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Introduction

Let L/K be a finite Galois extension of fields with Galois group G. Then L can be regarded as a

module over the group ring K[G], where K acts by multiplication and G acts in a natural way. The

normal basis theorem (See [1, Chapter 6, §13]) implies that this module is in fact cyclic, namely there

is an isomorphism L ∼= K[G] of K[G]-modules. Similarly one may consider the Z[G]-module L∗, but

this time its structure is rather complicated and is not well studied even if the fields L and K are

”good” enough.

Now suppose that K and L are finite extensions of Qp. Then the ring of integers OL as well as all the

fractional ideals pnL, n ∈ Z of the field L are OK [G]-modules and one might ask a question concerning

their structure . In connection with this S.V.Vostokov proved in [2] that if L/K is an abelian p-

extension with Galois group G and K does not contain a primitive p-th root of unity, then in the field

L there exist ideals which are decomposable as OK [G]-modules if and only if the ramification index

e(L/K) divides the different DL/K . In this respect see also [3].

The multiplicative case was studied in a series of articles [4–8]. We now want to focus on the result

of D.K.Faddeed, published in [6]. He considered the case of cyclic p-extension L/K with Galois group

G = 〈σ〉, such that K contains a primitive p-th root of unity ζp. It was proved that there is an

isomorphism of R = Fp[G]-modules

L∗/L∗p ∼=


Rn ⊕R/(σ − 1)2, ζp ∈ NL/K(L∗)

Rn ⊕R/(σ − 1)⊕R/(σ − 1), otherwise

Moreover, the author provided a canonical method for selecting the generating elements in a way that

they satisfy certain requirements concerning Hasse’s norm residue symbol.

In a similar way one may consider E/Ep as an R-module, where E = 1 + pL is the group of principal

units in L. In the article [9] we considered this module in the case of a cyclic extension L/K of

degree p. It turned out that its structure depends on several factors, including the ramification of

the extension L/K. The proof of this result is provided in the first paragraph of the second chapter

of the thesis. On the other hand it can be proved that E is a Zp-module, namely one can compute

the expression uα for any u ∈ E and α ∈ Zp. The structure of this module is completely studied

in [10, Chapter 15]. In our case, when L is a finite extension of Qp, E decomposes into a direct sum
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of a finite cyclic p-group and a free Zp-module of rank [L : Qp]. In contrast to this, if L is a local field

of positive characteristic, then infinitely many generators are required and infinite products arise.

Further, Z.I.Borevich studied E as a Zp[G]-module in the case of cyclic p-extensions L/K. Let

E0 = 1 + pK be the group of principal units in K, Γ = NL/K(E), G = 〈σ〉 and let ζ = ζps , s ≥ 1 be a

root of unity in E. In [7] the author proved that if the map E0/E
p
0 → E/Ep, induced by the inclusion

E0 ↪→ E is injective and if E0 = 〈ζ,Γ〉, then the Zp[G]-module E decomposes into a direct sum of a

finite cyclic p-group 〈ζ〉 and a free Zp[G]-module of rank [K : Qp].

We say that the field K is irregular, if it contains a primitive p-th root of unity. The irregularity

degree of K is defined to be the maximal positive integer s for which K contains a primitive ps-th root

of unity. In this respect the following theorem concerning unramified extensions was proved in [7].

Theorem (Borevich, 1965) If the extension L/K is unramified and the fields L and K have the

same irregularity degree s ≥ 1, then for the Zp[G]-module E there exist a system of generating elements

θ1, ..., θn−1, ξ, ω with the unique defining relation ξp
s

= ωσ−1, where n = [K : Qp].

It should be noted that in the aforementioned work outside of consideration remained non cyclo-

tomic extensions for which either the inertia degree and the ramification index are different from 1, or

the irregularity degrees of L and K are different. The case of regular K is considered in the paper [8].

With the development of the theory of formal groups it became clear that the considered additive and

multiplicative cases are special cases of a more general construction. Namely, let M/L,L/K,K/Qp be

finite extensions with M/L Galois. If F is a one dimensional formal group law over the ring OK then

one can introduce a new operation on the maximal ideal pM according to the rule x +
F
y = F (x, y).

From the axioms of a formal group it follows that the structure obtained is in fact an abelian group.

It is denoted by F (pM ). Now the task is to study F (pM ) as a Gal(M/L)-module, more precisely as

a EndOK (F )[Gal(M/L)]-module, where EndOK (F ) is the ring of endomorphisms of the formal group

F . If F = Ga, F (x, y) = x + y is the additive formal group, then F (pM ) is simply the ideal pM and

EndOK (F ) = OK . This is precisely the additive case we considered above. Similarly, if K = Qp and

F = Gm is the multiplicative formal group given by the law F (x, y) = x+y+xy, then EndOK (F ) = Zp

and F (pM ) ∼= E, x 7→ 1+x as Zp[Gal(M/L]-modules, where E = 1+pM is the group of principal units

in M . This one is the multiplicative case we considered earlier. Moreover, if we want a particularly

large endomorphism group, we arrive at the so-called Lubin-Tate formal groups F , in which case for

any element a ∈ OK there is an endomorphism [a]F of F , starting with ax and EndOK (F ) can be
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identified with the ring OK via the correspondence a 7→ [a]F . In the case of Lubin-Tate formal groups

each of the OK-submodules F (s) = ker[πs]F ⊂ F (pMalg), s ≥ 1 can be shown to be cyclic, which

allows us to use the concept of the irregularity degree in complete analogy with the multiplicative

case. Namely, we say that K has irregularity degree s, if K contains a generator of F (s) and does

not contain any generator of F (s+ 1). A slight modification of Borevich’s theorem was proved in the

paper [11], where the authors studied the structure of F (pM ) in the case of a Lubin-Tate formal group

F . More precisely, they proved the following

Theorem (Vostokov-Nekrasov, 2014) Suppose M/L is an unramified p-extension and F is a

Lubin-Tate formal group for the prime element π ∈ K. Assume moreover that the fields M and L

have the same irregularity degree, namely they contain a generator of ker[πs]F and do not contain a

generator of ker[πs+1]F for some s ≥ 1. Then for the OK [G]-module F (pM ) there exists a system

of generating elements θ1, ..., θn−1, ξ, ω with the unique defining relation [πs]F (ξ) = ωσ −
F
ω, where

n = [L : K] and σ is a generating element of the Galois group G = Gal(M/L).

The key point of this work was the observation that the cohomology group H1(Gal(M/L), F (pM ))

is trivial for unramified extensions M/L. In the paper [12] T.Honda introduced a new method of con-

structing formal groups which were later named in his honor. They appeared to be generalizations

of Lubin-Tate formal groups due to the classification theorems of O.V.Demchenko, proved in [13].

Thanks to the tight connection between these two types of formal groups it became possible to gener-

alize the results already proved for Lubin-Tate formal groups to the case of Honda formal groups. An

example of such a generalization was the work [14] of Demchenko, where he deduced explicit formulas

for the Hilbert symbol in the case of Honda formal groups. We assume that in addition to the fields

K,L,M an intermediate field Qp ⊂ K0 ⊂ K is given such that the extension K/K0 is unramified and

let F be a Honda formal group relative to the extension K/K0 and the prime π ∈ K0 (See [12, §2]).

In analogy with Lubin-Tate formal groups the submodule F (s) ⊂ F (pMalg) defined earlier is isomor-

phic to (OK0/π
sOK0)h as a OK0-module for each positive integer s ≥ 1, where h is the height of F .

Let WF =
∞⋃
s=1

F (s) and let Gal(M/L) = 〈σ〉. In the second paragraph of the second chapter of the

thesis (See also [15]) we generalized the previous Theorem to the case of Honda formal groups in the

following manner.

Theorem 2.2 If the extension M/L is unramified and WF ∩ F (pL) = WF ∩ F (pM ) = F (s),
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for some s ≥ 1, then h ≤ n = [L : K0] and for the OK0 [Gal(M/L)]-module F (pM ) there exist a

system of generating elements θj , ξi, ωi, 1 ≤ j ≤ n − h, 1 ≤ i ≤ h with the only defining relations

[πs]F (ξi) = ωσi −
F
ωi, 1 ≤ i ≤ h.

The thesis contains some of our results on arithmetic sequences, namely the sequences whose

terms are integers. The well-known theorem of Schur [25, Part 8, Ex. 108] asserts that whenever P is

a non-constant polynomial with integer coefficients, the corresponding sequence P (1), P (2), ... can not

be constructed using only finitely many prime numbers, that is one can find infinitely many primes,

dividing at least one term of the sequence. We will call such a sequence distinguished. It turns out

that the property of being distinguished is peculiar to all rather ”slowly” growing sequences. In the

paper [26] we proved the following

Theorem 3.1 If A = (an)∞n=1 is an increasing sequence of positive integers and if

lim inf
n→∞

ln(ln(an))

ln(n)
= 0

then A is distinguished.

This result was previously proved in [27] for almost injective sequences. Note that a sequence is

called almost injective if there exists a constant C > 0 such that for any h there are at most C values

of n for which an = h. We would like to stress that our result is independent of [27]. Our next result

we would to mention is related to the Fermat sequence defined by the formula an = 22n + 1 for all

n. It is known [28, Chapter 1, Theorem 13] that any two distinct terms of this sequence are coprime.

We where interested in whether the result would remain true if we replaced 1 with an odd number d.

The research answered this question in the negative.

Theorem 3.3 If d is any integer different from 1, then for any M > 0 there exist distinct positive

integers m and n such that gcd(22m + d, 22n + d) > M .

The structure of the thesis. We found it important to include in the text all the necessary infor-

mation concerning local fields, formal groups and G-modules to rid the reader of numerous searches

of the corresponding results in the literature. Whenever the proof of a statement is omitted, the exact

reference to the relevant place in the literature is given. All this material is the content of the first

chapter. We also recommend the following books and articles to the interested reader: for local fields

we refer to [16–18], [19, Chapter 2], for Lubin-Tate formal groups see [16, Chapter 4], [20, Chapter

3, §6], for Honda formal groups the best source is the article [12], see also [13, 14]. Regarding formal
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groups in general see [21] and [22]. For G-modules and Galois cohomology we refer to [23, Chapter

4,5], [24] and [20, Chapter 1, §§3,4].

The second chapter is devoted to the investigation of G-modules defined in extensions of local fields.

It is divided into two sections. In the first section for cyclic extensions of local fields L/K ( finite

extensions of Qp) the structure of the Fp[G]-module E/Ep is examined in each of the seven possible

cases ( Theorem 2.1), where E is the group of principal units of L. The content of the second section

is, by and large, the proof of Theorem 2.2 mentioned earlier.

The third chapter contains some of our results on arithmetic sequences. It is likewise divided into

two sections. The first section is devoted to distinguished arithmetic sequences and contains proofs

of Theorems 3.1, 3.2 and 3.3. The second section of Chapter 3 contains the proof of Theorem 3.4

concerning asymptotic estimates of the divisor function.

The main results of the thesis have been published in 3 scientific articles [9], [26] and [35] and in the

preprint [15]. The obtained results were presented at the Research Seminar of Constructive Class

Field Theory of St. Petersburg State University, 2016-2018 as well as were scheduled for presentation

at the International Conference On Number Theory which took place in Palagna, Lithuania from 09

to 15 September, 2018.
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CHAPTER 1

Basic concepts

1.1 Valuation theory

1.1.1 Normed fields

Definition 1.1 A normed field is a field k together with a function ‖ ‖ : k → R, called absolute value

(norm), which satisfies the following conditions

• ‖x‖ ≥ 0 and ‖x‖ = 0 iff x = 0

• ‖x+ y‖ ≤ ‖x‖+ ‖y‖

• ‖xy‖ = ‖x‖ · ‖y‖

The absolute value ‖ ‖ is called non-archimedean iff the second condition is fulfilled in a stronger form

‖x+ y‖ ≤ max{‖x‖, ‖y‖}.

Otherwise it is called archimedean.

Definition 1.2 A function ν : k → R ∪ {∞} on a field k is called a valuation iff

1. ν(x) =∞ iff x = 0

2. ν(x+ y) ≥ min{ν(x), ν(y)}

3. ν(xy) = ν(x) + ν(y)

From these definitions one can immediately derive the following

Proposition 1.1 There is one to one correspondence between non-archimedean absolute values and

valuations on the field k, given by ‖ ‖ 7→ − log(‖ ‖).
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Theorem 1.1 An absolute value ‖ ‖ on a field k is non-archimedean iff ‖n · 1k‖ ≤ 1 for all n ∈ Z,

where 1k is the unity of k.

Proof. It suffices to prove that ‖x‖ ≤ 1 implies ‖1 + x‖ ≤ 1. Indeed,

‖(1 + x)n‖ =

∥∥∥∥∥
n∑
k=0

(
n

k

)
xk

∥∥∥∥∥ ≤
n∑
k=0

∥∥∥∥(nk
)∥∥∥∥ ‖x‖k ≤ n+ 1.

Taking n-th roots and passing to the limit, we get the desired result. �

Corollary 1.1 If k is a field of characteristic p > 0, then any absolute value on it is non-

archimedean.

Proof. In this case the prime subfield of k is the field Fp of p elements, so that xp−1 = 1 and thus

‖x‖ = 1 for any x ∈ F∗p. Therefore we can apply Theorem 1.1. �

From the proof of Corollary 1.1 we get

Corollary 1.2 Any absolute value on a finite field k is trivial, i.e. ‖x‖ = 1 for any x ∈ k∗.

In the sequel we will assume that (k, ‖ ‖) is a normed field and ‖ ‖ is non-archimedean, if the opposite

is not mentioned. What follows from Proposition 1.1, we can equivalently use valuations ν. If ν is the

valuation corresponding to the absolute value ‖ ‖, then

Definition-theorem 1.1 The set o = {x ∈ k|ν(x) ≥ 0} = {x ∈ k| ‖x‖ ≤ 1} is a subring of k, which

is called the valuation ring of k. It is a local ring with maximal ideal p = {x ∈ k|v(x) > 0} = {x ∈

k| ‖x‖ < 1}, called the valuation ideal. Further, the set U = o \ p = {x ∈ k|ν(x) = 0} = {x ∈ k| ‖x‖ =

1} coincides with the group of invertible elements of o.The field f = o/p is called the residue field of k.

Proof. Every element in o \ p has valuation zero so that its inverse in k also has valuation zero and

is thus in o, which means that it is invertible in the ring o. Hence o is a local ring with maximal ideal

p. Everything else is clear. �

Any normed field (k, ‖ ‖) is a metric space with respect to the metric d(x, y) = ‖x − y‖ and turns

into a topological field with respect to the topology induced by this metric, the collection Bn = {x ∈

k| ‖x‖ < 1/n} is a basis of neighborhoods of 0.
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Examples of normed fields

1. The usual absolute value is an archimedean absolute value on fields Q,R and C.

2. Suppose p is a prime number. Each nonzero rational number r can be written uniquely in the

form r = pn ab where n, a, b are integers, b > 0, gcd(a, b) = 1 and p - ab. It can be shown that the

function ‖·‖p : Q→ R defined by

‖r‖p =


p−n, r 6= 0

0, r = 0

is a non-archimedean absolute value, called the p-adic absolute value.

3. Suppose F is a field, F(t) is the field of rational functions and p(t) ∈ F[t] is a fixed irreducible

polynomial. Similar to the previous case, any nonzero rational function r(t) admits a represen-

tation r(t) = pn(t)a(t)
b(t) with uniquely determined integer n, where p(t) does not divide a(t) and

b(t). In complete analogy with the field of rational numbers, for given real number c > 1 the

function ‖·‖p : F(t)→ R defined by

‖r‖p =


c−n, r 6= 0

0, r = 0

is a non-archimedean absolute value. In addition to these absolute values one can define a new

one by the formula ‖r‖∞ = cdeg p−deg q, for any representation r(t) = p(t)
q(t) . Note that ‖·‖∞ is

the compositum of ‖·‖T with the automorphism ϕ of F(t), given by t 7→ 1
t . More precisely,

‖r(t)‖∞ = ‖r
(

1
t

)
‖T .

We proceed with the following

Definition 1.3 Two absolute values ‖ ‖1 and ‖ ‖2 on a field k are called equivalent iff there is α > 0

such that ‖x‖1 = ‖x‖α2 for all x ∈ k.

Theorem 1.2 The absolute values ‖ ‖1 and ‖ ‖2 on a field k are equivalent iff they induce the same

topology on k.

Proof. The necessity follows from the fact that if ‖x‖1 = ‖x‖α2 , then the open sets and thus the

topologies defined by these absolute values do coincide. To prove the sufficiency observe that the
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condition ‖x‖ < 1 is equivalent to the condition xn → 0, which is of topological nature. Therefore

‖x‖1 < 1⇔ ‖x‖2 < 1 and consequently ‖x‖1 > 1⇔ ‖x‖2 > 1. Let x and y satisfy ‖x‖1 > 1 and ‖y‖1 >

1. By what we mentioned above they also satisfy ‖x‖2 > 1 and ‖y‖2 > 1. By the same observation

‖xmyn‖1 > 1⇔ ‖xmyn‖2 > 1, so that m log(‖x‖1) +n log(‖y‖1) > 0⇔ m log(‖x‖2) +n log(‖y‖2) > 0.

Since all the numbers log(‖x‖i), log(‖y‖i) are positive, the latter equivalence means that log(‖x‖1)
log(‖x‖2) =

log(‖y‖1)
log(‖y‖2) . Therefore there is a positive constant α for which the equality log(‖x‖1) = α log(‖x‖2) is

valid for any x, satisfying ‖x‖i > 1, i = 1, 2. Since log(‖x−1‖i) = − log(‖x‖i), it holds for any x ∈ k∗.

Exponentiation of the obtained equality yields the desired result. �

Remark 1.1 Simultaneously we have proved that the following conditions are equivalent

• The absolute values ‖ ‖1 and ‖ ‖2 induce the same topology on k.

• There exists α > 0 such that ‖x‖1 = ‖x‖α2 for all x ∈ k.

• The conditions ‖x‖1 < 1 and ‖x‖2 < 1 are equivalent.

From the proof of Theorem 1.2 it also follows that the aforementioned 3-rd condition can be weakened

to the condition: ‖x‖1 < 1 ⇒ ‖x‖2 < 1. Moreover, if the valuation ‖ ‖2 is non-trivial, we could

equivalently use the implication ‖x‖1 < 1 ⇒ ‖x‖2 ≤ 1, while for the trivial ‖ ‖2 the implication

‖x‖1 < 1 ⇒ ‖x‖2 ≤ 1 is valid for any absolute value ‖ ‖1 and the latter is not equivalent to ‖ ‖2,

unless it is trivial.

Corollary 1.3 An archimedean absolute value is never equivalent to a non-archimedean one.

Proof. Indeed, due to Theorem 1.1, an absolute value is non-archimedean if and only if ‖n · 1k‖ ≤ 1

for all n ∈ Z. This condition does not depend on which of the equivalent valuations we consider. �

Suppose that we are given mutually nonequivalent non-trivial absolute values ‖ ‖i, 1 ≤ i ≤ N on the

field k. For each i we denote by ki the topological space, whose underlying set is the underlying set

of k and the topology is induced by ‖ ‖i. One can prove the following

Theorem 1.3 (Artin-Waples, Approximation theorem) The image of the diagonal map k →∏
1≤i≤N ki is dense, where

∏
1≤i≤N ki is given the product topology.

In other words, the theorem states that for any ε > 0 and elements αi ∈ k, 1 ≤ i ≤ N there exists an

element ξ ∈ k, such that ‖ξ − αi‖i < ε for all i.
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Proof. Observe that it is enough for each 1 ≤ i ≤ N to construct an element θi ∈ k for which

‖θi‖i > 1 and ‖θi‖j < 1 for each j 6= i. Indeed, in case these elements are constructed, the number

ξ =
∑

1≤i≤N

θri
1 + θri

αi

will satisfy the required conditions for sufficiently large positive integer r. We now prove the existence

of θ = θ1 by induction. For N = 2 the assertion follows from Remark 1.1. Suppose N ≥ 3. By

the induction hypothesis there exists an element φ ∈ k which satisfies the conditions ‖φ‖1 > 1 and

‖φ‖i < 1 for 2 ≤ i ≤ N − 1. Since ‖ ‖1 and ‖ ‖N are not equivalent, then, according to Case N = 2

we conclude the existence of an element ψ for which ‖ψ‖1 > 1 and ‖ψ‖N < 1. To complete the proof

we set

θ =


φ, ‖φ‖N < 1

φrψ, ‖φ‖N = 1

φrψ/(1 + φr), ‖φ‖N > 1

for sufficiently large positive integer r. �

Note that for k = Q, Theorem 1.3 , in a sence, is the Chinese remainder theorem. In the case of

the field of rational numbers Q there is the usual absolute value and p-adic absolute value for each

prime number p (see Example 2). It turns out that this is the full list of absolute values on Q. More

precisely there is an important

Theorem 1.4 (Ostrowski, 1916) Each non-trivial absolute value on Q is equivalent to either the

usual absolute value or a p-adic absolute value for certain prime number p.

Proof. See [23, Chapter 2, Thm. 3.2] . �

Similarly, for the field of rational functions F(t) (see Example 3) there is a

Theorem 1.5 Each non-trivial absolute value on F(t), which is trivial on F, is equivalent to either

‖ ‖∞ or ‖ ‖p for some irreducible polynomial p(t) ∈ F[t].

From Corollary 1.2 and Theorem 1.4 we deduce

Corollary 1.4 Each non-trivial absolute value on Fq(t) is equivalent to either ‖ ‖∞ or ‖ ‖p for some

irreducible polynomial p(t) ∈ Fq[t], where Fq is the finite field of q elements.
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1.1.2 Complete fields, discrete valuations

Definition 1.4 A normed field k is called complete iff it is complete as a metric space with respect

to the metric induced by the norm.

Definition 1.5 Let k be a normed field, including the archimedean case. The field k̂ is called the

completion of k iff

1. k̂ is complete

2. There is an isometric field embedding k ↪→ k̂ onto a dense subfield of k̂

Similar to metric spaces we have the following

Theorem 1.6 Any normed field k has a completion, which is unique up to an isometric isomorphism

of fields over k.

Proof. (Sketch) Consider the completion k̂ of k in the sense of metric spaces. Recall that the el-

ements of k̂ are the equivalence classes of Cauchy sequences of elements from k. The addition and

multiplication are defined on k̂ in a natural way, endowing it with a ring structure. The role of 0 plays

the equivalence class of null-sequences, i.e. the sequences tending to zero, similarly the role of 1 plays

the equivalence class of the stationary sequence, consisting of ones. Any nonzero equivalence class

is invertible in this ring, since any Cauchy sequence which is not equivalent to the zero sequence, is

separated from zero and thus if we take the inverses of elements of this sequence, we get a new Cauchy

sequence, the equivalence class of which is defined as the inverse of the equivalence class containing

the initial sequence. Therefore k̂ is a field, moreover if we take an equivalence class C and a Cauchy

sequence c = (cn)∞n=1 ∈ C then we can define ‖C ‖k̂ = lim
n→∞

‖cn‖k, which, as can be shown, exists and

does not depend on the choice of the representative c. Passing to the limit we can show that ‖ ‖k̂
is an absolute value on the field k̂ and that the natural embedding of k into k̂ is an isometry onto a

dense subfield. If k̂1 and k̂2 are two completions of k, then they contain dense isometric copies of k.

Extending this isometry, we get an isometric field isomorphism from k̂1 onto k̂2 over k. �

Examples

4. The field of rational numbers Q is not complete with respect to the usual absolute value. Its

completion is the field of real numbers R.
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5. For each rational prime p, the field Q is not complete with respect to the p-adic absolute value

‖ ‖p (see Example 2). In fact, it can be shown that the Cauchy sequence of rational numbers

rn =
∑

1≤i≤n
pi

2
does not converge to any rational number. The completion of Q with respect to

the p-adic metric is called the field of p-adic numbers. It is denoted by Qp and its elements are

the formal expressions of the form α =
∑
i�−∞

aip
i, where ai ∈ {0, 1, ..., p− 1} for all i. Therefore

the absolute value on Qp is given by ‖α‖p = p−n, where n is the number of the first nonzero

coefficient an. The elementary operations are performed in a natural way, extending the p-base

arithmetic to infinite expressions. The ring of integers (see Definition-theorem 1.1) of Qp is called

the ring of p-adic integers and is denoted by Zp. It is the completion of the ring Z of ordinary

integers with respect to the p-adic metric, induced from Q. In its turn, the elements of Zp are

the expressions not containing negative terms, namely α =
∑
i≥0

aip
i. The valuation ideal is the

ideal pZp of all p-adic integers, which are divisible by p and consists of the elements of the form

α =
∑
i≥1

aip
i. The residue field is Zp/pZp ∼= Z/pZ.

6. If F is a field, then the field F(t) of rational functions is not complete with respect to the absolute

value ‖ ‖T (see Example 3), since the Cauchy sequence of rational functions Rn(t) =
∑

0≤i≤n
ti is

not convergent. One may check, that the completion of F(t) with respect to ‖ ‖T is the field

F((t)) of Laurent series involving only finite number of negative powers. So the absolute value

on F((t)) is given by ‖α(t)‖T = c−n, where α(t) =
∑
i�−∞

ait
i, n is the number of the first nonzero

coefficient of α and c > 1 is the real number which was used when defining ‖ ‖T on F(t). The

valuation ring of F((t)) is the ring F[[t]] of formal power series involving only non-negative powers,

the valuation ideal is the ideal tF[[t]] of all formal power series involving only positive powers of

the indeterminate t. The residue field is thus F[[t]]/(t) ∼= F.

Similarly, the completion of F(t) with respect to ‖ ‖∞ (see Example 3) is the field F((1/t))

of all Laurent power series containing finitely many positive powers. The absolute value on

F((1/t)) is given by ‖α(t)‖T = cn, where α(t) =
∑
i�∞

ait
i, n is the number of the rightmost

nonzero coefficient of α and c > 1 is the real number which was used when defining ‖ ‖∞ on

F(t). Furthermore, the valuation ring will be the ring F[[1/t]] of powers series without positive

powers, the valuation ideal will be the ideal (1/t)F[[1/t]] and the residue field will be again F.

In case of archimedean absolute values the situation is more or less clear due to the following
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Theorem 1.7 (Gelfand-Tornheim-Ostrowski) Any complete archimedean normed field (k, ‖ ‖)

admits an isometric field isomorphism σ : (k, ‖ ‖) → (R, | |c) or (C, | |c) for uniquely determined

c ∈ (0, 1], where | | is the standard absolute value on R (resp. C). In particular, any archimedean

normed field can be thought of as a subfield of the field of complex numbers the absolute value being

equivalent to that induced by the usual absolute value on C.

Proof. See [19, Prop. 4.2] �

In non-archimedean case we have the following

Proposition 1.2 The normed field k is non-archimedean iff so is its completion k̂. If this is the case

then the corresponding absolute values have the same image as functions. Moreover, if we denote by

Ô and p̂ the corresponding valuation ring and valuation ideal, then Ô/p̂ = O/p.

Proof. The first assertion follows from Theorem 1.1, while the second one is a direct consequence

of the fact that whenever ‖y‖ < ‖x‖ the equality ‖x + y‖ = ‖x‖ holds. To prove the last assertion,

observe that p = p̂ ∩ O, so that the inclusion O ↪→ Ô induces a field embedding O/p → Ô/p̂. The

surjectivity of the latter follows from the construction of k̂, namely for any x ∈ Ô, there exists an

y ∈ O such that ‖x− y‖ < 1. �

We proceed with the definition of a normed vector space.

Definition 1.6 Let (k, | |) be a normed field. A normed k-vector space is a pair (V, ‖ ‖) of a vector

space V over k and a function ‖ ‖ : V → R, called norm, which satisfies the following conditions

• ‖x‖ ≥ 0 and ‖x‖ = 0 iff x = 0

• ‖x+ y‖ ≤ ‖x‖+ ‖y‖

• ‖λx‖ = |λ| · ‖x‖

for all x, y ∈ V and λ ∈ k.

In what follows we shall need the following

Lemma 1.1 If k is complete, then any two norms ‖ ‖1 and ‖ ‖2 on a finite dimensional k-vector

space V are equivalent, namely there exist positive constants C1 and C2 such that ‖x‖1 ≤ C1‖x‖2 and
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‖x‖2 ≤ C2‖x‖1 for all x ∈ V . Moreover, the vector space V is complete with respect to any norm on

it.

Proof. The last assertion is a direct consequence of the first one, so we focus on the former statement.

Let us fix a basis x1, ..., xN of V and define the norm ‖ ‖0 on V by the formula∥∥∥∑λnxn

∥∥∥
0

= max
n
|λn|.

It is enough to show that any norm ‖ ‖ is equivalent to ‖ ‖0. First we note that∥∥∥∑λnxn

∥∥∥ ≤∑ |λn| · ‖xn‖ ≤ C1

∥∥∥∑λnxn

∥∥∥
0
,

where C1 =
∑
‖xn‖. Assume the contrary that there is no constant C2 for which the inequality

‖x‖0 ≤ C2‖x‖ holds for any x ∈ V . Hence there exists a sequence (vi)
∞
i=1 ⊂ V , vi =

∑
1≤j≤N

λi,jxj of

elements, for which ‖vi‖ < 1
i ‖vi‖0 for all i. One has that there exist some index 1 ≤ j0 ≤ N for which

maxj ‖λi,j‖ = |λi,j0‖ for infinitely many indices i, so that we may assume without loss of generality

that j0 = N and that λi,N = 1 for all i. Therefore vi → 0 and the sequence
∑

1≤j≤N−1

λi,jxj = vi − xn

is a Cauchy sequence. The statement of the lemma is trivial for N = 1, suppose it is true for N − 1

dimensional spaces and observe that the sequence (vi − xn)∞i=1 is in the N − 1 dimensional subspace

of V generated by x1, ..., xN−1, so that by the induction hypothesis for each j the coordinate sequence

(λi,j)
∞
i=1 is a Cauchy sequence in k. Now the completeness of k comes into play, showing that there

are λ∗j ∈ k, 1 ≤ j ≤ N − 1 for which λi,j → λ∗j for each j. Passing to the limit in vi → 0 we get∑
1≤j≤N−1 λ

∗
jxj + xN = 0, which is a contradiction. Therefore such a constant C2 with the required

property exists and the induction step is complete, thus finishing the proof of the lemma. �

We find it necessary to introduce the following key lemma, which allows to factor polynomials over

the valuation ring of a complete field.

Lemma 1.2 (Hensel’s) Let (k, ‖ ‖) be a non-archimedean complete normed field with valuation ring

o, valuation ideal p and residue field f = o/p. Let f ∈ o[x],

f(x) = amx
m + am−1x

m−1 + ...+ a1x+ a0

be a primitive polynomial, which means that the reduction f̄ of f modulo p is nonzero, i.e.

max0≤i≤m ‖ai‖ = 1. Assume moreover that f̄ = gh, gcd(g, h) = 1 in f[x]. Then there exist poly-

nomials g, h ∈ o[x] such that ḡ = g, h̄ = h, deg(g) = deg(g) and f = gh.
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We will not present the proof of this lemma here, since it is fairly long. If the reader is interested in

the proof, we refer to [29, §144]. Instead we derive some crucial consequences on which the rest of the

theory is founded.

Corollary 1.5 Under the conditions of Lemma 1.2 if f̄ has a simple root a ∈ f, then there is a

unique element α ∈ o such that f(α) = 0 and ᾱ = a.

Proof. It suffices to set g(x) = x− a to complete the proof. �

Corollary 1.6 If (k, ‖ ‖) is a non-archimedean complete normed field, f(x) =
∑

0≤i≤n
aix

i ∈ k[x] is

an irreducible polynomial of degree n, then max0≤i≤n ‖ai‖ = max{‖a0‖, ‖an‖}. In particular, if f is

monic, then ‖a0‖ ≤ 1 implies ‖ai‖ ≤ 1 for all i.

Proof. For n = 1 the statement is true. Assume the contrary that n > 1 and max1≤i≤n−1 ‖ai‖ =

‖aj‖ > max{‖a0‖, ‖an‖}. Since ‖a−1
j a0‖ < 1, ‖a−1

j an‖ < 1 and ‖a−1
j ai‖ ≤ 1 for all 1 ≤ i ≤ n − 1 we

get that for some 0 < t < n the reduction of the irreducible polynomial a−1
j f modulo p is Xth for

certain polynomial h with h(0) 6= 0. This implication contradicts Hensel’s lemma . �

We now introduce discrete valuations. In the following definition we prefer to use valuations rather

than absolute values.

Definition 1.7 If ν is a valuation on the field k (See Definition 1.2), then the set Γ = ν(k∗) is a

subgroup of (R,+), called the value group of ν. A valuation ν on the field k is called discrete iff Γ is

discrete and regular iff Γ = Z. If ν is discrete we will call k a discrete valuation field.

All absolute values (valuations) mentioned in Examples 2,3,5,6 are examples of discrete valuations.

Observe that each non-trivial discrete valuation becomes regular after multiplication by a suitable

positive real constant, since each non-trivial discrete subgroup of (R,+) is generated by some c > 0.

Definition-theorem 1.2 A valuation ν on the field k is discrete iff the valuation ideal p is principal.

If this is the case, then the valuation ring o is a discrete valuation ring, equivalently a local PID or

a local Dedekind domain, with ideal group Ik = {pn|n ∈ Z}. If ν is regular then the elements x ∈ k

satisfying ν(x) = 1 are all possible generators of p. Any such element is called a uniformizer and is

denoted by π. The subgroups pn of (k,+) form a basis of cl-open neighborhoods of 0, and k becomes a

non-discrete totally disconnected topological field. Similarly the subgroups U0 = U,Un = 1 + pn, n ≥ 1
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of (k∗, ·) form a basis of cl-open neighborhoods of 1 ∈ k∗, so that k∗ becomes a non-discrete totally

disconnected topological group. Moreover, there are isomorphisms of groups

k∗ ∼= (π)× U

U/U1
∼= f∗; [x] 7→ x(mod p)

and

Un/Un+1
∼= f+, n ≥ 1; [1 + xπn] 7→ x(mod p).

Proof. We will prove only the first assertion. To do this recall that a non-trivial subgroup of (R,+) is

discrete if and only if it possesses a minimal positive element c. If the valuation ideal p is principal then

there surely exists an element with minimal positive valuation, in fact any generator of the valuation

ideal will work. Conversely, if there is such an element λ, then each other element µ from the valuation

ideal p will satisfy ν(µ) ≥ ν(λ) which is amount to saying that µ ∈ (λ) so that p = (λ) is principal and

we are done. Further, since the value group of ν is Γ = {nc|n ∈ Z}, any nonzero ideal a ⊂ o possesses

an element of minimal positive valuation, say λa with ν(λa) = nac. Then in the same way we deduce

that a = (λa) = (λna) = pna , since λa and λna have the same valuation and therefore are associate. �

Suppose for each m ∈ Z an element πm ∈ k is fixed with ν(πm) = m. Let R ⊂ o be a complete

representative system of o modulo p. Then one can prove the following

Proposition 1.3 If k is a complete field with respect to a discrete regular valuation ν and π is a

uniformizer, then any element x ∈ k can be uniquely written as a Laurent series

x =
∑

m�−∞
amπm, am ∈ R.

Proof. Observe that o = R + p = {x + y|x ∈ R, y ∈ p} and therefore pm = πmo = πmR + pm+1 for

all m ∈ Z. The completeness of k yields pm =
∑

i≥m πiR for all m ∈ Z. Since k =
⋃
m∈Z p

m, we are

done. Suppose
∑

m amπm =
∑

m bmπm, where am, bm ∈ R. If there exists m with am 6= bm, then

take the least such index m0 and observe that ν (
∑

m(am − bm)πm) = m0. The attained contradiction

completes the proof. �
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1.1.3 Extensions of normed fields

In this section we will use the notation (k, | |) for a normed field k equipped with an absolute

value | |. Suppose K/k is an extension, we will assume that it is algebraic. Let ‖ ‖ be a valuation on

K. We will say that ‖ ‖ is an extension of | |, if ‖x‖ = |x| for all x ∈ k. A natural question arises: is

it always possible to extend | | to K. First we will consider the case when k is complete.

Theorem 1.8 If (k, | |) is complete and K/k is any algebraic extension, then there is a unique exten-

sion of | | to K. Moreover, if K/k is finite and n = [K : k], then this extension can be given explicitly

in the form ‖x‖ = n

√∣∣NK/k(x)
∣∣. Moreover, (K, ‖ ‖) is a complete field.

Proof. By a quick observation of the expression, mentioned in the statement of the theorem, one may

reduce the proof to the case of finite extension K/k.

To prove the uniqueness, we recall that any absolute value ‖ ‖ on K extending | | turns it into a

finite dimensional normed k-vector space. Using the completeness of (k, | |) we get by Lemma 1.1 that

(K, ‖ ‖) is complete and any two norms ‖ ‖1 and ‖ ‖2 on it are equivalent and hence are topologically

equivalent. According to Theorem 1.2 one can write ‖ ‖1 = ‖ ‖α2 for some α > 0. Since ‖ ‖1 and ‖ ‖2

coincide on k, we get that α = 1 unless they are trivial. In the latter case, the trivial absolute on K

extends | | and therefore any other extension is trivial, being equivalent to the trivial absolute value.

For the existence we will try a good candidate ‖x‖ = n

√∣∣NK/k(x)
∣∣ mentioned in the theorem, which

turns out to be an extension of | | and satisfies the conditions 1) and 3) of Definition 1.1. So it remains

to check whether it satisfies 2). If | | is archimedean, then by Theorem 1.7 k = R or C and | | is

equivalent to the standard absolute value, so that in either case ‖ ‖ satisfies the condition 2). For the

non-archimedean case it is enough to check that ‖α‖ ≤ 1 implies ‖α − 1‖ ≤ 1. Let us see what does

this mean. If fα(x) = xm +
∑

0≤i≤n−1

aiX
i is the minimal polynomial of α over k and s = [K : k(α)]

then NK/k(α) = (−1)nas0 and NK/k(α − 1) = (−1)n(1 +
∑

0≤i≤n−1

ai)
s, so that the latter assertion is a

direct consequence of Corollary 1.6. �

In general we proceed in the following way. If k̄ denotes the completion of k and N is the nil-radical

of the ring K ⊗
k
k̄, then there is an isomorphism

ϕ : K ⊗
k
k̄/N

∼−→
m∏
i=1

Ki
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of k̄-algebras for certain fields Ki, each of which is a finite extension of k̄. Moreover, the number

m is uniquely determined and the extensions Ki are unique in the sense that for any other such list

K ′i, 1 ≤ i ≤ m of fields there exists a permutation σ : {1, 2, ...,m} → {1, 2, ...,m} and isomorphisms

φi : Ki
∼−→ K ′σ(i) over k̄. For more details we refer to [23, Chapter 2,§§9-11].

Since the fields Ki are finite extensions of the complete field k̄, by Theorem 1.8 there exists a unique

extension ‖ ‖i of | | to Ki and (Ki, ‖ ‖i) is complete for each 1 ≤ i ≤ m. Let i : K → K ⊗
k
k̄ be the

homomorphism a 7→ a⊗ 1, π : K ⊗
k
k̄ → K ⊗

k
k̄/N be the natural epimorphism and πi :

∏m
i=1Ki → Ki

be the projections onto Ki for each 1 ≤ i ≤ m. Then the maps ψi = πi ◦ϕ ◦ π ◦ i : K → Ki, 1 ≤ i ≤ m

are ring homomorphisms and are therefore injective so that K can be regarded as a subfield of Ki for

all i. Since K = K ⊗
k
k is dense in K ⊗

k
k̄, the field K ∼= ψi(K) is a dense subfield of Ki, so that Ki

is the completion of K with respect to the absolute value transplanted from Ki via ψi. Moreover, it

turns out that these absolute values are pairwise distinct and constitute a complete list of extensions

of the absolute value | | to K.

If, in addition, K = k(α) for some α ∈ K with minimal polynomial f ∈ k[x], then the composite map

K ⊗
k
k̄ = k̄[x]/(f)→

m∏
i=1

k̄[x]/(gi)
∼−→

m∏
i=1

k̄(αi)

has kernel (
∏

1≤i≤m gi(x))k̄[x]/(f) = N (k[x]/(f)), where f =
∏

1≤i≤m g
ei
i is the factorization of f in

k̄[x] and αi is a root of gi for each i. Moreover, Ki = k̄(αi) and ψi : K → Ki sends α to αi. The

number of distinct extensions of | | to K is thus equal to m.

Corollary 1.7 If K/k is a purely inseparable finite extension, then there is precisely one extension

of | | to K.

Proof. Suppose K = k(α). The minimal polynomial of α has the form Xps −a for some a ∈ k, which

has only m = 1 irreducible factor as a polynomial in L[x] for any extension L/k, in particular for

L = k̄. Therefore, according to what was said above the extension of | | to K is unique . In general,

K/k is a tower of such extensions, so that the conclusion remains true anyway. �

In what follows we will assume that K/k is an extension, not necessarily algebraic and the absolute

value ‖ ‖ on K extends the absolute value | | of k. In this case we say that K/k is an extension of

normed fields. Let Γ′, o′, p′, f ′ and Γ, o, p, f denote the value group, valuation ring, valuation ideal

and the residue field of K and k respectively. Note that Γ = {|x| : x ∈ k∗} is a subgroup of
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Γ′ = {‖x‖ : x ∈ K∗} and f is a subfield of f ′. One can define the numbers e(K/k) = [Γ′ : Γ] ≤ +∞

and f(K/k) = [f ′ : f] ≤ +∞, which are called the ramification index and the inertia degree of the

extension K/k respectively.

Definition 1.8 The extension K/k of normed fields is called unramified if e(K/k) = 1 and is called

totally ramified if f(K/k) = 1.

It can be seen that if (L, ‖ ‖∗) further extends (K, ‖ ‖), then e(L/k) = e(L/K)e(K/k) and f(L/k) =

f(L/K)f(K/k). Hence the extension L/k is unramified (resp. totally ramified) if and only if so are

the extensions K/k and L/K. From now on we will assume that the absolute value | | is discrete. In

this respect one can prove the following

Proposition 1.4 If K/k is a finite extension, then ‖ ‖ is discrete and the inequality e(K/k)f(K/k) ≤

[K : k] holds.

Proof. Suppose s ≤ e(K/k) and the elements x1, ..., xs ∈ K are chosen in a way that the ele-

ments ‖xi‖ ∈ Γ′, 1 ≤ i ≤ s are different modulo Γ. If
∑s

i=1 cixi = 0 for some c1, ..., cs ∈ k, then

max1≤i≤s ‖cixi‖ = 0, since all ‖cixi‖ are different. Therefore all the numbers ci are equal to 0, so that

x1, ..., xs are linearly independent over k and s ≤ [K : k]. Since s was arbitrary, we conclude that

e = e(K/k) ≤ [K : k] which shows that Γ′ ⊂ Γ1/e is a discrete group. Therefore the absolute value ‖ ‖

is discrete. Further, we choose elements y1, ..., yr ∈ o′, such that their residue classes ȳ1, ..., ȳr ∈ f ′ are

linearly independent over f. Let π ∈ K be an element for which ‖π‖ = c < 1 is the largest possible ele-

ment of Γ′, in other words π is a uniformizer with respect to the normalized valuation ν corresponding

to the absolute value ‖ ‖ (See Def-thm.1.2). We claim that the elements πiyj , 0 ≤ i ≤ e− 1, 1 ≤ j ≤ r

are linearly independent over k. Assume the contrary that the relation

∑
i,j

ci,jπ
iyj =

e−1∑
i=0

 r∑
j=1

ci,jyj

πi = 0 (∗)

holds for some elements ci,j ∈ k not all of which are zero. Multiplying this relation by a suitable

power πm we may assume that the elements ci,jπ
m are integral while not all of them are divisible

by π. According to the choice of the elements y1, ..., yr at least for one index i0, 0 ≤ i0 ≤ e − 1 the

coefficient
∑r

j=1 ci0,jyj of πi0 is nonzero. By what was said at the beginning of the proof, the latter

assertion contradicts (∗), since ‖πi‖ = ci, 0 ≤ i ≤ e− 1 are distinct modulo Γ. In the long run we get

that er ≤ [K : k] and therefore e(K/k)f(K/k) ≤ [K : k], since r ≤ f(K/k) was arbitrary. �
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Note that e(k̄/k) = f(k̄/k) = 1 by Proposition 1.2, but

[k̄ : k] 6= 1 = e(k̄/k)f(k̄/k)

whenever k fails to be complete. In case k is complete the situation changes due to the following

Proposition 1.5 If k is a complete discrete valuation field and K/k is an extension, then it is finite

if and only if both numbers e(K/k) and f(K/k) are finite. If this is the case then e(K/k)f(K/k) =

[K : k].

Proof. The necessity follows from Proposition 1.4. To prove the sufficiency we may assume that K

is complete, since passing to the completion does not change either the numbers e(K/k) and f(K/k)

nor the value group Γ′ ( See Proposition 1.2). Since e = e(K/k) is finite, the subgroup Γ′ is discrete,

so that ‖ ‖ is discrete. Note that in the course of the proof of Proposition 1.4 we constructed a linearly

independent set π′iyj ∈ K, 0 ≤ i ≤ e− 1, 1 ≤ j ≤ r over k, where π′ is a uniformizer of K and we may

assume r = f = f(K/k). Therefore we only need to show that it is in fact a k-basis. Indeed, let R be

a complete representative system of o modulo p. Then the system R′ =
{∑f

i=1 aiyi : ai ∈ R
}

can be

shown to be a complete representative system of o′ modulo p′. Let us fix a uniformizer π ∈ k. If ν is

the normalized valuation corresponding to the absolute value ‖ ‖, then ν(π) = e and ν(π′) = 1. For

each integer n we divide n by e with reminder and write n = em+ i for uniquely determined integers

m and 0 ≤ i ≤ e− 1. Therefore ν(πn) = i+ em = n if we set πn = π′iπm for all n ∈ Z. According to

Proposition 1.3 any x ∈ K has a unique representation

x =
∑

n�−∞
anπn =

∑
m�−∞,0≤i<e

 ∑
1≤j≤f

ci,j,myj

π′iπm =
∑
i,j

ci,jπ
′iyj ,

where ci,j =
∑

m�−∞ ci,j,mπ
m ∈ o, ci,j,m ∈ R and an ∈ R′. Note that we additionally proved that

the system π′iyj ∈ K, 0 ≤ i ≤ e − 1, 1 ≤ j ≤ f is a free o-basis of o′. In the long run we get

[K : k] ≤ [K̄ : k] = ef and therefore ef ≤ [K : k] ≤ [K̄ : k] = ef by Proposition 1.4, so that K = K̄ is

complete and [K : k] = ef . �

1.1.4 Local fields

Definition 1.9 A normed field (k, | |) with a non-trivial absolute value | | is called a local field if it

is a local compact topological field in the topology induced by | |.
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Remark 1.2 In case the absolute value is archimedean, by Theorem 1.7 one may assume that k is

a dense subfield of either R or C, the absolute value being equivalent to the usual one. Hence local

compact archimedean fields can be identified with either R or C with the absolute value | |c for some

c > 0.

In what follows, by a local field we mean a non-archimedean local field, unless otherwise specified.

Proposition 1.6 For a non-archimedean normed field (k, | |) with non-trivial absolute value | | the

following statements are equivalent

1. k is a local field.

2. The valuation ring o is compact.

3. The absolute value | | is discrete, k is complete and the residue field f = o/p is finite.

Proof. 1)⇔2) Observe that if U is an open neighborhood of 0 for which U is compact, then for

sufficiently large N the ball BN = {x ∈ k : |x| < 1/N} is contained in U and is therefore compact

since it is closed at the same time. We choose an element a ∈ k with |a| > N and observe that

o ⊂ aBN is compact, being a closed subset. The reverse inclusion is clear, since o is both closed and

open at the same time.

2)⇒3) If o is compact, then p is compact as well as a closed subset. Therefore the open cover

SN = {x ∈ k : |x| < 1 − 1/N}, N > 1 of p must admit a finite sub-cover, so that p = SN for

sufficiently large N , whence the discreteness of | |. Being a compact metric space, o is complete and

totally bounded, in particular for ε = 1 there is a finite ε-net for o, which is equivalent to saying that

the residue field f = o/p is finite. To prove that k is complete observe that for any Cauchy sequence

(xn)n≥1 either xn → 0 or |xn| is eventually constant so that for some m and N one has xn ∈ pm, n ≥ N .

Since pm is compact for any m ∈ Z, the sequence (xn)n≥N must converge in it.

3)⇒2) Since | | is discrete, the prime ideal p is principal and therefore pi/pi+1 ∼= o/p as o-modules for

all i ≥ 1. Hence for all i ≥ 1, the quotient ring o/pi is finite, which amounts to saying that o possesses

a finite ε-net for any ε > 0 and is thus totally bounded metric space. On the other hand it is complete

and is therefore compact. �

Observe that if k is a local field then its characteristic is either zero or equals the characteristic
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of its residue field. Indeed, there is a ring homomorphism o → o/p = f, and therefore char(f) must

divide char(k). We will treat each case separately but first we need the following

Lemma 1.3 In a local field k the equation xq = x has exactly q solutions, where q = |f| is the

cardinality of the residue field f of k.

Proof. Note that the polynomial xq − x has q different roots in f, namely all the elements of f.

Corollary 1.5 of Hensel’s lemma 1.2 allows us to uniquely lift all these roots to the ring o, so that

we end up with q different roots of xq − x in o. Moreover, observe that the nonzero elements of

them constitute a group µq−1 of order q − 1, which is cyclic being a finite subgroup of k∗. Since

these elements project onto different elements of the residue field, we thus have found a complete

representative system modulo p, closed with respect to multiplication. �

Corollary 1.8 (Teichmuller’s decomposition) For a local field k there is an isomorphism of

groups k∗ = 〈π〉 × µq−1 × U (1)
k , where π is any prime element, µq−1 is the subgroup of q − 1-th roots

of unity in ok and U
(1)
k = 1 + pk is the group of principal units.

Proof. It is immediate that k∗ = 〈π〉 × Uk. On the other hand the projection π : ok → fk induces a

homomorphism ϕ : Uk → f∗k . From Lemma 1.3 it follows that there is a homomorphism j : f∗k → Uk

such that ϕ ◦ j = Id. Hence Uk = kerϕ× Imj = U
(1)
k × µq−1. �

We are now ready to classify non-archimedean local fields. For each prime number p the fields Qp and

Fp((t)) are local fields, so that their finite extensions are also local. It turns out that the converse is

also true.

Theorem 1.9 Each local field k is a finite extension of either Qp or Fp((t)), depending on whether

char(k) = 0 or p. In any case the equality p = char(f) is valid.

Proof. If char(k) = 0, k must contain Q. Suppose p = char(f), then p · 1k ∈ p, so that the restriction

of the absolute value | | of k to Q is non-archimedean, satisfying |p| < 1. By Ostrowski’s theorem 1.4

it is therefore equivalent to the p-adic absolute value | |p ( See Examples 2,5). Since k is complete,

it must contain the completion of Q with respect to | |p, namely Qp (See Example 5). We now focus

on the extension k/Qp. Since both fields are discrete, their value groups Γ′ and Γ are discrete, hence

the ramification index e = e(k/Qp) = [Γ′ : Γ] is finite. On the other hand, since the residue field f is
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finite, the inertia degree f = f(k/Qp) = [f : Fp] must also be finite. Now Proposition 1.5 comes into

play, showing that [k : Qp] is finite.

Assume now that char(k) = char(f) = p > 0. Let q = pf be the cardinality of the residue field f. Since

we are working over a field of positive characteristic, the map x 7→ xq is an endomorphism, so that

the set R = {x ∈ k|xq = x} is a subfield of k, consisting of q elements (See Lemma 1.3). Let us fix a

uniformizer π ∈ k. It follows from Proposition 1.3 that each element of k can be uniquely expressed

in the form ∑
n�−∞

anπ
n, an ∈ R.

Moreover, since R is a field, the operations of summation and multiplication on these elements are

carried out in exactly the same way as in the field Fq((t)). Therefore the map ϕ : k → Fq((t)) which

maps π to T and leaves the subfield Fq fixed, yields an isomorphism of these fields. It remains to note

that Fq((t)) is a finite extension of Fp((t)) of degree f . �

Extensions of local fields.

Suppose (k, | |) is a local field and K/k is a finite extension of fields. By Theorem 1.8 the absolute value

| | has a unique extension ‖ ‖ to K and (K, ‖ ‖) is a complete field. From Propositions 1.4 and 1.5 it

follows that ‖ ‖ is discrete, both numbers e(K/k) and f(K/k) are finite and [K : k] = e(K/k)f(K/k).

Since f(K/k) = [f ′ : f] is finite and the residue field f of k is finite, the residue field f ′ of K is also

finite. Collecting everything together we get, according to Proposition 1.6 that (K, ‖ ‖) is a local field.

In the sequel by an extension of local fields we mean the aforementioned construction. It turns out

that one can give a fairly clear overview of all finite unramified extensions of a given local field k.

Theorem 1.10 Let k be a local field with the residue field f ∼= Fq. Then for each positive integer

n ≥ 1 there exists an unramified extension k′ of k of degree n and k′ is unique up to an isomorphism

over k. The field k′ is a splitting field of the polynomial Xqn −X over k and it is a cyclic extension

of degree n. Let f ′ be the residue field of the local field k′. Then each element σ ∈ Gal(k′/k) induces

an automorphism σ′ of f ′/f and the map σ 7→ σ′ induces an isomorphism

ψ : Gal(k′/k)
∼−→ Gal(f ′/f).

Proof. Existence. Let n ≥ 1 be a fixed positive integer. Since f is a finite field, there exists a monic

irreducible polynomial g ∈ f[x] of degree n. Let P ∈ o[x] be a monic polynomial of degree n, which
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lifts g, namely P̄ = g. Suppose w is a root of P , k′ = k(w) and o′, p′, f ′ denote the valuation ring,

valuation ideal and the residue field of the local field k′ respectively. Since P is monic, then w ∈ o′

and g(w̄) = 0, which implies that [f(w̄) : f] = n. Therefore

n = [f(w̄) : f] ≤ [f ′ : f] ≤ [k′ : k] ≤ n

so that [k′ : k] = [f ′ : f] = n and the extension k′/k is unramified of degree n.

Uniqueness. Suppose k′/k is an arbitrary finite extension of local fields and µq′−1 = {x ∈ k′ : xq
′

=

x}, where q′ = qf = |f ′|, q = |f|, f = f(k′/k) (See Lemma 1.3). Let k0 = k(µq′−1) be the intermediate

field obtained by adjoining all the elements of µq′−1 to k and let o0, p0, f0 denote the valuation ring,

valuation ideal and the residue field of k0. We claim that k0/k is a cyclic unramified extension of degree

f = f(k′/k). Indeed, k0 is a splitting field of the separable polynomial P (x) = xq
′ − x over k and

is therefore a Galois extension. Further, each automorphism σ ∈ Gal(k0/k) induces automorphisms

of the ring o0 and the ideal p0 and hence of the residue field f0 = o0/p0, so that there is a natural

homomorphism ψ : Gal(k0/k)→ Gal(f0/f), σ 7→ σ′. Moreover, if σ′ = 1, then σ leaves the elements of

µq′−1 fixed and is therefore trivial, since the elements of µq′−1 constitute a complete residue system

of o0 modulo p0. Hence the homomorphism ψ is injective and [k0 : k] ≤ [f0 : f] = f(k0/k), from which

we obtain that [k0 : k] = f(k0/k), k0/k is unramified and Gal(k0/k) ∼= Gal(f0/f) is a cyclic group of

order f(k0/k). On the other hand [f0 : f] = [f ′ : f] since the q′ elements of µq′−1 are distinct modulo p0.

The latter conclusion means exactly that f(k0/k) = f(k′/k). Assume now that k′/k is an unramified

extension of degree n. Then f(k′/k) = [k′ : k] = n and thus k0 = k′, namely k′ is a splitting field of

the polynomial P (x) = xq
n − x over k, which is determined up to an isomorphism over k, whence the

uniqueness. �

Remark 1.3 The field k0 constructed above is called the inertia field of the extension k′/k. It turns

out to be the maximal unramified subfield of the extension k′/k. Indeed, let k ⊂ k′′ ⊂ k′ be a subfield

such that k′′/k is unramified. From the proof of Theorem 1.10 we already know that k′′ is the splitting

field of the polynomial Xq′′ − X over k, where q′′ = qf
′′

is the cardinality of the residue field of k′′

and f ′′ = f(k′′/k) is the inertia degree. Since f ′′ = f(k′′/k)|f(k′/k) = f(k0/k) = f0, it follows that

Xq′′ −X|Xqf0 −X and therefore k′′ ⊂ k0, since k0 is the splitting of Xqf0 −X over k.

Remark 1.4 The element Frob(k′/k) ∈ Gal(k′/k) corresponding via ψ to the Frobenius automorphism

ω → ωq of Gal(f ′/f) is called the Frobenius automorphism of the unramified extension k′/k. It is
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uniquely determined by the condition Frob(k′/k)(a) ≡ aq(mod p′), for all a ∈ o′.

We now switch to totally ramified extensions. Recall that the extension K/k of normed fields is

called totally ramified if f(K/k) = 1. Let k be a local field, o, p and f be the valuation ring valuation

ideal and the residue field of k respectively.

Definition 1.10 The polynomial P (x) =
∑n

i=0 aix
i ∈ o[x] is called an Eisensteinian if an /∈ p, ai ∈

p, 0 ≤ i ≤ n− 1 and a0 /∈ p2.

Lemma 1.4 Any Eisensteinian P is an irreducible polynomial in k[x].

Proof. Since o is a PID and thus a UFD, Gauss’s lemma is applicable and it suffices to show that P

cannot be written as a product of two non-constant polynomials in the ring o[x]. Assume the contrary

that the relation P = gh holds for some non-constant polynomials g, h ∈ o[x]. Modulo p this gives

ānX
n = ḡh̄ in the ring f[x], so that ḡ = axt and h̄ = bxs for some s, t > 0, s + t = n and a, b ∈ f∗.

Therefore g(0), h(0) ∈ p and P (0) ∈ p2, which contradicts Definition 1.10. �

Theorem 1.11 If k is a local field and P ∈ o[x] is an Eisensteinian of degree n, then adjoining

a root of P to k yields a totally ramified extension of degree n in which the adjoined element is a

uniformizer. Conversely, if k′/k is a totally ramified extension of degree n and Π ∈ k′ is a prime

element (uniformizer), then the minimal polynomial of Π is an Eisensteinian of degree n and k′ =

k(Π).

Proof. Let α be a root of P and k′ = k(α). Since P is irreducible in k[x], the extension k′/k has

degree n. If | | and ‖ ‖denote the corresponding absolute values of k and k′ then according to Theorem

1.8 ‖α‖ = |Nk′/k(α)|1/n. Since P is an Eisensteinian, Nk′/k(α) = P (0) is a prime element of k and

therefore ‖α‖ = c1/n, where c < 1 is the generator of the value group Γ of | |. If Γ′ denotes the

corresponding value group of ‖ ‖, then it becomes clear that e(k′/k) = [Γ′ : Γ] ≥ n and that α is a

prime element of k′, as well as f(k′/k) = 1 according to the equality e(k′/k)f(k′/k) = n.

Conversely, let P (x) =
∑m−1

i=0 aix
i+xm ∈ k[x] be the minimal polynomial of the prime element Π ∈ k′.

Then again by Theorem 1.8 we obtain c′m = |Nk′/k(Π)|m/n = |an/m0 |
m/n

= |a0| ∈ Γ, where c′ < 1 is

the generator of the group Γ′. Since f(k′/k) = 1 then [Γ′ : Γ] = e(k′/k) = n and therefore m = n.

Hence |a0| = c′n = c, showing that a0 ∈ p \ p2 is a prime element. Since |a0| < 1 we get by Corollary

1.6 that P ∈ o[x]. If there is some index 0 ≤ i ≤ n − 1 such that ai /∈ p then the reduction P̄ of P
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modulo p can be written as P̄ = xth for some 0 < t < n and a polynomial h ∈ f[x] with h(0) 6= 0. This

conclusion contradicts Hensel’s Lemma 1.2, so that all ai ∈ p, 0 ≤ i ≤ n− 1 and P is an Eisensteinian.

�

Galois extensions.

Assume that K/k is a finite Galois extension of local fields with Galois group G = G(K/k). For

s ≥ −1 define Gs = Gs(K/k) = {g ∈ G : |xg − x| ≤ cs+1 for all x ∈ OK}, where c < 1 is the

generator of the value group ΓK of K and OK is the valuation ring of K. By a quick observation

we may convince ourselves that Gs E G for all s ≥ −1. Note that there is a natural homomorphism

ψ : G→ Gal(fK/fk) (See Theorem 1.10), where fK and fk denote the corresponding residue fields. On

the one hand one has ker(ψ) = {g ∈ G : |xg − x| < 1 for all x ∈ OK} = G0. On the other hand, if

k0 denotes the inertia field of the extension K/k (See Remark 1.3), then as was proved in Theorem

1.10, k0 = k(µqK−1), where µqK−1 = {x ∈ K : xqK = x} is a complete residue system modulo pK and

therefore ker(ψ) coincides with the subgroup of G, leaving k0 fixed. In other words we have proved

that G0 = Gal(K/k0). Furthermore, we have the induced monomorphism ψ̄ : Gal(k0/k)→ Gal(fK/fk)

which is an isomorphism, since both groups have order f = f(K/k). This observation proves the

surjectivity of ψ. Moreover, one can prove the following

Theorem 1.12 If πK is a fixed prime element of K then for all integers n ≥ 0 the map

Gn/Gn+1 → U
(n)
K /U

(n+1)
K , σ 7→ σ(πK)

πK

is an injective homomorphism, which is independent of the prime element πK . Here U
(n)
K denotes the

n-th group of principal units of K, i.e. U
(0)
K = O∗K and U

(n)
K = 1 + pnK , for n ≥ 1.

Proof. Suppose n ≥ 0 is fixed. One can check readily that the map ϕn : Gn → U
(n)
K /U

(n+1)
K , induced

by the map σ 7→ σ(πK)
πK

is a well defined group homomorphism. Indeed, if π′K is another prime element,

then π′K = πKu for some unit u and
σ(π′K)

π′K
= σ(πK)

πK

σ(u)
u . Since σ(u)

u = 1 + σ(u)−u
u ∈ U (n+1)

K for σ ∈ Gn,

we obtain that the class σ(πK)
πK

modulo U
(n+1)
K is independent of the choice of πK . Moreover, if τ ∈ Gn

is another element, then for u = τ(πK)
πK

one has

στ(πK)

πK
=
σ(τ(πK))

τ(πK)

τ(πK)

πK
=
σ(πK)

πK

τ(πK)

πK

σ(u)

u
≡ σ(πK)

πK

τ(πK)

πK

(
mod U

(n+1)
K

)
,

showing that ϕn is a homomorphism. It remains to prove the injectivity of ϕn. To do this we observe

that Gn(K/k) = Gn(K/k0) for n ≥ 0, which allows us to assume that the extension K/k is totally
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ramified. According to Theorem 1.11, K = k(πK), from which by simple observations we obtain

that OK = Ok[πK ]. Now suppose that σ(πK)
πK

∈ U
(n+1)
K . Then σ(πK) − πK ∈ pn+2

K and therefore

σ(a)−a ∈ pn+2
K for all a ∈ OK , since each such a is expressible as a polynomial in πK with coefficients

from Ok. This proves the injectivity of ϕn. �

Since for n ≥ 1 the group U
(n)
K /U

(n+1)
K

∼= f+
K is an elementary abelian p-group, then by Theorem

1.12, each Gn/Gn+1, n ≥ 1 is an elementary abelian p-group. Besides that for

cn < max
σ∈G,σ 6=1

{|πσK − πK |}

the group Gn is trivial, hence all Gn, n ≥ 1 are p-groups. Furthermore, the group G0/G1 is cyclic of

order coprime to p, as a subgroup of the cyclic group U
(0)
K /U

(1)
K
∼= f∗K of order qK − 1 (See Def-thm.

1.2). Note that since G1 is a normal p-subgroup of G0 of index coprime to p, it is precisely the Sylow

p-subgroup of G0. On the other hand

G/G0
∼= Gal(fK/fk) ∼= Z/fZ

for f = f(K/k) as was proved earlier. Collecting everything together we get that G is a solvable

group. More precisely we proved the following

Corollary 1.9 Any finite Galois extension of a local field has a solvable Galois group.

1.2 Formal groups

1.2.1 Invariant differential and formal logarithm

From now on R is assumed to be a commutative ring with unity.

Definition 1.11 A one dimensional formal group law ( or formal group) over R is a power series

F = F (x, y) ∈ R[[x, y]] satisfying the following conditions

1. F (x, 0) = x, F (0, y) = y

2. F (F (x, y), z) = F (x, F (y, z))

The formal group is called commutative if in addition the condition F (x, y) = F (y, x) is satisfied. To

indicate that F is a formal group defined over a ring R we will use the notation F/R.
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Remark 1.5 It can be proved that the first condition can be replaced with the condition F (x, y) ≡

x+ y(mod deg 2).

Example 1. The additive formal group Ga given by Ga(x, y) = x+ y.

Example 2. The multiplicative formal group Gm given by Gm(x, y) = x+ y + xy.

Example 3. For each c ∈ R one can define a formal group Fc according to the rule

Fc(x, y) = x+ y + cxy.

It turns out that these formal groups constitute a complete list of formal groups, whose underlying

formal group law is a polynomial. Inspired by this fact they are called polynomial formal groups.

Lemma 1.5 If F is a formal group, then there exists a unique power series i(x) ∈ R[[x]] which satisfies

F (x, i(x)) = 0.

Proof. We inductively construct a sequence of polynomials in(x) ∈ R[x], n ≥ 1 such that in+1(x) ≡

in(x)(mod xn+1) and F (x, in(x)) ≡ 0(mod xn+1) for all n. We set i1(x) = x and suppose that in(x)

has already been constructed, so that F (x, in(x)) ≡ cnx
n+1(mod xn+2). We claim that in+1(x) =

in(x) − cnx
n+1 is the only possible candidate. Indeed, since F (x, 0) = x and F (0, y) = y, then

F (x, y) = x+ y +
∑

i,j≥1 ci,jx
iyj and therefore

F (x, in+1(x)) ≡ F (x, in(x))− cnxn+1 ≡ 0(mod xn+2).

It remains to set i(x) = lim
n→∞

in(x) ∈ R[[x]] to complete the proof. The uniqueness follows from the

above constructions. �

We recall that for a power series h ∈ R[[x]] with h(0) = 0 there exists an inverse series with respect

to composition if and only if its first coefficient is invertible.

Definition-theorem 1.3 A homomorphism of formal groups F,G/R is a power series h ∈ R[[x]]

without constant term, satisfying the relation h(F (x, y)) = G(f(x), f(y)). An invertible homomor-

phism is called an isomorphism. If G is commutative, then the set of all homomorphisms HomR(F,G)

from F to G is an abelian group with respect to the operation f +
G
g = G(f, g). The additive 0 is

the identical zero power series and the additive inverse of f is the power series G(f, f ◦ i), where i
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is the unique series mentioned in Lemma 1.5. Moreover, the abelian group EndR(G) := HomR(G,G)

becomes a ring if we introduce a new operation of multiplication by setting f ∗ g = f ◦ g, where the

latter is the usual composition of series.

Proof. An easy check. �

An expression of the form ω = P (t)dt for P ∈ R[[t]] is called an invariant differential of a

formal group F/R if it satisfies the invariance condition ω ◦ F (t, s) = ω, or equivalently the condition

P (F (t, s))Fx(t, s) = P (t). An invariant differential ω is called normalized if P (0) = 1. One can prove

the following

Lemma 1.6 For any formal group F there exists a unique normalized invariant differential which can

be explicitly given in the form ωF = F−1
x (0, t)dt. Any other invariant differential ω is a multiple of

the normalized one, namely ω = aωF for an appropriate a ∈ R.

Proof. See [30, Chapter 4, Prop. 4.2]. �

Definition 1.12 Let R be a ring of characteristic zero, F/R be a formal group, A = R⊗Q and

ωF (t) = (1 + c1t+ c2t
2 + ...)dt ∈ R[[t]]

be the normalized invariant differential of F . The formal logarithm logF of F is defined to be the

power series

logF (t) =

∫
ω(t)dt = t+

c1

2
t2 + ... ∈ A[[t]]

The formal exponential of F/R is the unique power series expF (t) ∈ A[[t]] satisfying

expF ◦ logF (t) = logF ◦ expF (t) = t

Example 4. For the additive formal group F = Ga the normalized invariant differential, the formal

logarithm and the formal exponential are ωF (t) = dt and logF (t) = t and expF (t) = t respectively,

while for the multiplicative formal group F = Gm one has ωF (t) = 1
1+tdt,

logF (t) = t− t2

2 + t3

3 − ... = log(1 + t) and expF (t) = t+ t2

2! + t3

3! + ... = et − 1.

Proposition 1.7 If F/R is a formal group, then the identity

logF (F (x, y)) = logF (x) + logF (y)
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holds in the ring A[[x, y]]. The power series logF sets up an isomorphism F ∼= Ga of formal groups

over the ring A.

Proof. Integrating the identity ω(F (t, s)) = ω(t) with respect to t yields logF (F (t, s)) = logF (t)+f(s)

for some constant of integration f ∈ A[[x]]. Substituting t = 0 we get f(s) = logF (s). Therefore logF

is a homomorphism from F to Ga. It is in fact an isomorphism, being an invertible power series in

A[[x]]. �

If R is torsion free as an abelian group, or equivalently if the natural map R→ A given by r 7→ r⊗ 1

is an injective ring homomorphism, then one treats the identity

F (x, y) = (logF )−1(logF (x) + logF (y))

as an equality of power series in R[[x, y]] thereby deducing that F is commutative. In this respect we

have the following

Theorem 1.13 There exist non-commutative formal groups over the ring R if and only if there is a

nonzero a ∈ R and integers m,n ≥ 1 such that na = am = 0.

Proof. See [21, Therem 6.1] �

Counterexample. Suppose R = Fp[t]/(tp) and F (x, y) = x+ y + t̄xyp. Then F/R is a formal

group, but as can be seen it is not commutative. The reason is that pt̄ = t̄p = 0 in the ring R.

Formal groups are widely used to produce abstract groups in the following sense. Suppose we are

given a local field K of characteristic zero with valuation ring oK and maximal ideal pK . If F/oK is a

commutative formal group, then for any elements a, b ∈ pK , the series F (a, b) converges to an element

of pK so that one can define a new binary operation on pK by declaring a +
F
b = F (a, b). Now the

axioms of a formal group guarantee that the structure thus obtained is an abelian group, which we

will denote by F (pK) in what follows. If we treat the formal logarithm logF as a power series with

coefficients from the field K, then the following theorem holds

Theorem 1.14 The power series logF induces a homomorphism logF : F (pK)→ K+. Moreover, for

m > e
p−1 it maps the subgroup F (pmK) isomorphically onto the subgroup pmK of K, where e = e(K/Qp)

is the absolute ramification degree and p = char(fK) is the characteristic of the residue field of K.
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Proof. (Sketch) Since logF (x) =
∑

n≥1
an
n x

n for certain elements an ∈ oK , n ≥ 1, the series logF (α)

converges to an element of K for each α ∈ pK . Indeed, if νK denotes the normalized valuation of K,

then for any α ∈ pK ,

νK

(an
n
αn
)
≥ nνK(α)− νK(n) ≥ n− logp(n)→∞,

whence the convergence of the required series. Furthermore, Proposition 1.7 shows that the map

logF : F (pK) → K,α 7→ logF (α) is in fact a homomorphism of groups. The proof of the second

assertion is a little bit tricky and requires some work to do. This time we choose a rather small

neighborhood pmK of 0 on which the power series expF converges. Luckily, this is always possible to do

since the denominators of expF grow not too fast. In fact, it can be proved that expF (x) =
∑

n≥1
bn
n!x

n,

for some bn ∈ oK , n ≥ 1. Using the famous inequality νp(n!) =
∑

k≥1

[
n
pk

]
≤ n−1

p−1 we get

νK

(an
n!
αn
)
≥ nνK(α)− eνp(n!) ≥ νK(α) + (n− 1)νK(α)− en− 1

p− 1
=

= νK(α) + (n− 1)

(
νK(α)− e

p− 1

)
≥ m+ (n− 1)

(
m− e

p− 1

)
,

for α ∈ pmK . Therefore for m > e
p−1 and α ∈ pmK the series expF (a) converges to an element of pmK , so

that expF : pmK → F (pmK) and logF : F (pmK) → pmK are mutually inverse homomorphisms and thereby

isomorphisms. �

1.2.2 Lubin-Tate formal groups.

Let K be a local field, π be a fixed prime element in it and q be the cardinality of the residue

field. Consider the set Eπ of power series e ∈ OK [[X]], satisfying the conditions

1. e(X) ≡ πX(mod deg 2)

2. e(X) ≡ Xq(mod π)

Theorem 1.15 For each e ∈ Eπ there is a unique formal group F = Fe ∈ OK [[X,Y ]], for which e is

an endomorphism. Moreover there is an injective ring homomorphism OK → EndOK (F ), a 7→ [a]F (X)

such that [a]F (X) ≡ aX(mod deg 2) for each a ∈ OK and [π]F = e. Besides, it turns out that for any

two power series e and e′ in Eπ the corresponding formal groups Fe and Fe′ are isomorphic.

Proof. See [20, Chapter 3, §6, Thm. 6.7]. �
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The formal groups F = Fe mentioned in the theorem are called Lubin-Tate formal groups. Since

for all e ∈ Eπ they are isomorphic, one may speak of the Lubin-Tate formal group corresponding to

the given prime π. Lubin-Tate formal groups play a crucial role in class field theory and are used

to describe the maximal abelian extension of a given local field K. Namely, suppose Kalg is a fixed

algebraic closure of K and Kab is the compositum of all finite abelian subextensions of Kalg/K. Let

F/OK be the Lubin-Tate formal group for the prime element π ∈ K. For each n ≥ 1 we introduce a

field Kπ,n = K(F (n)), called the field of πn-division points, where F (n) = {x ∈ pKalg : [π]nF (x) = 0}.

It turns out that all the extensions Kπ,n/K are totally ramified Galois extensions with Galois group

G(Kπ,n/K) ∼= UK/U
(n)
K . Furthermore, let Knr be the maximal unramified subextension of Kalg/K,

namely Knr is the compositum of all finite unramified extensions of K. Since all finite unramified

extensions are cyclic (See Theorem 1.10), the extension Knr is abelian. Moreover, it turns out that

Kab = KnrKπ,

where Kπ =
∞⋃
n=1

Kπ,n

Example 5. Let p be a rational prime number. The multiplicative formal group Gm defined earlier

is the Lubin-Tate formal group over the ring Zp of p-adic integers corresponding to the prime p ∈ Zp.

Indeed, it can be verified that the power series e(X) = (1 +X)p − 1 belongs to Ep defined previously

and is an endomorphism of Gm at the same time. The conclusion follows according to Theorem 1.15.

1.2.3 Honda formal groups.

Suppose K is a discrete valuation field of characteristic 0, possessing an automorphism ϕ which

satisfies the condition aϕ ≡ aq(mod π) 1 for all a ∈ OK , where π is a fixed prime element of K and

q is a power of the characteristic of the residue field, which is assumed to be positive. Consider the

non commutative ring OK,ϕ[[T ]] of power series in which the multiplication is carried out according

to the rules T iT j = T i+j and Ta = aϕT for all i, j ≥ 0, a ∈ OK . One can prove that OK,ϕ[[T ]]

is a division ring. Let K[[x]]0 be the ideal of all polynomials in K[[x]] vanishing at 0. For each

u ∈ OK,ϕ[[T ]], u(T ) =
∑

i≥0 aiT
i and f ∈ K[[X]]0 we define the power series u∗f ∈ K[[X]]0 according

to the rule

u ∗ f =
∑
i

aif
ϕi
(
Xqi

)
.

1In particular if k is a finite extension of Qp, then any unramified extension K/k (finite or infinite) will satisfy the

condition with ϕ = Frob(K/k) (See Remark 1.4) and q = |fk|, the cardinality of the residue field of k.
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An element u ∈ OK,ϕ[[T ]] is called special iff it starts with π.

Theorem 1.16 If f ∈ K[[X]]0 is an invertible power series and u ∗ f ≡ 0(mod π) for some special

element u, then the formal group defined by the rule Ff (X,Y ) = f−1(f(X) + f(Y )) has all its coeffi-

cients in the ring OK . Moreover, if g ∈ K[[X]]0 is another such element with u ∗ g ≡ 0(mod π), then

the power series θ = g−1 ◦ f belongs to OK [[X]] and sets up an isomorphism θ : Ff → Fg. For each

special element u there is a canonical formal group Fu associated with u, namely the one which arises

from h = (u−1π) ∗X, where u−1 is the inverse of u in Kϕ[[T ]].

For the proof of this theorem we refer to [12, §2, Thm.2]. The formal group Ff constructed above

is called Honda formal group. Observe that f = f ′(0) logFf and Ff = FlogF . We say that the Honda

formal group F is of type u if u is a special element and u ∗ logF ≡ 0(mod π). It turns out that if

v ∗ logF ≡ 0(mod π) for some v ∈ OK,ϕ[[T ]], then there exists an element t ∈ OK,ϕ[[T ]] such that

v = tu and therefore all types of F constitute a class of left associate elements in the ring OK,ϕ[[T ]].

In case K is complete one can deduce using the Weierstrass preparation lemma for the ring OK,ϕ[[T ]]

that among all types of a Honda formal group there exists a unique canonical type ũ of the form

ũ = π −
∑h

i=1 aiT
i, where a1, ..., ah−1 are divisible by π and ah is a unit. The number h ≤ +∞

is called the height of the Honda formal group F and it is infinite if and only if logF ∈ OK [[X]] or

equivalently if F ≈ Ga
2. In what follows h is assumed to be finite.

Theorem 1.17 For any invertible power series f, g ∈ K[[X]]0 one has HomOK (Ff , Gg) = {g−1(cf) :

c ∈ OK , ∃t s.t. vc = tu}. Moreover, if K is complete and u, v are canonical, then HomOK (Ff , Gg) =

{g−1(cf) : c ∈ OK s.t. vc = cu}. In particular, Honda formal groups F,G/OK are strongly isomorphic

if and only if their canonical types coincide.

Proof. See Theorem 3 and Proposition 3.6 in [12]. �

Honda formal groups form a fairly wide class due to the following

Theorem 1.18 Let K be a discrete valuation field of characteristic zero, whose residue field has

positive characteristic p. Assume that the valuation of K is unramified 3, that is p is a prime element

2The notation F ≈ G for formal groups means that they are strongly isomorphic, that is there exists an isomorphism

θ : F → G such that θ′(0) = 1
3In particular any unramified extension of Qp will work
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of OK . Then for each formal group F/OK there exists a special element u = uF ∈ OK,ϕ[[T ]] such that

u ∗ logF ≡ 0(mod p), that is F is a Honda formal group of type u.

Proof. See [12, §3, Thm.4]. �

Suppose k is a local field of characteristic zero and K/k is a finite unramified extension with Frobenius

automorphism ϕ = Frob(K/k). Let π be a prime element of k. Theorem 1.15 shows that a Lubin-Tate

formal group is recovered by a single endomorphism, satisfying certain conditions. It turns out that

something similar is valid in the case of Honda formal groups. In these respect it is important to note

O.V.Demchenko’s classification theorems ( See [13]).

Theorem 1.19 For given Honda formal group F of canonical type ũ = π −
∑h

i=1 aiT
i ∈ OK,ϕ[[T ]]

there exists a Honda formal group A F and a distinguished homomorphism fF ∈ HomOK (F,A F ) such

that fF (x) ≡ πx(mod deg 2) and fF (X) ≡ xqh(mod π).

Theorem 1.20 Suppose ũ = π −
∑h

i=1 aiT
iOK,ϕ[[T ]] is a canonical element and f ∈ OK [[x]] is a

power series satisfying the conditions f(x) ≡ πx(mod deg 2) and f(X) ≡ xq
h
(mod π). Then there

exists a unique Honda formal group F of type ũ such that f = fF is the distinguished homomorphism

from F to A F .

We would like to conclude this section by the following

Remark 1.6 If we let ũ = π−T , then the corresponding Honda formal group mentioned in Theorem

1.20 will be precisely the Lubin-Tate formal group F corresponding to the prime π. Moreover, A F = F

and fF = [π]F ∈ EndOK (F ) in this case.

1.3 G-modules

Let G be an abstract group.

Definition 1.13 A G-module is an abelian group A together with a homomorphism ρ : G→ Aut(A).

From now on for each g ∈ G and a ∈ A we will use the notation ga instead of ρ(g)(a).

Example 1. Any abelian group A is automatically a G-module, if we let the group G act on A

trivially, namely if ρ is the trivial homomorphism.
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Example 2. Suppose L/K is a Galois extension of fields with Galois group G. Then both abelian

groups L∗ and L+ are G-modules, the action of G on them being given in a natural way.

Definition 1.14 A subset B of the G-module A is called a G-submodule, if B is a subgroup of A

and g · b ∈ B for all g ∈ G and b ∈ B. Ones B is a G-submodule of A, it is possible to define the

quotient G-module A/B naturally by declaring g[a] = [ga]. If A and B are G-modules, then the map

f : A→ B is called a G-homomorphism if f is a group homomorphism and preserves the action of G,

that is f(ga) = gf(a) for all g ∈ G and a ∈ A.

An attentive reader should immediately spot that the notion of a G-module is in fact the same as

the notion of the usual module over the group ring Z[G], namely the corresponding categories could

be identified. We will denote this category by G-Mod. To each G module one can canonically attach

an abelian group AG called the fixed module , which is the set of all points in A, fixed by the whole

group G. Namely,

AG = {a ∈ A|ga = a for all g ∈ G}

It turns out that the correspondence A → AG is a left exact functor G-Mod → Ab. The right

adjoint functors of this functor exist and unique up to canonical equivalence (See [23, Chapter 4,

Thm.1.1]). They are called the cohomology group functors of A and are denoted by Hn, n = 1, 2....

More precisely, each short exact sequence of G-modules

0→ A→ B → C → 0

induces a long exact sequence of abelian groups

0→ AG → BG → CG → H1(G,A)→ H1(G,B)→ H1(G,C)→ H2(G,A)→ ...

The cohomology group H1(G,A) can be defined more explicitly.

Definition 1.15 Let Z1(G,A) be the subgroup of functions f : G → A, satisfying the condition

f(στ) = f(σ) + σf(τ) and let B1(G,A) be the subgroup of functions fa : G → A, a ∈ A such that

fa(σ) = σa− a for all σ ∈ G.

It can be proved that H1(G,A) = Z1(G,A)/B1(G,A) (See [20, Chapter1, Prop. 3.1]). For further

purposes we will also need the groups H i(G,A) for i = 0,−1. Assume that G is a finite group.
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Definition 1.16 Let A be a G-module. For each a ∈ A define the norm of a by NG(a) =
∑

σ∈G σa.

Then the set NG(A) = {NG(a)|a ∈ A} is a subgroup of AG, the quotient group AG/NG(A) is called

the norm residue group and is denoted by H0(G,A). Further, let NGA = {a ∈ A|NG(a) = 0} and let

IG(A) be the subgroup of NGA generated by all elements of the form σa− a. The group NGA/IG(A) is

denoted by H−1(G,A).

One can prove the following

Proposition 1.8 If G is a finite cyclic group then for any G-module A there is an isomorphism

H1(G,A) ∼= H−1(G,A).

Proof. Let us fix a generator σ of G and let n = |G|. For any f ∈ Z1(G,A) the element f(σ) sits in

NGA, since

NG(f(σ)) =
∑
τ∈G

τ(f(σ)) =
∑
τ∈G

(f(τσ)− f(τ)) =
∑
τ∈G

f(τσ)−
∑
τ∈G

f(τ) = 0.

Moreover, for each a ∈ NGA the function f : G→ A defined by the rule

f(σk) =
k−1∑
i=0

σia, 1 ≤ k ≤ n

belongs to Z1(G,A). Therefore the map ϕ : Z1(G,A) → NGA, f 7→ f(σ) is a surjective group

homomorphism. On the other hand f(σ) ∈ IG(A) means that f(σ) = σa − a for some a which

is equivalent to saying that f = fa. Therefore f ∈ B1(G,A) ⇔ ϕ(f) ∈ IG(A) and the induced

homomorphism ϕ̄ : H1(G,A)→ H−1(G,A) is an isomorphism. �

Theorem 1.21 (Hilbert-Noether) If L/K is a Galois extension (finite or infinite) with Galois

group G, then H1(G,L∗) = 1.

Proof. Let E be the set of all finite Galois subextensions of L/K. Then

H1(G(L/K), L∗) = lim−→
F/K∈E

H1(G(F/K), F ∗),

and we are reduced to the case of a finite extension. Let f ∈ Z1(G,L∗). We need to show that there

exists some α ∈ L∗ such that f(τ) = τ(α)
α for all τ ∈ G. Indeed, since all f(σ) ∈ L∗ are nonzero and

the automorphisms σ ∈ G are linearly independent over L (Artin’s theorem on the independence of

characters), there exists some a ∈ L∗ such that∑
σ∈G

f(σ)σ(a) = β 6= 0.
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Thereby for any τ ∈ G,

τ(β) =
∑
σ∈G

τ(f(σ))τ(σ(a)) = f(τ)−1
∑
σ∈G

f(τσ)(τσ)(a) = f(τ)−1β.

If we put α = β−1, then we obtain f(τ) = τ(α)
α for any τ ∈ G, as desired. �

A direct consequence of this theorem is the following

Theorem 1.22 (Hilbert, 90) Let L/K be a finite cyclic extension and let σ be a generator of G =

Gal(L/K). If NL/K(α) = 1 for some α ∈ L∗, then α = σ(β)
β for an appropriate β ∈ L∗.

Proof. According to Proposition 1.8 and Theorem 1.22 one has H−1(G,L∗) ∼= H1(G,A) = 1, so that

NGL
∗ = IG(L∗) and we are done. �
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CHAPTER 2

Galois modules in extensions of local fields

2.1 The reduced group of principal units as Galois module

Let p be a rational prime number, k be a finite extension of Qp of degree n containing a primitive

p-th root of unity ζp and let K/k be a cyclic extension of degree L = pm for some positive integer m.

Let us fix a generator σ of the Galois group G = Gal(K/k). We denote by Γ and γ the norm group

of the extension K/k and k1/k respectively, where k1 is the unique subfield of K of degree p over k.

Observe that the group K∗/K∗p can be regarded as a multiplicatively written Fp-vector space. In the

article [6] the following theorem is proved

Theorem (Faddeev, 1959) In the group K∗ there is an almost normal basis modulo K∗p of the

form

{A1, A
σ
1 , ..., A

σL−1

1 , A2, A
σ
2 , ..., A

σL−1

2 , ..., An, A
σ
n, ..., A

σL−1

n , A0, b}

with the following cases

Case 1 (ζp /∈ Γ) : b ∈ k∗ \ γ is any element and A0 ∈ K∗ is any element satisfying σ(A0)
A0
∈ bK∗p.

Case 2 (ζp ∈ Γ) : b ∈ k∗ \ γ is any element and A0 ∈ K∗ is an element, satisfying σ(A0)
A0

= Bp
0 , where

B0 ∈ K∗ satisfies NK/k(B0) = ζp.

Let R = Fp[G] denote the group ring over G. Note that from the results of the theorem follows

the isomorphism of R-modules K∗/K∗p ∼= Rn ⊕ R/(σ − 1)2 in the first case and K∗/K∗p ∼= Rn ⊕

R/(σ − 1)⊕R/(σ − 1) in the second case. The idea of the proof is as follows.

The linear operator v = σ − 1 ∈ R satisfies the conditions vL = σL − 1 = 0, vL−1 6= 0, so that

it is nilpotent of degree L. Hence the whole space K∗/K∗p decomposes into a direct sum of cyclic

v-invariant subspaces. Moreover, each of these subspaces is an R-module, isomorphic to R/(σ − 1)k,

where k is the dimension of the corresponding subspace. What remains is to calculate the number gk

of cyclic subspaces of each dimension k. In this respect recall that the number of subspaces of maximal

dimension L is equal to dim(Im vL−1) while the total number of subspaces is dim(ker v). In [6] these
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two numbers were calculated in each case separately, leading us to the following result

(gL, gL−1, ..., g1) =


(n, 0, ..., 1, 0), if ζp /∈ Γ

(n, 0, ..., 0, 2), if ζp ∈ Γ

which already proves the theorem. On the other hand it is not difficult to prove that

(gL, gL−1, ..., g1) = (n, 0, ..., 0, 1), if ζp /∈ K.

Observe that in exactly the same way v = σ−1 can be regarded as a linear operator on the space

V = U ′1/U
′p
1 , where U ′1 = 1 + pK is the group of principal units in K∗. In complete analogy with the

previous case, we want to study the structure of V as an R-module. Likewise for each k we introduce

the number lk, namely the number of k-dimensional cyclic subspaces in a decomposition of V into a

direct sum of cyclic v-invariant subspaces.

Definition 2.1 For each positive integer t ≥ 1 we define Gt = {x ∈ K∗ : xv
t ∈ K∗p} and Wt = {x ∈

U ′1 : xv
t ∈ U ′p1 }.

The numbers li are related to the numbers gi as the following proposition shows

Proposition 2.1 (gL, gL−1, ..., g1) < (lL, lL−1, ..., l1), that is
∑
j≥t

gj ≥
∑
j≥t

lj for all t ≥ 1.

Proof. Observe that Wt = Gt ∩ U ′1 for all t ≥ 1. Indeed, if x ∈ U ′1 and xv
t

= αp, then αp ∈ U ′1 and

therefore α ∈ U ′1. Hence the inclusions Wt ↪→ Gt induce monomorphisms Wt/Wt−1 → Gt/Gt−1, so

that

dimFp(Wt/Wt−1) ≤ dimFp(Gt/Gt−1) for all t ≥ 1.

It remains only to note that

dimFp(Wt/Wt−1) =
∑
j≥t

lj and dimFp(Gt/Gt−1) =
∑
j≥t

gj .

�

In what follows the extension K/k is assumed to be cyclic of degree L = p. The equality [K : k] =

e(K/k)f(K/k) mentioned in Proposition 1.5 implies that the extension K/k is either unramified or

totally ramified. Let Rk = {x ∈ k : xqk−1 = 1} and RK = {x ∈ K : xqK−1 = 1}, where qk and qK are

the cardinalities of corresponding residue fields respectively. If Π ∈ K is a uniformizer, then according
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to Corollary 1.8 for any α ∈ K∗ we will write α = ΠvΠ(α)ηαuα, for uniquely determined elements

ηα ∈ RK and uα ∈ U ′1. From now on we will study the numbers li, depending on the extension K/k.

For convenience we denote W := W1 and N := NK/k, the norm map of the extension K/k.

2.1.1 The group W

Note that if ζp ∈ K, then ζp = ασ−1
0 for some α0 ∈ K∗ by Theorem 1.22. Furthermore, if

ζp = N(α1) ∈ Γ then N(αp1) = 1, so that αp1 = βσ−1
0 for some β0 ∈ K∗. We first study the group G1,

since

W = W1 = G1 ∩ U ′1.

The following lemma is due to D.K.Faddeev [6].

Lemma 2.1

G1 =


k∗K∗p, ζp /∈ Γ

〈β0〉k∗K∗p, ζp ∈ Γ

Proof. First suppose ζp /∈ Γ and x ∈ G1, which means that xσ−1 = αp for some α ∈ K∗. Taking

norms, we get Np(α) = 1, which gives N(α) = 1 and therefore α = yσ−1 for some y ∈ K∗, showing

that xσ−1 = (yp)σ−1 and consequently x ∈ k∗K∗p. The opposite inclusion is clear.

On the other hand, if ζp ∈ Γ, then from Np(α) = 1 we infer that N(α) = ζtp for some t. Therefore

N(αα−t1 ) = 1, which implies that α = αt1y
σ−1 for some y ∈ K∗. Hence

xσ−1 = αp = (αt1y
σ−1)p = (αp1)t(yp)σ−1 =

= (βσ−1
0 )t(yp)σ−1) = (βt0y

p)σ−1,

which yields x ∈ 〈β0〉k∗K∗p. As βσ−1
0 = αp1 ∈ K∗p, we deduce that β0 ∈ G1, and thereby the opposite

inclusion 〈β0〉k∗K∗p ⊂ G1 is also proved. �

We now select any uniformizers π ∈ k and Π ∈ K, and define

λπ,Π =


1, K/k is unramified

uπΠ−p , K/k is totally ramified

Observe that the class

λπ,Π(mod U1U
′p
1 )
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is independent of the choice of uniformizers π and Π, where U1 is the group of principal units in k∗.

In other words, if we choose other uniformizers π1 ∈ k and Π1 ∈ K, then

λπ1,Π1 ∈ 〈λπ,Π〉U1U
′p
1 .

Indeed, if K/k is unramified then

λπ1,Π1 = λπ,Π = 1

by definition. On the other hand, if K/k is totally ramified, then πΠ−p and π1Π−p1 differ by a factor

of the form µµp1 for some units µ ∈ k and µ1 ∈ K. Therefore

λπ1,Π1λ
−1
π,Π = uµµp1 = uµu

p
µ1
∈ U1U

′p
1 ,

as claimed.

If ζp ∈ Γ, then as we have shown, βσ−1
0 = αp1. Suppose β0 = Πluβ0ηβ0 , where l is an integer, uβ0 ∈ U ′1

and ηβ0 ∈ RK . Dividing by an appropriate power of π, we may assume that 0 ≤ l < p. If l = 0, then

upα1
ηpα1

= αp1 = βσ−1
0 = uσ−1

β0
ησ−1
β0

,

implying that uσ−1
β0

= upα1 , by the uniqueness of Teichmuller’s decomposition. Furthermore, assume

that

s =


1, l = 0

0, l 6= 0

Lemma 2.2

W =


〈λπ,Π〉U1U

′p
1 , ζp /∈ Γ

〈λπ,Π〉〈usβ0
〉U1U

′p
1 , ζp ∈ Γ

Moreover, uβ0 /∈ 〈λπ,Π〉U1U
′p
1 .

Proof. First we assume that ζp /∈ Γ. In this case

W = G1 ∩ U ′1 = k∗K∗p ∩ U ′1,

by Lemma 2.1. Suppose x = ayp ∈ U ′1, for some a ∈ k∗ and y ∈ K∗.

If K/k is unramified, we may assume Π = π and write a = πmb, y = πrz for some integers m, r and

units b ∈ k, z ∈ K. Since x ∈ U ′1, then m = −rp, and therefore x = bzp. Hence

x = ubzp ∈ U1U
′p
1 .
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Suppose now that K/k is totally ramified and write a = πmb, y = Πrz for some integers m, r and units

b ∈ k, z ∈ K. The condition vΠ(x) = 0 implies that m = −r, but this time we get x = (πΠ−p)mbzp,

which yields

x = λmπ,Πubu
p
z ∈ 〈λπ,Π〉U1U

′p
1 .

On the other hand

λσ−1
π,Π = (Π1−σ)p ∈ U ′p1 ,

as Π1−σ ∈ U ′1 for totally ramified extensions. Therefore λπ,Π ∈ W , which together with the fact

U1U
′p
1 ∈W proves the opposite inclusion 〈λπ,Π〉U1U

′p
1 ⊂ G1.

If ζp ∈ Γ, then by Lemma 2.1, G1 = 〈β0〉k∗K∗p and therefore

W = 〈β0〉k∗K∗p ∩ U ′1,

and by the same method we applied in case ζp /∈ Γ, one can show that in both the unramified and

totally ramified cases the inclusions

〈λπ,Π〉U1U
′p
1 ⊂W ⊂ 〈uβ0〉〈λπ,Π〉U1U

′p
1

hold. Suppose that x = aβt0y
p ∈W for some a ∈ k∗ and y ∈ K∗, then one has the relation

tl = vΠ(βt0) = vΠ(xa−1y−p)
... p.

If l 6= 0, then p | t, hence G1 ∩ U ′1 ⊂ k∗K∗p and

W = G1 ∩ U ′1 ⊂ k∗K∗p ∩ U ′1 = 〈λπ,Π〉U1U
′p
1 ,

as we have already proved. On the other hand, if l = 0, then according to the paragraph before

Lemma 2.2, uσ−1
β0

= upα1 , implying that uβ0 ∈W and

W = 〈uβ0〉〈λπ,Π〉U1U
′p
1 .

Let us prove that uβ0 /∈ 〈λπ,Π〉U1U
′p
1 .

Assume the contrary that uβ0 = λmπ,Πay
p, for some a ∈ k∗ and y ∈ K∗, then

upα1
= uσ−1

β0
=


(yσ−1)p, K/k is unramified

((Π−my)σ−1)p, K/k is totally ramified

which means that uα1 = ζνp z
σ−1, and therefore N(uα1) = 1. As a result we obtain the relation

ζp = N(α1) = N(uα1)N(ηα1) = N(ηα1) ∈ RK ,

which, of course, is incorrect. �
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2.1.2 The numbers e1 and lp

We define Γ0 = NK/k(U
′
1) ⊂ U1. Recall that if ζp ∈ K, then ζp = ασ−1

0 for some α0 ∈ K∗ and

dividing by a power of π, we may assume that 0 ≤ vΠ(α0) < p. For simplicity we define

δ =


0, vΠ(α0) 6= 0

1, vΠ(α0) = 0

Lemma 2.3

U1 ∩ U ′p1 = Γ0 ∩ U ′p1 =


Up1 , ζp /∈ K

Up1 〈u
pδ
α0〉, ζp ∈ K

Proof. Suppose x = yp, for some x ∈ U1, and y ∈ U ′1, so that (σ(y))p = yp.

If ζp /∈ K, then σ(y) = y, hence y ∈ k ∩ U ′1 = U1 and consequently x = yp ∈ Up1 , showing that

U1 ∩U ′p1 = Up1 . On the other hand, if ζp ∈ K, then σ(y) = ζtpy for some t, which implies that y = aαt0,

for some a ∈ k.

If δ = 0 i.e. vΠ(α0) 6= 0, then K/k is totally ramified, so that

tvΠ(α0) = −vΠ(a)
... p,

showing that

p|t, σ(y) = y, and therefore U1 ∩ U ′p1 = Up1 ,

as in case ζp /∈ K.

If δ = 1 i.e. vΠ(α0) = 0, then α0 = ηα0uα0 , where ηα0 ∈ RK and uα0 ∈ U ′1. As we have shown before,

y = aαt0, for some a ∈ k, and therefore y = uaαt0 = uau
t
α0
, which yields

x = yp = uptα0
upa ∈ 〈upα0

〉Up1 ,

as claimed. On the other hand, the condition σ(α0) = ζpα0 implies that σ(uα0) = ζpuα0 , showing that

upα0 ∈ U1 ∩ U ′p1 .

Noting that Up1 ⊂ Γ0 ∩ U ′p1 ⊂ U1 ∩ U ′p1 and that upα0 = N(uα0) ( when vΠ(α0) = 0), we infer that in

both cases considered above, the equality Γ0 ∩ U ′p1 = U1 ∩ U ′p1 holds. The lemma is proved. �

Lemma 2.4 Suppose K/k is a totally ramified extension. If ζp /∈ K, then λπ,Π /∈ U1U
′p
1 . Otherwise,

the following three conditions are equivalent.
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1. λπ,Π ∈ U1U
′p
1 .

2. There exist uniformizers π0 ∈ k and Π0 ∈ K such that π0 = Πp
0.

3. vΠ(α0) 6= 0.

Proof. First we consider the case ζp /∈ K. Assume the contrary that λπ,Π = ayp for some a ∈ U1 and

y ∈ U ′1. Then

(Π1−σ)p = λσ−1
π,Π = (yσ−1)p,

implying that Π1−σ = yσ−1, or equivalently, that Πy ∈ k, which is a contradiction, as vΠ(Πy) = 1.

Suppose now that ζp ∈ K. In order to prove the lemma, it is enough to prove the following implications.

2) ⇒ 1) If such uniformizers π0 and Π0 do exist, then λπ0,Π0 = 1 ∈ U1U
′p
1 . It remains to recall that

the condition λπ,Π ∈ U1U
′p
1 is independent of the choice of uniformizers π and Π.

1)⇒ 2) If λπ,Π = ayp for some uniformizers π,Π and elements a ∈ U1, y ∈ U ′1, then

πΠ−p = aypηπΠ−p = aypηp,

for some η ∈ RK , as the order of the cyclic group RK is q − 1, which is coprime to p and therefore

each element from RK is a p-th power. If we denote π0 = πa−1 and Π0 = Πyη, then we get π0 = Πp
0,

as claimed.

2)⇔ 3) If π0 = Πp
0, then Πσ−1

0 = ζtp, for some 0 < t < p. Hence ζp = (Πl
0)σ−1, where 0 < l < p is the

inverse of t modulo p. Therefore vΠ(α0) = l, as 0 ≤ vΠ(α0) < p, showing that vΠ(α0) 6= 0.

Recall that if ζp ∈ k, then any cyclic extension of k of order p has the form K = k( p
√
a) for some

a ∈ k∗. Moreover, a can be chosen either as a uniformizer, or a principal unit.

Suppose there are no uniformizers π0 and Π0, such that π0 = Πp
0. Then we can choose a ∈ U1 and

conclude that β = p
√
a ∈ U ′1. Therefore ζp = (βl)σ−1 for some 0 < l < p, showing that vΠ(α0) = 0, as

vΠ(βl) = 0. �

To prove the following lemma we need the asserion provided below .

dimFp U1/U
p
1 =


[k : Qp], ζp /∈ k

[k : Qp] + 1, ζp ∈ k

For the proof we refer the reader to [10, Chapter 15, §5].
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Lemma 2.5

e1 =



n, ζp /∈ K, K/k is unramified

n+ 1, ζp ∈ K, K/k is unramified

n+ 1, ζp /∈ Γ, K/k is totally ramified

n+ 1 + s, ζp ∈ Γ, K/k is totally ramified

Proof. First we note that

e1 = dimFp(W/U
′p
1 ) = dimFp(W/U1U

′p
1 ) + dimFp(U1U

′p
1 /U

′p
1 ).

It will be convenient to denote e′1 = dimFp(W/U1U
′p
1 ) and e′′1 = dimFp(U1U

′p
1 /U

′p
1 ).

If ζp /∈ Γ then by Lemma 2.2 and Lemma 2.4 we get W = 〈λπ,Π〉U1U
′p
1 and

e′1 =


0, K/k is unramified

1, ζp /∈ K, K/k is totally ramified

δ, ζp ∈ K, K/k is totally ramified

If ζp ∈ Γ then again according to Lemma 2.2 and Lemma 2.4 we get W = 〈λπ,Π〉〈usβ0
〉U1U

′p
1 and

e′1 =


1, K/k is unramified

δ + s, K/k is totally ramified

Recall that for unramified extensions K/k, ζp ∈ Γ if and only if ζp ∈ K. Therefore, combining the

cases ζp /∈ Γ and ζp ∈ Γ, we get

e′1 =



0, ζp /∈ K, K/k is unramified

1, ζp ∈ K, K/k is unramified

1, ζp /∈ K, K/k is totally ramified

δ, ζp ∈ K \ Γ, K/k is totally ramified

δ + s, ζp ∈ Γ, K/k is totally ramified

On the other hand Lemma 2.3 together with the paragraph before the formulation of Lemma 2.5

implies

e′′1 =


n, ζp /∈ K

n+ 1− δ, ζp ∈ K
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To finish the proof it remains to recall that

e1 = e′1 + e′′1.

�

Finally we calculate lp in the following

Lemma 2.6

lp =


n, K/k is unramified

n− 1, ζp /∈ K, K/k is totally ramified

n− δ, ζp ∈ K, K/k is totally ramified

Proof. Observe that

lp = dimFp(Im(σ − 1)p−1) = dimFp(Γ0U
′p
1 /U

′p
1 ) = dimFp(Γ0/Γ0 ∩ U ′p1 )

If K/k is unramified then Γ0 = U1 and by Lemma 2.3

lp =


n, ζp /∈ K

n+ 1− δ, ζp ∈ K

which gives lp = n, since δ = 1 in this case.

On the other hand, if K/k is totally ramified then [U1 : Γ0] = p, which together with Lemma 2.3 yields

lp =


n− 1, ζp /∈ K

n− δ, ζp ∈ K

and we are done. �

2.1.3 Proof of Theorem 2.1

1. If ζp /∈ K then we know that (gp, gp−1, ..., g1) = (n, ..., 1). Lemma 2.5 and 2.6 imply that if K/k

is unramified, then e1 = lp = n, while if K/k is totally ramified then e1 = n+ 1 and lp = n− 1.

Recall that dimFp(V ) = np, which shows that in the unramified case (lp, lp−1, ..., l1) = (n, 0, ..., 0),
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while in the totally ramified case (lp, lp−1, ..., l1) = (n− 1, ..1, ..1, ..), where 1′s are at positions a

and b with a+ b = p. Proposition 2.1 shows that

(n, 0, ..., 1) = (gp, gp−1, ..., g1) < (lp, lp−1, ..., l1) = (n− 1, ..1, ..1, ..),

which means that if a < b then a = 1 and therefore b = p − 1, showing that (lp, lp−1, ..., l1) =

(n− 1, 1, ..., 1).

2. If ζp ∈ K \ Γ, then K/k is a totally ramified extension and therefore e1 = n + 1, lp = n− δ, by

Lemma 2.5 and Lemma 2.6. On the other hand, (gp, gp−1, ..., g1) = (n, ..., 1, 0) and dimFp(V ) =

np + 1. Hence, if δ = 0, then (lp, lp−1, ..., l1) = (n, ..., 1), while if δ = 1, then (lp, lp−1, ..., l1) =

(n− 1, ..1, .., 1, ..), where 1′s are at positions a and b with a ≤ b, a+ b = p+ 1, which shows that

a > 1 as b < p. Using Proposition 2.1 we obtain

(n, ..., 1, 0) < (n− 1, ..1, ..1, ..)

and therefore a = 2, b = p− 1, implying that (lp, lp−1, ..., l1) = (n− 1, 1, ..., 1, 0).

3. Consider the last case ζp ∈ Γ. Then one has (gp, gp−1, ..., g1) = (n, ..., 2) and dimFp(V ) = np+ 1.

Lemma 2.5 and Lemma 2.6 again imply that if K/k is unramified, then e1 = n+ 1, lp = n, while

if K/k is totally ramified, then e1 = n+ 1 + s and lp = n− δ. Hence, if K/k is unramified, then

(lp, lp−1, ..., l1) = (n, ..., 1).

Suppose K/k is totally ramified. If δ = 0, then again (lp, lp−1, ..., l1) = (n, ..., 1), as lp = n−δ = n,

which simultaneously shows that s = 0. Assume now that δ = 1. If s = 0, then by Proposition

2.1, we would have a relation

(n, ..., 2) < (n− 1, ..1, ..1, ..)

with two 1’s at places a and b with a ≤ b, a+ b = p+ 1, implying that a = 1 and b = p, which

is a contradiction, as b < p. Therefore s = 1 and we get a relation

(n, ...2) < (n− 1, ..1, ..1, ..1, ..),

where 1’s are at some positions a, b, c with a ≤ b ≤ c, a+ b+ c = p+ 1, which yields a = b = 1

and c = p− 1, showing that (lp, lp−1, ..., l1) = (n− 1, 1, ..., 2).

Thus everything proven can be incorporated within the following table in the form of a theorem. Here

u denotes a principal unit in k.
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Theorem 2.1

The extension K/k R-module V

1. ζp /∈ k, unramified Rn

2. ζp /∈ k, totally ramified Rn−1 ⊕R/(σ − 1)p−1 ⊕R/(σ − 1)

3. K = k( p
√
u), ζp ∈ k \ Γ Rn ⊕R/(σ − 1)

4. K = k( p
√
π), ζp ∈ k \ Γ Rn−1 ⊕R/(σ − 1)p−1 ⊕R/(σ − 1)2

5. ζp ∈ Γ, unramified Rn ⊕R/(σ − 1)

6. K = k( p
√
u), ζp ∈ Γ, totally ramified Rn ⊕R/(σ − 1)

7. K = k( p
√
π), ζp ∈ Γ, totally ramified Rn−1⊕R/(σ−1)p−1⊕R/(σ−1)⊕R/(σ−1)

It can be proved that in all cases any Fp-basis of V modulo ker((σ − 1)p−1) can serve as an R-basis

of the corresponding free part. Moreover, it is not hard to show that in cases 3 and 6 the additional

generator α can be chosen as any element from the set U1 \Γ0, while in case 5 one may choose α = uβ0

(see Section 2.1.1).

2.2 Honda formal group as Galois module

Let p be a rational prime, K/Qp, L/K,M/L be a tower of finite extensions of local fields, M/L

be a Galois extension with Galois group G and F be a one dimensional formal group law over the

ring OK . The operation x +
F
y = F (x, y) sets a new structure of abelian group on the maximal ideal

pM of the ring OM which we will denote by F (pM ). Taking into account the natural action of the

group G on F (pM ), one may consider it as an EndOK (F )[G]-module, in which the multiplication by

scalars from EndOK (F ) is performed by the rule f ∗ x = f(x). We refer the reader to Section 1.2 as

well as to [23, Chapter 6, §3], [20, Chapter 3, §6], [16, Chapter 4] and [30, Chapter 4] for more details

concerning formal groups and the group F (pM ).

If F is a Lubin-Tate formal group law, then there is an injection OK ↪→ EndOK (F ) (see Theorem

1.15 and [23, Chapter 6, Prop. 3.3]), which enables us to regard F (pM ) as an OK [G]-module. The

structure of this module in case of multiplicative formal group F = Gm and K = Qp is studied in

sufficient detail in [4,5,7]. The starting point of the current study is the following theorem of Borevich

in [7].

Theorem (Borevich, 1965) Suppose M/L is an unramified p-extension and K = Qp. If the fields
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M and L have the same irregularity degree 1 then for the OK [G]-module UM there exists a system of

generating elements θ1, ..., θn−1, ξ, ω with the unique defining relation ξp
s

= ωσ−1, where n = [L : Qp]

and σ is a generating element of the Galois group G = Gal(M/L).

It may seem that the group of principal units EM has nothing to do with formal groups, but

in fact it is easy to show that for the multiplicative formal group F = Gm there is an isomorphism

F (pM ) ∼= EM , x 7→ 1 + x of Zp[G]-modules.

The next stop in the course of investigations was the joint work of S.V.Vostokov and I.I.Nekrasov

[11], where they generalized the aforementioned theorem to the case of Lubin-Tate formal groups (See

Subsection 1.2.2 for details concerning Lubin-Tate formal groups). More precisely, they managed to

prove the following

Theorem (Vostokov-Nekrasov, 2014) Suppose M/L is an unramified p-extension and F is a

Lubin-Tate formal group for the prime element π ∈ K. Assume moreover that the fields M and L

have the same irregularity degree, namely they contain a generator of ker[πs]F and do not contain a

generator of ker[πs+1]F for some s ≥ 1 2. Then for the OK [G]-module F (pM ) there exists a system

of generating elements θ1, ..., θn−1, ξ, ω with the unique defining relation [πs]F (ξ) = ωσ −
F
ω, where

n = [L : K] and σ is a generating element of the Galois group G = Gal(M/L).

The key point in this work was the proof of the triviality of the cohomology groups

H i(G(M/L), F (pM )), i = 0,−1 (See Definition 1.15) for unramified extensions M/L. In its turn,

our work is devoted to the generalization of the last result to the case of Honda formal groups.

Namely, let K0/Qp be a finite extension such that K/K0 is unramified, π ∈ K0 be a uniformizer, F

be a Honda formal group over OK relative to the extension K/K0 of type u ∈ OK,ϕ[[T ]]. We refer the

reader to Subsection 1.2.3 as well as to [12, §§2,3] and [13,14] for more information concerning Honda

formal groups. Suppose Kalg is a fixed algebraic closure of the field K, pKalg is the valuation ideal,

i.e. the set of all points in Kalg with positive valuation. Define Wn
F = ker[πn]F ⊂ F (pKalg) to be the

πn-torsion submodule. More precisely, let Wn
F = {x ∈ pKalg |[πn]F (x) = 0}, where [πn]F ∈ EndOK (F ),

and let WF =
∞⋃
n=1

Wn
F .

It is known (See Theorem 1.17 and [12, §2, Thm. 3]) that there is a ring embedding OK0 ↪→ EndOK (F ),

1This means that the field L contains a ps-th primitive root of unity, while M does not contain a primitive ps+1-th

root of unity for some s ≥ 1
2In fact, ker[πs]F is a cyclic OK-module, whenever F is a Lubin-Tate formal group (See [20, Chapter 3, Prop. 7.2])
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which allows as to regard F (pM ) as an OK0 [G]-module. In this section, using generators and defining

relations we describe the structure of this module in the case of unramified p-extension M/L, provided

that WF ∩ F (pL) = WF ∩ F (pM ) = W s
F , for certain s ≥ 1 (See [15]). According to Theorem 1.10 any

finite unramified extension of a local field is a cyclic extension, so that G is a cyclic p-group.

We agree in the following notation

n−the degree of the field L over K0;

h−the height of the type u = π+
∑

i≥1 aiT
i of the formal goup F , i.e. the minimal h, for which ah is

invertible.

f−the logarithm of F ;

pm−the order of the group G = Gal(M/L);

σ−a generating element of G;

ζi, 1 ≤ i ≤ h−a fixed basis of the OK0/π
sOK0-module W s

F ;

k0, l−the residue fields of K0 and L respectively;

q−the order of k0;

x+
F
y := F (x, y);

k∑
F ;i=1

xi := x1 +
F
x2 +

F
...+

F
xk.

2.2.1 Auxiliary lemmas

Lemma 2.7 The OK0-module Wn
F is isomorphic to (OK0/π

nOK0)h.

Proof. See [14, Prop. 1]. �

Lemma 2.8 In the case of an unramified extension M/L, the groups H i(G,F (pM )) are trivial for

i = 0,−1.

Lemma 2.9 If the elements x1, x2, ..., xk from F (pM ) are such that the system

{NF (pM )(xi), 1 ≤ i ≤ k} 3 is linearly independent in the k0-vector space F (pM )/[π]F (F (pM ), then so

is the system {xσji , 1 ≤ i ≤ k, 0 ≤ j ≤ pm − 1}.

Lemma 2.10 If the elements x1, x2, ..., xk from F (pM ) generate the k0-vector space

F (pM )/[π]F (F (pM ), then they generate F (pM ) as an OK0-module.

3 Here NF (pM ) is the G-module norm, see Definition 1.16.
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The proofs of lemmas 2.8-2.10 can be found in the article [11], as well as in [7, §3].

Lemma 2.11 The natural linear map

ϕ : F (pL)/[π]F (F (pL))→ F (pM )/[π]F (F (pM ))

of k0-vector spaces, induced by inclusion, has kernel of dimension h.

Proof. Consider the elements ηi = [πs−1]F ζi, 1 ≤ i ≤ h. They form a basis of W 1
F as an

OK0/πOK0-module. Since NF (pM )ηi = [pm]F ηi = 0, then by Lemma 2.8 we get that ηi = tσi −
F
ti for

some elements ti ∈ F (pM ). Suppose that x ∈ F (pL) and x = [π]F (y) for some y ∈ F (pM ). Then

[π]F (yσ −
F
y) = xσ −

F
x = 0, from which it follows that

yσ −
F
y =

h∑
F ;i=1

[ai]F (ηi) =
h∑

F ;i=1

(
([ai]F (ti))

σ −
F

[ai]F (ti)

)
,

for certain elements ai ∈ OK0 , uniquely determined modulo π. The last relationship indicates the

existence of z ∈ F (pL), for which y =
h∑

F ;i=1

[ai]F (ti) +
F
z. Therefore,

x = [π]F (y) =
h∑

F ;i=1

[ai]F ([π]F (ti)) +
F

[π]F (z).

Hence the elements [π]F (ti), 1 ≤ i ≤ h constitute a basis of kerϕ. The lemma is proved. �

Lemma 2.12 The dimension of the k0-vector space F (pL)/[π]F (F (pL)) is equal to n+ h.

Proof. According to Theorem 1.14 for i >
e(L/Qp)
p−1 there is an isomorphism of groups

f : F (piL) ∼−→ piL, which is in fact an isomorphism of OK0-modules due to the relation f ◦ [a]F = af

which holds for all a ∈ OK0 . Consequently, F (piL) is a free OK0- module of rank n. From the

exactness of sequences of OK0-modules:

0→ F (pi+1
L )→ F (piL)→ l→ 0, i ≥ 1

it follows that F (piL) is an OK0-submodule of finite index in F (pL). Therefore F (pL) is a finitely

generated OK0-module of rank n. The theory of finitely generated modules over a PID yields

F (pL) = T ⊕A, where T is the torsion submodule, which in our case coincides with W s
F , while A is a

free OK0-module of rank n. In the long run we get

|F (pL)/[π]F (F (pL))| = |T/[π]FT | · |A/[π]FA| = qh · qn = qn+h,

completing the proof of the lemma. �
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Remark 2.1 Likewise we get that dimk0 (F (pM )/[π]F (F (pM ))) = npm + h.

Remark 2.2 Since F (pM ) is a finitely generated OK0- module, then by Nakayama’s lemma we

obtain a new proof of the assertion of Lemma 2.10.

Lemma 2.13 The elements ζi, 1 ≤ i ≤ h are linearly independent modulo kerϕ.

Proof. Suppose the relation
h∑

F ;i=1

[ai]F ζi = [π]F (y) holds for some ai ∈ OK0 , y ∈ F (pM ). Applying

the endomorphism [πs]F , we get that [πs+1]F (y) = 0, which gives [πs]F (y) = 0. The latter means that
h∑

F ;i=1

[πs−1ai]F ζi = 0, which is equivalent to the condition ai
... π, 1 ≤ i ≤ h. The lemma is proved. �

Corollary 2.1 h ≤ n

Proof. In view of the lemmas proved, it follows that the maximal number of linearly independent

vectors modulo kerϕ in F (mL)/[π]F (F (pL)) is equal to

dim Imϕ = dimk0(F (pL)/[π]F (F (pL)))− dim kerϕ = (n+ h)− h = n.

By Lemma 2.13 we already have h linearly independent vectors modulo kerϕ, from which the

desired result follows. �

2.2.2 Proof of Theorem 2.2

Theorem 2.2 If the extension M/L is unramified and WF ∩ F (pL) = WF ∩ F (pM ) = W s
F , for some

s ≥ 1, then h ≤ n and for the OK0 [G]-module F (pM ) there exist a system of generating elements

θj , ξi, ωi, 1 ≤ j ≤ n− h, 1 ≤ i ≤ h with the only defining relations [πs]F (ξi) = ωσi −
F
ωi, 1 ≤ i ≤ h.

Proof. From the triviality of the group H0(G,F (pM )) it follows the existence of elements

ξi ∈ F (pM ), 1 ≤ i ≤ h, such that NF (pM )(ξi) = ζi. Since NF (pM )([π
s]F (ξi)) = [πs]F (ζi) = 0 and the

group H−1(G,F (pM )) is trivial, there exist elements ωi ∈ F (pM ), 1 ≤ i ≤ h, satisfying the relations

[πs]F ξi = ωσi −
F
ωi. In view of Corollary 2.1, the system ζi, 1 ≤ i ≤ h can be supplemented to a basis

modulo kerϕ via elements εj ∈ F (mL), 1 ≤ j ≤ n− h. For 1 ≤ j ≤ n− h we select elements

θj ∈ F (pM ), so that NF (pM )(θj) = εj for all j and we prove that the system

E = {ωi, ξσ
k

i , θσ
k

j |1 ≤ i ≤ h, 1 ≤ j ≤ n− h, 0 ≤ k ≤ pm − 1}
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is linearly independent modulo [π]F (F (pM )). Assume the contrary that there exist elements

ai, ai,k, bj,k ∈ OK0 and β ∈ F (pM ) such that

∑
F ;i

[ai]Fωi +
F

∑
F ;i,k

[ai,k]F (ξσ
k

i ) +
F

∑
F ;j,k

[bj,k]F (θσ
k

j ) +
F

[π]F (β) = 0.

We apply σ − 1 to both parts of the latter relation and use the relations [πs]F ξi = ωσi −
F
ωi, 1 ≤ i ≤ h

to deduce the equality

∑
F ;i,k

[ai,k − ai,k−1]F (ξσ
k

i ) +
F

∑
F ;j,k

[bj,k − bj,k−1]F (θσ
k

j ) +
F

∑
F ;i

[ai]F [πs]F ξi +
F

[π]F (βσ −
F
β) = 0.

From lemmas 2.9 and 2.13 it follows that the system

E0 = {ξσki , θσ
k

j |1 ≤ i ≤ h, 1 ≤ j ≤ n− h, 0 ≤ k ≤ pm − 1}

is linearly independent modulo [π]F (F (pM )), so that ai,k(mod π) and bj,k(mod π) are independent of

k. Therefore, without loss of generality we may assume that

∑
F ;i

[ai]F [πs]F ξi +
F

[π]F (βσ −
F
β) = 0,

changing if needed β. From the obtained follows the existence of bi ∈ OK0 , 1 ≤ i ≤ h such that

∑
F ;i

[aiπ
s−1]F (ξi) +

F
βσ −

F
β =

∑
F ;i

[bi]F ηi

Taking norms NF (pM ), the obtained relation leads to the equality
∑

F ;i[aiπ
s−1]F (ζi) = 0 which

implies that ai
... π, 1 ≤ i ≤ h. From the linear independence of the system E0 it follows that ai,k

... π

and bj,k
... π for all i, j and k. This completes the proof of the linear independence of the system E .

The number of vectors in it is npm + h = dimk0 (F (pM )/[π]F (F (pM ))), so that they generate the

space F (pM )/[π]F (F (pM )). From lemma 2.10 it follows that they generate F (pM ) as an OK0-

module, and consequently the elements θj , ξi, ωi, 1 ≤ j ≤ n− h, 1 ≤ i ≤ h generate F (pM ) as an

OK0 [G]-module. It remains only to prove the assertion concerning defining relations. Let us further

agree to write multiplication by elements of the ring OK0 [G] through exponentiation. Suppose that

the relation ∑
F ;i

ξαii +
F

∑
F ;i

ωβii +
F

∑
F ;j

θ
δj
j = 0,

holds for some elements αi, βi, δj ∈ OK0 [G]. Our goal is to prove the existence of elements

γi ∈ OK0 [G] for which αi = πsγi, βi = (1− σ)γi and δj = 0. Indeed, let βi = bi + (1− σ)γi for certain
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elements bi ∈ OK0 and γi ∈ OK0 [G]. Taking into account the relations [πs]F ξi = ωσi −
F
ωi for 1 ≤ i ≤ h

we get ∑
F ;i

ωbii +
F

∑
F ;i

ξ
α′i
i +

F

∑
F ;j

θ
δj
j = 0,

where α′i = αi−πsγi. Factoring the latter relation modulo [π]F (F (pM )) and recalling that the system

E is a basis modulo [π]F (F (pM )), we find that there exist elements b
(1)
i , β′i, δ

(1)
j ∈ OK0 [G] such that

bi = πb
(1)
i , α′i = πβ′i, δj = πδ

(1)
j . Therefore, for some elements ai ∈ OK0 we must have the equality

∑
F ;i

ω
b
(1)
i
i +

F

∑
F ;i

ξ
β′i−ai

∑
k σ

k

i +
F

∑
F ;j

θ
δ
(1)
j

j = 0,

due to the fact that ζi = NF (pM )(ξi) = ξ
∑
k σ

k

i . For the same reasons, all b
(1)
i and δ

(1)
j are divisible by

π. By induction we construct sequences (b
(ν)
i )ν≥0 and (δ

(ν)
j )ν≥0 satisfying the conditions

b
(0)
i = bi, δ

(0)
j = δj , b

(ν)
i = πb

(ν+1)
i and δ

(ν)
j = πδ

(ν+1)
j for all ν ≥ 0, 1 ≤ i ≤ h, 1 ≤ j ≤ n− h, from

which it follows that bi = 0 for all i and δj = 0 for all j. There remains only the relation∑
F ;i ξ

α′i
i = 0. Let now α′i =

∑
k ai,kσ

k, where ai,k ∈ OK0 for all i, k. The factorization modulo

[π]F (F (pM )) yields ai,k = πbi,k. Further, we obtain that

∑
F ;i

ξ
∑
k bi,kσ

k

i =
∑
F ;i

[λi]F (ζi) =
∑
F ;i

ξ
λi

∑
k σ

k

i ,

for some elements λi ∈ OK0 . Consequently bi,k(modπ) is the same for all k, and so on. In the end we

get that ai,k = ai and that
∑

F ;i[ai]F (ζi) = 0, i.e. ai = πsti for certain ti ∈ OK0 and therefore

αi − πsγi = α′i = πsti
∑
k

σk.

If we denote γ′i = γi + ti
∑

k σ
k, then we will have αi = πsγ′i and βi = (1− σ)γi = (1− σ)γ′i, thus

completing the proof of the theorem . �
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CHAPTER 3

Properties of arithmetic sequences

3.1 Distinguished sequences

It is known that for any non-constant polynomial P with integer coefficients there exist infinitely

many primes, dividing at least one term of the sequence (P (n))∞n=1 [25, Part 8, Ex. 108]. In this

respect we are interested if there is a general phenomenon behind this fact. It turns out that the

answer is positive and somehow depends on the rate of growth of the given sequence . To be more

precise we give the definition of distinguished sequences of positive integers.

Definition 3.1 We say that a sequence (nk)
∞
k=1 of positive integers is distinguished, if there are

infinitely many primes dividing at least one term of the sequence.

To formulate our results we need one more

Definition 3.2 Suppose S = {p1, p2, ..., pn} is a finite set consisting of prime numbers. We define

Ŝ = {p1
k1p2

k2 · ... · pnkn |k1, k2, ..., kn ∈ Z+} and arrange the set Ŝ in increasing order to get the

sequence (nk(S))∞k=1.

In this section we prove the following theorems.

Theorem 3.1 lim
k→∞

ln(ln(nk(S)))

ln(k)
=

1

n
.

Theorem 3.2 Suppose (nk)
∞
k=1 and (mk)

∞
k=1 are sequences of positive integers. Then the sequence

(nk)
∞
k=1is distinguished, provided that the following conditions hold.

1. lim
k→∞

nk =∞

2. gcd(nk, nk+l) < ml for all positive integers k and l
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We also deal with sequences of the form an = 22n + d, where d ∈ Z. Recall that a Fermat number is a

positive integer of the form Fn = 22n + 1 for some nonnegative integer n. It is well known that

gcd(Fk, Fl) = 1, whenever k 6= l. For the proof we refer to [28, Chapter 1, Thm. 13]. In this way a

natural question arises. Whether this result is true for sequences an = 22n + d for odd integers d? In

this respect we prove a theorem, which gives a negative answer to this question.

Theorem 3.3 For any integer d 6= 1 and positive integer m there exist distinct elements ak and al

in the sequence an = 22n + d such that gcd(ak, al) > m.

3.1.1 Proof of Theorem 3.1

Suppose we have positive numbers w1, w2, ..., wn > 0.

Definition 3.3 For any W > 0 we define

N(W ;w1, w2, ..., wn) =

∣∣∣∣∣
{

(k1, k2, ..., kn) ∈ (Z+)n|
n∑
i=1

kiwi ≤W

}∣∣∣∣∣ .
Lemma 3.1

Wn

n!
∏n
i=1wi

≤ N(W ;w1, w2, ..., wn) ≤
(W +

∑n
i=1wi)

n

n!
∏n
i=1wi

.

Proof. Consider the lattice Λ in Rn, spanned over the basis {w1e1, ..., wnen}, where {e1, ..., en} is

the standard basis of Rn. Define

Πr = {(x1, x2, ..., xn) ∈ (R+)n|
n∑
i=1

xi ≤ r} ⊂ Rn

for any r > 0. Then N(W ;w1, w2, ..., wn) = |Λ ∩ΠW | is the number of lattice points in the simplex

ΠW .

Now for any point x = (x1, x2, ..., xn) ∈ Λ ∩Π ( i.e. for any solution) construct an open parallelotope

Πx = {(t1, ..., tn)||ti − xi| < wi/2, i = 1, 2, ..., n} ⊂ Rn with a center at that point. Note that

Πx ∩Πy = ∅,V(Πx) =

n∏
i=1

wi for all x, y ∈ Λ ∩ΠW , x 6= y,

where V stands for the volume.

Set ∆ =

n∑
i=1

wi, v = (w1/2, ..., wn/2) ∈ Rn and Πr,v = {x− v|x ∈ Πr} (the shift of Πr by vector v).

Note that ΠW ⊂
⋃

x∈Λ∩ΠW

Πx ⊂ ΠW+∆,v.

Comparing volumes yields
Wn

n!
≤ N(W ;w1, w2, ..., wn)

n∏
i=1

wi ≤
(W +

∑n
i=1wi)

n

n!
. It remains only to

divide all the parts of the inequality by

n∏
i=1

wi. �
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One can find additional information concerning Lemma 3.1 in [31].

Definition 3.4 For any positive integer l we set tl = |{k|nk(S) ≤ l}|.

Observe that due to Definition 2

tl =

∣∣∣∣∣
{

(k1, k2, ..., kn) ∈ (Z+)n|
n∏
i=1

pkii ≤ l

}∣∣∣∣∣ =

=

∣∣∣∣∣
{

(k1, k2, ..., kn) ∈ (Z+)n|
n∑
i=1

ln(pi)ki ≤ ln(l)

}∣∣∣∣∣ =

= N(ln(l); ln(p1), ln(p2), ..., ln(pn)).

As a consequence of Lemma 3.1 we get that there exist constants c1 > 0 and c2 > 0 such that

c1W
n < N(W ;w1, w2, ..., wn) < c2W

n for all W > ln(2). Therefore, for some constants a > 0 and

b > 0 the inequality

a(ln(l))n < N(ln(l); ln(p1), ln(p2), ..., ln(pn)) < b(ln(l))n

holds for all l ≥ 2. Substituting l = nk(S) for k = 2, 3, ..., we obtain

a(ln(nk(S)))n < tnk(S) < b(ln(nk(S)))n

and, therefore ln(a) + n ln(ln(nk(S))) < ln(tnk(S)) < ln(b) + n ln(ln(nk(S))). Using that (nk(S))∞k=1 is

an increasing sequence, we conclude that tnk(S) = k for all k. As a result

ln(a) + n ln(ln(nk(S))) < ln(k) < ln(b) + n ln(ln(nk(S)))

for all k ≥ 2 and so

lim sup
k→∞

ln(ln(nk(S)))

ln(k)
≤ 1/n ≤ lim inf

k→∞

ln(ln(nk(S)))

ln(k)
,

which shows that lim
k→∞

ln(ln(nk(S)))

ln(k)
=

1

n
. �

Corollary 3.1 If (nk)
∞
k=1 is an increasing sequence of positive integers and lim inf

k→∞

ln(ln(nk))

ln(k)
= 0,

then it is distinguished.

Remark 3.1 A close result was previously proved in [27]. The result was formulated for almost

injective sequences, i.e. for the sequences (nk)
∞
k=1 of positive integers for which there exists a

constant C such that |{k|nk = m}| ≤ C for all positive integers m. The concept of almost injective

sequences was inspired by non-constant polynomials P , since they attain any value at most

C = deg(P ) times. Our result is independent of [27].
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Proof. Suppose the opposite is true. This means that there is a finite set S of prime numbers such

that (nk)
∞
k=1 is a subsequence of (nk(S))∞k=1. Hence

lim inf
k→∞

ln(ln(nk))

ln(k)
≥ lim inf

k→∞

ln(ln(nk(S)))

ln(k)
=

1

|S|
> 0,

which is a contradiction. �

Corollary 3.2 For any non-constant polynomial P with integer coefficients the sequence

(P (n))∞n=1 is distinguished.

Proof. The sequence (P (n))∞n=1 is eventually increasing and lim
n→∞

ln(ln(P (n)))

ln(n)
= 0, so that it

remains to use Corollary 3.1. �

We would also like to give a purely number theoretic proof of this fact.

Proof. Suppose that the finite set S = {p1, p2, ..., pn} contains all possible prime factors of all

numbers P (n), n ∈ N, where P is the given polynomial. For j ∈ {1, 2, .., n} we define

kj = minn∈N νpj (P (n)). Suppose also that kj = νpj (P (sj)) for each j ∈ {1, 2, .., n}. By the Chinese

Remainder Theorem, there is a positive integer n such that n ≡ sj( mod pj
kj+1) for all

j ∈ {1, 2..., n}. From this it follows that P (n) ≡ P (sj)( mod pj
kj+1) for all j ∈ {1, 2..., n}.

Consequently, P (n) is not divisible by pj
kj+1 for all j ∈ {1, 2..., n}. Hence, P

(
n+ s

∏n
j=1 pj

kj+1
)

is

not divisible by pj
kj+1 for all j ∈ {1, 2..., n} and s ∈ N. As a result we obtain

P
(
n+ s

n∏
j=1

pj
kj+1

)
≤

n∏
j=1

pj
kj for all s ∈ N. The latter assertion contradicts the fact that P is a non

constant polynomial. �

3.1.2 Proof of Theorem 3.2

Assume the contrary that the sequence (nk)
∞
k=1 is not distinguished. Then there is a finite set

S = {p1, p2, ..., ps}, consisting of prime numbers such that any term of the sequence (nk)
∞
k=1 is a

product of some elements (not necessarily distinct) from the set S. As the sequence (nk)
∞
k=1 tends to

infinity, it is unbounded, so there is at least one prime p ∈ S such that the sequence (νp(nk))
∞
k=1 is

unbounded, where νp(m) = max{k|m
...pk} for any integer m and prime p. WLOG we may assume

that the set of all such primes p ∈ S is {p1, p2, ..., pl}, for some 1 ≤ l ≤ s.

Definition 3.5 For any 1 ≤ t ≤ l and M ∈ N we define

At(M) , {k|νpt(nk) > M} = (sM,t,j)
∞
j=1
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and

L , max{νpj (nk)|l + 1 ≤ j ≤ s, k ∈ N} <∞,

if l < s.

Corollary 3.3 For each M ∈ N, one has that N =

l⋃
t=1

At(M) ∪AM for the set

AM = {k|νpt(nk) ≤M, t = 1, 2, ..., l}.

It is finite, since |AM | ≤

∣∣∣∣∣∣
k|nk ≤

l∏
i=1

pMi ·
s∏

j=l+1

pLj


∣∣∣∣∣∣ , where the latter product

T =

s∏
j=l+1

pLj is assumed to be 1 if l = s.

Lemma 3.2 For sufficiently large M the inequality sM,t,j+1 − sM,t,j > l holds for all t ∈ {1, 2, ..., l}

and j ∈ N.

Proof. We choose M large enough to satisfy 2M > ml. Using that pMt |nsM,t,j+1 and pMt |nsM,t,j we

deduce that m(sM,t,j+1−sM,t,j) > gcd(nsM,t,j+1 , nsM,t,j ) ≥ ptM ≥ 2M > ml. Without loss of generality,

we may assume that the sequence
(
mt

)∞
t=1

is increasing, which yields the inequality

sM,t,j+1 − sM,t,j > l, thereby proving the lemma. �

Consequently for all t ∈ {1, 2, ..., l}, N ∈ N, and sufficiently large M ,

|At(M) ∩ {1, 2, ..., N}| ≤
[
N

l + 1

]
+ 1,

where [x] stands for the integer part of x ∈ R. Therefore, for a fixed sufficiently large M

|AM | ≥ |{1, 2, ..., N} \
l⋃

t=1

At(M)| ≥

≥ N −
l∑

t=1

|At(M) ∩ {1, 2, ..., N}| ≥ N − l
([

N

l + 1

]
+ 1

)
≥ N

l + 1
− l

for each positive integer N . From this inequality we infer that AM is infinite, which is contrary to

Corollary 3.3. The Proof of Theorem 2 is complete. �
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3.1.3 Proof of Theorem 3.3

Suppose that there is an integer d 6= 1 and a positive integer m such that gcd(ak, al) ≤ m for all

distinct elements ak and al of this sequence. It follows that if for some positive integer ν and distinct

positive integers k and l, pν |ak and pν |al, then pν ≤ gcd(ak, al) ≤ m. Consequently for each prime p

the sequence (νp(an))∞n=1 is bounded. Let us prove some auxiliary lemmas.

Lemma 3.3 If positive integers n and k are given, which satisfy ν2(k) < n, then there is a positive

integer l > n such that (2l − 2n)
...k.

Proof. Let k = 2ab, where a = ν2(k) < n and b be an odd number. Since

b|2φ(b) − 1

(φ is the Euler’s totient function), we get that (2n+φ(b) − 2n)
...2nb

...2ab = k. We now set l = n+ φ(b).

The Lemma is proved. �

Lemma 3.4 If for some prime p > m and positive integer n the relation p|an holds, then

p ≡ 1(mod 2n).

Proof. Suppose p 6≡ 1(mod 2n). Then by Lemma 3.3 there is some positive integer l > n, such that

(2l − 2n)
...(p− 1). Consequently,

al − an = 22l − 22n = 22n(22l−2n − 1)
...22n(2p−1 − 1) = 22n−1(2p − 2)

...p

by Fermat’s little theorem. Since p|an, we thus get that p|al, and so

p ≤ gcd(an, al) ≤ m,

which contradicts the conditions of the Lemma. �

Lemma 3.5 |d| is a power of 2.

Proof. Let an = 2knbncn for any positive integer n, where the prime divisors of bn are precisely the

odd prime divisors of an, which are less or equal to m. If there is no such prime, we set bn = 1. From

Lemma 3.4 it follows that cn ≡ 1(mod 2n) and so an ≡ 2knbn(mod 2n). On the other hand,

an = 22n + d ≡ d(mod 2n), hence 2knbn ≡ d(mod 2n). As the number of primes not exceeding m is

finite, and the sequence (νp(an))∞n=1 is bounded for each prime p, there exists some positive integer
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M such that 2knbn ≤M for all n ∈ N. In the long run we get 2knbn = d for all sufficiently large n (in

particular d 6= 0, which was clear). From this we infer that

22n + d = an = 2knbncn = dcn
...d

and, therefore, d|22n for all sufficiently large n ∈ N. �

Lemma 3.6 For any sufficiently large positive integer n there is a positive integer ln > n such that

aln
...an.

Proof. For d = −1 one has that an+1 = 22n+1 − 1
...22n − 1 = an and we are done. Suppose now

d 6= ±1. In accordance with Lemma 3.5, d = ±2k for some positive integer k. Let us choose a positive

integer n > ν2(k), then ν2(2n − k) = ν2(k). Choose ln > n from Lemma 3.3, then (2ln − 2n)
...(2n − k),

and thereby (2ln − k)
...(2n − k). Since ν2(2ln − k) = ν2(k) = ν2(2n − k), the quotient

2ln − k
2n − k

is an odd

integer, which means that

(22ln−k ± 1)
...(22n−k ± 1).

Multiplying by 2k, we obtain aln
...an, depending on whether d = 2k or d = −2k. �

One can infer from Lemma 3.6, that an = gcd(an, aln) ≤ m for n > ν2(k), which is a contradiction. �

3.2 Some analytic estimates for the divisor τ-function

The function τ(n) defined as the number of positive divisors of the given positive integer n has many

investigated asymptotic properties and some of them are presented below.

1. For any ε > 0, τ(n) = o(nε).

2. For given ε > 0 there exist infinitely many positive integers n such that

τ(n) > 2(1−ε)(lnn)/(ln(lnn)). Moreover, τ(n) < 2(1+ε)(lnn)/ ln(lnn) holds for sufficiently large n

(Vigert, 1907).

3. Let D(x) =
∑

n≤x τ(n) be the summatory function of τ . Dirichlet proved the asymptotic

equality

D(x) = x lnx+ (2γ − 1)x+O(x1/2),

where γ is the Euler’s constant. Dirichlet’s divisor problem consists of determining the smallest

α for which the error term is O(nα+ε) for any ε > 0. G.Voronoi has showed that α ≤ 1/3, while
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Hardy and Gauss proved that the error term is not O(x1/4), and therefore α ≥ 1/4. It is

conjectured that α = 1/4.

For (1)–(3) we refer to [28, Chapter 6, §3].

4. It is worth mentioning the result in [32] concerning Karatsuba’s problem on determining the

asymptotic behavior of the sum

Sa(x) =
∑
n≤x

τ(n)

τ(n+ a)

stated in 2004 which was estimated by M. A. Korolev in 2010.

5. In [33], the average behavior of the function τk(n) is studied, where for each positive integer n,

τk(n) is defined as the number of solutions of the equation m1m2...mk = n in positive integers

m1,m2, ...,mk.

For µ > 0 consider the sequence

Tn(µ) = (τ(n))−1 max
1≤t≤[n1/µ]

{τ(n+ t)}, n = 1, 2, ...

and define

θ = inf{λ > 0|D(x) = x lnx+ (2γ − 1)x+O(xλ)},

where D(x) =
∑

n≤x τ(n) is the summatory function of τ . Assume that (nk)
∞
k=1 is a sequence of

positive integers such that nk = pk
jk , where pk is prime and jk ∈ N for all positive integers k. In this

section we prove the following theorem.

Theorem 3.4 a) If µ > 0, then Tnk(µ)→∞, as jk →∞; b) If 1 ≤ µ < θ−1, then Tnk(µ)→∞,

as nk →∞.

Note that if Theorem 3.4 holds for some µ0 > 0 then it holds for any 0 < µ < µ0. Hence one may

assume that µ > 1 is a fixed integer.

Definition 3.6 For any positive integer n and prime number p we define

νp(n) = max{k ≥ 0|n ... pk} and ∆(n) =
∑
p|n

νp(n).

It is immediate that ∆(mn) = ∆(m) + ∆(n), ∆(nk) = k∆(n), for any positive integers m,n, k.

Observe that for any integer 0 ≤ s < µm and prime number p

τ(pµm + ps) = (s+ 1)τ(pµm−s + 1).
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We start with the following

Proposition 3.1 If n = 2ta, where a is odd, then τ(pn + 1) ≥ τ(a) ≥ ∆(a).

Proof. Indeed, if a
... b then (pn + 1)

... (p2tb + 1), hence the left part of the inequality holds. On the

other hand, the right part of the inequality follows from

τ(a) =
∏
p|a

(1 + νp(a)) >
∑
p|a

νp(a) = ∆(a),

where p ranges through the set of prime divisors of a. �

The following lemma enables us to estimate ∆(m!) from above.

Lemma 3.7 The inequality ∆(m!) < 2m ln(lnm) holds for sufficiently large positive integer m.

Proof. Using the famous identity νp(n!) =
∑∞

s=1 [np−s] (henceforth [x] stands for the integer part of

x ∈ R) and the asymptotic equality

∑
{p≤x|p is prime}

p−1 = ln(lnx) +O(1) (see [34], Exercise 3.1.8)

we get

∆(m!) =
∑
p≤m

νp(m!) =
∑
p≤m

∞∑
s=1

[
mp−s

]
<
∑
p≤m

m

p− 1
=

= m

∑
p≤m

p−1 +
∑
p≤m

1

p(p− 1)

 < m

∑
p≤m

p−1 + h

 < 2m ln(lnm)

for sufficiently large positive integer m, where h =
∑

p(p(p− 1))−1. The lemma is proved. �

Definition 3.7 We define A(m) =
∑m

s=1(s+ 1)∆(µm− s) and A′(m) =
∏m
s=1(µm− s)s+1.

Observe that

A′(m) =
m∏
s=1

(µm− s)s+1 =
(µm− 1)!

((µ− 1)m− 1)!

m∏
s=1

(µm− s)!
((µ− 1)m− 1)!

and

A(m) = ∆(A′(m)) = B(m) + C(m),

where

B(m) = ∆

(
(µm− 1)!

((µ− 1)m− 1)!

)
and C(m) = ∆

(
m∏
s=1

(µm− s)!
((µ− 1)m− 1)!

)
.
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Lemma 3.8 The inequality A(m) > (1/4)m2 ln(lnm) holds for sufficiently large positive integer m.

Proof. Recall that A(m) = B(m) + C(m) and

B(m) = O(m ln(lnm)) = o(m2 ln(lnm))

by Lemma 3.7. On the other hand

C(m) =

µm−1∑
l=(µ−1)m

∑
p≤µm−1

( ∞∑
s=1

[
l

ps

]
−
∞∑
s=1

[
(µ− 1)m− 1

ps

])
≥

≥
µm−1∑

l=(µ−1)m

∑
p≤µm−1

( ∞∑
s=1

[
l − (µ− 1)m+ 1

ps

])
,

which together with the inequality

∞∑
s=1

[
n

ps

]
>

[logp n]∑
s=1

n

ps
− [logp n] ≥ n− 1

p− 1
− logp(np)

yields

C(m) ≥
∑

p≤µm−1

(
m−1∑
k=1

k

p− 1
− logp

(
m∏
k=2

kp

))
= X(m)− Y (m)− Z(m),

where for x > 0, π(x) is the number of primes not exceeding x,

X(m) =
m(m− 1)

2

∑
p≤µm−1

1

p− 1
, Y (m) = (m− 1)π(µm− 1),

and Z(m) =
∑

p≤µm−1

logp(m!).

Using the asymptotic equality

∑
{p≤x|p is prime}

p−1 = ln(lnx) +O(1)

we infer that

X(m) =
m(m− 1)

2

∑
p≤µm−1

(p− 1)−1 >
m(m− 1)

2

∑
p≤µm−1

p−1 =

=
m(m− 1)

2
(ln(ln(µm− 1)) +O(1)) >

1

3
m2 ln(lnm)

for sufficiently large m. Furthermore,

Y (m) = (m− 1)π(µm− 1) ≤ (m− 1)(µm− 1) = o(m2 ln(lnm))
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and

Z(m) =
∑

p≤µm−1

logp(m!) = ln(m!)
∑

p≤µm−1

1

ln p
≤

≤ ln(m!)

(
(ln(2))−1 +

∫ µm−1

2

dt

ln(t)

)
= O(m lnm)O

(
m(lnm)−1

)
= o(m2 ln(lnm)),

due to Stirling’s asymptotic formula for ln(m!) and Prime Number Theorem, which states that the

functions

π(x),
x

lnx
and Li(x) =

∫ x

2

dt

ln t

are asymptotically equivalent at infinity (see [28, Chapter 11]).

In the long run

A(m) = B(m) + C(m) ≥ X(m) + o(m2 ln(lnm)) >

>
1

3
m2 ln(lnm) + o(m2 ln(lnm)) >

1

4
m2 ln(lnm)

for sufficiently large positive integer m. The lemma is proved. �

Remark 3.2 From the proof of Lemma 3.8 it is evident that the constant 1/4 can be made arbitrary

close to 1/2.

We proceed with the following definition.

Definition 3.8 For arbitrary positive integer m > 1 and positive real number β > 0 we define

Iβ(m) =
∑

{1≤s≤m|ν2(µm−s)>β ln(lnm)}

(s+ 1)∆(µm− s).

Lemma 3.9 For every β > 0, Iβ(m) = o(m2 ln(lnm)).

Proof. If 1 ≤ s ≤ m and µm− s = 2la, for some odd a and l > β ln(lnm), then

a < Lβ(m) = µm2−β ln(lnm). Observe that (µ− 1)m ≤ µm− s ≤ µm− 1, which implies that for fixed

a there is at most one value of l such that (µ− 1)m ≤ a2l ≤ µm− 1. Consequently, there are at most

L∗β(m) ≤ Lβ(m) summands with ν2(µm− s) > β ln(lnm). Let us number them, say s1, s2, . . . , sL∗β(m)

and write µm− sj = 2ljaj , where aj is odd and lj > β ln(lnm) for every j ∈ {1, 2, . . . , L∗β(m)}.

Observe that

Iβ(m) =

L∗β(m)∑
j=1

(sj + 1)∆(µm− sj) = I1,β(m) + I2,β(m),

where
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I1,β(m) =

L∗β(m)∑
j=1

(sj + 1)lj and I2,β(m) =

L∗(m)∑
j=1

(sj + 1)∆(aj).

To estimate I1,β(m) we denote

Tm,β = {[β ln(lnm)] + 1, [β ln(lnm)] + 2, . . . , [log2(µm)]}

for sufficiently large m. It is clear that lj ∈ Tm,β for every j ∈ {1, 2, . . . , L∗β(m)}.

We fix some t ∈ Tm,β and consider those s for which µm− s = 2ta, where a is odd. Notice that a

takes values from a progression with difference d = 2, so that 2ta takes values from a progression

with difference d = 2t+1. Hence the inequality

S(m, d) =
∑

{ν2(µm−s)=t}

(µm− s) ≤
k+1∑
l=1

((µ− 1)m+ ld)

holds where k is the unique integer satisfying kd ≤ m < (k + 1)d, i.e. k = [m/d]. Therefore

S(m, d) ≤ (k + 1)(µ− 1)m+
k(k + 1)

2
d+ (k + 1)d ≤

≤ (µ− 1)
m2

d
+ (µ− 1)m+

m

2

(m
d

+ 1
)

+
(m
d

+ 1
)
d =

≤
(
µ− 1

2

)
m2

d
+

(
µ+

3

2

)
m,

which yields

∑
lj=t

sjlj ≤ t
((

µ− 1

2

)
m2

2t+1
+

(
µ+

3

2

)
m

)
for all t ∈ Tm,β. Thereby

I1,β(m) =

L∗β(m)∑
j=1

sjlj +

L∗β(m)∑
j=1

lj =
∑

t∈Tm,β

∑
lj=t

sjlj +

L∗β(m)∑
j=1

lj ≤

≤
∑

t∈Tm,β

t

((
µ− 1

2

)
m2

2t+1
+

(
µ+

3

2

)
m

)
+ Lβ(m) log2(µm) ≤

≤
(
µ− 1

2

)
m2

∑
t∈Tm,β

t

2t+1
+

(
µ+

3

2

)
m
∑

t∈Tm,β

t+ µm log2(µm) ≤

≤
(
µ− 1

2

)
m2θm +

(
µ+

3

2

)
m log2

2(µm) + µm log2(µm) = o(m2 ln(lnm)),

since θm =
∑

t∈Tm,β t2
−(t+1) → 0.
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In order to estimate I2,β(m) observe that

I2,β(m) =

L∗β(m)∑
j=1

(sj + 1)∆(aj) ≤
L∗β(m)∑
j=1

(m+ 1)∆(aj) ≤

≤ (m+ 1)

[Lβ(m)]∑
j=1

∆(j) ≤ 2(m+ 1)Lβ(m) ln(lnLβ(m))

by Lemma 1 and the inequality aj ≤ [Lβ(m)] for all j ∈ {1, 2, . . . , L∗β(m)}, therefore in accordance

with the equality Lβ(m) = µm2−β ln(lnm) we get

I2,β(m) ≤ Cm2 ln(lnm)2−β ln(lnm) = o(m2 ln(lnm)).

In the long run we end up with the asymptotic equality

Iβ(m) = I1,β(m) + I2,β(m) = o(m2 ln(lnm)),

which terminates the proof of the lemma. �

Corollary 3.4 For sufficiently large positive integer m it is always possible to select an

s0 ∈ {1, 2, . . . ,m} such that

ν2(µm− s0) ≤ 1

16
ln(lnm) and (s0 + 1)∆(µm− s0) ≥ 1

4
m ln(lnm).

Proof. Define I∗1/16(m) = A(m)− I1/16(m). According to Remark 3.2 and Lemma 3.9, the

inequality I∗1/16(m) ≥ (1/4)m2 ln(lnm) holds for sufficiently large m. We choose an s0, satisfying

ν2(µm− s0) ≤ 1
16 ln(lnm), which maximizes the expression (s0 + 1)∆(µm− s0) and deduce that

(s0 + 1)∆(µm− s0) ≥
I∗1/16(m)

m
≥ 1

4
m ln(ln(m)).

�

3.2.1 Proof of Theorem 3.4

a) We choose sufficiently large positive integer m and an s0 satisfying the conditions of Corollary

3.4. In other words, suppose µm− s0 = 2ta, where a is odd, 1 ≤ t ≤ (1/16) ln(lnm) and

(s0 + 1)∆(µm− s0) ≥ (1/4)m ln(lnm). Hence

∆(µm− s0) ≥ 1

4

m ln(lnm)

s0 + 1
≥ m

4(m+ 1)
ln(lnm) ≥ 1

8
ln(lnm) ≥ 2t,
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implying that

∆(a)

∆(µm− s0)
= 1− t

∆(µm− s0)
≥ 1

2
.

Therefore

τ(pµm + ps0) = (s0 + 1)τ(p2ta + 1) ≥ (s0 + 1)∆(a)

≥ 1

4
m ln(lnm)

∆(a)

∆(µm− s0)
≥ 1

8
m ln(lnm),

where we used the inequality τ(p2ta + 1) ≥ ∆(a), which is true by Proposition 3.1. On the other

hand from the proofs of Lemma 3.8 and Lemma 3.9 it is clear that we may assume s0 > 2µ.

Therefore for any integer r, 0 ≤ r ≤ µ− 1,

τ(pµm−r + ps0−r) =
s0 − r + 1

s0 + 1
τ(pµm + ps0) ≥

≥ 1

2
τ(pµm + ps0) ≥ 1

16
m ln(lnm).

Observe that µ(s0 − r) ≤ µm− µr < µm− r, which shows that if nk = pjkk , where pk is prime and jk

is a positive integer for each k, then

Tnk(µ) ≥ [jk/µ] ln(ln[jk/µ])

16(jk + 1)
→∞, when jk →∞, as desired. �

b)

Lemma 3.10 If 1 ≤ µ < θ−1, then there exists a constant c > 0 such that Tn(µ) > c(τ(n))−1 lnn for

all positive integers n.

Proof. Fix any ε, satisfying 0 < ε < µ−1 − θ and apply the formula

n∑
k=1

τ(k) = n lnn+ (2γ − 1)n+O(nθ+ε)

to get
n+[n1/µ]∑
k=n+1

τ(k) = n1/µ lnn+O(n1/µ) +O(nθ+ε) = n1/µ lnn+O(n1/µ).

Therefore there exists a constant c > 0 such that the inequality

max
1≤t≤[n−1/µ]

{τ(n+ t)} ≥ n−1/µ

n+[n1/µ]∑
k=n+1

τ(k) =
n1/µ lnn+O(n1/µ)

n1/µ
> c lnn,

holds for any positive integer n, which yields

Tn(µ) = (τ(n))−1 max
1≤t≤[n1/µ]

{τ(n+ t)} > c(τ(n))−1 lnn

for all positive integers n. The lemma is proved. �
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Suppose (nk)
∞
k=1 is a sequence of positive integers such that nk = pk

jk , where pk is prime, jk is a

positive integer for each k ∈ N and nk →∞ as k →∞. Assume E > 0 is an arbitrary number.

According to Theorem 3.4 a) there is an A > 0 such that jk > A implies Tnk(µ) > E. Lemma 3.10

shows that

Tnk(µ) > c
lnnk
τ(nk)

= c
jk ln pk
jk + 1

≥ 1

2
c ln pk.

So there is some B > 0 such that pk > B implies Tnk(µ) > E.

The condition nk →∞ shows that there are only finitely many positive integers k, such that jk ≤ A

and pk ≤ B. Hence there exists a positive integer k = k(E) such that Tnk(µ) > E for any positive

integer k > k(E).

Since E was arbitrary, we conclude that Tnk(µ)→∞ as k →∞. The theorem is proved. �

In this respect the following conjecture was stated in [35]

Conjecture 3.1 lim
n→∞

Tn(µ) =∞ for any µ > 0.
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Conclusion

Summarizing what has been said, it can be noted that the following main results were obtained in

the thesis.

1. The structure of the Fp[Gal(K/k)]-module V = E/Ep was studied in the case of cyclic

extensions K/k of local fields of prime degree p, where E is the group of principal units in K.

2. Generating elements and defining relations for the OK0 [Gal(M/L)]-module F (pM ) were found

in the case of unramified cyclic p-extensions M/L of local fields and Honda formal groups

F/OK relative to the unramified extension K/K0.

3. It was proved that a sequence A = (an)∞n=1 of positive integers is distinguished as soon as it

satisfies one of the conditions listed below

• lim inf
n→∞

ln(ln(an))

ln(n)
= 0 and A is increasing.

• lim
n→∞

an =∞ and there is a sequence (bn)∞n=1 such that gcd(ak, ak+l) < bl for all k and l.

4. It was proved that if d is any integer different from 1, then for any M > 0 there exist distinct

positive integers m and n such that gcd(22m + d, 22n + d) > M .

5. It was proved that if A = (nk)
∞
k=1 is a sequence of positive integers each term of which is a

power of a prime, namely nk = pmkk , where pk is prime for all k, then

• If µ > 0, then Tnk(µ)→∞, as mk →∞.

• If 1 ≤ µ < θ−1, then Tnk(µ)→∞, as nk →∞.

where

Tn(µ) = (τ(n))−1 max
1≤t≤[n1/µ]

{τ(n+ t)}, n = 1, 2, ...,

θ = inf{λ > 0|D(x) = x lnx+ (2γ − 1)x+O(xλ)}

and D(x) =
∑

n≤x τ(n) is the summatory function of τ .
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