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Overview

Relevance of the topic.

It is well known [1] that approximation of a 2-periodic and smooth function by
the truncated Fourier series or trigonometric interpolation is highly effective. It
leads to a wide range of well-known applications, from number theory to electrical
engineering, from theoretical computer science to signal and image processing [2].
However, existence of jumps severely degrades the quality of approximations and
interpolations. This is true even though the approximated function is infinitely
differentiable on [—1, 1], but non-periodic.

Different approaches were considered in literature for approximation and inter-
polation of smooth, but non-periodic functions on [—1,1].

One such approach is expansions by the modified trigonometric system, which
was originally proposed by Krein [3]. Expansions by the modified trigonometric
system were studied recently in a series of papers [4-11]. Fourier coefficients by the
modified trigonometric system decay faster compared to the classical coefficients,
which leads to better accuracy of the corresponding expansions. However, non-
periodicity still impacts the quality of approximations and interpolations.

An efficient approach for convergence acceleration of trigonometric expansions
is a polynomial subtraction method which involves a polynomial representing the
jumps was suggested by Krylov [12] and Lanczos [13]. This approach was very
popular in the last decades and mentioned by a series of researchers in different
frameworks ([14-20]). Different authors [11] suggested to apply this method to the
modified expansions.

Another well-cited approach for convergence acceleration of trigonometric ex-
pansions is application of trigonometric-rational correction functions (see [21-28]),
which lead to rational approximations by classical or modified trigonometric func-
tions.

Goals. Thesis is devoted to approximations and interpolations by the modified
trigonometric system. The first goal is convergence acceleration of the expansions by
the modified trigonometric system with rational corrections and investigation of the
convergence of the corresponding rational approximations in different frameworks.
The second goal is investigation of the convergence of interpolations by the modi-
fied trigonometric system. The third goal is implementation of the corresponding

algorithms for validation of their applicability in practical problems.



Research methods. Methods of theory of functions, numerical analysis and

mathematical analysis.
Scientific novelty. All results are new and are the following:

1. We consider convergence acceleration of the expansions by the modified trigono-
metric system by rational corrections which lead to modified-trigonometric-
rational (MTR-) approximations. Rational corrections contain unknown pa-
rameters which determination is crucial for the convergence properties of the
MTR-approximations. We suggest two different approaches for their determi-
nation. The first approach leads to the modified Fourier-Pade (MFP-) approx-

imations. The second approach leads to the optimal MTR-approximations.

2. We explore the convergence of the MFP-approximations in different frame-
works: pointwise convergence and convergence in the Lo-norm. We derive the
exact constants of the asymptotic errors for |z| < 1, at = £1 and in the

Lo-norm.

3. We explore the convergence of the optimal MTR-approximations in different
frameworks. In each case we find the exact constants of the corresponding
asymptotic errors. It helps to find the optimal values of parameters that

vanish or minimize the main terms of the asymptotic errors.

4. We introduce interpolations by the modified trigonometric system with a uni-
form grid on [—1,1]. We explore the convergence of the modified interpola-
tions in different frameworks: the pointwise convergence and convergence in
the Lo-norm. In all cases, we derive the exact constants of the corresponding

asymptotic errors.

Theoretical and practical value. All results and developed methods represent

both theoretical and practical interest for the theory of function approximation and
interpolation, and numerical analysis.

Approbation of the results. The results were reported in the seminars of the

Institute of Mathematics and in the conference:

e On a modified Fourier interpolation, Armenian Mathematical Union Annual
Session dedicated to the 110th anniversary of Professor Artashes Shahinyan,

2016, Yerevan, Armenia.



Publications. The main results of the thesis are published in 4 papers.

Structure and volume of the thesis. Thesis consists of introduction, the main

chapter with five sections, conclusion, notations, and references with 58 references.

The total number of pages is 80.

Content

Thesis considers approximations and interpolations by the modified trigonometric

System
H = {cosmnz:n€Zi}U{sinm(n—3)z:neN}, ze[-11]. (1)

Set H is an orthonormal basis of Ly[—1,1], as it consists of the eigenfunctions of
the Sturm-Liouville operator £ = —d?/dx? with Neumann boundary conditions
u'(1) = uw/(=1) = 0 (see [29]). Let Mpy(f,z) be the truncated modified Fourier

series

N
My (f, x) Z fecosmna + f)sinm(n — §)a], (2)

w\»—l

where
1 1
L= /71 f(z) cosmnadzr, f; = [1 f(z)sinm(n — 3)zdz. (3)

Obviously, for even functions on [—1, 1], expansions by the modified Fourier system

coincide with the expansions by the classical Fourier system
Heiass = {cosmnz :n € Zy U {sinmnz : n € N}, x € [-1,1]. (4)

Next theorems show that the expansions by the modified trigonometric system
have better convergence properties for smooth and odd functions on [—1, 1] com-
pared to the classical expansions ([1]). It is connected with faster decay of f2 com-
pared to the corresponding classical coefficients, which follows from the following
asymptotic estimates

q

n 2k+1 _9g—
Z M +o(n2172), n — oo, (5)
=0
and
i = n+1z B%“ +o(n=272), n— oo 6)
- _ 2k+2 ’ ’ (



where
Agea(f) = (FEDD) = fEHDD)) (DY k=0,q=1,  (7)

Byera(f) = (FED0) + fED(D)) (DY k=0,...q=1  (8)

and f € C?9%2[—1,1]. We see that f$ = O(n=2), n — oo when f is enough smooth,
but non-periodic on [—1,1]. More important is the fact, that for rapid decay of
the modified Fourier coefficients, the approximated function must obey the first ¢
derivative conditions

f(27‘+1)(j:1):O7r:O’1...,q_1- (9)

Let
Ry(f,x) = f(z) — My(f,2). (10)

Theorem A. [I] Let f € C%t1[~1,1], ¢ > 0, f?9tD € BV[-1,1] and f obeys
the first q derivative conditions (9). Then, the following estimate holds

lim N2 ||Ry(f,2)||L, =
N—oo

1
W\/A%qul(f) + B3, 1 (f)- (11)

Theorem B. [11] Let f € C?772(—1,1), ¢ > 0, f?972) € BV[~1,1] and f obeys
the first q derivative conditions (9). Then, the following estimate holds x € (—1,1)
as N — oo

(_1)N+1
RN(fa CE) = 27r2a+2 N29+2 cog % (12)

X (A2q+1(f) COS ’/T(N + 1/2)LE — B2q+1(f) sin 7TN:L’) + O(N*2q72).

Theorem C. [8] Let f € C?9+2[—1,1], ¢ > 0, f29+2) ¢ BV[-1,1] and f obeys
the first q derivative conditions (9). Then, the following estimate holds

1
w24+2(2g + 1) N2a+1

Ry(f, 1) = (A2g41(f) £ Bag1(f)) +o(N7>71). (13)

Sections 1-3 consider rational approximations by the modified trigonometric sys-

tem. They reproduce the results of papers [I-1II]. Consider a finite sequence of real



numbers § = {0,}?_,, p > 1 and by AE(0, f), f = {f.}5>, denote the following
generalized finite differences

A?v,(aa f) = fn,

. . 14
AL (D, f) = ALY, ) + 0,A52 (6, ), k> 1. -
C0n51der two sequences of real numbers 0° = {05}, _, and 6° = {05} Let
= {fsyo2, and f¢ = {fc}22,. Let u;(k,6) be defined by the following 1dent1tles
k
H1+9m Zu]kQ D (15)
j=1

Thesis explores the following modlﬁed—trlgonometrlc—ratlonal (MTR-) approxi-
mations
” op AN (6%, )

]\4’7 f,@C,QS,x =M fax -
Nl )= My(f,2) ;Hle(1+20gcos7rx+(9$)2)

k
X Z,uj(k, 0°)cosm(N +1—j)z—
j=0

3 i (16)
_ 0L A% (6%, )
k=1 Hf:l(l + 2602 cosmx + (0)?)
k
x> pi(k,0%)sinm(N + 1 — j)z,
j=0
where
Ry p(f,0°,0° x) = f(x) - MNp(f, 6°,0°, x) (17)
R (0% %) + RAT(1,0°, ),
and
1
coS (fvg x) - AP 0 f ) iTnT
? szl(l + akelﬂw n= zN:-i-l
1 (18)
+ - AP 9 fc) 77,7rnz
2 H£:1(1 + 9k67747"95 gv;rl
szn 0 AP 0 zwnm
(fa ;L‘) 27 H (]_ + gkewrz ;_,'_1 f
(19)
- Ap 9 —zrrnx.
21 (1 + le mm zN:+1 f
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A crucial step for realization of the rational approximations is determination of
parameters 08¢ and 6°. Different approaches are known for solution of this problem
(see [21-28]). In general, appropriate determination of these parameters should lead
to rational approximations with improved accuracy compared to the classical ones
in case of smooth f. However, the rational approximations are essentially non-linear
in the sense that

My p(f +9,0% 0%, x) # Mnp(f,0°0% x) + Mn (9,6 6%, 7) (20)

as for each approximation we need to determine its own vectors ¢ and 6°.

In [LIT], those parameters are determined from the following systems of equations
AP(O°, f)=0,n=N,N—-1,...,.N—p+1, (21)

and
AP (0%, f)=0,n=N,N—1,...,.N—p+1, (22)

which lead to the Fourier-Pade type approximations ([21]) with better convergence
for smooth functions compared to the classical expansions by the modified trigono-
metric system. We call those approximations as modified Fourier-Pade (MFP-)
approximations. It is a complex approach as parameters 8¢, #° depend on N and
systems (21) and (22) must be solved for each N.

Section 1 considers convergence of the modified Fourier-Pade approximations in
different frameworks. Theorem 1 (see Theorem 1.1 of the thesis) explores the point-
wise convergence for |z| < 1.

Theorem 1. Assume f € C24T2P+2)[—1 1] and fP4+2+2) ¢ BV[-1,1], ¢ > 0,
p > 1, and let systems (21), (22) have unique solutions. If f obeys the first q

derivative conditions (9) then, the following estimates are valid for v € (—1,1)

(_1)N+1(2q+p+ 1)lp! cos %(QN—QP‘FD
cos gc = A
G5 (f,0% ) = Asgia(f) 92+ 1 2q+2 N24T2p+2 (2 1 1)) cos?P i I (23)

4 O(]V—2q—2p—2)7
and

N,p\J»Y > — DP2g+1 22p+17.‘.2q+2N2q+2p+2(2q + 1)! cos2pt1 % (24)

+o(N~20-22),



Theorem 1.2 of the thesis proves similar result at * = 4+1. It shows conver-
gence rate O(N~2471) as N — oo. Comparison with Theorem C shows that the
expansions by the modified Fourier system and the MFP-approximations have the
same convergence rates at the endpoints x = +1. However, comparison of the cor-
responding constants h, , (see the estimate of Theorem 1.2) and hg, = 1, which
corresponds to the classical estimate, shows that the MFP-approximations are much
more accurate than the classical expansions (see Table 1.1 of the thesis) at x = +1.

Section 1 considers also the Lo-convergence of the MFP-approximations. Theo-
rem 1.3 of the thesis shows the exact constant of the asymptotic Lg-error. Compari-
son with Theorem A shows that the classical expansions and the MEP-approximations
have the same convergence rates O(N~2973/2) in the Lo-norm. However, com-
parison of the corresponding constants c,, (see the estimate of Theorem 1.3)
and cp, = 1, which corresponds to the classical estimate, shows that the MFP-
approximations are asymptotically more accurate (see Table 1.3 of the thesis).

Papers [ILIII] consider simpler alternative approach for smooth functions, assum-

ing that 6° and 0¢ are determined as follows

9,2:1—%5, 9;2:1—%3, T # 0,1, #0, k=1,...,p, (25)
with 7¢ = {7f,..., 75} and 7° = {7, ..., 75} independent of N. Actually, it takes
into consideration only the first two terms of the asymptotic expansions of 6, =
0r(N) in terms of 1/N. Although, parameters 6 and 6° in (25) depend on N, we
need only to determine 7¢ and 7° which are independent of N. Hence, this approach
is less complex than the modified Fourier-Pade approximations.

Sections 2 and 3 consider the convergence of the MTR-approximations with pa-
rameters ¢ and 6° defined by (25). The standard approach of these sections is
derivation of the exact estimates for the main terms of asymptotic errors without
specifying parameters 7¢ and 7°. Then, determination of the optimal values of pa-
rameters which vanish or minimize the main terms of the asymptotic errors and
lead to approximations with substantially better convergence rates.

Sections show that in case of the pointwise convergence, the optimal values of
parameters 7 and 7, k = 1,...,p are the roots of some polynomials depending
on p and ¢, where ¢ indicates the number of zero derivatives in (9). Moreover, the
choice of optimal parameters depends on the parity of p and also on the location of
x, whether |z| < 1 or z = £1. Section 2 considers convergence on x € (—1,1) and
Section 3 at x = £1.



Next theorem (see Theorem 2.1 of the thesis) reveals the asymptotic behavior of
the MTR-approximations for |z| < 1 without specifying the selection of parameters
7¢ and 7° in (25).

Theorem 2. Assume f € C29+P+2[—1 1], fCatr+2) ¢ BV[-1,1], ¢ >0, p > 1,
and f obeys the first q derivative conditions (9). Let 0, k =1,...,p be defined by
(25). Then, the following estimates hold for || <1 as N — oo

(_1)N+p+1

COS

N,p(f7 67 1‘) = A2q+1(f) N2q+p+22p+lﬂ-2q+2(2q + 1)!

r (26)
x = ié:ﬁ;&f 0 hp,2q41(T) + o(N7217772),
and
sin (=)N+P
RY(f,0,2) = Bagya(f) N2aTpt220 172072 (2g 4 1)] o
e g (1) 4 o 20702)

where .

hpn (1) =Y (= 1)F3(7) (m +p — k). (28)
k=0

Estimates of Theorem 2 leads to optimal choice of parameters 7° and 7¢. Im-

provement could be achieved if parameters are chosen such that 7° = 7¢ = 7 and
hp2g+1(7) = 0. (29)

Definition of hp 24+1(7) shows that condition (29) can be achieved, for example, if

0r) = (1) gt 2 0,0, (30)

where Q, (k) is a polynomial of order r < p —1
r .
Qu(k) =Y ¢k, o =1, (31)
7=0

with unknown coefficients ¢;, j = 1,...,7. Next theorem (see Theorem 2.3 of the
thesis) determines the values of ¢;, j = 1,...,r for improved convergence of the
rational approximations with (25) when p is odd.
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Theorem 3. Let parameter p > 1 be odd, f € C’Zﬁp*%“[—l, 1], ¢ >0,
FatpHEEA2) ¢ BV[-1,1] and f obeys the first q derivative conditions (9). Let
O, k=1,...,p be defined by (25), where T, be the roots of the generalized Laguerre
polynomial L](fq“)(x). Then, the following estimates hold for |z| <1 as N — co

(_1)N+1
N2a+p+ 2 42 120 420p+1

Nop(f,0,2) = Aggya(f)

cos 5F (2N —p+1)
p+1 (0
8 ( cosPt1 5 q’2q+%’0( ) (32)
cos T5F (2N — )
—|—0(N 2q- p_i_ )7
and
9777 (_1)1\/
W(f,0,7) = Bagy1(f) N20+p+ 2 42 2 4+29p+1
slnf(QN ) .
PR S P 0
s1n—(2N p—1)._
2 cosPt2 L Tq,2q+ 24,0 (1)
—|—0(N 2a= p_ﬂ_ )7
where
P
P (p—k+t+1)
oy = (2 ! s ’
0'7t7j('w> ( q+p+ )’;)<k>ﬂk7 ’t(w)(2q+p+1—k)'
- (34)
P
) o\ - p—k+t+1)!
s j - 2 1 ' kj,
Gst5(w)=2¢g+p+1) kz:;) <k>5k,s,t(w) (2q+p+1—k)
and
t—2s a Y,
. kt 2s—4 wtp—k,t+p—k
Br,s,t( Z (t—2s—O(p—k+0V
t—2s 1 t—2s—4 o (35)
~ _ % 1 w+p—k,l+p—k
Br,s,t(w) ;} < + 2> (t=25s =0l (p—k+0)V
where
k
o= (Jerszo "

11



Theorem 2.4 of the thesis proves similar result when p is even and |z| < 1.

Theorem 2.5 of the thesis explores the Lo-error of the MTR~approximations with-
out specifying the choice of the corresponding parameters 7¢ and 7°. First, it derives
the exact constant of the asymptotic Lo-error. Then, parameters are selected such to
minimize (numerically) the mentioned asymptotic constant. We call these approxi-
mations as Lo-minimal MTR-approximations. Table 2.1 of the thesis shows that the
latests have better asymptotic Lo-accuracy compared to the MFP-approximations.

Theorems 3.1, 3.2, 3.3 and 3.4 of the thesis explore the pointwise convergence
at = +1. Theorem 3.1 shows convergence rate O(N~2971) without specifying
the choice of parameters. Theorem 3.2 shows how the optimal values should be
chosen. Theorem 3.3 finds the optimal values of parameters for odd p. It proves
that the best accuracy could be achieved when parameters 7; = 7 are the roots of
the generalized Laguerre polynomial Lz(,zq) (). Theorem 3.4 proves similar results
for even p.

Sections 4 and 5 study interpolations by the modified trigonometric system. They
reproduce the results of paper [IV]. These sections explore the convergence of the
modified interpolations in different frameworks: pointwise and Ls-convergence. In
each case, we derive exact constants of the asymptotic errors and provide compar-
isons with the classical trigonometric interpolation which shows better convergence
properties of the modified interpolation for odd functions.

The modified interpolation was introduced in [IV]. We write the modified trigono-

metric system more compactly

H={pn(x):ne€Z}, (37)
where
@) = =, onle) = 3 ((C1)7€F +e ) neN. (@)
V2 2
Then, we write the interpolation as follows
2N
In(f,x) =Y fien(2), (39)
n=0
N
. 2 2k
m o _ D , =—— k| <N. 4
S IR il (40)
Let

12



Both, the condition of interpolation and exactness on H follow from the discrete

orthogonality of the modified trigonometric system for the grid zy,

2N
2 _
n=0
and
9 N
k=—

Section 4 studies the Ls-convergence of the modified interpolation (see Theorem
4.1 of the thesis).

Theorem 4. Let f be odd function on [—1,1]. Assume that f € C?7H1[-1,1]
and 211 ¢ BV[-1,1], ¢ > 0. Let f obeys the first q derivative conditions (9).
Then, the following estimate holds

Va(q)

Ve (44)

) 3
]\;E)nooNQQJrQ PNz, = [Bagea1(f)]

where
2

1 ! —1)
a(q) = 1013 +/O Z (28(_'_52“ dz. (45)

s7#0

Section 5 explores the pointwise convergence of the modified interpolation. The-
orem 5 (see Theorem 5.1 of the thesis) shows the exact constant of the asymptotic
error when |z| < 1 and Theorem 6 (see Theorem 5.2 of the thesis) at x = +1.

Theorem 5. Let f be an odd function on [—1,1]. Assume that f € C%4T3[—1,1]
and f29+3) € BV[-1,1], ¢ > 0. Let f obeys the first q derivative conditions (9).
Then, the following estimate holds for || <1 as N — oo

(—1)N  w|Eygsa| sinm(N +§)z
N2a+3 22a+5(29 + 1)! cos? IF

TN(f’ J?) = B2q+1(f) + O(N_Qq_g)’ (46)

where Ey, is the k-th Euler number.
Theorem 6. Let f be an odd function on [—1,1]. Assume that f € C?7+2[—1,1]
and f21%2) ¢ BV[-1,1], ¢ > 0. Let f obeys the first q derivative conditions (9).
Then, the following estimate holds as N — oo
(—p~*t | Ezg|
N2+l 22a+17(2g 4+ 1)!

rN(f7 :I:I) = iBQq-‘rl(f) + 0(N72q71)a (47)

where Ey, is the k-th Euler number.

13



Conclusion

e Section 1 explores the convergence of the MFP-approximations:

- Theorem 1.1 of the thesis explores the pointwise convergence for |z| < 1
and shows the exact constant of the asymptotic error. The convergence rate is
O(N—2472P=2) a5 N — o0 if f obeys the first ¢ derivative conditions (9). Compared
to Theorem 0.4 (see the introduction of the thesis), the improvement in convergence
rate is by factor O(N?P). However, it is important to note that, in all theorems
regarding the modified expansions, it is required less smoothness from approximated
functions than for the rational approximations.

- Theorem 1.2 studies the convergence at z = +1 and derives the exact constant
of the asymptotic error. The convergence rate is O(N~2¢71) as N — oo. Compar-
ison with Theorem 0.5 shows that the expansions by the modified Fourier system
and the MFP-approximations have the same convergence rates at the endpoints
x = 1. However, comparison of the corresponding constants hp, and hgq = 1
shows that the MFP-approximations are much more accurate than the classical
expansions (see Table 1.1).

- Theorem 1.3 shows the exact constant of the asymptotic Lo-error. Com-
parison with Theorem 0.3 shows that the classical modified expansions and the
MFP-approximations have the same convergence rates O(N~2¢73/2) in the Lo-
norm. However, comparison of the corresponding constants ¢, 4 and ¢y 4 = 1 shows
that the MFP-approximations are asymptotically more accurate (see Table 1.3).

e Section 2 considers the pointwise convergence of the MTR-approximations on
(—1,1) with parameters ¢ and 6° defined by (25):

- Theorem 2.1 derives the exact constant of the asymptotic error for pointwise
convergence for |z| < 1 without specifying the selection of parameters 7 and 77, k =
1,...,p. It shows that MTR-approximations have convergence rate O(N~2¢77P~2)
as N — oo if an approximated function has enough smoothness and obeys the
first ¢ derivative conditions (9). Compared to the modified Fourier expansions (see
Theorem 0.4), the improvement is by factor O(N?) as N — oo.

- We see that the MTR-approximations with parameters (25) are less accurate
than the MFP-approximations. However, the latests are more complex in their
realization as systems (21) and (22) must be solved for each N.

- Theorem 2.3 provides the optimal choice of parameters 7, when |z| < 1 and
p is odd and f obeys the first ¢ derivative conditions (9). If 7f =7, k=1,...,p

14



are the roots of the generalized Laguerre polynomial L,(g2q+1)(x) then, the rational
approximations have convergence rate O(N 2777 7[%]72) with improvement by
factor O(N [%]) compared to non-optimal choice of parameters (Theorem 2.1).
The improvement is by factor O(N [ ]+ ) compared to the expansions by the
modified Fourier system (Theorem 0.4).

- Theorem 2.4 provides the optimal choice of parameters when |z| < 1 and p is

even. It shows that the set of optimal parameters is wider compared to odd p. If

polynomial
p
p\l+alp—k) ko k
— (-1 48
kz_:()(k)(Qq—klnLk)!( Jle (48)
has only nonzero and real-valued roots * = 2, kK = 1,...,p then, selection 7} =

Tf = zj, provides with better convergence rate O(N_2q_p_[§]_2) compared to the
estimate of Theorem 2.1 and improvement is by factor O(N (2] ). Improvement is by
factor O(N [8]+r ) compared to the expansions by the modified Fourier system. The
problem is to find the values of ¢; in (48) for which it will have only real-valued and
nonzero roots. In two cases it is obvious. When ¢; = 0, the roots of (48) coincide
with the roots of Lé2q+1)(:c). When ¢; = —1/(2q + p + 1), the roots coincide with
the ones of LZ(,Qq) (z). In both cases all roots are positive.

- Theorem 2.5 explores the Lo-error of the MTR-approximations without speci-
fying the choice of the corresponding parameters. First, it derives the exact constant
of the asymptotic Lo-error. Then, parameters are selected such to minimize (nu-
merically) the mentioned asymptotic constant. We call these approximations as
Lo-minimal MTR-~approximations. Table 2.1 shows that the latests have better
asymptotic La-accuracy compared to the MFP-approximations.

e Section 3 considers the convergence of the optimal MTR~approximations at the
endpoints = £1 with parameters ¢ and 6° defined by (25):

- Theorem 3.1 reveals the convergence rate of the MTR~approaximations at
x = +1 without specifying parameters 7¢ and 7°. It derives the exact constant of
the asymptotic error, which helps to determine the optimal values of parameters
for better convergence. Theorem 3.1 shows the convergence rate O(N2471) as
N — oco. Comparison with Theorem 0.5 shows the same convergence rate.

- Using the explicit form of the exact constant, Theorem 3.3 finds the optimal
values of parameters for odd p for better convergence rate at x = +1. It proves
that the best accuracy could be achieved when parameters 7;; = 7 are the roots

of the generalized Laguerre polynomial L,(,QQ)(:E). For that choice, the convergence

15



[%]) compared to the

rate is O(Nquf[pTH]fl) and improvement is by factor O(N
modified Fourier expansions.

- When p is odd, the optimal choices for |z| < 1 and x = +1 are different.
The choice of polynomial L](fQ) (x) will provide with the minimal uniform error on
[—1,1], but for |z| < 1, the convergence rate will be worse by factor O(N) compared
to the optimal choice L1(72q+1)(x).

- Theorem 3.4 outlines the set of optimal parameters for even p. It shows that

the optimal choice is 74 = 7, = 2, & = 1,...,p, where 2, are real-valued and
non-zero roots of ,
L+di(p—k) k, k
——(—1)"z 49
Z( )= (49)

It provides convergence rate O(N 72‘77[%}71) with improvement by factor O(N [%])
compared to the modified Fourier expansions. When d; = 0 or d; = —1/(2¢ + p),
polynomial (49) has only real-valued and non-zero roots. For the first choice, the
roots coincide with the ones of L( q)(z) and for the second choice, with the roots
of Lpzq 1)( ). The choice of LI(, 9 (z) is better as it will provide with optimal
approximations both for |z| < 1 and z = +1.
- The optimal values of parameters 7¢ and 7° depend only on p and ¢ and are
independent of f and N. It means that if functions f, g and f 4+ g have enough
smoothness and obey the same derivative conditions, the optimal approach leads to

linear rational approximations in the sense that
MN,;D(f + 9, 967 983 I) = MN,p(f7 067 053 I) + MN,p(g7 007 057 I’)

with the same parameters 8¢ and 0° for all included functions.
e Section 4 explores the convergence of the modified interpolation in the Ly-norm:

- Theorem 4.1 reveals the convergence rate in the Lo-norm. It shows that the
convergence rate is O(N~2973/2) as N — oo if f obeys the first ¢ derivative condi-
tions (9). The modified interpolation has the same convergence rate as expansions
by the modified trigonometric system (see Theorem 0.3).

- When g = 0, Theorem 4.1 shows convergence rate O(N*%) in the Lo-norm.
The classical interpolation with the same uniform grid has convergence rate O(N~ %)
in the Lo-norm for odd functions on [—1,1]. Hence, the improvement is by factor
O(N). Recall that for even functions on [—1, 1], the modified interpolation is iden-
tical to the classical interpolation.

e Section 1.5 explores the pointwise convergence of the modified interpolation:
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- Theorem 5.1 explores the pointwise convergence on |z| < 1 and derives the
exact constant of the asymtotic error for a fixed « € (—1,1). The convergence rate
is O(N~2973) which is better than the convergence rate of the expansions by the
modified trigonometric system and improvement is by factor O(NN) (see Theorem
0.4).

- When ¢ = 0, Theorem 5.1 implies the convergence rate O(N~3) as N — oo.
The classical interpolation has convergence rate O(N 1) for the same uniform grid

n [—1,1]. Hence, the improvement is by factor O(N?) for odd functions.

- Theorem 5.2 reveals the exact constant of the asymptotic error when x = +1.
It shows convergence rate O(N ~2471) which is the same as for the convergence rate
of the expansions by the modified trigonometric system (see Theorem 0.5).

- When ¢ = 0, Theorem 5.2 shows convergence rate O(1/N). In this case,
as f(1) # f(—1), the classical interpolation doesn’t converge at the endpoints.
Hence, the modified interpolations have better convergence rate at the endpoints
with improvement by factor O(N).
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QU eNPNFT

Whwpwipmy ntuntiiwuhpynud G0 Ytipndnipyniabtin b htyptipynhwughwotin abw-
thnfujwo tnwbyymbwswthwljmb hudwljupgny

H={cosmnz:n € Zi}U{sinm(n—3)z:neN}, ze[-1,1],

npp bpdmdt) £ Upbybp 1936p. [3] wowig mumdbwuhptim opw hwpympgmbbbpp:
H puqumpjub pupptpp’ Spmpd-Lhnidhih owtipugpnpny bgpuyght futinph ubthwwb
$mblyghwibpd to, U wyn wwypdweny, hwinhuwbnd G Ly[—1,1] qupwdnpjub
onpnhnpiw] pwqghu:

Mumuibwuhpnipynibibpt wyu wuywpbigmu Yapufuyby b 2008p" [4-11] wliwgpubp-
obpnud: Wnptin nhyppupyyly Gb yeppndngegynibbtp pup dbuthnpujwd hwdwyjupgh b
niumuilwuhnyty b opuibg gmquihypnipyud htip juuyywd hwpgtip: 8nyg L qpytg, np
wyn Yapmdmpymbibph nobh dhly jupgny wybh dbd gniguihypnipjul wpugnipinid’
[-1,1] hwypjwdh Ypw pudulubwsunh nnnpy Yabyp dmbyghwdbph hwdwp, pub Jbp-
OnEInLbbtpt pup puuwubt Gowbymiwswhwud hwdwyupgh:

Utip swpmbwyly thp wyu htipugnipnipynibtipn b wpbbwhinunigyut wnweht
dwund nhpunyty Gbop dnpupymdbtp dbwthnjugwd  tnwblynibwsuthwjut hwdw-—
Jquingh qpupptipny junnigwd nwghntmy $nbijghwtttinny: Qughnbwy $nidyghwbdbpp
wuwpnibwnud &b wmbhwyp wuwpwdtiypptin, npntig npnpnudp bujub wgntgnieynib £ pnn-
ond wgnphpubtiph hpwjuwiwgiwd pupnnipjud b gnuiquihypnipjud hugpynienid-
utiph Ypu:

Wiptibwhinunipyubd wnwehl yupugpudnd nhipupyynud £ dnptignid, npp hwbqtig-
nud £ abbuhnpujuwd dnipht-Nunt dnyqpupynuitiph: Uw dnipignuditiphg wdkitwpuwinn
E, pwyg thnfuwuptth wywhnymd E gniquidhypnipjud wdtibwdtd Yapuwyht wpugnipyniap:
Munudbwuhpyty £ wyu dnpbgdwd Ypuyhtt gmquidhgniegnion b gnuqudhypnieyniap
Lo hdwu-
ny: Swibtidunpnipynibbtipp nuuwub Yyopindnipgnibbtph htyp hwugpuogpmd G nughn-
Oy Unipupynuditbph gniguiihymywi jwy hunpynipymbbtpp’ pudupup npnply $mby-
ghwbtph hwdwp:

Unbkbwhnunipjwd hwenpn tpynt yuwpwgpudbtipnud nhypupyynid £ yupudtipptiph
npnodwh wytith yung puppbpuly: Mwpuwdtpptpb pppynud Gb wybwbiu, np thnppug-
Okl Jud gpnyugitit wuhdynupujut uppwh wnweht th pwtth winwdbtinp: Wnpnynib-
pnud ugpugynid GO oupyphuiw] nwghntwy Unqpupymdbtin: Qundbwuhpyt) § opubg
Jtpuyhtt gmquipipnipymbn b gniquihypmpymbp Le hdwugpny: 8nyg L yipdty, np
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quppbip ptiyptpmd owyphiw) wwpwdtpptiph plyppnupgnibip grupptip B Ophtiwy, Yo—
puwjht gniquidhypmpjub nhypmy ywpuitypph oupphdw] wipdtpbtipp hwdtyond Go
Lwgtph puquubnuittnh wpdugpbtinh htig:

Wu dniptignudp wytith thnpp gniqudhypnipjwd wpwgnipinih nibh, pub dbwthnjujwd
dmpht-Nuwnt dmptignuip, puyg wybih wupg £ hpujubwugdwd phuwblynihg: Sw-
dbdwnnipyniip nuuwyud Yytipndnpymbbtph htip ypyht gnyg bt yppwihu, np wyb nbh
wytith (uy gniquihypnipjuwd hupynieynibbbp:

Uptiiwhununipyub yipghtt dwunid nhypupyynud G hpipynihwghwotip dbwthnfu-
Jwd bnwblymbwsuhwlwd hwdwlyupgny' [-1,1] hwgpdwdh Ypuw ppjuwd hwjwuwpu-
swith guigny: Nunudwuhpyt £ npwdg Yegpwghtt gnuigudhypnipymip b gnigudhypnip—
jbp Lo hdwuypny: Uyiugyty G0 wupdwyypnipujub ujuwih dpgphyp ghwhuwgpujubdtnp:
Nwitidunpnipyniip Gnyt gubgny hpwuwbwgynn puuwlub hypbpynhwghwh htap
hwuypupnud £ dabwthnpujwd himptipynihwghwjh gniquihypnipyub juwy hugpynipynib—
ttpp nnnpy L Yl $rbyghwibph huniwnp:

SAKJIFOYEHUE

B nuccepranuy n3ydaoTcs pa3ioKeHUs U HHTEPIIOISINN 0 MOAUMUITTPOBAHHOM

TPUTOHOMETPUYECKOI cucreme
H={cosmnz:n€Zi}U{sinm(n— 1)z:neN}, ze[-1,1]

KOTOpBIil ObuT mpemiioken Kpeitaom [3] B 1936r. 6e3 paccMOTpeHHs] ee CBOWCTB.
MuoxkectBo H sBisiercss OproroHasibHbiM Gazucom B Lo[—1,1], Tak Kak cocrout
n3 cobcTBeHHBIX (PYHKIMK rpanuvdnoi 3amadn Heitmana c¢ omeparopom Illtypma-
JInyBuins.

Paznoxkenus: mo MomuduIIMpOBAHHON TPUTOHOMETPUYECKON CHCTEME HMCCIIEI0Ba-
HBI B psizie pabor [4-11] maumuas ¢ 2008r. Tam ke pacCMOTPEHBI PA3JIOKEHUS IO
MOIUGUIUPOBAHHON CHCTEME U U3YYEHA WX CXOAUMOCTh. VlcciaemoBanus moKa3asiu,
4TO Jist MIaAKOM U HeverHoil Ha [-1,1] dyHKuumM, CKOPOCTb CXOAUMOCTU PA3JI0ZKe-
HUH M0 MOIUUIMPOBAHHON CHCTEME HA MOPSIOK OOJIBINE, YeM y KJIACCHIECKUX
Pa3J/I02KEeHUA.

B auccepraiuu mpojoIKEeHbI 9TH MCCIEIOBAHUS U B MEPBOH YACTH PACCMOTpE-

HbBI AMMPOKCUMAIMHU PAIMOHAIbHBIMU (DYHKIUAMU 110 MOAUGDUIMPOBAHHON CUCTE-
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Me. Panmonasnbabie (DyHKIMH 3aBUCAT OT HEOIIPEIEJIEHHBIX MapaMeTpoOB, KOTOPHIE
ONpeNendT CBOMCTBA CXOJIUMOCTH PA3JIOXKEHUN U CJIOKHOCTD UX aJTOPUTMHUYIECKON
peanm3aruu.

B nepBoMm maparpade paccMaTpuBaeTCs IIOIX0/I, KOTOPBIA IPUBOAAT K MOAupn-
UPOBAHHBIM anmpokcumanusam @ypoe-Ilage. ToT moaAX0a CaMBbIil CIOXKHBIH, C TOY-
KW 3pEHus peaju3alii, HO SIBJFIETCd W CaMbIM TOYHBIM, C TOYM 3PEHUS TOUYE€IHON
cxomumocTh. V3ydeHbl TOYeUHAS CXOAMMOCTD M CXOAUMOCTH B Lo mHopme. ITokaza-
bl Hosiee XOpoIue CBOHCTBA CXOAUMOCTH IS JOCTATOYHO IJIaAKuX (DYHKIMH 110
CPABHEHWIO C KJIACCUYECKUMU PABJIOKEHUSAMHU TIO0 MOANMDUIINPOBAHHON TPUTOHOMET-
PHUYECKOI cucreMe.

B crenyromux nByx maparpadgax paccMaTrpuBaeTcs 6osee MpOoCTOoit TOIX0I Ompe-
nenennsi napamerpoB. OHE OMPEENAIOTCS U3 YCIOBUS MUHUMU3AMUA HECKOTbKUX
[IEPBBIX YJIEHOB ACUMIITOTHYECKON OIIMOKHU, YTO HPUBOAUT K OINTUMAJIbHBIM DPaly-
OHAJILHBIM ammpoKcuManusaM. V3y4ueHna TodedHass CXOAUMOCTb M CXOAUMOCTH B Lo
HOpME ¥ TIOKa3aH, 9TO ONTUMAJIbHBIA BRIOOD 3aBucuT OT GopMbl cxoaumocTu. Ha-
pUMep, B CJIy9ae TOYETHON CXOAUMOCTH, 3HAYEHUS ONITUMAJIHHBIX TAPAMETPOB COB-
[A/IAI0T ¢ KOPHSAMHE [OJIMHOMOB Jlareppa. 9TOT HOJAX0/] MEHee TOYEH B CMbICJIE TO-
YEYHOM CXOaUMOCTH, YeM momuduruporanubii @ypoe-Ilage, Ho Gosee mpocToii, ¢
TOYKW 3peHud peanusanuu. I B 3ToMm cirydae, cpaBHEHHE € KIACCHIECKUMHU PA3JI0-
KEHUSIMU TIOKA3bIBAET 0OJIee XOPOIKe CBOMCTBA CXOIUMOCTH.

B nocnenneit vactu puccepranyuu pacCMaTPUBAETCS WHTEPIONANNS 10 MOauu-
LUPUBAHHON TPUIOHOMETPHUYECKOU CUCTEME U U3y YAeTCs CXOAUMOCTD B Pa3ubIx hop-
MaX — TOYE€YHAS CXOIUMOCTh U CXOJIUMOCTD B Lo HOpMe. Ilomyens TouHbIe OTleHKN
JIJIsI aCUMIITOTHIeCKO# ommuoku. CpaBHeHne ¢ KJIACCHIeCKOW MHTEPIOISINeil oKa-
3BIBAET JIYUIIYI0 CXOAUMOCTH MOAMMDUIMPOBAHHBIX WHTEPIOJAIANA [JIsi HEYETHBIX

dbyHKIMT BO BCeX CIydasdx.
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