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INTRODUCTION 

The progress in the technology of manufacturing of silica optical fibers leads to not only a 

revolution in the field of optical communications, but also to the formation of a new direction in 

science – nonlinear fiber optics. 

 Although silica glass is not a material with strong nonlinearity, the large length of the fiber 

with low optical losses and small dimensions of cross-section of the fibers significantly reduce the 

threshold of occurrence of various nonlinear phenomena. On the other hand, the study of the 

femtosecond range of durations of optical pulses [1-3] leads to the possibility of propagation of 

radiation with high intensity in optical fibers and observed nonlinear phenomena which are 

observed rare in the field of large pulse durations[4]. 

 All this leads to a wide interest in nonlinear fiber optics and many interesting results have 

been obtained which are applied in optical communications, laser technology, technology of 

information processing, optical computing machines, optical sensors of various physical quantities, 

etc. The transition to the new femtosecond time scale brought new physical and technical 

challenges related to self-interaction and interaction of powerful impulses with extremely short 

duration in optical fibers [5], their synthesis, control, transmission, and registration. For the solution 

of these problems in femtosecond time scale, particularly it is used methods of nonlinear and 

adaptive optics, Fourier-optics and holography, spectral interferometry. The pulse compression 

based on the nonlinear process of self-phase modulation (SPM) of radiation in fiber and subsequent 

dispersive delay line (DDL) allows reach 
310 times compression and the formation of extremely 

short pulses for optical range with the durations of units femtoseconds [6-8].  

 At the end of last century, the development of fiber optics and the creation of a new special 

fibers led to the creation of fiber lasers which have attracted attention as prospective, reliable and 

compact sources of ultrashort pulses. The well-known disadvantage of the fiber laser is a pulse with 

relatively low power, however it is worth to mention that recently the active research related to the 

generation of pulse with high powers by using multimode fibers, single-mode fibers with large core 

radius, and also photonic crystal single-mode fibers was implemented. 

Along with the intensive research of the process of soliton-formation and soliton regime of 

pulse propagation in the fiber, by obtaining pulse with duration in the femtosecond range, creating 
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fiber laser and so on, a new field of research aimed on the solution of problems of parameter 

registration of ultrashort pulses and their control was created [4]. The processes of self-interaction 

and interaction of optical pulses in standard and amplified fiber with different dispersive 

characteristics serve as a foundation for a new and promising approach for analysis-synthesis 

problems in femtosecond time range. So, within the problems of soliton formation, the self 

similarity phenomenon has raised interest in optics, particularly, in similaritons which maintain 

only their functional form as oppose to the solitons which maintain all their characteristics [9,10]. 

The methods of similarity have wide range of applications in various fields of physics, particularly, 

in hydrodynamics, mechanics and plasma physics [11]. The interests in these methods in optics are 

mainly stimulated by the applications of similaritons in the analysis-synthesis problems in ultrafast 

optics. The important property of similaritons is the following: it is formed in the active fiber from 

arbitrary initial pulses, additionally the duration, spectral width, and the chirp of the formed 

similariton does not depend on the form, duration and phase of initial pulse but rather by its energy 

and the characteristics of the fiber. The parabolic similaritons have wide range practical interest for 

problems of ultrafast optics and photonics due to their temporal, spectral parabolic forms, and 

phase. It is worth to mention that at the current stage of investigation in this field, there are number 

of important unsolved problems[10]. Particularly, despite the large interest in the formation and 

propagation of optical similaritons, the complete analysis of opportunities of similariton formation 

in conventional silica fibers is missing. The impact of such nonlinear and dispersive phenomena, 

such as nonstationary wave, the inertia of nonlinear response, high-order dispersion (higher than 

second) has not been sufficiently studied. A special attention on the research of potential application 

of similaritons in problems of registration and the measurement of characteristics of ultrashort 

pulses, and also in problems of signal synthesis in the processes of temporal and spectral 

compression (SC) is required. Presently, the number of experimental realizations of similaritons and 

their research is relatively small, especially for the experiments in the femtosecond time scale and 

for similaritons with wide spectrum. However, such studies are very significant from the point of 

view of similariton application in femtosecond optics. One of the most significant and functional 

applications of similariton is the pulse compression (PC) conditioned by the parabolic phase of 

similariton [12,13]. 
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Along with the important directions, the spectral compression has demonstrated the potential 

applications in the analysis-synthesis problems in ultrafast optics [14,15]. Generally, the spectral 

compressor has dispersive delay line and a nonlinear fiber as its members [16,17]. Lately, the 

spectral self-compression was numerically [18] and experimentally [19] implemented in a single-

mode fiber (SMF) with anomalous dispersion. 

Although there is a wide research in the directions mentioned above, numerous unsolved 

problems existed until now. The research of spectral self-compression was at a premature level, and 

in order to achieve a more holistic physical pattern of the process, a detailed study was necessary 

for all the values of system parameters. The peculiarities of spectral compression and self-

compression were studied only for the initial regular pulses. 

The aim of the dissertation is to fill in the gaps in the research introduced above. The study 

of the characteristics of spectral compression and self-compression is done not only for the regular 

pulses but also for the randomly modulated pulses by examining the impact of coherency on the 

process. In addition, via the method of the compensation of third-order dispersion by initial pulse 

asymmetry we increase the effectiveness of pulse compression. In order to obtain needed 

asymmetry and random pulses, the use of liquid crystal spatial light modulators (LC-SLMs) is 

offered.    

Such LC-SLMs can independently control the amplitude and the phase of the transmitted light 

by electrical fields giving possibility to programmable generate pulses with practically arbitrary 

(within physical limits) shaping and are now commercially available. The commercial LC-SLMs 

most often have a twisted nematic structure, and the amplitude and the phase of the transmitted light 

are coupled in a specific manner. In this thesis we proposed new type of LC-SLMs that allows using 

very low electrical fields to control desired pulse shaping. These LC-SLMs are based on the cell of 

twist nematic with cholesteric mixture (TNCM) and with homeotropic boundaries. Near the critical 

cell thickness this system becomes sensitive to the external fields and at a very low electrical 

voltage a transition of the Fréedericksz type takes place from a stable twisted distribution to a stable 

homogeneous homeotropic distribution. We developed the relevant mode extraction method for the 

calculation of mask patterns which can generate multiple pulse sequences with arbitrary relative 

amplitudes and phases. By the choosing relevant distribution of the electric field voltages (lower 

than 1V) across the mask with TNCM SLM we get very different pulse shaping. This method could 
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allow us to generate much type of desired waveforms: square pulses, double pulses, triple pulses, 

multiple pulses, pulses train, symmetric and asymmetric pulses and random pulses. 

The relevance and the pragmatic value of the research fields presented above and the further 

observation of unresolved problems determine the aim and scope of this dissertation. Particularly: 

 The studies of pulse self-interaction in a fiber with anomalous dispersion in order to detect 

the opportunity to realize the soliton spectral self-compression in standard silica fiber.  

 The studies of analogue between soliton spectral self-compression and soliton-effect self-

compression. 

 The studies of high-order effects preventing the effective regime pulse compression and 

possibilities to optimize the pulse compression process.  

 To study the characterizations of spatial light modulators based on twist nematics with 

cholesteric mixtures and with homeotropic boundary conditions for ultrashort pulse shaping 

and to develop the relevant mode extraction method.  

The contents of the work are listed below: 

Introduction, four chapters, summary, and the list of the literature. The work consists of 107 

pages, and contains 66 figures, the bibliography including 211 names.  

In the introduction, the urgency and the objective of the thesis are presented. The content of 

dissertation, scientific novelty, the practical significance and defending statements. 

In chapter 1, the review of the literature related to the dissertation is introduced. 

Chapter 2 is dedicated to the research of soliton spectral self-compression process for 

ultrashort pulses in a single-mode fiber with anomalous dispersion, when the dispersive length is 

less than the nonlinearity length ( NLD LL  .i.e. R<1). The behavior of pulse and spectrum for 

different initial pulses, particularly, for Gaussian, secant-hyperbolic and super-Gaussian pulses in 

the case of different values of fiber length is investigated. The research shows that the soliton 

spectral self-compression has periodical character: in the first step of propagation, we have spectral 

compression which leads to the reduction of the impact of dispersion, resulting in the decline of the 

value of dispersive length 
DL  and consequently the nonlinearity parameter R . When the 1R  

( NLD LL  ) condition is satisfied, the pulse is compressed. Afterwards, the spectrum is stretched 

within pulse compression. This leads to the gradually increase of dispersion role causing the 
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reduction of DL  and R . When 1R  , the NLD LL  condition is satisfied, and spectrum is again 

compressed. 

 The research is done for the different values of nonlinearity parameter. The dependence of 

the process periodicity on the nonlinearity parameter is studied: the approximations of the curve 

introducing nonlinearity parameter dependent frequency (the frequency of the spectral compression 

and stretching) are introduced. 

In chapter 3, the possibility for improving pulse compression via third-order dispersion 

compensation by asymmetry of the initial pulse is demonstrated. 

 The spectral compression for randomly modulated pulses is studied. Our numerical 

investigations of the spectral compression process are carried out for the additive noise model for 

initial pulses with different coherence time. The impact of randomly modulated pulse coherency on 

the spectral compression process based on numerical solution of nonlinear Schrödinger equation is 

introduced. 

 Our numerical studies show the possibility of the spectral self-compression for randomly 

modulated pulses in a single-mode fiber with negative dispersion: the characteristics of the process 

are carried out in the case of different values of the fiber length and the nonlinearity parameter. 

In chapter 4 the properties of a TNCM SLM with homeotropic boundary conditions are 

theoretically characterized. The relevant mode extraction method for the calculation of mask 

patterns is offered. By the choosing relevant distribution of the electric field voltages (lower than 

1V) across the mask with TNCM SLM we get very different pulse shaping. The generation of 

different number of pulses and intensity ratio of them are introduced by altering the amplitude of 

the electric field voltages distribution. The possibility of the generation of numerous types of 

wanted waveforms (square pulses, double pulses, triple pulses, multiple pulses, pulses train, 

symmetric and asymmetric pulses and random pulses) is offered. 

  Summary states the main results of the thesis.  

Scientific novelty: 

Through detailed studies and innovative investigations the following unprecedented results 

have been obtained: 
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 We demonstrate the soliton spectral self-compression process, realized in the fiber 

"directly", without dispersive delay line, and reveal the characteristics and regularity on the 

basis of the physical pattern of the process.  

 We show that there is an analogue between the processes of soliton-effect self-compression 

and soliton spectral self-compression which is implemented in a single - mode fiber with 

Kerr-nonlinearity and anomalous dispersion. The studies are done not only for the 

transform-limited pulses but also for pre-chirped pulses. 

 Through detailed investigations, we study the evolution of the pulse and the spectrum of 

transform-limited pulses during the propagation in the fiber and it is shown that the soliton 

spectral self-compression is implemented for various initial pulses: the main difference is 

the periodicity of the process. The approximation curves which show the frequency of the 

soliton spectral self-compression and stretching dependence on nonlinearity parameter are 

studied.  

 Through numerical study, we show that it is possible to compensate the third-order 

dispersion by initial pulse asymmetry manipulation. This opportunity is conditioned by the 

fact that the phase which is obtained during the propagation in the fiber depends on the 

initial pulse shape.  

 Via the method of the compensation of third-order dispersion by initial pulse asymmetry we 

increase the effectiveness of pulse compression as compared to the compression of regular 

pulses. The pulse compression with a ratio corresponding to the pulse spectral broadening in 

the fiber is obtained.  

 The spectral compression for randomly modulated pulses in view of the noise nonlinear 

suppression and filtering is studied. The impact of coherency on the process efficiency is 

demonstrated. The study shows that the spectral compression ratio decreases as coherence 

time of the initial randomly modulated optical signals increases. 

 Our numerical studies show the possibility of the spectral self-compression for randomly 

modulated signals in a single - mode fiber with negative dispersion. The study is 

implemented for the additive noise model. The characteristic features of the spectral self-
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compression for various values of the fiber length and the nonlinearity parameter are 

studied. 

 We developed the relevant mode extraction method for the calculation of mask patterns 

which can generate multiple pulse sequences with arbitrary relative amplitudes and phases. 

As the mask we used liquid crystal spatial light modulator based on the cell with twist 

structure of nematic and cholesteric mixture and with homeotropic boundary conditions on 

the walls.  

 By the choosing relevant distribution of the electric field voltages (  0.1V) across the mask 

with SLM we get very different pulse shaping. This approach allows to control of the 

relative amplitudes of different pulse within pulse train. By varying the modulation depth 

(by altering the amplitude of the electric field voltages distribution), we generate different 

number of pulses and intensity ratio of them.  

Practical significance  

The results introduced in the thesis can be used as a base for the improvement of productive 

methods in ultrafast optics and laser physics. They have potential applications in analysis-synthesis 

problems in ultrafast optics, in problems of registration and the measurement of characteristics of 

ultrashort pulses, in nonlinear optical filtering of noise, etc. 

Pulse shaping technique is a widely used for applications such as pulse compression and dispersion 

control, coherent control of quantum systems, laser control of matter, telecommunications, optical 

metrology, bio-imaging, microscopy and multidimensional spectroscopy.  

Defending statements:   

1. The soliton spectral self-compression implemented due to the self-interaction of pulse in the 

fiber with anomalous dispersion when the dispersive length in the fiber is shorter than the 

nonlinearity length is a spectral analogue of soliton-effect self-compression. In the range of 

values of nonlinearity parameter for 0.25 to 1 and fiber lengths of 1 to 20000, up to 30 times 

soliton spectral self-compression is possible to obtain. 

2. In the pulse compression process, the third-order dispersion preventing the process 

efficiency can be compensated via shaping of asymmetric pulses at the system input. This 

approach improves the effectiveness of pulse compression as compared to the compression 
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of regular pulses: an effective pulse compression is achieved, with a ratio corresponding to 

the pulse spectral broadening in fiber. 

3. The mask patterns with the structure based on twist nematic with cholesteric mixture with 

homeotropic boundary conditions can be used for the effective shaping of ultrashort pulses. 

4. The ultrashort pulse shaping is possible to realize by very low fields (  0.1V) in the cell of 

twist nematic with cholesteric mixture with the homeotropic boundary conditions due to the 

effect of Fréedericksz transition without an external field. 

The main results of dissertation are published in [20-34] works.  

The works presented in the dissertation are performed at Chair of Optics of Physics 

Department at Yerevan State University. The scientific supervisor of the thesis is Doctor of 

science, Professor R. S. Hakobyan. 
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CHAPTER 1. REVIEW OF THE LITERATURE  

 

§1.1 Fiber - optics technology 

At the end of seventies years of last century fiber-optics technologies lead to the wide 

integration of silica optical fiber in the current science and technology. The interest of researchers in 

fibers was related with problems of optical communications [35]. 

The fiber optic transfer of ultrashort pulses is interesting thanks to numerous reasons. Fiber 

delivery allows pulse to transmit such places, which is difficult to reach, applying lenses and 

conservative mirrors such as it is shown [35, 36] work for endoscopic multiphoton microscopy, 

which is a new medical diagnostic device [37]. The main challenge in the fiber optic delivery is the 

dispersion and nonlinearity (for Ti:Sapphire femtosecond lasers) which is characteristic to the fiber 

technology[35].  

The normal group-velocity dispersion and nonlinear features of conventional fibers (at 800 nm 

wave length) limit fiber transfer, for pulses with 100fs duration to energies ~20 pJ. For the 

conventional Ti:sapphire laser, it is even less than 1% of the initial pulse energy because of that it is 

unusably for several applications[35]. A pulse with 1nJ energy is strongly deformed after passing 

through fiber with length of one meter. The dispersive length is 2
2 / kL oD   (where

2k  is the 

coefficient of second - order dispersion, and 0 is the initial pulse duration. As the pulse stretching 

is conditioned by the different spectral components which are moved with dissimilar phase speeds, 

so it is valuable to mention that 2/1~ DL where   is the width of pulse. The dispersive effects 

have greater impact for greater pulse width [35].  

For pulses with 100fs duration, which are propagated in conventional fiber single mode fiber 

(SMF), at 800 nm wave length), the dispersive length is approximately nine cm [35]. 

1

020 )(  InkLNL
is the nonlinearity length, where 2n  and 0I are the Kerr index of silica and the peak 

intensity of pulse, respectively. The nonlinearity length is the cmLNL 3.1~  in the case of pulses with 
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100fs duration and 1nJ energy (at 800 nm wave length). As we see, 7~/ NLD LL , therefore it can 

be said that firstly the nonlinear effect predominates[35].  

The spectrum substantially stretches during initial propagation trough fiber (almost few cm), 

furtherly group-velocity dispersion dominates the nonlinearity. The pulse stretches, and the peak 

power decreases correspondingly. As a result, the pulse is stretched spectrally and temporally after 

fiber (with a meter length) and has parabolic phase[35]. 

Until now, it has created the best product for fiber transmission mostly circumventing the 

nonlinear effect (for radiation with 100fs duration, Ti:sapphire lasers) [35]. Via DDL, the pulse 

obtains a negative linear chirp, due to that the width of pulse becomes larger. The pulse returns to 

approximately the initial duration after fiber with normal group-velocity dispersion; it is not needed 

for the compensation of nonlinearity. The pre-chirping method is practically good in the case of 

small energy, yet in the case of 20pJ energy the significant deformation takes place because of 

inevitable nonlinearity, and finally we again have pulse compression at some amount. After the 

propagation of pulse with negative chirp in the environment with positive refraction index of 

nonlinearity, the spectrum is compressed due to SPM, therefore pulse becomes larger [35,2].  

There are numerous methods of fiber transmission which have been introduced in previously. 

The first method reference to the fiber with normal dispersion for example traditional large mode 

area fibers (Fig. 1.1.1), [38], microstructured unending single mode large mode area fibers, and 

high-order-mode fibers [35, 39]. 

 Air-guiding fibers possessing a low 2n  aimed to decrease the nonlinearity effects and to allow 

work with great powers, are the next class of fiber transmission. They are named as hollow core 

PBG fiber, which has the negative dispersion [40] and CPBG fiber [41]. In addition to the 

advantages both fibers have there are also disadvantages: a large positive dispersion slope and high 

transmission loss are instances of such weaknesses.  

It was effectively shown, the application of single-mode fiber and single-mode PCF in the 

imaging system (Fig. 1.1.2, [42]). In the single-mode fibers, the fs pulses, which are near-infrared, 

are stretched many times due to the chromatic dispersion and, in mainly, nonlinear effects having 

power dependence: they become substantial when energy get close to 0.1nJ [43]. However, for the 

effective multiphoton excitation, it is needed that the pulses have tiny duration and great peak-
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power. Besides, for the saving of spatial beam form corresponding for the diffraction-limited 

focusing, the single mode propagation is required. Nevertheless, the restriction of step index single-

mode fiber core width is almost five micrometer for the performing the single-mode state[35].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1.1.1. The cross section photos of the large mode area fibers [39]. 
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Due to the core with tiny diameter of single-mode fiber, it becomes receptive for providing 

nonlinearity, such as self-phase modulation, which can reform the initial pulse spectrum. 

Initially, the single-mode fibers were used in 2-photon endoscopy, however, it was shown that 

the signal is weak in the case of such scheme which is conditioned by several effects [44]. Because 

of the high peak power, such pulses hard to transmit in the standard single-mode fiber, preventing 

the stretching of pulse conditioned by self-phase modulation and group-velocity dispersion [2]. 

Investigators applied hollow-core fiber [45] and large mode area fiber [46] for the solution of the 

issue. However, these fibers are not fit for conventional optical components and the standard single-

mode fiber are more cost effective. In order to reduce the deformation caused by nonlinearity in 

conventional single-mode fiber, it was offered the pre-chirping and post chirping of pulse [47]. Yet, 

this system increases the difficulty and it is good to use the system in the case of short fiber length. 

In addition, the pulses with small energy is even difficult to deliver some meters of conventional 

single-mode fiber, the reason of that is the strong chromatic dispersion of silica for lengths of wave 

less than one micrometer[35].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1.1.2. Scanning electron microscope image of the end of a photonic crystal fiber, 

showing the central core where a hole has been omitted. 
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Since two decades ago, photonic crystal fiber has overturned basic investigation on and 

improvement of optical fibers [48]. The photonic crystal fiber considered adaptable and convenient 

for the transmission of pulses with high energies, are very dissimilar from conventional step-index 

fibers are now available for consumption [35]. There are several advantages of photonic crystal 

fibers, some of them are continues single mode operation, high nonlinear effects and etc. [49]. Due 

to advantages of the photonic crystal fibers is used in various fields [49]. The single- mode dual 

function through the central core and multimode transmit via inner cladding area with the high 

numerical aperture of photonic crystal fibers, which are from pure silica, cause the interest of 

investigators in bioimaging and biosensing to develop the effectiveness of system [35,50]. Though 

the photonic crystal fibers core size is greater than single-mode fiber, the photonic crystal fibers 

numerical aperture isn’t generally large, because of that the laser coupling is not stable, and also the 

effectiveness of coupling is not high [35,51]. For the solving these problems, the multimode fibers 

can be alternative way for pulse transmission in imaging. The multimode fiber has greater 

numerical aperture, size of core, numerical aperture, the effectiveness of coupling than single-mode 

fiber and photonic crystal fiber. 

It was shown that solid core fiber is able to implement the transmission only in the case of 

pulse with nanojoule energies. The notable characteristic is the small size of the restricted mode 

within the glass of fibre core. The radiation with high pea-k produces unfixable deformation caused 

by self-phase modulation or injures by dielectric-breakdown. The effort to increase the mode size 

has lead heavy multiple modes cross-coupling [35]. Therefore, it is seemed the optional fiber, like 

hollow core waveguide (HCW), is the most effective choice for transmission.  

The HCW were applied for infrared laser transmission. In this case the size of mode is 

basically great, for example in the case of CO2 laser with the ten micrometer length of wave, and 

multimode interference isn’t destructive for the usage [35]. These circumstances aren’t accurate in 

the case of infrared laser. It could be needed the scaling of the core low to a size that involve metal 

sediment on the internal side in order to propagate in a single-mode way. It is not easy to produce 

single mode metallic HCW via present approach in close to infrared. It is shown the capacity of the 

plastic 1D Bragg HCW in application of delivery of pulses with high power without deformation 

[35]. 
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§1.2 Spectral compression 

Thanks to fibers wide range features, they are used in many fields (in laser technology, in 

technology of handling of information and so on). One of the most remarkable and significant 

usages of nonlinearity of optical fiber is the spectrum compression. 

In [52], it is investigated the process of SPM in SMF for pulses with initial chirp, and it was 

shown the possibility of the process of spectral compression based on the reversibility of fiber optic 

compression, spectral-temporal analogue and numerical investigations [52,53]. It was demonstrated 

spectrum compression up to 2.7nm spectrum for initial 10.6nm spectrum in the process of SPM for 

femtosecond pulses of Ti:sapphire laser, the pulses were previously chirped in the DDL [54].  

The spectral compression of picosecond and femtosecond pulses were experimentally 

investigated in [55-60]. Recent times, in experimental and theoretical works it is shown the practical 

applications of spectral compression in ultrafast optics, mainly in the field of control and 

registration of laser radiation [55-63]. Particularly, it is shown that spectral compression can operate 

as effective nonlinear filter of radiation noise [62], optical processor time-spectrum Fourier 

conversion [63], the generator of temporal dark soliton [64] and etc. In [55,60] works, it is offered 

and tested modification of spectral compression based on cross-phase modulation and sum 

frequency generation. The scheme for classic spectrum compression is illustrated on Fig. 1.2.1 [65]. 

  

 

 

 

 

 

 

 

Fig. 1.2.1. Scheme for classic spectrum compression (DDL- dispersive delay line, SMF- single-mode fiber, OSA-optical 

spectrum analyzer [65]. 
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  In the SC schemes described above, it is used the standard silica fiber in such range of 

wavelengths where fibers have positive group-velocity dispersion (GVD). For fibers with negative 

dispersion the SC can be implemented directly in fiber without DDL: when the impact of dispersion 

is stronger than the influence of SPM the spectral self-compression (self-SC) takes place [66,4]. In 

this case, during initial propagation the pulse is stretched conditioned by GVD. Next, the obtained 

negative chirp is compensated by SPM during further propagation, in results we have spectrum 

compression [66,4].  

 

§1.3 Pulse compression 

Fibers have wide application in laser technology during construction different fiber optical 

sensors, in technology of handling of information and etc. due to their properties. One of the most 

interesting and important applications of nonlinear phenomena in optical fiber is the pulse 

compression. The bases of development of optical compression technology are introduced in works 

of Treacy [4, 67,68] and were based on the idea of turning of frequency modulation of pulse to the 

amplitude modulation. In the process of compression, which, in fact, represents the optical radiation 

focus in time, the pulses having frequency modulation with strong linear component are compressed 

in DDL. For the pulse generation with required frequency modulation in femtosecond range, it is 

the most convenient the using of SMF as modulator, where the SPM is conditioned practically by 

instantaneous electronic nonlinearity. Despite the small value of the Kerr index of silica 

Wsmxn /102.3~ 216
2

 , due to the large length of self-interaction in the fiber, the nonlinear 

additive Inn 2
~  can become significant and play decisive role in the self-interaction [4]. In 

[69,70] works, it is studied self-interaction by the experimentally and numerically methods in silica 

fiber for powerful picosecond optical pulses ( kWP 10 , pst 5.5 , m 59.0 ). The GVD 

and nonlinear SFM lead to the stretching of pulse up to 20ps. Additionally the temporal profile of 

intensity obtains rectangular form, and the carrier frequency obtains the linear dependence on time. 

Directing the output radiation into the cell with vapor of sodium, which served as DDL with 

anomalous dispersion near the resonance, the authors observed pulse compression up to 1.5ps. The 

development of studies of pulse self-interaction and compression of radiation in fiber was mainly 

directed to the solution of problems in femtoseconds time range [4,71-74]. In [71], the pulses of 
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laser on dye with 1 kW power and 5.4 duration were compressed twelve times in system consisting 

from fiber and grid compressor. The authors of [72] are demonstrated the possibilities of similar 

system in femtosecond  

time scale: pulses of ring laser on dye with 90fs duration were compressed up to 30fs duration after 

self-interaction in fiber with fifteen centimeters length. In works [4,73,74], directed to the creating 

of powerful sources of sub-picosecond pulses, it was used the laser on dye with 10ps pulses 

duration and power 10kW. At the output of such source, the pulse with 7 mW power and 0.7 ps 

duration has high spectral quality: 5.0~t  [4]. 

As features of the process of femtosecond pulse compression, it can be mentioned the 

significant dispersive character even in the case of small length of fiber (~1cm). It is also typical the 

presence of asymmetry in spectral and temporal profiles of intensity. Small duration of pulse allows 

to replace the grid compressor to the DDL on prism [75] and interferometers [76]. We can mention 

also, although the fiber optical method of compression allows to solve the problem of the pulse 

formation with extremely short duration for optics duration, however the nonlinear character of the 

compression process leads to the unwanted sensitivity of compressed pulse parameters from 

stability of initial pulse parameters.  The researches of self-interaction in field of anomalous 

dispersion are primarily related with fiber connection and the soliton problems [77-87]. The 

theoretical [77,78] and experimental [79,80] research of the pulse propagation in SMF is revealed 

the soliton regime of self-interaction[4].  

For the research of parameters of controlling ultrashort pulses, it is typical the application of 

SPM and cross-modulation. Initial achievements in this field is related with the obtaining a large 

value of spectrum stretching in the process of self-modulation of radiation in liquid and solid 

nonlinear material [88-91]. The research by SPM and cross-modulation in SMF were mainly 

directed to the solution problem of coding for optical communication [4,92,93]. [94-96] works is 

typically are done for this direction. In [94], it is shown the theoretical and experimental results of 

research of SPM process of radiation in SMF. The research is implemented for picosecond pulses 

(for 532nm and 1064nm wave length). At the output spectrum of radiation, the characteristic 

substructure and stretching of spectrum depending of pulse intensity appears in the result of SPM. 

For the controlling of ultrashort pulses parameters, it is offered method based on the process of 
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cross-phase modulation in fiber [95]. The source was picosecond YAG:Nd laser. The radiation on 

main frequency served as reference wave, and the radiation of second harmonic as signal wave. In 

the measurements of the spectra of pump wave and examined wave it was observed phase 

modulation substructure which  

typical for these process[4]. It is shown the possibility of frequency tuning of examined wave in the 

process of cross-modulation. In [96], it is implemented analogue research for pulse of femtoseconds 

range.  

 

§1.4 Pulse compression of nonlinear-dispersive similaritons 

Recent time, the theoretical and experimental studies of formation and propagation of 

similaritons (similariton are the pulse which save only its functional form as opposed to the soliton, 

which save its all characteristics) in fiber cause significant interest. The interest to the similariton 

method is mainly motivated by perspectives of their applications in analysis-synthesis problems in 

ultrafast optics [97]. The initial researches of optical similariton were in work [98], where it was 

explored conditions, which prevents the collapse of optical wave during propagation of pulses in 

optical fiber [2]. It was shown that in the case of high intensity the nonlinear Schrödinger equation, 

describing the propagation of optical pulses in fiber, has the asymptotic solution as pulses with 

parabolic temporal form of intensity and the linear chirp (parabolic phase)[4]. During the 

propagation along the fiber, the duration such pulses is changed, but the forms and phase save the 

parabolic shape. However, the quick increasing of duration and correspondingly the decreasing of 

intensity prevents the practical realization of parabolic pulses. Thus, further it was investigated the 

possibility of parabolic similariton realization in the fiber with amplifier. In [99], it was numerically 

shown that the any pulse is turned into the pulse with parabolic form and phase in the material with 

normal dispersion and amplification. It was attempt the experimental realization of parabolic pulses 

in erbium-doped fiber amplifier and their subsequent compression in DDL, however the methods of 

diagnostics of ultrashort pulses which were available for authors in this time does not allow reliably 

to confirm the generation of parabolic pulses[4]. 

Lately, a new kind of similariton was produced in a passive fiber with the joint effects of Kerr 

nonlinearity and dispersion [13]. 
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Fig. 1.4.1. Scheme for classic pulse compression (SMF- single-mode fiber, DDL- dispersive delay line, OSA-

optical spectrum analyzer) 

SMF 
DDL OSA 

Laser 

These nonlinear-dispersive similaritons have numerous features [13]: 

 spectrotemporal similarity /self-spectrotemporal imaging, with the accuracy determined by 

both the spectral and pulse stretching [13]; 

 linear chirp, which has not the dependence on the amplitude, chirp and power of the initial 

pulse and is defined only by the fiber dispersion [13]; 

 the bandwidth of similariton is only defined by the input pulse power [13]. 

The nonlinear-dispersive similaritons has numerous significant applications; one of them is 

pulse compression, where the positive phase caused by SPM in fiber compensated by the negative 

chirp obtained in DDL [1,2]. In fiber the spectral bandwidth is stretched and the compensation of 

phase obtained in DDL leads to the formation of shorter pulses. The standard scheme of pulse 

compression is introduced in Fig. 1.4.1. 

 

 

 

 

 

 

 

On the femtosecond time scale the high-order nonlinearity and dispersion are significantly 

restricting the pulse compression ratio, and the influence of residual third-order dispersion at the 

system output is the most significant among all high-order effects [100]. In [13], the uncompensated 

phase is compensated by taking into account the circumstance that the signs of third-order 

dispersion in fiber and dispersive delay line are not the same. Nevertheless, this approach restricts 

the parameters of fiber and dispersive delay line, and consequently, the compression size. 

The cancellation of third-order dispersion impact can be realized via nonlinear effects 

[101,102]. It was introduced the mutual compensation of third-order dispersion and nonlinear phase 

shift in short-pulse amplified fibers [101]: the accumulation of nonlinear phase shift in the amplifier 

is canceled via the combined third-order dispersion in a fiber stretcher and grating compressor 

[101,102]. 
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 In [100] work, it is shown the possibility of compensation of third-order dispersion through 

pulse asymmetry manipulation at the fiber input.  

 

1.5. Ultrashort pulse shaping technique 

The development of the ultrafast laser source into a stable, easy-to-use source coupled with 

the development of computer control of spatial light modulators (SLMs) are the beginning of 

ultrashort pulse shaping, i.e., the synthesis of pulses with specific pulse shapes from a given input 

pulse. Pulse shaping technique is a widely used for applications such as pulse compression and 

dispersion control [103-105], coherent control of quantum systems [106,107], laser control of 

matter [108-110], telecommunications [111], optical metrology [112], bio-imaging [113,114], 

microscopy [115] and multidimensional spectroscopy [116-118]. There exist of three kind of pulse 

shaper: shaping of spectral phase [119], spectral phase and amplitude [120] or polarization [121].  

Pulse shaping has been a known technique used for several decades. By spreading the 

frequency components in space using gratings in a zero dispersion stretcher, the manipulation of 

frequency bands, ∆ω, is possible. The first shaping was achieved with fixed pattern masks, which 

were created by varying the thickness of a substrate and many good results were obtained. Other 

approaches were the deformable mirrors [122], space-to-time conversion [123,124], volume 

holography [125] and some new mechanisms of pulse shaping [126-130]. The disadvantages of 

these methods are each substrate generated a fixed pattern, which cannot be rapidly changed and the 

masks were purely binary. Recently, computer programmable spatial light modulators have been 

developed, which allow for mask changes on the millisecond time scale, and also allow for a grey 

level variation.    

 Two of the most common in this new class are the acousto-optic modulators and the liquid 

crystal (LC) modulators. Acousto-optic modulators have a radio frequency voltage signal, which is 

transformed into a traveling acousto-optic wave along the modulator by a piezo electric transductor. 

The traveling wave creates a refractive index grating through the photo-elastic effect, creating the 

frequency mask. This thesis will focus on liquid crystal modulators, further information and 

references about acousto-optic modulators can be found in [131,132]. 
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Liquid crystal modulators use one or two arrays of liquid crystal pixels to adjust the relative 

spectral phase and amplitude for small frequency bandwidths across the total frequency bandwidth 

of the pulse. The liquid crystals in the pixels rotate based on an applied voltage, which lengthens the 

optical path length and hence alters the phase. In the pioneer work [133] it was used 32 pixel array, 

but as technology improved the number of pixels have increased, and today modulators are being 

constructed with 2 arrays of much more pixels. The advantage of two arrays is that one can control 

the phase or amplitude independently.  

By changing the spectral phase in frequency space, a change in the temporal shape of the 

pulse is created when recombined. The transforms can generally be considered using Fourier 

transformation. The temporal patterns that are created are almost limited by imagination; however 

there are a few physical properties which limit the complexity. These are the total bandwidth and 

the bandwidth per pixel.  

The combination of ultrafast laser sources with temporal tailoring has created much interest 

recently in the spectroscopic community. Pulses can easily be manipulated to provide coherent 

control of the excitation paths of molecules, driving specific transitions. This tool can be further 

enhanced when used in a feedback controlled optimization algorithm, which corrects for the 

experimental apparatus as well as works around the approximations made in theory.  

In the pulse shaping, the desired shaping is induced by functioning on the input pulse in the 

spectrum. To do this, the spectral components of the input pulse are divided and operated separately 

by adjusting the component’s spectral phase and/or amplitude. Next, the spectral components form 

the shaped output pulse with the desired temporal profile. 

 

Fig. 1.5.1 Block diagram representation of Fourier transforms pulse shaping. Figure adapted from [134] 

 

In other words, Fourier transform pulse shaping is based on linear, time-invariant filtering in the 

frequency domain [125], as schematically illustrated in fig. 1.5.1. The action of the pulse shaper on 
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the input field is given by the complex-valued transfer function [135]. The output field in the time 

domain can be obtained by simply taking the inverse Fourier transform of input field.  

Experimentally, this realized by separating the spectral components of the input pulse 

spatially and using a spatial mask for management of spectral phase and amplitude. Consequently, 

the spatially divided components are recollected and form a shaped output pulse with a temporal 

profile. A schematic drawing of the setup most commonly used for Fourier transform pulse shaping, 

the so-called 4f-line [136], is shown in Fig. 1.5.2. The spectral components of the incident laser 

pulse are angularly dispersed by a grating (G) located in the focal plane of a lens (L). The lens 

collimates the dispersed input beam and focuses each spectral component on a mask (M), or spatial 

light modulator, situated in the rear focal plane of the lens [127,135]. Here, phase and/or amplitude 

of the spectral components are manipulated. After traversing the mask, a second lens (L) focuses 

the light onto another grating (G) where the spectral components recombine. Remarkably, the 

symmetry of the 4f-line allows for a furled operation of the setup where a furling mirror is placed in 

the central focal plane of the system. This suggests the profit of reduced size and a smaller number 

of optical components, which simplifies alignment of the setup. In the furled configuration, the 

SLM is placed directly in front of the furling mirror [127,135]. The laser pulse thus traverses the 

SLM twice, in that way increasing the modulation ranges of the pulse shaper. However, to maintain 

a good spectral resolution, the mask must be placed within one Rayleigh length from the furling 

mirror to ensure that the focal spot size at the mask is sufficiently small. This imposes additional 

constraints on the setup. 

 

Fig. 1.5.2. A 4f-line for Fourier transform pulse shaping consisting of two gratings (G), two lenses (L) and a spatial 

mask (M). The spectral components of the ingoing pulse are spatially separated by the first grating before being 

collimated and focused onto the mask by the first lens. After the mask, the spectral components are recombined. f is the 

focal length of the lenses. Figure took from [127]. 
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1.6. Pulse shaping using liquid crystal spatial light modulators 

As we have mentioned above, the most practical types of spatial masks are acoustooptical 

modulators and liquid crystal spatial light modulators (LC-SLM) [128,136]. Both methods have 

been reviewed extensively [124,125,128,136]. In this thesis, the focus will be on pulse shaping 

using liquid crystal modulators, a technique which has been pioneered by Weiner and co-workers in 

the early 1990s [118-133]. 

Pulse shapers based on LC-SLMs use the birefringence of nematic liquid crystals (NLC), 

i.e., the fact that the optical properties of the medium depends on the light wave propagation in the 

respect of the molecules orientation. NLC are typically fluids of relatively rigid rod molecules that 

tends to orient parallel to each other and compose long range orientational order. The NLC 

materials in their LC state possess very interesting functionalities such as self-assembly, 

controllable fluidity with a long-range order, molecular and supramolecular cooperative motion, 

large birefringence and anisotropy in various physical properties, alignment change induced by 

external fields at surface and interfaces, and macroscopic deformation in response to stimuli such as 

electric, magnetic, photo, thermal, and mechanical forces. In LC the unite vector in the preferred 

direction of molecules orientation is called the director n. Thus, by ruling the orientation of the LC 

director with respect to incident light propagation, it is possible to manage the effective refractive 

index. This, consequently, allow control the spectral phase which is collected by the light wave 

upon travelling through the LC. This is the basis of phase and amplitude shaping using LC 

modulators [128,136]. 

 

Fig. 1.6.1. (a) Exploded view drawing of a single LC mask. The thin LC layer is embedded between two 

glass slides. A driving voltage applied via transparent ITO electrodes controls the orientation of the LC 

molecules. The LC mask is subdivided into several pixels which are defined by gaps between the ITO 
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electrodes. (b) Schematic diagram of a single pixel within the LC display. In the case of no voltage, the 

LC molecules are aligned along the pixel’s active axis which is defined by the surface structure of the 

ITO layer. A non-zero driving voltage results in a tilt of the LC molecules toward the z-axis. θ denotes the 

angle between the longitudinal axis of the LC molecules and the z-axis. Figure took from [127]. 

 

The schematic drawing of the structure of a LC-SLM for phase shaping most commonly 

used for Fourier transform pulse shaping, is shown in Fig. 1.6.1. The SLM consists of a NLC layer 

which is inserted between two glass slides. The LC mask is split into a linear array of pixels which 

can be controlled individually using a driving voltage. It is applied via two transparent indium tin 

oxide (ITO) electrodes which are deposited on the inner surface of the glass slides [127]. The pixels 

are defined by patterning of one ITO layer into stripe-shaped electrodes, with neighboring pixels 

being separated by thin gaps (typically a few μm) in the ITO layer. Fig. 1.6.1 also shows a sketch of 

a single LC pixel. When no voltage is applied, the LC director aligns along a direction which is 

forced by surface patterning of the ITO layer. According to [137], this zero voltage direction will 

from now on be referred to as the active axis of the LC mask. In the case of a non-zero driving 

voltage, the director reorient along the light wave propagation direction due to its tendency to align 

with the electric field. This effectively changes the extraordinary refractive index for the light. Now 

it is obvious that the spectral phase of a light wave after travelling through the pixel can be ruled via 

the motivating electrical field by the reorientation of the NLC director. This means that it is possible 

to create desired phase pattern on the spectrum of input laser pulse by applying the appropriate 

electrical field distribution to the SLM.  

 

 

Fig. 1.6.2. (a) Optical square pulses: (a) measurement of a 2 ps optical square pulse, (b) 

measurement of a square pulse with reduced ripple [132]. 
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Thus in the enough early work [138] it was reported on the generation of ultrafast square pulses 

using fixed masks. They have done intensity cross correlation measurement of a 2 ps square pulse 

produced by using masks truncated after five side lobes on either side of the main spectral peak (see 

Fig. 1.6.2a). The rise and fall times of the square pulse were found to be on the order of 100 fs. The 

ripple present on the square pulse arises because of the truncation of the spectrum and was in good 

qualitative agreement with the theoretical intensity profile. Square pulses with reduced ripple have 

also been obtained (see Fig. 1.6.2b), by avoiding truncation of the spectrum and instead using a 

gentler spectral anodization. Other interesting result is encoding of femtosecond pulses by utilizing 

pseudorandom phase patterns to scramble (encode) the spectral phases [131,139]. The clear aperture 

of the mask was divided into 44 equal pixels, each of which corresponds to a phase shift of either 

zero or . Spectral encoding spreads the incident femtosecond pulses into a complicated pseudo 

noise burst within an ~8 ps temporal envelope. The peak intensity is reduced to ~8% compared to 

that of an uncoded pulse of the same optical bandwidth. The agreement between theory and 

experiment was excellent. Similar coding and decoding has been demonstrated with longer phase 

codes (up to 127 pixels) [131] and also using programmable SLMs [140].  

Next interested result is the use of periodic phase-only spectral filters to produce high quality pulse 

trains [141,142]. The envelope of the pulse train depends on the structure of the phase response 

within a single period of the phase filter. The measured pulse train with 4.0 THz repetition rate, 

induced by 75 fs input pulses and binary phase mask is shown in Fig. 1.6.3a [134]. As it is well 

seen the pulse train is clean, and the pulses are well separated.  

 

Fig. 1.6.3. (a) Pulse trains generated by phase-only filtering. (a) Pulse train under a smooth envelope. (b) 

and (c) Pulse trains under a square envelope [132]. 
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Time domain experimental result, obtained by placing a binary phase mask fabricated according to 

a specific grating design into a femtosecond pulse shaper, is shown in Fig.1.6.3b. Used specific 

gratings are computer generated holograms that have previously been used to split an individual 

laser beam into an equally spaced, equal intensity array of beams in space.  The structure for this 

grating consists of a periodic binary phase function, where the period of the phase modulation is 

selected to yield the desired beam separation in the spatial output array and the phase structure 

within a single modulation period is designed using numerical global optimization techniques to 

provide the desired number of beams, with as little energy as possible outside the target array area 

[125,132]. The picture in Fig.1.6.3b consists of a relatively uniform sequence of eight pulses, with 

one central pulse missing. Waveforms with the missing central pulse restored have been obtained 

by adjusting the phase difference on the mask to be less than  [141] (see Fig. 1.6.3c). In [118,119] 

was experimentally studied programmable shaping of femtosecond pulses by using a 128-element 

LC-SLM to control the phases of spectral components which were spatially dispersed within a 

grating-and-lens pulse shaping apparatus. This setup allows gray-level switch of the spectral phases 

and make possible adjustment of the pulse shape on a millisecond time scale under electric field 

regulation. Fine-tuning in the scheme of the pixelated modulator result in pulse shaping truly 

equivalent to micro-lithographically created masks. Numerous models of pulse shaping operation, 

among them pulse position modulation, programmable pulse compression, and adjustable cubic 

phase distortion, were described [118,119]. In [143] it was demonstrated really whole dispersion 

compensation for 400-fs pulses over a 10-km fiber connection using dispersion compensating fiber 

and a programmable femtosecond pulse shaper functioning as a spectral phase equalizer. The pulse 

shaper excites variable quadratic and cubic phases onto the spectrum and removes all the residual 

dispersion and dispersion slope in the dispersion compensated fiber connection. This work shows 

that the pulse shaper technique provides a powerful and convenient tool for programmable fiber 

dispersion compensation over broad optical bandwidth. This allows distortion-free femtosecond 

pulse transmission over a fiber link in excess of 10 km without requiring the exact trimming of the 

dispersion-compensating fiber [133]. LC SLMs have also been used for phase-only filtering and 

shaping of pulses with temporal resolution approaching 10 fs. The results of [144] shown in Fig. 

1.6.4. 13 fs pulses from a mode locked Ti:sapphire laser with a center wavelength of 800 nm are 
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shaped using an all-reflective-optics pulse shaper. The LCM imparts a cubic spectral phase 

variation, leading to an asymmetric distortion and in good agreement with the calculated pulse 

shape [137]. 

 

Fig. 1.6.4. Shaping of 13 fs pulses using a phase-only LC phase modulator array. In this example, the LCM produces a 

cubic spectral phase variation, leading to the asymmetric distortion seen in the intensity cross-correlation plot [132]. 

 

 For the more rich pulse shaping, it is necessary independent government of spectral phase 

and amplitude. For this purpose the use of two LC arrays is required. Originally this was 

accomplished by modifying the setup two telescopic lens pairs (four lenses) between the gratings, 

with separate LC SLMs between the first and second and third and fourth lenses, respectively [145]. 

Very simple and enhanced setup, which has broad use today for independent phase and amplitude 

variation, was achieved by joining two LC arrays into a single scheme [146]. This type of setup 

with dual LC SLM array gave the results with four examples of pulse shaping [147,132] showing in 

the Fig. 1.6.5. The input pulses duration were 70 fs with central wavelength approximately 800 nm 

and all the pictures are intensity cross-correlation measurements using unshaped reference pulses 

directly from the laser. In the mentioned work there were generated and registered a 800 fs square 

pulse, a five pulse sequence of equal amplitude pulses in which both the pulse timings and phases 

are specified, a three pulse sequence with different chirp rates per pulse, and a sequence of ten 70 fs 

pulses with pulse timings, phases, and amplitudes all specified. In Fig. 1.6.5c and d the desired 

intensity profiles are also shown with dashed lines. It was obvious that waveforms with more high 

degree of complexity could be generated as well and even random pulses. Let us note that dual LC 

SLMs may be useful for controlling the time-dependent polarization profile of ultrashort pulses. 
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These possibilities, as well as a simple experimental demonstration, are discussed in [139,146]. 

Unfortunately, the diffraction efficiency of the gratings usually have a strong polarization 

sensitivity, and this fact make polarization pulse shaping much more difficult. 

 

 

Fig. 1.6.5. Intensity cross-correlation pictures of shaped pulses using the dual LCM array. (a) 800 fs 

square pulse. (b) Sequence of five, equal-amplitude pulses. (c) Three pulse sequence with different 

chirp rates per pulse. (d) Ten pulse sequence with pulse timing, amplitude, and phase control.  

 

Instead of electrical control it was possible to perform pulse shaping using an optically switched LC 

SLM [148]. This type of SLM is also known as a liquid crystal light valve. The motivation for this 

work is to avoid pixilation of the pulse shaping SLM. The light valve is made up with two 

continuous transparent electrodes and continuous layers of a twisted NLC and of photoconductive 

material (BSO). Light wave change the conductivity of BSO layer. When an dc electric field is 

applied between the two electrodes, a local change in the BSO conductivity results in a change in 

the voltage drop across the LC layer [141]. This leads to rotation of the LC director and a phase 

change for light passing through the layer. In their experimental work [149] the LC light valve was 
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allow to run a phase shift more than 12 rad. As we know, instead of this, the pixelated LC 

modulators allow to rum maximum 2 phase difference between neighboring pixels. That is why, 

the optically controlled SLM is better suited for correction of small residual phase in chirped pulse 

amplifier systems than it is for generation of strongly modulated spectral phase profiles. On the 

other hand, liquid crystal light valves with significantly improved spatial frequency response have 

been reported [150], which could potentially be applied to improve spectral resolution for pulse 

shaping applications. In [151] was reported the automated generation of spatiotemporally shaped 

femtosecond pulses by use of an optically controlled, two-dimensional LC-SLM. A single input 

pulse was divided into many independent regions, and each region was shaped temporally. By 

changing the imaging geometry they accomplished either real-space or wave-vector shaping. In 

[152] they presented an improved design and adjustment concept for femtosecond pulse shaping. 

The concept results in a compact and robust pulse shaping setup. A systematic adjustment 

procedure, high reproducibility and stability, as well as easy adaptability to different femtosecond 

laser sources were the key features of the presented design. The constructed prototype pulse shaper 

was tested in an open loop and feedback-controlled adaptive pulse shaping on two different 

femtosecond laser sources. A femtosecond pulse shaper in phase and amplitude using two LC 

devices with 640 pixels, leading to a wide temporal window around 25 ps at 800 nm was presented 

in [153]. It was shown that this device has very high resolution. The use of a folded zero dispersion 

line is also successfully demonstrated. It was demonstrated new technique for correcting arbitrary 

spectral-phase aberrations in a single iteration with no reference pulse [154]. By utilizing spectral-

phase interferometry for direct electric field reconstruction and a programmable LC-SLM [155], it 

was achieved compression of complex pulse shapes from nearly picosecond extent down to 70 fs. In 

[156] was reported on a beam shaping technique for femtosecond laser pulses based on a LC 

display. The system was capable of modifying femtosecond Gaussian beams to a flattop beam. A 

pattern projected onto LC display modifies the incoming Gaussian beam intensity so that flattop 

intensity profile is obtained. The process was monitored online using a charge-coupled device 

camera so that the intensity distribution of each pulse was known. An experimental example of the 

depth profile of a Cr layer on a Si substrate obtained using such a modified beam was presented. 

The detailed analysis of commonly encountered waveform distortions in femtosecond pulse shaping 



32 

 

with pixelated devices on LC-SLM, including the effects of discrete sampling, pixel gaps, smooth 

pixel boundaries, and nonlinear dispersion of the laser spectrum was presented in [157]. 

Experimental and simulated measurements were used to illustrate the effects. The results suggested 

strategies for reduction of some classes of distortions. The study [158] demonstrated spectral phase 

pulse shaping with a functionality that is independent of input polarization through the use of a 

single-layer LC-SLM array and a quarter waveplate in a double-pass pulse-shaping geometry. 

Ultrashort pulse shaping through arbitrary phase modulation with a reflective, 1 x 4096 element, 

LC-SLM was demonstrated in [159]. The exclusive creation of this device offers a very 85% 

efficiency when it is used for phase modulation only in a prism based pulse shaper. They presented 

a single shot characterization of the pulse shaper in the spatial and the spectral domains. These 

methods make available a complete picture of how the LC-SLM adjusts the spectral phase of an 

ultrashort pulse. The programmable, high-rate scanning femtosecond pulse shaper based on a two-

dimensional LC on silicon SLM was introduced in [160]. Whereas horizontal resolution of 1920 

controllable pixels make available excellent  preciseness in order to make complex wave shapes, 

scanning across the vertical dimension 1080 pixels has been used to simplify at least 3 orders of 

magnitude speed increase as compared with typical LC-SLM-based pulse shapers. They 

demonstrate a new scanning femtosecond pulse shaping technique that enables modulation of pulse 

shapes at hundreds of kilohertz rates. This technique is particularly useful for lock-in on the pulse 

shape measurements [161]. An ultrafast pulse shaper, capable of both phase and amplitude shaping, 

was constructed as well in [162] using a single high-resolution LC phase mask. The shaper was 

calibrated with an inline spectral interferometry technique. Amplitude shaping was accomplished by 

writing to the mask a phase grating, whose period was smaller than the spectral focus, diffracting 

away selected frequencies in a controllable manner. In the review article [163] was given an 

overview of the most widespread techniques of both ultrashort pulse shaping and pulse 

characterization [164]. 

 In [165] has been demonstrated the annular flattop beam shaping technique with dual phase 

only LC-SLM based on the refractive laser beam shaping systems. First LC-SLM reorganizes the 

intensity distribution, and the second restores the initial basic wave front. Contrary from the 

conventional annular beam shaping technique, the wave front of the output beam could be 

maintained. The influences of deviations of beam waist and beam shape on the output beam profile 
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were discussed in detail. Detailed description of the alignment of a pulse shaper optimized for mode 

locked semiconductor lasers was presented in [166]. Several methods to calibrate the phase-

retardance-LC-voltage relationship were reviewed and a calibration method was presented which is 

robust to non-idealities of the components of the setup. A new calibration method for dual-mask 

LC-SLM was presented [167], which can be applied while the SLM is in the setup of a pulse shaper 

optimized for semiconductor laser sources. An evolutionary algorithm was used to retrieve the 

phase retardances from the transmitted spectral intensity. In [168] it was demonstrated through a 

combination of adaptable diffractive and reflective optical elements a LC-SLM and a deformable 

mirror - decoupled spatial control over the pulse front (temporal group delay) and phase front of an 

ultra-short pulse was enabled. Pulse front modulation was confirmed through autocorrelation 

measurements. This new adaptive optics technique, for the first time enabling in principle arbitrary 

shaping of the pulse front, promises to offer a further level of control for ultrafast lasers. 
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CHAPTER 2. SPECTRAL DOMAIN SOLITON-EFFECT  

SELF-COMPRESSION 

§2.1. Introduction 

The results of this chapter are based on the publications [20-25].  

The nonlinear process of spectral compression (SC) in a DDL followed by a nonlinear fiber 

demonstrates promising applications to the signal analysis-synthesis problems in ultrafast optics 

[169]. In the SC system, the negative phase of pulse obtained in a DDL is compensating by the 

positive phase acquired by nonlinear SPM in a fiber with normal dispersion [170,171]. The impact 

of group-velocity dispersion (GVD) on SC for sub-picosecond pulses in the range of normal 

dispersion, i.e. at wavelengths <1.3μm for standard silica fibers, is analyzed in [172] in view of 

shaping flattop pulses. In the range of anomalous dispersion, i.e. at wavelengths >1.3μm for silica 

fibers, the combined impact of GVD and SPM leads to the formation of solitons [78,173], when the 

contributions of GVD and SPM balance each other. The pulse self-compression phenomenon arises 

when the impact of SPM exceeds the GVD, and high-order solitons are shaped [174]. Recently, 

generation of sub-two-cycle pulses by soliton self-compression of 100-fs pulses from a Ti:sapphire 

laser at 85 MHz using a 4.85-mm long nonlinear photonic crystal fiber are demonstrated 

numerically [175] and experimentally [176]. The efficient soliton self-compression down to 5.07 fs 

is demonstrated also in As2Se3 and As2S3 chalcogenide photonic nanowires [177].  

When the contribution of GVD exceeds the SPM impact in the single-mode fiber (SMF) with 

anomalous dispersion, the soliton spectral self-compression (self-SC), a spectral analogue of soliton 

self-compression, is anticipated. Recently, the self-SC realization in a standard silica fiber with 

negative dispersion at the wavelength m3.1 was predicted numerically [66] and observed 

experimentally [65]. 

In this chapter we study soliton self-SC, which takes place when fiber has anomalous 

dispersion and the dispersive length in the fiber is shorter than the nonlinearity length. Therefore, at 

first the GVD stretches the pulse and obtains a chirp. Afterwards, the accumulated impact of 

nonlinear SPM leads to the chirp compensation, and as a result, the spectrum is compressed. We 

study the soliton self-SC process revealing its nature, peculiarities and general regulations on the 

basis of physical pattern of the process.  
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§ 2.2. Mathematical modeling of propagation process and the self-

interaction of ultrashort pulses in single-mode fiber 

The mathematical modeling of nonlinear self-interaction of powerful laser radiation in optical 

fiber based on Maxwell's equations and firstly it was developed for spatial effects, which takes 

place on the influence of diffraction, nonlinear self-interaction, when radiation is propagated in 

fiber.  Next, the spatial equations, written for plane waves were generalized to spatial-temporal 

taking into consideration dispersion and mode structure of the fiber [178]. 

While spatial effects appear on the longitudinal scale on distance ~ 10
-1

-10
-2

 cm in fibers, as 

the dispersion phenomenon appears on distances ~ 10
1
-10

2
 cm in the case of sub-picosecond pulses, 

and for picosecond pulses on distances ~ 10
2
-10

3
 m. This circumstance allows to divide spatial and 

temporal effects and to examine the changing temporal characteristics of the pulse during 

propagation in the SMF, regardless of the spatial properties of the radiation. The impact of SPM on 

the spatial profile of the beam is important in the case of the self-interaction of radiation in 

multimode fibers. In the SMF the cross-section effects of the self-interaction appear in the case of 

high intensity of radiation 
212 /10~ smWI , usual for pulses with fs10~  duration. [4] 

For the description of the pulse propagation in the SMF, it is used slowly varying amplitudes 

method, which allows us to express the self-interaction of the pulse with the generalized nonlinear 

Schrödinger equation [1,2]: 
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In the equation the slowly varying amplitude of the field )0,0(/),(),( AA    is normalized 

to its peak value at the system input, DLz  is the dimensionless propagation distance and 

0/)/(  uzt   is the running time, which are normalized to the dispersive length 
2

2 / kL oD  ( 2k  is 

the coefficient of second - order dispersion), and the initial pulse duration 0 ( 0  is the initial pulse 

duration at the level of e
-1

 measured from maximum value of intensity), respectively. jj
j dkdk   is 

the absolute value of j-th derivative of  k wave number with respect to   frequency (t is the time, z 

is the longitudinal spatial coordinate, u is the group velocity). The nonlinearity parameter R  is 

given by the expression NLD LLR / , where 1

020 )(  InkLNL
 is the nonlinearity length, 2n  is the Kerr 
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index of silica, 0I  is the peak intensity at the input of system. The first and second terms of the right 

side of Eq. (2.2.1) describe the dispersive and nonlinear effects, respectively [4].  

The coefficient )( 023  kkTOD   describes the impact of the third dispersion, )( 0 TSH  is 

the contribution of the nonstationary wave, and 0 RR  is the nonstationary nonlinear response 

(where R  is the time of nonlinear response). The values of coefficients   decrease within 

increasing of pulse duration and the describing of sub-picosecond pulses propagation is 

implemented by nonlinear Schrödinger equation, that is by (2.2.1) equation with 0TOD , 0SH , 

0R  [4]. 
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The case of R=0 corresponds to the dispersive propagation of the pulse, and the linear 

dispersive material (DDL) is described by equation (2.2.1), when R=0. When it is studied the 

formation and propagation of parabolic pulses in amplified fibers, there is such ig term in the right 

side of (2.2.1) and (2.2.2) equations, which describes the amplification with the g coefficient. 

However, our investigations are done with passive fibers and the energy of the pulse is conserved.  

 Last three terms of (2.2.1) equation describes the high-order nonlinear and dispersive 

effects. The third-order dispersion (term with TOD ) essentially takes place on the distance of  

3
2)3(

/2 kL oD  , when the dispersive parameter is 02 k . The third-order dispersion can appear, 

when duration of pulse is fs50 [2,4] for the visible range for standard fiber ( 02 k  when 

m 3.1  ), and also in the case of substantial broadening of spectrum in the process of SPM. In 

equation (2.2.1), the only nonlinear effect which can cause the distortion of the pulse envelope 

shape is nonstationary wave ( SH ). The consideration this term leads to the dependence of GVD on 

the intensity of pulse. Also in the material with 02 n , it is occurred the wraparound tail of the 

pulse. Accumulated changes of pulse envelope can be substantial for pulses with fs40300   

duration [1,2,4]. As the impact of this term is not significant on the large distance, so it can be 

ignored. The last term of equation (2.2.1) describes the impact of nonlinear relaxation response of 

material, which becomes substantial for such durations of pulse which comparable with nonlinear 
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response of material 1~0 RR  . For standard silica fiber it corresponds to the duration of few 

femtoseconds [1,4,179]. 

Although, in this work such ultrashort pulses does not studied, it can be mentioned that in the 

case of such duration of pulse, the (2.2.1) equation does not describe the process adequately, as the 

equation was obtained by assumption that 1R . The first phenomenon which is competed with 

SPM is the Raman scattering above all nonlinear processes occurring by propagation of pulse in the 

fiber. Silica fibers has wide Raman line 
1250  sm (the time of relaxation is fs100~  ), so 

Raman scattering can appear for pulses with fs100  durations. Additionally Raman scattering 

process has substantially nonstationary character. The intensity of radiation 
0I  which is needed for 

generation stokes component is given by length of fiber  : 10 )(  glCI S [4,180]. The value of 

SC  constant is changed in the range of 2516SC  related with material of fiber core, and the g 

coefficient of amplification of Stokes wave has Wsmg /10 11 in the range of m 06.1 . The 

impact of Raman scattering on SPM is experimentally studied in [4,181]. For 
0II  the stokes 

component increases with 1440~  sms  spectral sift, taking energy pump pulse which has the 

impact of SPM. Also, at the central energy-carrying part of pulse of the main wave (which has 

linear part of frequency modulation) forms a trough.  It can be mentioned that the feature of Raman 

scattering nonstationary is the limitation of the length of nonlinear interaction due to the group 

delay. Because of this, while for picosecond pulses with s1011 1010    durations, Raman scattering 

is the one of the main nonlinear processes, but in the case of sub-picosecond and femtosecond 

pulses for the observation of the Raman scattering it is needed high powers with such order that 

superior powers contemporary standard femtosecond laser system. So, the process of propagation of 

laser pulses in SMF is adequately described by Schrödinger equation (2.2.2) in the range of 

durations of sub-picosecond and picosecond for powers up to 
910~P W. In the femtosecond time 

scale, it is used generalized equation (2.2.1). The describing linear dispersive material is 

implemented by (2.2.2) with R=0 [4].  
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§ 2.3 Method of numerical solution of Schrödinger equation 

The (2.2.1) and (2.2.2) equations does not have analytical solution except in the case of some 

particular situations when it is applied the method of inverse scattering problem [182]. Therefore, it 

is common the practice of approximate analysis and numerical solution. As Schrödinger equation 

describes a wide range of physical phenomena it is motivated to develop various method of 

numerical solutions of equation, comparative analysis is implemented in [183]. All this methods are 

separated into two classes: differential and pseudo-spectral methods. In this work, it is used pseudo-

spectral method for the problem solution of propagation pulse in the nonlinear medium with 

dispersion: the split-step Fourier method on physical factors [184,185]. The base of numerical 

solution of equation according to the scheme of dividing of physical factor is the following: the 

material is considered as different, consecutive layers possessing different physical features, but one 

layer has one physical feature. The using of fast Fourier transform algorithm [186] on the dispersive 

step makes the method fast and economical [4]. 

It should be mentioned that the algorithm of dividing of physical factors along with other 

benefits, has the advantage of physical clarity of the mathematical procedures, which makes it 

convenient for the solving problems of the self-interaction of ultrashort pulses. 

 

§2.4. Spectral domain soliton-effect self-compression 

In our numerical experiments, we study the pulse and spectrum evolution during the 

propagation through a fiber with Kerr-nonlinearity and anomalous dispersion.  

In the SMF, the pulse propagation is described by nonlinear Schrödinger equation for 

normalized complex amplitude of field, considering only the influence of GVD and Kerr 

nonlinearity [61]. 
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where DLz is the dimensionless propagation distance, 0/)/(  uzt   is the running time, 

which are normalized to the dispersive length 2
2 / kL oD   ( 2k  is the coefficient of second - order 

dispersion), and initial pulse duration 0 , respectively. The nonlinearity parameter R  is given by 
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Fig. 2.4.1. Scheme for spectral self-compression 

 

the expression NLD LLR / , where 1

020 )(  InkLNL
 is the nonlinearity length, 2n  is the Kerr index 

of silica, 0I  is the peak intensity. The first and second terms of the right side of Eq. (2.4.1) describe 

the impact of GVD and nonlinearity, respectively. We use the split-step Fourier method during the 

numerical solution of the equation, with the fast Fourier transform algorithm on the dispersive step 

[184,185]. 

The combined impact of GVD and SPM leads to the formation of solitons [78,80], when the 

contributions of GVD and SPM balance each other. If the broadening of spectrum conditioned by 

SPM is occurred in shorter length of fiber than dispersive effects then NLD LL  or R>1. In this 

case, firstly the spectrum is stretched and pulse obtains a positive chirp, which is partially 

compensated by negative chirp. As a result pulse is compensated [187].  

 We study the soliton self - SC, which occurs when the dispersive length in the fiber is 

shorter than the nonlinearity length ( NLD LL   , i.e. 1R ). Therefore, at first the GVD stretches 

the pulse by acquiring a chirp. Afterwards, the accumulated impact of nonlinear SPM leads to the 

chirp compensation, and as a result, the spectrum becomes compressed. [4] 

The subject of our research is the process of the soliton self - SC revealing its nature, 

peculiarities and general regulations on the basis of physical pattern of the process(Fig. 2.4.1). 

Simulations were carried out for initial Gaussian, secant-hyperbolic and super-Gaussian pulses.  

 

 

 

 

 

 

We have shown the soliton self - SC in the fiber "directly", without DDL, in the fiber with 

anomalous dispersion for different initial pulses. It is shown that there is an analogue between the 

processes of soliton self-compression and soliton self - SC for different initial pulses. The studies 

show that the periodicity of the process decreases when the nonlinearity parameter reduces. Our 

detailed study has shown that the frequency of compression has polynomial and exponential 
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approximations. We study behavior of the pulse in a fiber with negative dispersion for different 

values of the nonlinearity parameter and fiber length. We also investigate the features of spectral 

self-compression of pulses with different initial positive and negative chirp. 

 

§2.5. Numerical results introducing the physical pattern of soliton spectral 

self-compression 

Fig. 2.5.1 illustrates the process of propagation of Gaussian (a, b, R = 0.6) and secant-

hyperbolic (c, d, R = 0.4) pulses and their spectra, where 00)(   ( is the current 

frequency, 0 is the central frequency, 0  is the half of width of spectra on the level 1/e from 

peak intensity). In this case, we study the process for short fiber lengths where the efficiency of the 

process is high for the nonlinearity parameter values of R=0.6 (Gaussian pulse) and R= 0.4 (secant-

hyperbolic pulse). It can be observed that the pulse is stretched and the spectrum is compressed in 

the initial propagation step. Afterwards, the width of central peak of the spectrum decreases and the 

main part of the pulse energy goes to the spectral satellites. At the certain fiber length, the reverse 

process starts the pulse self-compression. 

The process can be explained in the following way: in the initial propagation step the spectrum 

is compressed, which leads to the decreasing of dispersion impact. As a result, the dispersive length 

increases, therefore, the nonlinearity parameter also increases. When the condition 1R  is satisfied 

( NLD LL  ), the pulse is compressed. Then, the spectrum is stretched, which leads to the increasing 

of dispersion impact (the decreasing of DL  and R ). When the condition 1R  ( NLD LL  ) is 

satisfied, the spectrum is compressed.  

The process, which is described above has periodic character, but in the case of every next 

cycle, the quality of the SC is worse than in the case of the previous SC as spectral satellites 

increase within propagation. It can be obviously seen in Fig. 2.5.2 for the initial Gaussian and 

secant-hyperbolic pulses. 
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Fig. 2.5.1. The 3D map of the propagation of Gaussian (a, b) and secant-hyperbolic (c, d) pulses and their spectra. 
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Fig. 2.5.2. The process of spectrum propagation of 

Gaussian (a) and secant-hyperbolic (b) pulses. 
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Fig. 2.5.3 shows the peak value of spectra (1) and pulses (2) for initial Gaussian (a) and secant-hyperbolic 

(b) pulses, which shows that the process has a periodic character not only for Gaussian pulses but 

also for secant-hyperbolic pulses. The difference between Gaussian and secant- hyperbolic pulses is 

the speed of the process: as we see in Fig. 2.5.3 every next spectrum compression occurs in the 

short distance in the case of Gaussian pulses as compared with the case of secant-hyperbolic pulses. 

On Fig. 2.5.4 it is illustrated the peak value of spectra (1) and pulses (2) for initial Gaussian (a) and 

secant-hyperbolic (b) pulses, for fiber length up to 5000.  

As we see on Fig. 2.5.3 and Fig. 2.5.4, the peak values decrease within the distance which is 

conditioned by the fact that the energy of spectral satellites increases.  
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Fig. 2.5.3. The peak values of spectra (1) and pulses (2) vs fiber length for initial Gaussian (a) and secant-

hyperbolic (b) pulses (for fiber length up to 1000). 
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Fig. 2.5.4. The peak values of spectra (1) and pulses (2) vs fiber length for initial Gaussian (a) and secant-

hyperbolic (b) pulses (for fiber length up to 5000). 
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Fig. 2.5.5. The K  (1) and self - SC (  /0  ) (2), )(/)( 0max  II  (3) vs fiber 

length for initial Gaussian pulse. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This fact is proved by the coefficient of SC quality, K , (the ratio of the energy in the central 

part of pulse to the whole energy) (Fig. 2.5.5). As we see in Fig. 2.5.5, the coefficient of SC quality 

decreases within the fiber length. 

In the process of propagation, the behavior of the spectrum is similar to the pulse behavior in 

the case of the soliton compression. As it is known, the propagation of the high - order solitons 

have periodic character with a DL)2/(  periodicity. On the distance equal to the periodicity, at 

first pulse is compressed, then it is stretched taking initial shape. In our case, the spectrum has 

similar behavior. However, due to the incomplete cancellation of the chirp, the changing of the 

spectrum does not have the strict periodic character. 

The process is different from soliton compression due to the fact, that spectrum changes 

depend on a nonlinear phase, which depends on the shape of the pulse. In the case of soliton 

propagation, the changes of the pulse depend on a dispersive phase, which depends on neither 

spectral nor temporal shape of the pulse. 

The study shows that the periodicity of the SC and stretching decreases with the reduction of 

nonlinearity parameter (Fig. 2.5.6). It is shown that there are polynomial (Eq. (2.5.1), (2.5.2)) and 
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exponential (Eq. (2.5.3), (2.5.4)) approximations of the curve introducing nonlinearity parameter 

dependent frequency (Fig. 2.5.6), which is the frequency of the SC and stretching. 

)10782110106.1/(1/1 79.4307 RRT         (2.5.1) 

)103.731101009.5/(1/1 83.38.196 RT R        (2.5.2) 

)004.0/(1/1 08.3 ReT           (2.5.3) 

)001.0/(1/1 73.3 ReT           (2.5.4) 

There is another situation for small values of nonlinearity parameter. So, in the case of 

R=0.25, it is formed such pulses which changes its sizes but save the shape during propagation in 

fiber. The investigations are done for fibers length of 17000 , in this case the ratio of soliton 

self-SC is 4. However, the efficiency of compression decreases within distance, and for example 

after 11000  the changes of spectra equal approximately %1  (Fig. 2.5.7). The reason of this is 

the following: the pulse large stretching (~6000 times) decrease the peak intensity of pulse which 

results in practical absence of the nonlinear self-interaction. 

On Fig. 2.5.8 it is shown the results of numerical investigations of soliton self-SC for Gaussian 

( ))/5.0exp()( 2

0ttA  ), secant-hyperbolic ( )/(sec)( 0thtA  ) and super-Gaussian 

(
4

0 )5.0exp()( ttA  ) pulses. The results correspond to the maximal value of soliton self-SC for 

fiber lengths up to 100. The compression ratio of Gaussian pulses is 9.5/0  ( 0 is the 

width of initial spectrum on half high from maximum value of intensity and   is the width of 

output spectrum), where the pulse is stretched 5.26 times for 50 , 6.0R (Fig. 2.5.8 a, d) [4].  

The evaluation of soliton self-SC is implemented by the coefficient of SC quality, K , (the 

ratio of the energy in the central part of pulse to the whole energy). In the regime of the maximal 

soliton self-SC K  equals to 8.0  for Gaussian. For secant-hyperbolic pulse the soliton self-SC 

ratio is 5   (Fig. 2.5.8 b, e), when 81 , 4.0R , and for the super-Gaussian pulse the soliton 

self-SC ratio is  (Fig. 2.5.8 c, f, 80 , 7.0R )[4]. The value of K equals to 0.8 and 0.6 for the 

secant-hyperbolic and super-Gaussian pulses, correspondingly. 
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Fig. 2.5.6. The frequency vs nonlinearity parameter for initial secant-hyperbolic (a) and Gaussian (b) 

pulses. The points correspond to the numerical investigations, solid lines introduce the approximation 

of results (Eq. (2), Eq. (3)) by all points, while the dotted lines correspond to the approximation by last 

3 points (Eq. (4), Eq. (5)).  
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Fig. 2.5.7. Pulses (a) and compressed spectra (b) 11000 (1), 17000 (2). 
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We have studied also the soliton self-SC for slightly chirped pulses. The studies are carried out 

for the Gaussian pulses depressively stretched (1.2 times, 1.4 times, 2.2 times) and chirped (with the 

chirp coefficients C = 0.83; 0.7 and 0.45) in the +/- dispersive medium. The results of studies for C 

= -0.7 are shown in Fig. 2.5.9. In this case the SC factor is ~ 24, for R = 0.5, 700 , and 3.0K . 

The same SC factor we have for the C = +0.7 and also for transform limited pulses with the 

parameters for R = 0.46 (adequate to the 1.4 times stretched pulse with R = 0.5), and 600 . This 

compassion shows that only the pulse peak intensity and spectral bandwidth are important for the 

process, and initial phase of pulses (with the chirp coefficients C= -0.83 to +0.83) does not impact 

on the process.  
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Fig. 2.5.8. Initial (dashed line) and compressed (solid line) spectra for the initial transform-limited Gaussian (a), 

secant-hyperbolic (b) and super-Gaussian (c) pulses, which correspond to the case of maximal soliton self-SC, and 

pulses (d), (e), (f)), correspondingly[4]. 
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Fig. 2.5.9. The pulse (a), spectrum(b), and chirp(c) for initially slightly chirped Gaussian 

pulses (stretching factor of the initial pulse is 4.1~ ) 
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§ 2.6. Conclusion to the chapter 2 

 Our detailed study has shown the soliton spectral self-compression in the fiber 

"directly" with anomalous dispersion, without dispersive delay line, which occurs when the 

dispersive length in the fiber is shorter than the nonlinearity length ( NLD LL   , i.e. 1R ). 

At first the group-velocity dispersion stretches the pulse by acquiring a chirp. Afterwards, 

the accumulated impact of the nonlinear self-phase modulation leads to the chirp 

compensation. As a result, the spectrum becomes compressed.  

 We have demonstrated that there is an analogue between the soliton self-

compression and soliton spectral self-compression processes: soliton spectral self-

compression has periodic character. However, due to the incomplete cancellation of the 

chirp, the changing of the spectrum does not have the strict periodic character, that is the 

process is not completely similar to the soliton compression. It is conditioned by the fact that 

spectrum changes depend on a nonlinear phase which depends on the shape of the pulse. In 

the case of soliton propagation, the changes of the pulse depend on a dispersive phase which 

depends on neither spectral nor temporal shape of the pulse. 

 We show that the periodicity of the process decreases when the nonlinearity 

parameter is reduced. We have shown that the frequency dependence on the nonlinearity 

parameter has polynomial and exponential approximations. 

 Our studies carried out for the Gaussian, secant-hyperbolic, and super-Gaussian 

pulses, in the range of parameters R=0.25 to 1 and 1  to 20000, show up to 30 times 

spectral self-compression ratio. 

 For small values of nonlinearity parameter, such pulses are formed which change 

their sizes but save the shape during propagation in fiber with great length ( 17000 ). The 

research also shows that the changes of spectrum slow dawn for fibers with large lengths 

(approximately 11000 ). The reason for this is the following: due to the large stretching 

of the pulse (~6000 times), the peak intensity of pulse decreases resulting in the practical 

absence of the nonlinear self-interaction.  



54 

 

 The coefficient of the soliton spectral self-compression quality decreases when the 

fiber length increases. This is conditioned by the fact that the energy of spectral satellites 

increases during propagation in the fiber. 

 The studies for the initially slowly +/- chirped pulses (with the chirp coefficients C = 

-0.83 to +0.83) show that only the pulse peak intensity and spectral bandwidth are important 

for the process, and initial phase of pulses does not impact to the process.  
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CHAPTER 3 

THE IMPACT OF ASYMMETRY AND COHERENCY ON THE 

PROCESS OF PULSE AND SPECTRAL COMPRESSIONS 

§3.1. Introduction 

The results of this chapter are based on the publications [26-31]. 

The interest in the nonlinear-dispersive similariton is conditioned by the wide range 

applications related to the problems of signal analysis and synthesis in ultrafast optics and 

photonics, such as temporal and spectral compression, fine frequency tuning and different methods 

characterizing ultrashort pulses. One of the interesting and practical important application is the 

temporal compression of optical pulses, in this case the positive phase obtained in the fiber due to 

the SPM is compensated via DDL with the negative GVD [1,2]. In the fiber the spectral width of 

pulse is stretched and the compensation of phase obtained in DDL leads to the formation of shorter 

pulse.  

Usually the compression is implemented in such circumstances, when the impact of dispersion 

in fiber is small [1,2] which is conditioned by the fact that dispersion leads to the stretching of pulse 

and intensity decreasing which prevent the required stretching of spectrum. However, in such 

regime the phase of pulse can have quite complex shape after fiber and it cannot be completely 

compensated in DDL. 

From this point of view it is preferable such regime of compression when it is formed the 

similariton in fiber, as the linear chirp of similariton (the parabolic phase) gives the opportunity to 

compensate the chirp in DDL and reach the effective temporal compression. 

The compression of pulse up to few tens or the units of femtosecond has practical interest due 

to their applications in science, engineering, medicine and etc. For the obtaining such short pulses it 

is needed to generate similariton with spectral width up to several tens THz in fiber. 

For similaritons with such wide spectrum, the role of third-order dispersion (TOD) is 

substantial, which can lead to the limitation of compression efficiency [4]. In the following 

paragraph it is studied the opportunities of temporal compression of nonlinear-dispersive similariton 

and the impact of TOD on pulse compression [26,4]. 
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§3.2 Optimization of Femtosecond Pulse Compression by Pulse Asymmetry 

Management 

The technique of pulse compression, which provided transition to the femtosecond time scale 

in the 80s, is of interest till now, despite the achievements of contemporary ultrafast laser 

technology. In the systems of pulse compression, the positive parabolic phase obtained in a 

normally dispersive single-mode fiber (SMF) is compensated by the negative phase obtained in a 

dispersive delay line (DDL) [170, 2]. However, on the femtosecond time scale the high-order 

nonlinear and dispersive effects are substantially limiting the pulse compression ratio, and the 

impact of residual TOD at the system output is the most substantial among all high-order effects. In 

[13], the residual phase compensation is carried out using the fact that the signs of TOD in fiber and 

prism DDL are opposite. However, such phase compensation limits the parameters of fiber and 

DDL, and thus, the compression ratio. 

 The TOD compensation is possible to implement with the help of nonlinearity [101,102]. In 

[101], it was shown that nonlinear phase shift and TOD can compensate each other in short-pulse 

fiber amplifiers. The nonlinear phase shift accumulated in the amplifier can be compensated by the 

TOD of the combination of a fiber stretcher and grating compressor. 

In this paper, we show that it is possible to compensate the TOD via shaping of asymmetric 

pulses at the system input. Due to the fiber nonlinearity, the pulse obtains a phase depending on its 

initial intensity )(0 tI  . This allows to control its phase at the end of the fiber by the initial pulse 

intensity. This approach of the use of asymmetric pulses has improved the efficiency of pulse 

compression, as compared to the compression of regular pulses. 

Numerical Studies and Results 

The pulse compressor consists of SMF and DDL [170, 2]. In SMF, the pulse obtains a positive 

phase and its spectrum expands due to self-phase modulation. This phase should be compensated by 

the negative parabolic phase obtained in the DDL; as a result, the pulse is compressed. Maximum 

pulse compression is achieved when transform-limited pulses are obtained. However, for short 

pulses, the high-order nonlinear and dispersive effects limit the pulse compression ratio 

substantially. The influence of the TOD is the most substantial among all high-order effects. 

 In the SMF, the pulse propagation is described by nonlinear Schrödinger equation 170]: 
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where DLz is the dimensionless propagation distance, 0/)/(  uzt   is the running 

time, which are normalized to the dispersive length 2
2 / kL oD  , and initial pulse duration 0 , 

respectively ( 2k  is the coefficient of second - order dispersion). The nonlinearity parameter R  is 

given by the expression NLD LLR / , where 
1

020 )(  InkLNL  is the nonlinearity length, 2n  is the 

Kerr index of silica, 0I  is the peak intensity. The first and second terms of the right side of Eq. 

(3.2.1) describe the impact of GVD and nonlinearity, respectively. The third term describes the 

impact of TOD. Pulse propagation in DDL is described by Eq. (3.2.1) when R = 0.  

We have used the split-step Fourier method during the numerical investigation of Eq. (3.2.1), 

which describes the pulse propagation in a fiber-DDL system, with the fast Fourier transform 

algorithm on the dispersive step. 

As it was mentioned above, in case of symmetric pulses, TOD limits the pulse compression 

ratio substantially. Fig. 3.2.1 illustrates the results of numerical studies on the compression of a 

Gaussian pulse. It shows the initial (dotted line) and compressed (solid line) pulses (a), 

corresponding spectra (b) and the derivative of the spectral phase ( )( , c) of the compressed 

pulse. As one can see, the compression is not effective: the compressed pulse has many satellites 

and the compression ratio is less than the spectral broadening coefficient ~3 times. The figures 

correspond to the case of maximum pulse compression, which was obtained when the parameter of 

nonlinearity was R = 50, the fiber and the DDL lengths were both ~ DL5 . The maximum value of 

pulse compression was ~3, when the spectrum was broadened ~10 times [4]. 

Low compression efficiency is conditioned by the incomplete cancellation of phases, which 

are obtained in fiber and DDL. The incomplete cancellation of phases is a result of the TOD 

contribution in DDL and fiber. Due to the opposite signs of the TOD of the prism DDL and the 

fiber [188], it is possible the implementation of such regime, when phases cancel each other [13]. 

In fiber, due to combined impact of dispersion and self-phase modulation, the pulse obtains 

the spectral phase ),(),(),(
)3()2(

zzz fff    where 2/),( 2
2

)2(  zkz
f

f   [189]  
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Fig. 3.2.1. (a) Initial (dotted line) and compressed (solid line) pulses, (b) corresponding spectra, 

and (c) )( for Gaussian pulse. The spectral broadening ratio ~10 and the pulse compression ratio ~3. 

00)(    
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. Since self-phase modulation is conditioned by the pulse intensity, 

in case of asymmetric pulses the asymmetry in the phase is caused not only by TOD but also by the 

self-phase modulation. This allows to control the phase of the pulse at the fiber output by the initial 

pulse intensity, and to achieve effective pulse compression. The numerical studies were 

implemented for pulses with different asymmetries. 

Fig. 3.2.2 shows the initial (dotted line) and compressed (solid line) pulses (a), corresponding 

spectra (b), and )(  (c) in case of the initial asymmetric pulse. The figures correspond to the 

maximum pulse compression, which was achieved when the parameter of nonlinearity was R = 20, 

the fiber length was DL5 , and the DDL length was DL4.5 . The maximal value of the pulse 

compression was ~20 in case when the spectrum was broadened ~26 times [4, 26]. 

As one can see from Fig. 3.2.2, the quality of the pulse compression is better than that of Fig. 

3.2.1 (the compressed pulse has less satellites): the compression efficiency is also higher.  

In Fig. 3.2.3, initial (dotted line) and compressed (solid line) pulses (a), corresponding spectra 

(b), and )(  (c) for another asymmetric pulse are depicted. In this case, the maximal value of 

pulse compression was ~10, when spectrum was broadened 10 times [4, 26]. 

The chirp is practically constant at the central energy-carrying part of the compressed pulse, 

which means that the pulse is approximately transform-limited. Fig. 3.2.3 corresponds to the case of 

maximum pulse compression, which was obtained when the parameter of nonlinearity was R = 7, 

the fiber length was DL5 , and the DDL length was DL6.5 [4]. 

We show that via initial asymmetric pulses it is possible to compensate the impact of TOD in 

fiber and in DDL which allows reaching the effective pulse compression with the ratio of 

compression equals to the ratio of spectral compression. 
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Fig. 3.2.2. (a) Initial (dotted line) and compressed (solid line) pulses, (b) corresponding spectra, 

and (c) )(  for asymmetric pulse. Spectral broadening ratio ~ 26 and pulse compression 

ratio ~20. 00)(    . 
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Fig. 3.2.3. (a) Initial (dotted line) and compressed (solid line) pulses, (b) corresponding spectra, and (c) )(  

for asymmetric pulse. Spectral broadening ratio ~10 and pulse compression ratio ~10. 00)(   . 
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§3.3 Impact of Coherency on the Process of Spectral Compression of 

Randomly Modulated Pulses  

Advance in ultrafast optics, photonics, laser physics and, especially, in optical communication 

transfers the noise suppression and filtering problem from radio-physics to optics, stimulating the 

studies of self-interaction of randomly modulated optical signals. The nonlinear process of spectral 

compression (SC), based on self-interaction of optical pulses, initially stretched and chirped in a 

dispersive medium [190], is of special interest on this view [191]. The spectral compressor consists 

of prism compressor, as a dispersive delay line (DDL), where the pulse is stretched and negatively 

chirped, and single-mode fiber (SMF), where nonlinear self-phase modulation leads to the chirp 

compensation and spectral narrowing [192,193]: the phase induced by nonlinear self-phase 

modulation in SMF compensates the negative phase of the pulse obtained in a DDL. The SC 

process has numerous interesting applications in ultrafast optics and laser technology [194-200]. 

The spectral temporal imaging of ultrashort pulses through Fourier transformation in the SC 

systems, and fine frequency tuning along with SC are demonstrated [194]. Applying of SC is 

proposed in a fiber laser instead of strong spectral filtering to benefit the laser’s power efficiency 

and obtain transform-limited pulses [199]. The urgent applications demand the development of new 

effective SC systems, and the process efficiency improvements by means of amplitude modulation 

of signal at the system entry are demonstrated [201]. 

 In this work the SC process for randomly modulated pulses in view of the noise nonlinear 

suppression and filtering is studied. Particularly, the impact of signal coherency on the SC process 

based on numerical solution of nonlinear Schrödinger equation for signals with different coherence 

time is numerically studied. 

 The mathematical modeling of the process  

 In the SMF, the pulse propagation is described by nonlinear Schrödinger equation for 

normalized complex amplitude of field, considering only the influence of GVD and Kerr 

nonlinearity [61]. 
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where DLz is the dimensionless propagation distance, 0/)/(  uzt   is the running time, 

which are normalized to the dispersive length 2
2 / kL oD   ( 2k  is the coefficient of second - order 

dispersion), and initial pulse duration 0 , respectively. The nonlinearity parameter R  is given by 

the expression NLD LLR / , where 
1

020 )(  InkLNL  is the nonlinearity length, 2n  is the Kerr index 

of silica, 0I  is the peak intensity. The first and second terms of the right side of Eq. (3.3.1) describe 

the impact of GVD and nonlinearity, respectively. The split-step Fourier method during the 

numerical solution of equation with the fast Fourier transform algorithm on the dispersive step is 

used. Pulse propagation in DDL is described by Eq. (3.3.1) when R = 0. 

The initial pulses with random amplitude modulation are formed by the model of additive 

noise [202], and for Eq. (3.3.1) the initial conditions are given as follows: 

)()(),0( 0        (3.3.2) 

Here 0  is the regular component of normalized amplitude, )(  is the stationary noise with 

a Gaussian correlation function, and   is its amplitude.  

 

§3.4 Numerical Studies and Results for the Spectral Compression of 

Randomly Modulated Pulses 

The statistic parameters of radiation are determined by sampling of a large number realizations 

(N =100), which are solutions of Eq. (3.3.1). The studies are carried out for signals with the same 

value of the noise component amplitude ( 6.0 ) and different coherence time ( c ). On Fig. 3.4.1 

two examples of the randomly modulated initial pulses are shown with correlation times 75.0c  

(a) and 17.0c  (b). A randomly modulated optical signal with higher coherency (a) has a 

smoother shape than signal with a lower coherency (b). The period of oscillation is given by the 

coherence time, and their amplitude is given by the amplitude of noise component.  
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In Fig. 3.4.2 compressed spectra and corresponding pulses for the SMF length f =7 and DDL 

length d =14 are shown. The lines 1–5 correspond to the c  = 0.75, 0.5, 0.33, 0.25 and 0.17 values 

of coherence time, respectively. 

As in Fig. 3.4.3 is shown, the SC ratio increases with decreasing of the initial signal 

coherency. This can be explained in the following way: a signal with the shorter coherence time, i.e. 

the wider spectrum, is stretching more rapidly in DDL, and the amplitude of random oscillations 

during the signal is decreasing and such a signal is spectrally compressed more efficiently in the 

fiber. The maximal value of the SC was 4.27 (Fig. 3.4.3). For comparison, SC for the regular 

Gaussian pulse in the system with the same parameters is implemented (f = 7, d = 14, Fig. 3.4.4). 

The maximal SC ratio is 5.9 for such a regular Gaussian pulse. 

 

 

Fig. 3.4.1. Two realizations of randomly modulated pulses with the coherence time 0.75 (a) and 0.17 

(b). 
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Fig. 3.4.2. Average spectra (a) and pulses (b) of spectrally compressed randomly modulated signals with different 

coherence time N = 100, f = 7, d = 14. 
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Fig. 3.4.3. The SC factor )0()0(  outin IIS  (1) and pulse stretching factor )0()0(   inout IIP  

(2) ratios vs coherence time for randomly modulated optical signal. Parameters of SC system and radiation: fiber length f 

= 7, DDL length d = 14, N = 100, 6.0 . 

Fig. 3.4.4. Initial (dashed line) and compressed (solid line) spectra (a), and corresponding pulses (b) for regular 

Gaussian signal. The maximum value of SC was = 5.9 (f = 7, d = 14). 
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§3.5 Spectral Self-Compression of Randomly Modulated Pulses 

The nonlinear process of spectral compression (SC) in a dispersive delay line (DDL) followed 

by a nonlinear fiber demonstrates promising applications to the signal analysis-synthesis problems 

in ultrafast optics [61]. In the SC system, the pulse expands and obtains a negative phase in a DDL. 

This phase should be compensated by the positive phase acquired by nonlinear self-phase 

modulation (SPM) in a fiber with normal dispersion; as a result, the spectrum is compressed [2]. 

The impact of group velocity dispersion (GVD) on SC for sub-picosecond pulses in the range of 

normal dispersion, i.e. at wavelengths <1.3μm for standard silica fibers, is analyzed in [64] in view 

of shaping flattop pulses. In range of anomalous dispersion, i.e. at wavelengths ≥1.3µm for silica 

fibers, the combined impact of GVD and SPM leads to the formation of solitons [78,80], when the 

contributions of GVD and SPM balance each other. The pulse self-compression phenomenon arises 

when the impact of SPM exceeds the GVD, and high-order solitons are shaped [174].  

Under the opposite condition, i.e. when the impact of dispersion exceeds the nonlinearity, we 

can expect spectral self-compression (self - SC) by the analogue of the pulse self - compression. 

Recently, the self - SC implementation directly in a fiber with negative group-velocity dispersion 

(at the wavelength range ≥1.3µm for standard silica fibers) was proposed [18] and studied [20].  

In this work, we carried out detailed numerical studies on the process of self - SC for 

randomly modulated pulses. The self - SC is shown in the fiber with anomalous dispersion, without 

dispersive delay line, when the impact of GVD in the fiber stronger than the influence of SPM. 

Numerical Studies and Results 

The pulse propagation in a single-mode fiber (SMF) is described by nonlinear Schrödinger 

equation for normalized complex amplitude of field, considering only the influence of GVD and 

Kerr nonlinearity [2]: 
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where DLz /  is the dimensionless propagation distance, 0/)/(  uzt   is the running time, 

which are normalized to the dispersive length 2
2 / kL oD   ( 2k  is the coefficient of second - order 

dispersion), and initial pulse duration 0 , respectively. The nonlinearity parameter R  is given by 
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the expression NLD LLR / , where 1

020 )(  InkLNL
 is the nonlinearity length, 2n  is the Kerr index 

of silica, and 0I  is the peak intensity. The first and second terms of the right side of Eq. (3.5.1) 

describe the impact of GVD and nonlinearity, respectively. We use the split-step Fourier method 

during the numerical solution of the equation, with the fast Fourier transform algorithm on the 

dispersive step [184,185]. 

The initial pulses with random amplitude modulation are formed by the model of additive 

noise [17], and for Eq. (3.5.1) the initial conditions are given as follows: 

 

   (3.5.2) 

In Eq. (3.5.2) 0  is the regular component of normalized amplitude, )(  is the stationary 

noise with a Gaussian correlation function, and   is its amplitude. 

The purpose of our work is to study the self - SC for randomly modulated pulses, which takes 

place when the dispersive length in the fiber is shorter than the nonlinearity length ( NLD LL  , i.e. 

1R ). At first, the GVD stretches the pulse by acquiring a negative chirp. Afterwards, the 

accumulated impact of SPM leads to the compensation of the chirp. As a result, the spectrum is 

compressed. We study the pulse behavior in a fiber with negative GVD for different values of 

nonlinearity parameter and fiber length (the fiber length is less than 100).  

The statistical parameters of radiation are determined by sampling of a large number 

realizations N =150, which are solutions of Eq. (3.5.1). The studies are carried out for signals with 

the same value of the noise component amplitude 6.0  and coherence time 

33.0c ( 3/0 c ).  

A randomly modulated optical signal with higher coherency has a smoother shape than signal 

with a lower coherency. The period of oscillation is given by the coherence time, and their 

amplitude is given by the amplitude of noise component. Fig. 3.5.1 illustrates two realizations of 

randomly modulated initial pulses with coherence time 33.0c  ( 6.0 ). 

The maximal value of the self - SC for different values of the nonlinearity parameter and the 

fiber length (the fiber length is less than 100) is studied. As shown in Fig. 3.5.2, the maximum value 

)()(),0( 0  
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Fig. 3.5.1. Two realizations of randomly modulated initial pulses. 
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Fig.3.5.2. The maximal values of the self - SC vs nonlinearity parameter (for fiber lengths less than 100).  

 

of the self - SC ( ))()(max( 0  II ) is 3 , where the nonlinearity parameter and the fiber 

length equal to 0.4 and 65, correspondingly (Fig. 3.5.2).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For comparison, self - SC for the regular Gaussian pulse and randomly modulated pulses in 

the system with the same parameters is implemented (the nonlinearity parameter and fiber length 

equal to 0.6 and 50, respectively). As we see on Fig. 3.5.3 (a, b), the self - SC is 9.5  for initial 

Gaussian pulses meanwhile the self - SC is 5.2  for initial randomly modulated pulses Fig. 3.5.3 

(c, d). 
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Fig 3.5.3. Spectral self-compression of initial Gaussian (a, b) and randomly modulated (c, d) pulses (the nonlinearity parameter and the fiber length 

equal to 0.6 and 50, respectively). 
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§ 3.6. Conclusion to the chapter 3 

 We present results of numerical studies of the phase compensation in the pulse 

compression process via the shaping of asymmetric pulses at the system input. In this case, 

an effective pulse compression is achieved with a ratio corresponding to the pulse spectral 

broadening in fiber: as the phase obtained by self-phase modulation conditioned by pulse 

shape, the phase can be controlled by shaping of asymmetric initial pulses. 

 In the result of our studies, for asymmetric pulses at the system input, we obtain 

pulse compression ratio of ~10 when the spectral broadening factor is of 10 and also 

compression ratio of ~20 for 26
X
 spectral broadening. Thus, the pulse compression 

efficiency can be improved by third-order dispersion compensation through pulse 

asymmetry manipulation at the fiber input.  

 The study of spectral compression of randomly modulated optical signals is reported. 

The research of the spectral compression process is carried out for the additive noise model 

for initial pulses with different coherence times. The results show that the ratio of spectral 

compression increases with the reduction of the coherence time of the initial signal. 

 Our numerical studies show the possibility of the spectral self-compression for 

randomly modulated pulses in the fiber "directly" with anomalous dispersion, without 

dispersive delay line.  

 The study of the spectral self-compression for randomly modulated pulse is carried 

out for the additive noise model. The peculiarities of the process for different values of the 

fiber length and the nonlinearity parameter are studied. 

 We have shown that the maximum value of spectral self-compression for randomly 

modulated pulse is ~3 for fiber lengths less than 100. 
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CHAPTER 4. FEMTOSECOND PULSE SHAPING WITH SPATIAL–LIGHT 

MODULATOR BASED ON CHIRAL LIQUID CRYSTAL CELL WITH 

HOMEOTROPIC BOUNDARY CONDITIONS 

 

§4.1. Introduction 

 The results of this chapter are based on the publications [32-34]. 

As it was mentioned in the first chapter, in the last two decades, much attention has been paid to the 

development of a technique for the shaping and compression of femtosecond optical pulses using a 

grating–lens apparatus with a liquid crystal spatial light modulator [132-168]. Such LC-SLMs can 

independently control the amplitude and the phase of the transmitted light giving possibility to 

programmable generate pulses with practically arbitrary (within physical limits) shaping and are 

now commercially available. The commercial LC-SLMs most often have a twisted nematic 

structure [203], and the amplitude and the phase of the transmitted light are coupled in a specific 

manner. That is why in [204] they focused on pulse shaping with such LC-SLMs in the time 

domain, and investigated the potential of the technique. In [205,206] we have considered the 

distribution of the director of a cholesteric liquid crystal (CLC) in planar cells on whose walls the 

director orientation is maintained rigidly along the normal to the boundary. This kind of structure 

has also twist nematic with cholesteric mixture (TNCM) and with homeotropic boundaries. Near the 

critical cell thickness this system becomes sensitive to the external fields and at a very low electrical 

voltage a transition of the Fréedericksz type takes place from a stable twisted distribution to a stable 

homogeneous homeotropic distribution.   

In this study, we have theoretically characterized the properties of a TNCM SLM with 

homeotropic boundary conditions. We developed the relevant mode extraction method for the 

calculation of mask patterns which can generate multiple pulse sequences with arbitrary relative 

amplitudes and phases. By the choosing relevant distribution of the electric field voltages (lower 

than 0.1V) across the mask with TNCM SLM we get very different pulse shaping. By varying the 

modulation depth (by altering the amplitude of the electric field voltages distribution), we generate 

different number of pulses and intensity ratio of them. This method could allow us to generate much 
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type of desired waveforms: square pulses, double pulses, triple pulses, multiple pulses, pulses train, 

symmetric and asymmetric pulses and random pulses.    

 

§4.2. Femtosecond pulse characterization 

Femtosecond pulse can be subjected to the spectral resolution 

  

,      (4.2.1) 

 

where the Fourier components are given in terms of the function e(t) by the integrals 

 

.     (4.2.2) 

Because e(t) must be real, 

.      (4.2.3) 

 

Let us express the total intensity of the wave, i.e. the integral of e
2 

over all time, in terms of the 

intensity of the Fourier components. Using (4.2.1) and (4.2.2), we have: 

 

 

 

or, using(4.2.3)    

    (4.2.4) 

 

The time-dependent complex electric field e(t) in the slow varying envelope approximation can be 

separated in 

,     (4.2.5) 
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where e0(t) is the temporal amplitude, 0t + (t) is the temporal phase factor, 0 is the carrier 

frequency and (t) is the additional phase. This approximation is true if pulses have at list few 

optical cycles, when ∆ << 0, where ∆ is the spectral full-width at half-maximum. The time 

derivative of the phase factor 0t + (t) gives the instantaneous frequency as a function of time  

 

     (4.2.6) 

Developing the phase (t) around t0 in Taylor series gives a closer look at the chirp in time domain: 

 

 (4.2.7) 

or 

  (4.2.8) 

The quantity 0 = (t0) represents the constant phase of the electric field which determines the 

relative position of the fast oscillations of the electric field with respect to the pulse envelope. The 

linear variation of the phase (t) in time is described by the term 1 = d(t)/dt|t0 which gives the 

shift of the carrier frequency 0. For a transform-limited pulse the temporal phase depends linearly 

with time:(t) = 0 + 1 (t - t0). The quadratic term 2 = d
2
(t)/dt

2
|t0 gives the linear chirp, i.e. the 

linear variation of the instantaneous frequency with time (see equation  

    (4.2.6)). If d
2
(t)/dt

2
|t0 > 0 the instantaneous frequency increases with 

time; this is the case of a positive chirp or upchirp. The opposite situation, when d
2
(t)/dt

2
|t0 < 0, i.e. 

the instantaneous frequency decreases in time, is described as a negative chirp or downchirp. For 

d
3
(t)/dt

3
|t0 and higher orders, the terms give the quadratic and higher order chirps. Nonlinear phase 

modulation of unchirped femtosecond pulse can be realized in many methods. One of them is self-

phase modulation. The modulation phase term is described as 

 

     (4.2.9) 

where 0 is the central wavelength of the pulse, L is the thickness of the optical medium in the  

pulse propagation direction and n the time-dependent (temporal modulation) or position-dependent 
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(spatial modulation) or frequency-dependent (spectral modulation) refractive index. In the case of 

temporal modulation this phenomenon leads to a change in the spectrum without affecting the time 

duration of the pulse. 

 Since the laser’s inception in 1961, considerable research has been performed to make the 

output stronger, more stable, and in the cases of pulsed lasers, there has been a drive to make the 

pulse durations shorter because a vast range of fundamental processes occur on the pico- and 

femtosecond time scale [132]. To understand time dynamics of a process, usually a shorter time 

scaled reference must be used. From the Heisenberg relationship,  

     (4.2.10) 

where s is a constant dependent on the assumed pulse shape (i.e. for a Gaussian pulse s = 0.441), the 

greater the frequency bandwidth the shorter the pulse duration. The dependency arises from the 

Fourier transform relationship between the pulse duration and the bandwidth. Another stipulation 

for a short pulse is the large bandwidth must have a fixed phase relationship. The equality holds 

when there is no chirp across the frequencies (i.e. the phases of all the frequency components are 

the same). When the pulse conforms to this equality, it is a Fourier transforms limited pulse, or also 

known as a bandwidth limited pulse.  

The laser pulse duration propagation in different media has undergoes dispersion which 

lengthens the pulse by changing the phase relationship between different frequency components. In 

the frequency domain complex electric field E() can be separated in 

,     (4.2.11) 

where E0() is the spectral amplitude, 0t + () is the spectral phase factor, 0 is the carrier 

frequency and () is the additional phase, that can be expended in a Taylor series if ∆ << 0, 

  (4.2.12) 

 

where 
´
 is the group dispersion delay, 

´´
 is the group velocity dispersion, and 

´´´
 is the third 

order dispersion coefficient. The pulse duration is defined as the complete derivative with respect to 

frequency. 

      (4.2.13) 
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§4.3. Grating and lens apparatus action 

As it was mentioned in the section 1.5, to filter spectral components, using the LC-SLM, 

one needs to image the focused spectrum into the LC-SLM. For a single LC-SLM this is most 

easily accomplished by a pair of gratings and lenses configured in a 4-F (shown setup in Fig. 4.3.1). 

This arrangement has been developed first in [207,208] as a way to create positive group-velocity 

dispersion. The first grating angularly disperses the spectral components of the ultrashort incident 

pulse. The grating is located in the back focal plane of a first lens, so that the lens collimates the 

spatially separated spectral components and focuses the discrete spectral components onto the 

spatially varying LC-SLM positioned in the front focal plane of the lens [118]. The LC-SLM is in 

the back focal plane of a second lens (so that the lens pair forms a telescope around the LC-SLM), 

which collimates the discrete spectral components and curves them toward a second antiparallel 

grating that is in the front focal plane of the second lens. The second lens and the second grating 

thus recombine the spectrally filtered pulse, yielding a shaped pulse in the time domain [118]. 

For LC-SLM made up of a linear collection of regularly spread out pixels it is important that 

each pixel sample a spectral range of the same size so that linear sampling is kept.  

 

Fig. 4.3.1. 4-F pulse-shaping apparatus. 

 

First order diffraction off a grating is given by 

,    (4.3.1) 
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where is the wavelength, d is the spacing between grating lines, and in and d are angles of 

incidence and diffraction, respectively, for the specific wavelength. The first lens, with the focal 

length f, brings the diffracted rays from the first grating parallel. Let us denote the position of spectral 

component 0 on LC-SLM trough x0. Then from (4.3.1) we get the position for component  as 

.     (4.3.2) 

Expending x as a power series in angular frequency  gives 

,  (4.3.3) 

where   

,     (4.3.4) 

c is the light speed, and 0 is the central carrier frequency of the input pulse. This expansion could 

be terminated after the linear term, if input pulse duration ≥ 20fs. In this paper we assume that this 

limitation takes place and  

,      (4.3.5) 

where the spatial dispersion term, , is given as 

     (4.3.6) 

with units cm(rad/s)
-1

.  

 

§4.4. Liquid crystal modulator 

The SLM consists of a TNCM or CLC layer which is embedded between two glass slides. 

The TNCM mask is subdivided into a linear array of pixels which can be controlled individually 

using a driving voltage. It is applied via two transparent indium tin oxide (ITO) electrodes which 

are deposited on the inner surface of the glass slides. The pixels are defined by patterning of one 

ITO layer into stripe–shaped electrodes, with neighboring pixels being separated by thin gaps 

(typically a few μm) in the ITO layer. 

 Generally for a birefringent material, the optical phase difference between extraordinary and 

ordinary waves with refractive indexes ne and no, respectively, or retardance, is given as 

     ,      (4.4.1) 
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where L is the thickness of the material and  is the wavelength. The axes of liquid crystal 

modulator (LCM) pixels are defined as follows. The x–axis is directed along the spatial frequency 

spread, the y–axis is orthogonal to x and the direction of light propagation, z–axis. The unite vector 

n describing preferred orientation of LC molecules is called director. Initial orientation of director n 

in the every pixel cell has twisted structure [209]. At a cell thickness Lcr = K3P/2K2,, where P is the 

pitch parameter of the free CLC or TNCM and Ki are Frank’s elastic constants, a transition of the 

Fréedericksz type takes place from a stable homogeneous homeotropic distribution (for L < Lcr) to a 

stable twisted distribution (for L > Lcr) rotation angle (z)=2z/P. For twist nematic with cholesteric 

mixture (L) =/2. In general director distribution has the form 

,   (4.4.2) 

where ei are orts of coordinate system, and  is the polar angle dependent only on z. Homeotropic 

boundary conditions mean that (z = 0, L) = 0. Above and very close to the critical thickness 

distribution of polar angle could be approximated as  

,   .  (4.4.3) 

And this director distribution could be controlled by electric or magnetic fields with very low 

threshold values near the critical thickness:  

 and  , (4.4.4) 

where E and H are electric and magnetic field strengths, a and a are electric and magnetic 

susceptibility anisotropies. We will work very close and above to the electric field threshold. The 

orientation of the LC molecules lies, mainly, in the plane parallel to the wall surfaces (expects, very 

thin layers close to the walls where they are normal to them) when no voltage is applied, and is 

twisted from one surface to the other by an angle (twist angle) of around ϕ. Very weak electrical 

field (less than 0.1V) reorients LC director to the z–axis direction, which results in a variable 

refraction index for light polarized along the n0–axis. However, for light polarized perpendicularly 

to the n0–axis the refraction index remains constant. So retardance (4.4.7) depends on electric field 

voltage V.  

,     (4.4.5) 



80 

 

where ∆n = ne(V) – no. To describe the modulation of light electric field mathematically as it passes 

through the LC arrays, it is best to use Jones matrix formalism. Fourier transform of general light 

electric field is represented as  

    (4.4.6) 

The output electric field, Eout(),  with  =  - 0, after passing through the modulator apparatus 

can be generally written as 

    (4.4.7) 

where A is a transform matrix resulting from the optical components. To receive this transform matrix 

we have to write the matrixes of all optical components. First light passes through polarizer Px: 

      (4.4.8) 

Then linear polarized light passes through LC retardation plate rotated at the angle = - 45
o
. Jones 

matrix for this anisotropic plate could be received from the matrix for retardation plate in the 

laboratory (x, y, z) system 

     (4.4.9) 

by the rotation to the coordinate system connected with rotated plate 

     (4.4.10) 

where R() is the coordinate rotation matrix. So for the rotated retardation plate we get 

   

(4.4.11) 

where Φ = 2L(ne + no)/ is the absolute phase delay. In our case we have two plates with = - 45
o
 

and = 45
o
. Then we get 

  (4.4.12) 

After these two plates light passes through the second polarizer oriented at x direction. So for the 

transform matrix A we get  

   (4.4.13) 



81 

 

In the calculations we omitted constant phases from polarizers because they are same for all LC 

pixels, and thus the transformation is written as 

  (4.4.14) 

The phase modulation term is 

   (4.4.15) 

and the transmission is 

  (4.4.16) 

The filter or masking function, can be simplified to 

  (4.4.17) 

where the subscripts (1) and (2) denote the first and second arrays, respectively and n denotes the 

pixel number. 

The polarization properties of light transmitted through a twist nematic is presented in [210]. 

The amplitude and the phase of the transmitted light trough TNCM with homeotropic boundary 

conditions in the present polarization combination can be derived in a similar manner. The resulted 

complex transmission coefficient is 

,    (4.4.18) 

where u(V) = Δψ(V)/π is the Mauguin parameter and the twist angle could be equal to π/2. Let us 

consider crossed polarizers before and after the LC-SLM. So, u can be changed from 0 (complete 

transmission) at the moderate voltage to √3 (no transmission) without electrical field by changing 

the voltage applied to the LC.  

 

§4.5. Mask Pattern Design and Results 

As it was mentioned above, the modulator consists of array of LC pixels. Due to the 

electrically variable birefringence of LC the transmission (4.4.18) for each pixel Tn = T(Vn) is also 

controllable. In order to impose each spectral component of ultrashort pulse to carry out own 

retardance one needs to image the focused spectrum onto the LC-SLM. We consider the single LC-

SLM. In this case the easiest realization is to use a pair of gratings and lenses configured in a 4–F 
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arrangement [118], when two gratings and LC-SLM are placed exactly in the focuses of two lenses. 

The first lens collimates the spatially separated by first grating spectral components of ultrashort 

pulse and focuses the each spectral component onto the spatially varying LC-SLM placed in the 

front focal plane of the lens. The LC-SLM is in the back focal plane of a second lens (so that the 

lens pair forms a telescope around the LC-SLM), which collimates the each spectral component and 

curves them to the second grating that is in the front focal plane of the second lens. The second lens 

and the second grating thus recombine the spectrally filtered pulse, yielding a shaped pulse in the 

time domain. 

The modulator operates by applying voltages to liquid crystals causing rotation of a certain 

angle, thus changing the optical path length (which affects the phase) or retardance. Each of the 

pixels is driven with a voltage. From these voltages, there is a conversion into drive levels which 

handled by the driver and computer programs. By varying the voltage and measuring the 

transmission signal, one can make a calibration curve of the response of the modulator.   

Now we can write a masking filter M(x) including both the pixels and the gap responses [118] 

 

,   (4.5.1) 

where N is the total number of pixels per array, x0 is the displacement of the center of the middle 

pixel (n = 0) of the LC-SLM from the  = 0 central spectral component, Tn is the response for each 

pixel n, Tg is the response for the gaps, a is the center to center pixel distance (including gaps), (x) 

is the Dirac delta function, r is the pixel width divided by the pixel width plus the gap width, squ(x) 

is a function defined as    

.     (4.5.2) 

Note that Ti are necessarily less than or equal to 1. Sign ⨂ means the convolution of two functions f 

(x) and g(x) to give h(x) is defined as 

.   (4.5.3) 

We take the effect of the gaps as 0 because our spot size at the modulator is much larger than the 

width of the gap (we take the ratio of 3:100), thus the convolution will “hide” these smaller term. 
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Furthermore, given the dimensions of the liquid crystal modulator, r is equal to 97/100, which is 

approximately one. With these approximations, equation (4.5.1) can be written as 

  (4.5.4) 

Furthermore, the delta function convoluted with the sum, results in only a shift to x0. Theoretically 

considering this equation, the shift is irrelevant because the center frequency can be set to the center 

pixel. Experimentally, it is also possible to set this condition. The further simplified equation 

becomes [118],      

   (4.5.5) 

When the spot size, w0, is smaller than the individual pixel width, the frequency filter becomes 

equivalent in form to the physical LC-SLM 

.      (4.5.6) 

Now let us calculate the Fourier transformation of (4.5.1) M(k). For simplicity we assume that the 

pattern defined by the N pixels of the SLM repeats infinitely for x → ±∞. With this assumption, 

M(k) will be expressed by Fourier transformation of masking function when it is repeated infinitely. 

The result is 

        (4.5.7) 

where rem(n,N) gives the remainder of n/N and Tn is given by(4.4.18). In the frequency domain, the 

output of the linear filter, Eout(),  is the product of the input signal, Ein(),  and the frequency 

response, H(),   

,     (4.5.8) 

where Ein and are Eout complex amplitudes of the input and output electric field spectra, 

respectively. Furthermore, it should be noted that Ein(),  Eout()  and H() and ein(t),  eout(t)  and 

h(t) are, respectively, Fourier transform pairs which are defined as  

,  , (4.5.9) 

,   . (4.5.10) 
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H() can also be called the effective frequency LC-SLM, Meff(), which is related to the physical 

LC-SLM [132] by 

.   (4.5.11) 

The effective frequency filter is given by the complex transmittance of the physical mask, M(x), 

convolved with the spatial intensity profile of the impingent beam, g(x), which for example, can be 

defined as 

    (4.5.12) 

for a Gaussian shape, and  

      (4.5.13) 

is the radius of the focused spot at the masking plane, where in is the light incident angle, and win is 

the spot size before the grating. Combining the results of Eqs (4.4.18), (4.5.1), (4.5.8), (4.5.9), (4.5.11) 

and (4.5.12) and solving the system by the simulated–annealing (SA) computer program [211] it 

could be find the pulse shaping due to the mask on the twist nematic with cholesteric mixture and 

with homeotropic boundaries. For calculations, consider mask pattern giving the pixel number 

dependence of Mauguin parameter u(n) shown in Fig. 1. This kind of TNCM SLM mask pattern 

generates the waveform shown in Fig. 2. The input pulse was assumed to be a 21 fs sech
2
 pulse with 

unit intensity. The simulated waveform obtained by SA calculation has a high peak at 132 fs at the 

positive time direction. There remains, however, a peak at time zero with a comparable intensity, 

and several small peaks are also apparent at the negative times of − 132fs, − 264fs and − 396fs. 

These peaks appear due to the coupling between the amplitude and phase of the shaping procedure.  
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Fig. 4.5.1. SLM mask pattern which generates the waveform. The vertical axis shows  

the Mauguin parameter u of each pixel. 

 

 

 

Fig. 4.5.2. Waveform with a single pulse at 132 fs in the positive time region obtained by a simulated annealing 

calculation. The peak intensity of the input pulse is normalized to unity. 

  

Let us note some pixilation effects. Before voltage is applied on each pixel, all the liquid crystal 

molecules are aligned in the plane parallel to the cell walls, except those who are in the vicinity of 

the glass plates. This is because rigid homeotropic conditions on the walls. When the voltage is 

applied the whole molecules are exactly align homeotropically and parallel to the field.  If an exact 

pulse shape is desired the inhomogeneous distribution of molecules in the absence of electric field 

will brings to the observable imperfections between the desired and the measured shape. 

 

 

§4.6. Conclusion to the chapter 4 

In this chapter we developed the relevant mode extraction method for the calculation of 

mask patterns which can generate multiple pulse sequences with arbitrary relative amplitudes and 

phases. We used SLM on the base of twist nematic with cholesteric mixture and with homeotropic 

boundary conditions. By the choosing relevant distribution of the electric field voltages ( 0.1V) 

across the mask with SLM we get very different pulse shaping. Let us note, that this approach 

allows to control of the relative amplitudes of different pulse within pulse train. By varying the 
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modulation depth (by altering the amplitude of the electric field voltages distribution), we generate 

different number of pulses and intensity ratio of them. Electric field used energy could be make 

much lower by mixing ferroelectric nanoparticles with liquid crystal. It is well known that 

ferroelectric nanoparticles could produce enhanced changes in the physical properties of liquid 

crystal host. Electrical Fréedericksz transition in twist nematic with cholesteric mixture doped with 

spherical ferroelectric nanoparticles has very low threshold because they strongly increase the 

electric field in the medium.  

 

SUMMARY 

Thus, some new peculiarities of spectral compression and self-compression of regular and randomly 

modulated pulses are studied numerically. The new effective approach of pulse compression is 

offered. In addition, it is proposed new shaping method of receiving different form of regular and 

random pulses needed for compression.  

 The following main results were obtained in the thesis: 

1. The physical pattern of soliton spectral self-compression process is studied. The process is 

realized in the fiber with negative dispersion when the impact of dispersion exceeds the nonlinearity 

in the SMF (dispersive length is shorter than the nonlinearity length in the fiber).  

2. Our research shows that there is an analogue between soliton self-compression and soliton 

spectral self-compression processes. However, there is no strict periodicity for soliton spectral self-

compression process because of incomplete cancellation of the chirp. The frequency dependence on 

the nonlinearity parameter is studied. 

3. Our studies for soliton spectral self-compression processes are carried out for the Gaussian, 

secant-hyperbolic, and super-Gaussian pulses. The soliton spectral self-compression ratio is 

approximately 30 times in the range of parameters R=0.25 ÷ 1 and 1  ÷ 20000. During 

numerical investigation of soliton spectral self-compression, the research shows that in the case of 

small values of nonlinearity parameter and the large lengths of fiber, the shape of spectrum is 

maintained, but the size is not. The changes in the spectrum slow dоwn for fiber lengths of 11000: 

because of pulse broadening ( 6000 times), the peak of the pulse drops so much that self-phase 
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modulation is practically absent. It is also shown that the quality coefficient of compression reduces 

as the length of fiber increases. This is caused by the incomplete cancelation of the phase. 

4. We study the effects preventing the effective pulse compression and offer an opportunity to 

improve the process efficiency. The results show that the impact of third-order dispersion in a fiber 

and dispersive delay line can be compensated by initial pulse asymmetry since the phase obtained 

due to the self-phase modulation in the fiber is conditioned by the pulse shape.  

5. The pulse compression by asymmetric pulses at the system input gives opportunity to 

increase the process efficiency to the point where the pulse compression ratio equals to the spectral 

broadening factor (spectral compression ratio is 10 for 10 spectral broadening). Pulse compression 

ratio equaling to 20 in the case of 26
 
times spectral broadening is also obtained. 

6. We demonstrate the results of detailed numerical studies for spectral compression and 

spectral self-compression for randomly modulated pulses. The spectral compression efficiency 

dependence on the coherency of initial pulses is presented. The study shows that the maximum 

value of spectral self-compression of randomly modulated pulse is 3 for fiber lengths less than 

100. 

7. We developed the relevant mode extraction method for the calculation of mask patterns 

which can generate multiple pulse sequences with arbitrary relative amplitudes and phases. As the 

mask we used liquid crystal spatial light modulator based on the cell with twist structure of nematic 

and cholesteric mixture and with homeotropic boundary conditions on the walls. 

8. By the choosing relevant distribution of the electric field voltages ( 0.1V) across the mask 

with spatial light modulator we get very different pulse shaping. This approach allows to control of 

the relative amplitudes of different pulse within pulse train.  
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LIST OF ABBREVIATIONS 

DDL     dispersive delay line 

GVD     group-velocity dispersion 

HCW    hollow core waveguide 

ITO     indium tin oxide 

LC     liquid crystal 

LC-SLM    liquid crystal spatial light modulator 

NLC     nematic liquid crystal 

PC     pulse compression 

PCF    photonic crystal fibers 

self-SC     spectral self-compression  

SC    spectral compression 

SLM     spatial light modulator 

SPM     self-phase-modulation 

SMF     single mode fiber 

TNCM     twist nematic with cholesteric mixture 

TOD    third-order dispersion 

 

MAIN DESIGNATIONS 

The slowly varying complex amplitude of the field   ),(   

The running time        

The dimensionless propagation distance     

The nonlinearity parameter     R 
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The nonlinearity length      NLL  

The dispersive length      DL  

The coefficient of second - order dispersion   2k  

The Kerr index of silica       2n  

The initial pulse duration      0  

Describes the impact of the third dispersion    TOD  

The dimensionless frequency       

The central frequency       0  
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