Faculty of Mathematics and Mechanics

of Yerevan State University

Hakobyan Tigran

Symplectic space of

formal modules

Speciality 01.01.06—"Algebra and number theory"

DISSERTATION

For the degree of candidate

of physical and mathematical sciences

Scientific adviser:
doctor of phys.-math. sciences, professor

V. S. Atabekyan

Yerevan - 2018



Contents

Introduction

1 Basic concepts

1.1 Valuation theory . . . . . . . . . e
1.1.1 Normed fields . . . . . . . . . e
1.1.2  Complete fields, discrete valuations . . . . . . . . . .. ... ...
1.1.3 Extensions of normed fields . . . . . . . . ... ... L.
1.1.4 Local fields . . . . . . . . . e

1.2 Formal groups. . . . . . . . e e
1.2.1 Invariant differential and formal logarithm . . . . . . ... ... ... ... ...
1.2.2  Lubin-Tate formal groups. . . . . . . . . . . . . . . . e
1.2.3 Honda formal groups. . . . . . . . ..

1.3 G-modules. . . . . . e

2 Galois modules in extensions of local fields

2.1  The reduced group of principal units as Galois module . . . . . ... ... ... ....
2.1.1  Thegroup W . . . . o
2.1.2 Thenumberse;and l, . .. ... ... ... ...
2.1.3  Proof of Theorem 2.1 . . . . . . . . . . . . . .

2.2 Honda formal group as Galois module . . . . .. ... ... ... 0 L.
2.2.1 Auxiliary lemmas . . . . . .. L.
2.2.2 Proof of Theorem 2.2 . . . . . . . . . . . .

3 Properties of arithmetic sequences

3.1 Distinguished sequences . . . . . . . . . ...
3.1.1 Proof of Theorem 3.1 . . . . . . . . . ..
3.1.2 Proof of Theorem 3.2 . . . . . . . . . . . .
3.1.3 Proof of Theorem 3.3 . . . . . . . .. . .. ..



3.2 Some analytic estimates for the divisor 7-function
3.2.1 Proof of Theorem 3.4 . . ... ... ...

Conclusion . . . . . . . . . . e



Introduction

Let L/K be a finite Galois extension of fields with Galois group G. Then L can be regarded as a
module over the group ring K[G], where K acts by multiplication and G acts in a natural way. The
normal basis theorem (See [1, Chapter 6, §13]) implies that this module is in fact cyclic, namely there
is an isomorphism L = K[G] of K[G]-modules. Similarly one may consider the Z|[G]-module L*, but
this time its structure is rather complicated and is not well studied even if the fields L and K are
”good” enough.

Now suppose that K and L are finite extensions of Q,. Then the ring of integers Oy, as well as all the
fractional ideals p},n € Z of the field L are Ox[G]-modules and one might ask a question concerning
their structure . In connection with this S.V.Vostokov proved in [2] that if L/K is an abelian p-
extension with Galois group G and K does not contain a primitive p-th root of unity, then in the field
L there exist ideals which are decomposable as O [G]-modules if and only if the ramification index
e(L/K) divides the different D, /5. In this respect see also [3].

The multiplicative case was studied in a series of articles [4-8]. We now want to focus on the result
of D.K.Faddeed, published in [6]. He considered the case of cyclic p-extension L/K with Galois group
G = (o), such that K contains a primitive p-th root of unity (,. It was proved that there is an

isomorphism of R = [F,|G]-modules

g e | T O R/, G € Niyic(L7)

R"®R/(c—1)® R/(c — 1), otherwise
Moreover, the author provided a canonical method for selecting the generating elements in a way that
they satisfy certain requirements concerning Hasse’s norm residue symbol.
In a similar way one may consider F/EP as an R-module, where E = 1+ py, is the group of principal
units in L. In the article [9] we considered this module in the case of a cyclic extension L/K of
degree p. It turned out that its structure depends on several factors, including the ramification of
the extension L/K. The proof of this result is provided in the first paragraph of the second chapter
of the thesis. On the other hand it can be proved that E is a Z,-module, namely one can compute
the expression u® for any v € F and a € Z,. The structure of this module is completely studied

in [10, Chapter 15]. In our case, when L is a finite extension of Q,, E decomposes into a direct sum
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of a finite cyclic p-group and a free Z,-module of rank [L : Q,]. In contrast to this, if L is a local field
of positive characteristic, then infinitely many generators are required and infinite products arise.
Further, Z.I.Borevich studied E as a Zpy|G]-module in the case of cyclic p-extensions L/K. Let
Eo =1+ pk be the group of principal units in K, I' = Ny (F), G = (o) and let ( = (ps,5 > 1 be a
root of unity in E. In [7] the author proved that if the map Ey/E{ — E/EP, induced by the inclusion
Ey — E is injective and if Ey = (¢,I'), then the Z,[G]-module E decomposes into a direct sum of a
finite cyclic p-group (¢) and a free Zy[G]-module of rank [K : Q).

We say that the field K is irregular, if it contains a primitive p-th root of unity. The irregularity
degree of K is defined to be the maximal positive integer s for which K contains a primitive p®-th root

of unity. In this respect the following theorem concerning unramified extensions was proved in [7].

Theorem (Borevich, 1965) If the extension L/K is unramified and the fields L and K have the
same irregularity degree s > 1, then for the Zy|G]-module E there exist a system of generating elements

01, ..., On—1,& w with the unique defining relation &° = w°~ !, where n = [K : Q).

It should be noted that in the aforementioned work outside of consideration remained non cyclo-
tomic extensions for which either the inertia degree and the ramification index are different from 1, or
the irregularity degrees of L and K are different. The case of regular K is considered in the paper [8].
With the development of the theory of formal groups it became clear that the considered additive and
multiplicative cases are special cases of a more general construction. Namely, let M/L,L/K, K/Q, be
finite extensions with M /L Galois. If F' is a one dimensional formal group law over the ring O then
one can introduce a new operation on the maximal ideal p;; according to the rule x —1{; y = F(z,y).
From the axioms of a formal group it follows that the structure obtained is in fact an abelian group.
It is denoted by F(par). Now the task is to study F(pys) as a Gal(M/L)-module, more precisely as
a Endg, (F')[Gal(M/L)]-module, where Endg, (F') is the ring of endomorphisms of the formal group
F. If F = Gg, F(z,y) = = + y is the additive formal group, then F(pys) is simply the ideal pj; and
Endg, (F) = Og. This is precisely the additive case we considered above. Similarly, if K = Q, and
F = Gy, is the multiplicative formal group given by the law F(z,y) = x+y+xy, then Endy . (F) = Z,
and F(py) = E,x — 142 as Z,|Gal(M/L]-modules, where E' = 1+4p); is the group of principal units
in M. This one is the multiplicative case we considered earlier. Moreover, if we want a particularly
large endomorphism group, we arrive at the so-called Lubin-Tate formal groups F', in which case for

any element a € Ok there is an endomorphism [a]r of F, starting with az and Endg, (F) can be



identified with the ring Ok via the correspondence a +— [a]r. In the case of Lubin-Tate formal groups
each of the Og-submodules F(s) = ker[n®]p C F(ppsae), s > 1 can be shown to be cyclic, which
allows us to use the concept of the irregularity degree in complete analogy with the multiplicative
case. Namely, we say that K has irregularity degree s, if K contains a generator of F'(s) and does
not contain any generator of F'(s+1). A slight modification of Borevich’s theorem was proved in the
paper [11], where the authors studied the structure of F'(pys) in the case of a Lubin-Tate formal group

F'. More precisely, they proved the following

Theorem (Vostokov-Nekrasov, 2014) Suppose M/L is an unramified p-extension and F is a
Lubin-Tate formal group for the prime element m € K. Assume moreover that the fields M and L
have the same irregularity degree, namely they contain a generator of ker[n®|p and do not contain a

st for some s > 1. Then for the Ok |[G]-module F(pys) there exists a system

generator of ker[w
of generating elements 01, ...,0,_1,&,w with the unique defining relation [7°|p(§) = w — w, where
F

n = [L: K] and o is a generating element of the Galois group G = Gal(M/L).

The key point of this work was the observation that the cohomology group H'(Gal(M/L), F(pyr))
is trivial for unramified extensions M /L. In the paper [12] T.Honda introduced a new method of con-
structing formal groups which were later named in his honor. They appeared to be generalizations
of Lubin-Tate formal groups due to the classification theorems of O.V.Demchenko, proved in [13].
Thanks to the tight connection between these two types of formal groups it became possible to gener-
alize the results already proved for Lubin-Tate formal groups to the case of Honda formal groups. An
example of such a generalization was the work [14] of Demchenko, where he deduced explicit formulas
for the Hilbert symbol in the case of Honda formal groups. We assume that in addition to the fields
K,L, M an intermediate field Q, C Ky C K is given such that the extension K/Kj is unramified and
let F' be a Honda formal group relative to the extension K/Ky and the prime m € Ky (See [12, §2]).
In analogy with Lubin-Tate formal groups the submodule F(s) C F(pja1s) defined earlier is isomor-
phic to ((‘)Kgo/ﬂs(‘)KO)h as a Ox,-module for each positive integer s > 1, where h is the height of F.
Let Wp = U F(s) and let Gal(M/L) = (o). In the second paragraph of the second chapter of the
thesis (See ;T;o [15]) we generalized the previous Theorem to the case of Honda formal groups in the

following manner.

Theorem 2.2 If the extension M/L is unramified and Wp N F(pr) = Wrp N F(py) = F(s),



for some s > 1, then h < n = [L : K] and for the Ok, [Gal(M/L)]-module F(ppr) there exist a
system of generating elements 0;,&;,w;, 1 < j < n—h,1 <1 < h with the only defining relations

(71 (&) = wf —wi, 1 < i< h.
'

The thesis contains some of our results on arithmetic sequences, namely the sequences whose
terms are integers. The well-known theorem of Schur [25, Part 8, Ex. 108] asserts that whenever P is
a non-constant polynomial with integer coefficients, the corresponding sequence P(1), P(2), ... can not
be constructed using only finitely many prime numbers, that is one can find infinitely many primes,
dividing at least one term of the sequence. We will call such a sequence distinguished. It turns out
that the property of being distinguished is peculiar to all rather ”slowly” growing sequences. In the

paper [26] we proved the following

Theorem 3.1 If A = (ay,)}2 is an increasing sequence of positive integers and if

lim inf 7ln(ln(an))

=0
n—00 ln(n)

then A is distinguished.

This result was previously proved in [27] for almost injective sequences. Note that a sequence is
called almost injective if there exists a constant C' > 0 such that for any h there are at most C' values
of n for which a, = h. We would like to stress that our result is independent of [27]. Our next result
we would to mention is related to the Fermat sequence defined by the formula a, = 22" + 1 for all
n. It is known [28, Chapter 1, Theorem 13| that any two distinct terms of this sequence are coprime.
We where interested in whether the result would remain true if we replaced 1 with an odd number d.

The research answered this question in the negative.

Theorem 3.3 If d is any integer different from 1, then for any M > 0 there exist distinct positive

integers m and n such that gcd(22" +d, 2" +d) > M.

The structure of the thesis. We found it important to include in the text all the necessary infor-
mation concerning local fields, formal groups and G-modules to rid the reader of numerous searches
of the corresponding results in the literature. Whenever the proof of a statement is omitted, the exact
reference to the relevant place in the literature is given. All this material is the content of the first
chapter. We also recommend the following books and articles to the interested reader: for local fields
we refer to [16-18], [19, Chapter 2], for Lubin-Tate formal groups see [16, Chapter 4], [20, Chapter

3, §6], for Honda formal groups the best source is the article [12], see also [13,14]. Regarding formal
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groups in general see [21] and [22]. For G-modules and Galois cohomology we refer to [23, Chapter
4,5], [24] and [20, Chapter 1, §53.4].

The second chapter is devoted to the investigation of G-modules defined in extensions of local fields.
It is divided into two sections. In the first section for cyclic extensions of local fields L/K ( finite
extensions of Q) the structure of the [F,[G]-module E/EP is examined in each of the seven possible
cases ( Theorem 2.1), where E is the group of principal units of L. The content of the second section
is, by and large, the proof of Theorem 2.2 mentioned earlier.

The third chapter contains some of our results on arithmetic sequences. It is likewise divided into
two sections. The first section is devoted to distinguished arithmetic sequences and contains proofs
of Theorems 3.1, 3.2 and 3.3. The second section of Chapter 3 contains the proof of Theorem 3.4
concerning asymptotic estimates of the divisor function.

The main results of the thesis have been published in 3 scientific articles [9], [26] and [35] and in the
preprint [15]. The obtained results were presented at the Research Seminar of Constructive Class
Field Theory of St. Petersburg State University, 2016-2018 as well as were scheduled for presentation
at the International Conference On Number Theory which took place in Palagna, Lithuania from 09

to 15 September, 2018.



CHAPTER 1

Basic concepts

1.1 Valuation theory

1.1.1 Normed fields

DEFINITION 1.1 A normed field is a field k together with a function || || : & — R, called absolute value

(norm), which satisfies the following conditions
o |z]| >0 and ||z| =0 iff x =0
o [lz+yll <zl + vl
o llzyll = llzll - llyll
The absolute value || || is called non-archimedean iff the second condition is fulfilled in a stronger form
[l + yll < max{[[z]], [|y[l}-
Otherwise it is called archimedean.
DEFINITION 1.2 A function v : k — RU{oo} on a field k is called a valuation iff
1. v(z) =00 iff t =0
2. vz +y) > min{v(z),v(y)}
3. v(zy) = v(z) +v(y)
From these definitions one can immediately derive the following

PROPOSITION 1.1 There is one to one correspondence between non-archimedean absolute values and

valuations on the field k, given by || || — —log(|| |-



THEOREM 1.1 An absolute value || || on a field k is non-archimedean iff ||n- 1x]| < 1 for all n € Z,

where 1y, is the unity of k.

Proof. It suffices to prove that ||z| < 1 implies |1 + z| < 1. Indeed,

n n
n| __ n k n k
I+ 2)™ =) <k>x <3 (;;;)’ |z|* < n+ 1.
k=0 k=0
Taking n-th roots and passing to the limit, we get the desired result. O

COROLLARY 1.1 If k is a field of characteristic p > 0, then any absolute value on it is non-

archimedean.

Proof. In this case the prime subfield of k is the field F,, of p elements, so that 2P~! = 1 and thus

[z]| = 1 for any x € F}. Therefore we can apply Theorem 1.1. O

From the proof of Corollary 1.1 we get
COROLLARY 1.2 Any absolute value on a finite field k is trivial, i.e. ||z|| =1 for any z € k*.

In the sequel we will assume that (k, || ||) is @ normed field and || || is non-archimedean, if the opposite
is not mentioned. What follows from Proposition 1.1, we can equivalently use valuations v. If v is the

valuation corresponding to the absolute value || ||, then

DEFINITION-THEOREM 1.1 The set o = {x € k|v(z) > 0} = {x € k| ||z|| < 1} is a subring of k, which
is called the valuation ring of k. It is a local ring with mazimal ideal p = {z € klv(x) > 0} = {z €
k| ||z|| < 1}, called the valuation ideal. Further, the set U = o\p ={z € klv(z) =0} ={z € k| ||z|| =

1} coincides with the group of invertible elements of 0. The field f = o/p is called the residue field of k.

Proof. Every element in o\ p has valuation zero so that its inverse in k also has valuation zero and
is thus in o, which means that it is invertible in the ring 0. Hence o is a local ring with maximal ideal

p. Everything else is clear. U

Any normed field (k,|| ||) is a metric space with respect to the metric d(z,y) = ||z — y|| and turns
into a topological field with respect to the topology induced by this metric, the collection B,, = {z €

k| ||z]| < 1/n} is a basis of neighborhoods of 0.
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Examples of normed fields

1. The usual absolute value is an archimedean absolute value on fields Q,R and C.

2. Suppose p is a prime number. Each nonzero rational number r can be written uniquely in the
form r = p" ¢ where n, a, b are integers, b > 0,gcd(a,b) =1 and p { ab. It can be shown that the
function |||, : Q — R defined by

p ", r#0
”7'Hp =

is a non-archimedean absolute value, called the p-adic absolute value.

3. Suppose F is a field, F(¢) is the field of rational functions and p(t) € F[t] is a fixed irreducible
polynomial. Similar to the previous case, any nonzero rational function r(t) admits a represen-
tation r(t) = p”(t)% with uniquely determined integer n, where p(t) does not divide a(t) and

b(t). In complete analogy with the field of rational numbers, for given real number ¢ > 1 the

function ||-||, : F(¢) — R defined by

H7"||p =

is a non-archimedean absolute value. In addition to these absolute values one can define a new

one by the formula ||r||e = ci8P~9%€4  for any representation r(t) = %. Note that |||/ is

the compositum of |-||7 with the automorphism ¢ of F(t), given by ¢ — 1. More precisely,

Ir(®)lloo = I (7)1

We proceed with the following

DEFINITION 1.3 Two absolute values || |1 and || ||2 on a field k are called equivalent iff there is o > 0

such that ||x||1 = ||z||§ for all x € k.

THEOREM 1.2 The absolute values || |1 and || ||2 on a field k are equivalent iff they induce the same

topology on k.

Proof. The necessity follows from the fact that if ||z||; = ||z||$, then the open sets and thus the

topologies defined by these absolute values do coincide. To prove the sufficiency observe that the
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condition ||z|| < 1 is equivalent to the condition ™ — 0, which is of topological nature. Therefore
lz]|1 <1< [|z|l2 < 1 and consequently ||z]|; > 1 < ||z||2 > 1. Let x and y satisfy ||z||; > 1 and |Jy[j; >
1. By what we mentioned above they also satisfy |z|2 > 1 and ||y|2 > 1. By the same observation

[™y" |1 > 1 & [lz™y"||l2 > 1, so that mlog(|[x[|1) +nlog([[yll1) > 0 < mlog(]|x]l2) +nlog(|lyll2) > 0.

log((|z1) _
Tog([lz[2)

Since all the numbers log(||x|;),log(||y||:) are positive, the latter equivalence means that

%. Therefore there is a positive constant « for which the equality log(||z||1) = alog(||z||2) is
valid for any =, satisfying ||z||; > 1,7 = 1,2. Since log(||z7!||;) = —log(||z|);), it holds for any = € k*.
Exponentiation of the obtained equality yields the desired result. ([

REMARK 1.1 Simultaneously we have proved that the following conditions are equivalent
e The absolute values || |1 and || ||2 induce the same topology on k.
o There exists o > 0 such that ||z|1 = ||z||§ for all x € k.

e The conditions ||z|1 <1 and ||z||2 < 1 are equivalent.

From the proof of Theorem 1.2 it also follows that the aforementioned 3-rd condition can be weakened
to the condition: ||z|]1 < 1 = ||z|l2 < 1. Moreover, if the valuation || ||2 is non-trivial, we could
equivalently use the implication ||z|1 < 1 = |jz|l2 < 1, while for the trivial || ||2 the implication

lzllh < 1= |z|2 <1 is valid for any absolute value || ||1 and the latter is not equivalent to || ||2,

unless it is trivial.
COROLLARY 1.3 An archimedean absolute value is never equivalent to a non-archimedean one.

Proof. Indeed, due to Theorem 1.1, an absolute value is non-archimedean if and only if ||n- 1x]| <1

for all n € Z. This condition does not depend on which of the equivalent valuations we consider. [J

Suppose that we are given mutually nonequivalent non-trivial absolute values || ||;,1 < i < N on the
field k. For each i we denote by k; the topological space, whose underlying set is the underlying set

of k and the topology is induced by || ||;- One can prove the following

THEOREM 1.3 (Artin-Waples, Approximation theorem) The image of the diagonal map k —

[[i<;<n ki is dense, where [[,<;<n ki is given the product topology.

In other words, the theorem states that for any € > 0 and elements «; € k,1 < i < N there exists an

element & € k, such that ||{ — a||; < e for all 4.
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Proof. Observe that it is enough for each 1 < ¢ < N to construct an element 0; € k for which

|6;]]; > 1 and ||6;]|; < 1 for each j # i. Indeed, in case these elements are constructed, the number

o;
€= 2 rigo

1<i<N i

will satisfy the required conditions for sufficiently large positive integer r. We now prove the existence
of # = 61 by induction. For N = 2 the assertion follows from Remark 1.1. Suppose N > 3. By
the induction hypothesis there exists an element ¢ € k which satisfies the conditions ||¢[[; > 1 and
llolli <1 for 2 <i< N —1. Since || ||; and || |5 are not equivalent, then, according to Case N = 2

we conclude the existence of an element ¢ for which [|¢||; > 1 and ||¢||xy < 1. To complete the proof

we set .
9, lolln <1
0=00v. lolln =1
PY/(1+¢"), lollv>1
for sufficiently large positive integer r. (|

Note that for £ = Q, Theorem 1.3 , in a sence, is the Chinese remainder theorem. In the case of
the field of rational numbers Q there is the usual absolute value and p-adic absolute value for each
prime number p (see Example 2). It turns out that this is the full list of absolute values on Q. More

precisely there is an important

THEOREM 1.4 (Ostrowski, 1916) Fach non-trivial absolute value on Q is equivalent to either the

usual absolute value or a p-adic absolute value for certain prime number p.
Proof. See [23, Chapter 2, Thm. 3.2] . O
Similarly, for the field of rational functions F(¢) (see Example 3) there is a

THEOREM 1.5 Each non-trivial absolute value on F(t), which is trivial on F, is equivalent to either

| [loo or || ||p for some irreducible polynomial p(t) € F[t].
From Corollary 1.2 and Theorem 1.4 we deduce

COROLLARY 1.4 Each non-trivial absolute value on Fy(t) is equivalent to either || || or || ||p for some

irreducible polynomial p(t) € Fy[t], where Fy is the finite field of q elements.

13



1.1.2 Complete fields, discrete valuations

DEFINITION 1.4 A normed field k is called complete iff it is complete as a metric space with respect

to the metric induced by the norm.

DEFINITION 1.5 Let k be a normed field, including the archimedean case. The field k is called the

completion of k iff
1. ks complete

2. There is an isometric field embedding k — k onto a dense subfield oflz:

Similar to metric spaces we have the following

THEOREM 1.6 Any normed field k has a completion, which is unique up to an isometric isomorphism

of fields over k.

Proof. (Sketch) Consider the completion k of k in the sense of metric spaces. Recall that the el-
ements of k are the equivalence classes of Cauchy sequences of elements from k. The addition and
multiplication are defined on k in a natural way, endowing it with a ring structure. The role of 0 plays
the equivalence class of null-sequences, i.e. the sequences tending to zero, similarly the role of 1 plays
the equivalence class of the stationary sequence, consisting of ones. Any nonzero equivalence class
is invertible in this ring, since any Cauchy sequence which is not equivalent to the zero sequence, is
separated from zero and thus if we take the inverses of elements of this sequence, we get a new Cauchy
sequence, the equivalence class of which is defined as the inverse of the equivalence class containing
the initial sequence. Therefore k is a field, moreover if we take an equivalence class ¥ and a Cauchy

sequence ¢ = (cp)pe; € € then we can define ||€||; = li_)m llen ||k, which, as can be shown, exists and
n [e.9]

does not depend on the choice of the representative c. Passing to the limit we can show that || ||;
is an absolute value on the field k and that the natural embedding of k into k is an isometry onto a
dense subfield. If k; and ko are two completions of k, then they contain dense isometric copies of k.

Extending this isometry, we get an isometric field isomorphism from k1 onto ko over k. (]
Examples

4. The field of rational numbers Q is not complete with respect to the usual absolute value. Its

completion is the field of real numbers R.

14



5. For each rational prime p, the field Q is not complete with respect to the p-adic absolute value
| I, (see Example 2). In fact, it can be shown that the Cauchy sequence of rational numbers
rn = Z pi2 does not converge to any rational number. The completion of Q with respect to
the p—lzfciigcnmetric is called the field of p-adic numbers. It is denoted by Q, and its elements are
the formal expressions of the form o = Z a;p’, where a; € {0,1,...,p— 1} for all i. Therefore
the absolute value on Q, is given by ||Za>>||;00: p~ ", where n is the number of the first nonzero
coefficient a,. The elementary operations are performed in a natural way, extending the p-base
arithmetic to infinite expressions. The ring of integers (see Definition-theorem 1.1) of Q, is called
the ring of p-adic integers and is denoted by Z,. It is the completion of the ring Z of ordinary
integers with respect to the p-adic metric, induced from Q. In its turn, the elements of Z, are
the expressions not containing negative terms, namely o = Z a;p’. The valuation ideal is the

i>0

ideal pZ, of all p-adic integers, which are divisible by p and consists of the elements of the form

a=> a;p'. The residue field is Z,/pZ, = Z/pZ.
i>1

6. If F is a field, then the field F(t) of rational functions is not complete with respect to the absolute

value || ||z (see Example 3), since the Cauchy sequence of rational functions R, (t) = Z t'is
0<i<n
not convergent. One may check, that the completion of F(¢) with respect to || ||z is the field

F((t)) of Laurent series involving only finite number of negative powers. So the absolute value
on F((t)) is given by ||a(t)||r = ¢, where a(t) = Z a;t', n is the number of the first nonzero
coefficient of o and ¢ > 1 is the real number whizi_v:zs used when defining || ||z on F(¢). The
valuation ring of F((¢)) is the ring F[[t]] of formal power series involving only non-negative powers,
the valuation ideal is the ideal ¢tIF[[t]] of all formal power series involving only positive powers of
the indeterminate t. The residue field is thus F[[¢]]/(t) = F.

Similarly, the completion of F(¢) with respect to || || (see Example 3) is the field F((1/t))
of all Laurent power series containing finitely many positive powers. The absolute value on
F((1/t) is given by [la(t)||r = ", where a(t) = Z a;t', n is the number of the rightmost
nonzero coefficient of @ and ¢ > 1 is the real numlb<<e(1>rowhich was used when defining || || on

F(t). Furthermore, the valuation ring will be the ring F[[1/¢]] of powers series without positive

powers, the valuation ideal will be the ideal (1/¢)F[[1/t]] and the residue field will be again F.

In case of archimedean absolute values the situation is more or less clear due to the following
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THEOREM 1.7 (Gelfand-Tornheim-Ostrowski) Any complete archimedean normed field (k.|| |)
admits an isometric field isomorphism o : (k,|| ||) = (R,| |€) or (C,| |°) for uniquely determined
¢ € (0,1], where | | is the standard absolute value on R (resp. C). In particular, any archimedean
normed field can be thought of as a subfield of the field of complex numbers the absolute value being

equivalent to that induced by the usual absolute value on C.
Proof. See [19, Prop. 4.2] O

In non-archimedean case we have the following

PROPOSITION 1.2 The normed field k is non-archimedean iff so is its completion k. If this is the case
then the corresponding absolute values have the same image as functions. Moreover, if we denote by

9) and p the corresponding valuation ring and valuation ideal, then @/ﬁ =0/p.

Proof. The first assertion follows from Theorem 1.1, while the second one is a direct consequence
of the fact that whenever ||y|| < ||z|| the equality ||z 4+ y|| = ||z| holds. To prove the last assertion,
observe that p = pN O, so that the inclusion O — O induces a field embedding O/p — 9) /p. The
surjectivity of the latter follows from the construction of k, namely for any x € O, there exists an

y € O such that ||lz —y|| < 1. O

We proceed with the definition of a normed vector space.

DEFINITION 1.6 Let (k,| |) be a normed field. A normed k-vector space is a pair (V.|| ||) of a vector

space V over k and a function || || : V' — R, called norm, which satisfies the following conditions
e |z]| >0 and ||z| =0 iff x =0
o llz+yll <llzll + vl
o [[Azll = [A[- [l=|

forallx,y eV and X € k.

In what follows we shall need the following

LEMMA 1.1 If k is complete, then any two norms || |1 and || ||2 on a finite dimensional k-vector

space V are equivalent, namely there exist positive constants Cy and Cq such that ||z||; < Ci||z|2 and
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lz|l2 < Co||x||1 for all x € V.. Moreover, the vector space V is complete with respect to any norm on

1t.

Proof. The last assertion is a direct consequence of the first one, so we focus on the former statement.

Let us fix a basis z1,...,xy of V and define the norm || ||o on V by the formula

It is enough to show that any norm || || is equivalent to || ||p. First we note that

I3° A < 32 1l llzall < € | 32 M

where C; = ) ||xy,||. Assume the contrary that there is no constant Co for which the inequality

= max |\,|.
0 n

i

0

lz]|o < Cal|z|| holds for any x € V. Hence there exists a sequence (v;)72, C V, v; = Z Aijxj of
1<G<N
elements, for which [|v;|| < %||v;[|o for all 4. One has that there exist some index 1 < jo < N for which

max; || A j|| = |ij, || for infinitely many indices ¢, so that we may assume without loss of generality
that jo = N and that A\; y = 1 for all 7. Therefore v; — 0 and the sequence Z NijTj = v; — Ty,
1<j<N-1
is a Cauchy sequence. The statement of the lemma is trivial for N = 1, suppose it is true for N — 1
dimensional spaces and observe that the sequence (v; — xy,)3; is in the N — 1 dimensional subspace
of V generated by x1, ..., xn_1, so that by the induction hypothesis for each j the coordinate sequence
(Xi,j)2, is a Cauchy sequence in k. Now the completeness of k comes into play, showing that there
are )\j € k,1 <j <N -1 for which \;; — )\; for each j. Passing to the limit in v; — 0 we get
> <j<N-1 /\;ij + xn = 0, which is a contradiction. Therefore such a constant Co with the required

property exists and the induction step is complete, thus finishing the proof of the lemma. O

We find it necessary to introduce the following key lemma, which allows to factor polynomials over

the valuation ring of a complete field.

LEMMA 1.2 (Hensel’s) Let (k,|| ||) be a non-archimedean complete normed field with valuation ring

0, valuation ideal p and residue field f = o/p. Let f € ox],

f(x) = amz™ + 1™V 4 .+ a1z + ag

be a primitive polynomial, which means that the reduction f of f modulo p is nonzero, i.e.
maxo<i<m ||ai|| = 1. Assume moreover that f = gh, ged(g,h) = 1 in flx]. Then there exist poly-

nomials g, h € o[z] such that g = g,h = b, deg(g) = deg(g) and f = gh.
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We will not present the proof of this lemma here, since it is fairly long. If the reader is interested in
the proof, we refer to [29, §144]. Instead we derive some crucial consequences on which the rest of the

theory is founded.

COROLLARY 1.5 Under the conditions of Lemma 1.2 if f has a simple root a € f, then there is a

unique element o € o such that f(a) =0 and & = a.
Proof. It suffices to set g(z) = x — a to complete the proof. O

COROLLARY 1.6 If (k,|| ||) is a non-archimedean complete normed field, f(x) = Z a;ix’ € klz] is
0<i<n
an irreducible polynomial of degree n, then maxo<i<n ||a;i|| = max{||aol|, ||an||}. In particular, if f is

monic, then ||ag|| < 1 implies ||a;|| <1 for alli.

Proof. For n = 1 the statement is true. Assume the contrary that n > 1 and maxj<j<np—1 ||a;i|| =
llaj|| > max{||ao|, ||an||}. Since Haj_laoH <1, Haj_lanH < 1 and Haj_laiH <lforalll<i<n-—1we
get that for some 0 < ¢ < n the reduction of the irreducible polynomial aj_1 f modulo p is X'h for

certain polynomial f with h(0) # 0. This implication contradicts Hensel’s lemma . O

We now introduce discrete valuations. In the following definition we prefer to use valuations rather

than absolute values.

DEFINITION 1.7 If v is a valuation on the field k (See Definition 1.2), then the set I' = v(k*) is a
subgroup of (R, +), called the value group of v. A valuation v on the field k is called discrete iff T' is

discrete and reqular iff U = Z. If v is discrete we will call k a discrete valuation field.

All absolute values (valuations) mentioned in Examples 2,3,5,6 are examples of discrete valuations.
Observe that each non-trivial discrete valuation becomes regular after multiplication by a suitable

positive real constant, since each non-trivial discrete subgroup of (R, +) is generated by some ¢ > 0.

DEFINITION-THEOREM 1.2 A waluation v on the field k is discrete iff the valuation ideal p is principal.
If this is the case, then the valuation ring o is a discrete valuation ring, equivalently a local PID or
a local Dedekind domain, with ideal group Iy, = {p"|n € Z}. If v is reqular then the elements x € k
satisfying v(x) = 1 are all possible generators of p. Any such element is called a uniformizer and is
denoted by w. The subgroups p™ of (k,+) form a basis of cl-open neighborhoods of 0, and k becomes a

non-discrete totally disconnected topological field. Similarly the subgroups Uy = U, U, =1+p" n>1
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of (k*,-) form a basis of cl-open neighborhoods of 1 € k*, so that k* becomes a non-discrete totally

disconnected topological group. Moreover, there are isomorphisms of groups
E* = (m) x U

U/Uy = 1£*; [z] — xz(mod p)

and

Un/Upi1 =0 >1; [1 4+ 27" = z(mod p).

Proof. We will prove only the first assertion. To do this recall that a non-trivial subgroup of (R, +) is
discrete if and only if it possesses a minimal positive element c. If the valuation ideal p is principal then
there surely exists an element with minimal positive valuation, in fact any generator of the valuation
ideal will work. Conversely, if there is such an element A, then each other element y from the valuation
ideal p will satisfy v(u) > () which is amount to saying that € (X) so that p = () is principal and
we are done. Further, since the value group of v is I' = {nc|n € Z}, any nonzero ideal a C 0 possesses
an element of minimal positive valuation, say Aq with v(Aq) = nqc. Then in the same way we deduce

that a = (\q) = (A\"¢) = p"e, since A\q and A" have the same valuation and therefore are associate. [J

Suppose for each m € Z an element m,, € k is fixed with v(m,,) = m. Let R C o be a complete

representative system of o0 modulo p. Then one can prove the following

ProproSITION 1.3 If k is a complete field with respect to a discrete regular valuation v and 7 is a
uniformizer, then any element x € k can be uniquely written as a Laurent series
T = Z A Tom, Am € R.
m>3>—00
Proof. Observe that o = R+p = {z +y|z € R,y € p} and therefore p™ = 7,0 = m, R + p™+! for

all m € Z. The completeness of k yields p™ = > ,o  mR for all m € Z. Since k = |, »™, we are

>m
done. Suppose Y amTm = Y. bmTm, where ay,, b, € R. If there exists m with a,, # by, then
take the least such index mg and observe that v (>, (am — bm)Tm) = mg. The attained contradiction

completes the proof. O
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1.1.3 Extensions of normed fields

In this section we will use the notation (k,| |) for a normed field & equipped with an absolute
value | |. Suppose K/k is an extension, we will assume that it is algebraic. Let || || be a valuation on
K. We will say that || || is an extension of | |, if ||z|| = |z| for all x € k. A natural question arises: is

it always possible to extend | | to K. First we will consider the case when k is complete.

THEOREM 1.8 If (k,| |) is complete and K/k is any algebraic extension, then there is a unique exten-
sion of | | to K. Moreover, if K/k is finite and n = [K : k|, then this extension can be given explicitly

in the form ||z|| = ¢ ‘NK/k(az)‘. Moreover, (K, | ||) is a complete field.

Proof. By a quick observation of the expression, mentioned in the statement of the theorem, one may
reduce the proof to the case of finite extension K/k.

To prove the uniqueness, we recall that any absolute value || || on K extending | | turns it into a
finite dimensional normed k-vector space. Using the completeness of (k, | |) we get by Lemma 1.1 that
(K, | ||) is complete and any two norms || ||; and || ||2 on it are equivalent and hence are topologically
equivalent. According to Theorem 1.2 one can write || |[; = || ||§ for some a > 0. Since || ||; and || |2
coincide on k, we get that a = 1 unless they are trivial. In the latter case, the trivial absolute on K
extends | | and therefore any other extension is trivial, being equivalent to the trivial absolute value.
For the existence we will try a good candidate |[z| = {/|N, K/k(:ﬁ)} mentioned in the theorem, which
turns out to be an extension of | | and satisfies the conditions 1) and 3) of Definition 1.1. So it remains
to check whether it satisfies 2). If | | is archimedean, then by Theorem 1.7 k = R or C and | | is
equivalent to the standard absolute value, so that in either case || || satisfies the condition 2). For the
non-archimedean case it is enough to check that [|a| < 1 implies || — 1|| < 1. Let us see what does

this mean. If f,(z) = 2™ + Z a; X" is the minimal polynomial of o over k and s = [K : k()]

0<i<n—1
then Ng/i(a) = (—1)"ag and Ngjp(a —1) = (=1)"(1 + Z a;)®, so that the latter assertion is a
0<i<n—1
direct consequence of Corollary 1.6. (]

In general we proceed in the following way. If k& denotes the completion of k& and 91 is the nil-radical

of the ring K ® k, then there is an isomorphism
k
m
K@k/MN > K;
¥ > / Zl_Il i
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of k-algebras for certain fields I;, each of which is a finite extension of k. Moreover, the number
m is uniquely determined and the extensions K; are unique in the sense that for any other such list
K/, 1 <i < m of fields there exists a permutation o : {1,2,...,m} — {1,2,...,m} and isomorphisms
i K; = K(’T(Z.) over k. For more details we refer to [23, Chapter 2,§§9-11].
Since the fields K; are finite extensions of the complete field k, by Theorem 1.8 there exists a unique
extension || ||; of | | to K; and (Kj, || ||;) is complete for each 1 < i < m. Let i : K — K (%) k be the
homomorphism a — a® 1, 7 : K % k— K % k/M be the natural epimorphism and 7; : [[\2, K; — K;
be the projections onto K; for each 1 < ¢ < m. Then the maps ¢; = m;opomoi: K - K;;,1<i<m
are ring homomorphisms and are therefore injective so that K can be regarded as a subfield of K; for
all . Since K = K % k is dense in K % k, the field K = v;(K) is a dense subfield of K;, so that K
is the completion of K with respect to the absolute value transplanted from K; via ;. Moreover, it
turns out that these absolute values are pairwise distinct and constitute a complete list of extensions
of the absolute value | | to K.
If, in addition, K = k(«) for some o € K with minimal polynomial f € k[x], then the composite map

m m

K @k = k]/(f) = [T *l/(9) = T *(e)

i=1 i=1
has kernel ([[;<;<,, gi(x))k[z]/(f) = N (k[x]/(f)), where f = [Ticicmgi' is the factorization of f in
k[z] and «; is a root of g; for each i. Moreover, K; = k() and v¢; : K — K; sends « to o;. The

number of distinct extensions of | | to K is thus equal to m.

COROLLARY 1.7 If K/k is a purely inseparable finite extension, then there is precisely one extension

of | | to K.

Proof. Suppose K = k(a). The minimal polynomial of o has the form X?* — a for some a € k, which
has only m = 1 irreducible factor as a polynomial in L[z] for any extension L/k, in particular for
L = k. Therefore, according to what was said above the extension of | | to K is unique . In general,

K /K is a tower of such extensions, so that the conclusion remains true anyway. O

In what follows we will assume that K/k is an extension, not necessarily algebraic and the absolute
value || || on K extends the absolute value | | of k. In this case we say that K/k is an extension of
normed fields. Let IV,0’,p’,f’ and T',0,p,f denote the value group, valuation ring, valuation ideal

and the residue field of K and k respectively. Note that I' = {|z| : x € k*} is a subgroup of
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I ={||z]| : * € K*} and f is a subfield of f’. One can define the numbers e(K/k) = [IV : I'] < 400
and f(K/k) = [f’ : f] < 400, which are called the ramification index and the inertia degree of the

extension K /k respectively.

DEFINITION 1.8 The extension K/k of normed fields is called unramified if e(K/k) = 1 and is called
totally ramified if f(K/k) = 1.

It can be seen that if (L, || ||*) further extends (K, || ||), then e(L/k) = e(L/K)e(K/k) and f(L/k) =
f(L/K)f(K/k). Hence the extension L/k is unramified (resp. totally ramified) if and only if so are
the extensions K/k and L/K. From now on we will assume that the absolute value | | is discrete. In

this respect one can prove the following

PROPOSITION 1.4 If K/k is a finite extension, then || || is discrete and the inequality e(K/k) f(K/k) <
[K : k] holds.

Proof. Suppose s < e(K/k) and the elements xi,...,2s € K are chosen in a way that the ele-

A

ments ||z;|| € I",1 < i < s are different modulo I'. If > 7 | ¢;z; = 0 for some ci,...,¢s € k, then
max<;<s ||¢izi|| = 0, since all ||¢;x;|| are different. Therefore all the numbers ¢; are equal to 0, so that
x1,...,Ts are linearly independent over k and s < [K : k]. Since s was arbitrary, we conclude that
e =e(K/k) < [K : k] which shows that I” C T''/¢ is a discrete group. Therefore the absolute value || ||
is discrete. Further, we choose elements ¥, ...,y € 0o/, such that their residue classes 91, ..., 9, € f’ are
linearly independent over f. Let m € K be an element for which ||| = ¢ < 1 is the largest possible ele-
ment of I, in other words 7 is a uniformizer with respect to the normalized valuation v corresponding

to the absolute value || || (See Def-thm.1.2). We claim that the elements 7'y;,0 <i<e—1,1<j<r

are linearly independent over k. Assume the contrary that the relation

e—1 r
d cigmyy =YY gy | T =0 (%)
,J i=0 \j=1

holds for some elements c¢; ; € k not all of which are zero. Multiplying this relation by a suitable
power 7" we may assume that the elements ¢; ;7" are integral while not all of them are divisible
by m. According to the choice of the elements y1, ..., y, at least for one index ig, 0 < ig < e — 1 the
coefficient 25:1 Cig,jYj of 7% is nonzero. By what was said at the beginning of the proof, the latter
assertion contradicts (), since ||| = ¢!,0 < i < e — 1 are distinct modulo T'. In the long run we get

that er < [K : k| and therefore e(K/k)f(K/k) < [K : k|, since r < f(K/k) was arbitrary. O
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Note that e(k/k) = f(k/k) = 1 by Proposition 1.2, but

o k] # 1= e(k/k) £ (k/k)
whenever k fails to be complete. In case k is complete the situation changes due to the following

PROPOSITION 1.5 If k is a complete discrete valuation field and K /k is an extension, then it is finite
if and only if both numbers e(K/k) and f(K/k) are finite. If this is the case then e(K/k)f(K/k) =
(K : k.

Proof. The necessity follows from Proposition 1.4. To prove the sufficiency we may assume that K
is complete, since passing to the completion does not change either the numbers e(K/k) and f(K/k)
nor the value group I ( See Proposition 1.2). Since e = e(K/k) is finite, the subgroup I is discrete,
so that || || is discrete. Note that in the course of the proof of Proposition 1.4 we constructed a linearly
independent set W’iyj e K,0<i<e—1,1<j<roverk, where 7’ is a uniformizer of K and we may
assume 7 = f = f(K/k). Therefore we only need to show that it is in fact a k-basis. Indeed, let R be
a complete representative system of o modulo p. Then the system R = {Zlle a;yi : a; € R} can be
shown to be a complete representative system of o’ modulo p’. Let us fix a uniformizer m € k. If v is
the normalized valuation corresponding to the absolute value || ||, then v(7) = e and v(#') = 1. For
each integer n we divide n by e with reminder and write n = em + ¢ for uniquely determined integers
m and 0 < i < e — 1. Therefore v(m,) = i + em = n if we set m, = 7/ix™ for all n € Z. According to
Proposition 1.3 any « € K has a unique representation
T = Z Ty = Z Z CijmY; ™ = Zci,jw’iyj,
n3>—00 m>—00,0<i<e \1<j<f ij

where ¢; ; = Zm>>_oo Cijmm™ € 0,¢jm € R and a, € R'. Note that we additionally proved that
the system W’iyj € K,0<i<e—1,1 <j < fisa free o-basis of o/. In the long run we get
[K : k] < [K : k] = ef and therefore ef < [K : k] < [K : k] = ef by Proposition 1.4, so that K = K is
complete and [K : k| =ef. O

1.1.4 Local fields

DEFINITION 1.9 A normed field (k,| |) with a non-trivial absolute value | | is called a local field if it

is a local compact topological field in the topology induced by | |.
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REMARK 1.2 In case the absolute value is archimedean, by Theorem 1.7 one may assume that k is
a dense subfield of either R or C, the absolute value being equivalent to the usual one. Hence local
compact archimedean fields can be identified with either R or C with the absolute value | | for some

c>0.

In what follows, by a local field we mean a non-archimedean local field, unless otherwise specified.

PROPOSITION 1.6 For a non-archimedean normed field (k,| |) with non-trivial absolute value | | the

following statements are equivalent
1. k is a local field.
2. The valuation ring o is compact.

3. The absolute value | | is discrete, k is complete and the residue field f = o/p is finite.

Proof. 1)<2) Observe that if U is an open neighborhood of 0 for which U is compact, then for
sufficiently large N the ball By = {x € k : |x| < 1/N} is contained in U and is therefore compact
since it is closed at the same time. We choose an element a € k with |a| > N and observe that
0 C aBy is compact, being a closed subset. The reverse inclusion is clear, since o is both closed and
open at the same time.

2)=3) If o is compact, then p is compact as well as a closed subset. Therefore the open cover
Sy ={z €k :|z] <1—-1/N},N > 1 of p must admit a finite sub-cover, so that p = Sy for
sufficiently large N, whence the discreteness of | |. Being a compact metric space, o0 is complete and
totally bounded, in particular for € = 1 there is a finite e-net for o, which is equivalent to saying that
the residue field f = o/p is finite. To prove that k is complete observe that for any Cauchy sequence
(Tn)n>1 either x, — 0 or |x,| is eventually constant so that for some m and N one has z,, € p"",n > N.
Since p™ is compact for any m € Z, the sequence (x,,),>n must converge in it.

3)=-2) Since | | is discrete, the prime ideal p is principal and therefore p’/p**1 = 0/p as o-modules for
all i > 1. Hence for all i > 1, the quotient ring o/p is finite, which amounts to saying that o possesses

a finite e-net for any € > 0 and is thus totally bounded metric space. On the other hand it is complete

and is therefore compact. O

Observe that if k is a local field then its characteristic is either zero or equals the characteristic
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of its residue field. Indeed, there is a ring homomorphism o — o/p = f, and therefore char(f) must

divide char(k). We will treat each case separately but first we need the following

LEMMA 1.3 In a local field k the equation 9 = x has exactly q solutions, where q = |f| is the

cardinality of the residue field f of k.

Proof. Note that the polynomial ¢ — z has ¢ different roots in f, namely all the elements of f.
Corollary 1.5 of Hensel’s lemma 1.2 allows us to uniquely lift all these roots to the ring o, so that
we end up with ¢ different roots of 9 — x in 0. Moreover, observe that the nonzero elements of
them constitute a group pg—1 of order ¢ — 1, which is cyclic being a finite subgroup of £*. Since
these elements project onto different elements of the residue field, we thus have found a complete

representative system modulo p, closed with respect to multiplication. O

COROLLARY 1.8 (Teichmuller’s decomposition) For a local field k there is an isomorphism of
groups k* = (1) X pg—1 X U,gl), where 7 is any prime element, pg—1 is the subgroup of ¢ — 1-th roots

of unity in ox and U,gl) =1+ pg is the group of principal units.

Proof. It is immediate that k* = (m) x U. On the other hand the projection 7 : oy, — fj induces a
homomorphism ¢ : Uy — f/. From Lemma 1.3 it follows that there is a homomorphism j : f; — Uy

such that ¢ o j =1Id. Hence Uy = ker ¢ x Imj = U,El) X fg—1. O

We are now ready to classify non-archimedean local fields. For each prime number p the fields Q, and
F,((t)) are local fields, so that their finite extensions are also local. It turns out that the converse is

also true.

THEOREM 1.9 Each local field k is a finite extension of either Q, or F,((t)), depending on whether

char(k) =0 or p. In any case the equality p = char(f) is valid.

Proof. If char(k) = 0, k must contain Q. Suppose p = char(f), then p- 1 € p, so that the restriction
of the absolute value | | of k to Q is non-archimedean, satisfying |p| < 1. By Ostrowski’s theorem 1.4
it is therefore equivalent to the p-adic absolute value | |, ( See Examples 2,5). Since k is complete,
it must contain the completion of Q with respect to | |,, namely Q, (See Example 5). We now focus
on the extension k/Q,. Since both fields are discrete, their value groups I'" and I' are discrete, hence

the ramification index e = e(k/Q)p) = [I" : I'] is finite. On the other hand, since the residue field f is
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finite, the inertia degree f = f(k/Qp) = [f : F),] must also be finite. Now Proposition 1.5 comes into
play, showing that [k : Q] is finite.

Assume now that char(k) = char(f) = p > 0. Let ¢ = p/ be the cardinality of the residue field f. Since
we are working over a field of positive characteristic, the map x — x? is an endomorphism, so that
the set R = {x € k|z? = z} is a subfield of k, consisting of ¢ elements (See Lemma 1.3). Let us fix a
uniformizer w € k. It follows from Proposition 1.3 that each element of k can be uniquely expressed

in the form

Z anm", a, € R.

n>>—oo

Moreover, since R is a field, the operations of summation and multiplication on these elements are
carried out in exactly the same way as in the field Fy((¢)). Therefore the map ¢ : k — Fy((t)) which
maps 7 to T" and leaves the subfield F, fixed, yields an isomorphism of these fields. It remains to note

that F,((¢)) is a finite extension of F,((t)) of degree f. O
Extensions of local fields.

Suppose (k, | |) is a local field and K /k is a finite extension of fields. By Theorem 1.8 the absolute value
| | has a unique extension || || to K and (K| ||) is a complete field. From Propositions 1.4 and 1.5 it
follows that || || is discrete, both numbers e(K/k) and f(K/k) are finite and [K : k] = e(K/k) f(K/E).
Since f(K/k) = [f’ : f] is finite and the residue field f of k is finite, the residue field {’ of K is also
finite. Collecting everything together we get, according to Proposition 1.6 that (K, || ||) is a local field.
In the sequel by an extension of local fields we mean the aforementioned construction. It turns out

that one can give a fairly clear overview of all finite unramified extensions of a given local field k.

THEOREM 1.10 Let k be a local field with the residue field £ = F,. Then for each positive integer
n > 1 there exists an unramified extension k' of k of degree n and k' is unique up to an isomorphism
over k. The field k' is a splitting field of the polynomial X7 — X over k and it is a cyclic extension
of degree n. Let ' be the residue field of the local field k'. Then each element o € Gal(k'/k) induces

an automorphism o' of t'/f and the map o — o’ induces an isomorphism
b Gallk' Jk) = Gal(f'/f).

Proof. Existence. Let n > 1 be a fixed positive integer. Since f is a finite field, there exists a monic

irreducible polynomial g € f[z] of degree n. Let P € o[x] be a monic polynomial of degree n, which
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lifts g, namely P = g. Suppose w is a root of P, k' = k(w) and o,p’,f denote the valuation ring,
valuation ideal and the residue field of the local field k' respectively. Since P is monic, then w € o

and g(w) = 0, which implies that [f(w) : f] = n. Therefore
n=I[f(w):f]<[f:f]<[K:kl<n

so that [k’ : k] = [f": f] = n and the extension k’/k is unramified of degree n.

Uniqueness. Suppose k'/k is an arbitrary finite extension of local fields and py—1 = {z € ¥’ : 2?7 =
z}, where ¢ = ¢/ = |f'|,q = |f|, f = f(K'/k) (See Lemma 1.3). Let ko = k(py—1) be the intermediate
field obtained by adjoining all the elements of p,_1 to k and let og, po,fy denote the valuation ring,
valuation ideal and the residue field of ky. We claim that ky/k is a cyclic unramified extension of degree
f = f(¥'/k). Indeed, ko is a splitting field of the separable polynomial P(z) = z? — z over k and
is therefore a Galois extension. Further, each automorphism o € Gal(kg/k) induces automorphisms
of the ring oy and the ideal py and hence of the residue field fy = 09/po, so that there is a natural
homomorphism v : Gal(ko/k) — Gal(fy/f), o — o’. Moreover, if o/ = 1, then o leaves the elements of
pg'—1 fixed and is therefore trivial, since the elements of j,_; constitute a complete residue system
of 0p modulo pg. Hence the homomorphism 1 is injective and [k : k] < [fy : {] = f(ko/k), from which
we obtain that [ko : k] = f(ko/k), ko/k is unramified and Gal(ko/k) = Gal(fy/f) is a cyclic group of
order f(ko/k). On the other hand [fy : f] = [f’ : f] since the ¢’ elements of i, _; are distinct modulo pg.
The latter conclusion means exactly that f(ko/k) = f(k'/k). Assume now that k’/k is an unramified
extension of degree n. Then f(k'/k) = [k’ : k] = n and thus kg = K/, namely £’ is a splitting field of
the polynomial P(z) = 29" — & over k, which is determined up to an isomorphism over k, whence the

uniqueness. O

REMARK 1.3 The field ko constructed above is called the inertia field of the extension k'/k. It turns
out to be the maximal unramified subfield of the extension k'/k. Indeed, let k C k" C k' be a subfield
such that k" /k is unramified. From the proof of Theorem 1.10 we already know that k" is the splitting
field of the polynomial X?' — X over k, where ¢' = ¢/" is the cardinality of the residue field of k"
and " = f(K"/k) is the inertia degree. Since f" = f(kK"/k)|f(K'/k) = f(ko/k) = fo, it follows that

X7 — X|X‘1f0 — X and therefore k" C ko, since ko is the splitting of X4° — X over k.

REMARK 1.4 The element Frob(k'/k) € Gal(k'/k) corresponding via v to the Frobenius automorphism

w — w? of Gal(f’'/f) is called the Frobenius automorphism of the unramified extension k'/k. It is
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uniquely determined by the condition Frob(k'/k)(a) = a?(mod p'), for all a € o'.

We now switch to totally ramified extensions. Recall that the extension K/k of normed fields is
called totally ramified if f(K/k) = 1. Let k be a local field, o,p and f be the valuation ring valuation

ideal and the residue field of k respectively.

DEFINITION 1.10 The polynomial P(x) = Y 1 ja;x" € o[x] is called an Eisensteinian if a, ¢ p,a; €

p,0<i<n—1andag ¢ p>.
LEMMA 1.4 Any FEisensteinian P is an irreducible polynomial in k[x].

Proof. Since o is a PID and thus a UFD, Gauss’s lemma is applicable and it suffices to show that P
cannot be written as a product of two non-constant polynomials in the ring o[z]. Assume the contrary
that the relation P = gh holds for some non-constant polynomials g,h € o[z]. Modulo p this gives
dnX™ = gh in the ring f[z], so that § = az’ and h = ba® for some s,t > 0,5+t = n and a,b € f*.

Therefore g(0), h(0) € p and P(0) € p?, which contradicts Definition 1.10. O

THEOREM 1.11 If k is a local field and P € olx] is an Eisensteinian of degree n, then adjoining
a root of P to k yields a totally ramified extension of degree m in which the adjoined element is a
uniformizer. Conversely, if k'/k is a totally ramified extension of degree n and 11 € k' is a prime

element (uniformizer), then the minimal polynomial of 11 is an Eisensteinian of degree n and k' =

k(ID).

Proof. Let a be a root of P and k' = k(«). Since P is irreducible in k[z], the extension k’/k has

degree n. If | | and || ||denote the corresponding absolute values of k and k" then according to Theorem

1.8 ||laf| = \Nk//k(a)|1/". Since P is an Eisensteinian, Ny (o) = P(0) is a prime element of & and
therefore ||a|| = ¢'/™, where ¢ < 1 is the generator of the value group I' of | |. If I denotes the
corresponding value group of || ||, then it becomes clear that e(k’/k) = [IV : T] > n and that « is a

prime element of k', as well as f(k’/k) = 1 according to the equality e(k’/k)f (k' /k) = n.

Conversely, let P(z) = Y. ' ajz’+ 2™ € k[z] be the minimal polynomial of the prime element IT € &',
Then again by Theorem 1.8 we obtain ¢™ = |Nk//k(H)|m/” = \ag/m\m/n = |ag| € T, where ¢ < 1 is
the generator of the group I". Since f(k'/k) = 1 then [IV : T'] = e(k¥'/k) = n and therefore m = n.
Hence |ag| = ¢™ = ¢, showing that ag € p \ p? is a prime element. Since |ag| < 1 we get by Corollary

1.6 that P € o[z]. If there is some index 0 < i < n — 1 such that a; ¢ p then the reduction P of P
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modulo p can be written as P = x'h for some 0 < ¢ < n and a polynomial h € §[x] with h(0) # 0. This
conclusion contradicts Hensel’'s Lemma 1.2, so that all a; € p,0 < i <n—1 and P is an Eisensteinian.

O
Galois extensions.

Assume that K/k is a finite Galois extension of local fields with Galois group G = G(K/k). For
s > —1 define G5 = Gs(K/k) = {g € G : |29 — x| < ™! forall x € Og}, where ¢ < 1 is the
generator of the value group 'y of K and Og is the valuation ring of K. By a quick observation
we may convince ourselves that Gg < G for all s > —1. Note that there is a natural homomorphism
Y G — Gal(fx /fx) (See Theorem 1.10), where fx and f, denote the corresponding residue fields. On
the one hand one has ker(¢)) = {g € G : [z9 —z| < 1 for all x € Og} = Gp. On the other hand, if
ko denotes the inertia field of the extension K/k (See Remark 1.3), then as was proved in Theorem
1.10, ko = k(fgx—1), where pig,,—1 = {z € K : 29 =z} is a complete residue system modulo px and
therefore ker(v)) coincides with the subgroup of G, leaving k¢ fixed. In other words we have proved
that Gy = Gal(K/kg). Furthermore, we have the induced monomorphism 1) : Gal(ko/k) — Gal(f /fx)
which is an isomorphism, since both groups have order f = f(K/k). This observation proves the

surjectivity of ¢. Moreover, one can prove the following

THEOREM 1.12 If wi is a fixed prime element of K then for all integers n > 0 the map

o(Tk)

(n+1)
GGt = U U, 00 =2
(n)

is an injective homomorphism, which is independent of the prime element wy . Here Uy’ denotes the

n-th group of principal units of K, i.e. vl = 0% and UI(?) =1+p%, forn>1.

Proof. Suppose n > 0 is fixed. One can check readily that the map ¢, : G,, = U[(?)/UI(?H), induced

( K) ;

by the map o — < is a well defined group homomorphism. Indeed, if 77 is another prime element,

then 7% = mxu for some unit u and L,K) = U(:K ) 0(1‘“) Since ‘T(“) =1+ U(uigu € UI(?H) for o0 € G,

we obtain that the class U(”K ) modulo U (n+1) g independent of the choice of wx. Moreover, if 7 € G,

T(TK)

is another element, then for u = one has

or(rk) _o(r(nrk)) T(rk) _ o(rk) 7(mk) o(u) _ o(mrk) (k) (nt1)
T T(TK) Tk Tk T U TK & TK (mod Uk ) ’

showing that ¢, is a homomorphism. It remains to prove the injectivity of ¢,. To do this we observe

that Gy, (K/k) = Gn(K/ko) for n > 0, which allows us to assume that the extension K/k is totally
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ramified. According to Theorem 1.11, K = k(wg), from which by simple observations we obtain

that O = Ok[rk]. Now suppose that o(rK) ¢ UI(?H). Then o(ng) — g € p?(” and therefore

TK
ola)—a € anJr2 for all a € Ok, since each such a is expressible as a polynomial in mx with coefficients

from Op. This proves the injectivity of . O

Since for n > 1 the group U I(? )/ U [(? ) f;g is an elementary abelian p-group, then by Theorem

1.12, each G,,/Gp+1,n > 1 is an elementary abelian p-group. Besides that for
"< max {|7% —7
S, {Im — i}

the group G, is trivial, hence all G,,,n > 1 are p-groups. Furthermore, the group Go/G1 is cyclic of
order coprime to p, as a subgroup of the cyclic group UI(?)/UI((I) = 3. of order gx — 1 (See Def-thm.
1.2). Note that since G is a normal p-subgroup of Gy of index coprime to p, it is precisely the Sylow

p-subgroup of Gg. On the other hand
G/Go = Gal(fx /fy) 2 Z/ fZ

for f = f(K/k) as was proved earlier. Collecting everything together we get that G is a solvable

group. More precisely we proved the following

COROLLARY 1.9 Any finite Galois extension of a local field has a solvable Galois group.

1.2 Formal groups

1.2.1 Invariant differential and formal logarithm

From now on R is assumed to be a commutative ring with unity.

DEFINITION 1.11 A one dimensional formal group law ( or formal group) over R is a power series

F = F(x,y) € R[[z,y]] satisfying the following conditions
1. F(z,0) =z,F(0,y) =y
2. F(F(x,y),z) = F(z,F(y,z))

The formal group is called commutative if in addition the condition F(x,y) = F(y,x) is satisfied. To

indicate that F is a formal group defined over a ring R we will use the notation F/R.
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REMARK 1.5 It can be proved that the first condition can be replaced with the condition F(z,y) =

x + y(mod deg?2).

Example 1. The additive formal group G, given by G,(z,y) = + y.

Example 2. The multiplicative formal group G,, given by G,,(z,y) = x + y + xy.

Example 3. For each ¢ € R one can define a formal group F, according to the rule
F.(z,y) =2+ y+ cxy.

It turns out that these formal groups constitute a complete list of formal groups, whose underlying

formal group law is a polynomial. Inspired by this fact they are called polynomial formal groups.

LEMMA 1.5 If F is a formal group, then there exists a unique power series i(x) € R[[z]] which satisfies

F(z,i(z)) =0.

Proof. We inductively construct a sequence of polynomials i,(x) € R[z],n > 1 such that i,11(x) =

in(z)(mod ") and F(z,i,(x)) = 0(mod 2™*!) for all n. We set i1(x) = x and suppose that i, (z)

n—i—l( n+2)

has already been constructed, so that F(x,i,(z)) = ¢y (mod z . We claim that i,41(z) =

Jr

in(z) — c,@™*! is the only possible candidate. Indeed, since F(z,0) = z and F(0,y) = y, then

F(z,y) =z +y+ Zi,jzl ci,jmiyj and therefore
F(x,ins1(2)) = F(z,in(x)) — cpz™™ = 0(mod 2™2).

It remains to set i(z) = h_)m in(z) € R[[z]] to complete the proof. The uniqueness follows from the
n—oo

above constructions. O

We recall that for a power series h € R[[z]] with h(0) = 0 there exists an inverse series with respect

to composition if and only if its first coefficient is invertible.

DEFINITION-THEOREM 1.3 A homomorphism of formal groups F,G/R is a power series h € R[[z]]
without constant term, satisfying the relation h(F(z,y)) = G(f(z), f(y)). An invertible homomor-
phism is called an isomorphism. If G is commutative, then the set of all homomorphisms Hompg(F, G)
from F to G is an abelian group with respect to the operation f —g g = G(f,g). The additive 0 is

the identical zero power series and the additive inverse of f is the power series G(f, f o), where i
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is the unique series mentioned in Lemma 1.5. Moreover, the abelian group Endgr(G) := Hompg(G, G)
becomes a ring if we introduce a new operation of multiplication by setting f x g = f o g, where the

latter is the usual composition of series.
Proof. An easy check. O

An expression of the form w = P(t)dt for P € RJ[[t]] is called an invariant differential of a
formal group F/R if it satisfies the invariance condition w o F'(t,s) = w, or equivalently the condition
P(F(t,s))Fy(t,s) = P(t). An invariant differential w is called normalized if P(0) = 1. One can prove

the following

LEMMA 1.6 For any formal group F' there exists a unique normalized invariant differential which can
be explicitly given in the form wp = F,;1(0,t)dt. Any other invariant differential w is a multiple of

the normalized one, namely w = awp for an appropriate a € R.

Proof. See [30, Chapter 4, Prop. 4.2]. O

DEFINITION 1.12 Let R be a ring of characteristic zero, F/R be a formal group, A= R & Q and
wr(t) = (14 et + eat® + ...)dt € R][[t]

be the normalized invariant differential of F. The formal logarithm logr of F is defined to be the
power series

logp(t) = /w(t)dt —t+ %# + ... € A[lt]

The formal exponential of F//R is the unique power series expp(t) € A[[t]] satisfying
exppologp(t) =logpoexpp(t) =t

Example 4. For the additive formal group F' = G, the normalized invariant differential, the formal
logarithm and the formal exponential are wp(t) = dt and logp(t) =t and expp(t) = t respectively,

L qt,

while for the multiplicative formal group F = Gy, one has wr(t) = 135

logp(t) =t — %%—g — ... =log(l +1t) and expp(t) :t+g—2!+g+... =et —1.
ProprosITION 1.7 If F/R is a formal group, then the identity

logp(F(z,y)) = logp(z) + logp(y)
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holds in the ring Al[z,y]]. The power series logp sets up an isomorphism F = G, of formal groups

over the ring A.

Proof. Integrating the identity w(F (¢, s)) = w(t) with respect to ¢ yields logp(F'(t,s)) = logg(t)+ f(s)
for some constant of integration f € A[[x]]. Substituting ¢t = 0 we get f(s) = logp(s). Therefore logy

is a homomorphism from F' to G,. It is in fact an isomorphism, being an invertible power series in

Alf]]. O

If R is torsion free as an abelian group, or equivalently if the natural map R — A given by r — r ® 1

is an injective ring homomorphism, then one treats the identity

F(z,y) = (logp) ™" (logp(x) +logp (y))

as an equality of power series in R[[x,y]] thereby deducing that F' is commutative. In this respect we

have the following

THEOREM 1.13 There exist non-commutative formal groups over the ring R if and only if there is a

nonzero a € R and integers m,n > 1 such that na = a™ = 0.
Proof. See [21, Therem 6.1] O

Counterexample. Suppose R = F,[t]/(t?) and F(z,y) = x + y + tzy?. Then F/R is a formal

group, but as can be seen it is not commutative. The reason is that pt = t = 0 in the ring R.

Formal groups are widely used to produce abstract groups in the following sense. Suppose we are
given a local field K of characteristic zero with valuation ring ox and maximal ideal px. If F/ok is a
commutative formal group, then for any elements a,b € px, the series F'(a,b) converges to an element
of px so that one can define a new binary operation on px by declaring a }— b = F(a,b). Now the
axioms of a formal group guarantee that the structure thus obtained is an abelian group, which we
will denote by F(pg) in what follows. If we treat the formal logarithm logy as a power series with

coefficients from the field K, then the following theorem holds

THEOREM 1.14 The power series logy induces a homomorphism logy : F(px) — K. Moreover, for

e
p—1

m > it maps the subgroup F(p') isomorphically onto the subgroup p7t of K, where e = e(K/Q,)

is the absolute ramification degree and p = char(fx) is the characteristic of the residue field of K.
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Proof. (Sketch) Since logp(z) = >, 5, 92" for certain elements a,, € ox,n > 1, the series logp(a)
converges to an element of K for each o € pg. Indeed, if vx denotes the normalized valuation of K,

then for any a € pg,

vic (Sa™) = (@) = vi(n) = n — log,(n) — oc,
whence the convergence of the required series. Furthermore, Proposition 1.7 shows that the map
logr : F(pr) — K,a — logp(a) is in fact a homomorphism of groups. The proof of the second
assertion is a little bit tricky and requires some work to do. This time we choose a rather small
neighborhood p% of 0 on which the power series expp converges. Luckily, this is always possible to do
since the denominators of exp grow not too fast. In fact, it can be proved that expp(z) = Enz 1 %x",
n

—k} < Zf_% we get

for some b, € 0, n > 1. Using the famous inequality v,(n!) =, [p

n—1
p—1

VK (%a") > nvi(a) —evp(n!) > v (o) + (n— vk (o) —e

e
p—1

for o € p’. Therefore for m > and o € p}? the series expp(a) converges to an element of p, so

that expp : p — F(pR) and logp : F(pR) — pi are mutually inverse homomorphisms and thereby

isomorphisms. O

1.2.2 Lubin-Tate formal groups.

Let K be a local field, m be a fixed prime element in it and ¢ be the cardinality of the residue

field. Consider the set & of power series e € O [[X]], satisfying the conditions
1. e(X) = 7X(mod deg 2)
2. e(X) = X% mod 7)

THEOREM 1.15 For each e € &; there is a unique formal group F = F, € Og[[X,Y]], for which e is
an endomorphism. Moreover there is an injective ring homomorphism Og — Endg, (F), a — [a]p(X)
such that [a]p(X) = aX (mod deg 2) for each a € Ok and [w|p = e. Besides, it turns out that for any

two power series e and €' in &, the corresponding formal groups F. and F,. are isomorphic.
Proof. See [20, Chapter 3, §6, Thm. 6.7]. O
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The formal groups F' = F, mentioned in the theorem are called Lubin-Tate formal groups. Since
for all e € &, they are isomorphic, one may speak of the Lubin-Tate formal group corresponding to
the given prime 7. Lubin-Tate formal groups play a crucial role in class field theory and are used
to describe the maximal abelian extension of a given local field K. Namely, suppose K28 is a fixed
algebraic closure of K and K?P is the compositum of all finite abelian subextensions of K®&/K. Let
F/Ok be the Lubin-Tate formal group for the prime element m € K. For each n > 1 we introduce a
field Kr, = K(F(n)), called the field of 7"-division points, where F(n) = {x € pyaq : [7](x) = 0}.
It turns out that all the extensions K , /K are totally ramified Galois extensions with Galois group
G(Krn/K) = UK/U[(("). Furthermore, let K™ be the maximal unramified subextension of K?&/K
namely K™ is the compositum of all finite unramified extensions of K. Since all finite unramified

extensions are cyclic (See Theorem 1.10), the extension K™ is abelian. Moreover, it turns out that
Kab - KW
- T

D
where K, = U Krn

n=1

Example 5. Let p be a rational prime number. The multiplicative formal group G,, defined earlier
is the Lubin-Tate formal group over the ring Z, of p-adic integers corresponding to the prime p € Z,,.
Indeed, it can be verified that the power series e(X) = (1 + X )P — 1 belongs to &, defined previously

and is an endomorphism of G,, at the same time. The conclusion follows according to Theorem 1.15.

1.2.3 Honda formal groups.

Suppose K is a discrete valuation field of characteristic 0, possessing an automorphism ¢ which
satisfies the condition a¥ = a?(mod 7) ! for all a € Ok, where 7 is a fixed prime element of K and
q is a power of the characteristic of the residue field, which is assumed to be positive. Consider the
non commutative ring Og [[T]] of power series in which the multiplication is carried out according
to the rules T"T7 = T""J and Ta = a?T for all i,j > 0, a € Og. One can prove that O ,[[T7]]
is a division ring. Let K[[z]]o be the ideal of all polynomials in K[[z]] vanishing at 0. For each
u € Ok o[[T],u(T) = ;50 a;T" and f € K[[X]]o we define the power series u* f € K[[X]]o according

to the rule
ux* f = Zaif“”i <Xqi> .

n particular if k is a finite extension of Q,, then any unramified extension K/k (finite or infinite) will satisfy the

condition with ¢ = Frob(K/k) (See Remark 1.4) and ¢ = |fx|, the cardinality of the residue field of k.
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An element u € Ok ,[[T]] is called special iff it starts with =.

THEOREM 1.16 If f € K[[X]]o is an invertible power series and u x f = 0(mod 7) for some special
element u, then the formal group defined by the rule Fp(X,Y) = f~Yf(X)+ f(Y)) has all its coeffi-
cients in the ring O . Moreover, if g € K[[X]]o is another such element with u x g = 0(mod 7), then
the power series § = g~' o f belongs to Ok [[X]] and sets up an isomorphism 0 : Fy — Fy. For each
special element u there is a canonical formal group F,, associated with u, namely the one which arises

from h = (u='m) « X, where u™! is the inverse of u in K,[[T]].

For the proof of this theorem we refer to [12, §2, Thm.2]. The formal group Fy constructed above
is called Honda formal group. Observe that f = f/(0)log Fy and Fy = Flog,. We say that the Honda
formal group F' is of type w if u is a special element and wu * logp = 0(mod 7). It turns out that if
v * logp = 0(mod ) for some v € Ok ,[[T]], then there exists an element t € Ok ,[[T]] such that
v = tu and therefore all types of F' constitute a class of left associate elements in the ring Og ,[[T7]].
In case K is complete one can deduce using the Weierstrass preparation lemma for the ring O ,[[T]]
that among all types of a Honda formal group there exists a unique canonical type @ of the form
U =7 — Z?:l a;T*, where a,...,ap_1 are divisible by 7 and ay, is a unit. The number h < +oo
is called the height of the Honda formal group F and it is infinite if and only if logp € Ox[[X]] or

equivalently if F' ~ G, 2. In what follows h is assumed to be finite.

THEOREM 1.17 For any invertible power series f,g € K[[X]]lo one has Homg, (Ff,Gy) = {g~ ' (cf) :
c € Ok, 3t s.t. ve = tu}. Moreover, if K is complete and u,v are canonical, then Homg, (Ff,Gy) =
{g7Y(cf): c € O s.t. ve = cu}. In particular, Honda formal groups F,G /Oy are strongly isomorphic

if and only if their canonical types coincide.
Proof. See Theorem 3 and Proposition 3.6 in [12]. O

Honda formal groups form a fairly wide class due to the following

THEOREM 1.18 Let K be a discrete valuation field of characteristic zero, whose residue field has

positive characteristic p. Assume that the valuation of K is unramified 3, that is p is a prime element

2The notation F &~ G for formal groups means that they are strongly isomorphic, that is there exists an isomorphism

6 : F — G such that 6'(0) =1

3In particular any unramified extension of Q, will work
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of Ok. Then for each formal group F/O there exists a special element uw = up € O H[[T]] such that

u*logp = 0(mod p), that is F' is a Honda formal group of type u.
Proof. See [12, §3, Thm.4]. O

Suppose k is a local field of characteristic zero and K /k is a finite unramified extension with Frobenius
automorphism ¢ = Frob(K/k). Let 7 be a prime element of k. Theorem 1.15 shows that a Lubin-Tate
formal group is recovered by a single endomorphism, satisfying certain conditions. It turns out that
something similar is valid in the case of Honda formal groups. In these respect it is important to note

O.V.Demchenko’s classification theorems ( See [13]).

THEOREM 1.19 For given Honda formal group F of canonical type &t = w — Z?:l a;T" € Ok ,[[T)]
there exists a Honda formal group &/ F and a distinguished homomorphism fr € Homg, (F, # F') such
that fr(x) = mx(mod deg2) and fr(X) = 24" (mod ).

THEOREM 1.20 Suppose 4 = m — E?:l aiT'Ok ,[[T]] is a canonical element and f € Ol[z]] is a
power series satisfying the conditions f(z) = rz(mod deg?2) and f(X) = x7"(mod ). Then there
exists a unique Honda formal group F of type @ such that f = fr is the distinguished homomorphism

from F to o/ F.

We would like to conclude this section by the following

REMARK 1.6 If we let w =7 — T, then the corresponding Honda formal group mentioned in Theorem
1.20 will be precisely the Lubin-Tate formal group F' corresponding to the prime w. Moreover, & F = F

and fp = [r]Fp € Endo, (F) in this case.
1.3 G-modules
Let G be an abstract group.
DEFINITION 1.13 A G-module is an abelian group A together with a homomorphism p : G — Aut(A).
From now on for each g € G and a € A we will use the notation ga instead of p(g)(a).

Example 1. Any abelian group A is automatically a G-module, if we let the group GG act on A

trivially, namely if p is the trivial homomorphism.
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Example 2. Suppose L/K is a Galois extension of fields with Galois group G. Then both abelian

groups L* and L™ are G-modules, the action of G' on them being given in a natural way.

DEFINITION 1.14 A subset B of the G-module A is called a G-submodule, if B is a subgroup of A
and g-b € B for all g € G and b € B. Ones B is a G-submodule of A, it is possible to define the
quotient G-module A/B naturally by declaring gla] = [ga]. If A and B are G-modules, then the map

f:A— B is called a G-homomorphism if f is a group homomorphism and preserves the action of G,

that is f(ga) = gf(a) for all g € G and a € A.

An attentive reader should immediately spot that the notion of a G-module is in fact the same as
the notion of the usual module over the group ring Z[G], namely the corresponding categories could
be identified. We will denote this category by G-Mod. To each G module one can canonically attach
an abelian group A% called the fixed module , which is the set of all points in A, fixed by the whole
group G. Namely,

AY ={a € Alga =a for all g € G}

It turns out that the correspondence A — A® is a left exact functor G-Mod — Ab. The right
adjoint functors of this functor exist and unique up to canonical equivalence (See [23, Chapter 4,
Thm.1.1]). They are called the cohomology group functors of A and are denoted by H",n = 1,2....

More precisely, each short exact sequence of GG-modules
0+A—-B—-C—0
induces a long exact sequence of abelian groups
0— A% - BY -5 0% - HY(G,A) —» HY(G,B) —» H'(G,C) — H*(G,A) — ...
The cohomology group H'(G, A) can be defined more explicitly.

DEFINITION 1.15 Let Z'(G, A) be the subgroup of functions f : G — A, satisfying the condition
flor) = f(o) + of(7) and let BY(G, A) be the subgroup of functions f, : G — A,a € A such that

falo) =0a—a forallo € G.

It can be proved that H'(G, A) = Z'(G, A)/B' (G, A) (See [20, Chapterl, Prop. 3.1]). For further

purposes we will also need the groups H'(G, A) for i = 0, —1. Assume that G is a finite group.
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DEFINITION 1.16 Let A be a G-module. For each a € A define the norm of a by Ng(a) = ) . 0a.
Then the set Ng(A) = {Ng(a)la € A} is a subgroup of AY, the quotient group AY/Ng(A) is called
the norm residue group and is denoted by H°(G, A). Further, let N, A = {a € A|Ng(a) = 0} and let
Ic(A) be the subgroup of N, A generated by all elements of the form ca —a. The group n,A/Iq(A) is
denoted by H=(G, A).

One can prove the following

PROPOSITION 1.8 If G is a finite cyclic group then for any G-module A there is an isomorphism

HY(G, A) = H-1(G, A).

Proof. Let us fix a generator o of G and let n = |G|. For any f € Z!(G, A) the element f(o) sits in
Ng A, since

Na(f(0) =Y _7(f(0) =D _(f(ro) = f(1)) =D _ f(ro) = > _ f(r) =0.

TEG T€G TEG TEG

Moreover, for each a € y,A the function f : G — A defined by the rule

belongs to Z1(G,A). Therefore the map ¢ : ZYG,A) — n,A,f — f(o) is a surjective group
homomorphism. On the other hand f(c) € Ig(A) means that f(o) = ca — a for some a which
is equivalent to saying that f = f,. Therefore f € BY(G,A) & o(f) € Ig(A) and the induced

homomorphism @ : H(G, A) — H™1(G, A) is an isomorphism. O

THEOREM 1.21 (Hilbert-Noether) If L/K is a Galois extension (finite or infinite) with Galois

group G, then HY(G,L*) = 1.
Proof. Let & be the set of all finite Galois subextensions of L/K. Then
H\G(L/K) L") = lim H'(G(F/K), F*),
F/Ke&
and we are reduced to the case of a finite extension. Let f € Z'(G, L*). We need to show that there
7(a)

exists some o € L* such that f(7) = = for all 7 € G. Indeed, since all f(o) € L* are nonzero and

the automorphisms o € G are linearly independent over L (Artin’s theorem on the independence of
characters), there exists some a € L* such that

> flo)a(a) =5 #0.

ceG
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Thereby for any 7 € G,

T(8) =Y r(f(0))r(o(a)) = f(r) ' Y fro)(ro)(a) = f(r)~'B.

ceG oelG

If we put a = 871, then we obtain f(7) = % for any 7 € G, as desired. O

A direct consequence of this theorem is the following

THEOREM 1.22 (Hilbert, 90) Let L/K be a finite cyclic extension and let o be a generator of G =

Gal(L/K). If Np/k(a) =1 for some o € L*, then a = # for an appropriate € L*.

Proof. According to Proposition 1.8 and Theorem 1.22 one has H~!(G, L*) = H'(G, A) = 1, so that

NeL* = Ig(L*) and we are done. O
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CHAPTER 2

Galois modules in extensions of local fields

2.1 The reduced group of principal units as Galois module

Let p be a rational prime number, k be a finite extension of Q, of degree n containing a primitive
p-th root of unity ¢, and let K/k be a cyclic extension of degree L = p™ for some positive integer m.
Let us fix a generator o of the Galois group G = Gal(K/k). We denote by I" and « the norm group
of the extension K/k and ki /k respectively, where k; is the unique subfield of K of degree p over k.
Observe that the group K*/K*P can be regarded as a multiplicatively written Fp-vector space. In the

article [6] the following theorem is proved

Theorem (Faddeev, 1959) In the group K* there is an almost normal basis modulo K*P of the
form

L

(A, AS, AT T Ay A, AT A, AT AT Ay, b)

with the following cases
Case 1 (¢, ¢ T'): b€ k*\ v is any element and Ay € K* is any element satisfying %’?) € bK™*P.
Case 2 ((, €I') : b€ k*\ v is any element and Ay € K* is an element, satisfying %‘?) = Bb, where

By € K* satisfies N ,(Bo) = Cp-

Let R = F,[G] denote the group ring over G. Note that from the results of the theorem follows
the isomorphism of R-modules K*/K*? = R" @ R/(c — 1)? in the first case and K*/K*? = R" @
R/(c —1)® R/(c — 1) in the second case. The idea of the proof is as follows.

The linear operator v = o — 1 € R satisfies the conditions v* = o — 1 = 0,01 # 0, so that
it is nilpotent of degree L. Hence the whole space K*/K*P decomposes into a direct sum of cyclic
v-invariant subspaces. Moreover, each of these subspaces is an R-module, isomorphic to R/(c — 1),
where k is the dimension of the corresponding subspace. What remains is to calculate the number gy,
of cyclic subspaces of each dimension k. In this respect recall that the number of subspaces of maximal

L—1)

dimension L is equal to dim(Im v while the total number of subspaces is dim(kerv). In [6] these
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two numbers were calculated in each case separately, leading us to the following result

(n,0,...,1,0), if¢, &T
(gL»gL—lw")gl) =
(n,0,...,0,2), if¢, el

which already proves the theorem. On the other hand it is not difficult to prove that

(gLagL—la “'791) - (naov "'707 1)7 lf Cp ¢ K.

Observe that in exactly the same way v = 0 — 1 can be regarded as a linear operator on the space
vV =U;/ U{p , where U] = 1 + pg is the group of principal units in K*. In complete analogy with the
previous case, we want to study the structure of V' as an R-module. Likewise for each k we introduce
the number [, namely the number of k-dimensional cyclic subspaces in a decomposition of V into a

direct sum of cyclic v-invariant subspaces.

DEFINITION 2.1 For each positive integer t > 1 we define Gy = {x € K* : ¥ € K**} and W, = {z €

Ul szt e UPY.
The numbers I; are related to the numbers g; as the following proposition shows

PropPosITION 2.1 (gL,gL_l, ...,gl) = (lL,lL_l, ...,ll), that is Egj > le fO’/“ all t > 1.
jz=t Jjt

Proof. Observe that W, = G, N U/ for all t > 1. Indeed, if z € U] and 2" = o, then o® € U} and
therefore a € Uj. Hence the inclusions W; < G; induce monomorphisms W;/W;_; — Gi/Gi_1, so
that

dimp, (W;/Wi—1) < dimg,(G¢/Gy—1) for all ¢ > 1.

It remains only to note that

dimg, (W;/Wi—1) = > 1; and dimg, (G/Gi1) = Y _ g;.

j=t j=t

In what follows the extension K/k is assumed to be cyclic of degree L = p. The equality [K : k] =
e(K/k)f(K/k) mentioned in Proposition 1.5 implies that the extension K/k is either unramified or
totally ramified. Let Ry = {z € k: 2%~ 1 =1} and Rg = {z € K : 29! = 1}, where ¢, and ¢k are

the cardinalities of corresponding residue fields respectively. If II € K is a uniformizer, then according
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to Corollary 1.8 for any a € K* we will write o = II"1(®y,u,, for uniquely determined elements
Na € Rk and u, € U{. From now on we will study the numbers /;, depending on the extension K/k.

For convenience we denote W := Wj and N := N/, the norm map of the extension K/k.
2.1.1 The group W

Note that if ¢, € K, then ¢, = 048_1 for some a9 € K* by Theorem 1.22. Furthermore, if
(p = N(a1) €T then N(a) =1, so that of = 85" for some By € K*. We first study the group G1,
since

W:W1:G1HU{.

The following lemma is due to D.K.Faddeev [6].

LEMMA 2.1

kKD, ¢ ¢ T
Gy = P

(Bo)k*K*P, (el

Proof. First suppose (, ¢ I' and z € G, which means that 2"t = oP for some o € K*. Taking
norms, we get NP(a) = 1, which gives N(a) = 1 and therefore a = y°~! for some y € K*, showing
that 27~ = (y?)?~! and consequently x € k* K*P. The opposite inclusion is clear.

On the other hand, if ¢, € T, then from NP(a) = 1 we infer that N(a) = ¢} for some ¢. Therefore

N(aa;") = 1, which implies that a = afy?~! for some y € K*. Hence
2771 = o = (aly? 1Y = (o) () =

= (657 W) = (8",
which yields = € (Bg)k*K*P. As Bgil = o} € K*?, we deduce that 8y € Gy, and thereby the opposite

inclusion (Bp)k*K*P C G is also proved. O

We now select any uniformizers m € k and II € K, and define

1, K/k is unramified
)\ﬂ',H =
Upmr-», K /k is totally ramified

Observe that the class

Ar 11(mod U UP)
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is independent of the choice of uniformizers 7w and II, where U; is the group of principal units in k*.

In other words, if we choose other uniformizers m; € k and II; € K, then
Amin € ()\W,H>U1U{p.
Indeed, if K/k is unramified then
A = Aep =1
by definition. On the other hand, if K/k is totally ramified, then 7117 and mII;? differ by a factor
of the form puf for some units pu € k and py € K. Therefore

-1 . p Ip
Ay T ol = Uy = Uplly, € U Uy,

as claimed.
If (, € I, then as we have shown, g_l = of. Suppose By = Hlugongo, where [ is an integer, ug, € Uj

and 73, € Rk . Dividing by an appropriate power of m, we may assume that 0 <! <p. If [ = 0, then

p P _ P _ po—1_ o—-1_o—1
U, Moy = 0 = B = Ugy Mgy o

implying that ugo_l = uh,, by the uniqueness of Teichmuller’s decomposition. Furthermore, assume

that
1, I=0
S =
0, [#0
LEMMA 2.2
Aem) UL UYY, (p&T

W =
<)\7T,H><uf§0)U1U{p, el

Moreover, ug, ¢ ()\mH)UlU{p.
Proof. First we assume that (, ¢ I'. In this case
W =G NnU] =k*K**NUj,

by Lemma 2.1. Suppose z = ay? € Uj, for some a € k* and y € K*.
If K/k is unramified, we may assume II = 7 and write a = 7#™b, y = 7"z for some integers m,r and
units b € k, z € K. Since « € U{, then m = —rp, and therefore = bzP. Hence

T = Upyp € UlU{p.
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Suppose now that K/k is totally ramified and write a = 7#™b,y = II"z for some integers m, r and units
b € k,z € K. The condition vrj(z) = 0 implies that m = —r, but this time we get z = (7II7P)™b2P,
which yields
z = Al'upu? € (A m)UL UYL

On the other hand

A = (TP e Uy
as II'77 € Uj for totally ramified extensions. Therefore A1 € W, which together with the fact
UlUip € W proves the opposite inclusion <)\,r’n>U1Uip C Gi.
If ¢, € T', then by Lemma 2.1, G = (5p)k* K*P and therefore

W = (Bo)k*K*™ U},
and by the same method we applied in case ¢, ¢ I', one can show that in both the unramified and

totally ramified cases the inclusions
Ae)ULUP C W C (ugy)(Ar ) ULUY
hold. Suppose that z = aBiy? € W for some a € k* and y € K*, then one has the relation
tl = v (Bh) = vn(za™1y™P) i p.
If [ #0, then p | ¢, hence G; NU; C k*K*? and
W =G NUl CKK*NU = M\et)ULUY,

as we have already proved. On the other hand, if [ = 0, then according to the paragraph before
Lemma 2.2, uggl = uh,, implying that ug, € W and

W = (ugy) ra) VLU
Let us prove that ug, ¢ (A\rm)U1U.

Assume the contrary that ug, = )\anayp, for some a € k* and y € K*, then

L (y7 1P, K /k is unramified
o
ub, = ug =

(IT~™y)°~HYP,  K/k is totally ramified
which means that ue, = ¢ 2°~1 and therefore N(us,) = 1. As a result we obtain the relation
G = N(a1) = N(ua; )N (Mar) = N(1a,) € Rk,
which, of course, is incorrect. O
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2.1.2 The numbers ¢; and [,

We define 'y = Ng /i, (Uy) C Up. Recall that if (, € K, then ¢, = ag_l for some ap € K* and

dividing by a power of 7, we may assume that 0 < vr(ap) < p. For simplicity we define

5 07 UH(QO) 7£ 0
1, U]‘[(Oé()) =0
LEMMA 2.3
ut, ¢ K

UynUP =TonUF =
Uf<“g(§)>, pe K
Proof. Suppose x = yP, for some z € Uy, and y € Uj, so that (o(y))P = y?.
If (, ¢ K, then o(y) = y, hence y € kN U] = U; and consequently z = y? € U?, showing that
Ui N U{p = U?. On the other hand, if ¢, € K, then o(y) = ;y for some ¢, which implies that y = aaf),
for some a € k.

If 6 =01ie. vrn(ag) # 0, then K/k is totally ramified, so that
ton(ao) = —vn(a) i p,

showing that

plt,o(y) =y, and therefore Uy N U = U?,

as in case ¢, ¢ K.
If § =1 ie. vn(ag) =0, then ag = NagUay, Where 1y, € Rx and uy, € Uj. As we have shown before,

y = aa, for some a € k, and therefore y = Ugel = uqul,, which yields

— P — Pt D D D
r=yP =ub ul € (ub Uy,

as claimed. On the other hand, the condition o(ag) = (pap implies that o(ua,) = (puia,, showing that
uby, € Uy NUP.
Noting that UY € To N U € Uy N U and that uh, = N(ua,) ( when vp(ag) = 0), we infer that in

both cases considered above, the equality To N UY = U; N U} holds. The lemma is proved. O

LEMMA 2.4 Suppose K/k is a totally ramified evtension. If ¢, ¢ K, then \pn1 ¢ ULUP. Otherwise,

the following three conditions are equivalent.
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1. A\emn € U1UYP.
2. There exist uniformizers my € k and Il € K such that mg = Hg.

3. ’UH(CY()) 75 0.

Proof. First we consider the case (, ¢ K. Assume the contrary that A = ay? for some a € U; and
y € Uj. Then
1— -1 -1
e e el VA

implying that II'=7 = yo~!

, or equivalently, that Ily € k, which is a contradiction, as vr(Ily) = 1.
Suppose now that ¢, € K. In order to prove the lemma, it is enough to prove the following implications.
2) = 1) If such uniformizers 7y and Iy do exist, then A\, 11, = 1 € Uy U". It remains to recall that

the condition A1 € Uy U{p is independent of the choice of uniformizers © and II.

1) = 2) If A1 = ayP for some uniformizers , II and elements a € Uy, y € U}, then
Tl = ay’nen-» = ay®n?,

for some 1 € Ry, as the order of the cyclic group Rk is ¢ — 1, which is coprime to p and therefore
each element from Ry is a p-th power. If we denote mg = ma~! and Iy = Iyn, then we get my = 115,
as claimed.

2) & 3) If mp = IIf;, then Hgfl = q,, for some 0 < ¢ < p. Hence ¢, = (T14)° ™!, where 0 < [ < p is the
inverse of ¢t modulo p. Therefore vr(ap) =1, as 0 < v(ag) < p, showing that vrr(ag) # 0.

Recall that if {, € k, then any cyclic extension of k of order p has the form K = k({/a) for some
a € k*. Moreover, a can be chosen either as a uniformizer, or a principal unit.

Suppose there are no uniformizers my and Ily, such that mg = Hg. Then we can choose a € Uy and
conclude that 8 = ¢/a € U]. Therefore ¢, = (87~ for some 0 < I < p, showing that vr(ag) = 0, as

v (BY) = 0. O
To prove the following lemma we need the asserion provided below .

[k = Qp), Gk

k:Qp+1, (pek

dimp, U, /UY =

For the proof we refer the reader to [10, Chapter 15, §5].
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LEMMA 2.5

n, ¢ ¢ K, K/k is unramified
n+1, ¢ € K, K/k is unramified
e1 =
1 n+1, G ¢ T, K/k is totally ramified
n+1+s, (eI, K/k is totally ramified

Proof. First we note that
e1 = dimg, (W/UP) = dimg, (W/UUP) + dimg, (U1 U /UP).

It will be convenient to denote e} = dimg, (W/U1U{) and €f = dimg, (U;UF/UP).

If ¢, ¢ T then by Lemma 2.2 and Lemma 2.4 we get W = (A, n)U;1U;¥ and

0, K/k is unramified

ey =131, ¢ ¢ K, K/kis totally ramified

J, (p € K, K/k is totally ramified

If ¢, € I" then again according to Lemma 2.2 and Lemma 2.4 we get W = <>\TF,H><UEO>U1U{p and

1, K /k is unramified
d+s, K/k is totally ramified

Recall that for unramified extensions K/k, ¢, € I' if and only if ¢, € K. Therefore, combining the

cases (p ¢ I' and ¢, € I, we get

0, (p ¢ K, K/k is unramified
1, (p € K, K/k is unramified
ef =11, ¢p ¢ K, K/k is totally ramified
d, (p € K\ T, K/k is totally ramified
k(5 +s, (p€el, K/k is totally ramified

On the other hand Lemma 2.3 together with the paragraph before the formulation of Lemma 2.5
implies
TL, Cp ¢ K

n+1-9, ek
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To finish the proof it remains to recall that

/ 1
e] =e; +eg.

Finally we calculate [, in the following

LEMMA 2.6

n, K/k is unramified

n—1, (¢ K, K/k is totally ramified

n—90, (€K, K/k is totally ramified

Proof. Observe that

I, = dimp, (Im(o — 1)?1) = dimg, (DoU7? /UP) = dimg, (T'o/To N UY)

If K/k is unramified then I'o = U; and by Lemma 2.3

n7 Cp%K

n+1-9, ek

lp

which gives [, = n, since § = 1 in this case.

On the other hand, if K/k is totally ramified then [U; : I'g] = p, which together with Lemma 2.3 yields

n—1, (¢K

l, =
n—0, ek

and we are done. O

2.1.3 Proof of Theorem 2.1

1. If ¢, ¢ K then we know that (gp, gp—1,...,91) = (n,...,1). Lemma 2.5 and 2.6 imply that if K/k
is unramified, then e; = [, = n, while if K/k is totally ramified then e; =n+1 and [, =n — 1.

Recall that dimg, (V) = np, which shows that in the unramified case (I, 1,1, ...,11) = (n,0,...,0),
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while in the totally ramified case (I, lp—1,...,11) = (n —1,..1,..1,..), where 1’s are at positions a

and b with a + b = p. Proposition 2.1 shows that

(n,0,...,1) = (gps Gp—1, -, 91) = (Lp, lp—1, ... 1) = (n—1,..1,..1,..),

which means that if @ < b then a = 1 and therefore b = p — 1, showing that (I,,l,—1,....,01) =

(n—1,1,...,1).

2. If ¢, € K\ T, then K/k is a totally ramified extension and therefore ey =n+ 1,1, =n — 4, by
Lemma 2.5 and Lemma 2.6. On the other hand, (g5, 9p-1,...,91) = (7,...,1,0) and dimg, (V) =
np + 1. Hence, if § = 0, then ({,,l,—1,....,11) = (n,...,1), while if § = 1, then (l,,l,—1,....,0y) =
(n—1,..1,..,1,..), where 1s are at positions a and b with a < b, a+b = p+ 1, which shows that

a > 1 as b < p. Using Proposition 2.1 we obtain
(ny...,1,0) = (n—1,..1,..1,..)
and therefore a = 2,b = p — 1, implying that (l,,l,—1,....,11) = (n — 1,1,...,1,0).

3. Consider the last case ¢, € I'. Then one has (g, gp-1,---,91) = (7, ..., 2) and dimp, (V) = np+ 1.
Lemma 2.5 and Lemma 2.6 again imply that if K /k is unramified, then e; = n+1,1, = n, while
if K/k is totally ramified, then e; =n+ 1+ s and [, = n — J. Hence, if K/k is unramified, then
(Upslp—1, .., l1) = (n, ..., 1).

Suppose K /k is totally ramified. If 6 = 0, then again ({,,l,—1,...,[1) = (n,...,1),asl, =n—6 =n,
which simultaneously shows that s = 0. Assume now that § = 1. If s = 0, then by Proposition
2.1, we would have a relation

(ny..,2) = (n—1,.1,.1,..)

with two 1’s at places a and b with a < b, a +b = p+ 1, implying that a = 1 and b = p, which

is a contradiction, as b < p. Therefore s = 1 and we get a relation
(n,..2) = (n—1,..1,..1,..1,..),

where 1’s are at some positions a,b,c with a <b<c¢, a+b+c=p+ 1, which yieldsa=b=1

and ¢ = p — 1, showing that (l,,l,—1,....,0[s) = (n—1,1,...,2).

Thus everything proven can be incorporated within the following table in the form of a theorem. Here

u denotes a principal unit in k.
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THEOREM 2.1

The extension K /k R-module V
1.] ¢ ¢ k, unramified R"
2.| ¢ ¢k, totally ramified R1oR/(c—1)P 1o R/(0—1)
3. K =k(Yu),{p e k\T R"@®R/(c —1)
4| K =k(¥n), € k\T R 'oR/(c -1 '@ R/(0c—1)?
5.1 ¢ €I, unramified R"® R/(c —1)
6.| K =Fk(Yu),(p €T, totally ramified R"® R/(c—1)
7.| K =k(¥m),(p €T, totally ramified R '@R/(c-1)P"1@R/(c-1)®R/(c—1)

It can be proved that in all cases any F,-basis of V modulo ker((c — 1)1 can serve as an R-basis
of the corresponding free part. Moreover, it is not hard to show that in cases 3 and 6 the additional
generator « can be chosen as any element from the set Uy \I'g, while in case 5 one may choose o = ug,

(see Section 2.1.1).

2.2 Honda formal group as Galois module

Let p be a rational prime, K/Q,, L/K, M/L be a tower of finite extensions of local fields, M /L

be a Galois extension with Galois group G and F' be a one dimensional formal group law over the
ring Ok . The operation x %}; y = F(x,y) sets a new structure of abelian group on the maximal ideal
par of the ring Oy which we will denote by F(pps). Taking into account the natural action of the
group G on F(py), one may consider it as an Endg, (F')[G]-module, in which the multiplication by
scalars from Endg, (F') is performed by the rule f * z = f(z). We refer the reader to Section 1.2 as
well as to [23, Chapter 6, §3], [20, Chapter 3, §6], [16, Chapter 4] and [30, Chapter 4] for more details
concerning formal groups and the group F(pas).
If F'is a Lubin-Tate formal group law, then there is an injection Ox — Endg, (F') (see Theorem
1.15 and [23, Chapter 6, Prop. 3.3]), which enables us to regard F(pys) as an O [G]-module. The
structure of this module in case of multiplicative formal group F' = G,, and K = Q, is studied in
sufficient detail in [4,5,7]. The starting point of the current study is the following theorem of Borevich
in [7].

Theorem (Borevich, 1965) Suppose M /L is an unramified p-extension and K = Q. If the fields
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M and L have the same irreqularity degree * then for the O [G]-module Uy there exists a system of
generating elements 01, ...,0,_1,&,w with the unique defining relation 7" = w1, where n = [L : Qp)

and o is a generating element of the Galois group G = Gal(M/L).

It may seem that the group of principal units Ej; has nothing to do with formal groups, but
in fact it is easy to show that for the multiplicative formal group F' = G,, there is an isomorphism
F(py) = Eyv, = 1+ 2 of Z,[G]-modules.

The next stop in the course of investigations was the joint work of S.V.Vostokov and I.I.Nekrasov
[11], where they generalized the aforementioned theorem to the case of Lubin-Tate formal groups (See
Subsection 1.2.2 for details concerning Lubin-Tate formal groups). More precisely, they managed to

prove the following

Theorem (Vostokov-Nekrasov, 2014) Suppose M/L is an unramified p-extension and F is a
Lubin-Tate formal group for the prime element m € K. Assume moreover that the fields M and L
have the same irreqularity degree, namely they contain a generator of ker[r®]p and do not contain a
generator of ker[r*t|p for some s > 1 2. Then for the O [G]-module F(pys) there exists a system
of generating elements 01, ...,0,,_1,&,w with the unique defining relation [7°|p(§) = w® Pl where

n=[L: K] and o is a generating element of the Galois group G = Gal(M/L).

The key point in this work was the proof of the triviality of the cohomology groups
HY{(G(M/L),F(pn)),i = 0,—1 (See Definition 1.15) for unramified extensions M/L. In its turn,
our work is devoted to the generalization of the last result to the case of Honda formal groups.
Namely, let Ky/Q), be a finite extension such that K/Kj is unramified, 7 € Ky be a uniformizer, F’
be a Honda formal group over O relative to the extension K /Ky of type u € O ,[[T]]. We refer the
reader to Subsection 1.2.3 as well as to [12, §52,3] and [13,14] for more information concerning Honda
formal groups. Suppose K8 is a fixed algebraic closure of the field K, pjas is the valuation ideal,
i.e. the set of all points in K®® with positive valuation. Define W2 = ker[n"]r C F(pjai) to be the
n"-torsion submodule. More precisely, let Wj = {& € pgae|[7"|r(x) = 0}, where [7"|p € Endg, (F),
and let Wr = Ej Wg.

n=1

It is known (See Theorem 1.17 and [12, §2, Thm. 3]) that there is a ring embedding O, < Endg, (F),

1This means that the field L contains a p*-th primitive root of unity, while M does not contain a primitive p**!-th

root of unity for some s > 1

?In fact, ker[n*]F is a cyclic Ox-module, whenever F is a Lubin-Tate formal group (See [20, Chapter 3, Prop. 7.2])
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which allows as to regard F(pys) as an Ok, [G]-module. In this section, using generators and defining
relations we describe the structure of this module in the case of unramified p-extension M /L, provided
that Wp N F(pr) = WrpN F(py) = Wi, for certain s > 1 (See [15]). According to Theorem 1.10 any

finite unramified extension of a local field is a cyclic extension, so that G is a cyclic p-group.
We agree in the following notation

n—the degree of the field L over Ky;
h—the height of the type u =7+ Zi21 a;T" of the formal goup F, i.e. the minimal h, for which ay, is
invertible.
f—the logarithm of F;
p™—the order of the group G = Gal(M/L);
o—a generating element of G;
Gi, 1 <i < h—a fixed basis of the O, /m°0k,-module W};
ko, l—the residue fields of Ky and L respectively;
q—the order of ky;
z+y:=F(z,y);
; (z,y)
Z T; 1= T1 *}I{:l’gj‘:?l‘k
Fii=1

2.2.1 Auxiliary lemmas

LEMMA 2.7 The Og,-module W2 is isomorphic to (O, /7" Ok, )".
Proof. See [14, Prop. 1]. O

LEMMA 2.8 In the case of an unramified extension M/L, the groups H (G, F(par)) are trivial for
i=0,-1.

LEMMA 2.9 If the elements x1, 2, ...,z from F(par) are such that the system
{Nppu (i), 1 <i <k} ? is linearly independent in the ko-vector space F(par)/[7]r(F(par), then so

is the system {a;fj,l <i<k0<j<pm-—1}.

LEMMA 2.10 If the elements x1, 2, ...,x from F(ppr) generate the ko-vector space

F(pa)/[7lr(F(par), then they generate F(par) as an Og,-module.

3 Here Np(p,,) is the G-module norm, see Definition 1.16.
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The proofs of lemmas 2.8-2.10 can be found in the article [11], as well as in [7, §3].

LEMMA 2.11 The natural linear map

@ : Fpr)/Ir]lr(F(pr)) = Fpar)/[7]r(F(par))

of ko-vector spaces, induced by inclusion, has kernel of dimension h.

Proof. Consider the elements 7; = [7°"!|p(;, 1 < i < h. They form a basis of WFI, as an

Ok, /mOk,-module. Since Np@a)hi = [p"]Fni = 0, then by Lemma 2.8 we get that n; = tJ — ¢; for
F

some elements t; € F'(par). Suppose that = € F(py) and x = [7]p(y) for some y € F(ppr). Then

[7)r(y? —y) =2 —x =0, from which it follows that
F F

h h
5= D ladetn = 3 ((alete)” - bie(t)),

52

for certain elements a; € O, , uniquely determined modulo 7. The last relationship indicates the

h
existence of z € F(py,), for which y = Z [ai]F(t;) —}7— z. Therefore,
Fii=1
h
z=[rlr(y) = Y lalr(]r(t)) + 7l (2).
Fii=1

Hence the elements [7]p(t;),1 < i < h constitute a basis of ker ¢. The lemma is proved. [

LEMMA 2.12 The dimension of the ko-vector space F(pr)/[m)r(F(pr)) is equal to n + h.

Proof. According to Theorem 1.14 for ¢ > % there is an isomorphism of groups
f: F(ph) == p%, which is in fact an isomorphism of Ok,-modules due to the relation f o [a]p = af
which holds for all a € Og,. Consequently, F(p%) is a free Og,- module of rank n. From the

exactness of sequences of Og,-modules:
0— F(pt™)y = F(ph) = 1—0,i>1

it follows that F(p%) is an Og,-submodule of finite index in F(py). Therefore F(pyr) is a finitely
generated Og,-module of rank n. The theory of finitely generated modules over a PID yields
F(pr) =T @ A, where T is the torsion submodule, which in our case coincides with W}, while A is a

free Ox,-module of rank n. In the long run we get
|F(pr)/[x]p(F(pr)| = T/ [x]rT| - |A/ Ix]p Al = ¢" - ¢ = ",
completing the proof of the lemma. O

o4



REMARK 2.1 Likewise we get that dimg, (F(par)/[7]r(F(par))) = np™ + h.

REMARK 2.2 Since F(pr) is a finitely generated O, - module, then by Nakayama’s lemma we

obtain a new proof of the assertion of Lemma 2.10.

LEMMA 2.13 The elements (;,1 < i < h are linearly independent modulo ker .

h
Proof. Suppose the relation Z [ai]F¢; = [7]F(y) holds for some a; € Ok,,y € F(parr). Applying
Fii=1
the endomorphism [7%]r, we get that [r5+!]z(y) = 0, which gives [7*]¢(y) = 0. The latter means that
h

Z [Ws_la,i] #C = 0, which is equivalent to the condition a; : w,1 < i < h. The lemma is proved. [
Fii=1

COROLLARY 2.1 h<n

Proof. In view of the lemmas proved, it follows that the maximal number of linearly independent

vectors modulo ker ¢ in F(mp)/[r]r(F(pr)) is equal to
dim Imep = dimy, (F(pr)/[7]r(F(pr))) — dimkerp = (n +h) — h =n.

By Lemma 2.13 we already have h linearly independent vectors modulo ker ¢, from which the

desired result follows. O

2.2.2 Proof of Theorem 2.2

THEOREM 2.2 If the extension M /L is unramified and Wr N F(pr) = Wrp N F(par) = Wi, for some
s> 1, then h <n and for the O, [G]-module F(ppr) there exist a system of generating elements

0;,&,wi, 1 < j<n—h,1<1i<h with the only defining relations [1°]p (&) = wf —w;, 1 < i < h.
F

Proof. From the triviality of the group H°(G, F(pys)) it follows the existence of elements

& € F(py), 1 <i < h, such that Np,, (&) = G- Since N, ([7°]F(&)) = [7°]F(¢) = 0 and the
group H~Y(G, F(pys)) is trivial, there exist elements w; € F(pys),1 <4 < h, satisfying the relations
(T8 P& = wf p w;. In view of Corollary 2.1, the system (;,1 < i < h can be supplemented to a basis
modulo ker ¢ via elements ¢; € F(mp),1 <j <n—h. For 1 <j <n —h we select elements

t; € F(pn), so that Np,,y(0;) = ¢; for all j and we prove that the system
& ={wn & 07 1 <i<h1<j<n—h0<k<p"—1}

7
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is linearly independent modulo [7]z(F'(pas)). Assume the contrary that there exist elements
i, a; s, bjr € O, and § € F(pyr) such that
k k
D lailrwi + > lairle () + > bialr(07) + [7]r(8) = 0.
Fii Fiik Fij.k
We apply o — 1 to both parts of the latter relation and use the relations [7°]|p&; = wf —w;, 1 <i < h
F
to deduce the equality
k k
D laie — ainalr(€ )+ > bk — bjp—alr(07 ) + > lailr[r°]r& + [7]r(87 = B) =
Fiik F Fijk F Fii F F

From lemmas 2.9 and 2.13 it follows that the system
Go={€" 07 1<i<h1<j<n-h0<k<p"—1}

is linearly independent modulo [7]r(F(pas)), so that a; y(mod 7) and b; ;(mod ) are independent of
k. Therefore, without loss of generality we may assume that
> lailr[r*)r& + [7]p(87 = 8) =0,
: F F
Fii
changing if needed 5. From the obtained follows the existence of b; € Og,,1 <1 < h such that
> lamp(&) + 87— B =" _[bilen:
, F F ,
Fii Fii
Taking norms Np(,,,), the obtained relation leads to the equality > Fﬂ.[ams_l] r(G) = 0 which
implies that a; : m,1 < ¢ < h. From the linear independence of the system &y it follows that a; :
and b; 5 i m for all 4, j and k. This completes the proof of the linear independence of the system &
The number of vectors in it is np™ + h = dimy, (F(par)/[7]r(F (par))), so that they generate the
space F'(par)/ 7 p(F(par)). From lemma 2.10 it follows that they generate F'(pys) as an O, -
module, and consequently the elements 0;,&;,w;, 1 < j <n —h,1 <i < h generate F(par) as an
Ok, [G]-module. It remains only to prove the assertion concerning defining relations. Let us further
agree to write multiplication by elements of the ring Og,[G] through exponentiation. Suppose that

the relation

S S w1y 6 =,
F Fii FF;j

Fii
holds for some elements o, 8;,0; € O, [G]. Our goal is to prove the existence of elements

vi € Ok, [G] for which o; = 7°v;, 8; = (1 — 0)v; and §; = 0. Indeed, let 3; = b; + (1 — 0)7; for certain
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elements b; € Ok, and v; € Ok, [G]. Taking into account the relations [7°]|p&; = w? —w; for 1 <i < h
F

we get

PORED DL DL E

Fii Fii Fij
where o) = a; — m%v;. Factoring the latter relation modulo 7]z (F(pas)) and recalling that the system
& is a basis modulo [7]r(F(par)), we find that there exist elements bgl),ﬂg, 5§1) € Ok, |G| such that
b; = ngl), o, =7mfl,; = 7r5§1). Therefore, for some elements a; € O, we must have the equality

b

. k s
DTAPD SLUANS 30 )
Fii F Fii F F;j

due to the fact that ¢; = Np(,,,)(&) = fiz’“ ok. For the same reasons, all bgl) and 5](-1) are divisible by

7. By induction we construct sequences (b(V

; ))1,20 and (5](-1’))1,20 satisfying the conditions

b = 0,8 = 6;,6") = 1o and 61 = 76" for all v > 0,1 < i <h, 1< j <n—h, from
which it follows that b; = 0 for all ¢ and d; = 0 for all j. There remains only the relation
ZF;i f;l; =0. Let now of, = >, aiykak, where a; 1, € O, for all i, k. The factorization modulo
(7] (F(par)) yields a; = wb; . Further, we obtain that
SO SO p(G) = S
Fii Fii Fii
for some elements \; € Og,. Consequently b; ;(modm) is the same for all k, and so on. In the end we

get that a; ;, = a; and that ZF;i[ai]F(Ci) =0, i.e. a; = 7°t; for certain t; € O, and therefore
a; — Ty = af = Tt Zak.
k

If we denote v/ = v; +t; >, oF, then we will have o; = %7/ and §; = (1 — 0)7; = (1 — 0)7/, thus

completing the proof of the theorem . O
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CHAPTER 3

Properties of arithmetic sequences

3.1 Distinguished sequences

It is known that for any non-constant polynomial P with integer coefficients there exist infinitely
many primes, dividing at least one term of the sequence (P(n))s,; [25, Part 8, Ex. 108]. In this
respect we are interested if there is a general phenomenon behind this fact. It turns out that the
answer is positive and somehow depends on the rate of growth of the given sequence . To be more

precise we give the definition of distinguished sequences of positive integers.

DEFINITION 3.1 We say that a sequence (ny)3>, of positive integers is distinguished, if there are

infinitely many primes dividing at least one term of the sequence.

To formulate our results we need one more

DEFINITION 3.2 Suppose S = {p1,p2,...,pn} s a finite set consisting of prime numbers. We define
S = {pl’“pQ’“2 e -pnk”]kl, kay...;kn € Z4} and arrange the set S in increasing order to get the

sequence (ng(S))5 -

In this section we prove the following theorems.

THEOREM 3.1 lim M = l

THEOREM 3.2 Suppose (ny)72, and (my)3, are sequences of positive integers. Then the sequence

()52 is distinguished, provided that the following conditions hold.
1. lim ng = oo

k—o0

2. ged(ng, ngyr) < my for all positive integers k and |
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We also deal with sequences of the form a,, = 22" 4+ d, where d € Z. Recall that a Fermat number is a
positive integer of the form F,, = 22" 4+ 1 for some nonnegative integer n. It is well known that
ged(Fy, F;) = 1, whenever k # . For the proof we refer to [28, Chapter 1, Thm. 13|. In this way a
natural question arises. Whether this result is true for sequences a, = 22" + d for odd integers d? In

this respect we prove a theorem, which gives a negative answer to this question.

THEOREM 3.3 For any integer d # 1 and positive integer m there exist distinct elements ag and q

in the sequence a, = 22" + d such that ged(ay,a;) > m.

3.1.1 Proof of Theorem 3.1

Suppose we have positive numbers wi, wo, ..., wy, > 0.

DEFINITION 3.3 For any W > 0 we define

NW;wri,ws, ..., wy,) = ‘{(kbk% k) € (Z)"] D kiw; < WH :
i=1
wr W+ wi)"

LEMMA 3.1 ————— < N(Wiwy,wa, ..., wy) <
n'H?lez = ( s W1, W2y eeey n)_ nll—[;n:1wz

Proof. Consider the lattice A in R"™, spanned over the basis {wie, ..., wpe, }, where {e1,...,e,} is

the standard basis of R"™. Define
n
I = {(z1,22, ., 20) € (R4)"] Y23 <7} C R
i=1

for any r > 0. Then N(W;wy,wa, ...,wy,) = |A NIy | is the number of lattice points in the simplex
.
Now for any point x = (z1, x2,...,xz,) € ANII (i.e. for any solution) construct an open parallelotope
Iy = {(t1, ..., tw)||ti — =i| <w;if2,i=1,2,...,n} C R™ with a center at that point. Note that

n

I, NI, =0, V(IL,) = Hwi for all z,y € ANy, x #vy,
i=1
where V stands for the volume.

n

Set A = Zwi,v = (w1/2,...,wy/2) € R" and I, , = {z — v|z € II, } (the shift of II, by vector v).
i=1

Note that Ty C | T C Hwya.

zeANITy
W’n
Comparing volumes yields — < N(W;5wy,wa, ...
n!

n

%% mw)"

, Wn,) H w; < (W + 2 ey wi) . It remains only to
i=1

n!

n
divide all the parts of the inequality by H W;. ([
i=1
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One can find additional information concerning Lemma 3.1 in [31].
DEFINITION 3.4 For any positive integer | we set t; = |{k|ng(S) < l}].

Observe that due to Definition 2

t; = '{(klak%---,kn) € (Z+)R|pri < l}‘ =
i=1

= H(k:l,k:g, o kn) € (Z)™)) " In(pi)k; < 1n(z)H —

i=1
= N(In(l); In(p1), In(pz), ..., In(pn))-

As a consequence of Lemma 3.1 we get that there exist constants ¢; > 0 and ¢ > 0 such that
aWm < N(W;wi,wa, ...,wy) < cogW™ for all W > In(2). Therefore, for some constants a > 0 and

b > 0 the inequality
a(In(1))" < N(In(l); In(p1), In(p2), ..., n(pn)) < b(In(l))"
holds for all [ > 2. Substituting | = ng(S) for k = 2,3, ..., we obtain
a(ln(ng(5)))" < tn, sy < b(In(ng(S)))"

and, therefore In(a) + nIn(In(nk(5))) < In(t,, (s)) < In(b) + nIn(In(nk(S))). Using that (ng(5))52; is

an increasing sequence, we conclude that t,, (s) = k for all k. As a result
In(a) + nin(In(ng(9))) < In(k) < In(b) + nln(In(ng(S)))

for all £ > 2 and so

: . In(In(ng(5)))
1 £ <1l/n<l1 f———
T A O I
In(1 1
which shows that lim M = —. ([
‘ . . o .. In(In(ng))
COROLLARY 3.1 If (ny)?2, is an increasing sequence of positive integers and hkm inf W =0,
—00

then it is distinguished.

REMARK 3.1 A close result was previously proved in [27]. The result was formulated for almost
injective sequences, i.e. for the sequences (ny)y, of positive integers for which there exists a
constant C such that [{klnx = m}| < C for all positive integers m. The concept of almost injective
sequences was inspired by non-constant polynomials P, since they attain any value at most

C = deg(P) times. Our result is independent of [27].
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Proof. Suppose the opposite is true. This means that there is a finite set S of prime numbers such

that (ng);2, is a subsequence of (nx(S5));,. Hence

.. In(In(ng)) _ .. . . In(In(ng(S))) 1
S S VN —_— =
liminf =7 2 Hminf == e = e > 0,

which is a contradiction. O

COROLLARY 3.2 For any non-constant polynomial P with integer coefficients the sequence

(P(n))>2 is distinguished.

In(In(P
Proof. The sequence (P(n))>2, is eventually increasing and hﬁm n(?((()n)))

remains to use Corollary 3.1. U

=0, so that it

We would also like to give a purely number theoretic proof of this fact.

Proof. Suppose that the finite set S = {p1,p2,...,pn} contains all possible prime factors of all
numbers P(n), n € N, where P is the given polynomial. For j € {1,2,..,n} we define

k; = min,en vp; (P(n)). Suppose also that k; = v, (P(s;)) for each j € {1,2,..,n}. By the Chinese
Remainder Theorem, there is a positive integer n such that n = s;( mod p;*+1) for all

j € {1,2...,n}. From this it follows that P(n) = P(s;)( mod p;**1) for all j € {1,2...,n}.
Consequently, P(n) is not divisible by p;**! for all j € {1,2...,n}. Hence, P(n + 5]l pjkﬁl) is
not d1v181ble by pjkitt for all j € {1,2...,n} and s € N. As a result we obtain

P(n + s H Dj kj +1) < H Dj ki for all s € N. The latter assertion contradicts the fact that P is a non

7=1 j=1
constant polynomial. O

3.1.2 Proof of Theorem 3.2

Assume the contrary that the sequence (ny)32, is not distinguished. Then there is a finite set

S = {p1,p2, ..., ps}, consisting of prime numbers such that any term of the sequence (ny)32, is a
product of some elements (not necessarily distinct) from the set S. As the sequence (ny)2, tends to
infinity, it is unbounded, so there is at least one prime p € S such that the sequence (v,(ng))5, is
unbounded, where v,(m) = max{k|m:p*} for any integer m and prime p. WLOG we may assume

that the set of all such primes p € S is {p1, p2, ..., i}, for some 1 <[ < s.
DEFINITION 3.5 For any 1 <t <[ and M € N we define
A(M) £ {k|vp,(ng) > M} = (snr,5)524
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and

L £ max{vy,(np)[l +1 < j <s, ke N} <oo,

if l <s.

l
COROLLARY 3.3 For each M € N, one has that N = U A(M) U Ay for the set

1

Ay = {klvp,(ng) <

J

M,
l s
It is finite, since |Ap| < | klng < prw . H pt b |, where the latter product
j j=l+1

S
T = H pJL 1s assumed to be 1 if | = s.
Jj=l+1

LEMMA 3.2 For sufficiently large M the inequality sy j+1 — Sy > 1 holds for all t € {1,2,...,1}

and j € N.

Proof. We choose M large enough to satisfy 2 > m;. Using that pi\/l|nWM+1 and p,{V[!nsM’t‘j we

deduce that ms,,, sy ) > 8CA(Mspy, 50 Msare ;) = p™ > 2M > m;. Without loss of generality,

[e.e]
we may assume that the sequence (mt) is increasing, which yields the inequality
t=1

SMt,j+1 — Sm,t,; > [, thereby proving the lemma. 0
Consequently for all ¢ € {1,2,...,1}, N € N, and sufficiently large M,
|Ai(M)N{1,2,.... N} < N +1
t 5 Ay erey = l+ 1 )

where [z] stands for the integer part of x € R. Therefore, for a fixed sufficiently large M
l
!
N N
>N — Ay(M 1,2,..,N} >N -1 1 — —1
2 ¥ =SS0 0 1.2 M 2N -1 (] 2

for each positive integer N. From this inequality we infer that A is infinite, which is contrary to

Corollary 3.3. The Proof of Theorem 2 is complete. (]
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3.1.3 Proof of Theorem 3.3

Suppose that there is an integer d # 1 and a positive integer m such that ged(ag, a;) < m for all
distinct elements aj and a; of this sequence. It follows that if for some positive integer v and distinct
positive integers k and I, p”|ay and p”|a;, then p” < ged(ak, a;) < m. Consequently for each prime p

the sequence (vp(ay,))2; is bounded. Let us prove some auxiliary lemmas.

LEMMA 3.3 If positive integers n and k are given, which satisfy va(k) < n, then there is a positive

integer | > n such that (2! — 2")’k.
Proof. Let k = 2%, where a = v»(k) < n and b be an odd number. Since
b2¢®) — 1

(¢ is the Euler’s totient function), we get that (27+¢() — 27):27p:2¢h = k. We now set | = n + ¢(b).

The Lemma is proved. O

LEMMA 3.4 If for some prime p > m and positive integer n the relation pla, holds, then

p = 1(mod 2m).

Proof. Suppose p # 1(mod 2"). Then by Lemma 3.3 there is some positive integer | > n, such that
(2! —27)i(p — 1). Consequently,
a — a, =22 — 22" = 22" (222" _1)i92" (2p-1 1) = 22"~ L(2» — 2)’p

by Fermat’s little theorem. Since pla,, we thus get that p|a;, and so

p < ged(an, a) < m,
which contradicts the conditions of the Lemma. O
LEMMA 3.5 |d| is a power of 2.

Proof. Let a, = 2¥b, ¢, for any positive integer n, where the prime divisors of b, are precisely the
odd prime divisors of a,, which are less or equal to m. If there is no such prime, we set b, = 1. From
Lemma 3.4 it follows that ¢, = 1(mod 2") and so a, = 2*2b,(mod 2"). On the other hand,

an = 22" + d = d(mod 2"), hence 2¥7b,, = d(mod 2"). As the number of primes not exceeding m is

finite, and the sequence (vp(an))o2, is bounded for each prime p, there exists some positive integer
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M such that 2¥7b,, < M for all n € N. In the long run we get 2¥#b,, = d for all sufficiently large n (in

particular d # 0, which was clear). From this we infer that
22" +d = a, = 2"bye, = deyid
and, therefore, d|2%" for all sufficiently large n € N. (]

LEMMA 3.6 For any sufficiently large positive integer n there is a positive integer l,, > n such that

ap, Qp.

Proof. For d = —1 one has that a,11 = 22" 102" _ 1 = an, and we are done. Suppose now
d # +1. In accordance with Lemma 3.5, d = 2% for some positive integer k. Let us choose a positive

integer n > vo(k), then 15(2" — k) = v(k). Choose I, > n from Lemma 3.3, then (2i» — 27):(2" — k),

: 2ln —
and thereby (2! — k):(2" — k). Since v5(2"" — k) = va(k) = 1v2(2" — k), the quotient ok is an odd
integer, which means that
22"k £ 1)}(22" "k £ 1),
Multiplying by 2¥, we obtain ay,:an, depending on whether d = 2F or d = —2F. O

One can infer from Lemma 3.6, that a, = gcd(ap,a;,) < m for n > v5(k), which is a contradiction. O

3.2 Some analytic estimates for the divisor m-function
The function 7(n) defined as the number of positive divisors of the given positive integer n has many
investigated asymptotic properties and some of them are presented below.

1. For any € > 0, 7(n) = o(n®).

2. For given £ > 0 there exist infinitely many positive integers n such that
7(n) > 20=e)(Inn)/(n(inn)) “Noreover, 7(n) < 2(1+e)Inn)/n(lnn) Kolds for sufficiently large n

(Vigert, 1907).

3. Let D(z) =}, <, 7(n) be the summatory function of 7. Dirichlet proved the asymptotic
equality
D(z) = zlnz + (2y — 1)z + O(z'/?),
where v is the Euler’s constant. Dirichlet’s divisor problem consists of determining the smallest

« for which the error term is O(n®*€) for any € > 0. G.Voronoi has showed that o < 1/3, while
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Hardy and Gauss proved that the error term is not O(z'/*), and therefore a > 1 /4. Tt is

conjectured that a = 1/4.

For (1)-(3) we refer to [28, Chapter 6, §3].

4. Tt is worth mentioning the result in [32] concerning Karatsuba’s problem on determining the

asymptotic behavior of the sum

n<x
stated in 2004 which was estimated by M. A. Korolev in 2010.
5. In [33], the average behavior of the function 74 (n) is studied, where for each positive integer n,
Tr(n) is defined as the number of solutions of the equation mjims...my = n in positive integers

mi, Moy ..., Mk.
For i > 0 consider the sequence

To(p) = (t(n))™' max {r(n+1t)}, n=1,2,..
1<t<[nl/k]

and define
0 =inf{\ > 0|D(z) = zlnz + (2y — D)z + O(2M)},
where D(z) =3, ., 7(n) is the summatory function of 7. Assume that (nx)72; is a sequence of

positive integers such that ny = pi/*, where pj, is prime and j, € N for all positive integers k. In this

section we prove the following theorem.

THEOREM 3.4 a) If u > 0, then Ty, (n) — 00, as jr. — oo; b) If 1 < pu < 071, then Ty, (1) — oo,

as ny — 0.

Note that if Theorem 3.4 holds for some pg > 0 then it holds for any 0 < p < pg. Hence one may

assume that p > 1 is a fixed integer.

DEFINITION 3.6 For any positive integer n and prime number p we define

vp(n) = max{k > 0/n : p*} and A(n) = Zup(n).

pln
It is immediate that A(mn) = A(m) + A(n), A(n*) = kEA(n), for any positive integers m, n, k.
Observe that for any integer 0 < s < um and prime number p
P ) = (s Dr( 4 1),
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We start with the following

PROPOSITION 3.1 If n = 2'a, where a is odd, then T(p" + 1) > 7(a) > A(a).

Proof. Indeed, if a i b then (p" 4 1) i (p2'? + 1), hence the left part of the inequality holds. On the

other hand, the right part of the inequality follows from

T(a) = Hl—i—yp >Zyp
pla

where p ranges through the set of prime divisors of a. (I

The following lemma enables us to estimate A(m!) from above.

LEMMA 3.7 The inequality A(m!) < 2mIn(Inm) holds for sufficiently large positive integer m.

Proof. Using the famous identity v,(n!) = >"o2; [np~°] (henceforth [z] stands for the integer part of

x € R) and the asymptotic equality

Z p~ ! =In(lnz) + O(1) (see [34], Exercise 3.1.8)

{p<z|p is prime}

we get
m
1 = l -
Almt) = 3 syl = 35" ] < X -
p<m p<m s=1 p<m
=m Zp_lJrZ <m Zp_1+h < 2mln(lnm)
p<m p<m p<m

for sufficiently large positive integer m, where h = Zp(p(p —1))~L. The lemma is proved. O
DEFINITION 3.7 We define A(m) = > 1., (s + 1)A(um — s) and A’'(m) = [, (pm — s)*T1.
Observe that

,wm—l um—s'
(e~ m gl — 1)1

A(m) = [[(um - 5)** =

and

where




LEMMA 3.8 The inequality A(m) > (1/4)m? In(Inm) holds for sufficiently large positive integer m.
Proof. Recall that A(m) = B(m) + C(m) and
B(m) = O(m1In(lnm)) = o(m?In(Inm))

by Lemma 3.7. On the other hand

i [”} > 3 2%— log, n] > Zj — log,(np)

s
s=1 p

yields

m—1 m
cmy> 3 (kz B log, (kl] kp» — X(m) — Y(m) - Z(m),

p<pm—1

where for z > 0, m(x) is the number of primes not exceeding z,

Xmy =205~ L ) — (- 1) — 1),

Using the asymptotic equality

Z p ' =In(lnz)+ O(1)

{p<z|p is prime}

we infer that

X(m):m(mz_l) Z (p—1)"> m(m —1) Z p =
p<pm—1 p<pum—1

- m(m2—1) (In(In(pum — 1)) + O(1)) > %WQ In(Inm)

for sufficiently large m. Furthermore,

Y(m) = (m — )7r(um —1) < (m — 1)(um — 1) = o(m? In(Inm))
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and

1
Z(m)= Y log,(m!)=In(m!) > o <
p<pm—1 p<pum—1
pm=l gt
< In(m!) <(ln(2))_1 +/ l(t)) = O(mInm)O (m(Inm)~') = o(m?In(Inm)),
2 n
due to Stirling’s asymptotic formula for In(m!) and Prime Number Theorem, which states that the
functions
x Todt
— and Li(x) = —
m(x), oo o0 i(z) L It

are asymptotically equivalent at infinity (see [28, Chapter 11]).
In the long run

A(m) = B(m) + C(m) > X(m) + o(m?*In(Inm)) >
> %mz In(Inm) + o(m? In(Inm)) > %mQ In(Inm)

for sufficiently large positive integer m. The lemma is proved. [J

REMARK 3.2 From the proof of Lemma 3.8 it is evident that the constant 1/4 can be made arbitrary

close to 1/2.

We proceed with the following definition.

DEFINITION 3.8 For arbitrary positive integer m > 1 and positive real number § > 0 we define
Io(m) = 3 (s + DA (um — s).
{1<s<m|va(pm—s)>BIn(lnm)}

LEMMA 3.9 For every B > 0, Ig(m) = o(m?In(lnm)).

Proof. If 1 < s < m and um — s = 2'a, for some odd a and [ > BIn(Inm), then

a < Lg(m) = pm2-A™nm) - Observe that (u — 1)m < pm — s < pm — 1, which implies that for fixed
a there is at most one value of [ such that (u — 1)m < a2! < um — 1. Consequently, there are at most
L% (m) < Lg(m) summands with vo(um — s) > Bln(lnm). Let us number them, say s1, s2, ..., s
and write um — s; = 2%a;, where a; is odd and I; > S1In(lnm) for every j € {1,2,... , Li(m)}.

Observe that
Li(m)

Ig(m) = > (sj + DA(um — s;) = I g(m) + I g(m),
j=1

where
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Lg(m) L*(m)
I g(m) = (sj +1)l; and Iy g(m Z sj +
7j=1

To estimate I; g(m) we denote

Tmp = {[BIn(Inm)] +1,[FIn(Inm)] +2,..., [logy(nm)]}

for sufficiently large m. It is clear that I; € Ty, 5 for every j € {1,2,..., Li(m)}.
We fix some ¢ € T},, g and consider those s for which pm — s = 2'a, where a is odd. Notice that a
takes values from a progression with difference d = 2, so that 2'a takes values from a progression

with difference d = 2+!. Hence the inequality

ka1
S(m,d) = Z (pm — s) Z w—1)m +1d)

{va(um—s)=t}

holds where k is the unique integer satisfying kd < m < (k + 1)d, i.e. k = [m/d]. Therefore

S(m, d) < (k:—l—l)(u—l)erk(k;l)d+(l<:+1)d§
m2 m o /m m
S(u—1)7+(u—1)m+5(3+1)+(3+1)d:

which yields

S (+2))

lj=t

for all t € T},, 3. Thereby

L5 (m) L5 (m) L5(m)
I g(m) = Z silj + Z lj = Z Z‘Sﬂl + Z l; <
j=1 €T 5 Lj=t

1\ m? 3
< >t ((u - 2) ot <u+ 2) m> + Lg(m) logy (um) <
tETmﬁ
< LA t 5 t 1 <
S\ g )m Z ﬁﬂL M+§ mz + pmlogy(um) <

teTm,ﬁ tETmHg
LY, o 3 2 2
< (1= 2) w20+ (et 2) miog(um) + pmloga(um) = ofm? In(inm),
since Om =3 e, 2=+ 0,
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In order to estimate I5 g(m) observe that

L (m) L (m)
Lgm)= > (s;+1)Aaj) < Y (m+1)A(g;) <
j=1 j=1
[Lg(m)]

(m+1) Z A(j) < 2(m +1)Lg(m) In(In Lg(m))

by Lemma 1 and the inequality a; < [Lg(m)] for all j € {1,2,..., Lj(m)}, therefore in accordance

with the equality Lg(m) = pm2-Bnm) we get
I 5(m) < Cm? In(In m)2~ A ™M) — (2 In(lnm)).
In the long run we end up with the asymptotic equality
Is(m) = I 5(m) + I 5(m) = o(m?In(lnm)),
which terminates the proof of the lemma. [

COROLLARY 3.4 For sufficiently large positive integer m it is always possible to select an

so € {1,2,...,m} such that
1 1
vo(pum — sg) < 6 In(lnm) and (so+ 1)A(um — so) > Zmln(ln m).

Proof. Define 11/16( m) = A(m) — I, /16(m). According to Remark 3.2 and Lemma 3.9, the
inequality I} /lﬁ(m) > (1/4)m? In(Inm) holds for sufficiently large m. We choose an sg, satisfying

va(um — 50) < & In(Inm), which maximizes the expression (s + 1)A(um — so) and deduce that

Iik/16(m)

m

m In(In(m)).

.-JM'—'

(so + 1)A(um — sg) > >

g

3.2.1 Proof of Theorem 3.4

a) We choose sufficiently large positive integer m and an sg satisfying the conditions of Corollary
3.4. In other words, suppose um — so = 2'a, where a is odd, 1 <t < (1/16) In(Inm) and

(so+ 1)A(um — sg) > (1/4)mIn(Inm). Hence

1mln(Inm) m
A — > =
(pm = s0) = 4 so+1 —4(m+1)

1
In(Inm) > gln(ln m) > 2t,
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implying that
e
A(pm — so) A(pm — sg)

N | =

Therefore
(" + ™) = (s0+ D" +1) 2 (s0 + 1) A(a)

A(a) 1
A —s9) > g™ In(Inm),

1
> " In(lnm)
where we used the inequality 7(p%® + 1) > A(a), which is true by Proposition 3.1. On the other
hand from the proofs of Lemma 3.8 and Lemma 3.9 it is clear that we may assume so > 2u.

Therefore for any integer r, 0 <r < pu — 1,

_ _ so—r—+1
um—r SO—TY\ Hm S0 >
T(p +p*7") T (P 4 p*) >
> 1T(p“m +p%) > imln(lmm).
-2 — 16

Observe that p(sg —r) < um — pr < pm — r, which shows that if ng = p{;’“, where pj, is prime and 7

is a positive integer for each k, then

- — 00, when jp — oo, as desired. [
16(jk + 1) o

b)

LEMMA 3.10 If 1 < ju < 071, then there exists a constant ¢ > 0 such that T,,(11) > c(r(n))"!Inn for

all positive integers n.

1

Proof. Fix any ¢, satisfying 0 < ¢ < = — 6 and apply the formula

n

Z 7(k) = nlnn + (2y — )n + O(n?*)

k=1
to get
n+[n1/”]
Z 7(k) = n*Inn + O(n'*) + O(n?*%) = n/*Inn + O(n'/*).
k=n-+1

Therefore there exists a constant ¢ > 0 such that the inequality

n+[n1/”] 1
/] 1/p
max {r(n+t)} >n"V/H Z T(k) = o nnl—kO(n ) > clnn,
1<t<[n=1/0] k=n-+1 nt/

holds for any positive integer n, which yields

1 omax {r(n+t)} > c(r(n) tinn

1<t<[nt/#]

for all positive integers n. The lemma is proved. [
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Suppose (ny)52; is a sequence of positive integers such that nj = pr’%, where py, is prime, j; is a
positive integer for each k € N and ny — oo as k — co. Assume E > 0 is an arbitrary number.
According to Theorem 3.4 a) there is an A > 0 such that j; > A implies T;,, (1) > E. Lemma 3.10
shows that

Inng  jilnpy

1
T, > = > —clnpy.
i (14) cT(nk) Cjk+1 = 5Cm Pk

So there is some B > 0 such that p; > B implies T, (1) > E.

The condition ng — oo shows that there are only finitely many positive integers k, such that j. < A
and pr < B. Hence there exists a positive integer k = k(E) such that T, (1) > E for any positive
integer k > k(E).

Since E was arbitrary, we conclude that T}, (1) — oo as k — co. The theorem is proved. O

In this respect the following conjecture was stated in [35]

CONJECTURE 3.1 lim T, (u) = oo for any p > 0.

n—o0
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Conclusion

Summarizing what has been said, it can be noted that the following main results were obtained in

the thesis.

1. The structure of the F,[Gal(K/k)]-module V = E/EP was studied in the case of cyclic

extensions K /k of local fields of prime degree p, where E is the group of principal units in K.

2. Generating elements and defining relations for the O, [Gal(M/L)]-module F(pys) were found
in the case of unramified cyclic p-extensions M /L of local fields and Honda formal groups

F/Ok relative to the unramified extension K/Kj.

3. It was proved that a sequence A = (a,)22 of positive integers is distinguished as soon as it

satisfies one of the conditions listed below

e liminf 7ln(ln(an))

=0 and A is increasing.
n—00 In(n)

e lim a, = oo and there is a sequence (b,)5 ; such that ged(ag, ary;) < by for all k and [.
n—0o0

4. Tt was proved that if d is any integer different from 1, then for any M > 0 there exist distinct

positive integers m and n such that ged(22” + d,22" +d) > M.

5. It was proved that if A = (n;)22, is a sequence of positive integers each term of which is a
power of a prime, namely nj = p,'*, where pj, is prime for all k, then
o If >0, then T}, (1) — oo, as my — oo.
o If 1 < pu <671 then T, (1) — oo, as ny — o0.

where

To(p) = (t(n))™' max {r(n+t)}, n=1,2,..,
1<t<[nt/#]
0 = inf{\A > 0|D(z) = zlnz + (2y — 1)z + O(z)}

and D(x) =}, ., 7(n) is the summatory function of .
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