation 
 

Modeling of conservation equations respect to stream function 𝜓 is finished by heat 

conduction equation, and remember that the flow has been supposed steady and 

incompressible, then we restate the relation (1.6.6) as 

 

 
𝑢
𝜕𝜃

𝜕𝑥
+ 𝑣

𝜕𝜃

𝜕𝑦
=
𝑘

𝜌𝑐
∆𝜃 +

1

𝜌𝑐
𝑆 

 

(2.4.1) 

 

If we set the velocity components from (2.1.1) and (2.1.2) into the equation (2.4.1) we will 

have 

 

 𝜕𝜓

𝜕𝑦

𝜕𝜃

𝜕𝑥
−
𝜕𝜓

𝜕𝑥

𝜕𝜃

𝜕𝑦
=
𝑘

𝜌𝑐
∆𝜃 +

1

𝜌𝑐
𝑆 

 

(2.4.2) 
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Theorem 2.3. The energy conservation equation for incompressible Newtonian fluid in 

two-dimension based on stream function can be stated as 

 
𝜕𝜓

𝜕𝑦

𝜕𝜃

𝜕𝑥
−
𝜕𝜓

𝜕𝑥

𝜕𝜃

𝜕𝑦
=
𝑘

𝜌𝑐
∆𝜃 +

1

𝜌𝑐
𝑆 

 

2.5.   Weak Formulation 
 

To follow the finite element method to find the numerical solution of the heat transfer 

system we need to construct the variational version of the system, that is, it is necessary to 

state the system in the integral equations form. Assume that 𝜂 ∈ 𝐻0
1(Ω), and multiply the 

equality (2.3.10) by 𝜂, and integrate the both sides of equality, then 

 
∬(

𝜕

𝜕𝑥
(∆𝜓)

𝜕𝜓

𝜕𝑦
𝜂) 𝑑𝑥𝑑𝑦

 

Ω

−∬(
𝜕

𝜕𝑦
(∆𝜓)

𝜕𝜓

𝜕𝑥
𝜂) 𝑑𝑥𝑑𝑦

 

Ω

=∬(𝜗∆2𝜓𝜂)𝑑𝑥𝑑𝑦

 

Ω

 

 

 

 

 

(2.5.1) 

 

We exert the integration by parts in the integral equality (2.5.1) and we earn 

 

 
−∬∆𝜓(

𝜕𝜂

𝜕𝑥

𝜕𝜓

𝜕𝑦
+
𝜕2𝜓

𝜕𝑥𝜕𝑦
𝜂)𝑑𝑥𝑑𝑦

 

Ω

+∬∆𝜓(
𝜕𝜂

𝜕𝑦

𝜕𝜓

𝜕𝑥
+
𝜕2𝜓

𝜕𝑥𝜕𝑦
𝜂)𝑑𝑥𝑑𝑦

 

Ω

 

 

= 𝜗∬(∆𝜓∆𝜂)𝑑𝑥𝑑𝑦

 

Ω

, 

 

 

 

 

 

(2.5.2) 

 

now we simplify the relation (2.5.2) as 

 

 
∬∆𝜓(

𝜕𝜂

𝜕𝑥

𝜕𝜓

𝜕𝑦
−
𝜕𝜂

𝜕𝑦

𝜕𝜓

𝜕𝑥
+ 𝜗∆𝜂)𝑑𝑥𝑑𝑦

 

Ω

= 0 
 

 

(2.5.3) 

 

Theorem 2.4. Suppose that 𝜂 is a smooth test function belongs to 𝐻0
1(Ω), then the weak 

formulation of momentum conservation equation (2.3.10) is constructed as 

 

∬∆𝜓(
𝜕𝜂

𝜕𝑥

𝜕𝜓

𝜕𝑦
−
𝜕𝜂

𝜕𝑦

𝜕𝜓

𝜕𝑥
+ 𝜗∆𝜂)𝑑𝑥𝑑𝑦

 

Ω

= 0 

 

We complete the process by the same technic for energy equation (2.4.2) and we gain 

 

 
∬(

𝜕𝜓

𝜕𝑦

𝜕𝜃

𝜕𝑥
𝜂) 𝑑𝑥𝑑𝑦

 

Ω

−∬(
𝜕𝜓

𝜕𝑥

𝜕𝜃

𝜕𝑦
𝜂) 𝑑𝑥𝑑𝑦

 

Ω

=∬(
𝑘

𝜌𝑐
∆𝜃𝜂)𝑑𝑥𝑑𝑦

 

Ω
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+∬(
𝑆

𝜌𝑐
𝜂) 𝑑𝑥𝑑𝑦

 

Ω

, 

 

(2.5.4) 

 

again we perform the integration by parts (Green’s first identity) in the equality (2.5.4) and 

we derive 

 

 
−∬𝜓(

𝜕2𝜃

𝜕𝑥𝜕𝑦
𝜂 +

𝜕𝜃

𝜕𝑥

𝜕𝜂

𝜕𝑦
)𝑑𝑥𝑑𝑦

 

Ω

+∬𝜓(
𝜕2𝜃

𝜕𝑥𝜕𝑦
𝜂 +

𝜕𝜃

𝜕𝑦

𝜕𝜂

𝜕𝑥
)𝑑𝑥𝑑𝑦

 

Ω

 

 

= −
𝑘

𝜌𝑐
∬(𝛻𝜃. 𝛻𝜂)𝑑𝑥𝑑𝑦

 

Ω

+
𝑘

𝜌𝑐
∫𝛻𝜃. 𝒏𝑥𝜂

 

𝜕Ω

+
𝑆

𝜌𝑐
∬𝜂𝑑𝑥𝑑𝑦

 

Ω

 

 

 

 

 

 

(2.5.5) 

 

We force the Stefan condition (1.7.12) in the relation (2.5.5) and we have 

 
−∬𝜓(

𝜕𝜃

𝜕𝑥

𝜕𝜂

𝜕𝑦
−
𝜕𝜃

𝜕𝑦

𝜕𝜂

𝜕𝑥
) 𝑑𝑥𝑑𝑦

 

Ω

= −
𝑘

𝜌𝑐
∬𝛻𝜃. 𝛻𝜂𝑑𝑥𝑑𝑦

 

Ω

+ 

 

𝑘

𝜌𝑐
∫𝜆𝑛𝑡𝜂

 

𝜕Ω

+
𝑆

𝜌𝑐
∬𝜂𝑑𝑥𝑑𝑦

 

Ω

, 

 

 

 

 

 

(2.5.6) 

 

at last we call the divergence theorem for the relation (2.5.6) and we achieve 

 

 
−∬𝜓(

𝜕𝜃

𝜕𝑥

𝜕𝜂

𝜕𝑦
−
𝜕𝜃

𝜕𝑦

𝜕𝜂

𝜕𝑥
) 𝑑𝑥𝑑𝑦

 

Ω

= −
𝑘

𝜌𝑐
∬𝛻𝜃. 𝛻𝜂𝑑𝑥𝑑𝑦

 

Ω

+ 

 

𝑘𝜆

𝜌𝑐
∬
𝜕𝜂

𝜕𝑡
𝑑𝑥𝑑𝑦

 

Ω

+
𝑆

𝜌𝑐
∬𝜂𝑑𝑥𝑑𝑦

 

Ω

 

 

 

 

 

 

(2.5.7) 

 

Theorem 2.5. Suppose that 𝜂 is a smooth test function from 𝐻0
1(Ω), then the weak 

formulation of energy conservation equation (2.4.2) is computed as 

 

−∬𝜓(
𝜕𝜃

𝜕𝑥

𝜕𝜂

𝜕𝑦
−
𝜕𝜃

𝜕𝑦

𝜕𝜂

𝜕𝑥
) 𝑑𝑥𝑑𝑦

 

Ω

= −
𝑘

𝜌𝑐
∬∇𝜃. ∇𝜂𝑑𝑥𝑑𝑦

 

Ω

+ 

𝑘𝜆

𝜌𝑐
∬
𝜕𝜂

𝜕𝑡
𝑑𝑥𝑑𝑦

 

Ω

+
𝑆

𝜌𝑐
∬𝜂𝑑𝑥𝑑𝑦

 

Ω

 

 

We interpret the transport phenomena system as the problem of finding 𝜓, 𝜃 ∈ 𝐻0
1(Ω) such 

that 𝜓, 𝜃 satisfy in the integral equations (2.5.3) and (2.5.7). 
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2.6.   Discretization of Domain 
 

To finish the process of the finite element method we will construct the finite-dimensional 

subspace 𝑉ℎ ⊂ 𝐻0
1(Ω) which consists of test functions of the form 

 

 

𝜙(𝑥, 𝑦) = {
𝑒𝑥𝑝 (

1

𝑥2 − 1
) 𝑒𝑥𝑝 (

1

𝑦2 − 1
) |𝑥| < 1, |𝑦| < 1

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

, 

 

 

(2.6.1) 

 

with the shape 

 

 

 

 

 

 

 

 

 

 

 

(2.6.2) 

Now we replace the approximate values 𝜓ℎ and 𝜃ℎ instead of 𝜓 and 𝜃 in the equalities 

(2.5.3) and (2.5.7), and we redefine the heat transfer problem as the problem of finding 

𝜓ℎ, 𝜃ℎ ∈ 𝑉ℎ such that 𝜓ℎ, 𝜃ℎ satisfy in the integral equations 

 

 
∬∆𝜓ℎ (

𝜕𝜂ℎ
𝜕𝑥

𝜕𝜓ℎ
𝜕𝑦

−
𝜕𝜂ℎ
𝜕𝑦

𝜕𝜓ℎ
𝜕𝑥

+ 𝜗∆𝜂ℎ) 𝑑𝑥𝑑𝑦

 

Ω

= 0 
 

 

(2.6.3) 

 
−∬𝜓ℎ (

𝜕𝜃ℎ
𝜕𝑥

𝜕𝜂ℎ
𝜕𝑦

−
𝜕𝜃ℎ
𝜕𝑦

𝜕𝜂ℎ
𝜕𝑥
) 𝑑𝑥𝑑𝑦

 

Ω

= −
𝑘

𝜌𝑐
∬(𝛻𝜃ℎ. 𝛻𝜂ℎ)𝑑𝑥𝑑𝑦

 

Ω

+ 

 

𝑘𝜆

𝜌𝑐
∬

𝜕𝜂ℎ
𝜕𝑡

 

Ω

+
𝑆

𝜌𝑐
∬𝜂ℎ𝑑𝑥𝑑𝑦

 

Ω

, 

 

 

 

 

 

(2.6.4) 

 

for every 𝜂ℎ ∈ 𝑉ℎ. 

 

Suppose that 

dim𝑉ℎ = 𝑁(ℎ), 
and 

𝑉ℎ = 𝑠𝑝𝑎𝑛{𝜙1, 𝜙2, 𝜙3, … , 𝜙𝑁(ℎ)}, 
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where the basis functions 𝜙𝑖(𝑥, 𝑦), 𝑖 = 1,2, … ,𝑁(ℎ), have small support. Now we put on 

the approximate solutions 𝜓ℎ, 𝜃ℎ in terms of the basis functions 𝜙𝑖(𝑥, 𝑦), we can write 

 

 

𝜓ℎ(𝑥, 𝑦) = ∑ 𝑈𝑖𝜙𝑖(𝑥, 𝑦)

𝑁(ℎ)

𝑖=1

, 

 

 

(2.6.5) 

 

 

𝜃ℎ(𝑥, 𝑦) = ∑ 𝑉𝑖𝜙𝑖(𝑥, 𝑦)

𝑁(ℎ)

𝑖=1

, 

 

 

(2.6.6) 

 

where 𝑈𝑖 , 𝑉𝑖  , 𝑖 = 1,2,3, … ,𝑁(ℎ), must to be determined. We replace 𝜓ℎ from (2.6.5) into 

the momentum integral equation (2.6.3) and we derive 

 

 

∬∑ 𝑈𝑖∆𝜙𝑖

𝑁(ℎ)

𝑖=1

(
𝜕𝜙𝑘
𝜕𝑥

∑ 𝑈𝑗
𝜕𝜙𝑗
𝜕𝑦

𝑁(ℎ)

𝑗=1

−
𝜕𝜙𝑘
𝜕𝑦

∑ 𝑈𝑗
𝜕𝜙𝑗
𝜕𝑥

𝑁(ℎ)

𝑗=1

+ 𝜗∆𝜙𝑘)𝑑𝑥𝑑𝑦

 

Ω

= 0 

 

;  𝑘 = 1,2,3,… , 𝑁(ℎ) 

 

 

(2.6.7) 

 

The relation (2.6.7) could be expressed as 

 

 

∑ ∑ 𝑈𝑖𝑈𝑗

𝑁(ℎ)

𝑗=1

𝑁(ℎ)

𝑖=1

∬∆𝜙𝑖 (
𝜕𝜙𝑗
𝜕𝑦

𝜕𝜙𝑘
𝜕𝑥

−
𝜕𝜙𝑗
𝜕𝑥

𝜕𝜙𝑘
𝜕𝑦

)𝑑𝑥𝑑𝑦

 

Ω

+ 

 

∑ 𝑈𝑖

𝑁(ℎ)

𝑖=1

∬𝜗∆𝜙𝑖∆𝜙𝑘𝑑𝑥𝑑𝑦

 

Ω

= 0 

 

 

 

 

 

(2.6.8) 

 

Also we simplify the equality (2.6.8) as the nonlinear system 

 

 

∑ ∑ 𝑈𝑖𝑈𝑗

𝑁(ℎ)

𝑗=1

𝑁(ℎ)

𝑖=1

𝑎𝑖𝑗𝑘 + ∑ 𝑈𝑖

𝑁(ℎ)

𝑖=1

𝑏𝑖𝑘 = 0, 

 

 

(2.6.9) 

 

where the coefficients are 

 
𝑎𝑖𝑗𝑘 =∬∆𝜙𝑖 (

𝜕𝜙𝑗
𝜕𝑦

𝜕𝜙𝑘
𝜕𝑥

−
𝜕𝜙𝑗
𝜕𝑥

𝜕𝜙𝑘
𝜕𝑦

)𝑑𝑥𝑑𝑦

 

Ω

 
 

 

(2.6.10) 

 

 
𝑏𝑖𝑘 = 𝜗∬∆𝜙𝑖∆𝜙𝑘𝑑𝑥𝑑𝑦

 

Ω

 
 

 

(2.6.11) 
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Theorem 2.6. Let’s discrete the domain Ω by the finite-dimensional subspace 𝑉ℎ ⊂ 𝐻0
1(Ω) 

which consists of smooth test functions 𝜙𝑖(𝑥, 𝑦), 𝑖 = 1,2, … ,𝑁(ℎ) with small support, 

where dim𝑉ℎ = 𝑁(ℎ), and 𝑉ℎ = 𝑠𝑝𝑎𝑛{𝜙1, 𝜙2, 𝜙3, … , 𝜙𝑁(ℎ)}, then the equality (2.5.3) can 

be showed as the nonlinear system of equations 

 

∑ ∑ 𝑈𝑖𝑈𝑗

𝑁(ℎ)

𝑗=1

𝑁(ℎ)

𝑖=1

𝑎𝑖𝑗𝑘 + ∑ 𝑈𝑖

𝑁(ℎ)

𝑖=1

𝑏𝑖𝑘 = 0, 𝑘 = 1,2,3,… ,𝑁(ℎ), 

where 

 

𝑎𝑖𝑗𝑘 =∬∆𝜙𝑖 (
𝜕𝜙𝑗
𝜕𝑦

𝜕𝜙𝑘
𝜕𝑥

−
𝜕𝜙𝑗
𝜕𝑥

𝜕𝜙𝑘
𝜕𝑦

)𝑑𝑥𝑑𝑦

 

Ω

, 𝑏𝑖𝑘 = 𝜗∬∆𝜙𝑖∆𝜙𝑘𝑑𝑥𝑑𝑦

 

Ω

. 

 

In the final part we repeat the same approach for the energy conservation equation. First 

we suppose the test function 𝜉(𝑥, 𝑦, 𝑡) that it depends on time 

 

 𝜉(𝑥, 𝑦, 𝑡) = 

 

{
𝑒𝑥𝑝 (

1

𝑡2 − 1
) 𝑒𝑥𝑝 (

1

𝑥2 − 1
) 𝑒𝑥𝑝 (

1

𝑦2 − 1
) |𝑥| < 1, |𝑦| < 1, |𝑡| < 1

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

, 

 

 

(2.6.12) 

 

 

then we insert 𝜃ℎ from (2.6.6) into the relation (2.64) and we achieve 

 

 

−∬𝜓ℎ ((∑ 𝑉𝑖
𝜕𝜉𝑖
𝜕𝑥

𝑁(ℎ)

𝑖=1

)
𝜕𝜉𝑗
𝜕𝑦

− (∑ 𝑉𝑖

𝑁(ℎ)

𝑖=1

𝜕𝜉𝑖
𝜕𝑦
)
𝜕𝜉𝑗
𝜕𝑥
)𝑑𝑥𝑑𝑦

 

Ω

= 

 

−
𝑘

𝜌𝑐
∬(∑ 𝑉𝑖𝛻𝜉𝑖

𝑁(ℎ)

𝑖=1

. 𝛻𝜉𝑗)𝑑𝑥𝑑𝑦

 

Ω

+
𝑘𝜆

𝜌𝑐
∬

𝜕𝜉𝑗
𝜕𝑡

 

Ω

+
𝑆

𝜌𝑐
∬𝜉𝑗𝑑𝑥𝑑𝑦

 

Ω

 

 

 

 

 

 

(2.6.13) 

 

The integral equality (2.6.13) is stated as 

 

 

∑ 𝑉𝑖 (∬(−𝜓ℎ
𝜕𝜉𝑖
𝜕𝑥

𝜕𝜉𝑗
𝜕𝑦

+ 𝜓ℎ
𝜕𝜉𝑖
𝜕𝑦

𝜕𝜉𝑗
𝜕𝑥

+
𝑘

𝜌𝑐
𝛻𝜉𝑖 . 𝛻𝜉𝑗)𝑑𝑥𝑑𝑦

 

Ω

)

𝑁(ℎ)

𝑖=1

= 

 

𝑘𝜆

𝜌𝑐
∬

𝜕𝜉𝑗
𝜕𝑡

 

Ω

+
𝑆

𝜌𝑐
∬𝜉𝑗𝑑𝑥𝑑𝑦

 

Ω

, 

 

 

 

 

 

(2.6.14) 
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and at the end we earn the linear system 

 

∑ 𝑐𝑖𝑗𝑉𝑖 = 𝑑𝑗

𝑁(ℎ)

𝑖=1

, 

 

𝑗 = 1,2,3, … ,𝑁(ℎ), 

 

 

(2.6.15) 

 

where the coefficients are 

 

 
𝑐𝑖𝑗 =∬(−𝜓ℎ

𝜕𝜉𝑖
𝜕𝑥

𝜕𝜉𝑗
𝜕𝑦

+ 𝜓ℎ
𝜕𝜉𝑖
𝜕𝑦

𝜕𝜉𝑗
𝜕𝑥

+
𝑘

𝜌𝑐
𝛻𝜉𝑖 . 𝛻𝜉𝑗)𝑑𝑥𝑑𝑦

 

Ω

 
 

 

(2.6.16) 

 

 
𝑑𝑗 =

𝑘𝜆

𝜌𝑐
∬

𝜕𝜉𝑗
𝜕𝑡

 

Ω

+
𝑆

𝜌𝑐
∬𝜉𝑗𝑑𝑥𝑑𝑦

 

Ω

 
 

 

(2.6.17) 

 

Theorem 2.7. Let’s discrete the domain Ω by the finite-dimensional subspace 𝑉ℎ ⊂ 𝐻0
1(Ω) 

which consists of smooth test functions 𝜉𝑖(𝑥, 𝑦), 𝑖 = 1,2, … ,𝑁(ℎ) with small support, 

where dim𝑉ℎ = 𝑁(ℎ), and 𝑉ℎ = 𝑠𝑝𝑎𝑛{𝜉1, 𝜉2, 𝜉3, … , 𝜉𝑁(ℎ)}, then the equality (2.5.7) can 

be showed as the linear system of equations 

 

∑ 𝑐𝑖𝑗𝑉𝑖 = 𝑑𝑗

𝑁(ℎ)

𝑖=1

, 𝑗 = 1,2,3, … , 𝑁(ℎ), 

where 

 

𝑐𝑖𝑗 =∬(−𝜓ℎ
𝜕𝜉𝑖
𝜕𝑥

𝜕𝜉𝑗
𝜕𝑦

+ 𝜓ℎ
𝜕𝜉𝑖
𝜕𝑦

𝜕𝜉𝑗
𝜕𝑥

+
𝑘

𝜌𝑐
∇𝜉𝑖 . ∇𝜉𝑗)𝑑𝑥𝑑𝑦

 

Ω

, 

𝑑𝑗 =
𝑘𝜆

𝜌𝑐
∬

𝜕𝜉𝑗
𝜕𝑡

 

Ω

+
𝑆

𝜌𝑐
∬𝜉𝑗𝑑𝑥𝑑𝑦

 

Ω

. 

 

Thus by considering the systems (2.6.9) and (2.6.15) we redefine the transport phenomena 

as the problem of finding (𝑈1, 𝑈2, … , 𝑈𝑁(ℎ)) ∈ 𝑅
𝑁(ℎ) and (𝑉1, 𝑉2, … , 𝑉𝑁(ℎ)) ∈ 𝑅

𝑁(ℎ), such 

that they satisfy in the systems (2.6.9) and (2.6.15). 

 

As we see the nonlinear system (2.6.9) we has 𝑁(ℎ) equations within 𝑁(ℎ) unknowns 

𝑈1, 𝑈2, … , 𝑈𝑁(ℎ), then we will execute the Newton’s method to search the numerical 

solution of the system. Also the linear system (2.6.15) has 𝑁(ℎ) equations within 𝑁(ℎ) 
unknowns 𝑉1, 𝑉2, … , 𝑉𝑁(ℎ), then we can perform every classical numerical methods to solve 

this linear system. 
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2.7.   the Newton’s Method 
 

In the final stage of the process of numerical approach we show that how the Newton 

method could be applied to investigate the numerical solution of nonlinear system (2.6.9), 

to start the method define the functions 

 

 

𝐹𝑘(𝑈1, 𝑈2, … , 𝑈𝑁(ℎ)) = ∑ ∑ 𝑈𝑖𝑈𝑗

𝑁(ℎ)

𝑗=1

𝑁(ℎ)

𝑖=1

𝑎𝑖𝑗𝑘 + ∑ 𝑈𝑖

𝑁(ℎ)

𝑖=1

𝑏𝑖𝑘 

 

;  𝑘 = 1,2,3, … ,𝑁(ℎ) 

 

 

(2.7.1) 

 

Newton’s method works according to following iterative process 

 

 𝑼𝑛+1 = 𝑼𝑛 − (𝑫𝑭)−1(𝑼𝑛)𝑭(𝑼𝑛), (2.7.2) 

 

where  𝑼𝟎 is the initial vector as 

 

  𝑼𝟎 = (𝑈10 , 𝑈20 , … , 𝑈𝑁(ℎ)0)
𝑇
 

 

(2.7.3) 

The Jacobean matrix DF in the relation (2.7.2) is defined 

 

 

𝑫𝑭 =

(

 
 
 
 
 

𝜕𝐹1
𝜕𝑈1

𝜕𝐹1
𝜕𝑈2

⋯
𝜕𝐹1
𝜕𝑈𝑁(ℎ)

𝜕𝐹2
𝜕𝑈1

𝜕𝐹2
𝜕𝑈2

⋯
𝜕𝐹2
𝜕𝑈𝑁(ℎ)

⋮ ⋮  ⋮
𝜕𝐹𝑁(ℎ)

𝜕𝑈1

𝜕𝐹𝑁(ℎ)

𝜕𝑈2
⋯

𝜕𝐹𝑁(ℎ)

𝜕𝑈𝑁(ℎ))

 
 
 
 
 

, 

 

 

 

 

(2.7.4) 

 

and finally the value vector F is 

 

 
𝑭 = (𝐹1(𝑈), 𝐹2(𝑈), … , 𝐹𝑁(ℎ)(𝑈))

𝑇
. 

 

(2.7.5) 
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3.1.   Vector Analysis 
 

In the current chapter we will prepare some basic relations in vector analysis to apply them 

in the modeling process in cylindrical coordinate system. In the previous chapter we had 

noticed that the Garnissage tank has cylinder shape and our objective is to use convenient 

symmetric properties of furnace in the mathematical modeling process. The great 

advantage of this modeling is it reduces one dimension, therefore we will achieve the 

modeling in three dimension space instead of four dimension. 

 

We start the modeling in cylindrical coordinate immediately after defining some necessary 

operators in vector analysis, then we derive the mathematical modeling and also its weak 

formulation, and finally we discrete the domain to replace the approximate variables. 

 

Gradient 

Assume that 𝑒𝑟 , 𝑒𝜑 and 𝑒𝑧 are unit normal vectors in the cylindrical coordinate, that is, 

 

𝑒𝑟 = (𝑐𝑜𝑠𝜑, 𝑠𝑖𝑛𝜑, 0), 
 

𝑒𝜑 = (−𝑠𝑖𝑛𝜑, 𝑐𝑜𝑠𝜑, 0), 

 

𝑒𝑧 = (0,0,1). 
 

We compute the partial derivatives 

 
𝜕𝑓

𝜕𝑥
=
𝜕𝑓

𝜕𝑟
𝑐𝑜𝑠𝜑 −

1

𝑟

𝜕𝑓

𝜕𝜑
𝑠𝑖𝑛𝜑, 

 
𝜕𝑓

𝜕𝑦
=
𝜕𝑓

𝜕𝑟
𝑠𝑖𝑛𝜑 +

1

𝑟

𝜕𝑓

𝜕𝜑
𝑐𝑜𝑠𝜑, 

 

and insert them into the gradient operator ∇𝑓 =
𝜕𝑓

𝜕𝑥
𝑖 +

𝜕𝑓

𝜕𝑦
𝑗 +

𝜕𝑓

𝜕𝑧
𝑘, then we have 

 

∇𝑓 = (
𝜕𝑓

𝜕𝑟
𝑐𝑜𝑠𝜑 −

1

𝑟

𝜕𝑓

𝜕𝜑
𝑠𝑖𝑛𝜑) (𝑒𝑟𝑐𝑜𝑠𝜑 − 𝑒𝜑𝑠𝑖𝑛𝜑) 

 

+(
𝜕𝑓

𝜕𝑟
𝑠𝑖𝑛𝜑 +

1

𝑟

𝜕𝑓

𝜕𝜑
𝑐𝑜𝑠𝜑) (𝑒𝑟𝑠𝑖𝑛𝜑 + 𝑒𝜑𝑐𝑜𝑠𝜑) +

𝜕𝑓

𝜕𝑧
𝑒𝑧, 

 

therefore we get the gradient operator in the cylindrical coordinate system as 

 

 
𝛻𝑓 =

𝜕𝑓

𝜕𝑟
𝑒𝑟 +

1

𝑟

𝜕𝑓

𝜕𝜑
𝑒𝜑 +

𝜕𝑓

𝜕𝑧
𝑒𝑧 

 

(3.1.1) 
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Divergence 

To determine the divergence operator in the cylindrical coordinate we write 

 

∇. 𝑽 = (
𝜕

𝜕𝑟
𝑒𝑟 +

1

𝑟

𝜕

𝜕𝜑
𝑒𝜑 +

𝜕

𝜕𝑧
𝑒𝑧) . (𝑢, 𝑣, 𝑤), 

then we will get 

 

 
𝛻. 𝑽 =

𝜕𝑢

𝜕𝑟
𝑐𝑜𝑠𝜑 −

1

𝑟

𝜕𝑢

𝜕𝜑
𝑠𝑖𝑛𝜑 +

𝜕𝑣

𝜕𝑟
𝑠𝑖𝑛𝜑 +

1

𝑟

𝜕𝑣

𝜕𝜑
𝑐𝑜𝑠𝜑 +

𝜕𝑤

𝜕𝑧
, 

 

 

(3.1.2) 

in the other hand we can express the velocity vector field as 

 

 𝑽 = 𝑢𝑟𝑒𝑟 + 𝑢𝜑𝑒𝜑 + 𝑢𝑧𝑒𝑧, (3.1.3) 

 

where the velocity components 𝑢𝑟, 𝑢𝜑, and 𝑢𝑧 are 

 

 𝑢𝑟 = 𝑢 𝑐𝑜𝑠𝜑 + 𝑣 𝑠𝑖𝑛𝜑, (3.1.4) 

 

 𝑢𝜑 = −𝑢 𝑠𝑖𝑛𝜑 + 𝑣 𝑐𝑜𝑠𝜑, (3.1.5) 

 

 𝑢𝑧 = 𝑤. (3.1.6) 

 

We differentiate the relations (3.1.4) and (3.1.5) by  𝑟 and 𝜑 to gain 

 

 𝜕𝑢𝑟
𝜕𝑟

=
𝜕𝑢

𝜕𝑟
𝑐𝑜𝑠𝜑 +

𝜕𝑣

𝜕𝑟
𝑠𝑖𝑛𝜑, 

(3.1.7) 

 

 𝜕𝑢𝜑

𝜕𝑟
= −

𝜕𝑢

𝜕𝑟
𝑠𝑖𝑛𝜑 +

𝜕𝑣

𝜕𝑟
𝑐𝑜𝑠𝜑, 

(3.1.8) 

 

 𝜕𝑢𝑟
𝜕𝜑

= 𝑢𝜑 +
𝜕𝑢

𝜕𝜑
𝑐𝑜𝑠𝜑 +

𝜕𝑣

𝜕𝜑
𝑠𝑖𝑛𝜑, 

(3.1.9) 

 

 𝜕𝑢𝜑

𝜕𝜑
= −𝑢𝑟 −

𝜕𝑢

𝜕𝜑
𝑠𝑖𝑛𝜑 +

𝜕𝑣

𝜕𝜑
𝑐𝑜𝑠𝜑. 

(3.1.10) 

 

From the partial derivative equalities (3.1.7) and (3.1.8) we earn 
𝜕𝑢

𝜕𝑟
 and 

𝜕𝑣

𝜕𝑟
 as 

 

 𝜕𝑢

𝜕𝑟
=
𝜕𝑢𝑟
𝜕𝑟

𝑐𝑜𝑠𝜑 −
𝜕𝑢𝜑

𝜕𝑟
𝑠𝑖𝑛𝜑, 

 

(3.1.11) 

 

 𝜕𝑣

𝜕𝑟
=
𝜕𝑢𝜑

𝜕𝑟
𝑐𝑜𝑠𝜑 +

𝜕𝑢𝑟
𝜕𝑟

𝑠𝑖𝑛𝜑, 
 

(3.1.12) 
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and also from (3.1.9) and (3.1.10) we gain 
𝜕𝑢

𝜕𝜑
 and 

𝜕𝑣

𝜕𝜑
 as 

 

 𝜕𝑢

𝜕𝜑
= (

𝜕𝑢𝑟
𝜕𝜑

− 𝑢𝜑) 𝑐𝑜𝑠𝜑 − (
𝜕𝑢𝜑

𝜕𝜑
+ 𝑢𝑟) 𝑠𝑖𝑛𝜑, 

 

(3.1.13) 

 

 𝜕𝑣

𝜕𝜑
= (

𝜕𝑢𝜑

𝜕𝜑
+ 𝑢𝑟) 𝑐𝑜𝑠𝜑 + (

𝜕𝑢𝑟
𝜕𝜑

− 𝑢𝜑) 𝑠𝑖𝑛𝜑. 
 

(3.1.14) 

 

If we replace the values of recent partial derivatives into the equality (3.1.2) we will derive 

divergence operator as 

 

 
𝛻. 𝑽 =

1

𝑟

𝜕

𝜕𝑟
(𝑟𝑢𝑟) +

1

𝑟

𝜕𝑢𝜑

𝜕𝜑
+
𝜕𝑢𝑧
𝜕𝑧

 
 

(3.1.15) 

 

3.2.   Mathematical Modeling 
 

In this section we will construct the mathematical modeling of heat transfer in the 

cylindrical coordinate system respect to the velocity vector field components 𝑢𝑟, 𝑢𝜑, and 

𝑢𝑧, let’s start by the continuity equation and just apply the divergence operator (3.1.15) for 

the continuity equation to get 

 

 𝜕𝜌

𝜕𝑡
+
1

𝑟

𝜕

𝜕𝑟
(𝜌𝑟𝑢𝑟) +

1

𝑟

𝜕(𝜌𝑢𝜑)

𝜕𝜑
+
𝜕(𝜌𝑢𝑧)

𝜕𝑧
= 0 

 

(3.2.1) 

 

For the steady flow with low speed we rewrite the equation (3.2.1) as 

 

 1

𝑟

𝜕

𝜕𝑟
(𝑟𝑢𝑟) +

1

𝑟

𝜕𝑢𝜑

𝜕𝜑
+
𝜕𝑢𝑧
𝜕𝑧

= 0 
 

(3.2.2) 

 

In the Lagrangian reference the velocity is only a function of time, when in the Eulerian 

reference the velocity is a function of position that is the function of time. Let us assume 

the velocity vector field as 

 

 𝑽(𝑟, 𝜑, 𝑧, 𝑡) = 𝑢𝑟(𝑟, 𝜑, 𝑧, 𝑡)𝑒𝑟 + 𝑢𝜑(𝑟, 𝜑, 𝑧, 𝑡)𝑒𝜑 + 𝑢𝑧(𝑟, 𝜑, 𝑧, 𝑡)𝑒𝑧, (3.2.3) 

 

then the material derivative of 𝑽 is written as 

 

 𝐷𝑽

𝐷𝑡
=
𝜕𝑽

𝜕𝑡
+
𝜕𝑽

𝜕𝑟

𝜕𝑟

𝜕𝑡
+
𝜕𝑽

𝜕𝜑

𝜕𝜑

𝜕𝑡
+
𝜕𝑽

𝜕𝑧

𝜕𝑧

𝜕𝑡
 

 

(3.2.4) 

 

To compute the material derivative we need to derive all of partial derivatives in the 

differential equality (3.2.4), then we compute the partial derivatives as 
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𝜕𝑽

𝜕𝑡
=
𝜕𝑢𝑟
𝜕𝑡

𝑒𝑟 +
𝜕𝑢𝜑

𝜕𝑡
𝑒𝜑 +

𝜕𝑢𝑧
𝜕𝑡

𝑒𝑧, 

 
𝜕𝑽

𝜕𝑟
=
𝜕𝑢𝑟
𝜕𝑟

𝑒𝑟 +
𝜕𝑢𝜑

𝜕𝑟
𝑒𝜑 +

𝜕𝑢𝑧
𝜕𝑟

𝑒𝑧, 

 
𝜕𝑽

𝜕𝜑
=
𝜕𝑢𝑟
𝜕𝜑

𝑒𝑟 + 𝑢𝑟𝑒𝜑 +
𝜕𝑢𝜑

𝜕𝜑
𝑒𝜑 − 𝑢𝜑𝑒𝑟 +

𝜕𝑢𝑧
𝜕𝜑

𝑒𝑧, 

 
𝜕𝑽

𝜕𝑧
=
𝜕𝑢𝑟
𝜕𝑧

𝑒𝑟 +
𝜕𝑢𝜑

𝜕𝑧
𝑒𝜑 +

𝜕𝑢𝑧
𝜕𝑧

𝑒𝑧, 

 

then we insert the recent partial derivatives into the material derivative (3.2.4) and we will 

earn 

 𝐷𝑽

𝐷𝑡
=
𝜕𝑢𝑟
𝜕𝑡

𝑒𝑟 +
𝜕𝑢𝜑

𝜕𝑡
𝑒𝜑 +

𝜕𝑢𝑧
𝜕𝑡

𝑒𝑧 

 

+𝑢𝑟 (
𝜕𝑢𝑟
𝜕𝑟

𝑒𝑟 +
𝜕𝑢𝜑

𝜕𝑟
𝑒𝜑 +

𝜕𝑢𝑧
𝜕𝑟

𝑒𝑧), 

 

+
𝑢𝜑

𝑟
(
𝜕𝑢𝑟
𝜕𝜑

𝑒𝑟 + 𝑢𝑟𝑒𝜑 +
𝜕𝑢𝜑

𝜕𝜑
𝑒𝜑 − 𝑢𝜑𝑒𝑟 +

𝜕𝑢𝑧
𝜕𝜑

𝑒𝑧) 

 

+𝑢𝑧 (
𝜕𝑢𝑟
𝜕𝑧

𝑒𝑟 +
𝜕𝑢𝜑

𝜕𝑧
𝑒𝜑 +

𝜕𝑢𝑧
𝜕𝑧

𝑒𝑧), 

 

 

 

 

 

 

 

 

(3.2.5) 

 

and after some simplification and reordering we gain as 

 

 𝐷𝑽

𝐷𝑡
= (

𝜕𝑢𝑟
𝜕𝑡

+ 𝑢𝑟
𝜕𝑢𝑟
𝜕𝑟

+
𝑢𝜑

𝑟

𝜕𝑢𝑟
𝜕𝜑

+ 𝑢𝑧
𝜕𝑢𝑟
𝜕𝑧

−
𝑢𝜑

2

𝑟
) 𝑒𝑟 

 

+(
𝜕𝑢𝜑

𝜕𝑡
+ 𝑢𝑟

𝜕𝑢𝜑

𝜕𝑟
+
𝑢𝜑

𝑟

𝜕𝑢𝜑

𝜕𝜑
+ 𝑢𝑧

𝜕𝑢𝜑

𝜕𝑧
+
𝑢𝑟𝑢𝜑

𝑟
) 𝑒𝜑 

 

+(
𝜕𝑢𝑧
𝜕𝑡

+ 𝑢𝑟
𝜕𝑢𝑧
𝜕𝑟

+
𝑢𝜑

𝑟

𝜕𝑢𝑧
𝜕𝜑

+ 𝑢𝑧
𝜕𝑢𝑧
𝜕𝑧
) 𝑒𝑧 

 

 

 

 

 

(3.2.6) 

 

If we apply the relation (3.2.6) for the Navier-Stokes equations (1.5.17), (1.5.18), and 

(1.5.19) we would state the system in the cylindrical coordinate as 
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𝑟 ∶  𝜌 (

𝜕𝑢𝑟
𝜕𝑡

+ 𝑢𝑟
𝜕𝑢𝑟
𝜕𝑟

+
𝑢𝜑

𝑟

𝜕𝑢𝑟
𝜕𝜑

+ 𝑢𝑧
𝜕𝑢𝑟
𝜕𝑧

−
𝑢𝜑

2

𝑟
) = 

 

−
𝜕𝑝

𝜕𝑟
+ 𝜇 (

1

𝑟

𝜕

𝜕𝑟
(𝑟
𝜕𝑢𝑟
𝜕𝑟
) +

1

𝑟2
𝜕2𝑢𝑟
𝜕𝜑2

+
𝜕2𝑢𝑟
𝜕𝑧2

−
𝑢𝑟
𝑟2
−
2

𝑟2
𝜕𝑢𝜑

𝜕𝜑
) + 𝜌𝑔𝑟 , 

 

 

 

(3.2.7) 

 

 

 
𝜑 ∶  𝜌 (

𝜕𝑢𝜑

𝜕𝑡
+ 𝑢𝑟

𝜕𝑢𝜑

𝜕𝑟
+
𝑢𝜑

𝑟

𝜕𝑢𝜑

𝜕𝜑
+ 𝑢𝑧

𝜕𝑢𝜑

𝜕𝑧
+
𝑢𝑟𝑢𝜑

𝑟
) = 

 

−
1

𝑟

𝜕𝑝

𝜕𝜑
+ 𝜇 (

1

𝑟

𝜕

𝜕𝑟
(𝑟
𝜕𝑢𝜑

𝜕𝑟
) +

1

𝑟2
𝜕2𝑢𝜑

𝜕𝜑2
+
𝜕2𝑢𝜑

𝜕𝑧2
−
𝑢𝜑

𝑟2
+
2

𝑟2
𝜕𝑢𝑟
𝜕𝜑

) + 𝜌𝑔𝜑, 

 

 

 

(3.2.8) 

 

 

 
𝑧 ∶  𝜌 (

𝜕𝑢𝑧
𝜕𝑡

+ 𝑢𝑟
𝜕𝑢𝑧
𝜕𝑟

+
𝑢𝜑

𝑟

𝜕𝑢𝑧
𝜕𝜑

+ 𝑢𝑧
𝜕𝑢𝑧
𝜕𝑧
) = 

 

−
𝜕𝑝

𝜕𝑧
+ 𝜇 (

1

𝑟

𝜕

𝜕𝑟
(𝑟
𝜕𝑢𝑧
𝜕𝑟
) +

1

𝑟2
𝜕2𝑢𝑧
𝜕𝜑2

+
𝜕2𝑢𝑧
𝜕𝑧2

) + 𝜌𝑔𝑧. 

 

 

 

(3.2.9) 

 

According to thermodynamic first law if we follow the same approach as what we had done 

to the momentum equations we derive the energy conservation equation in the cylindrical 

coordinate as 

 

 𝜕𝜃

𝜕𝑡
+ 𝑢𝑟

𝜕𝜃

𝜕𝑟
+
𝑢𝜑

𝑟

𝜕𝜃

𝜕𝜑
+ 𝑢𝑧

𝜕𝜃

𝜕𝑧
= 

 

𝑘

𝜌𝑐
(
1

𝑟

𝜕

𝜕𝑟
(𝑟
𝜕𝜃

𝜕𝑟
) +

1

𝑟2
𝜕2𝜃

𝜕𝜑2
+
𝜕2𝜃

𝜕𝑧2
) + 2𝜗|𝝉|2 +

1

𝜌𝑐
𝐹 

 

 

 

(3.2.10) 

 

To take the advantage of symmetry, the cylindrical representation of the incompressible 

Navier-Stokes equations are chosen, and they are one of the most common systems that 

they are used to describe the behavior of the fluids in the furnaces. We will use the 

axisymmetric flow with the assumption of no tangential velocity, that is 

 

𝑢𝜑 = 0, 

 

and also the other quantities that they are dependent on 𝜑, therefore we omit all 𝜑-

dependent quantities in the transport phenomena system and we achieve the more 

simplified system consist of continuity equation 

 

 𝜕𝜌

𝜕𝑡
+
1

𝑟

𝜕

𝜕𝑟
(𝜌𝑟𝑢𝑟) +

𝜕(𝜌𝑢𝑧)

𝜕𝑧
= 0 

 

(3.2.11) 



Chapter 3.   Cylindrical Coordinates  45 

 

 

Navier-Stokes equation correspond to 𝑟 

 

 
𝜌 (
𝜕𝑢𝑟
𝜕𝑡

+ 𝑢𝑟
𝜕𝑢𝑟
𝜕𝑟

+ 𝑢𝑧
𝜕𝑢𝑟
𝜕𝑧
) = 

 

−
𝜕𝑝

𝜕𝑟
+ 𝜇 (

1

𝑟

𝜕

𝜕𝑟
(𝑟
𝜕𝑢𝑟
𝜕𝑟
) +

𝜕2𝑢𝑟
𝜕𝑧2

−
𝑢𝑟
𝑟2
) + 𝜌𝑔𝑟 

 

 

 

(3.2.12) 

 

Navier-Stokes equation correspond to 𝑧 

 

 
𝜌 (
𝜕𝑢𝑧
𝜕𝑡

+ 𝑢𝑟
𝜕𝑢𝑧
𝜕𝑟

+ 𝑢𝑧
𝜕𝑢𝑧
𝜕𝑧
) = 

 

−
𝜕𝑝

𝜕𝑧
+ 𝜇 (

1

𝑟

𝜕

𝜕𝑟
(𝑟
𝜕𝑢𝑧
𝜕𝑟
) +

𝜕2𝑢𝑧
𝜕𝑧2

) + 𝜌𝑔𝑧 

 

 

 

(3.2.13) 

 

Heat conduction equation 

 

 𝜕𝜃

𝜕𝑡
+ 𝑢𝑟

𝜕𝜃

𝜕𝑟
+ 𝑢𝑧

𝜕𝜃

𝜕𝑧
=
𝑘

𝜌𝑐
(
1

𝑟

𝜕

𝜕𝑟
(𝑟
𝜕𝜃

𝜕𝑟
) +

𝜕2𝜃

𝜕𝑧2
) + 2𝜗|𝝉|2 +

1

𝜌𝑐
𝐹 

 

(3.2.14) 

 

3.3.   Weak Formulation 
  

Finite element method has chosen to search the numerical solution of transport phenomena 

system, then in the current stage it is necessary to derive the variational version of system, 

thus to follow the objective we will apply the convenient smooth test function 𝜂(𝑟, 𝜑, 𝑧, 𝑡) 
with small support, but the details of test functions construction would be prepared in the 

next chapter. Suppose that the density 𝜌 is constant because the flow had been assumed 

steady with low speed, hence we multiply the equation (3.2.11) by 𝜂 and after integration 

we will derive 

 

 
∫
1

𝑟

𝜕

𝜕𝑟
(𝑟𝑢𝑟)𝜂

 

𝛺

+ ∫
𝜕𝑢𝑧
𝜕𝑧

𝜂

 

𝛺

= 0, 
 

(3.3.1) 

 

by enforcing integration by parts in the relation (3.3.1) we have 

 

 
∫𝑢𝑟 (

𝜂

𝑟
−
𝜕𝜂

𝜕𝑟
)

 

𝛺

− ∫𝑢𝑧
𝜕𝜂

𝜕𝑧

 

𝛺

= 0 
 

(3.3.2) 

 

Theorem 3.1. Suppose that 𝜂 is a smooth test function belongs to 𝐻0
1(Ω), then the weak 

formulation of continuity equation (3.2.11) is constructed as 
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∫𝑢𝑟 (
𝜂

𝑟
−
𝜕𝜂

𝜕𝑟
)

 

Ω

− ∫𝑢𝑧
𝜕𝜂

𝜕𝑧

 

Ω

= 0. 

 

In the second step we focus on the Navier-Stokes equation (3.2.12) and again it is 

multiplied by 𝜂 and also is integrated, then we earn 

 

 
∫(

𝜕𝑢𝑟
𝜕𝑡

+ 𝑢𝑟
𝜕𝑢𝑟
𝜕𝑟

+ 𝑢𝑧
𝜕𝑢𝑟
𝜕𝑧
) 𝜂

 

𝛺

= 

 

−
1

𝜌
∫
𝜕𝑝

𝜕𝑟
𝜂

 

𝛺

+ 𝜗 ∫(
1

𝑟

𝜕

𝜕𝑟
(𝑟
𝜕𝑢𝑟
𝜕𝑟
) +

𝜕2𝑢𝑟
𝜕𝑧2

−
𝑢𝑟
𝑟2
) 𝜂

 

𝛺

+ ∫𝑔𝑟𝜂

 

𝛺

, 

 

 

 

 

(3.3.3) 

 

we handle on the integration by parts in the integral equality (3.3.3) and we gain 

 

 
−∫𝑢𝑟

𝜕𝜂

𝜕𝑡

 

𝛺

−
1

2
∫𝑢𝑟

2
𝜕𝜂

𝜕𝑟

 

𝛺

− ∫𝑢𝑟 (𝑢𝑧
𝜕𝜂

𝜕𝑧
+ 𝜂

𝜕𝑢𝑧
𝜕𝑧
)

 

𝛺

=
1

𝜌
∫𝑝

𝜕𝜂

𝜕𝑟

 

𝛺

+ 

 

𝜗 ∫𝑢𝑟 (
𝜕2𝜂

𝜕𝑟2
−
1

𝑟

𝜕𝜂

𝜕𝑟
+
𝜂

𝑟2
)

 

𝛺

+ 𝜗 ∫𝑢𝑟
𝜕2𝜂

𝜕𝑧2

 

𝛺

+ ∫(−𝜗
𝑢𝑟
𝑟2
+ 𝑔𝑟) 𝜂

 

𝛺

 

 

 

 

 

(3.3.4) 

 

We simplify the relation (3.3.4) to derive the weak mathematical modeling of Navier-

Stokes equation correspond to 𝑟 as 

 

 
−∫𝑢𝑟

𝜕𝜂

𝜕𝑡

 

𝛺

−
1

2
∫𝑢𝑟

2
𝜕𝜂

𝜕𝑟

 

𝛺

− ∫𝑢𝑟 (𝑢𝑧
𝜕𝜂

𝜕𝑧
+ 𝜂

𝜕𝑢𝑧
𝜕𝑧
)

 

𝛺

= 

 

1

𝜌
∫𝑝

𝜕𝜂

𝜕𝑟

 

𝛺

+ 𝜗 ∫𝑢𝑟 (
𝜕2𝜂

𝜕𝑟2
−
1

𝑟

𝜕𝜂

𝜕𝑟
+
𝜕2𝜂

𝜕𝑧2
)

 

𝛺

+ ∫𝑔𝑟𝜂

 

𝛺

 

 

 

 

 

(3.3.5) 

 

Let’s repeat the same procedure for the z-component by test function multiplying and 

integrating 

 

 
−∫𝑢𝑧

𝜕𝜂

𝜕𝑡

 

𝛺

− ∫𝑢𝑧 (𝑢𝑟
𝜕𝜂

𝜕𝑟
+ 𝜂

𝜕𝑢𝑟
𝜕𝑟
)

 

𝛺

−
1

2
∫𝑢𝑧

2
𝜕𝜂

𝜕𝑧

 

𝛺

= 

 

1

𝜌
∫𝑝

𝜕𝜂

𝜕𝑧

 

𝛺

+ 𝜗 ∫𝑢𝑧
𝜕2𝜂

𝜕𝑟𝜕𝑧

 

𝛺

+ 𝜗 ∫𝑢𝑧
𝜕2𝜂

𝜕𝑧2

 

𝛺

+ ∫𝑔𝑧𝜂

 

𝛺

 

 

 

 

 

(3.3.6) 
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To get more simplicity in the relations (3.3.5) and (3.3.6), suppose that 𝜗 = 1, then these 

integral equalities are shown as 

 

 
∫𝑢𝑟 (

𝜕𝜂

𝜕𝑡
+ (

1

2
𝑢𝑟 +

1

𝑟
)
𝜕𝜂

𝜕𝑟
+ 𝑢𝑧

𝜕𝜂

𝜕𝑧
+ 𝜂

𝜕𝑢𝑧
𝜕𝑧

−
𝜕2𝜂

𝜕𝑟2
−
𝜕2𝜂

𝜕𝑧2
)

 

𝛺

= 

 

−
1

𝜌
∫𝑝

𝜕𝜂

𝜕𝑟

 

𝛺

− ∫𝑔𝑟𝜂

 

𝛺

, 

 

 

 

 

(3.3.7) 

 

and 

 
∫𝑢𝑧 (

𝜕𝜂

𝜕𝑡
+ 𝑢𝑟

𝜕𝜂

𝜕𝑟
+ 𝜂

𝜕𝑢𝑟
𝜕𝑟

+
1

2
𝑢𝑧
𝜕𝜂

𝜕𝑧
+
𝜕2𝜂

𝜕𝑟𝜕𝑧
+
𝜕2𝜂

𝜕𝑧2
)

 

𝛺

= 

 

−
1

𝜌
∫𝑝

𝜕𝜂

𝜕𝑧

 

𝛺

− ∫𝑔𝑧𝜂

  

𝛺

 

 

 

 

 

(3.3.8) 

 

Theorem 3.2. Suppose that 𝜂 is a smooth test function belongs to 𝐻0
1(Ω), then the weak 

formulation of momentum conservation equations (3.2.12) and (3.2.13) respectively are 

constructed as 

 

−∫𝑢𝑟
𝜕𝜂

𝜕𝑡

 

Ω

−
1

2
∫𝑢𝑟

2
𝜕𝜂

𝜕𝑟

 

Ω

− ∫𝑢𝑟 (𝑢𝑧
𝜕𝜂

𝜕𝑧
+ 𝜂

𝜕𝑢𝑧
𝜕𝑧
)

 

Ω

= 

1

𝜌
∫𝑝

𝜕𝜂

𝜕𝑟

 

Ω

+ 𝜗 ∫𝑢𝑟 (
𝜕2𝜂

𝜕𝑟2
−
1

𝑟

𝜕𝜂

𝜕𝑟
+
𝜕2𝜂

𝜕𝑧2
)

 

Ω

+ ∫𝑔𝑟𝜂

 

Ω

, 

 

∫𝑢𝑧 (
𝜕𝜂

𝜕𝑡
+ 𝑢𝑟

𝜕𝜂

𝜕𝑟
+ 𝜂

𝜕𝑢𝑟
𝜕𝑟

+
1

2
𝑢𝑧
𝜕𝜂

𝜕𝑧
+
𝜕2𝜂

𝜕𝑟𝜕𝑧
+
𝜕2𝜂

𝜕𝑧2
)

 

Ω

= −
1

𝜌
∫𝑝

𝜕𝜂

𝜕𝑧

 

Ω

− ∫𝑔𝑧𝜂

  

Ω

. 

 

Finally we attain the energy conservation equation, as the continuity and Navier-Stokes 

equation we multiply the equality (3.2.14) by 𝜂 and integrate to obtain 

 

 
∫
𝜕𝜃

𝜕𝑡
𝜂

 

𝐺

+ ∫𝑢𝑟
𝜕𝜃

𝜕𝑟
𝜂

 

𝐺

+ ∫𝑢𝑧
𝜕𝜃

𝜕𝑧
𝜂

 

𝐺

= 

 

𝑘

𝜌𝑐
∫(

1

𝑟

𝜕

𝜕𝑟
(𝑟
𝜕𝜃

𝜕𝑟
) +

𝜕2𝜃

𝜕𝑧2
)𝜂

 

𝐺

+ ∫(2𝜗|𝝉|2 +
1

𝜌𝑐
𝐹) 𝜂

 

𝐺

, 

 

 

 

 

(3.3.9) 

 

now we use the Green’s first identity in the integral relation (3.3.9) and we derive 
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−∫𝜃

𝜕𝜂

𝜕𝑡

 

𝐺

− ∫𝜃 (𝑢𝑟
𝜕𝜂

𝜕𝑟
+ 𝑢𝑧

𝜕𝜂

𝜕𝑧
)

 

𝐺

= 

 

−
𝑘

𝜌𝑐
∫𝛻𝜃. 𝛻𝜂

 

𝐺

+
𝑘

𝜌𝑐
∫[𝛻𝜃]−

+. 𝒏𝑥𝜂

 

𝛤

+ ∫(2𝜗|𝝉|2 +
1

𝜌𝑐
𝐹) 𝜂

 

𝐺

 

 

 

 

 

(3.3.10) 

 

Define 

𝐻(𝜃) = {

𝐿 ;  𝜃 > 𝑇1
[0, 𝐿] ;  𝜃 = 𝑇1
0 ;  𝜃 < 𝑇1

 

 

Stefan condition in three-dimension in the integral form is 

 

 
∫([𝛻𝜃]−

+. 𝒏𝑥)𝜂

 

𝛤

= −𝐿∫(𝒘. 𝒏𝑥)𝜂

 

𝛤

= 𝐿∫𝑛𝑡𝜂

 

𝛤

 
 

(3.3.11) 

 

Also by invoking the function 𝐻(𝜃) we can write 

 

∫𝐻(𝜃)
𝜕𝜂

𝜕𝑡

 

G

= ∫𝐻(𝜃)
𝜕𝜂

𝜕𝑡

 

Ω1

+ ∫𝐻(𝜃)
𝜕𝜂

𝜕𝑡

 

Ω2

+∫𝐻(𝜃)
𝜕𝜂

𝜕𝑡

 

Γ

= 𝐿 ∫
𝜕𝜂

𝜕𝑡

 

Ω1

 

 

Divergence theorem in one-dimension states that 

 

∫
𝜕𝜂

𝜕𝑡

 

Ω1

= ∫𝑛𝑡𝜂

 

Γ

 

 

Then we will obtain the equality 

 

∫([∇𝜃]−
+. 𝒏𝑥)𝜂

 

Γ

= ∫𝐻(𝜃)
𝜕𝜂

𝜕𝑡

 

G

 

 

In this step we apply the relation (3.3.11) into the integral equation (3.3.10) to achieve 

 

 
−∫𝜃

𝜕𝜂

𝜕𝑡

 

𝐺

− ∫𝜃 (𝑢𝑟
𝜕𝜂

𝜕𝑟
+ 𝑢𝑧

𝜕𝜂

𝜕𝑧
)

 

𝐺

= 

 

−
𝑘

𝜌𝑐
∫(

𝜕𝜃

𝜕𝑟

𝜕𝜂

𝜕𝑟
+
𝜕𝜃

𝜕𝑧

𝜕𝜂

𝜕𝑧
)

 

𝐺

+
𝑘

𝜌𝑐
∫𝐻(𝜃)

𝜕𝜂

𝜕𝑡

 

𝐺

+ ∫(2𝜗|𝝉|2 +
1

𝜌𝑐
𝐹) 𝜂

 

𝐺

 

 

 

 

 

(3.3.12) 

 

If we use integration by parts in the equality (3.3.12) we get 
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∫(𝜃 +

𝑘

𝜌𝑐
𝐻(𝜃))

𝜕𝜂

𝜕𝑡

 

𝐺

+ ∫𝜃 (𝑢𝑟
𝜕𝜂

𝜕𝑟
+ 𝑢𝑧

𝜕𝜂

𝜕𝑧
+
𝑘

𝜌𝑐
(
𝜕2𝜂

𝜕𝑟2
+
𝜕2𝜂

𝜕𝑧2
))

 

𝐺

 

= −∫(
1

𝜌𝑐
𝐹 + 2𝜗|𝝉|2) 𝜂

 

𝐺

 

 

 

 
(3.3.13) 

 

Theorem 3.3. Suppose that 𝜂 is a smooth test function belongs to 𝐻0
1(Ω), then the weak 

formulation of heat conduction equation (3.2.14) is constructed as 

 

∫(𝜃 +
𝑘

𝜌𝑐
𝐻(𝜃))

𝜕𝜂

𝜕𝑡

 

G

+ ∫𝜃 (𝑢𝑟
𝜕𝜂

𝜕𝑟
+ 𝑢𝑧

𝜕𝜂

𝜕𝑧
+
𝑘

𝜌𝑐
(
𝜕2𝜂

𝜕𝑟2
+
𝜕2𝜂

𝜕𝑧2
))

 

G

 

= −∫(
1

𝜌𝑐
𝐹 + 2𝜗|𝝉|2) 𝜂

 

G

, 

where 

 

𝐻(𝜃) = {

𝐿 ;  𝜃 > 𝑇1
[0, 𝐿] ;  𝜃 = 𝑇1
0 ;  𝜃 < 𝑇1

, 

and L is latent heat. 

 

3.4.   Discretization of Domain 
 

Assume that 𝑉ℎ ⊂ 𝐻0
1(Ω), which consists of test functions that they are piecewise 

continuous with the fix degree , and also suppose that 

 

dim𝑉ℎ = 𝑁(ℎ), 
and 

𝑉ℎ = 𝑠𝑝𝑎𝑛{𝜙1, 𝜙2, 𝜙3, … , 𝜙𝑁(ℎ)}, 

where the basis functions 𝜙𝑖(𝑟, 𝜑, 𝑧, 𝑡), 𝑖 = 1,2, … ,𝑁(ℎ), have small support. If we choose 

the finite dimensional subspace 𝑉ℎ, and also the correspond variables  in 𝑉ℎ, then we 

redefine the heat transfer problem as the problem of finding 𝑢𝑟ℎ, 𝑢𝑧ℎ, 𝑝ℎ, and 𝜃ℎ such that 

there satisfy in the continuity equation (3.2.11), Navier-Stokes equations (3.2.12), (3,2,13), 

and heat conduction equation (3.2.14). 

 

Now we express the approximate solutions 𝑢𝑟ℎ, 𝑢𝑧ℎ, 𝑝ℎ, and 𝜃ℎ in terms of the basis 

functions 𝜙𝑖(𝑟, 𝜑, 𝑧, 𝑡), we could write 

 

 

𝑢𝑟ℎ(𝑟, 𝜑, 𝑧, 𝑡) = ∑ 𝑈𝑟𝑖𝜙𝑖(𝑟, 𝜑, 𝑧, 𝑡)

𝑁(ℎ)

𝑖=1

, 

 

 

(3.4.1) 
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𝑢𝑧ℎ(𝑟, 𝜑, 𝑧, 𝑡) = ∑ 𝑈𝑧𝑖𝜙𝑖(𝑟, 𝜑, 𝑧, 𝑡)

𝑁(ℎ)

𝑖=1

, 

 

 

(3.4.2) 

 

 

𝑝ℎ(𝑟, 𝜑, 𝑧, 𝑡) = ∑ 𝑃𝑖𝜙𝑖(𝑟, 𝜑, 𝑧, 𝑡)

𝑁(ℎ)

𝑖=1

, 

 

 

(3.4.3) 

 

 

𝜃ℎ(𝑟, 𝜑, 𝑧, 𝑡) = ∑ 𝜃𝑖𝜙𝑖(𝑟, 𝜑, 𝑧, 𝑡)

𝑁(ℎ)

𝑖=1

, 

 

 

(3.4.4) 

 

 

where 𝑈𝑟𝑖, 𝑈𝑧𝑖 , 𝑃𝑖  , 𝑖 = 1,2,3, … ,𝑁(ℎ), are to be determined. We insert the values of 𝑢𝑟ℎ 

and 𝑢𝑧ℎ ∈ 𝑉ℎ instead of 𝑢𝑟 and 𝑢𝑧 in the continuity equation (3.3.2) and we obtain 

 

 
∫𝑢𝑟ℎ (

𝜂ℎ
𝑟
−
𝜕𝜂ℎ
𝜕𝑟
)

 

𝛺

− ∫𝑢𝑧ℎ
𝜕𝜂ℎ
𝜕𝑧

 

𝛺

= 0, 
 

(3.4.5) 

 

for every smooth test function 𝜂ℎ ∈ 𝑉ℎ. We replace the approximate values of 𝑢𝑟ℎ and 

𝑢𝑧ℎ from the relations (3.4.1) and (3.4.2) into the integral equation (3.4.5) we earn 

 

 

∫∑ 𝑈𝑟𝑖𝜙𝑖 (
𝜙𝑘
𝑟
−
𝜕𝜙𝑘
𝜕𝑟

)

𝑁(ℎ)

𝑖=1

 

𝛺

− ∫∑ 𝑈𝑧𝑖𝜙𝑖
𝜕𝜙𝑘
𝜕𝑧

𝑁(ℎ)

𝑖=1

 

𝛺

= 0, 

 

 

(3.4.6) 

 

then we rewrite the relation (3.4.6) as 

 

 

∑ 𝑈𝑟𝑖 ∫𝜙𝑖 (
𝜙𝑘
𝑟
−
𝜕𝜙𝑘
𝜕𝑟

)

 

𝛺

𝑁(ℎ)

𝑖=1

− ∑ 𝑈𝑧𝑖 ∫𝜙𝑖
𝜕𝜙𝑘
𝜕𝑧

 

𝛺

𝑁(ℎ)

𝑖=1

= 0 

 

 

(3.4.7) 

 

At last we simplify the equation (3.4.7) and we gain the linear system 

 

 

∑(𝑈𝑟𝑖𝑎𝑖𝑘 − 𝑈𝑧𝑖𝑏𝑖𝑘)

𝑁(ℎ)

𝑖=1

= 0, 

 

(3.4.8) 

 

where the coefficients are 

 

 
𝑎𝑖𝑘 = ∫𝜙𝑖 (

𝜙𝑘
𝑟
−
𝜕𝜙𝑘
𝜕𝑟

)

 

𝛺

, 
 

(3.4.9) 
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𝑏𝑖𝑘 = ∫𝜙𝑖

𝜕𝜙𝑘
𝜕𝑧

 

𝛺

. 
 

(3.4.10) 

 

Theorem 3.4. Let’s discrete the domain Ω by the finite-dimensional subspace 𝑉ℎ ⊂ 𝐻0
1(Ω) 

which consists of smooth test functions 𝜙𝑖(𝑟, 𝜑, 𝑧, 𝑡), 𝑖 = 1,2, … ,𝑁(ℎ) with small support, 

where dim𝑉ℎ = 𝑁(ℎ), and 𝑉ℎ = 𝑠𝑝𝑎𝑛{𝜙1, 𝜙2, 𝜙3, … , 𝜙𝑁(ℎ)}, then the equality (3.3.2) can 

be showed as the linear system of equations 

 

∑(𝑈𝑟𝑖𝑎𝑖𝑘 − 𝑈𝑧𝑖𝑏𝑖𝑘)

𝑁(ℎ)

𝑖=1

= 0, 𝑘 = 1,2, … ,𝑁(ℎ), 

where 

𝑎𝑖𝑘 = ∫𝜙𝑖 (
𝜙𝑘
𝑟
−
𝜕𝜙𝑘
𝜕𝑟

)

 

Ω

, 𝑏𝑖𝑘 = ∫𝜙𝑖
𝜕𝜙𝑘
𝜕𝑧

 

Ω

. 

 

After the continuity equation we refer to the variational formulation of Navier-Stokes 

equations and we replace 𝑢𝑟ℎ, 𝑢𝑧ℎ, and 𝑝ℎ instead of 𝑢𝑟 , 𝑢𝑧, and 𝑝 in the equation (3.3.5) 

correspond to 𝑟, then we will achieve 

 

 
∫𝑢𝑟ℎ (

𝜕𝜂ℎ
𝜕𝑡

+ (
1

2
𝑢𝑟ℎ +

1

𝑟
)
𝜕𝜂ℎ
𝜕𝑟

+ 𝑢𝑧ℎ
𝜕𝜂ℎ
𝜕𝑧

+ 𝜂ℎ
𝜕𝑢𝑧ℎ
𝜕𝑧

−
𝜕2𝜂ℎ
𝜕𝑟2

 

𝛺

−
𝜕2𝜂ℎ
𝜕𝑧2

) = −
1

𝜌
∫𝑝ℎ

𝜕𝜂ℎ
𝜕𝑟

 

𝛺

− ∫𝑔𝑟𝜂ℎ

 

𝛺

 

 

 

 

(3.4.11) 

 

In this step of weak modeling we set the approximate values of 𝑢𝑟ℎ, 𝑢𝑧ℎ, and 𝑝ℎ from 

relations (3.4.1), (3.4.2), and (3.4.3) into the integral equality (3.4.11) to attain 

 

 

∫∑ 𝑈𝑟𝑖𝜙𝑖

𝑁(ℎ)

𝑖=1

(
𝜕𝜙𝑘
𝜕𝑡

+ (
1

2
∑ 𝑈𝑟𝑗𝜙𝑗

𝑁(ℎ)

𝑗=1

+
1

𝑟
)
𝜕𝜙𝑘
𝜕𝑟

 

𝛺

+ ∑ 𝑈𝑧𝑗 (𝜙𝑗
𝜕𝜙𝑘
𝜕𝑧

+ 𝜙𝑘
𝜕𝜙𝑗
𝜕𝑧
)

𝑁(ℎ)

𝑗=1

−
𝜕2𝜙𝑘
𝜕𝑟2

−
𝜕2𝜙𝑘
𝜕𝑧2

)

= −
1

𝜌
∫∑ 𝑃𝑖𝜙𝑖

𝑁(ℎ)

𝑖=1

𝜕𝜙𝑘
𝜕𝑟

 

𝛺

− ∫𝑔𝑟𝜙𝑘

 

𝛺

 

 

 

 

 

 

 

(3.4.12) 

 

We rewrite the equation (3.4.12) as 
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∑ 𝑈𝑟𝑖 ∫𝜙𝑖 (
𝜕𝜙𝑘
𝜕𝑡

−
𝜕2𝜙𝑘
𝜕𝑟2

−
𝜕2𝜙𝑘
𝜕𝑧2

+
1

𝑟

𝜕𝜙𝑘
𝜕𝑟

)

 

𝛺

𝑁(ℎ)

𝑖=1

+
1

2
∑ ∑ 𝑈𝑟𝑖𝑈𝑟𝑗 ∫𝜙𝑖𝜙𝑗

𝜕𝜙𝑘
𝜕𝑟

 

𝛺

𝑁(ℎ)

𝑗=1

𝑁(ℎ)

𝑖=1

+ ∑ ∑ 𝑈𝑟𝑖𝑈𝑧𝑗 ∫𝜙𝑖 (𝜙𝑗
𝜕𝜙𝑘
𝜕𝑧

+ 𝜙𝑘
𝜕𝜙𝑗
𝜕𝑧
)

 

𝛺

𝑁(ℎ)

𝑗=1

𝑁(ℎ)

𝑖=1

+ ∑ 𝑃𝑖 ∫
1

𝜌
𝜙𝑖
𝜕𝜙𝑘
𝜕𝑟

 

𝛺

𝑁(ℎ)

𝑖=1

+ ∫𝑔𝑟𝜙𝑘

 

𝛺

= 0, 

 

 

 

 

 

 

 

 

(3.4.13) 

 

and at the end we derive the nonlinear system as 

 

 

∑ 𝑈𝑟𝑖𝐴𝑖𝑘

𝑁(ℎ)

𝑖=1

+ ∑ ∑ 𝑈𝑟𝑖𝑈𝑟𝑗𝐵𝑖𝑗𝑘

𝑁(ℎ)

𝑗=1

𝑁(ℎ)

𝑖=1

+ ∑ ∑ 𝑈𝑟𝑖𝑈𝑧𝑗

𝑁(ℎ)

𝑗=1

𝐶𝑖𝑗𝑘

𝑁(ℎ)

𝑖=1

 

 

+∑ 𝑃𝑖𝐷𝑖𝑘

𝑁(ℎ)

𝑖=1

+ 𝐸𝑘 = 0, 

 

 

 

 

 

(3.4.14) 

 

where the coefficients are 

 

 
𝐴𝑖𝑘 = ∫𝜙𝑖 (

𝜕𝜙𝑘
𝜕𝑡

−
𝜕2𝜙𝑘
𝜕𝑟2

−
𝜕2𝜙𝑘
𝜕𝑧2

+
1

𝑟

𝜕𝜙𝑘
𝜕𝑟

)

 

𝛺

, 
 

(3.4.15) 

 

 
𝐵𝑖𝑗𝑘 =

1

2
∫𝜙𝑖𝜙𝑗

𝜕𝜙𝑘
𝜕𝑟

 

𝛺

, 
 

(3.4.16) 

 

 
𝐶𝑖𝑗𝑘 = ∫𝜙𝑖 (𝜙𝑗

𝜕𝜙𝑘
𝜕𝑧

+ 𝜙𝑘
𝜕𝜙𝑗
𝜕𝑧
)

 

𝛺

, 
 

(3.4.17) 

 

 
𝐷𝑖𝑘 =

1

𝜌
∫𝜙𝑖

𝜕𝜙𝑘
𝜕𝑟

 

𝛺

, 
 

(3.4.18) 

 

 
𝐸𝑘 = ∫𝑔𝑟𝜙𝑘

 

𝛺

. 
 

(3.4.19) 
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We continue the work by concentration on the 𝑧-component equation (3.3.8) of the Navier-

Stokes system and we replace the approximate values instead of exact one to obtain 

 

 
∫𝑢𝑧ℎ (

𝜕𝜂ℎ
𝜕𝑡

+ 𝑢𝑟ℎ
𝜕𝜂ℎ
𝜕𝑟

+ 𝜂ℎ
𝜕𝑢𝑟ℎ
𝜕𝑟

+
1

2
𝑢𝑧ℎ

𝜕𝜂ℎ
𝜕𝑧

+
𝜕2𝜂ℎ
𝜕𝑟𝜕𝑧

+
𝜕2𝜂ℎ
𝜕𝑧2

)

 

𝛺

= 

−
1

𝜌
∫𝑝ℎ

𝜕𝜂ℎ
𝜕𝑧

 

𝛺

− ∫𝑔𝑧𝜂ℎ

 

𝛺

, 

 

 

 

 

(3.4.20) 

 

then by applying the 𝑢𝑟ℎ, 𝑢𝑧ℎ, and 𝑝ℎ we will reach to 

 

 

∫∑ 𝑈𝑧𝑖𝜙𝑖

𝑁(ℎ)

𝑖=1

(
𝜕𝜙𝑘
𝜕𝑡

+ ∑ 𝑈𝑟𝑗𝜙𝑗

𝑁(ℎ)

𝑗=1

𝜕𝜙𝑘
𝜕𝑟

+ 𝜙𝑘
𝜕

𝜕𝑟
(∑ 𝑈𝑟𝑗

𝑁(ℎ)

𝑗=1

𝜙𝑗)

 

𝛺

+
1

2
∑ 𝑈𝑧𝑗𝜙𝑗

𝑁(ℎ)

𝑗=1

𝜕𝜙𝑘
𝜕𝑧

+
𝜕2𝜙𝑘
𝜕𝑟𝜕𝑧

+
𝜕2𝜙𝑘
𝜕𝑧2

)

= −
1

𝜌
∫∑ 𝑃𝑖𝜙𝑖

𝑁(ℎ)

𝑖=1

𝜕𝜙𝑘
𝜕𝑧

 

𝛺

− ∫𝑔𝑧𝜙𝑘

 

𝛺

 

 

 

 

 

 

 

(3.4.21) 

 

The relation (3.4.21) could be simplified that 

 

 

∑ 𝑈𝑧𝑖 ∫𝜙𝑖 (
𝜕𝜙𝑘
𝜕𝑡

+
𝜕2𝜙𝑘
𝜕𝑟𝜕𝑧

+
𝜕2𝜙𝑘
𝜕𝑧2

)

 

𝛺

𝑁(ℎ)

𝑖=1

+
1

2
∑ ∑ 𝑈𝑧𝑖𝑈𝑧𝑗 ∫𝜙𝑖𝜙𝑗

𝜕𝜙𝑘
𝜕𝑧

 

𝛺

𝑁(ℎ)

𝑗=1

𝑁(ℎ)

𝑖=1

+ ∑ ∑ 𝑈𝑧𝑖𝑈𝑟𝑗 ∫𝜙𝑖 (𝜙𝑗
𝜕𝜙𝑘
𝜕𝑟

+ 𝜙𝑘
𝜕𝜙𝑗

𝜕𝑟
)

 

𝛺

𝑁(ℎ)

𝑗=1

𝑁(ℎ)

𝑖=1

+ ∑ 𝑃𝑖 ∫
1

𝜌
𝜙𝑖
𝜕𝜙𝑘
𝜕𝑧

 

𝛺

𝑁(ℎ)

𝑖=1

+ ∫𝑔𝑧𝜙𝑘

 

𝛺

= 0 

 

 

 

 

 

 

 

(3.4.22) 

 

At last we state the equality (3.4.22) as the nonlinear following system 

 

∑ 𝑈𝑧𝑖𝐴
′
𝑖𝑘

𝑁(ℎ)

𝑖=1

+
1

2
∑ ∑ 𝑈𝑧𝑖𝑈𝑧𝑗𝐵

′
𝑖𝑗𝑘

𝑁(ℎ)

𝑗=1

𝑁(ℎ)

𝑖=1

+ ∑ ∑ 𝑈𝑧𝑖𝑈𝑟𝑗𝐶
′
𝑖𝑗𝑘

𝑁(ℎ)

𝑗=1

𝑁(ℎ)

𝑖=1

 

+∑ 𝑃𝑖𝐷
′
𝑖𝑘

𝑁(ℎ)

𝑖=1

+ 𝐸′𝑘 = 0, 

 

 

 

 

(3.4.23) 
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where the coefficients are as 

 

 
𝐴′𝑖𝑘 = ∫𝜙𝑖 (

𝜕𝜙𝑘
𝜕𝑡

+
𝜕2𝜙𝑘
𝜕𝑟𝜕𝑧

+
𝜕2𝜙𝑘
𝜕𝑧2

)

 

𝛺

, 
 

(3.4.24) 

 

 
𝐵′𝑖𝑗𝑘 = ∫𝜙𝑖𝜙𝑗

𝜕𝜙𝑘
𝜕𝑧

 

𝛺

, 
 

(3.4.25) 

 

 
𝐶′𝑖𝑗𝑘 = ∫𝜙𝑖 (𝜙𝑗

𝜕𝜙𝑘
𝜕𝑟

+ 𝜙𝑘
𝜕𝜙𝑗
𝜕𝑟
)

 

𝛺

, 
 

(3.4.26) 

 

 
𝐷′𝑖𝑘 = ∫

1

𝜌
𝜙𝑖
𝜕𝜙𝑘
𝜕𝑧

 

𝛺

, 
 

(3.4.27) 

 

 
𝐸′𝑘 = ∫𝑔𝑧𝜙𝑘

 

𝛺

. 
 

(3.4.28) 

 

Theorem 3.5. Let’s discrete the domain Ω by the finite-dimensional subspace 𝑉ℎ ⊂ 𝐻0
1(Ω) 

which consists of smooth test functions 𝜙𝑖(𝑟, 𝜑, 𝑧, 𝑡), 𝑖 = 1,2, … ,𝑁(ℎ) with small support, 

where dim𝑉ℎ = 𝑁(ℎ), and 𝑉ℎ = 𝑠𝑝𝑎𝑛{𝜙1, 𝜙2, 𝜙3, … , 𝜙𝑁(ℎ)}, then the equalities (3.3.7) 

and (3.3.8) can be computed as the nonlinear system of equations 

 

∑ 𝑈𝑟𝑖𝐴𝑖𝑘

𝑁(ℎ)

𝑖=1

+ ∑ ∑ 𝑈𝑟𝑖𝑈𝑟𝑗𝐵𝑖𝑗𝑘

𝑁(ℎ)

𝑗=1

𝑁(ℎ)

𝑖=1

+ ∑ ∑ 𝑈𝑟𝑖𝑈𝑧𝑗

𝑁(ℎ)

𝑗=1

𝐶𝑖𝑗𝑘

𝑁(ℎ)

𝑖=1

+ ∑ 𝑃𝑖𝐷𝑖𝑘

𝑁(ℎ)

𝑖=1

+ 𝐸𝑘 = 0, 

 

∑ 𝑈𝑧𝑖𝐴
′
𝑖𝑘

𝑁(ℎ)

𝑖=1

+
1

2
∑ ∑ 𝑈𝑧𝑖𝑈𝑧𝑗𝐵

′
𝑖𝑗𝑘

𝑁(ℎ)

𝑗=1

𝑁(ℎ)

𝑖=1

+ ∑ ∑ 𝑈𝑧𝑖𝑈𝑟𝑗𝐶
′
𝑖𝑗𝑘

𝑁(ℎ)

𝑗=1

𝑁(ℎ)

𝑖=1

+ ∑ 𝑃𝑖𝐷
′
𝑖𝑘

𝑁(ℎ)

𝑖=1

+ 𝐸′𝑘 = 0, 

 

𝑘 = 1,2,… , 𝑁(ℎ), 
 

where the coefficients of the system are stated in the relations (3.4.15),…,(34.19) and 

(3.4.24),…,(3.4.28). 

 

We finish this section by focusing on the weak modeling of the energy conservation 

equation and we replace 𝑢𝑟ℎ, 𝑢𝑧ℎ, 𝜃ℎ ∈ 𝑉ℎ instead of 𝑢𝑟 , 𝑢𝑧, 𝜃 in the conservation equation 

(3.3.13) and we will gain 

 
∫(𝜃ℎ +

𝑘

𝜌𝑐
𝐻(𝜃ℎ))

𝜕𝜂ℎ
𝜕𝑡

 

𝐺
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+∫𝜃ℎ (𝑢𝑟ℎ
𝜕𝜂ℎ
𝜕𝑟

+ 𝑢𝑧ℎ
𝜕𝜂ℎ
𝜕𝑧

+
𝑘

𝜌𝑐
(
𝜕2𝜂ℎ
𝜕𝑟2

+
𝜕2𝜂ℎ
𝜕𝑧2

))

 

𝐺

 

= −∫(
1

𝜌𝑐
𝐹 + 2𝜗|𝝉ℎ|

2) 𝜂ℎ

 

𝐺

 

 

(3.4.29) 

 

Now we insert the approximate values 𝑢𝑟ℎ, 𝑢𝑧ℎ, and 𝜃ℎ into the integral equality (3.4.29) 

when we omit 
𝜕2𝜂ℎ

𝜕𝑟2
+
𝜕2𝜂ℎ

𝜕𝑧2
, since it is zero and we attain to 

 

 

∫(∑ 𝜃𝑖𝜙𝑖

𝑁(ℎ)

𝑖=1

+
𝑘

𝜌𝑐
𝐻(𝜃ℎ))

𝜕𝜙
𝑘

𝜕𝑡

 

𝐺

 

+∫∑ 𝜃𝑖𝜙𝑖

𝑁(ℎ)

𝑖=1

(
𝜕𝜙𝑘
𝜕𝑟

∑ 𝑈𝑟𝑗𝜙𝑗

𝑁(ℎ)

𝑗=1

+
𝜕𝜙𝑘
𝜕𝑧

∑ 𝑈𝑧𝑗𝜙𝑗

𝑁(ℎ)

𝑗=1

)

 

𝐺

 

= −∫(
1

𝜌𝑐
𝐹 + 2𝜗|𝝉ℎ|

2)𝜙𝑘

 

𝐺

 

 

 

 

 

 

 

(3.4.30) 

 

Equality (3.4.30) in the liquid phase is written as 

 

 

∫(∑ 𝜃𝑖𝜙𝑖

𝑁(ℎ)

𝑖=1

+
𝑘

𝜌𝑐
𝐿)

𝜕𝜙
𝑘

𝜕𝑡

 

𝛺1

 

+ ∫∑ 𝜃𝑖𝜙𝑖

𝑁(ℎ)

𝑖=1

(
𝜕𝜙𝑘
𝜕𝑟

∑ 𝑈𝑟𝑗𝜙𝑗

𝑁(ℎ)

𝑗=1

+
𝜕𝜙𝑘
𝜕𝑧

∑ 𝑈𝑧𝑗𝜙𝑗

𝑁(ℎ)

𝑗=1

)

 

𝛺1

 

= − ∫(
1

𝜌𝑐
𝐹 + 2𝜗|𝝉ℎ|

2)𝜙𝑘

 

𝛺1

, 

 

 

 

 

 

 

(3.4.31) 

 

and so 

 

 

∑ 𝜃𝑖 ∫𝜙𝑖

 

𝛺1

𝜕𝜙𝑘
𝜕𝑡

𝑁(ℎ)

𝑖=1

+ 

∑ ∑ 𝜃𝑖 ∫𝜙𝑖𝜙𝑗 (𝑈𝑟𝑗
𝜕𝜙𝑘
𝜕𝑟

+ 𝑈𝑧𝑗
𝜕𝜙𝑘
𝜕𝑧
)

 

𝛺1

𝑁(ℎ)

𝑗=1

𝑁(ℎ)

𝑖=1

 

= −2 ∫𝜗|𝝉ℎ|
2𝜙𝑘

 

𝛺1

−
1

𝜌𝑐
∫(𝐹𝜙𝑘 − 𝑘𝐿

𝜕𝜙𝑘
𝜕𝑡

)

 

𝛺1

 

 

 

 

 

 

(3.4.32) 

 

Finally we achieve the linear system with 𝑁(ℎ) equations within 𝑁(ℎ) unknowns 𝜃𝑖 as 
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∑ 𝜃𝑖𝐹𝑖𝑘

𝑁(ℎ)

𝑖=1

+ ∑ ∑ 𝜃𝑖𝐺𝑖𝑗𝑘

𝑁(ℎ)

𝑗=1

𝑁(ℎ)

𝑖=1

= 𝐻𝑘 + 𝐼𝑘, 

 

 

(3.4.32) 

 

where the coefficients are as 

 

 
𝐹𝑖𝑘 = ∫𝜙𝑖

 

𝛺1

𝜕𝜙𝑘
𝜕𝑡

, 
 

(3.4.33) 

 

 
𝐺𝑖𝑗𝑘 = ∫𝜙𝑖𝜙𝑗 (𝑈𝑟𝑗

𝜕𝜙𝑘
𝜕𝑟

+ 𝑈𝑧𝑗
𝜕𝜙𝑘
𝜕𝑧
)

 

𝛺1

, 
 

(3.4.34) 

 

 
𝐻𝑘 = −2 ∫ 𝜗|𝝉ℎ|

2𝜙𝑘

 

𝛺1

, 
(3.4.35) 

 

 
𝐼𝑘 = − ∫

1

𝜌𝑐
(𝐹𝜙𝑘 − 𝑘𝐿

𝜕𝜙𝑘
𝜕𝑡
)

 

𝛺1

. 
 

(3.4.35) 

 

It is necessary to mention that for the stress tensor  𝝉 we have 

 

 
|𝝉|2 = (

𝜕𝑢𝑟
𝜕𝑟
)
2

+ (
𝜕𝑢𝑧
𝜕𝑟
)
2

+ (
𝜕𝑢𝑟
𝜕𝑧
)
2

+ (
𝜕𝑢𝑧
𝜕𝑧
)
2

, 
 

(3.4.36) 

 

then after the discretization of domain we renew the stress as 

 

 
|𝝉ℎ|

2 = (
𝜕𝑢𝑟ℎ
𝜕𝑟

)

2

+ (
𝜕𝑢𝑧ℎ
𝜕𝑟

)

2

+ (
𝜕𝑢𝑟ℎ
𝜕𝑧

)

2

+ (
𝜕𝑢𝑧ℎ
𝜕𝑧

)

2

, 
 

(3.4.37) 

 

and by applying the relation (3.4.37) we compute 𝐻𝑘 as 

 

 
𝐻𝑘 = −2 ∫ 𝜗|𝝉ℎ|

2𝜙𝑘

 

𝛺1

 

= −2 ∫𝜗((
𝜕𝑢𝑟ℎ
𝜕𝑟

)

2

+ (
𝜕𝑢𝑧ℎ
𝜕𝑟

)

2

+ (
𝜕𝑢𝑟ℎ
𝜕𝑧

)

2

+ (
𝜕𝑢𝑧ℎ
𝜕𝑧

)

2

)𝜙𝑘

 

𝛺1

, 

 

 

 

(3.4.38) 

 

and finally 
 

 

𝐻𝑘 = −2 ∑ ∑ ∫ 𝜗 (𝑈𝑟𝑖𝑈𝑟𝑗 + 𝑈𝑧𝑖𝑈𝑧𝑗) (
𝜕𝜙𝑖
𝜕𝑟

𝜕𝜙𝑗
𝜕𝑟

+
𝜕𝜙𝑖
𝜕𝑧

𝜕𝜙𝑗
𝜕𝑧
)𝜙𝑘

 

𝛺1

𝑁(ℎ)

𝑗=1

𝑁(ℎ)

𝑖=1

 

 

 

(3.4.39) 
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At last we refer to the energy conservation system in solid phase and we earn 

 

 

∑ 𝜃𝑖 ∫𝜙𝑖

 

𝛺2

𝜕𝜙𝑘
𝜕𝑡

𝑁(ℎ)

𝑖=1

= −
1

𝜌𝑐
𝐹 ∫𝜙𝑘

 

𝛺2

, 

 

 

(3.4.40) 

 

and so we get the system of 

 

 

∑ 𝜃𝑖𝐹𝑖𝑘
′

𝑁(ℎ)

𝑖=1

= 𝐼𝑘
′ , 

 

 

(3.4.41) 

 

where 

 
𝐹𝑖𝑘
′ = ∫𝜙𝑖

 

𝛺2

𝜕𝜙𝑘
𝜕𝑡

, 
 

(3.4.42) 

 

 
𝐼𝑘
′ = −

1

𝜌𝑐
𝐹 ∫𝜙𝑘

 

𝛺2

. 
 

(3.4.43) 

 

Theorem 3.6. Let’s discrete the domain Ω by the finite-dimensional subspace 𝑉ℎ ⊂ 𝐻0
1(Ω) 

which consists of smooth test functions 𝜙𝑖(𝑟, 𝜑, 𝑧, 𝑡), 𝑖 = 1,2, … ,𝑁(ℎ) with small support, 

where dim𝑉ℎ = 𝑁(ℎ), and 𝑉ℎ = 𝑠𝑝𝑎𝑛{𝜙1, 𝜙2, 𝜙3, … , 𝜙𝑁(ℎ)}, then the equality (3.3.13) 

can be computed as the linear system of equations 

 

∑ 𝜃𝑖𝐹𝑖𝑘

𝑁(ℎ)

𝑖=1

+ ∑ ∑ 𝜃𝑖𝐺𝑖𝑗𝑘

𝑁(ℎ)

𝑗=1

𝑁(ℎ)

𝑖=1

= 𝐻𝑘 + 𝐼𝑘, 

 

where the coefficients of the system are stated in the relations (3,4,33),…, (3.4.39). Also 

for the solid phase we will have the system of linear equations as 

 

∑ 𝜃𝑖𝐹𝑖𝑘
′

𝑁(ℎ)

𝑖=1

= 𝐼𝑘
′ , 

 

where 

  

𝐹𝑖𝑘
′ = ∫𝜙𝑖

 

Ω2

𝜕𝜙𝑘
𝜕𝑡

, 𝐼𝑘
′ = −

1

𝜌𝑐
𝐹 ∫𝜙𝑘

 

Ω2

. 
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One essential part is the construction of smooth test functions that they are piecewise 

continuous polynomials with the fixed degree. It is necessary because we need them to 

determine the coefficients of the transport system before we attain to their numerical 

solution. 

 

3.5.   Mathematical Modeling of Heat Transfer 

 

In section (3.4) we prepared the whole details of the discretization of the domain and now 

we recall the heat transfer problem as the problem of finding (𝑈𝑟1 , 𝑈𝑟2 , … , 𝑈𝑟𝑁(ℎ)) ∈ 𝑅
𝑁(ℎ) 

, (𝑈𝑧1 , 𝑈𝑧2 , … , 𝑈𝑧𝑁(ℎ)) ∈ 𝑅
𝑁(ℎ) , and (𝜃1, 𝜃2, … , 𝜃𝑁(ℎ)) ∈ 𝑅

𝑁(ℎ) , that they are satisfy in the 

system of equation (3.5.1),…, (3.5.4). 

 

 

∑(𝑈𝑟𝑖𝑎𝑖𝑘 − 𝑈𝑧𝑖𝑏𝑖𝑘)

𝑁(ℎ)

𝑖=1

= 0, 

 

 

(3.5.1) 

 

∑ 𝑈𝑟𝑖𝐴𝑖𝑘

𝑁(ℎ)

𝑖=1

+ ∑ ∑ 𝑈𝑟𝑖𝑈𝑟𝑗𝐵𝑖𝑗𝑘

𝑁(ℎ)

𝑗=1

𝑁(ℎ)

𝑖=1

+ ∑ ∑ 𝑈𝑟𝑖𝑈𝑧𝑗

𝑁(ℎ)

𝑗=1

𝐶𝑖𝑗𝑘

𝑁(ℎ)

𝑖=1

+ ∑ 𝑃𝑖𝐷𝑖𝑘

𝑁(ℎ)

𝑖=1

+ 𝐸𝑘 = 0, 

 

 

 

(3.5.2) 

 

∑ 𝑈𝑧𝑖𝐴
′
𝑖𝑘

𝑁(ℎ)

𝑖=1

+ ∑ ∑ 𝑈𝑧𝑖𝑈𝑧𝑗𝐵
′
𝑖𝑗𝑘

𝑁(ℎ)

𝑗=1

𝑁(ℎ)

𝑖=1

+ ∑ ∑ 𝑈𝑧𝑖𝑈𝑟𝑗𝐶
′
𝑖𝑗𝑘

𝑁(ℎ)

𝑗=1

𝑁(ℎ)

𝑖=1

+ ∑ 𝑃𝑖𝐷
′
𝑖𝑘

𝑁(ℎ)

𝑖=1

+ 𝐸′𝑘 = 0, 

 

 

 

(3.5.3) 

 

∑ 𝜃𝑖𝐹𝑖𝑘

𝑁(ℎ)

𝑖=1

+ ∑ ∑ 𝜃𝑖 (𝑈𝑟𝑗 + 𝑈𝑧𝑗)𝐺𝑗𝑘

𝑁(ℎ)

𝑗=1

𝑁(ℎ)

𝑖=1

+𝐻𝑘 = 0, 

 

(3.5.4) 

  

𝑘 = 1,2,3,… ,𝑁(ℎ), 
 

 

where the coefficients of the system are listed in the table (3.5.1). 
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Table 3.5.1. 

 

𝑎𝑖𝑘 = ∫𝜙𝑖 (
𝜙𝑘
𝑟
−
𝜕𝜙𝑘
𝜕𝑟

)

 

𝛺

 𝑏𝑖𝑘 = ∫𝜙𝑖
𝜕𝜙𝑘
𝜕𝑧

 

𝛺

 

𝐴𝑖𝑘 = ∫𝜙𝑖 (
𝜕𝜙𝑘
𝜕𝑡

−
𝜕2𝜙𝑘
𝜕𝑟2

−
𝜕2𝜙𝑘
𝜕𝑧2

+
1

𝑟

𝜕𝜙𝑘
𝜕𝑟

)

 

𝛺

 𝐴′𝑖𝑘 = ∫𝜙𝑖 (
𝜕𝜙𝑘
𝜕𝑡

+
𝜕2𝜙𝑘
𝜕𝑟𝜕𝑧

+
𝜕2𝜙𝑘
𝜕𝑧2

)

 

𝛺

 

𝐵𝑖𝑗𝑘 =
1

2
∫𝜙𝑖𝜙𝑗

𝜕𝜙𝑘
𝜕𝑟

 

𝛺

 𝐵′𝑖𝑗𝑘 =
1

2
∫𝜙𝑖𝜙𝑗

𝜕𝜙𝑘
𝜕𝑧

 

𝛺

 

𝐶𝑖𝑗𝑘 = ∫𝜙𝑖 (𝜙𝑗
𝜕𝜙𝑘
𝜕𝑧

+ 𝜙𝑘
𝜕𝜙𝑗

𝜕𝑧
)

 

𝛺

 𝐶′𝑖𝑗𝑘 = ∫𝜙𝑖 (𝜙𝑗
𝜕𝜙𝑘
𝜕𝑟

+ 𝜙𝑘
𝜕𝜙𝑗

𝜕𝑟
)

 

𝛺

 

𝐷𝑖𝑘 =
1

𝜌
∫𝜙𝑖

𝜕𝜙𝑘
𝜕𝑟

 

𝛺

 𝐷′𝑖𝑘 =
1

𝜌
∫𝜙𝑖

𝜕𝜙𝑘
𝜕𝑧

 

𝛺

 

𝐸𝑘 = ∫𝑔𝑟𝜙𝑘

 

𝛺

 𝐸′𝑘 = ∫𝑔𝑧𝜙𝑘

 

𝛺

 

𝐹𝑖𝑘 = ∫𝜙𝑖 (
𝜕𝜙𝑘
𝜕𝑡

+
𝑘

𝜌𝑐
(
𝜕2𝜙𝑘
𝜕𝑟2

+
𝜕2𝜙𝑘
𝜕𝑧2

))

 

𝛺

 𝐺𝑗𝑘 = ∫(𝜙𝑘
𝜕𝜙𝑗

𝜕𝑟
+ 𝜙𝑗

𝜕𝜙𝑘
𝜕𝑟

)

 

𝛺

 

𝐻𝑘 =
1

𝜌𝑐
∫(𝑘𝜆

𝜕𝜙𝑘
𝜕𝑡

+ 𝑆𝜙𝑘)

 

𝛺

 
 

 

The Coefficients of System 

 

It is trivial we need to determine the values of the coefficients to derive the numerical 

solution of system, then we must define the sufficient domain and discrete it to compute 

the relevant integrals, and at last we would found all coefficients. 

 

3.6.   Computing the unknown coefficients 
 

We continue the process by computing the coefficients in the transport system, for this 

objective we need to divide the domain Ω to the mesh cubes, the figure (3.6.1) shows the 

𝑖𝑗𝑘 −mesh cube. 

 

Figure 3.6.1. 

 

 

 

 

 

 

 

 

  

 𝑖𝑗𝑘 −mesh cube 
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and we will construct the test functions on 𝑖𝑗𝑘 −mesh cube. To define the test functions 

we divide the 𝑖𝑗𝑘 −mesh cube into the 24 tetrahedrons that they are presented in the table 

(3.6.1). 

 

Table 3.6.1. 

 

 
Part 01 

 
Part 02 

 
Part 03 

 
Part 04 

 
Part 05 

 
Part 06 

 
Part 07 

 
Part 08 

 
Part 09 

 
Part 10 

 
Part 11 

 
Part 12 

 
Part 13 

 
Part 14 

 
Part 15 

 
Part 16 
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Part 17 

 
Part 18 

 
Part 19 

 
Part 20 

 
Part 21 

 
Part 22 

 
Part 23 

 
Part 24 

 

24 Tetrahedrons in 𝑖𝑗𝑘 −mesh cube 

 

We are looking for the piecewise continuous linear function 𝜙 = 𝜙(𝑥, 𝑦, 𝑡) where it equals 

to 1 in the origin node of 𝑖𝑗𝑘 −mesh cube, and 0 in the other nodes. Suppose that 

 

𝜙(𝑥, 𝑦, 𝑡) = 𝑎 + 𝑏𝑥 + 𝑐𝑦 + 𝑑𝑡, 
 

for (𝑥, 𝑦, 𝑧) ∈ 𝑂𝐴𝐵𝐶 in the figure (3.6.2) and 

 

𝜙 (𝑂(𝑥𝑖 , 𝑦𝑗 , 𝑡𝑘)) = 1, 𝜙 (𝐴(𝑥𝑖+1, 𝑦𝑗−1, 𝑡𝑘)) = 0, 

𝜙 (𝐵(𝑥𝑖+1, 𝑦𝑗 , 𝑡𝑘)) = 0, 𝜙 (𝐶(𝑥𝑖 , 𝑦𝑗 , 𝑡𝑘+1)) = 0. 

 

 

 

Figure 3.6.2. 

 

 

  

Tetrahedron 01 in 𝑖𝑗𝑘 −mesh cube 
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then we will have 

 

 

{
  
 

  
 
𝑎 + 𝑥𝑖𝑏 + 𝑦𝑗𝑐 + 𝑡𝑘𝑑 = 1        

 
𝑎 + 𝑥𝑖+1𝑏 + 𝑦𝑗−1𝑐 + 𝑡𝑘𝑑 = 0

 
𝑎 + 𝑥𝑖+1𝑏 + 𝑦𝑗𝑐 + 𝑡𝑘𝑑 = 0   

 
𝑎 + 𝑥𝑖𝑏 + 𝑦𝑗𝑐 + 𝑡𝑘+1𝑑 = 0    

 

 

 

 

(3.6.1) 

 

We get the solution of the linear system (3.6.1) as 

 

𝑎 =
1

ℎ
(𝑥𝑖 + 𝑡𝑘) + 1, 𝑏 = 𝑑 = −

1

ℎ
, 𝑐 = 0, 

 

then we derive the test function 

 

 
𝜙(𝑥, 𝑦, 𝑡) =

1

ℎ
(−𝑥 + 𝑥𝑖 − 𝑡 + 𝑡𝑘) + 1 

 

(3.6.2) 

We perform the same approach for all of the other tetrahedrons and we demonstrate them 

in the table (3.6.2). 

 

Table 3.6.2. 

 
Parts 1, 2 

𝜙(𝑥, 𝑦, 𝑡) =
1

ℎ
(−𝑥 + 𝑥𝑖 − 𝑡 + 𝑡𝑘) + 1 

Parts 3, 4 

𝜙(𝑥, 𝑦, 𝑡) =
1

ℎ
(−𝑥 + 𝑥𝑖 − 𝑦 + 𝑦𝑗) + 1 

Parts 5, 6 

𝜙(𝑥, 𝑦, 𝑡) =
1

ℎ
(−𝑦 + 𝑦𝑗 + 𝑡 − 𝑡𝑘) + 1 

Parts 7, 8 

𝜙(𝑥, 𝑦, 𝑡) =
1

ℎ
(𝑥 − 𝑥𝑖 + 𝑡 − 𝑡𝑘) + 1 

Parts 9, 10 

𝜙(𝑥, 𝑦, 𝑡) =
1

ℎ
(𝑥 − 𝑥𝑖 + 𝑦 − 𝑦𝑗) + 1 

Parts 11, 12 

𝜙(𝑥, 𝑦, 𝑡) =
1

ℎ
(𝑦 − 𝑦𝑗 − 𝑡 + 𝑡𝑘) + 1 

Parts 13, 14 

𝜙(𝑥, 𝑦, 𝑡) =
1

ℎ
(−𝑡 + 𝑡𝑘) + 1 

Parts 15, 16 

𝜙(𝑥, 𝑦, 𝑡) =
1

ℎ
(𝑥 − 𝑥𝑖) + 1 

Parts 17, 18 

𝜙(𝑥, 𝑦, 𝑡) =
1

ℎ
(−𝑦 + 𝑦𝑗) + 1 

Parts 19, 20 

𝜙(𝑥, 𝑦, 𝑡) =
1

ℎ
(𝑡 − 𝑡𝑘) + 1 

Parts 21, 22 

𝜙(𝑥, 𝑦, 𝑡) =
1

ℎ
(𝑦 − 𝑦𝑗) + 1 

Parts 23, 24 

𝜙(𝑥, 𝑦, 𝑡) =
1

ℎ
 (−𝑥 + 𝑥𝑖) + 1 

 

Test Functions defined on 24 tetrahedrons 
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3.7.   The Continuity Equation 
 

We are in the position to compute the coefficients of the continuity equation 𝑎𝑖𝑘 and 𝑏𝑖𝑘 

from (2.9), then we continue the process by determining the 𝑎𝑖𝑘 for 𝑘 = 𝑖, 𝑘 = 𝑖 −
(𝑁2 + 𝑁 − 1), and 𝑘 = 𝑖 + (𝑁2 + 𝑁 − 1), and it is trivial that 𝑎𝑖𝑘 = 0 in the other cases. 

Also it is necessary to note that we will use the variables 𝑥 and 𝑦 instead of 𝑟 and 𝑧 in the 

integral equations. Then we divide the integral as 

 

 
𝑎𝑖𝑖 = ∫𝜙𝑖 (

𝜙𝑖
𝑟
−
𝜕𝜙𝑖
𝜕𝑟
)

 

𝛺

=∭𝜙𝑖 (
𝜙𝑖
𝑥
−
𝜕𝜙𝑖
𝜕𝑥
)𝑑𝑥𝑑𝑦𝑑𝑡

 

𝛺

= ∭ 𝜙𝑖 (
𝜙𝑖
𝑥
−
𝜕𝜙𝑖
𝜕𝑥
)𝑑𝑥𝑑𝑦𝑑𝑡

 

𝑝𝑎𝑟𝑡 01

 

+ ∭ 𝜙𝑖 (
𝜙𝑖
𝑥
−
𝜕𝜙𝑖
𝜕𝑥
)𝑑𝑥𝑑𝑦𝑑𝑡

 

𝑝𝑎𝑟𝑡 02

+⋯+ ∭ 𝜙𝑖 (
𝜙𝑖
𝑥
−
𝜕𝜙𝑖
𝜕𝑥
)𝑑𝑥𝑑𝑦𝑑𝑡

 

𝑝𝑎𝑟𝑡 24

 

 

 

 

 
(3.7.1) 

For the computation of the integral in the part 01 we get the image of the tetrahedron 

𝑂𝐴𝐵𝐶 over the plane 𝑋𝑂𝑌 

 

 

Figure 3.7.1. 

 

 

 

 
∭ 𝜙𝑖 (

𝜙𝑖
𝑥
−
𝜕𝜙𝑖
𝜕𝑥
)𝑑𝑥𝑑𝑦𝑑𝑡

 

𝑝𝑎𝑟𝑡 01

= 

∫ ∫ ∫ (
1

ℎ
(−𝑥 + 𝑥𝑖 − 𝑡 + 𝑡𝑘) + 1)(

1
ℎ
(−𝑥 + 𝑥𝑖 − 𝑡 + 𝑡𝑘) + 1

𝑥
+
1

ℎ
)𝑑𝑡𝑑𝑦𝑑𝑥

−𝑥+𝑥𝑖+𝑡𝑘+1

𝑡𝑘

𝑦𝑗

−𝑥+𝑥𝑖+𝑦𝑗

𝑥𝑖+1

𝑥𝑖

= 

1

72ℎ
(24𝑥𝑖

3 + 60𝑥𝑖
2ℎ + 44𝑥𝑖ℎ

2 + 9ℎ3) −
1

3ℎ2
𝑥𝑖(𝑥𝑖 + ℎ)

3 𝑙𝑛 (1 +
ℎ

𝑥𝑖
) 

 

 

 

 

 

 

 
(3.7.2) 

 

We perform the same process for the other integrals on the 24 tetrahedrons and we will 

have the result in the table (3.7.1). 
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Table 3.7.1 

 
01, 04 

 

1

72ℎ
(24𝑥𝑖

3 + 60𝑥𝑖
2ℎ + 44𝑥𝑖ℎ

2 + 9ℎ3) −
1

3ℎ2
𝑥𝑖(𝑥𝑖 + ℎ)

3 𝑙𝑛 (1 +
ℎ

𝑥𝑖
) 

 

02, 03 

 
−

1

144ℎ
(12𝑥𝑖

3 + 42𝑥𝑖
2ℎ + 52𝑥𝑖ℎ

2 + 19ℎ3) +
1

12ℎ2
(𝑥𝑖 + ℎ)

4 𝑙𝑛 (1 +
ℎ

𝑥𝑖
) 

 

05, 12, 19, 21 
−

1

144ℎ
(12𝑥𝑖

3 + 42𝑥𝑖
2ℎ + 52𝑥𝑖ℎ

2 + 25ℎ3) +
1

12ℎ2
(𝑥𝑖 + ℎ)

4 𝑙𝑛 (1 +
ℎ

𝑥𝑖
) 

 

06, 11, 13, 18 1

144ℎ
(−12𝑥𝑖

3 + 42𝑥𝑖
2ℎ − 52𝑥𝑖ℎ

2 + 25ℎ3) −
1

12ℎ2
(𝑥𝑖 − ℎ)

4 𝑙𝑛 (1 −
ℎ

𝑥𝑖
) 

 

07, 10 1

72ℎ
(24𝑥𝑖

3 − 60𝑥𝑖
2ℎ + 44𝑥𝑖ℎ

2 − 9ℎ3) +
1

3ℎ2
𝑥𝑖(𝑥𝑖 − ℎ)

3 𝑙𝑛 (1 −
ℎ

𝑥𝑖
) 

 

08, 09 1

144ℎ
(−12𝑥𝑖

3 + 42𝑥𝑖
2ℎ − 52𝑥𝑖ℎ

2 + 19ℎ3) −
1

12ℎ2
(𝑥𝑖 − ℎ)

4 𝑙𝑛 (1 −
ℎ

𝑥𝑖
) 

 

14, 17 1

36ℎ
(12𝑥𝑖

3 − 30𝑥𝑖
2ℎ + 22𝑥𝑖ℎ

2 − 3ℎ3) +
1

3ℎ2
𝑥𝑖(𝑥𝑖 − ℎ)

3 𝑙𝑛 (1 −
ℎ

𝑥𝑖
) 

 

15, 16 1

12ℎ
(𝑥𝑖 − ℎ)(−6𝑥𝑖

2 + 3𝑥𝑖ℎ + ℎ
2) −

1

2ℎ2
𝑥𝑖
2(𝑥𝑖 − ℎ)

2 𝑙𝑛 (1 −
ℎ

𝑥𝑖
) 

 

20, 22 

 

1

36ℎ
(12𝑥𝑖

3 + 30𝑥𝑖
2ℎ + 22𝑥𝑖ℎ

2 + 3ℎ3) −
1

3ℎ2
𝑥𝑖(𝑥𝑖 + ℎ)

3 𝑙𝑛 (1 +
ℎ

𝑥𝑖
) 

 

23, 24 

 
−

1

12ℎ
(𝑥𝑖 + ℎ)(6𝑥𝑖

2 + 3𝑥𝑖ℎ − ℎ
2) +

1

2ℎ2
𝑥𝑖
2(𝑥𝑖 + ℎ)

2 𝑙𝑛 (1 +
ℎ

𝑥𝑖
) 

 

 

Values of integrals for 𝑎𝑖𝑘 

Finally we finish the computation process by summation of the values of integrals in the 

table (3.7.1) and we get 

 

 
𝑎𝑖𝑖 =

(𝑥𝑖 + ℎ)(6𝑥𝑖
2 − 8𝑥𝑖(𝑥𝑖 + ℎ)

2 + 3(𝑥𝑖 + ℎ)
3)

6ℎ2
𝑙𝑛 (1 +

ℎ

𝑥𝑖
) − 

𝑥𝑖
4 − 4𝑥𝑖ℎ

3 + 3ℎ4

6ℎ2
𝑙𝑛 (1 −

ℎ

𝑥𝑖
) −

𝑥𝑖(3𝑥𝑖
2 + ℎ2)

9ℎ
, 

 

 

 

(3.7.3) 

and by the same approach we derive 

 

 𝑎𝑖,𝑖−(𝑁2+𝑁−1) =
1

72ℎ
(12𝑥𝑖

3 − 6𝑥𝑖
2ℎ + 40𝑥𝑖ℎ

2 − 3ℎ3) 

−
1

6ℎ2
(𝑥𝑖

4 + 3𝑥𝑖
2ℎ2 + 2𝑥𝑖ℎ

3 − 2ℎ4) 𝑙𝑛 (1 +
ℎ

𝑥𝑖
), 

 

 

(3.7.4) 

 𝑎𝑖,𝑖+(𝑁2+𝑁−1) =
1

72ℎ
(12𝑥𝑖

3 + 6𝑥𝑖
2ℎ + 40𝑥𝑖ℎ

2 + 3ℎ3) 

+
1

6ℎ2
(𝑥𝑖

4 + 3𝑥𝑖
2ℎ2 − 2𝑥𝑖ℎ

3 − 2ℎ4) 𝑙𝑛 (1 −
ℎ

𝑥𝑖
). 

 

(3.7.5) 
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Then we will get the following theorem. Also for the coefficient 𝑏𝑖𝑘 we get 

 

 𝑏𝑖𝑖 = 0, 

𝑏𝑖,𝑖−(𝑁2+𝑁−1) =
ℎ2

12
, 

𝑏𝑖,𝑖+(𝑁2+𝑁−1) = −
ℎ2

12
. 

 

 

 

(3.7.6) 

 

Theorem 3.7. Suppose the linear system of equations 

 

∑(𝑈𝑟𝑖𝑎𝑖𝑘 − 𝑈𝑧𝑖𝑏𝑖𝑘)

𝑁(ℎ)

𝑖=1

= 0, 𝑘 = 1,2, … ,𝑁(ℎ), 

where 

𝑎𝑖𝑘 = ∫𝜙𝑖 (
𝜙𝑘
𝑟
−
𝜕𝜙𝑘
𝜕𝑟

)

 

Ω

, 𝑏𝑖𝑘 = ∫𝜙𝑖
𝜕𝜙𝑘
𝜕𝑧

 

Ω

, 

 

and  𝜙𝑖 , 𝑖 = 1,2, … , 𝑁(ℎ) are the test functions in table (3.6.2), then the coefficients 𝑎𝑖𝑘 

and 𝑏𝑖𝑘 are prepared in the relations (3.7.3), …,(3.7.6). 

 

Suppose that the domain Ω = [0.3, 0.9] × [0.3, 0.9] × [0.3, 0.9], and 𝑁 = 4, then ℎ =
0.15, and 

𝑥1 = 0.3, 𝑥2 = 0.45, 𝑥3 = 0.6, 𝑥4 = 0.75 

 

After inserting the values in the system (3.5.1) we express the continuity linear system as 

 

 (𝑃, 𝑄) (
𝑈𝑟
𝑈𝑧
) = 0, 

 

(3.7.7) 

where 

 

 𝑃 = 

 

(

 
 
 
 
 
 
 
 
 
 
 

0.41 0 … 0 0.0009 0 0 0 ⋱ 0 0 0 0 0
0 0.62 0 … 0 0.0001 0 0 ⋱ 0 0 0 0 0
⋮ 0 0.67 0 … 0 −0.0003 0 ⋱ 0 0 0 0 0
0 ⋮ 0 0.41 0 … 0 −0.0006 ⋱ 0 0 0 0 0

0.003 0 ⋮ 0 0.41 0 … 0 ⋱ 0 0 0 0 0
0 0.002 0 ⋮ 0 0.62 0 … ⋱ 0.0009 0 0 0 0
0 0 0.002 0 ⋮ 0 0.67 0 ⋱ 0 0.0001 0 0 0
0 0 0 0.002 0 ⋮ 0 0.41 ⋱ ⋮ 0 −0.0003 0 0
0 0 0 0 0.003 0 ⋮ 0 ⋱ 0 ⋮ 0 −0.0006 0
0 0 0 0 0 0.002 0 ⋮ ⋱ 0.41 0 ⋮ 0 0.0009
0 0 0 0 0 0 0.002 0 ⋱ 0 0.41 0 ⋮ 0
0 0 0 0 0 0 0 0.002 ⋱ 0 0 0.62 0 ⋮
0 0 0 0 0 0 0 0 ⋱ 0 0 0 0.67 0
0 0 0 0 0 0 0 0 ⋱ 0.003 0 0 0 0.41 )

 
 
 
 
 
 
 
 
 
 
 

, 

 

 

 

 

 

 

 

(3.7.8) 

 

and 
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 𝑄 = 

 

(

 
 
 
 
 
 
 
 
 
 
 

0 0 … 0 0.002 0 0 0 ⋱ 0 0 0 0 0
0 0 0 … 0 0.002 0 0 ⋱ 0 0 0 0 0
⋮ 0 0 0 … 0 0.002 0 ⋱ 0 0 0 0 0
0 ⋮ 0 0 0 … 0 0.002 ⋱ 0 0 0 0 0

−0.002 0 ⋮ 0 0 0 … 0 ⋱ 0 0 0 0 0
0 −0.002 0 ⋮ 0 0 0 … ⋱ 0.002 0 0 0 0
0 0 −0.002 0 ⋮ 0 0 0 ⋱ 0 0.002 0 0 0
0 0 0 −0.002 0 ⋮ 0 0 ⋱ ⋮ 0 0.002 0 0
0 0 0 0 −0.002 0 ⋮ 0 ⋱ 0 ⋮ 0 0.002 0
0 0 0 0 0 −0.002 0 ⋮ ⋱ 0 0 ⋮ 0 0.002
0 0 0 0 0 0 −0.002 0 ⋱ 0 0 0 ⋮ 0
0 0 0 0 0 0 0 −0.002 ⋱ 0 0 0 0 ⋮
0 0 0 0 0 0 0 0 ⋱ 0 0 0 0 0
0 0 0 0 0 0 0 0 ⋱ −0.002 0 0 0 0 )

 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

(3.7.9) 

 

Theorem 3.8. Suppose the linear system of equations 

 

∑(𝑈𝑟𝑖𝑎𝑖𝑘 − 𝑈𝑧𝑖𝑏𝑖𝑘)

𝑁(ℎ)

𝑖=1

= 0, 𝑘 = 1,2, … ,𝑁(ℎ), 

where 

𝑎𝑖𝑘 = ∫𝜙𝑖 (
𝜙𝑘
𝑟
−
𝜕𝜙𝑘
𝜕𝑟

)

 

Ω

, 𝑏𝑖𝑘 = ∫𝜙𝑖
𝜕𝜙𝑘
𝜕𝑧

 

Ω

, 

 

and  𝜙𝑖 , 𝑖 = 1,2, … , 𝑁(ℎ) are the test functions in table (3.6.2), then the system can be 

stated as 𝑃𝑈𝑟 + 𝑄𝑈𝑧 = 0, where the matrices 𝑃 and 𝑄 are introduced in (3.7.8) and (3.7.9). 

 

Now we obtain a linear system of equations that it has 128 variables 𝑈𝑟1 , 𝑈𝑟2 , … , 𝑈𝑟64, and 

𝑈𝑧1 , 𝑈𝑧2 , … , 𝑈𝑧64 within 64 equations. We stop here and then focus on the Navier-Stokes 

system to earn the remainder equations. 

P; 

3.8.   The Navier-Stokes Equations 
 

In this stage we will compute the coefficients of the Navier-Stokes system (3.5.2) and 

(3.5.3). We start by determining the coefficient 𝐴𝑖𝑘, and as we have done before we 

suppose the 𝑖𝑗𝑘 −mesh cube that it was divided to 24 tetrahedrons in the table (3.6.1), then 

after integration process in the whole parts we gain 

 

 
𝐴𝑖𝑖 = −

𝑥𝑖
3 + ℎ3

3ℎ2
𝑙𝑛 (1 +

ℎ

𝑥𝑖
) +

𝑥𝑖
3 − ℎ3

3ℎ2
𝑙𝑛 (1 −

ℎ

𝑥𝑖
) +

6𝑥𝑖
2 + 2ℎ2

9ℎ
 

 

 

(3.8.1) 

 
𝐴𝑖,𝑖−(𝑁2+𝑁−1) = −

1

18ℎ
(6𝑥𝑖

2 + 15𝑥𝑖ℎ + 11ℎ
2) +

(𝑥𝑖 + ℎ)
3

3ℎ2
𝑙𝑛 (1 +

ℎ

𝑥𝑖
) −

ℎ2

12
 

 

 

(3.8.2) 

 
𝐴𝑖,𝑖+(𝑁2+𝑁−1) = −

1

18ℎ
(6𝑥𝑖

2 − 15𝑥𝑖ℎ + 11ℎ
2) +

(𝑥𝑖 − ℎ)
3

3ℎ2
𝑙𝑛 (1 −

ℎ

𝑥𝑖
) +

ℎ2

12
 

 

 

(3.8.3) 
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Now we insert the values of 𝐴𝑖𝑘 from (3.8.1), (3.8.2), and (3.8.3) into the ∑ 𝑈𝑟𝑖𝐴𝑖𝑘
𝑁(ℎ)
𝑖=1  and 

we earn the coefficient matrix as 

 𝐴 = 

 

(

 
 
 
 
 
 
 
 
 
 
 

0.008 0 … 0 0.004 0 0 0 ⋱ 0 0 0 0 0
0 0.003 0 … 0 0.002 0 0 ⋱ 0 0 0 0 0
⋮ 0 0.002 0 … 0 0.001 0 ⋱ 0 0 0 0 0
0 ⋮ 0 0.001 0 … 0 0.0005 ⋱ 0 0 0 0 0

−0.07 0 ⋮ 0 0.008 0 … 0 ⋱ 0 0 0 0 0
0 −0.33 0 ⋮ 0 0.003 0 … ⋱ 0.004 0 0 0 0
0 0 −0.78 0 ⋮ 0 0.002 0 ⋱ 0 0.002 0 0 0
0 0 0 −1.43 0 ⋮ 0 0.001 ⋱ ⋮ 0 0.001 0 0
0 0 0 0 −0.07 0 ⋮ 0 ⋱ 0 ⋮ 0 0.0005 0
0 0 0 0 0 −0.33 0 ⋮ ⋱ 0.001 0 ⋮ 0 0.004
0 0 0 0 0 0 −0.78 0 ⋱ 0 0.008 0 ⋮ 0
0 0 0 0 0 0 0 −1.43 ⋱ 0 0 0.003 0 ⋮
0 0 0 0 0 0 0 0 ⋱ 0 0 0 0.002 0
0 0 0 0 0 0 0 0 ⋱ −0.07 0 0 0 0.001)

 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

(3.8.4) 

 

We continue the process of finding the coefficients of the Navier-Stokes system by 

focusing on the coefficient 𝐵𝑖𝑗𝑘 from ∑ ∑ 𝑈𝑟𝑖𝑈𝑟𝑗𝐵𝑖𝑗𝑘
𝑁(ℎ)
𝑗=1

𝑁(ℎ)
𝑖=1 , and we achieve 

 
𝐵𝑖𝑖𝑖 = 0, 
 

 

𝐵𝑖,𝑖−(𝑁2+𝑁−1),𝑖 = −
ℎ2

20
, 

 

𝐵𝑖,𝑖+(𝑁2+𝑁−1),𝑖 =
ℎ2

20
, 

𝐵𝑖,𝑖−(𝑁2+𝑁−1),𝑖−(𝑁2+𝑁−1) =
ℎ2

20
, 

 

𝐵𝑖,𝑖+(𝑁2+𝑁−1),𝑖+(𝑁2+𝑁−1) = −
ℎ2

20
, 

𝐵𝑖,𝑖,𝑖−(𝑁2+𝑁−1) =
ℎ2

60
, 

 

𝐵𝑖,𝑖,𝑖+(𝑁2+𝑁−1) = −
ℎ2

60
. 

 

then by applying the values 𝐵𝑖𝑗𝑘 we will have 

 

∑ ∑𝑈𝑟𝑖𝑈𝑟𝑗𝐵𝑖𝑗𝑘

𝑁(ℎ)

𝑗=1

𝑁(ℎ)

𝑖=1

= 

 

{
  
 

  
 

ℎ2

10
𝑈𝑟𝑘𝑈𝑟𝑘+(𝑁2+𝑁−1)

+
ℎ2

60
𝑈𝑟

𝑘+(𝑁2+𝑁−1)

2                                                                         ;  𝑘 < 20

−
ℎ2

10
𝑈𝑟𝑘𝑈𝑟𝑘−(𝑁2+𝑁−1)

+
ℎ2

10
𝑈𝑟𝑘𝑈𝑟𝑘+(𝑁2+𝑁−1)

−
ℎ2

60
𝑈𝑟

𝑘−(𝑁2+𝑁−1)

2 +
ℎ2

60
𝑈𝑟

𝑘+(𝑁2+𝑁−1)

2 ;  20 ≤ 𝑘 ≤ 45

−
ℎ2

10
𝑈𝑟𝑘𝑈𝑟𝑘−(𝑁2+𝑁−1)

−
ℎ2

60
𝑈𝑟

𝑘−(𝑁2+𝑁−1)

2                                                                           ;  𝑘 > 45

 

 

 

We continue the same process to compute the values of 𝐶𝑖𝑗𝑘, and we get 

 
𝐶𝑖𝑖𝑖 = 0, 
 

 

𝐶𝑖,𝑖−(𝑁2+𝑁−1),𝑖 =
ℎ2

15
, 𝐶𝑖,𝑖+(𝑁2+𝑁−1),𝑖 = −

ℎ2

15
, 
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𝐶𝑖,𝑖,𝑖−(𝑁2+𝑁−1) =
ℎ2

15
, 

 

𝐶𝑖,𝑖,𝑖+(𝑁2+𝑁−1) = −
ℎ2

15
, 

𝐶𝑖,𝑖−(𝑁2+𝑁−1),𝑖−(𝑁2+𝑁−1) = −
ℎ2

5
, 

 

𝐶𝑖,𝑖+(𝑁2+𝑁−1),𝑖+(𝑁2+𝑁−1) =
ℎ2

5
. 

 

then we set the values 𝐶𝑖𝑗𝑘 and we derive 

 

∑ ∑𝑈𝑟𝑖𝑈𝑧𝑗𝐶𝑖𝑗𝑘

𝑁(ℎ)

𝑗=1

𝑁(ℎ)

𝑖=1

= 

 

{
 
 
 
 

 
 
 
 −

ℎ2

15
𝑈𝑟𝑘𝑈𝑧𝑘+(𝑁2+𝑁−1)

−
ℎ2

5
𝑈𝑧𝑘𝑈𝑟𝑘+(𝑁2+𝑁−1)

+
ℎ2

15
𝑈𝑟

𝑘+(𝑁2+𝑁−1)
𝑈𝑧

𝑘+(𝑁2+𝑁−1)
                                         ;  𝑘 < 20

−
ℎ2

15
𝑈𝑟

𝑘−(𝑁2+𝑁−1)
𝑈𝑧

𝑘−(𝑁2+𝑁−1)
+
ℎ2

5
𝑈𝑟

𝑘−(𝑁2+𝑁−1)
𝑈𝑧𝑘 +

ℎ2

15
𝑈𝑟𝑘𝑈𝑧𝑘−(𝑁2+𝑁−1)

−
ℎ2

15
𝑈𝑟𝑘𝑈𝑧𝑘+(𝑁2+𝑁−1)

−
ℎ2

5
𝑈𝑟

𝑘+(𝑁2+𝑁−1)
𝑈𝑧𝑘 +

ℎ2

15
𝑈𝑟

𝑘+(𝑁2+𝑁−1)
𝑈𝑧

𝑘+(𝑁2+𝑁−1)

;  20 ≤ 𝑘 ≤ 45

ℎ2

15
𝑈𝑟𝑘𝑈𝑧𝑘−(𝑁2+𝑁−1)

−
ℎ2

15
𝑈𝑟

𝑘−(𝑁2+𝑁−1)
𝑈𝑧

𝑘−(𝑁2+𝑁−1)
+
ℎ2

5
𝑈𝑟

𝑘−(𝑁2+𝑁−1)
𝑈𝑧𝑘                                      ;  𝑘 > 45

 

 

 

We terminate this part by computing the coefficients 𝐷𝑖𝑘, and we derive 

 
𝐷𝑖𝑖 = 0, 

 𝐷𝑖,𝑖−(𝑁2+𝑁−1) =
ℎ2

12
, 𝐷𝑖,𝑖+(𝑁2+𝑁−1) = −

ℎ2

12
. 

 

and we will get the coefficient matrix (𝐷𝑖𝑘)64×64 from ∑ 𝑃𝑖𝐷𝑖𝑘
𝑁(ℎ)
𝑖=1  as 

 

 𝐷 = 

 

1

𝜌

(

 
 
 
 
 
 
 
 
 
 
 

0 0 … 0 0.002 0 0 0 ⋱ 0 0 0 0 0
0 0 0 … 0 0.002 0 0 ⋱ 0 0 0 0 0
⋮ 0 0 0 … 0 0.002 0 ⋱ 0 0 0 0 0
0 ⋮ 0 0 0 … 0 0.002 ⋱ 0 0 0 0 0

−0.002 0 ⋮ 0 0 0 … 0 ⋱ 0 0 0 0 0
0 −0.002 0 ⋮ 0 0 0 … ⋱ 0.002 0 0 0 0
0 0 −0.002 0 ⋮ 0 0 0 ⋱ 0 0.002 0 0 0
0 0 0 −0.002 0 ⋮ 0 0 ⋱ ⋮ 0 0.002 0 0
0 0 0 0 −0.002 0 ⋮ 0 ⋱ 0 ⋮ 0 0.002 0
0 0 0 0 0 −0.002 0 ⋮ ⋱ 0 0 ⋮ 0 0.002
0 0 0 0 0 0 −0.002 0 ⋱ 0 0 0 ⋮ 0
0 0 0 0 0 0 0 −0.002 ⋱ 0 0 0 0 ⋮
0 0 0 0 0 0 0 0 ⋱ 0 0 0 0 0
0 0 0 0 0 0 0 0 ⋱ −0.002 0 0 0 0 )

 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

(3.8.5) 

 
 

We note that the last coefficient 𝐸𝑖 in the system (3.5.2) is 

 
𝐸𝑖 = 𝑔𝑟ℎ

3 
 

Now we gain the nonlinear system 64 variables 𝑈𝑟1 , 𝑈𝑟2 , … , 𝑈𝑟64 within 64 equations, then 

we repeat precisely the same process for the second part of the Navier-Stokes equations 
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that is the system (3.5.3), and again we get the other nonlinear system that also it has 64 

variables 𝑈𝑧1 , 𝑈𝑧2 , … , 𝑈𝑧64within 64 equations. Hear we present the details of second 

Navier-Stokes system. 

 

Coefficients 𝑨𝒊𝒌
′  and the matrix 𝑨′ = (𝑨𝒊𝒌

′ )𝟔𝟒×𝟔𝟒 

 
𝐴′𝑖𝑖 = 0, 

𝐴′𝑖,𝑖−(𝑁2+𝑁−1) = −
ℎ2

12
, 𝐴′𝑖,𝑖+(𝑁2+𝑁−1) =

ℎ2

12
. 

 

 

 𝐴′ = 

 

(

 
 
 
 
 
 
 
 
 
 
 

0 0 … 0 −0.002 0 0 0 ⋱ 0 0 0 0 0
0 0 0 … 0 −0.002 0 0 ⋱ 0 0 0 0 0
⋮ 0 0 0 … 0 −0.002 0 ⋱ 0 0 0 0 0
0 ⋮ 0 0 0 … 0 −0.002 ⋱ 0 0 0 0 0

0.002 0 ⋮ 0 0 0 … 0 ⋱ 0 0 0 0 0
0 0.002 0 ⋮ 0 0 0 … ⋱ −0.002 0 0 0 0
0 0 0.002 0 ⋮ 0 0 0 ⋱ 0 −0.002 0 0 0
0 0 0 0.002 0 ⋮ 0 0 ⋱ ⋮ 0 −0.002 0 0
0 0 0 0 0.002 0 ⋮ 0 ⋱ 0 ⋮ 0 −0.002 0
0 0 0 0 0 0.002 0 ⋮ ⋱ 0 0 ⋮ 0 −0.002
0 0 0 0 0 0 0.002 0 ⋱ 0 0 0 ⋮ 0
0 0 0 0 0 0 0 0.002 ⋱ 0 0 0 0 ⋮
0 0 0 0 0 0 0 0 ⋱ 0 0 0 0 0
0 0 0 0 0 0 0 0 ⋱ 0.002 0 0 0 0 )

 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

(3.8.6) 

 

 

Coefficients 𝑩𝒊𝒋𝒌
′  and the value ∑ ∑ 𝑼𝒛𝒊𝑼𝒛𝒋𝑩

′
𝒊𝒋𝒌

𝑵(𝒉)
𝒋=𝟏

𝑵(𝒉)
𝒊=𝟏  

 
𝐵′𝑖𝑖𝑖 = 0 

 

 

𝐵′𝑖,𝑖−(𝑁2+𝑁−1),𝑖 = −
ℎ2

20
 

 

𝐵′𝑖,𝑖+(𝑁2+𝑁−1),𝑖 =
ℎ2

20
 

𝐵′𝑖,𝑖−(𝑁2+𝑁−1),𝑖−(𝑁2+𝑁−1) =
ℎ2

20
 𝐵′𝑖,𝑖+(𝑁2+𝑁−1),𝑖+(𝑁2+𝑁−1) = −

ℎ2

20
 

𝐵′𝑖,𝑖,𝑖−(𝑁2+𝑁−1) =
ℎ2

60
 𝐵′𝑖,𝑖,𝑖+(𝑁2+𝑁−1) = −

ℎ2

60
 

 

 

∑ ∑𝑈𝑧𝑖𝑈𝑧𝑗𝐵
′
𝑖𝑗𝑘

𝑁(ℎ)

𝑗=1

𝑁(ℎ)

𝑖=1

= 

 

{
  
 

  
 −

ℎ2

10
𝑈𝑧𝑘𝑈𝑧𝑘+(𝑁2+𝑁−1)

−
ℎ2

60
𝑈𝑧

𝑘+(𝑁2+𝑁−1)

2                                                                      ;  𝑘 < 20

ℎ2

10
𝑈𝑧𝑘𝑈𝑧𝑘−(𝑁2+𝑁−1)

−
ℎ2

10
𝑈𝑧𝑘𝑈𝑧𝑘+(𝑁2+𝑁−1)

+
ℎ2

60
𝑈𝑧

𝑘−(𝑁2+𝑁−1)

2 −
ℎ2

60
𝑈𝑧

𝑘+(𝑁2+𝑁−1)

2 ;  20 ≤ 𝑘 ≤ 45

ℎ2

10
𝑈𝑧𝑘𝑈𝑧𝑘−(𝑁2+𝑁−1)

+
ℎ2

60
𝑈𝑧

𝑘−(𝑁2+𝑁−1)

2                                                                           ;  𝑘 > 45
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Coefficients 𝑪𝒊𝒋𝒌
′  and the value ∑ ∑ 𝑼𝒛𝒊𝑼𝒓𝒋𝑪

′
𝒊𝒋𝒌

𝑵(𝒉)
𝒋=𝟏

𝑵(𝒉)
𝒊=𝟏  

 
𝐶′𝑖𝑖𝑖 = 0, 

 
 

𝐶′𝑖,𝑖−(𝑁2+𝑁−1),𝑖 = −
ℎ2

15
, 

 

𝐶′𝑖,𝑖+(𝑁2+𝑁−1),𝑖 =
ℎ2

15
, 

𝐶′𝑖,𝑖,𝑖−(𝑁2+𝑁−1) = −
ℎ2

15
, 

 

𝐶′𝑖,𝑖,𝑖+(𝑁2+𝑁−1) =
ℎ2

15
, 

𝐶′𝑖,𝑖−(𝑁2+𝑁−1),𝑖−(𝑁2+𝑁−1) =
ℎ2

5
, 𝐶′𝑖,𝑖+(𝑁2+𝑁−1),𝑖+(𝑁2+𝑁−1) = −

ℎ2

5
. 

 

∑ ∑𝑈𝑧𝑖𝑈𝑟𝑗𝐶
′
𝑖𝑗𝑘

𝑁(ℎ)

𝑗=1

𝑁(ℎ)

𝑖=1

= 

 

{
 
 
 
 

 
 
 
 
ℎ2

15
𝑈𝑧𝑘𝑈𝑟𝑘+(𝑁2+𝑁−1)

+
ℎ2

5
𝑈𝑟𝑘𝑈𝑧𝑘+(𝑁2+𝑁−1)

−
ℎ2

15
𝑈𝑧

𝑘+(𝑁2+𝑁−1)
𝑈𝑟

𝑘+(𝑁2+𝑁−1)
                                         ;  𝑘 < 20

ℎ2

15
𝑈𝑧

𝑘−(𝑁2+𝑁−1)
𝑈𝑟

𝑘−(𝑁2+𝑁−1)
−
ℎ2

5
𝑈𝑧

𝑘−(𝑁2+𝑁−1)
𝑈𝑟𝑘 −

ℎ2

15
𝑈𝑧𝑘𝑈𝑟𝑘−(𝑁2+𝑁−1)

+
ℎ2

15
𝑈𝑧𝑘𝑈𝑟𝑘+(𝑁2+𝑁−1)

+
ℎ2

5
𝑈𝑧

𝑘+(𝑁2+𝑁−1)
𝑈𝑟𝑘 −

ℎ2

15
𝑈𝑧

𝑘+(𝑁2+𝑁−1)
𝑈𝑟

𝑘+(𝑁2+𝑁−1)

;  20 ≤ 𝑘 ≤ 45

−
ℎ2

15
𝑈𝑧𝑘𝑈𝑟𝑘−(𝑁2+𝑁−1)

+
ℎ2

15
𝑈𝑧

𝑘−(𝑁2+𝑁−1)
𝑈𝑟

𝑘−(𝑁2+𝑁−1)
−
ℎ2

5
𝑈𝑧

𝑘−(𝑁2+𝑁−1)
𝑈𝑟𝑘                                      ;  𝑘 > 45

 

 

 

Coefficients 𝑫𝒊𝒌
′  and the matrix (𝑫𝒊𝒌

′ )𝟔𝟒×𝟔𝟒 

 
𝐷′𝑖𝑖 = 0, 

𝐷′𝑖,𝑖−(𝑁2+𝑁−1) = −
ℎ2

12
, 𝐷′𝑖,𝑖+(𝑁2+𝑁−1) =

ℎ2

12
. 

 

  

𝐷′ = 

 

1

𝜌

(

 
 
 
 
 
 
 
 
 
 
 

0 0 … 0 −0.002 0 0 0 ⋱ 0 0 0 0 0
0 0 0 … 0 −0.002 0 0 ⋱ 0 0 0 0 0
⋮ 0 0 0 … 0 −0.002 0 ⋱ 0 0 0 0 0
0 ⋮ 0 0 0 … 0 −0.002 ⋱ 0 0 0 0 0

0.002 0 ⋮ 0 0 0 … 0 ⋱ 0 0 0 0 0
0 0.002 0 ⋮ 0 0 0 … ⋱ −0.002 0 0 0 0
0 0 0.002 0 ⋮ 0 0 0 ⋱ 0 −0.002 0 0 0
0 0 0 0.002 0 ⋮ 0 0 ⋱ ⋮ 0 −0.002 0 0
0 0 0 0 0.002 0 ⋮ 0 ⋱ 0 ⋮ 0 −0.002 0
0 0 0 0 0 0.002 0 ⋮ ⋱ 0 0 ⋮ 0 −0.002
0 0 0 0 0 0 0.002 0 ⋱ 0 0 0 ⋮ 0
0 0 0 0 0 0 0 0.002 ⋱ 0 0 0 0 ⋮
0 0 0 0 0 0 0 0 ⋱ 0 0 0 0 0
0 0 0 0 0 0 0 0 ⋱ 0.002 0 0 0 0 )

 
 
 
 
 
 
 
 
 
 
 

, 

 

 

 

 

 

 

 

(3.8.7) 

 

and 

 
𝐸𝑖
′ = 𝑔𝑧ℎ

3 
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We will try to omit the pressure from both systems, then we add correspond equations in 

the systems (3.5.2) and (3.5.3) to each other to cancel the pressure, and finally we derive 

the new system with 64 equations within 128 variables. 

 

Theorem 3.9. Suppose the nonlinear system of equations 

 

∑ 𝑈𝑟𝑖𝐴𝑖𝑘

𝑁(ℎ)

𝑖=1

+ ∑ ∑ 𝑈𝑟𝑖𝑈𝑟𝑗𝐵𝑖𝑗𝑘

𝑁(ℎ)

𝑗=1

𝑁(ℎ)

𝑖=1

+ ∑ ∑ 𝑈𝑟𝑖𝑈𝑧𝑗

𝑁(ℎ)

𝑗=1

𝐶𝑖𝑗𝑘

𝑁(ℎ)

𝑖=1

+ ∑ 𝑃𝑖𝐷𝑖𝑘

𝑁(ℎ)

𝑖=1

+ 𝐸𝑘 = 0, 

 

∑ 𝑈𝑧𝑖𝐴
′
𝑖𝑘

𝑁(ℎ)

𝑖=1

+ ∑ ∑ 𝑈𝑧𝑖𝑈𝑧𝑗𝐵
′
𝑖𝑗𝑘

𝑁(ℎ)

𝑗=1

𝑁(ℎ)

𝑖=1

+ ∑ ∑ 𝑈𝑧𝑖𝑈𝑟𝑗𝐶
′
𝑖𝑗𝑘

𝑁(ℎ)

𝑗=1

𝑁(ℎ)

𝑖=1

+ ∑ 𝑃𝑖𝐷
′
𝑖𝑘

𝑁(ℎ)

𝑖=1

+ 𝐸′𝑘 = 0, 

 

where the coefficients were listed in the table (3.5.1), and  𝜙𝑖 , 𝑖 = 1,2, … ,𝑁(ℎ) are the test 

functions in table (3.6.2), then the nonlinear system are reduced to 

 
𝑓𝑜𝑟 𝑘 < 20  

 

0.008 𝑈𝑟1 + 0.004 𝑈𝑟20 − 0.002 𝑈𝑧20 + 0.002 𝑈𝑟1𝑈𝑟20 − 0.002 𝑈𝑧1𝑈𝑧20 + 0.003 𝑈𝑟1𝑈𝑧20 − 0.003 𝑈𝑧1𝑈𝑟20 

+0.0004 𝑈𝑟20
2 − 0.0004 𝑈𝑧20

2 + 0.003 (𝑔𝑟 + 𝑔𝑧) = 0, 

 

0.003 𝑈𝑟2 + 0.002 𝑈𝑟21 − 0.002 𝑈𝑧21 + 0.002 𝑈𝑟2𝑈𝑟21 − 0.002 𝑈𝑧2𝑈𝑧21 + 0.003 𝑈𝑟2𝑈𝑧21 − 0.003 𝑈𝑧2𝑈𝑟21 

+0.0004 𝑈𝑟21
2 − 0.0004 𝑈𝑧21

2 + 0.003 (𝑔𝑟 + 𝑔𝑧) = 0, 

 

⋮ 
0.002 𝑈𝑟19 + 0.001 𝑈𝑟38 − 0.002 𝑈𝑧38 + 0.002 𝑈𝑟19𝑈𝑟38 − 0.002 𝑈𝑧19𝑈𝑧38 + 0.003 𝑈𝑟19𝑈𝑧38 

−0.003 𝑈𝑧19𝑈𝑟38 + 0.0004 𝑈𝑟38
2 − 0.0004 𝑈𝑧38

2 + 0.003 (𝑔𝑟 + 𝑔𝑧) = 0, 

 

𝑓𝑜𝑟 20 ≤ 𝑘 ≤ 45 

 

−0.07 𝑈𝑟1 + 0.001 𝑈𝑟20 + 0.001 𝑈𝑟39 + 0.002 𝑈𝑧1 − 0.002 𝑈𝑧39 − 0.002 𝑈𝑟1𝑈𝑟20 + 0.002 𝑈𝑟20𝑈𝑟39 

+0.003 𝑈𝑟1𝑈𝑧20 − 0.003 𝑈𝑟20𝑈𝑧1 + 0.003 𝑈𝑟20𝑈𝑧39 − 0.003 𝑈𝑟39𝑈𝑧20 + 0.002 𝑈𝑧1𝑈𝑧20 − 0.002 𝑈𝑧20𝑈𝑧39 

−0.0004 𝑈𝑟1
2 + 0.0004 𝑈𝑟39

2 + 0.0004 𝑈𝑧1
2 − 0.0004 𝑈𝑧39

2 + 0.003 (𝑔𝑟 + 𝑔𝑧) = 0, 

 

−0.33 𝑈𝑟2 + 0.008 𝑈𝑟21 + 0.0005 𝑈𝑟40 + 0.002 𝑈𝑧2 − 0.002 𝑈𝑧40 − 0.002 𝑈𝑟2𝑈𝑟21 + 0.002 𝑈𝑟21𝑈𝑟40 

+0.003 𝑈𝑟2𝑈𝑧21 − 0.003 𝑈𝑟21𝑈𝑧2 + 0.003 𝑈𝑟21𝑈𝑧40 − 0.003 𝑈𝑟40𝑈𝑧21 + 0.002 𝑈𝑧2𝑈𝑧21 − 0.002 𝑈𝑧21𝑈𝑧40 

−0.0004 𝑈𝑟2
2 + 0.0004 𝑈𝑟40

2 + 0.0004 𝑈𝑧2
2 − 0.0004 𝑈𝑧40

2 + 0.003 (𝑔𝑟 + 𝑔𝑧) = 0, 

 

⋮ 
 
−0.33 𝑈𝑟26 + 0.008 𝑈𝑟45 + 0.0005 𝑈𝑟64 + 0.002 𝑈𝑧26 − 0.002 𝑈𝑧64 − 0.002 𝑈𝑟26𝑈𝑟45 + 0.002 𝑈𝑟45𝑈𝑟64 

+0.003 𝑈𝑟26𝑈𝑧45 − 0.003 𝑈𝑟45𝑈𝑧26 + 0.003 𝑈𝑟45𝑈𝑧64 − 0.003 𝑈𝑟64𝑈𝑧45 + 0.002 𝑈𝑧26𝑈𝑧45 

−0.002 𝑈𝑧45𝑈𝑧64 − 0.0004 𝑈𝑟26
2 + 0.0004 𝑈𝑟64

2 + 0.0004 𝑈𝑧26
2 − 0.0004 𝑈𝑧64

2 + 0.003 (𝑔𝑟 + 𝑔𝑧) = 0, 
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𝑓𝑜𝑟 46 ≤ 𝑘 ≤ 64 

 

−0.78 𝑈𝑟27 + 0.003 𝑈𝑟46 + 0.002 𝑈𝑧27 − 0.002 𝑈𝑟46𝑈𝑟27 + 0.002 𝑈𝑧46𝑈𝑧27 + 0.003 𝑈𝑟27𝑈𝑧46 

−0.003 𝑈𝑟46𝑈𝑧27 − 0.0004 𝑈𝑟27
2 + 0.0004 𝑈𝑧27

2
+ 0.003 (𝑔𝑟 + 𝑔𝑧) = 0, 

 

−1.43 𝑈𝑟28 + 0.002 𝑈𝑟47 + 0.002 𝑈𝑧28 − 0.002 𝑈𝑟47𝑈𝑟28 + 0.002 𝑈𝑧47𝑈𝑧28 + 0.003 𝑈𝑟28𝑈𝑧47 

−0.003 𝑈𝑟47𝑈𝑧28 − 0.0004 𝑈𝑟28
2 + 0.0004 𝑈𝑧28

2 + 0.003 (𝑔𝑟 + 𝑔𝑧) = 0, 

 
⋮ 

 

−0.07 𝑈𝑟45 + 0.001 𝑈𝑟64 + 0.002 𝑈𝑧45 − 0.002 𝑈𝑟64𝑈𝑟45 + 0.002 𝑈𝑧64𝑈𝑧45 + 0.003 𝑈𝑟45𝑈𝑧64 

−0.003 𝑈𝑟64𝑈𝑧45 − 0.0004 𝑈𝑟45
2 + 0.0004 𝑈𝑧45

2 + 0.003 (𝑔𝑟 + 𝑔𝑧) = 0, 
 

3.9.   Numerical Solution 
 

As we have shown in the section (3.7) the continuity equation could be stated as a linear 

system in 64 equations in 128 variables. The matrix 𝑃 has diagonal dominance, then it is 

invertible and so from (3.7.7) we will get the 𝑈𝑟 uniquely as 

 

 𝑈𝑟 = −𝑃
−1𝑄𝑈𝑧  

(3.9.1) 

 

Also remember from section (3.8) that the Navier-Stokes system has the style 

 

 𝐴𝑈𝑟 + 𝜓1(𝑈𝑟 , 𝑈𝑧) + 𝐷𝑝 + 𝐸 = 0, (3.9.2) 

and 

 

 𝐴′𝑈𝑧 + 𝜓2(𝑈𝑟 , 𝑈𝑧) + 𝐷
′𝑝 + 𝐸′ = 0, (3.9.3) 

 

where the matrices 𝐴, 𝐷, 𝐴′, and 𝐷′ are stated in the relations (3.8.4), (3.8.5), (3.8.6), and 

(3.8.7). Also we know that 

 

𝐷 = −𝐷′, 
 

and 

𝐸 = ℎ3𝑔𝑟𝟏, 
 

𝐸′ = ℎ3𝑔𝑧𝟏. 
 

After the summation of (3.9.2) and (3.9.3) we will reach to 

 

 𝐴𝑈𝑟 + 𝐴
′𝑈𝑧 + 𝜓(𝑈𝑟 , 𝑈𝑧) + 𝐸 + 𝐸

′ = 0 (3.9.4) 

 

Now we replace the value of 𝑈𝑟 from (3.9.1) into the (3.9.4) to earn 

 

 (𝐴′ − 𝐴𝑃−1𝑄)𝑈𝑧 + 𝜓(𝑈𝑧) = −ℎ
3(𝑔𝑟 + 𝑔𝑧)𝟏 (3.9.5) 
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The system (3.9.5) has 64 equations within 64 variables. Our purpose is to search for its 

numerical solution by invoking the Newton’s method, thus we need the initial solution to 

start the process of iterations, so we assume that the nonlinear part of the system (3.9.5) be 

zero, that is 

 

𝜓(𝑈𝑧) = 0, 
 

and then 

 

 (𝐴′ − 𝐴𝑃−1𝑄)𝑈𝑧 = −ℎ
3(𝑔𝑟 + 𝑔𝑧)𝟏 (3.9.6) 

 

 

From the system (3.9.6) immediately we compute 

 

𝑈𝑧21 = −16.5 

 

𝑈𝑧22 = −16.5 𝑈𝑧23 = −16.5 𝑈𝑧25 = −16.5 

𝑈𝑧26 = −16.5 

 

𝑈𝑧27 = −16.5 𝑈𝑧29 = −16.5 𝑈𝑧30 = −16.5 

𝑈𝑧31 = −16.5 

 

𝑈𝑧33 = −16.5 𝑈𝑧34 = −16.5 𝑈𝑧35 = −16.5 

𝑈𝑧37 = −16.5 𝑈𝑧38 = −16.5   

 

Then we perform the Newton’s iterations 

 

𝑈𝑧
𝑘+1 = 𝑈𝑧

𝑘 − (𝐷𝐹)−1(𝑈𝑧
𝑘). 𝐹(𝑈𝑧

𝑘), 
 

where 𝐹:ℝ64 → ℝ64 is defined as 

 

𝐹(𝑈𝑧) = (

𝐹1(𝑈𝑧)

𝐹2(𝑈𝑧)
⋮

𝐹64(𝑈𝑧)

), 

and 𝐷𝐹 is the Jacobian matrix of 

 

𝐷𝐹 =

(

 
 
 
 
 

𝜕𝐹1
𝜕𝑈𝑧1

𝜕𝐹1
𝜕𝑈𝑧2

⋯
𝜕𝐹1
𝜕𝑈𝑧64

𝜕𝐹2
𝜕𝑈𝑧1

𝜕𝐹2
𝜕𝑈𝑧2

⋯
𝜕𝐹2
𝜕𝑈𝑧64

⋮ ⋮  ⋮
𝜕𝐹64
𝜕𝑈𝑧1

𝜕𝐹64
𝜕𝑈𝑧2

⋯
𝜕𝐹64
𝜕𝑈𝑧64)
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We repeat the Newton’s algorithm 30 times and we produce the solution as 

 
𝑈𝑧1 = −19.964396203271495 𝑈𝑧2 = −19.032631603831394 

𝑈𝑧3 = −21.585584196054814 𝑈𝑧4 = −21.152491963049943 

𝑈𝑧5 = −19.96439620327149 𝑈𝑧6 = −21.027391916196642 

𝑈𝑧7 = −21.585584196045044 𝑈𝑧8 = −5.153356893381632 

𝑈𝑧9 = −15.080509375582018 𝑈𝑧10 = −26.18565106460826 

𝑈𝑧11 = −18.131959256356694 𝑈𝑧12 = −5.153356893381636 

𝑈𝑧13 = −15.080351223281776 𝑈𝑧14 = −26.185651064608262 

𝑈𝑧15 = −18.131959256356694 𝑈𝑧16 = −5.153356893381636 

𝑈𝑧17 = −15.080509375582018 𝑈𝑧18 = −26.185651064608262 

𝑈𝑧19 = −18.131387860413064 𝑈𝑧20 = 0.9044792016387821 

𝑈𝑧21 = 0.9512084266258982 𝑈𝑧22 = 0.8210418438489437 

𝑈𝑧23 = 0.8364611015836216 𝑈𝑧24 = 0.9044792016387821 

𝑈𝑧25 = 0.8527276053620682 𝑈𝑧26 = 0.8210418438493451 

𝑈𝑧27 = 14.525657477973708 𝑈𝑧28 = 1.2569219242317637 

𝑈𝑧29 = 0.9665538943001553 𝑈𝑧30 = 1.0909165624593518 

𝑈𝑧31 = 14.525657477973725 𝑈𝑧32 = 1.256935110922197 

𝑈𝑧33 = 0.9665538943001551 𝑈𝑧34 = 1.0909165624593518 

𝑈𝑧35 = 14.525657477973725 𝑈𝑧36 = 1.2569219242317635 

𝑈𝑧37 = 0.9665538943001551 𝑈𝑧38 = 1.0909428660709701 

𝑈𝑧39 = −16.968385693584583 𝑈𝑧40 = −15.817504516369528 

𝑈𝑧41 = −19.118623948423114 𝑈𝑧42 = −18.95208878856998 

𝑈𝑧43 = −16.96838569358458 𝑈𝑧44 = −18.34556685135166 

𝑈𝑧45 = −19.118623948411262 𝑈𝑧46 = −2.8815383240026664 

𝑈𝑧47 = −8.018433353991593 𝑈𝑧48 = 12.77607584911194 

𝑈𝑧49 = 3.629362362017885 𝑈𝑧50 = −2.881538324002671 

𝑈𝑧51 = −8.01837578716835 𝑈𝑧52 = 12.776075849111944 

𝑈𝑧53 = 3.629362362017885 𝑈𝑧54 = −2.8815383240026704 

𝑈𝑧55 = −8.018433353991593 𝑈𝑧56 = 12.776075849111944 

𝑈𝑧57 = 3.6285109525148713 𝑈𝑧58 = 1.365358543778119 

𝑈𝑧59 = 1.0708011223774292 𝑈𝑧60 = 1.8262529864312615 

𝑈𝑧61 = 1.7875947952490874 𝑈𝑧62 = 1.3653585437781197 

𝑈𝑧63 = 1.8781813493164021 𝑈𝑧64 = 1.8262529864328112 

 

Now we refer to the relation (3.3.2) to simulate the function 

 

𝑢𝑧ℎ(𝑟, 𝜑, 𝑧, 𝑡) = ∑ 𝑈𝑧𝑖𝜙𝑖(𝑟, 𝜑, 𝑧, 𝑡)

𝑁(ℎ)

𝑖=1

, 

 

and the result is exhibited in the three-dimensional figure (3.9.1) 
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Figure 3.9.1 

 

 
 

 

In this part we apply the values of 𝑈𝑧 to compute the 𝑈𝑟 from (3.9.1) and we will derive 

 
𝑈𝑟1 = −0.00438008 𝑈𝑟2 = −0.00306589 𝑈𝑟3 = −0.00245443 

𝑈𝑟4 = −0.00408989 𝑈𝑟5 = −0.00438008 𝑈𝑟6 = −0.00274863 

𝑈𝑟7 = −0.00245443 𝑈𝑟8 = −0.0708664 𝑈𝑟9 = −0.00605582 

𝑈𝑟10 = −0.00308726 𝑈𝑟11 = −0.00328789 𝑈𝑟12 = −0.0708664 

𝑈𝑟13 = −0.00605588 𝑈𝑟14 = −0.00308726 𝑈𝑟15 = −0.00328789 

𝑈𝑟16 = −0.0708664 𝑈𝑟17 = −0.00605582 𝑈𝑟18 = −0.00308726 

𝑈𝑟19 = −0.00328797 𝑈𝑟20 = −0.0145846 𝑈21 = −0.0156674 

𝑈𝑟22 = −0.00794927 𝑈𝑟23 = −0.00655752 𝑈𝑟24 = −0.0145846 

𝑈𝑟25 = −0.0130577 𝑈𝑟26 = −0.00794927 𝑈𝑟27 = −0.00654902 

𝑈𝑟28 = −0.0343992 𝑈𝑟29 = −0.190056 𝑈𝑟30 = −0.0701881 

𝑈𝑟31 = −0.00654902 𝑈𝑟32 = −0.0343987 𝑈𝑟33 = −0.190056 

𝑈𝑟34 = −0.0701881 𝑈𝑟35 = −0.00654902 𝑈𝑟36 = −0.0343992 

𝑈𝑟37 = −0.190056 𝑈𝑟38 = −0.0701836 𝑈𝑟39 = −0.00135673 

𝑈𝑟40 = −0.000537834 𝑈𝑟41 = −0.00466005 𝑈𝑟42 = −0.00303211 

𝑈𝑟43 = −0.00135673 𝑈𝑟44 = −0.00498679 𝑈𝑟45 = −0.00466005 

𝑈𝑟46 = 0.0468781 𝑈𝑟47 = 0.00385469 𝑈𝑟48 = 0.00610555 

𝑈𝑟49 = 0.00566393 𝑈𝑟50 = 0.0468781 𝑈𝑟51 = 0.00385473 

𝑈𝑟52 = 0.00610555 𝑈𝑟53 = 0.00566393 𝑈𝑟54 = 0.0468781 

𝑈𝑟55 = 0.00385469 𝑈𝑟56 = 0.00610555 𝑈𝑟57 = 0.00624877 

𝑈𝑟58 = −0.0547324 𝑈𝑟59 = −0.0472148 𝑈𝑟60 = −0.0932275 

𝑈𝑟61 = −0.0924344 𝑈𝑟62 = −0.0547324 𝑈𝑟63 = −0.054748 

𝑈𝑟64 = −0.0932275   

 

then we insert the values of 𝑈𝑟 into the relation (3.3.1) to simulate the function 
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𝑢𝑟ℎ(𝑟, 𝜑, 𝑧, 𝑡) = ∑ 𝑈𝑟𝑖𝜙𝑖(𝑟, 𝜑, 𝑧, 𝑡)

𝑁(ℎ)

𝑖=1

, 

 

and we will show the result in the three-dimensional figure (3.9.2) 

 

 

Figure 3.9.2. 

 

 
 

In the final stage we will return to the energy conservation system (3.4.32), and as we 

mentioned before to get the solution of this system we need the values of 𝑈𝑟 and 𝑈𝑧, then 

in this position we can apply the computed values of 𝑈𝑟 and 𝑈𝑧 to earn the linear system 

of equations in 64 equations in 64 variables. We notify that during the computation process 

we need the coefficients 

 
𝐻𝑖𝑖𝑖 = 10ℎ, 
 

 

𝐻𝑖,𝑖−(𝑁2+𝑁−1),𝑖 = 0, 

 

𝐻𝑖,𝑖+(𝑁2+𝑁−1),𝑖 = 0, 

𝐻𝑖,𝑖−(𝑁2+𝑁−1),𝑖−(𝑁2+𝑁−1) = 0, 

 

𝐻𝑖,𝑖+(𝑁2+𝑁−1),𝑖+(𝑁2+𝑁−1) = 0, 

𝐻𝑖,𝑖,𝑖−(𝑁2+𝑁−1) =
25

3
ℎ, 𝐻𝑖,𝑖,𝑖+(𝑁2+𝑁−1) =

25

3
ℎ, 

and 

 

𝐼𝑘 = −
𝐹

𝜌𝑐
ℎ3 
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Also we use the following algorithm to prepare the coefficients of 𝐺𝑖𝑗𝑘 

  

 
 

The solution of the system (3.3.32) is as 

 
𝜃1 = 267464.50784935005 𝜃2 = 248522.63133185773 

𝜃3 = 307632.2765236602 𝜃4 = 307560.1642197024 

𝜃5 = 279837.7344858227 𝜃6 = 321624.62060482206 

𝜃7 = 427070.98850310955 𝜃8 = 196160.35809189378 

𝜃9 = 3066.7775345885548 𝜃10 = 186800.78275498643 

𝜃11 = 121034.49058102771 𝜃12 = 196594.31919427816 

𝜃13 = 2152.4412377153467 𝜃14 = 188106.54167680247 

𝜃15 = 121684.13564829151 𝜃16 = 197507.5771545514 

𝜃17 = −74.86551356291443 𝜃18 = 191421.1027365251 

𝜃19 = 123429.09980863145 𝜃20 = −13968.224603060831 

𝜃21 = −12457.95824857949 𝜃22 = −16553.23955494196 

𝜃23 = −15559.48049623543 𝜃24 = −13416.836196379161 

𝜃25 = −14444.301955614843 𝜃26 = −12094.511632460784 

𝜃27 = 2288889.553754123 𝜃28 = −19412.911905873087 

𝜃29 = −26223.652534756788 𝜃30 = −16086.278156650058 

𝜃31 = 2294428.3796616173 𝜃32 = −19492.949247765693 

𝜃33 = −26169.651772698493 𝜃34 = −16049.706435758939 

𝜃35 = 2306132.915719399 𝜃36 = −19683.559356278733 

𝜃37 = −26029.21974382987 𝜃38 = −15944.722098429129 

𝜃39 = 171548.63305087356 𝜃40 = 160669.13298697892 

𝜃41 = 196734.19273537697 𝜃42 = 196477.20367911315 

𝜃43 = 186387.49327337768 𝜃44 = 220899.00388040626 

𝜃45 = 333148.22129448433 𝜃46 = −178843.43872993847 

𝜃47 = −198087.48171731568 𝜃48 = 85489.45076041944 
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𝜃49 = 23049.55145269956 𝜃40 = −179359.75305180202 

𝜃51 = −200293.62139168158 𝜃52 = 82636.40038827318 

𝜃53 = 20157.041229944673 𝜃54 = −180465.94960577425 

𝜃55 = −205556.80096722223 𝜃56 = 75306.14089300479 

𝜃57 = 12048.141272602259 𝜃58 = −31523.731118851112 

𝜃59 = −31697.68839039283 𝜃60 = −31297.291049577845 

𝜃61 = −30510.651315069914 𝜃62 = −30577.26948649386 

𝜃63 = −26586.217706801373 𝜃64 = −19116.1681524927 

 

then we enter the values of 𝜃 into the relation (3.3.4) to simulate the function 

 

𝜃ℎ(𝑟, 𝜑, 𝑧, 𝑡) = ∑ 𝜃𝑖𝜙𝑖(𝑟, 𝜑, 𝑧, 𝑡)

𝑁(ℎ)

𝑖=1

, 

 

and we will prepare the result in the three-dimensional figure (4.6.3) 

 

Figure 4.6.3. 

 

Numerical solution of the transport phenomena and its mathematical simulation, where 

they have been gotten in the current work, are suitable tools to describe the environment of 

furnaces and fluid flow inside them. Also they help to designers to determine the optimal 

position of the electrical boosters. In particular designers analyze the mathematical 

simulation to decide about the optimized style of the furnaces, then we hope this work is 

useful for them. 

 

3.10.   Summary and Conclusion 

In this work we performed the process to get the mathematical modeling of heat transfer in 

the Garnissage furnace in three dimension in the cylindrical coordinate system. The 

cylindrical coordinate system has chosen for the modeling process because of its symmetric 

advantages, then we applied the physical conservation laws, that is the mass, momentum, 
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and energy conservation laws, to achieve the continuity, Navier-Stokes, and heat equation. 

To modeling the free boundary between the solid and liquid phase we used the three 

dimensional version of Stefan condition. 

 

When we derived the mathematical modeling of the transport phenomena immediately we 

started to rearrange the modeling to the weak formulation by handling the sufficient test 

functions. In this part we divided the domain by cubes and every cubic parts had 24 

tetrahedrons. Then we defined the test functions on the tetrahedrons and we got the 

coefficients after solving the integrals on the mentioned tetrahedrons, and we completed 

the finite element technic by constructing the system of equations with 128 variables within 

64 linear equations and 64 nonlinear equations. Newton’s method has been used to achieve 

the numerical solution of the system and we simulated the numerical solution of the heat 

transfer system where that was applicable for furnace designers. 
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4.1.   Properly Elliptic Equation 
 

In the final chapter we refer to special kind of boundary value problems, thus we consider 

the Dirichlet problem for the fourth order elliptic equation with constant coefficients in the 

unit disc. The characteristic equation has one double root and two simple roots. We 

consider two cases, first if double root in the upper half-plane and the simple roots in lower-

half plane, that is the equation is properly elliptic, and second case if all the roots belong 

to the upper-half plane, that is improperly elliptic case. The solution must be found in the 

class of functions Hölder continuous with first order derivatives up to the boundary, then 

we obtain the new formula for the determination of the defect numbers. The solvability 

conditions and the solutions of homogeneous and inhomogeneous problems are gained in 

explicit form. The numerical results shows that the defect numbers may be only zero and 

one. For improperly elliptic case the set of boundary functions provided the normal 

solvability of the Dirichlet problem is determined. 

 

4.2.   Mathematical Formulation 
 

Let 𝐷 = {(𝑥, 𝑦): 𝑥2 + 𝑦2 < 1} be the unit disc in the complex plane, and we consider the 

fourth order elliptic differential equation in the domain 𝐷 

 

 

∑𝐴𝑘
𝜕4𝑢

𝜕𝑥𝑘𝜕𝑦4−𝑘
 (𝑥, 𝑦)

4

𝑘=0

= 0,   (𝑥, 𝑦) ∈ 𝐷, 

 

 

(4.2.1) 

  

where 𝐴𝑘 are the complex constants (𝐴0 ≠ 0). We assume that the roots 𝜆𝑗 (𝑗 = 1,2,3,4) 

of the characteristic equation 

 

 

∑𝐴𝑘 𝜆
4−𝑘

4

𝑘=0

= 0, 

 

 

(4.2.2) 

 

satisfy the condition 

 

 𝜆1 = 𝜆2 ≠ 𝑖,   ℑ𝜆1 > 0, 
 

𝜆3 ≠ 𝜆4,   𝜆𝑗 ≠ −𝑖,   ℑ𝜆𝑗 < 0,   𝑗 = 3,4, 

 

 

 

(4.2.3) 

that is the equation (4.2.1) is properly elliptic. We want to find the solution of the equation 

(4.2.1) in the class of 𝐶4(𝐷) ∩ 𝐶(1,𝛼)(�̅�), which satisfies the Dirichlet conditions 

 

 
𝑢 |

 
 
𝛤
= 𝑓(𝑥, 𝑦),   

𝜕𝑢

𝜕𝑁
|

 
 
𝛤
= 𝑔(𝑥, 𝑦),   (𝑥, 𝑦) ∈ 𝛤, 

 

(4.2.4) 

 

where Γ is the boundary of D, also 𝑓 ∈ 𝐶(1,𝛼)(Γ) and 𝑔 ∈ 𝐶(𝛼)(Γ) are the given functions, 

and 
𝜕

𝜕𝑁
= −

𝜕

𝜕𝑟
 is a differentiation in the inner normal direction to the boundary Γ, and 
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𝑧 = 𝑥 + 𝑖𝑦 = 𝑟𝑒𝑖𝜑 

 

It is well known that for the properly elliptic equation (4.2.1) the Dirichlet problem is 

Fredholmian . We want to determine the defect numbers of the problem 

 

∑𝐴𝑘
𝜕4𝑢

𝜕𝑥𝑘𝜕𝑦4−𝑘
 (𝑥, 𝑦)

4

𝑘=0

= 0,   (𝑥, 𝑦) ∈ 𝐷, 

 

𝑢 |

 
 
Γ
= 𝑓(𝑥, 𝑦),   

𝜕𝑢

𝜕𝑁
|

 
 
Γ
= 𝑔(𝑥, 𝑦),   (𝑥, 𝑦) ∈ Γ, 

 

that is the number of the linearly independent solutions of the homogeneous problem 

 

∑𝐴𝑘
𝜕4𝑢

𝜕𝑥𝑘𝜕𝑦4−𝑘
 (𝑥, 𝑦)

4

𝑘=0

= 0,   (𝑥, 𝑦) ∈ 𝐷, 

 

𝑢 |

 
 
Γ
= 0,   

𝜕𝑢

𝜕𝑁
|

 
 
Γ
= 0,   (𝑥, 𝑦) ∈ Γ, 

 

and the number of the linearly independent solvability conditions of the inhomogeneous 

problem. In this work we consider the both homogeneous and inhomogeneous problems, 

when the roots of the equation 

 

∑𝐴𝑘 𝜆
4−𝑘

4

𝑘=0

= 0, 

 

satisfy the conditions 

 

𝜆1 = 𝜆2 ≠ 𝑖,   ℑ𝜆1 > 0, 
 

𝜆3 ≠ 𝜆4,   𝜆𝑗 ≠ −𝑖,   ℑ𝜆𝑗 < 0,   𝑗 = 3,4. 

 

We derive the new formula to determining the defect numbers of the problem and we find 

the solutions in the explicit form of the homogeneous problem and the solvability 

conditions of inhomogeneous problem. For exact formulation of the obtained results let’s 

represent the equation (4.2.1) and boundary conditions (4.2.3) in the complex form, by 

applying the operators of complex differentiation 

 
𝜕

𝜕𝑧
=
1

2
(
𝜕

𝜕𝑥
− 𝑖

𝜕

𝜕𝑦
) 
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𝜕

𝜕𝑧̅
=
1

2
(
𝜕

𝜕𝑥
+ 𝑖

𝜕

𝜕𝑦
) 

 

By forcing the conditions (4.2.3) the equation (4.2.1) can be restated as 

 

 
(
𝜕

𝜕𝑧̅
− 𝜇

𝜕

𝜕𝑧
)
2

(
𝜕

𝜕𝑧
− 𝜈1

𝜕

𝜕𝑧̅
) (

𝜕

𝜕𝑧
− 𝜈2

𝜕

𝜕𝑧̅
) 𝑢(𝑥, 𝑦) = 0, 

 

(4.2.5) 

 

where 

 

𝜇 =
𝑖 − 𝜆1
𝑖 + 𝜆1

, 𝜈𝑗 =
𝑖 + 𝜆2+𝑗
𝑖 − 𝜆2+𝑗

, 𝑗 = 1,2 

 

By using the conditions (4.2.3), we have 

 

 |𝜇| < 1,   𝜈1 ≠ 𝜈2, 
 

|𝜈𝑗| < 1,   𝑗 = 1,2, 𝜇𝜈1𝜈2 ≠ 0 

 

 

 

(4.2.6) 

Boundary conditions (4.2.4) are reduced to equivalent form  

 

 𝜕𝑢

𝜕𝑧̅
|

 
 
𝛤
= 𝐹(𝑥, 𝑦), 

 
𝜕𝑢

𝜕𝑧
|

 
 
𝛤
= 𝐺(𝑥, 𝑦),   (𝑥, 𝑦) ∈ 𝛤, 

 

𝑢(1,0) = 𝑓(1,0), 
 

 

 

 

 

 

(4.2.7) 

the functions 𝐹 and 𝐺 from the class of 𝐶(𝛼)(Γ) are determined by the formulas 

 

 
𝐹(𝑥, 𝑦) =

𝑧

2
(𝑔(𝑥, 𝑦) + 𝑖

𝜕𝑓

𝜕𝜑
(𝑥, 𝑦)), 

 

𝐺(𝑥, 𝑦) =
𝑧̅

2
(𝑔(𝑥, 𝑦) − 𝑖

𝜕𝑓

𝜕𝜑
(𝑥, 𝑦)), 

 

𝑧 = 𝑟𝑒𝑖𝜑 ∈ 𝛤 

 

 

 

 

 

(4.2.8) 

 

Theorem 4.1. Assume that 𝜎 = 𝜇𝜈1 and 𝜏 = 𝜇𝜈2, then the problem 
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∑𝐴𝑘
𝜕4𝑢

𝜕𝑥𝑘𝜕𝑦4−𝑘
 (𝑥, 𝑦)

4

𝑘=0

= 0,   (𝑥, 𝑦) ∈ 𝐷, 

 

𝑢 |

 
 
Γ
= 𝑓(𝑥, 𝑦),   

𝜕𝑢

𝜕𝑁
|

 
 
Γ
= 𝑔(𝑥, 𝑦),   (𝑥, 𝑦) ∈ Γ, 

 

is uniquely solvable if and only if the conditions 

 

 

𝑃𝑘(𝜎, 𝜏) = ∑∑(𝑚 − 𝑝)(𝜎𝜏)𝑝 ∑ 𝜎𝑗𝜏𝑚−𝑝−𝑗

𝑚−𝑝−1

𝑗=0

𝑚

𝑝=0

𝑘−1

𝑚=0

≠ 0, 

 

𝑘 = 3,4, … 

 

 

 

(4.2.9) 

 

hold. If the conditions (4.2.9) fail, that is 𝑃𝑘0(𝜎, 𝜏) = 0 for some value 𝑘0 > 2, then the 

homogeneous problem  (4.2.1) and (4.2.4) has one linearly independent solution which is 

polynomial of order 𝑘0 + 1. The corresponding inhomogeneous problem has a solution if 

the boundary functions 𝐹 and 𝐺 satisfy one linearly independent orthogonality condition. 

Therefore, the defect numbers of the problem are equal to the quantity of the numbers 𝑘0 

for which 𝑃𝑘0(𝜎, 𝜏) = 0. 

   

Proof of the theorem 4.1. The general solution of the equation (4.2.5) may be represented 

in the form 

 

 
𝑢(𝑥, 𝑦) = 𝛷0(𝑧 + 𝜇𝑧̅) +

𝜕

𝜕𝜑
𝛷1(𝑧 + 𝜇𝑧̅) + 

 

𝛹0(𝑧̅ + 𝜈1𝑧) + 𝛹1(𝑧̅ + 𝜈2𝑧) 

 

 

 

(4.2.10) 

 

where Φ𝑗 and Ψ𝑗, 𝑗 = 0,1 are the functions, that must be determined which they are analytic 

in the domains 

 

𝐺 = {𝑧 + 𝜇𝑧̅ ∶ 𝑧 ∈ 𝐷}, 
 

𝐷𝑗 = {𝑧̅ + 𝜈𝑗+1𝑧 ∶ 𝑧 ∈ 𝐷} 

 

respectively. We substitute the function (4.2.10) in the boundary equations (4.2.7). By 

applying the operator identity 

 

𝜕𝑘+𝑚

𝜕𝑧𝑘𝜕𝑧̅𝑚
𝜕𝑙

𝜕𝜑𝑙
= (

𝜕

𝜕𝜑
+ (𝑘 −𝑚)𝑖𝐼)

𝑙 𝜕𝑘+𝑚

𝜕𝑧𝑘𝜕𝑧̅𝑚
, 

 

we get 
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𝜇𝛷0

′ (𝑧 + 𝜇𝑧̅) + 𝜇 (
𝜕

𝜕𝜑
− 𝑖𝐼)𝛷1

′(𝑧 + 𝜇𝑧̅) + 𝛹0
′(𝑧̅ + 𝜈1𝑧)

+ 𝛹1
′(𝑧̅ + 𝜈2𝑧) = 𝐹(𝑧), 𝑧 ∈ 𝛤, 

 

𝛷0
′ (𝑧 + 𝜇𝑧̅) + (

𝜕

𝜕𝜑
+ 𝑖𝐼)𝛷1

′(𝑧 + 𝜇𝑧̅) + 𝜈1𝛹0
′(𝑧̅ + 𝜈1𝑧)

+ 𝜈2𝛹1
′(𝑧̅ + 𝜈2𝑧) = 𝐺(𝑧), 𝑧 ∈ 𝛤 

 

 

 

 

 

 

(4.2.11) 

Now we represent the function Ω(𝑧 + 𝜇𝑧̅) where Ω is analytic in the domain  
𝐺 = {𝑧 + 𝜇𝑧̅ ∶ 𝑧 ∈ 𝐷} on the circumference Γ using analytic in 𝐷 functions. It was proved 

that the function Ω(𝑧 + 𝜇𝑧̅) for |𝑧| = 1, could be written as 

 

 𝛺(𝑧 + 𝜇𝑧̅) = 𝜔(𝑧) + 𝜔(𝜇𝑧̅), (4.2.12) 

 

where 𝜔 is analytic function in the unit disk. If we have the function 𝜔, then the function 

Ω is specify as 

 

 
𝛺(𝜁) = 𝜔(

𝜁 + √𝜁2 − 4𝜇

2
) + 𝜔(

𝜁 − √𝜁2 − 4𝜇

2
), 

 

(4.2.13) 

 

for 𝜁 ∈ 𝐺. In these formulas we choose the branch of √𝜁2 − 4𝜇, which it is analytic outside 

the segment [−2√𝜇, 2√𝜇] and satisfies the condition 

 

lim
𝜁→∞

𝜁−1√𝜁2 − 4𝜇 = 1 

 

We use (4.2.12) and rewrite the functions Φ𝑗
′,  Ψ𝑗

′ on the circumference Γ 

 

 
𝛷𝑗
′(𝑧 + 𝜇𝑧̅) = 𝜗𝑗(𝑧) + 𝜗𝑗(𝜇𝑧̅) = ∑𝐴𝑘𝑗  𝑧

𝑘

∞

𝑘=0

+∑𝐴𝑘𝑗𝜇
𝑘 𝑧−𝑘

∞

𝑘=0

, 

 

𝛹𝑗
′(𝑧̅ + 𝜈𝑗+1𝑧) = 𝜌𝑗(𝑧̅) + 𝜌𝑗(𝜈𝑗+1𝑧) = ∑𝐵𝑘𝑗  𝑧

−𝑘

∞

𝑘=0

+∑𝐵𝑘𝑗𝜈𝑗+1
𝑘 𝑧𝑘

∞

𝑘=0

, 

 

𝑗 = 0,1,   𝑧 ∈ 𝛤. 
 

 

 

 

(4.2.14) 

We want to determine unknown functions ϑ𝑗 and ρ𝑗, that these functions are analytic in the 

unit disc 𝐷, therefore they determined by the corresponding Taylor coefficients 𝐴𝑘𝑗 and 

𝐵𝑘𝑗. For the determination of these coefficients let’s substitute the expansions (4.2.14) and 

Fourier expansions of the functions 𝐹 and 𝐺 

 



Chapter 4. Elliptic Equations in Unit Disk  86 

 

 

 
𝐹(𝑧) = ∑𝐹𝑘 𝑧

𝑘

∞

𝑘=0

+∑𝐹−𝑘 𝑧
−𝑘

∞

𝑘=1

= 𝐹+(𝑧) + 𝐹−(𝑧), 

 

𝐺(𝑧) = ∑𝐺𝑘 𝑧
𝑘

∞

𝑘=0

+∑𝐺−𝑘 𝑧
−𝑘

∞

𝑘=1

= 𝐺+(𝑧) + 𝐺−(𝑧), 

 

 

 

 

 

(4.2.15) 

in the boundary equations (4.2.11). We get 

 

 
∑𝐴𝑘0𝜇 𝑧

𝑘

∞

𝑘=0

+∑𝐴𝑘0𝜇
𝑘+1 𝑧−𝑘

∞

𝑘=0

+∑𝐴𝑘1(𝑖𝑘 − 𝑖)𝜇 𝑧
𝑘

∞

𝑘=0

− 

 

∑𝐴𝑘1(𝑖𝑘 + 𝑖)𝜇
𝑘+1 𝑧−𝑘

∞

𝑘=0

+∑𝐵𝑘0 𝑧
−𝑘

∞

𝑘=0

+∑𝐵𝑘0𝜈1
𝑘 𝑧𝑘

∞

𝑘=0

+ 

 

∑𝐵𝑘1 𝑧
−𝑘

∞

𝑘=0

+∑𝐵𝑘1𝜈2
𝑘 𝑧𝑘

∞

𝑘=0

=∑𝐹𝑘 𝑧
𝑘

∞

𝑘=0

+∑𝐹−𝑘 𝑧̅
𝑘

∞

𝑘=1

, 

 
|𝑧| = 1, 

 

 

∑𝐴𝑘0 𝑧
𝑘

∞

𝑘=0

+∑𝐴𝑘0𝜇
𝑘 𝑧−𝑘

∞

𝑘=0

+∑𝐴𝑘1(𝑖𝑘 + 𝑖) 𝑧
𝑘

∞

𝑘=0

 

 

+∑𝐴𝑘1(𝑖 − 𝑖𝑘)𝜇
𝑘 𝑧−𝑘

∞

𝑘=0

+∑𝐵𝑘0𝜈1 𝑧
−𝑘

∞

𝑘=0

+∑𝐵𝑘0𝜈1
𝑘+1 𝑧𝑘

∞

𝑘=0

+ 

 

∑𝐵𝑘1𝜈2 𝑧
−𝑘

∞

𝑘=0

+∑𝐵𝑘1𝜈2
𝑘+1 𝑧𝑘

∞

𝑘=0

=∑𝐺𝑘 𝑧
𝑘

∞

𝑘=0

+∑𝐺−𝑘 𝑧̅
𝑘

∞

𝑘=1

, 

 
|𝑧| = 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(4.2.16) 

Equating the coefficients by the same degrees of 𝑧 and 𝑧̅, we obtain the system for the 

determination of the unknown coefficients 𝐴𝑘𝑗 and 𝐵𝑘𝑗. For 𝑘 = 0 we have 

 

 2𝜇𝐴00 − 2𝜇𝑖𝐴01 + 2𝐵00 + 2𝐵01 = 𝐹0, 
 

2𝐴00 + 2𝑖𝐴01 + 2𝜈1𝐵00 + 2𝜈2𝐵01 = 𝐺0 

 

 

 

(4.2.17) 
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 If 𝑘 ≥ 1 we have fourth order system of linear equations for the determination 𝐴𝑘𝑗 and 

𝐵𝑘𝑗 

 

 

{
  
 

  
 
𝐴𝑘0 + 𝑖(𝑘 + 1)𝐴𝑘1 + 𝜈1

𝑘+1𝐵𝑘0 + 𝜈2
𝑘+1𝐵𝑘2 = 𝐺𝑘

 
𝜇𝐴𝑘0 + 𝑖(𝑘 − 1)𝜇𝐴𝑘1 + 𝜈1

𝑘𝐵𝑘0 + 𝜈2
𝑘𝐵𝑘2 = 𝐹𝑘

 
𝜇𝑘𝐴𝑘0 − 𝑖(𝑘 − 1)𝜇

𝑘𝐴𝑘1 + 𝜈1𝐵𝑘0 + 𝜈2𝐵𝑘2 = 𝐺−𝑘
 

𝜇𝑘+1𝐴𝑘0 − 𝑖(𝑘 + 1)𝜇
𝑘+1𝐴𝑘1 + 𝐵𝑘0 + 𝐵𝑘2 = 𝐹−𝑘

 

 

 

 

 

(4.2.18) 

 

We consider the determinant of the main matrix of the system (4.2.18) 

 

 

𝑆𝑘 = 𝑑𝑒𝑡𝑆�̃� = 𝑑𝑒𝑡

(

 
 

1 𝑖(𝑘 + 1) 𝜈1
𝑘+1 𝜈2

𝑘+1

𝜇 𝑖(𝑘 − 1)𝜇 𝜈1
𝑘 𝜈2

𝑘

𝜇𝑘 −𝑖(𝑘 − 1)𝜇𝑘 𝜈1 𝜈2
𝜇𝑘+1 −𝑖(𝑘 + 1)𝜇𝑘+1 1 1 )

 
 

 

 

 

 

(4.2.19) 

 

After transformation, using denotations of the theorem 4.1, we reach to 

 

 

𝑆𝑘(𝜎, 𝜏) = 𝑖 |

1 𝑘 + 1 𝜎𝑘+1 𝜏𝑘+1

1 𝑘 − 1 𝜎𝑘 𝜏𝑘

1 −𝑘 + 1 𝜎 𝜏
1 −𝑘 − 1 1 1

| 

 

= 𝑖(1 − 𝜎)2(1 − 𝜏)2 ∑∑(𝑚 − 𝑝)(𝜎𝑝𝜏𝑚 − 𝜎𝑚𝜏𝑝)

𝑚

𝑝=0

𝑘−1

𝑚=0

 

 

= 𝑖(1 − 𝜎)2(1 − 𝜏)2𝛩𝑘(𝜎, 𝜏) 
 

 

 

 

 

 

 

 

(4.2.20) 

And finally, the function Θ𝑘 could be restated as 

 

Θ𝑘(𝜎, 𝜏) = (𝜏 − 𝜎)𝑃𝑘(𝜎, 𝜏), 
 

where 𝑃𝑘 is a function that was defined in the theorem 4.1. According to the conditions of 

the theorem 4.1, 𝜎 ≠ 1, 𝜏 ≠ 1, and 𝜎 ≠ 𝜏, then for 𝑘 > 2 we have 𝑆𝑘 ≠ 0 if and only if 

the conditions (4.2.9) hold. Since 𝑆2 is a generalized Vandermonde determinant with 

different terms then 𝑆2 ≠ 0. 

 

Let us assume that the conditions (4.2.9) hold, then the coefficients 𝐴𝑘𝑗 and 𝐵𝑘𝑗 for 𝑘 ≥ 2 

are uniquely determined. Determinant 𝑆1 of the system (4.2.18) for 𝑘 = 1 is equal to zero, 

because second and third rows are the same, but by taking into account the relations (4.2.8) 

we have 
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𝐹1 = 𝐺−1 =
1

4𝜋
∫ 𝑔(cos𝜑 , sin𝜑)𝑑𝜑

2𝜋

0

, 

 

that is the system (4.2.18) has a solution (not unique) for 𝑘 = 1, and at last we determine 

(not uniquely too) the coefficients 𝐴0𝑗 and 𝐵0𝑗 from the system (4.2.17), Thus the 

coefficients 𝐴𝑘𝑗 and 𝐵𝑘𝑗 may be found for arbitrary 𝑘, therefore we earn the functions 𝜗𝑗 

and 𝜌𝑗 , when we compute the Φ𝑗 and Ψ𝑗 by the relation (4.2.13). 

 

Since 

lim
𝑘→∞

𝑆𝑘 = −2𝑖, 

 

hence the coefficients 𝐴𝑘𝑗 and 𝐵𝑘𝑗 have the same rate of decreasing as the coefficients 𝐹𝑘 

and 𝐺𝑘, therefore the resulting function 

 

𝑢(𝑥, 𝑦) = Φ0(𝑧 + 𝜇𝑧̅) +
∂

∂φ
Φ1(𝑧 + 𝜇𝑧̅) + Ψ0(𝑧̅ + 𝜈1𝑧) + Ψ1(𝑧̅ + 𝜈2𝑧), 

 

that is the solution of the problem (4.2.1), (4.2.4), belongs to the prescribe class of 

𝐶(1,𝛼)(Γ). Now let’s consider the homogeneous problem 

 

∑𝐴𝑘
𝜕4𝑢

𝜕𝑥𝑘𝜕𝑦4−𝑘
 (𝑥, 𝑦)

4

𝑘=0

= 0,   (𝑥, 𝑦) ∈ 𝐷, 

 

𝑢 |

 
 
Γ
= 0,   

𝜕𝑢

𝜕𝑁
|

 
 
Γ
= 0,   (𝑥, 𝑦) ∈ Γ, 

 

if the conditions (4.2.9) hold, the corresponding Taylor coefficients 𝐴𝑘𝑗 = 𝐵𝑘𝑗 = 0 for 𝑘 >

1 , then nontrivial solution of the homogeneous problem (4.2.1), (4.2.4) may be at last 

second order polynomial, but the theorem 4.1 from [8] (p. 84) implies that every nontrivial 

polynomial which satisfies homogeneous conditions (4.2.4) must be divisible by 

(1 − 𝑧𝑧̅)2, that is it must has at least fourth order, hence if the conditions (4.2.9) hold, then 

the corresponding homogeneous problem has only zero solution.  

 

If the conditions (4.2.9) fail for some 𝑘0 > 2, that is 𝑆𝑘0 = 0, then the corresponding 

homogeneous problem has one linearly independent solution which is determined by 

nonzero solution 𝐴𝑘0𝑗 and 𝐵𝑘0𝑗 of the system (4.2.18). 

 

4.3.   Some Numerical Results 
 

In this stage we will investigate more about the conditions (4.2.9). First we start by 

(4.2.5) and we gain 
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(𝑃3(𝜎, 𝜏)

𝜕4

𝜕𝑧2𝜕𝑧̅2
+ 𝐸

𝜕4

𝜕𝑧𝜕𝑧̅3
+ 𝐻

𝜕4

𝜕𝑧3𝜕𝑧̅
+ 𝜇2

𝜕4

𝜕𝑧4
+ 𝜈1𝜈2

𝜕4

𝜕𝑧̅4
)𝑢 = 0, 

 

(4.3.1) 

 

where 𝑃3(𝜎, 𝜏) defined in (4.2.9). For 𝑘 = 3 

 

𝑃3(𝜎, 𝜏) = 1 + 2(𝜎 + 𝜏) + 𝜎𝜏 = 1 + 2𝜇(𝜈1 + 𝜈2) + 𝜇
2𝜈1𝜈2, 

 

and the constants 𝐸 and 𝐻 are as 

 

𝐸 = −(𝜈1 + 𝜈2 + 2𝜇𝜈1𝜈2) 
 

𝐻 = −(2𝜇 + 𝜇2(𝜈1 + 𝜈2)) 
 

Let’s illustrate the results of the theorem (4.1) in the cases of 𝑘 = 3,4. We will refer to the 

homogeneous problem and by invoking the homogeneous conditions (4.2.4) we know that 

the seeking solution must be divisible by (1 − 𝑧𝑧̅)2. Suppose that the function 

𝑢0(𝑧, 𝑧̅) = 𝛼(1 − 𝑧𝑧̅)
2, 𝛼 ≠ 0 is a solution of the homogeneous problem (4.2.1), (4.2.4), 

this function satisfies the homogeneous boundary conditions (4.2.4). By substituting the 

function in the equation (4.3.1), we derive 

 

𝑃3(𝜎, 𝜏)4𝛼 = 0 

 

So the function 𝑢0 is non-zero solution of the homogeneous problem (4.2.1), (4.2.4) if and 

only if 𝑃3(𝜎, 𝜏) = 0. For example, if the constants 𝜇, 𝜈1, and 𝜈2 satisfy the conditions 

 

𝜇𝜈1 = 𝜎 = −
2

3
, 

 

𝜇𝜈2 = 𝜏 = −
1

4
, 

 

then the function 𝑢0 is a non-zero solution of the homogeneous problem (4.2.1), (4.2.4). 

Now let us state the non-zero solution of the homogeneous problem (4.2.1), (4.2.4) in the 

form of 

 

𝑢1(𝑧, 𝑧̅) = (1 − 𝑧𝑧̅)
2(𝛽𝑧 + 𝛾𝑧̅), 

 

|𝛽| + |𝛾| ≠ 0 

 

After inserting 𝑢1 function in the equation (4.3.1) we gain 

 

𝑃3(𝜎, 𝜏)(12𝛽𝑧 + 12𝛾𝑧̅) + 12𝐸𝛾𝑧 + 12𝐻𝛽𝑧̅ = 0 

 

This equality holds if and only if 𝛽 and 𝛾 satisfy the system 
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 𝑃3(𝜎, 𝜏)𝛽 + 𝐸𝛾 = 0, 
 

𝐻𝛽 + 𝑃3(𝜎, 𝜏)𝛾 = 0 

 

 

(4.3.2) 

This homogeneous system of linear equations has non-zero solution if and only if the 

determinant of the main matrix of this system is equal to zero. By using denotations of the 

theorem 4.1,  𝜎 = 𝜇𝜈1, 𝜏 = 𝜇𝜈2 this determinant could be written as 

 

𝑃3
2(𝜎, 𝜏) − 𝐸𝐻 = (1 + 2(𝜎 + 𝜏) + 𝜎𝜏)2 − (𝜎 + 𝜏 + 2)(𝜎 + 𝜏 + 2𝜎𝜏) = 𝑃4(𝜎, 𝜏), 

 

thus we achieve that 𝑢1 is the non-zero solution of the homogeneous problem (4.2.1), 

(4.2.4) if and only if 𝑃4(𝜎, 𝜏) = 0. Let us show that 𝑃4 may be equal zero for 𝜎 and 𝜏 such 

that 

 

|𝜎| < 1,   |𝜏| < 1 

 

First we represent 

 

𝑃4(𝜎, 𝜏) = 1 + 2(𝜎 + 𝜏) + 3𝜎
2 + 4𝜎𝜏 + 3𝜏2 + 2𝜎𝜏(𝜎 + 𝜏) + 𝜎2𝜏2, 

 

in the style of 

 

 𝑃4(𝜎, 𝜏) = 1 + 2𝜎 + 3𝜎
2 + 2𝜏(1 + 2𝜎 + 𝜎2) + 𝜏2(3 + 2𝜎 + 𝜎2) 

 

= 𝐸0 + 𝐸1𝜏 + 𝐸2𝜏
2, 

 

 

(4.3.3) 

 

then fix arbitrary 𝜎, |𝜎| < 1 and consider second order polynomial 

 

𝑃(𝜏) = 𝐸0 + 𝐸1𝜏 + 𝐸2𝜏
2 

 

We will use Schur transform to show that two roots of this polynomial lie in the unit disc. 

We have 

 

𝑃∗(𝜏) = 𝜏2𝑝 (
1

𝜏̅
)

̅̅ ̅̅ ̅̅ ̅
= �̅�2 + �̅�1𝜏 + �̅�0𝜏

2, 

 

therefore Schur transform 𝑇𝑝 of the polynomial (4.3.3) is as 

 

𝑇𝑝(𝜏) = �̅�0𝑝(𝜏) − 𝐸2𝑃
∗(𝜏) = (�̅�0𝐸1 − 𝐸2�̅�1)𝜏 + |𝐸0|

2 − |𝐸2|
2 

 

Let us calculate the constants 

 

𝛾1 = 𝑇𝑝(0) = |𝐸0|
2 − |𝐸2|

2, 
 

𝛾2 = 𝑇
2𝑝(0) = (|𝐸0|

2 − |𝐸2|
2)2 − |�̅�0𝐸1 − 𝐸2�̅�1|

2 
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We apply the identity 𝜎 = 𝜌𝑒𝑖𝜑 to reach 

 

𝛾1 = −8(1 − 𝜌
2)2(1 + 𝜌2 + 𝜌 cos𝜑), 

 

𝛾2 = 16(1 − 𝜌
2)2(3 + 3𝜌2 + 4𝜌(1 + 𝜌2) cos𝜑 − 4𝜌2 sin2 𝜑) 

 

Taking into account inequality 0 < 𝜌 < 1, we obtain 𝛾1 < 0 and 𝛾2 > 0, therefore we will 

have that all two roots of the polynomial (4.3.3) lie in the unit disc. For example, by 

assumption 𝜎 = 0.5 we achieve 𝐸0 =
11

4
, 𝐸1 =

9

2
, and 𝐸2 =

17

4
. Also the roots of the 

polynomial (4.3.3) are equal to 

 

𝜏1,2 =
−9 ± 𝑖√108

17
, 

 

and then |𝜏1,2| < 1, thus in this case if  

 

𝜇𝜈1 = 0.5, 
 

𝜇𝜈2 =
−9 + 𝑖√108

17
, 

 

then the function 𝑢1 is a non-zero solution of the homogeneous problem (4.2.1), (4.2.4), 

where 𝛽 and 𝛾 is nontrivial solution of the system (4.3.2). 

 

We can continue the process in the same approach, for example 

 

𝑢2(𝑧, 𝑧̅) = (1 − 𝑧𝑧̅)
2(𝛽𝑧2 + 𝛾𝑧̅2 + 𝛿𝑧𝑧̅), 

 

|𝛽| + |𝛾| + |𝛿| ≠ 0, 
 

is a non-zero solution of homogeneous problem (4.2.1) and (4.2.4) if and only if 

 

𝑃5(𝜎, 𝜏) = 0 

 

We applied the Mathematica software to find the concrete values of the defect numbers for 

the different values of 𝜎 and 𝜏. The calculation based on computer programming, showed 

that the defect numbers may be equal to zero or one only. 
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4.4.   Mathematica Codes 
 

 

 



Chapter 4. Elliptic Equations in Unit Disk  93 
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4.5.   Improperly Elliptic Equations 
 

In the final part we review and consider the case of improperly elliptic equation. The 

consideration are similar to the case of the section (4.2), therefore we omit the same details 

and we introduce this equation immediately in the form of complex variables as 

 

 
(
𝜕

𝜕𝑧̅
− 𝜇0

𝜕

𝜕𝑧
)
2

(
𝜕

𝜕𝑧̅
− 𝜇1

𝜕

𝜕𝑧
) (

𝜕

𝜕𝑧̅
− 𝜇2

𝜕

𝜕𝑧
) 𝑢 = 0, 

 

(4.5.1) 

 

where 

𝜇𝑘 ≠ 𝜇𝑗  , 0 < |𝜇𝑗| < 1, 

 

with Dirichlet boundary conditions 

 

 𝜕𝑢

𝜕𝑧̅1−𝑗  𝜕𝑧𝑗
|

 
 
𝛤
= 𝐹𝑗(𝑥, 𝑦) , (𝑥, 𝑦) ∈ 𝛤 , 𝑗 = 0,1, 

 

𝑢(1,0) = 𝑓0(1), 𝑢𝑟(1,0) = 𝑓1(1), 𝑢𝜃(1,0) = 𝑓0(1). 

 

 

(4.5.2) 

 

We seek the solution of problem (4.5.1) and (4.5.2) in the class of 𝐶(1,𝛼)(𝒟 ∪ Γ) ∩ 𝐶4(𝒟). 
The general solution of (4.5.1) is as following 

 

 
𝑢 = 𝜙0(𝑧 + 𝜇0𝑧̅) +

𝜕

𝜕𝜃
𝜙1(𝑧 + 𝜇0𝑧̅) + 𝜙2(𝑧 + 𝜇1𝑧̅) + 𝜙3(𝑧 + 𝜇2𝑧̅), 

 

(4.5.3) 

 

where 𝜙0 and 𝜙1 are analytic functions in the domain 

 

𝐷(𝜇0) = {𝑧 + 𝜇0𝑧̅ ∶ 𝑧 ∈ 𝐷}, 
 

also  𝜙2 and 𝜙3 are analytic functions respectively in the domains 

 

𝐷(𝜇1) = {𝑧 + 𝜇1𝑧̅ ∶ 𝑧 ∈ 𝐷}, 
 

𝐷(𝜇2) = {𝑧 + 𝜇2𝑧̅ ∶ 𝑧 ∈ 𝐷}. 
 

By inserting the last general solution in the boundary condition (4.5.2) we earn 

 

 
𝜙0
′ (𝑧 + 𝜇0𝑧̅)𝜇0 + (

𝜕

𝜕𝜃
− 𝑖𝐼)𝜙1

′ (𝑧 + 𝜇0𝑧̅)𝜇0 + 𝜙2
′ (𝑧 + 𝜇1𝑧̅)𝜇1

+ 𝜙3
′ (𝑧 + 𝜇2𝑧̅)𝜇2 = 𝐹0(𝑧, 𝑧̅) , |𝑧| = 1, 

 

 

 

 

 
𝜙0
′ (𝑧 + 𝜇0𝑧̅) + (

𝜕

𝜕𝜃
+ 𝑖𝐼)𝜙1

′ (𝑧 + 𝜇0𝑧̅) + 𝜙2
′ (𝑧 + 𝜇1𝑧̅)

+ 𝜙3
′ (𝑧 + 𝜇2𝑧̅) = 𝐹1(𝑧, 𝑧̅) 

 

 

(4.5.4) 
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For |𝑧| = 1 , 𝑘 = 1, 2, 3 suppose that 

 

𝜙0
′ (𝑧 + 𝜇0𝑧̅) = 𝜑0(𝑧) + 𝜑0(𝜇0𝑧̅) =∑𝐴0𝑗𝑧

𝑗

∞

𝑗=0

+∑𝐴0𝑗𝜇0
𝑗
𝑧−𝑗

∞

𝑗=0

, 

 

𝜙𝑘
′ (𝑧 + 𝜇𝑘−1𝑧̅) = 𝜑𝑘(𝑧) + 𝜑𝑘(𝜇𝑘−1𝑧̅) =∑𝐴𝑘𝑗𝑧

𝑗

∞

𝑗=0

+∑𝐴𝑘𝑗𝜇𝑘−1
𝑗
𝑧−𝑗

∞

𝑗=0

 

 

We insert the value of 𝜙0
′   and 𝜙𝑘

′  into (4.5.3) and (4.5.4) to get 

 

∑𝐴0𝑗𝑧
𝑗𝜇0

∞

𝑗=0

+∑𝐴0𝑗𝜇0
𝑗+1
𝑧−𝑗

∞

𝑗=0

+∑𝐴1𝑗(𝑖𝑗 − 𝑖)𝑧
𝑗𝜇0

∞

𝑗=0

+∑𝐴1𝑗(−𝑖𝑗 − 𝑖)𝜇0
𝑗+1
𝑧−𝑗

∞

𝑗=0

+ 

∑𝐴2𝑗𝜇1𝑧
𝑗

∞

𝑗=0

+∑𝐴2𝑗𝜇1
𝑗+1
𝑧−𝑗

∞

𝑗=0

+∑𝐴3𝑗𝜇2𝑧
𝑗

∞

𝑗=0

+∑𝐴3𝑗𝜇2
𝑗+1
𝑧−𝑗

∞

𝑗=0

= ∑ 𝑑𝑗1𝑧
𝑗

∞

𝑗=−∞

, 

 

 

∑𝐴0𝑗𝑧
𝑗

∞

𝑗=0

+∑𝐴0𝑗𝜇0
𝑗
𝑧−𝑗

∞

𝑗=0

+∑𝐴1𝑗(𝑖𝑗 + 𝑖)𝑧
𝑗

∞

𝑗=0

+∑𝐴1𝑗(−𝑖𝑗 + 𝑖)𝜇0
𝑗
𝑧−𝑗

∞

𝑗=0

+ 

∑𝐴2𝑗𝑧
𝑗

∞

𝑗=0

+∑𝐴2𝑗𝜇1
𝑗
𝑧−𝑗

∞

𝑗=0

+∑𝐴3𝑗𝑧
𝑗

∞

𝑗=0

+∑𝐴3𝑗𝜇2
𝑗
𝑧−𝑗

∞

𝑗=0

= ∑ 𝑑𝑗2𝑧
𝑗

∞

𝑗=−∞

 

 

Now from equality of coefficients of same orders of 𝑧 and 𝑧̅ we get the following system 

 

 

{
 
 
 

 
 
 
𝐴0𝑗 + 𝑖(𝑗 + 1)𝐴1𝑗 + 𝐴2𝑗 + 𝐴3𝑗 = 𝑑𝑗2                                  

 
𝜇0𝐴0𝑗 + 𝑖(𝑗 − 1)𝜇0𝐴1𝑗 + 𝜇1𝐴2𝑗 + 𝜇2𝐴3𝑗 = 𝑑𝑗1                

 

𝜇0
𝑗
𝐴0𝑗 − 𝑖(𝑗 − 1)𝜇0

𝑗
𝐴1𝑗 + 𝜇1

𝑗
𝐴2𝑗 + 𝜇2

𝑗
𝐴3𝑗 = 𝑑−𝑗2                

 

𝜇0
𝑗+1
𝐴0𝑗 − 𝑖(𝑗 + 1)𝜇0

𝑗+1
𝐴1𝑗 + 𝜇1

𝑗+1
𝐴2𝑗 + 𝜇2

𝑗+1
𝐴3𝑗 = 𝑑−𝑗1

 

 

 

 

 

(4.5.5) 

 

Define ∆𝑗 the determinant of the matrix of coefficients of the system (4.5.5) 

 

∆𝑗= |
|

1 𝑖(𝑗 + 1) 1 1

𝜇0 𝑖(𝑗 − 1) 𝜇1 𝜇2

𝜇0
𝑗

−𝑖(𝑗 − 1)𝜇0
𝑗

𝜇1
𝑗

𝜇2
𝑗

𝜇0
𝑗+1

−𝑖(𝑗 + 1)𝜇0
𝑗+1

𝜇1
𝑗+1

𝜇2
𝑗+1

|
| 
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First case. 

Assume that |𝜇0| > |𝜇𝑗|, 𝑗 = 1,2 , by the assumptions 

 

𝜎 =
𝜇1
𝜇0
 , 𝜏 =

𝜇2
𝜇0
, 

 

we will have 0 < |𝜎| < 1, 0 < |𝜏| < 1, |𝜎| ≠ |𝜏|, then we will rewrite ∆𝑗 as 

 

∆𝑗= 𝜇0
2𝑗+2

𝑖 ||

1 𝑗 + 1 1 1
1 𝑗 − 1 𝜎 𝜏

1 −𝑗 + 1 𝜎𝑗 𝜏𝑗

1 −𝑗 − 1 𝜎𝑗+1 𝜏𝑗+1

|| = −𝜇0
2𝑗+2

𝑆𝑗(𝜎, 𝜏), 

 

where 𝑆𝑗 is determined from (4.2.20). Thus in this case we get the result similar to the case 

of properly elliptic equation for homogeneous problem (4.5.1) and (4.5.2). 

 

Let us consider inhomogeneous problem. By dividing both parts of the equations in the 

system (5.5.5) by corresponding powers of 𝜇0 and after defining �̃�1𝑗 = 𝑖𝐴1𝑗, we get 

 

{
 
 
 

 
 
 
𝐴0𝑗 + (𝑗 + 1)�̃�1𝑗 + 𝐴2𝑗 + 𝐴3𝑗 = 𝑑𝑗2                          

 
𝐴0𝑗 + (𝑗 − 1)�̃�1𝑗 + 𝜎𝐴2𝑗 + 𝜏𝐴3𝑗 = 𝑑𝑗1𝜇0

−1               
 

𝐴0𝑗 − (𝑗 − 1)�̃�1𝑗 + 𝜎
𝑗𝐴2𝑗 + 𝜏

𝑗𝐴3𝑗 = 𝑑−𝑗2𝜇0
−𝑗
        

 

𝐴0𝑗 − (𝑗 + 1)�̃�1𝑗 + 𝜎
𝑗+1𝐴2𝑗 + 𝜏

𝑗+1𝐴3𝑗 = 𝑑−𝑗1𝜇0
−𝑗

 

 

We apply the Gauss elimination process to reduce the system into the form 

 

{
 
 
 

 
 
 
𝐴0𝑗 + (𝑗 + 1)�̃�1𝑗 + 𝐴2𝑗 + 𝐴3𝑗 = 𝑑𝑗2                                                               

 
−2�̃�1𝑗 + (𝜎 − 1)𝐴2𝑗 + (𝜏 − 1)𝐴3𝑗 = 𝑑𝑗1𝜇0

−1 − 𝑑𝑗2                      
 

−2𝑗�̃�1𝑗 + (𝜎
𝑗 − 1)𝐴2𝑗 + (𝜏

𝑗 − 1)𝐴3𝑗 = 𝑑−𝑗1𝜇0
−𝑗
− 𝑑𝑗2             

        

       −2(𝑗 + 1)�̃�1𝑗 + (𝜎
𝑗+1 − 1)𝐴2𝑗 + (𝜏

𝑗+1 − 1)𝐴3𝑗 = 𝑑−𝑗1𝜇0
−𝑗
− 𝑑𝑗2

 

 

Now we denote 
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{
 
 
 

 
 
 
𝐴0𝑗 + (𝑗 + 1)�̃�1𝑗 + 𝐴2𝑗 + 𝐴3𝑗 = 𝑑𝑗2                                                                       

 
−2�̃�1𝑗 + (𝜎 − 1)𝐴2𝑗 + (𝜏 − 1)𝐴3𝑗 = 𝑑𝑗1𝜇0

−1 − 𝑑𝑗2                                            
 

(𝜎𝑗 − 1 − 𝑗(𝜎 − 1)) 𝐴2𝑗 + (𝜏
𝑗 − 1 − 𝑗(𝜏 − 1))𝐴3𝑗 = 𝐷𝑗                                

        

(𝜎𝑗+1 − 1 − (𝑗 + 1)(𝜎 − 1)) 𝐴2𝑗 + (𝜏
𝑗+1 − 1 − (𝑗 + 1)(𝜏 − 1))𝐴3𝑗 = 𝐸𝑗

 

 

 

 

 

(4.5.6) 

 

where 

 𝐷𝑗 = 𝑑−𝑗2𝜇0
−𝑗
− 𝑑𝑗2 − 𝑗(𝑑𝑗1𝜇0

−1 − 𝑑𝑗2), 

 

𝐸𝑗 = 𝑑−𝑗1𝜇0
−𝑗
− 𝑑𝑗2 − (𝑗 + 1)(𝑑𝑗1𝜇0

−1 − 𝑑𝑗2) 

 

 

(4.5.7) 

 

We solve the last two equations of the system (4.5.6) and derive 

 

 
𝐴2𝑗 =

1

𝑍𝑗
(𝐷𝑗 (𝜏

𝑗+1 − 1 − (𝑗 + 1)(𝜏 − 1)) − 𝐸𝑗 (𝜏
𝑗 − 1 − 𝑗(𝜏 − 1))), 

𝐴3𝑗 =
1

𝑍𝑗
(𝐸𝑗 (𝜎

𝑗 − 1 − 𝑗(𝜎 − 1)) − 𝐷𝑗 (𝜎
𝑗+1 − 1 − (𝑗 + 1)(𝜎 − 1))), 

 

 

(4.5.8) 

 

where 

 

 
𝑍𝑗 = |

𝜎𝑗 − 1 − 𝑗(𝜎 − 1) 𝜏𝑗 − 1 − 𝑗(𝜏 − 1)

𝜎𝑗+1 − 1 − (𝑗 + 1)(𝜎 − 1) 𝜏𝑗+1 − 1 − (𝑗 + 1)(𝜏 − 1)
| 

 

(4.5.9) 

 

Taking into account that |𝜎| < 1 and |𝜏| < 1, we gain for 𝑗 → ∞ 

 

𝑍𝑗  ~ 𝜎 − 𝜏 ≠ 0 

 

Finally we have 

𝐴2𝑗  ~ 𝑐𝑗𝑑−𝑗𝑘𝜇0
−𝑗
, 

 

𝐴3𝑗  ~ 𝑐𝑗𝑑−𝑗𝑘𝜇0
−𝑗
 , 𝑘 = 1,2, 

 

and the same estimation holds for 𝐴0𝑗 and 𝐴1𝑗, so if we suppose the function 𝐹𝑘 with first 

order derivatives satisfies Hölder condition in closed ring |𝜇0| < |𝑧| < 1, then the function 

𝜙𝑘 will belong to the class 𝐶(1,𝛼)(�̅�) and, therefore the function 𝑢 will be in the prescribed 

class. Now we can summarize previous considerations. 

 

Definition. We denote 𝐴(1,𝛼)(𝑟) class of the functions, which satisfy Hölder condition with 

first order derivatives in the closed ring 𝑟 ≤ |𝑧| ≤ 1. 
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Theorem 4.4.1. Assume that |𝜇0| > |𝜇𝑗|, 𝑗 = 1, 2, and the boundary functions 𝐹𝑗 belong 

to the class 𝐴(1,𝛼)(|𝜇0|), then the problem (4.5.1) and (4.5.2) is uniquely solvable if and 

only if the following conditions hold. 

 

 

𝑃𝑗(𝜎, 𝜏) = ∑∑(𝑘 − 𝑙)(𝜎𝜏)𝑙 ∑ 𝜏𝑚𝜎𝑘−𝑙−𝑚−1
𝑘−𝑙−1

𝑚=0

𝑘−1

𝑙=0

𝑗−1

𝑘=1

 , 𝑗 = 3,4, …, 

 

 

(4.5.11) 

 

where 

𝜎 =
𝜇1
𝜇0
, 𝜏 =

𝜇2
𝜇0
, |𝜎| ≠ |𝜏|. 

 

If the conditions (4.5.11) fail, then homogenous problem has finite number of linearly 

independent solutions, and for 𝐹𝑗 ∈ 𝐴
(1,𝛼)(|𝜇0|) inhomogeneous problem has a solution if 

and only if the finite number of linearly independent solvability conditions to boundary 

functions 𝐹𝑗 hold. These defect numbers are equal to the quantity of numbers j, for which 

the conditions (4.5.11) fail. 

 

Now we consider the case |𝜎| = |𝜏|, that is 

 

𝜏 = 𝑒𝑖𝛼𝜎,   𝛼 ∈ ℝ 

 

In this case the polynomial 𝑃𝑗 maybe reduced to the form of 

 

𝑃𝑗(𝜎, 𝜏) = ∑∑(𝑘 − 𝑙)𝜎𝑘+𝑙−1𝑒𝑖𝛼𝑙 ∑ 𝑒𝑖𝛼𝑚
𝑘−𝑙−1

𝑚=0

𝑘−1

𝑙=0

𝑗−1

𝑘=1

 

 

=∑∑(𝑘 − 𝑙)𝜎𝑘+𝑙−1𝑒𝑖𝛼𝑙
𝑒𝑖(𝑘−𝑙)𝛼 − 1

𝑒𝑖𝛼 − 1

𝑘−1

𝑙=0

𝑗−1

𝑘=1

 

 

=∑∑(𝑘 − 𝑙)𝜎𝑘+𝑙−1
𝑒𝑖𝛼𝑘 − 𝑒𝑖𝛼𝑙

𝑒𝑖𝛼 − 1

𝑘−1

𝑙=0

𝑗−1

𝑘=1

 

 

Now define 

 

𝑧 = 𝜎𝑒𝑖
𝛼
2 , 

 

then 𝑃𝑗 is represented in the form of 

Λ𝑗(𝑧) ≡
(𝑒𝑖𝛼 − 1)

2𝑖𝑒
𝑖𝛼
2

𝑃𝑗 =∑∑(𝑘 − 𝑙)𝑧𝑘+𝑙−1 sin (
𝑘 − 𝑙

2
) 𝛼

𝑘−1

𝑙=0

𝑗−1

𝑘=1

, 



Chapter 4. Elliptic Equations in Unit Disk  99 

 

 

or 

 

Λ𝑗(𝑧) ≡ sin (
𝛼

2
)𝑃𝑗 =∑∑(𝑘 − 𝑙)𝑧𝑘+𝑙−1 sin (

𝑘 − 𝑙

2
) 𝛼

𝑘−1

𝑙=0

𝑗−1

𝑘=1

. 

 

Also define 

 

𝑝 = 𝑘 − 𝑙, 𝑞 = 𝑘 + 𝑙, 
 

then 

 

𝑘 =
𝑝 + 𝑞

2
, 𝑙 =

𝑞 − 𝑝

2
, 

 

where 

 

1 ≤
𝑝 + 𝑞

2
≤ 𝑗 − 1, 0 ≤

𝑞 − 𝑝

2
≤
𝑝 + 𝑞

2
− 1, 

 

and 

 

𝑞 ≥ 𝑝 , 𝑝 ≥ 1, 1 ≤ 𝑝 ≤ 𝑗 − 1, 
 

(𝑘, 𝑙): (𝑝, 0), (𝑝 + 1,1), … , (𝑗 − 1, 𝑗 − 1 − 𝑝), 
 

𝑘 + 𝑙: 𝑝 + 0, 𝑝 + 2, 𝑝 + 4,… , 𝑝 + 2(𝑗 − 1 − 𝑝), 
 

Λ𝑗(𝑧) = ∑ ∑ 𝑝sin (
𝑝𝛼

2
) 𝑧𝑝+2𝑠−1

𝑗−1−𝑝

𝑠=0

𝑗−1

𝑝=1

 

 

=∑𝑝sin (
𝑝𝛼

2
) 𝑧𝑝−1 ∑ 𝑧2𝑠

𝑗−1−𝑝

𝑠=0

𝑗−1

𝑝=1

 

 

=∑𝑝sin (
𝑝𝛼

2
) 𝑧𝑝−1

𝑧2𝑗−2𝑝 − 1

𝑧2 − 1

𝑗−1

𝑝=1

 

 

=∑𝑝sin (
𝑝𝛼

2
)
𝑧2𝑗−𝑝−1 − 𝑧𝑝−1

𝑧2 − 1

𝑗−1

𝑝=1
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= 𝑧𝑗−2∑𝑝sin (
𝑝𝛼

2
)
𝑧𝑗−𝑝 − 𝑧𝑝−𝑗

𝑧 − 𝑧−1

𝑗−1

𝑝=1

. 

 

Thus we get the following result. 

 

Proposition. We consider the problem (4.5.1) and (4.5.2) when 𝜇2 = 𝑒
𝑖𝛼𝜇1 and |𝜇0| >

|𝜇|. In this this case we get the result similar to theorem (4.4.1), where instead of 𝑃𝑗 from 

(4.5.11) we have 

𝑄𝑗(𝑧) = 𝑧
𝑗−2∑𝑝sin (

𝑝𝛼

2
)
𝑧𝑗−𝑝 − 𝑧𝑝−𝑗

𝑧 − 𝑧−1

𝑗−1

𝑝=1

 ,   𝑧 = 𝜎𝑒
𝑖𝛼
2  

 

Second Case. 

Now we suppose that |𝜇0| < |𝜇1| < |𝜇2|, and we repeat the previous considerations to get 

the determinant 𝑆𝑗, but in this case we have the conditions |𝜎| > 1, |𝜏| > 1. Taking into 

account that the determinant 𝑆𝑗 satisfies the equality 

 

𝑆𝑗(𝜎, 𝜏) = −(𝜎𝜏)
𝑗+1𝑆𝑗 (

1

𝜎
,
1

𝜏
) 

 

We have for homogeneous problem the result identical to the theorem 4.4.1. Let us consider 

inhomogeneous problem, and the system (4.4.8), by invoking the inequalities |𝜎| >
1, |𝜏| > 1, we derive the estimation of 

 

𝑍𝑗  ~ (𝜎𝜏)
𝑗(𝜏 − 𝜎), 

 

therefore we get asymptotic estimations for the coefficients 𝐴2𝑗 , 𝐴3𝑗 as 

 

𝐴2𝑗  ~ 
𝐷𝑗𝜏

𝑗+1

(𝜎𝜏)𝑗(𝜏 − 𝜎)
−

𝐸𝑗𝜏
𝑗

(𝜎𝜏)𝑗(𝜏 − 𝜎)
= (𝐷𝑗𝜏 − 𝐸𝑗)

1

𝜎𝑗(𝜏 − 𝜎)
, 

 

𝐴3𝑗  ~ 
𝐸𝑗𝜎

𝑗

(𝜎𝜏)𝑗(𝜏 − 𝜎)
−

𝐷𝑗𝜎
𝑗+1

(𝜎𝜏)𝑗(𝜏 − 𝜎)
= (𝐸𝑗 − 𝐷𝑗𝜎)

1

𝜏𝑗(𝜏 − 𝜎)
, 

 

now by applying the relations 𝜎 =
𝜇1

𝜇0
, 𝜏 =

𝜇2

𝜇0
 we will earn 

 

𝐴2𝑗  ~ (𝑑−𝑗2𝜏 − 𝑑−𝑗1)𝜇1
−𝑗 1

𝜏 − 𝜎
, 

 

𝐴3𝑗  ~ (𝑑−𝑗1 − 𝑑−𝑗2𝜎)𝜇2
−𝑗 1

𝜏 − 𝜎
, 

 

and also the same estimations hold for 𝐴0𝑗 and 𝐴1𝑗. Finally we will get the following 



Chapter 4. Elliptic Equations in Unit Disk  101 

 

 

theorem which is similar to the theorem 4.5.1. 

 

Theorem 4.4.2. Assume that |𝜇0| < |𝜇1| ≤ |𝜇2|, (𝜇1 ≠ 𝜇2), and the boundary functions 𝐹𝑗 

belong to the class of 𝐴(1,𝛼)(|𝜇1|), then the problem (4.4.1) and (4.5.2) is uniquely solvable 

if and only if the conditions (4.5.11) hold. If the conditions (4.5.11) fail, then homogeneous 

problem has finite number of linearly independent solutions, and for 𝐹𝑗 ∈ 𝐴
(1,𝛼)(|𝜇1|) 

inhomogeneous problem has a solution if and only if the finite number of linearly 

independent solvability conditions for boundary conditions 𝐹𝑗 hold. Hence defect numbers 

are equal to the quantity of numbers j, which the conditions (4.5.11) fail. 

 

Third case. 

Assume that |𝜇0| = |𝜇1| = |𝜇2|, and we consider 

 

𝜎 = 𝑒𝑖𝛼 , 𝜏 = 𝑒𝑖𝛽 , 
 

thus the determinant Δ𝑗 is reduced to 

 

Δ𝑗 = 𝜇0
2𝑗+2

𝑖 ||

1 𝑗 + 1 1 1

1 𝑗 − 1 𝑒𝑖𝛼 𝑒𝑖𝛽

1 −𝑗 + 1 𝑒𝑖𝑗𝛼 𝑒𝑖𝑗𝛽

1 −𝑗 − 1 𝑒𝑖(𝑗+1)𝛼 𝑒𝑖(𝑗+1)𝛽

|| 

 

= 𝜇0
2𝑗+2

𝑖(1 − 𝑒𝑖𝛼)
2
(1 − 𝑒𝑖𝛽)

2
∑∑(𝑘 −𝑚)(𝑒𝑖𝑚𝛼𝑒𝑖𝑘𝛽 − 𝑒𝑖𝑘𝛼𝑒𝑖𝑚𝛽)

𝑘−1

𝑚=0

𝑗−1

𝑘=0

 

 

We are trying to simplify the summation 

 

𝑈 =∑∑(𝑘 −𝑚)(𝜎𝑚𝜏𝑘 − 𝜎𝑘𝜏𝑚)

𝑘−1

𝑚=0

𝑗−1

𝑘=0

 

 

=∑∑(𝑘 −𝑚)(𝜎𝜏)
𝑘+𝑚
2 (𝜎

𝑚−𝑘
2 𝜏

𝑘−𝑘
2 − 𝜎

𝑘−𝑚
2 𝜏

𝑚−𝑘
2 )

𝑘−1

𝑚=0

𝑗−1

𝑘=0

 

 

In the other hand 

 

(𝜎𝜏)
𝑚+𝑘
2 = 𝑒𝑖(𝛼+𝛽)

𝑚+𝑘
2  

 

(𝜎𝜏−1)
𝑚−𝑘
2 − (𝜎𝜏−1)

𝑘−𝑚
2 = 𝑒𝑖(𝛽−𝛼)

𝑘−𝑚
2 − 𝑒𝑖(𝛼−𝛽)

𝑘−𝑚
2  
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= 2𝑖 sin(𝛽 − 𝛼)
𝑘 − 𝑚

2
, 

 

then 

 

 

𝑈 =∑∑ 2𝑖(𝑘 − 𝑚) 𝑠𝑖𝑛(𝛽 − 𝛼)
𝑘 −𝑚

2

𝑘−1

𝑚=0

𝑗−1

𝑘=0

𝑒𝑖(𝛼+𝛽)
𝑚+𝑘
2  

 

(4.5.12) 

 

Suppose that 

 

𝑝 = 𝑘 −𝑚, 𝑞 = 𝑘 +𝑚, 
 

then 

 

𝑘 =
𝑝 + 𝑞

2
,𝑚 =

𝑞 − 𝑝

2
, 

 

In A: 

0 ≤ 𝑞 ≤ 𝑗 − 1, 0 ≤ 𝑝 ≤ 𝑞. 
 

In B: 

𝑗 − 1 ≤ 𝑞 ≤ 2(𝑗 − 1), 0 ≤ 𝑝 ≤ 2(𝑗 − 1) − 𝑞, 
 

 
 

We will continue the simplification process of 𝑈 as 

 

1

2𝑖
𝑈 = ∑∑𝑝sin 𝑝

𝛽 − 𝛼

2

𝑞

𝑝=0

𝑗−1

𝑞=0

𝑒𝑖𝑞
𝛼+𝛽
2 + ∑ ∑ 𝑝sin 𝑝

𝛽 − 𝛼

2

2(𝑗−1)−𝑞

𝑝=0

2(𝑗−1)

𝑞=𝑗−1

𝑒𝑖𝑞
𝛼+𝛽
2  

 

Let us assume 

 

𝑟 = 2(𝑗 − 1) − 𝑞, 
 

then 
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1

2𝑖
𝑈 = ∑∑𝑝sin 𝑝

𝛽 − 𝛼

2

𝑞

𝑝=0

𝑗−1

𝑞=0

𝑒𝑖𝑞
𝛼+𝛽
2 +∑∑𝑝sin 𝑝

𝛽 − 𝛼

2

𝑟

𝑝=0

𝑗−1

𝑟=0

𝑒𝑖(2𝑗−𝑟−2)
𝛼+𝛽
2 , 

 

also 

 

𝑈 = 2𝑖∑∑𝑝sin 𝑝
𝛽 − 𝛼

2

𝑞

𝑝=0

𝑗−1

𝑞=0

(𝑒𝑖𝑞
𝛼+𝛽
2 + 𝑒𝑖(2𝑗−𝑞−2)

𝛼+𝛽
2 ) 

 

= 2𝑖𝑒𝑖(𝑗−1)
𝛼+𝛽
2 ∑∑𝑝sin 𝑝

𝛽 − 𝛼

2

𝑞

𝑝=0

𝑗−1

𝑞=0

(𝑒−𝑖
(𝑗−𝑞−1)

𝛼+𝛽
2 + 𝑒𝑖(𝑗−𝑞−1)

𝛼+𝛽
2 ), 

 

finally 

 

 

𝑈 = −4∑𝑐𝑜𝑠(𝑗 − 𝑞 − 1)
𝛼 + 𝛽

2
∑𝑝𝑠𝑖𝑛 𝑝

𝛽 − 𝛼

2

𝑞

𝑝=0

𝑗−1

𝑞=0

 

 

(4.5.13) 

 

By applying the value of 𝑈 from last equality we could rewrite Δ𝑗 as 

 

Δ𝑗 = 4𝑖𝜇0
2𝑗+2

(1 − 𝑒𝑖𝛼)
2
(1 − 𝑒𝑖𝛽)

2
∑cos(𝑗 − 𝑞 − 1)

𝛼 + 𝛽

2
∑𝑝 sin 𝑝

𝛽 − 𝛼

2

𝑞

𝑝=0

𝑗−1

𝑞=0

 

 

= 4𝑖𝜇0
2𝑗+2

(1 − 𝑒𝑖𝛼)
2
(1 − 𝑒𝑖𝛽)

2
Λ𝑗(𝛼, 𝛽), 

 

where 

 

 

𝛬𝑗(𝛼, 𝛽) = ∑𝑐𝑜𝑠(𝑗 − 𝑞 − 1)
𝛼 + 𝛽

2
∑𝑝𝑠𝑖𝑛 𝑝

𝛽 − 𝛼

2

𝑞

𝑝=0

𝑗−1

𝑞=0

 

 

(4.5.14) 

 

Let’s consider the case when in (4.5.13) 

 

 
𝛼 =

2𝜋

𝑙
, 𝛽 =

2𝜋

𝑛
, 𝑙, 𝑛 = 2,3, … , 𝑗, 𝑙 ≠ 𝑛. 

 

(4.5.15) 

 

We denote 𝑗0 = [𝑙, 𝑛], least common multiple of the numbers 𝑙 and 𝑛, then if 𝑗 = 𝑘𝑗0, we 

have 𝑒𝑖𝛼𝑗 = 𝑒𝑖𝛽𝑗 = 1, and therefore 
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Δ𝑗 = 𝜇0
2𝑗+2

𝑖 ||

1 𝑗 + 1 1 1

1 𝑗 − 1 𝑒𝑖𝛼 𝑒𝑖𝛽

1 −𝑗 + 1 𝑒𝑖𝑗𝛼 𝑒𝑖𝑗𝛽

1 −𝑗 − 1 𝑒𝑖(𝑗+1)𝛼 𝑒𝑖(𝑗+1)𝛽

|| 

 

 

 

= 𝜇0
2𝑗+2

𝑖 ||

1 𝑗 + 1 1 1

1 𝑗 − 1 𝑒𝑖𝛼 𝑒𝑖𝛽

1 −𝑗 + 1 1 1

1 −𝑗 − 1 𝑒𝑖𝛼 𝑒𝑖𝛽

|| = 0 

 

 

(4.5.16) 

 

First we consider the homogeneous problem (4.5.1), (4.5.2), this problem is reduced to 

homogeneous system (4.5.5). Taking into account equality (4.5.16), we see that for 𝑗 =
𝑘𝑗0 , 𝑘 = 1,2,… the homogeneous system (4.5.5) has non-zero solutions 𝐴0𝑗 , 𝐴1𝑗 , 𝐴2𝑗 , 𝐴3𝑗. 

There is only linearly independent such solution, because the rank of the system (4.5.5) is 

three. Now we suppose that 𝐴𝑚𝑙 = 0 for 𝑙 ≠ 𝑗, and for 𝑙 = 𝑗, {�̃�𝑚𝑗}𝑚=0
3

 is this linearly 

independent solution. Then we derive 

 

𝜙0
′ (𝑧 + 𝜇0𝑧̅) = 

 
1

2
�̃�0𝑗 ((𝑧 + 𝜇0𝑧̅ + √(𝑧 + 𝜇0𝑧̅)

2 − 4𝜇0)
𝑗
+ (𝑧 + 𝜇0𝑧̅ − √(𝑧 + 𝜇0𝑧̅)

2 − 4𝜇0)
𝑗

), 

 

 

 𝜙𝑘
′ (𝑧 + 𝜇𝑘−1𝑧̅) = (4.5.17) 

 
1

2
�̃�𝑘𝑗 ((𝑧 + 𝜇𝑘−1𝑧̅ + √(𝑧 + 𝜇𝑘−1𝑧̅)

2 − 4𝜇𝑘−1)
𝑗

+ (𝑧 + 𝜇𝑘−1𝑧̅ − √(𝑧 + 𝜇𝑘−1𝑧̅)
2 − 4𝜇𝑘−1)

𝑗

) 

 

After integrating we substitute in (4.5.1), (4.5.2) we find 𝑢𝑗(𝑧, 𝑧̅) nontrivial solution of the 

homogeneous problem which is a polynomial of order 𝑗 + 1. Thus in this case we get 

following theorem. 

 

Theorem 4.4.3. If 𝜇1 = 𝑒
𝑖𝛼𝜇0 , 𝜇2 = 𝑒

𝑖𝛽𝜇0, when 𝛼, 𝛽 is determined from (4.5.15), then 

the homogeneous problem (4.5.1), (4.5.2) has infinitely many linearly independent 

solutions. These solutions are polynomials of order 𝑘𝑗0 + 1 (𝑗0 = [𝑙, 𝑛]), which determined 

by the formula (4.5.3), and 𝜙𝑗 is stated as (4.5.17). 

 

Now let’s pass to inhomogeneous problem (4.5.1), (4.5.2). This problem is reduced to the 

inhomogeneous system 
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{
 
 
 

 
 
 
𝐴0𝑗 + 𝑖(𝑗 + 1)𝐴1𝑗 + 𝐴2𝑗 + 𝐴3𝑗 = 𝑑𝑗2                                                                   

 
𝜇0𝐴0𝑗 + 𝑖(𝑗 − 1)𝜇0𝐴1𝑗 + 𝜇0𝑒

𝑖𝛼𝐴2𝑗 + 𝜇0𝑒
𝑖𝛽𝐴3𝑗 = 𝑑𝑗1                                    

 

𝜇0
𝑗
𝐴0𝑗 − 𝑖(𝑗 − 1)𝜇0

𝑗
𝐴1𝑗 + 𝜇0

𝑗
𝑒𝑖𝑗𝛼𝐴2𝑗 + 𝜇0

𝑗
𝑒𝑖𝑗𝛽𝐴3𝑗 = 𝑑−𝑗2                               

 

𝜇0
𝑗+1
𝐴0𝑗 − 𝑖(𝑗 + 1)𝜇0

𝑗+1
𝐴1𝑗 + 𝜇0

𝑗+1
𝑒𝑖(𝑗+1)𝛼𝐴2𝑗 + 𝜇0

𝑗+1
𝑒𝑖(𝑗+1)𝛽𝐴3𝑗 = 𝑑−𝑗2

 

 

For 𝑗 = 𝑘𝑗0 = 𝑘[𝑙, 𝑛], this system is reduced to the form of 

 

{
 
 
 

 
 
 
𝐴0𝑗 + 𝑖(𝑗 + 1)𝐴1𝑗 + 𝐴2𝑗 + 𝐴3𝑗 = 𝑑𝑗2                         

 
𝐴0𝑗 + 𝑖(𝑗 − 1)𝐴1𝑗 + 𝑒

𝑖𝛼𝐴2𝑗 + 𝑒
𝑖𝛽𝐴3𝑗 = 𝑑𝑗1𝜇0

−1      
 

𝐴0𝑗 − 𝑖(𝑗 − 1)𝐴1𝑗 + 𝐴2𝑗 + 𝐴3𝑗 = 𝑑−𝑗2𝜇0
−𝑗
                

 

𝐴0𝑗 − 𝑖(𝑗 + 1)𝐴1𝑗 + 𝑒
𝑖𝛼𝐴2𝑗 + 𝑒

𝑖𝛽𝐴3𝑗 = 𝑑−𝑗1𝜇0
−𝑗−1

 

 

We use the equalities 𝑒𝑖𝑗𝛼 = 𝑒𝑖𝑗𝛽 = 1 (see (4.5.15)). This system has a solution if the 

condition 

 

 𝑑−𝑗2𝜇0
−𝑗
− 𝑑𝑗2

𝑗
=
𝑑−𝑗1𝜇0

−𝑗−1
− 𝑑𝑗1𝜇0

−1

𝑗 + 1
 

(4.5.18) 

 

holds. Thus we prepare the following theorem. 

 

Theorem 4.4.4. We coincide the inhomogeneous problem (4.5.1), (4.5.2) if 

 

𝜇1 = 𝑒
𝑖𝛼𝜇0, 𝜇2 = 𝑒

𝑖𝛽𝜇0, 
 

and the conditions (4.5.15) hold. Then for solvability of this problem, it is necessary 

infinitely many conditions (4.5.18). Here 𝑗 = 𝑘𝑗0 = 𝑘[𝑙, 𝑛], and 𝑑𝑗𝑘 are the Fourier 

coefficients of the boundary functions 𝐹𝑘. 

 

4.6.   Conclusion 

 

In this chapter we considered special kind of boundary value problems, that is, the Dirichlet 

problem for the fourth order elliptic equation with constant coefficients in the unit disc. We 

assumed two cases, first if double root in the upper half-plane and the simple roots in lower-

half plane, that is, the equation is properly elliptic, and second case if all the roots belong 

to the upper-half plane, that is improperly elliptic case. We gained the new formula for the 

determination of the defect numbers. The solvability conditions and the solutions of 

homogeneous and inhomogeneous problems were investigated in explicit form. The 

numerical results showed that the defect numbers may be only zero and one. For 
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improperly elliptic case the set of boundary functions provided, and the normal solvability 

of the Dirichlet problem was specified. Also we researched that for inhomogeneous 

problem if 𝜇1 = 𝑒
𝑖𝛼𝜇0, 𝜇2 = 𝑒

𝑖𝛽𝜇0, within the conditions (4.5.15), the solvability of 

problem depends on infinitely many conditions (4.5.18). 
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Conclusion 
 

In the thesis the following results аre obtained: 

1. Mathematical modeling of heat transfer (Transport Phenomena) in three-dimension 

for the especial furnaces with cylindrical shapes is derived, where these Furnaces 

in the business area are called Garnissage furnace. In the present work we obtained 

the mathematical modeling based on the stream functions and cylindrical 

coordinates. We prepared the details of the modeling by invoking the conservation 

laws, and the Stefan condition is applied to describe the behavior of the free 

boundary. 

 

2. We defined stream function in two dimension and then we gained the mathematical 

modeling of heat transfer according to stream function. The modeling based on 

stream function has its sufficient advantages and we prepared complete description 

about the modeling process, variational approach and weak formulation, and 

numerical solution of the transport system in two-dimension. 

 

3. We achieved the mathematical modeling in the cylindrical coordinate system 

according to Garnissage tank shape and its symmetric properties. We got the 

conservation equations in the cylindrical coordinate system, so the Stefan 

condition, and then we followed the variational approach to convert the system of 

equations into the weak formulation. For expressing the system in the variational 

formulation we will exert sufficient smooth test functions with small support. 

 

4. To complete the finite element method, we discrete the domain to special mesh 

cubes and we divided them into 24 tetrahedrons. We computed the piecewise 

continuous test function according to 24 tetrahedrons, and then we determined 

values of coefficients in the linear and nonlinear system. We solved the system 

numerically by the Newton’s method and we exhibited the final results by the 

sufficient graphs. 

 

5. We focused on the Dirichlet problem for the fourth order properly elliptic equation 

with constant coefficients in the unit disc. The characteristic equation has one 

double root in upper half-plane and two different roots in the lower half-plane. The 

solution must be found in the class of functions Hölder continuous with first order 

derivatives up to the boundary, then we obtained the new formula for the 

determination of the defect numbers. The solvability of homogeneous and 

inhomogeneous problems are investigated in explicit form. We demonstrated that 

the defect numbers may be only zero and one by the numerical approach by 

applying Mathematica programing. 
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6. Results of the thesis were published in the following papers: 

Results of chapter 1 were published in [83]. 

Results of chapter 2 were published in [81] 

Results of chapter 3 were published in [82], [85], and [86]. 

Results of chapter 4 were published in [84]. 
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