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General Characterization of the Work

Actuality of the work. In the thesis the convergence, uniqueness and basis problems for various
orthonormal spline systems are studied. The Franklin system is one of the simplest orthonormal
spline system. The Franklin system was constructed by Ph. Franklin in 1928 ([32]) as the first
example of an orthonormal basis for C'[0,1]. It is a complete orthonormal system of continuous,
piecewise linear functions (with dyadic knots). The Franklin system is obtained by applying the
Gram-Schmidt orthogonalization process to the Faber-Schauder system.

The systematic investigations of the Franklin system have been started by Z. Ciesielski with his
remarkable papers [10] and [11]. Since then, the Franklin system has been studied by many authors
from different points of view. The basic properties of this system, including exponential estimates
for the Franklin functions and LP-stability on dyadic blocks, have been obtained by Z. Ciesielski
in [10] and [11]. These properties turned out to be an important tool in further investigations of
the Franklin system. It is known that this system is a basis in C0, 1] and L? for 1 < p < co. The
unconditionality of the Franklin system in LP,1 < p < oo, has been proved by S. V. Bochkarev
in [6]. Moreover, the Franklin system is an unconditional basis in all reflexive Orlicz spaces ([5]).
The existence of an unconditional basis in H' has been first proved by B. Maurey [66], but the
proof was non-constructive. The first explicit construction of an unconditional basis in H! is due
to L. Carleson [7]. Then, P. Wojtaszczyk has obtained a characterization of the BMO space in
terms of the coefficients of a function in the Franklin system and proved that the Franklin system
is an unconditional basis in the real Hardy space H' ([89]). The unconditionality of the Franklin
system in real Hardy spaces HP,1/2 < p < 1, has been obtained by P. Sjolin and J. Stromberg
([84]). Z. Ciesielski and Sun-Yung A. Chang proved that f € H' iff its Fourier-Franklin series is
unconditionally convergent in L' (cf. [8]).

The Franklin system has had important applications in various problems of analysis. In par-
ticular, the constructions of bases in spaces C*(I?) (see [12], [78]) and A(D) (see [5]) are based
on this system. Here C'(I?) is the space of all continuously-differentiable functions f(z,y) on the
square I? = [0, 1] x [0, 1] with the norm

of
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Y
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and A(D) denotes the space of analytic functions on the open disc D = {z : |z| < 1} that are
continuously extendable up to the boundary. The norm of a function f € A(D) is defined by

IF1} = max|f (2]
The questions of existence of bases in C'(I?) and A(D) were posed by S. Banach [4].

Further investigations showed that Haar and Franklin systems share a lot of properties. Nev-
ertheless the proofs of properties of Franklin system essentially differ from that of Haar system.
In particular, a Cantor type uniqueness theorem for Franklin series was obtained quite recently
([52]). Note that there are a lot of properties of the Haar system, that are neither proved nor
disproved for the Franklin system. For example it is not known how one can reconstruct the coef-
ficients of an everywhere convergent Franklin series. The analogous question for the Haar system
was studied back in 1960s by V.A. Skvorcov [85].

The extensions of results of the Franklin system to orthonormal spline systems with arbitrary
knots first have been considered in the case of piecewise linear systems, i.e. general Franklin
systems (orthonormal spline systems of order 2). This was possible due to precise estimates of the
inverse to the Gram matrix of piecewise linear B-spline bases with arbitrary knots. The general
Franklin systems were introduced by Z. Ciesielski and A. Kamont [16].
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Franklin system can be generalized by changing

a. the sequence of knots;
b. the smoothness of functions;
c. the domain of definition, e.g. [0, 1] can be replaced with R, or a polygon P C R?, etc.

In the thesis generalizations of the Franklin system in above mentioned three directions or their
combinations are considered. We investigate the basis properties of those systems, the convergence
and uniqueness problems, as well as the relationship between the majorant and the Paley square
function.

The aim and objectives of the thesis. The main aim of the present thesis is to study the
convergence, uniqueness and basis problems for orthonormal spline systems. The following results
are obtained:

1. Description of all sequences for which the corresponding periodic Franklin system is a basis

or an unconditional basis in the Lebesgue or Hardy spaces, or in the space B(T).

2. Equivalence of the LP norms over dyadic intervals of Paley square function and the majorant
of partial sums of series in the classical Franklin system under some condition.

3. Description of all sequences for which the corresponding orthogonal spline system is an
unconditional basis in the Hardy space H'[0, 1].

4. Description of all sequences for which the corresponding orthonormal spline system with
zero means is a basis in the Hardy space H'(R).

5. Description of all sequences for which the corresponding Franklin system with zero means
is an unconditional basis in the Hardy space H'(R).

6. Equivalence of absolutely and unconditionally almost everywhere convergence of series in
general Franklin systems.

7. Construction of systems of piecewise linear functions such that the Fourier series in that
system of any continuous function with a prescribed growth rate is locally uniformly con-
vergent.

8. Coefficient reconstruction formulas are obtained for almost everywhere convergent Haar,
Walsh, Franklin and Stromberg series with a regular majorant of the partial sums.

The methods of the investigation. In the thesis the methods of metric theory of functions
and functional analysis are used.

Scientific novelty. All of the main results are new. Let us emphasize some of the results. We
give a simple geometric characterization of knot sequences for which the corresponding orthonor-
mal spline system of arbitrary order k is an unconditional basis in the Hardy space H'[0,1]. We
then find characterizations of all the sequences of knots for which the orthonormal spline system
of order r with zero mean on R forms a basis in H'(R). In the case 7 = 2 we obtain characteriza-
tions of sequences for which the corresponding system is an unconditional basis in H!(R). These
characterizations are not direct analogues of those obtained for the segment [0,1]. New type of
uniqueness theorems are obtained for series in the Haar, Walsh and Franklin systems.
Theoretical and practical value. The basis problem of a system in a Banach space is one of
the central problems in functional analysis and metric theory of functions. Let us mention a few
results included in the thesis. It is obtained the characterization of all sequences for which the cor-
responding orthogonal spline system or Franklin system with zero means on R is an unconditional
basis in the corresponding real Hardy space. We also characterize all the sequences for which
the corresponding orthonormal spline system with zero means on R is a basis in H'(R). Another
important problem in functional analysis is the uniqueness of Fourier series. Several uniqueness
results are also obtained. It is proved that if f is a sum of almost everywhere (a.e.) convergent
Haar, Walsh or Franklin series with a regular majorant of the partial sums, then the coefficients
of that series can be reconstructed from truncations of the function f.
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Approbation of the results. The main results of the thesis have been presented at the interna-
tional conferences [23*-29*] and at the seminars of the chair of function theory and mathematical
analysis at YSU, at the seminars of Academician G.G. Gevorkyan, at the Approximation The-
ory Seminar, Gdansk University /Polish Academy of Sciences, IM PAN Gdansk, Poland, at the
Functional Analysis Seminar, Polish Academy of Sciences, IM PAN Warsaw, Poland and at the
Analysis Seminar, Johannes Kepler University, Linz, Austria.

Publications. The main results of the thesis have been published in 22 scientific articles. The
list of the articles is given at the end of the Synopsis.

The structure and the volume of the thesis. The thesis consists of introduction, 4 chapters
and a list of references. The number of references is 115. The volume of the thesis is 208 pages.

The Main Content of the Thesis

In Introduction we recall several classical results concerning the Franklin system obtained
by S. V. Bochkarev, P. Wojtaszczyk, P. Sjolin and J. Stromberg, Z. Ciesielski and Sun-Yung A.
Chang. We also state two important applications of the Franklin system in construction of bases
in the space of all continuously-differentiable functions on the unit square and in the space of
analytic functions on the open unit disc that are continuously extendable up to the boundary.
The questions of existence of bases in these spaces were posed by S. Banach. Further we give the
definition of the general Franklin system and indicate three possible generalizations of the classical
Franklin system. In the thesis generalizations of the Franklin system in that three directions or
their combinations are be considered.

In Chapter 1 we study the basis and unconditional basis properties of periodic Franklin
system in Lebesgue, Hardy spaces and in B!(T). The relationship between the integrability of
Paley square function P and the majorant of partial sums S* with respect to classical Franklin
system {f,}5°, is also studied. In Section 1.3 we introduce orthogonal spline systems of any fixed
order and characterize all sequences for which the corresponding orthogonal spline system forms
a basis for the real Hardy space H'[0,1]. Now let us represent these and other results in more
detail.

Let us begin with the results concerning Franklin systems corresponding to arbitrary grid
points. The first results were obtained in [16] and [45]. G.G. Gevorkyan and A. Kamont [45]
proved that the Franklin systems are unconditional bases in L?[0, 1] under some conditions on the
generating sequence. Moreover, the spaces BMO and Lip(a), for 0 < o < 1 were characterized
in terms of Franklin coefficients in [45]. Further G.G. Gevorkyan and A. Sahakyan [47] proved
the unconditionality of Franklin systems in L”[0, 1] under weaker conditions. The final result con-
cerning the unconditionality of Franklin systems in L?[0, 1] was obtained by G.G. Gevorkyan and
A. Kamont.

Theorem 1.1.A([48]) Let {f,.(t)}>>, be the Franklin system corresponding to an admissible
sequence 7. Then {f,(t)}>°, forms an unconditional basis in each L”[0,1], 1 < p < oo.

For a UMD space X, the problem of unconditionality of the classical Franklin system in LP(X)
has been solved by T. Figiel, who developed a general martingale approach to such problems in
[29] and [30]. Summaries of Figiel’s work appear in [31] and [68].

A. Kamont and P. F. X. Miiller [60] extended Theorem 1.1.4 to UMD valued spaces. They
proved the unconditionality of the general Franklin systems in LP(X') under some conditions on
the structure and regularity of the sequence of knots, where X is a UMD space.

G.G. Gevorkyan and A. Kamont gave a simple geometric characterization of knot sequences for
which the corresponding general Franklin system is a basis or an unconditional basis in H'[0, 1], cf.
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[49]. We note that in both papers [48] and [49], an essential tool for their proof is the association
of a so called characteristic interval to each Franklin function f,.
Let us give the definition of periodic Franklin system corresponding to an arbitrary sequence.
Denote by T the periodic interval [0,1). Intervals in 7" are [a,b), with 0 < a < b < 1 or with
a>b, a,beT. In the latter case the interval [a,b) denotes [a,1) U [0,b). The length of I = [a,b)
is denoted by |I]; and in the case a > b the length of the interval is the sum of the lengths of
[a,1), and [0,b).

Definition 1.1.1. A sequence 7 = {t, : n > 0} C [0;1) is called admissible on T if T is
dense in T'=[0;1), tg =0, t, € T, n > 1, and t; # t; for i # j.

We say that a function f is continuous on 7" if it is continuous at any x € [0, 1) and f(0) = f(1—)
where f(1—) = lim, 1 f(z).
Let 7 = {t, : n > 0} be an admissible sequence on 7. For n > 2, let 7, be the ordered

sequence of points consisting of the grid points (tj);‘:_&, i.e., 7, is of the form

To=ATi  0=To0 <Tp1 < ... < Tpn-2 < Tnn-1 < 1}.
For any n denote 7, j1nk = Ty, for i = 0,1,...,n—1, k € Z. Let S,, be the space of continuous on
T functions defined on [0; 1), linear on each interval (7,,;; 7i41),0 < i < n—1. Clearly dim S, = n
and S,,_1 C S,. Hence for n > 2 there exists a unique function (up to sign) f which belongs to S,
is orthogonal to S,_; and |/f,||2 = 1. This function is called the nth periodic Franklin function
corresponding to the sequence T .

Definition 1.1.2. The periodic Franklin system {f,(x) : n > 1} corresponding to a sequence
T is defined as follows; f1(x) = 1, and for n > 2 the function f,(z) is the nth Franklin function
corresponding to the sequence 7.

For any n denote by A, ; the length of the segment [7,,;—1; 7], 1.6. Ani = |[Tnio1; Tnill, © € Z.

Definition 1.1.3. Let £ € N. An admissible sequence T is called k-reqular on T with a
parameter vy, if

- < i1 Angy2 oo ’+k§’y, for n>2, 0<i<n-—1.

YT Anit Anipr o Akt

Let us emphasize that for a 1-regular sequence on 7" the quotient of the lengths of the neighbouring
intervals [0, 7,1) and [7,,,—1, 1) of the point 0 is uniformly bounded and uniformly bounded away
from 0.

Note that Definition 1.1.3 corresponds to the periodic case. Let us also give the definition of
regularities in the non-periodic case. Let to := 0, t; :== 1 and T = (¢,,)3°, be a dense sequence of
points in the open unit interval such that each point occurs at most k£ times. Such point sequences
are called k-admissible. For n > 2, let 7T, be the ordered sequence of points consisting of the grid
points (t;)}_, counting multiplicities, where the knots 0 and 1 have multiplicity £, i.e., 7, is of the
form

T, = (O =Tpl =" """ = Tnk < Tnktl < - < Tnntk—1 < Tnn+k = *° " = Tpn+2k—1 — 1)'
Definition 1.1.4. Let k € N and (¢,)22, be a k-admissible point sequence. Then, this sequence
is called k-regular with a parameter v > 1 if

1 )\n,i-i-l + )\n,i+2 +... .+ )\n,i—i-k

- < <=~, for n>2 2<i1<n+k-1,
’y_)\n7i+)\n,i+1+o--+)\n,i+k—1_,y




where )\n,i = Tn,i — Tn,i—1-

So, in other words, (t,) is k-regular if there is a uniform finite bound v > 1 such that for all n
the ratios of the lengths of the neighbouring supports of B-spline functions of order k£ in the grid
T, are bounded by 7.

Clearly, if a sequence is k-regular on 7" in the periodic case, then it will be also k-regular in the
non-periodic case, but not vice versa. Let us show an example revealing the mentioned difference.

Consider the following recursively defined sequence. Let to = 0. At the first step we add the
midpoint of the segment [0, 1], i.e. 1/2. At the second step we add the points 1/8,2/8,3/8, splitting
the segment [0,1/2] into four equal parts, and then the midpoint of [1/2,1], i.e. 3/4. At the nth
step we add three points to the leftmost interval, so that they split the interval into 4 equal parts
and then we consecutively add from left to right the midpoints of the intervals generated by the
points defined before the nth step. In this way we will obtain a sequence, which is non-periodically
1-regular with parameter 4, but not periodically 1-regular on 7" with any parameter.

Basis and unconditional basis properties of the periodic Franklin systems with arbitrary knots
in spaces LF(T) and H'(T) are also considered.

Theorem 1.1.5.([1*]) Let 7 be an admissible sequence on T and {f,(t)}°>, be the corre-
sponding periodic Franklin system. Then the system {f,(¢)}52, is an unconditional basis in each
LP(T), 1 < p < 0.

Using the estimates for the periodic Franklin functions the author and M. Poghosyan [2*] ob-
tained characterizations of those sequences for which the corresponding periodic Franklin system

forms a basis or an unconditional basis in H'(T'). Let us recall the definitions of the real Hardy
spaces H'(0,1] and H'(T).

Definition 1.1.6. Let A be either [0,1] or the periodic interval T. A function ¢ € L[0,1]
is called a A-atom, if either ¢ = 1 on A, or there is an interval I C A such that supp ¢ C I,
sup |¢| < ﬁ and [, o(t)dt = 0.

Note that if ¢ is an atom on [0, 1] then it is also an atom on 7', but not vice versa. For instance,
the function ¢(t) = 2(Lj,1/4(t) — Lz/a,1)(t)) is an atom on 7', but not on [0,1] (recall 1z denotes
the characteristic function of a set FE).

Definition 1.1.7.([19]) Let A be either [0,1] or the periodic interval 7. A distribution f is
said to belong to H'(A), if there exist A-atoms ¢; and real coefficients ¢; such that f = > ¢;;,
where the convergence is in the sense of distributions. The norm in H*(A) is defined by || f|| g1 (a) =
inf(3> 7, |ci]), where the infimum is taken over all atomic decompositions of f.

Theorem 1.1.8.([2*]) Let 7 be an admissible sequence on T and {f,(t)}°, be the corre-
sponding periodic Franklin system. Then the system {f,(¢)}°%, is a basis in H'(T) if and only if
the sequence 7T is 2-regular on T" with some parameter ~.

Theorem 1.1.9.([2*]) Let 7 be an admissible sequence on 7" and {f,(¢)}5>, be the correspond-
ing periodic Franklin system. Then the system {f,(¢)}>2, is an unconditional basis in H(T) if

and only if the sequence T is 1-regular on T with some parameter ~.

In particular it was given in [2*] a relationship between the subsequent four conditions. Let



(t,) be an admissible sequence of knots with the corresponding periodic Franklin system (f,),>1-
For a sequence (a,)n>1 of coefficients let

ad 1/2
P .= <Z aifi) and = mgi( Z anfn
n=1

be the Paley square function and the majorant of partial sums, respectively. If f € L!, then
we denote by Pf and S*f the functions P and S* corresponding to the coefficient sequence
a, = (f, fa), respectively. It was proved in [2*] the equivalence of the following four conditions for
any 1-regular sequence on 7":

(A) P e LNT)

(B) The series > 7 | anf, converges unconditionally in L'(T),

(C) §* € LN(T),

(D) There exists a function f € H'(T) such that a, = (f, fn).

The equivalence of these four conditions implies unconditional basis property of the periodic
Franklin system corresponding to any 1-regular sequence on 7.

Recall that G.G. Gevorkyan and A. Kamont [49] proved that a Franklin system corresponding
to T is a basis (unconditional basis) in H'[0, 1] if and only if 7 is 2-regular (1-regular) with some
parameter 7.

Define the space B'(T) following the work [23].

Deﬁnition 1.1.10. A function b : T — R is called a special atom if either b(t) = 1 or
b(t) = i L1p(t) — |—}|IIR(t), where [ is an interval on T, L and R are the left and right halves of [
respectively.

Definition 1.1.11. The space B'(T) is defined as follows:

BAT)={f:T—R f(t) chn Y el < o).

where b, is a special atom. Set || f| g1y = inf Y ", |¢,|, where the infimum is taken over all
possible representations of the function f.

The space B'[0,1] is defined analogously. In this case the supports of the special atoms are
ordinary intervals and functions are defined on [0, 1].

The space B! on the unit circle was defined by G. De Souza in [23], [24].

Clearly, any special atom is also an atom. Hence BY(T) C H'(T). It is proved in [23] that
BY(T) # HY(T).

The space B! on the unit circle coincides with the real parts of the boundary functions of
analytic functions g on the unit disc D satisfying the condition (see [25])

1 2m
/ / g (re”)|dodr < oco.
o Jo

G.G. Gevorkyan [51] recently proved that a Franklin system is a basis or an unconditional basis
in H'0, 1] iff it is a basis or an unconditional basis in B*[0, 1], respectively.

The main result of Section 1.1 is to give a characterization of those knot sequences for which
the corresponding periodic Franklin system is a basis or an unconditional basis in BY(T"). The
following theorems are proved.



Theorem 1.1.12. Let {f,(¢)}°°, be the general periodic Franklin system corresponding to an
admissible sequence 7. Then {f,(¢)}>2, forms a basis in B'(T') if and only if the sequence T is
2-regular on 7" with some parameter 7.

Theorem 1.1.13. Let {f,(¢)}°>, be the general periodic Franklin system corresponding to an
admissible sequence 7. Then {f,(¢)}°2, forms an unconditional basis in B*(T) if and only if the
sequence 7T is 1-regular on T with some parameter ~.

To prove these theorems we essentially use the methods of the paper [51] by G.G. Gevorkyan,
together with the properties of periodic Franklin system obtained in [2*], [1*].

To formulate further results obtained in [48], [49], [1*] we need to recall the concept of greedy
basis, see S.V. Konyagin, V.N. Temlyakov [63]. Let (X, ||-||) be a Banach space with a normalized
basis X = (x,,n > 0) (i.e. with ||z,|]| =1). For z € X and m € N, let

m
= inf f —
()=, ol inf o= 2 e
In addition, for x = Z:;O:O a,r, and given m € N, let A,, be a subset of indices such that

card A,;, = m, (recall that card F denotes the cardinality of a finite set E) and

min |a,| > max |a,|.
nehm, ngAm

Denote Gp(z) = >, cp @nZy. Clearly, o,(z) < ||z — Gp(z)]|. Following S.V. Konyagin, V.N.

Temlyakov [63], a normalized basis X = (z,,n > 0) of a Banach space (X, || -||) is called greedy if

there is a constant C' > 0 such that for all m € N and x € X

[ = G (@) < Com(w).

S.V. Konyagin and V.N. Temlyakov [63] proved that a normalized basis X = (z,,n > 0) in a
Banach space (X, ||]|) is greedy if and only if it is unconditional and democratic, where democratic
means that for any two finite subsets of indices A, B with card A = card B the following relation

holds:
1Y Sl ~ 1)l

neA neB

G.G. Gevorkyan and A. Kamont [48] proved that the LP-normalized Franklin system {f,,}>,,
where f,, = fu/||fallp, corresponding to an admissible sequence is a greedy basis in LP[0, 1] for
1 < p < oo. Moreover, they proved that the H'-normalized Franklin system {f./[|fullz }o,
corresponding to a l-regular sequence is a greedy basis in H'[0,1] (cf. [49]). LP-normalized
periodic Franklin systems corresponding to admissible sequences are also greedy bases in LP[0, 1]
for 1 < p < oo. (cf. [1%]).

Theorem 1.1.13 implies the following corollary.

Corollary 1.1.14. Let 7 be an admissible sequence and {f,(¢)}>2; be the corresponding
general periodic Franklin system. Then the system {f,/||f.||z1;n > 1} is a greedy basis in BY(T)
if and only if the sequence T is 1-regular on 7" with some parameter ~.

In Section 1.2 we are concerned with integrability of Paley square function P and the majorant
of partial sums S* with respect to classical Franklin system. A systematic study of the Franklin



system goes back to the papers [10], [11], where, in particular, it was proved that if f € L?[0;1],1 <
p < oo, and Y a,f,(z) is the Fourier-Franklin series of f, then

S*(f,-) € LP[0;1), where S*(f,z)=sup|S.(f.z)| and S,(f,z) = apfi(x). (1)
" k=0

S.V. Bochkarev [6] proved that the Franklin system is an unconditional basis in the space L?[0; 1],
1 < p < 00. Moreover, he proved that the Paley operator of the Franklin system is of weak type
(1,1), that is, there exists a constant C' > 0 such that if f € L[0;1] and Y~ a,f,(z) is the
Fourier-Franklin series of f, then

e e0.1): Py > M < 5 [ 1@l @)

where P(f,x) = {332 axf2(0)}'”
Taking into account that the Paley operator P has (2,2) strong type, that is, [|[P(f,")|2 <
C||fll2, by Marcinkiewicz interpolation theorem (see, e.g., [62]), it follows from (2) that for all

p € (1,00) we have ||P(f,)|l, < Cpl|f|l,- Therefore, in view of (1), for any p > 1 we have

/0 1 sup dz ~, /0 1 (i azf,f(x))m da. (3)

k=0

S.-Y. A. Chang and Z. Ciesielski [8] proved that the relation f € H! holds iff the square function of
the Fourier-Franklin series of f belongs to L. Tt follows from the results by G.G. Gevorkyan [37]
and F. Schipp, P. Simon [77] that f € H' iff the majorant S* € L'. Moreover, G.G. Gevorkyan
[37] proved the equivalence of the following conditions for 0 < p < 1:

(A) PeLP

(B) The series > 7 | a,f, converges unconditionally in L7,

®)

n p

Z akfk(w)

k=0

S* e LP.

Recall that unconditioanlity of the classical Franklin system in Hardy spaces H?,1/2 < p < 1,
has been obtained by P. Sjélin and J. Strémberg ([84]); they have also proved that for this range
of p, the H? quasi-norm of f € HP? is equivalent to the LP quasi-norm of the square function of
the Franklin series with coefficients a, = (f,f,). So the conditions (A)-(C) are equivalent to the
following condition for 1/2 < p < 1:

(D) There exists a function f € H? such that a, = (f, f,).

As mentioned above the equivalence of the counterparts of four conditions (A)-(D) in the case
p = 1 was crucial for the unconditionality in H'(T) of the periodic Franklin system. Moreover,
the Paley function P and the majorant of partial sums S* have equivalent L' norms.

The main results of Section 1.2 concern the relations of ||P||r») and ||S*||»(ry for p > 0 and
dyadic I C [0, 1], where P and S* are Paley function and the majorant of partial sums of series
in the classical Franklin system {f,}>° .

Denote by LY(E) the metric space of a.e. finite and measurable functions on F, where the
metric convergence coincides with the convergence in measure on FE.

It was proved in [40] the analogue of relation (3) in the case p = 0, as well as its localization
on the sets of positive measure. Namely, it was proved in [40] the following result (see Theorems

2.1 - 2.3 in [40]).

Theorem 1.2.A([40]) For a series >, apfi(z) the following assertions are equivalent:
1. the series ), axfy(z) converges a.e. on E,

10



2. the series Y, afi(x) unconditionally converges in measure on E,
3. sup, > r_o axfi(z)] < +o0 a.e. on E,
4. Y77 aiff(z) < +oo ae. on E.

The equivalence of the Franklin system with the Haar system and higher order orthonormal
spline systems in L? and HP spaces has also beeen studied (see [14], [17], [82], [84]).

In Section 1.2 we show that it is impossible to obtain a localization of the relation (3) even for
the dyadic intervals, and we obtain such a localization under some additional conditions. To state
the main results of Section 1.2, we introduce some notation. Let n = 2* 4+ v, where p =0,1,2, ...,
and 1 < v < 2*. Denote

. {m for 0<i<2w,

5o for 2v <i<n.

and {n} := [S,2,-2, Sn2]. Often the segment {n} is called peak interval of the function f,, because
f,, attains its minimum and maximum values on that interval.

Theorem 1.2.1. For any dyadic segment I = [%, 2] any series > a,,f,(z) and any number
p > 0 the following relation holds:

N

SIJ%Tp Z anf, ~p Z a’f?

{n}cIn<N Lo(1) {n}cI )

Theorem 1.2.2. For any segment [ = [35 38“] #10,1], any p > 0 and C' > 0 there exist

2k 9ok
series >~ o a,f,(x) and )" 7 b,f,(x) such that
. 1
sup Z anf, >C- {Z aifi} : (4)
N n<N Lr(I) n=0
(1)

(5)

sup

> baf,

n<N

=,

Theorem 1.2.2 shows that the condition {n} C I in Theorem 1.2.1 is essential.

We show that for the Haar system {x,(z)} the analogue of Theorem 1.2.2 is not true, while
the analogue of Theorem 1.2.1 is true even without the condition {n} C I. However, in this case
the equivalence constants depend also on the segment /. Namely, we have the following result.

Le(I) Lr(I)

Theorem 1.2.3. For any dyadic segment I = [Z, ZE] any series Y a,x,(z) and any number

p > 0 the following relation holds:
1
2
~p,I {Z aiX?z}
Lr(I) n

S
n<N

In Section 1.3 we consider orthonormal spline systems with arbitrary knots, which are general-

izations of the Franklin system. The questions of basis property of higher order spline counterparts

sup

Lr(I)
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of Franklin system with arbitrary knots are much more difficult. Note that the problem on uni-
formly boundedness of the L*>-norms of orthogonal projections onto spline spaces of order k — was
a long-standing problem known as C. de Boor’s conjecture (1973) ([21]). The case of k = 2 was
settled even earlier by Z. Ciesielski [10], the cases k = 3,4 were solved by C. de Boor himself
(1968, 1981), [20, 22], but the positive answer in the general case was given by A. Yu. Shadrin [81]
in 2001. In order to formulate Shadrin’s theorem we need some definitions. Let II; be the linear
space of all real algebraic polynomials of degree at most k. Let A :a =1y <t; <...<t, =0bbe

a finite sequence of knots. The linear space Sk(A) of polynomial splines of order & with simple
knots A is defined by

Sk(A) ={S € C*?a,b] : S|y, €My, i=0,1,...,n =1},

141
Let Dla,b] be the linear space of all bounded piecewise continuous real-valued functions on [a, b].
The orthogonal projector P := Pi(A) : D]a,b] — Si(A) (also called L%-spline projector) is defined
by

If =Pfll2 =min{[|f = Sz : 5 € Su(A)}, f € Dla,b].

Theorem 1.3.A([81]) For any k£ € N, there exists C' > 0 depending only on & such that the
L*-projector P = Py(A) onto the spline space S(A) satisfies

1P flloo < Cllflloes  Vf € Dla,].

A simplified and shorter proof of this theorem was recently obtained by M. v. Golitschek (2014),
cf. [87]. From A.Yu. Shadrin’s result it immediately follows that if a sequence of knots is dense in
[0, 1], then the corresponding orthonormal spline system of order k is a basis in LP[0,1], 1 < p < oo,
and C|0, 1].

Let us give the definition of orthonormal spline systems of order k corresponding to arbitrary
partitions. Let & > 2 be an integer and 7 = (t,)22, be a k-admissible sequence of points, i.e.
T is dense in the open unit interval and each point occurs at most k times. Moreover, define
to := 0 and t; := 1. For n in the range —k +2 < n < 1, let S be the space of polynomials of
order n + k — 1 (or degree n + k — 2) on the interval [0, 1] and (fr(lk))}l:_kw be the collection of
orthonormal polynomials in L? = L?[0, 1] such that the degree of £ is n+k — 2. For n > 2, let
T, be the ordered sequence of points consisting of the grid points (tj);-‘zo counting multiplicities,
where the knots 0 and 1 have multiplicity k, i.e., 7, is of the form

7;12(OZTn,lz"':Tn,k<Tn,k+lS

<--- < Tnntk—1 < Tnntk = = Tpni2k—1 = 1)

In that case we also define S$” to be the space of polynomial splines of order k with grid points
T,.. For each n > 2 the space 875’?1 has codimension 1 in S and therefore there exists a function

fék) € S that is orthonormal to the space Sffi)l. Observe that this function f,S’“) is unique up to
sign.

Definition 1.3.1. The system of functions ( fék));’f’:_k 4o 1s called orthonormal spline system
of order k corresponding to the sequence (t,)>2.

Note that the case k = 2 corresponds to orthonormal systems of piecewise linear functions, i.e.
to general Franklin systems.

12



Z. Ciesielski [15] obtained several consequences of Shadrin’s result, one of them is an estimate
for the inverse of the B-spline Gram matrix. Using this estimate, G.G. Gevorkyan and A. Kamont
[50] extended a part of their result from [49] to orthonormal spline systems of arbitrary order and
obtained a characterization of knot sequences for which the corresponding orthonormal spline
system of order k is a basis in H'[0, 1].

To formulate our result, recall some regularity conditions for a sequence 7.

An /(-admissible sequence (t,,) is f-regular, if there is a common constant v > 1 such that for
all n the ratios of the lengths of neighbouring supports of B-spline functions of order ¢ in the grid
T, are bounded by ~ (see also Definition 1.1.4).

The following characterization for ( f}f”)) to be a basis in H' is the main result of [50]:

Theorem 1.3.B. Let k£ > 1 and let (¢,,) be a k-admissible sequence of knots in [0, 1] with the

corresponding orthonormal spline system ( fék)) of order k. Then ( f,gk)) is a basis in H* if and only
if (t,,) is k-regular with some parameter v > 1.

The further extension requires more precise estimates for the inverse of B-spline Gram matri-
ces of the type known for the piecewise linear case. Such estimates were obtained recently by M.
Passenbrunner and A.Yu. Shadrin [74]. Using these estimates, M. Passenbrunner [72]| proved the
following theorem.

Theorem 1.3.C. Let £ > 1 and let (¢,) be a k-admissible sequence of knots in [0, 1] with the

corresponding orthonormal spline system ( fﬁk)) of order k. Then, ( fék)) is an unconditional basis
in LP[0,1], 1 < p < oo, for any k-admissible sequence of knots (t,,).

In Section 1.3 we prove the characterization for ( f,gk)) to be an unconditional basis in H*. The
main result of Section 1.3 is the following theorem.

Theorem 1.3.2. Let (t,) be a k-admissible sequence of points. Then, the corresponding

orthonormal spline system ( f,(Lk)) is an unconditional basis in H' if and only if (¢,) satisfies the
(k — 1)-regularity condition with some parameter v > 1.

Note that in the case k = 2, i.e. for general Franklin systems, both Theorems 1.3.B and 1.3.2
were obtained by G. G. Gevorkyan and A. Kamont in [49]. (In the terminology of the thesis the
condition of strong regularity from [49] is now 1-regularity, and the condition of strong regularity
for pairs from [49] is now 2-regularity.)

Corollary 1.3.3.  Let 7 be a k-admissible sequence and ( fék)) be the corresponding or-
thonormal spline system. Then the system { £0 /I fék)H mg1;n > 1} is a greedy basis in H'[0, 1] if
and only if the sequence T is (k — 1)-regular with some parameter ~.

The case of periodic splines of higher order is not well studied because of arising difficulties.
In [3*], [4*] it is proved that L*-norms of orthogonal projections onto spaces of periodic splines
of order 3 are uniformly bounded. It is possible to extend the Shadrin’s theorem to the case of
periodic splines and show that there exists a uniform bound for L*°-norms of orthogonal projections
P, on spaces of periodic splines of order k with arbitrary order. M. Passenbrunner [73] gave
another proof of that fact. He showed that for any integrable function f on the torus, any
sequence of its orthogonal projections (P, f) onto periodic spline spaces with arbitrary knots A,
and arbitrary polynomial degree converges to f almost everywhere with respect to the Lebesgue
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measure, provided the mesh diameter ]ﬁnl tends to zero.

As we have already mentioned, in the univariate case the L?-orthogonal projection Py onto
a spline space V' of degree k is bounded as an operator on L by a constant C'(k) depending
on the degree k but independent of the knot sequence [81]. P. Oswald [70] proved that the L2-
orthogonal projection Py onto spaces V' = V(T) of linear splines over triangulations 7 of a
bounded polygonal domain in R? cannot be bounded on L* by a constant that is independent
of the underlying triangulation. Similar counterexamples show this for higher dimensions as well.
Under different conditions on families of triangulations uniform boundedness of ||Py||p=_ 1~ was
obtained in [71], [88].

Recently A. Seeger and T. Ullrich [80], [79] characterized the range of parameters for which
the Haar system is an unconditional basis in the Triebel-Lizorkin space Fy (R), 1 < p,q < oc.
In [34] it was proved that, for suitable enumerations, the Haar system is a Schauder basis in the
classical Sobolev spaces in R? with integrability 1 < p < oo and smoothness 1/p —1 < s < 1/p.

Another generalization of the Franklin system has been considered by G. Kyriazis, K. Park and
P. Petrushev [65]. They considered Franklin systems induced by Courant elements over multilevel
nested triangulations of polygonal domains in R2. They proved that such anisotropic Franklin
systems are Schauder bases for C' and L', and unconditional bases for L” (1 < p < oo) and the
corresponding Hardy spaces H'! under some mild conditions imposed on the triangulations. A.
Jonsson and A. Kamont [59] discussed the analogues of the Faber-Schauder and Franklin bases
for a class of closed sets ' C R" admitting a regular sequence of triangulations or generalized
triangulations.

In Chapter 2 we introduce orthonormal spline system of a fixed order with zero mean on R,
which is another counterpart of the Franklin system. We characterize all the sequences for which
the corresponding orthonormal spline system forms a basis for the real Hardy space H'(R). In
Section 2.2 we then find a characterization of all the sequences of knots for which the orthonormal
spline system of order 2 with zero mean on R, so called Franklin system with zero means on
R forms an unconditional basis in H'(R). As we will see these characterizations are not direct
analogues of those obtained in [49] for the segment [0, 1].

Let us give the necessary definitions.

Definition 2.1.1. A sequence (partition) 7 = {t, : n > 0} is called admissible if 7 is dense
in R and ¢; # t;, if ¢ # j.

Let r be a fixed natural number. For an admissible sequence of points T = {¢,,n > 0} and
n > 1 we denote by 7, the ordered sequence of points consisting of the grid points (tj)?ifﬂ, ie.

T, is of the form
7; = (Tn71 < Tn,Q < ... < Tn,n—&-r—i—l)'

Denote 7,,; := 7,1 for —r +2 <4 < 0 and 7,,; := Tppyrq1 for n+r+2 <4 < n+ 2r. Let
(Npi)i" 5 be the sequence of L>®-normalized B-splines of order r corresponding to (7,;)77>" .,

forming a partition of unity and having the following properties:

n—+r
Vn 7

Suppan—[TnzaTnz+r] an>0 /an - Z an —]lA ()

1=—7+2

where vy, ; = Tpitr — Tnis Dn = [Tt} Tnntri]-
Denote by S the space of piecewise polynomial functions on R corresponding to the sequence
of knots 7,. That is, SU) is the space of all » — 2 times continuously differentiable functions
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on R with support in A,, = [7,1; Tnntrt1), Which are polynomials of degree less than r on each
[Tnis Tnit1)s @ = 1,2, ...,n471. So S is the linear span of the functions (N,,;)!, they form a basis

in S, hence dim S{"”) = n+1. Notice that N, & S fori=—r+2,....0andi =n+2,...,n+r

Definition 2.1.2. Let S™° be the subspace of functions from S with zero means on R, i.e.

Syl = S, dt = }
0= {7 e 80 [ poar—o

Clearly, S™°, C S0 and 57 has codimension 1 in S5, thus dim S0 = n. Therefore, for n > 1,

there exists a unique (up to sign) function F\” € S™0, with the following properties: [|[F”||» = 1

and F\" is orthogonal to S7,.

The system of functions (Fé’"));o:l is called orthonormal spline system with zero means on R of
order r corresponding to the sequence T .

The concepts of regularities of partitions 7 have played an important role in investigations
of both general Franklin systems on [0; 1] and Franklin systems with zero means on R. Now, we
introduce the concepts of regularities on R.

Definition 2.1.3. Let 7 be an admissible sequence of knots. We say that 7 is r-regular
with a parameter v > 1, if for any n € N

Vnji+1 .
<~, for i=1,...,n,
Uni

)

7 <

where v, ; = Ty itr — T

)

Definition 2.1.4. Let 7 be an admissible sequence of knots. We say that 7 is r-regular on
R with a parameter v > 1, if T is r-regular and for any n € N (recall A,, = [7,,1; Tnntr+1))

Vn,l

|An]

Vn,n—i—l

> -1

>t

Let us recall the definition of the real Hardy space H'(R).

Definition 2.1.5. A function ¢ € L*(R) is called an atom if there is an interval I C R such
that supp ¢ C I, sup |¢| < ﬁ and [, ¢(t)dt = 0.

Definition 2.1.6.([19]) A distribution f is said to belong to H'(R), if there exist atoms ¢; and
real coefficients ¢; such that f = > ¢;¢;, where the convergence is in the sense of distributions.
The norm in H'(R) is defined as || ||z = inf(>_:°, |¢i|), where the infimum is taken with respect
to all atomic decompositions of f.

Clearly, all the functions belonging to H*(R) have zero mean. Hence, if a system of functions
is a basis in H*(R), then all those functions should have mean zero. That is the reason why we
consider orthonormal spline systems with zero means on R.

In Section 2.1 we characterize all the sequences for which the corresponding systems (F,(f))
form a basis in H'(R). The main result of Section 2.1 is the following:

Theorem 2.1.7. Let 7 be an admissible sequence of knots. Then the corresponding orthonormal

[
n=1
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spline system (FT(LT)) with zero means on R is a basis in H!(R) if and only if 7 is r-regular on R
with some parameter v > 1.

The particular case of orthonormal spline system with zero means on R corresponding to r = 2
is called the Franklin system with zero means on R and denoted by (F,(t))n>1.

The next result, which is the main result of [13*], characterizes the sequences for which the
Franklin system (F},) forms a basis in the space H'(R).

Theorem 2.2.1. Let (F,,)22; be the Franklin system with zero means on R corresponding to
an admissible sequence 7. Then (F},)°2, forms a basis for H*(R) if and only if T is 2-regular on R.

Note that the above theorem is a particular case of Theorem 2.1.7.

In Section 2.2 we characterize the sequences of knots for which the Franklin system (F,,) with
zero means on R forms an unconditional basis in the space H'(R). The main result of Section 2.2
is the following theorem.

Theorem 2.2.2. Let (F,,)22, be the Franklin system with zero means on R corresponding to
an admissible sequence 7. Then (F},), forms an unconditional basis for H*(R) if and only if T
is 1-regular on R.

In Chapter 3 we consider questions of convergence of Franklin series.

In Section 3.1 we study the equivalence of absolutely and unconditionally almost everywhere
convergence of Franklin series. Let us recall necessary definitions. A functional series > 7 ¢, (2)
is said to be unconditionally convergent a.e. on a set E if for every permutation {o(n)}:, of
the positive integers the series Y~ ¢o(n)(z) converges a.e. on E. A series Y~ ¢,(x) is said
to be absolutely convergent a.e. on E if Y > |¢,(z)| < +oo a.e. on E. It is known that a
numerical series > a, is absolutely convergent if and only if it is unconditionally convergent.
However, for functional series the notions of unconditional convergence a.e. and absolute con-
vergence a.e. are not equivalent since the exceptional set may change under a permutation. For
example, if {R,(z)}>2, is a Rademacher system, Y - a? < oo and > .7, |a,| = oo, then the
series . a,R,(x) is unconditionally convergent a.e. (see [62]) and absolutely divergent a.e.

However, E. Nikishin and P. Ul’yanov [69] proved the following theorem for Haar series.

Theorem 3.1.A. Let {x,(z)}22, be the Haar system. Then the series >~ anXn(x) is un-
conditionally convergent a.e. on a set £ C [0;1] if and only if the sum Y7, |a,xn»(2)] is finite for
a.e. v € I.

G. Gevorkyan extended Theorem 3.1.A to series in the classical Franklin system (see [39]).
In [46], Theorem 3.1.A is extended to general Franklin systems that are generated by sequences
satisfying some conditions. In Section 3.1 we prove the analogous theorem for all general Franklin
systems, without imposing any restrictions.

Theorem 3.1.1. Let {f,(x)}>2, be the Franklin system generated by an admissible sequence
T. Then a series Y~ a,fn(z) is unconditionally convergent a.e. on a set E if and only if it is

absolutely convergent a.e. on E.

In Section 3.2 we introduce and study a generalization of Franklin system on R. To define this
generalization, we use the same notation, as in the definition of the general Franklin system on
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[0;1].
Let 7 = {t, : n > 0} be an admissible sequence, i.e. T is dense in R and ¢; # ¢; if i # j. For
n > 2, let 7T,, be the ordered sequence of points consisting of the grid points (tj)?:o, ie.

T = A{Tni * Tni < Tnyit1,0 < i <n}.

We denote by S, the space of functions defined on R, that are continuous and linear on [7,,;; 74,41
and vanish outside (7,,0; Tnnt1). It is clear that dim S,, = n and S,_; C S,,. Hence there exists a
unique (up to sign) function f € S, which is orthogonal to S, and || f||2 = 1. This function is
called the n-th Franklin function on R corresponding to the partition 7.

For a fixed n we denote by N, ;, 0 < i < n + 1, the sequence of L*-normalized B-splines

corresponding to (Tm)f:t?l, where 7, 1 = 7,0 and 7,42 = Tpnt1, and having the following
properties:
n+1
supp Nui = [Tni—1; Tnit],  Ni >0, Z Nii(t) = Lr, gir ) ()
i=0

It is clear that the system {N,;, 1 <i < n} forms a basis of S,, and N,,; ¢ S,, for i = 0 and
1=n+1.

Definition 3.2.1. Let 7 be an admissible sequence. The general Franklin system {f,(z) :
n > 1} on R corresponding to the partition 7T is defined as follows: fi(x) LN () and for

[Nz

n > 2 the function f,(z) is the n-th Franklin function on R corresponding to the partition 7.

In the study of general Franklin system on [0; 1] and orthonormal spline systems the notion of
regularity of the sequence 7 plays an important role and so in the case of general Franklin system
on R.

Since the sequence 7 is dense in R, it follows that the system { f,,}>°  is a complete orthonormal
system in L?(R). Essentially repeating the proof of Theorem 2.1 from [48] it can be shown that
the Franklin system on R corresponding to any admissible sequence forms an unconditional basis
in the space LP(R) for any 1 < p < oc.

In Section 3.2 we find general growth conditions on functions which guarantee the local uni-
formly convergence of the partial sums of Fourier series with respect to Franklin systems on R for
such continuous functions.

Let us give necessary definitions. Let ¢(¢) be an even, positive and increasing function on
[0; 00). Denote

Co(R)={f e C(R): [f(t)] <cp(t) for some ¢ >0 and any ¢t € R}.

We construct an admissible sequence T as follows. First we set tg =0, t; = —1, t = 1. Then
we add the points t3 = —2, t4, = —%, t5 = %, te = 2. At the n-th step we take t3n_1 = —n, and then
successively from left to the right we add the midpoints of the intervals obtained by the points
specified up to the n-th step, and set t9n+1_5 = n. Proceeding inductively, we obtain the desired
admissible sequence 7.

Let the sequence 72 be constructed by the same algorithm as the sequence 7, with the only
difference that at the n-th step we add the points ton 1 = =&, and tont1_9 = &,, where &, T oo.

It is clear that 72 coincides with 7 for &, = n. Also it is not difficult to see that the sequence
T2 will be 1-regular if and only if

0 < inf Entz = St and sup Snt2 = Enit < 0.

n fn-i—l - gn n gn—i-l - fn
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In particular, the sequence 77 is 1-regular.
The main results of Section 3.2 are the following theorems.

Theorem 3.2.12. Let {f,(x)}5°, be the Franklin system on R corresponding to the sequence
T2 and let the function ¢ satisfy the condition

In¢(&,)

2n

lim
n—oo

~0. (6)

Then for any function f € C,(R) the partial sums S, (f,?) of Fourier series with respect to system
{fn(t)}5 locally uniformly converge to f(t).

Theorem 3.2.13. Let the sequence 72 be l-regular with parameter v and let {f,(z)}2,
be the Franklin system on R corresponding to the sequence 72. If the function ¢ satisfies the

condition
im sup

n—oo 277,

>0, (7)
then there exists a function f € C,(R) such that S, (f,?) does not converge to f(t) at some points.

Chapter 4 studies the uniqueness problems for Haar, Walsh, Franklin and Ciesielski systems.

In Section 4.1 a reconstruction theorem for additive functions defined on parallelepipeds is
obtained. As consequences we derive reconstruction theorems for Haar and Walsh series. Recall
a few results obtained in this direction. It is well known from the theory of trigonometric series
that the convergence of trigonometric series almost everywhere to zero does not imply that all
the coefficients of this series are zero (see, e.g., [93, Chapter IX, Theorem 6.14], [3], [67]). This
also applies to other classical systems, for example to series with respect to the Haar, Walsh and
Franklin systems.

Uniqueness theorems for almost everywhere convergent or summable trigonometric series were
first obtained in the papers [1] and [41], under some additional conditions imposed on the series.
These conditions are not stated here, because the results of Chapter 4 concern series with respect
to the systems of Haar, Walsh and Franklin as well as their generalizations. Note only that similar
problems for multiple trigonometric series were studied in [42], [33].

Let us recall the definition of the A-integral.

Definition 4.1.1. A function f : [0,1] — R is said to be A-integrable, if

Jim Al{z € [0,1]; [F(2)] > A} =0,

and the following limit exists:

where

Let {xn(x)}32, be the Haar system. For series with respect to the Haar system G. Gevorkyan
[43] proved, in particular, the following theorem.
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Theorem 4.1.A. Let the series with respect to the Haar system

o0

nXn (1) (8)

Il
—

n

converge almost everywhere to a function f(x), and let

Jim Al{z € [0,1); 8%(z) > A} =0, 9)

k
where S*(x) =sup | > anxn(x)‘ is the majorant of the partial sums of series (8). Then series (8)
k |n=1

is a Fourier-Haar series in the sense of A-integration, i.e.

i = (A) / £ (@) xn(@)dz.

It is clear that Theorem 4.1.A implies the following:
i) if the series (8) converges a.e. to zero and (9) holds, then all the coefficients a,, are zero;

ii) if the series (8) converges a.e. to a Lebesgue integrable function f and (9) holds, then (8) is
the Fourier-Haar series of the function f.

Theorem 4.1.A is a consequence of Theorem 4.1.C, which concerns the uniqueness of additive
functions of dyadic cubes.

Then, Theorem 4.1.A was extended by V. Kostin [64] to series with respect to the generalized
Haar system and the Price system. Let us introduce necessary definitions.

Suppose that P = {p;};2, is a sequence of natural numbers distinct from 1, my = 1, and

m; = [[]_, p;- Then the P-adic expansion of a point z € [0,1) will have the form
=" U 0<e;<p -1 a€L 10
' o M == " o

To ensure that each point x € [0,1) is associated with a unique P-adic series for P-adically
rational points, i.e. for points of the form [/m,, where [ = 0,1,...,m, — 1, we choose the sums
(10) with terminating expansion. Recall the definitions of multiplicative Price systems {{x ()},
and of generalized Haar systems. The Price system is defined by the formulas

" ;05
() = exp [ 2mi 3 B )

where k=37 aymj 1, 0<a; <p;—1, j=1,2,...,n.
The system of generalized Haar functions {xZ (x)}°%, =: {xn ()}, is defined by the formulas

Xo(z) =1,

and, forn > 1

\/771_]&27”'96“1S/Pk+17 xr € | ﬂ)
Xn(T) = Xhy(2) =

’ 0, = [o,;)\ [— &) ’
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where
n=mp+1r(Pr1—1)+s—1, 0<r<mp—1, 1 <s<ppy— 1

Note that the Haar system corresponds to the sequence p; = 2, 7 € N.
For such systems V. Kostin [64] proved the following theorem.

Theorem 4.1.B. Let -
Z ApPn (33)
n=0

be a series with respect to either the Price system or the generalized Haar system with

Sup p, < 00.
neN

If the sequence of partial sums S,,, () := Z;n:’lafl a;p;(x) of the series converges almost everywhere

to a function f(x) and there exists a sequence {\,,}5°_; for which
lim A, [{z € [0,1]; S*(x) > A} =0,
m—o0

where S*(z) = sup,,cy |Sm, ()|, then the nth coefficient of the series under consideration can be

recovered by the formula
1

0= lim [ [f(@),, Pa@)ds.

m—r0o0 0

Analogues of Theorems 4.1.A; 4.1.B for Stromberg system has been obtained in [6*].

Here we strengthen these theorems by considering the wider AH-integral introduced by K. Yoneda
[91].

In order to state the results we first introduce some necessary notation and definitions. For
a complex-valued function f(z) and non-negative function A(z) we define the truncation of f as

follows:
_ [ @), 11@)] <)
s =4 7 OIEAG

Definition 4.1.2.([91],[92]) Let H = {h,(z)}>, be a sequence of real-valued Lebesgue inte-
grable functions on [0, 1] such that a.e.

0<hi(x) <hg(z) < -+ <hy(zx) <..., lim h,(z) = occ. (11)

n—oo

Then f:[0,1] — C is said to be AH-integrable on [0, 1], if

lim / hyp(x)dx =0, for all a > 0
"0 J{wel0,1)] £ (2) [z ok (2)}
and the following limit exists

1

lim [ [f(2)]h,@de =: (A’H)/O f(z)dx,

n—oo 0

called the AH-integral of the function f(z).
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If h,,(x) = n, then we obtain the ordinary A-integral, but if h,(z) = A, where A := {\,}22 is
an increasing sequence, which tends to infinity, then we obtain a generalization of the A-integral.

Similarly, we can extend the definition of the AH-integral to complex-valued functions defined
on a parallelepiped I C R".

Remark 4.1.3. If; for the function f : I — C, there exists a sequence of functions H =
{hn(x)}22, satisfying (11) such that

lim hn(x)dx = 0, (12)

00 JXED| f (%) |2 ha (%)}

and the limit

lim / 0O o

n—oo I

exists, then there exists a sequence of functions G such that the function f(x) is AG-integrable
and

s [ £ hwx = (49) [ flxlax. (13)

n—oo

Indeed, it follows from condition (12) that there exists a non-decreasing sequence {a,}22 ,,
tending to infinity such that
hn(x)dx = 0. (14)

lim o, /
oo {x€L| f(x)|=hn(x)}

Denoting g,(x) = a,h,(x), we find that for any a > 0 the inequality ag,(x) > h,(x) holds for
sufficiently large n and therefore

0 < lim gn(x)dx < lim «, hy(x)dx = 0.

"*""/{xef;|f(x>|>agn(x)} nree /{xef;lf(X)|>hn(X)}

In addition, from (14) we obtain

J 16 0x— [ 1£60N,,x

I I

< / gn(x)dx — 0,
{x€L;| f(x)|>hn(x)}

and therefore equality (13) holds.
Let P/ = {p]}°,,1 < j < d be sequences of natural numbers distinct from 1 and P = {P7}{_,.
Set

k
my =1 and m] = Hp{
i=1
Denote by A¢ the set of all P-adic parallelepipeds of rank k:

+1 +1
Ag:{[,[:[n_ll,nl—llx X[n_cfpnd—d}anla“'andez}a
my o my my My

as well as write r(I) = k, if I € AY.
Let

Here Ny = {0} UN and N stands for the set of natural numbers.
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A complex-valued function ¥ defined on the set A¢ will be called an additive function of P-adic
parallelepipeds if, for all I,1y,...,I, € A% for which I = U, I; and int (I;) Nint (I;) = 0,7 # j,
the following equality holds:

() = Z\P(Ii).

A point z € R is said to be irrational with respect to the sequence {p;}2,, if x - [[\_, pi & Z, for
all n € N. A point x = (21,...,24) € R? is said to be P-adically irrational if, for all 1 < j < d,
the point ; is irrational with respect to the sequence P7.

For P-adically irrational points x = (x1,...,24) € RY, we define the derivative ¥'(x) and the
majorant U*(x) as follows:

([ (]
qj,(X) = hrn ( k), \P* (X) = sup M
xe'“IZEig || rxerend ||

Fix I, € A?. Let the functions h,, : Iy — R, m € N satisfy the following conditions:

(i) 0<h(x) <hy(x)<- -+ <hpx)<..., lim hy,(x) = o0, (15)

m—r0o0

(ii) there exists a constant C' > 0 and, for each m € N, parallelepipeds I7", ..., I" € A? such that
int (1;*) Nint (I7*) = 0,4 # j, Uz I = Io and

sup Ay, (x) < C inf h,(x), (16)
XEI,T XG[]:,n
forallmeN, 1 <k <n,,, and
(i) inf / o (x)dx > 0. (17)
m, m

In other words, for any function h,, the parallelepiped I can be split into small P-adic paral-
lelepipeds, so that the supremum and infimum of that function on each parallelepiped are compa-
rable and integrals over that parallelepipeds are bounded away from 0.

One of the main result of Section 4.1 is the following:

Theorem 4.1.4. Let the sequence of functions h,,(x) satisfy conditions (15)-(17), and let ¥ be
a complex-valued additive function defined on P-adic parallelepipeds, where P = {Pi}¢_, PJ =

. j:l?
YAles
{pi 21 and

sup  pl < oo. (18)
ieN,1<j<d

If

lim

/ hm(x)dx =0 (19)
M= Jixelo;0* (x)>hm(x)}

and U'(x) exists a.e., then, for any I € A%, I C Iy, the following equality holds:

(1) = lim [ [¥'(x)], ) dx

m—o0 I

Taking p{ =2foralli € N,;1 < j < d, and the functions h,,(x) = A,, in Theorem 4.1.4 we
obtain the following theorem proved by G. Gevorkyan in [43].
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Theorem 4.1.C. Let ® be an additive function defined on dyadic cubes. If there exists a
sequence A, tending to infinity such that

lim A\, [{x € Ip; P*(x) > A\ }| =0, (20)
m—0o0

and the derivative ®'(x) exists a.e., then, for any dyadic cube I C I the following equality holds:

®(I) = lim [ [¥(x)], dx.

m—00 I

In Section 4.1 we give an example of additive function of dyadic cubes which can be recovered
from its derivative applying Theorem 4.1.4, but not Theorem 4.1.C.

Now let us give applications of Theorem 4.1.4 to Haar and Walsh series. For any P = {P’ ?:1
we consider a multiple series

d

neNg GNO
=1,

and the P-adic partial sums of this series, i.e.

> anxl(x)

n<N

where by n < k we mean 0 < n; < mij, forall 7 =1,2,...,d, and N = (N,...,N) € R% for any
natural number N. It is easy to see that there exists a series with respect to the Price system

> bt (x) (22)

nGNg

such that, for all k& € N?, the following equality holds:
D (%) =D bl (x (23)
n<k n<k

In particular, this implies that the P-adic partial sums of this series coincide with the P-adic
partial sums of the series (21):

SY(x) = Z an X’ (x Z batF (x) =: S%(x). (24)
n<N n<N

Thus each Haar series (21) can be associated with a Price series (22), and vice versa. To each
series (21) let us assign the additive function ¥ as follows:

N—oo

= lim /Zanxn )dx, for I € A% (25)

n<N

The right-hand limit exists for all I € A, because for a sufficiently large N (depending on I) we

have
/anxn( Jdx = 0, for max {&}21
T 1<j<d miv
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It follows from (25) that, for each P-adically irrational point x,

U'(x) = lim Zanxﬁ(x) and U*(x) = sup Zanxzf(x) . (26)

n<N n<N

Applying Theorem 4.1.4 we obtain the next result.

Theorem 4.1.7. Let the P-adic sums of the multiple Haar series (21) converge a.e. to a

function f(x), and let P satisfy (18). If there exists a sequence of functions {h,,(x)}>°_, satisfying
conditions (15)-(17), for which

lim ho (x)dx = 0,
00 J{x€[0,1]40% (%) > han (x) }
then for any n = (ny,...,ng) € N4,
an = Tim [ [F(Ol,, 0 BBV

m—0oQ [0’1}d
Note that the equality of the corresponding P-adic partial sums of the series (24) and the
definition of W(/) imply that
U(I) = lim [ SH(x)dx,

N—oo I

also, from (24) and (26) for each P-adically irrational point x we will have

U'(x) = lim S%(x) and U*(x) =sup|S%(x)|.
N—oo N
A similar theorem can be proved also for the Price system. Namely, the following theorem is valid.

Theorem 4.1.8. Let the P-adic partial sums of the series (22) converge a.e. to a function f(x),

and let P satisfies (18). If there exists a sequence of functions {h,,(x)}>°_, satisfying conditions
(15)-(17) for which

hm (x)dx = 0,

lim /
7700 J{xe[0,1)4,0* (x) > (x) }

then, for any n = (ny,...,nq) € Nd

b= Jim [ 70, 00 PG
e Jlo,1e

In Theorems 4.1.7 and 4.1.8, taking d = 1 and h,,(z) = A\, we obtain Theorem 4.1.B proved
by V. Kostin in [64].

In Section 4.2 we study the uniqueness of series in the classical Franklin system {f,(x)},. The
main purpose of Section 4.2 is to prove a restoration theorem for series in the Franklin system,
similar to Theorem 4.1.7, which is for series in the Haar system.

To the best of our knowledge, the first statement on the uniqueness of series in the Franklin
system was the uniqueness theorem stated in [36]. The following theorem is proved in [36].

Theorem 4.2.A. Let the series

Z af,(x), (27)

n=0
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with coefficients a,, = o(y/n), converge in measure to a bounded function f and converge every-
where, except, possibly, some countable set,

N
sup  max Z anf,(t)| < +oo.
N te@:—%;a}—‘r%) n—0

Then the series (27) is the Fourier-Franklin series of the function f.

For series in the Franklin system, uniqueness theorems of another type were proved; in such
theorems, one necessary condition on the majorant of the partial sums of the series is imposed
(see [38, Theorem 3]).

Theorem 4.2.B. The series (27) is the Fourier-Franklin series of an integrable function f if
and only if this series a.e. converge to f(z) and

N
li/{gglf)\. {:c € [0;1]: sy\lfp Zoanfn(x) > )\} = 0.

A similar theorem for the general Franklin system was proved by M. Poghosyan in [76].
G. Gevorgyan and M. Poghosyan [53] obtained a coefficients recovering theorem for multiple
Franklin series under the condition

lim inf A|{x € [0,1]"5 5" (x) > A} =0,
—00

where S*(x) is the majorant of 2"th cubic partial sums.
To formulate the main results of Section 4.2, we shall give some definitions.
Let {h,,(z)} be a sequence of functions h,,(z) : [0, 1] — R, satisfying the following conditions:

1) 0< hi(z) < hg(z) < - < hy(z)<..., lim hy,(z) = oo, (28)

- m—00

and there exist dyadic points 0 = ¢,,0 < ;1 < ... < tym,, = 1 such that the intervals I} =
[tmk—1,tmk), K =1,..., 0y, are dyadic, that is,

v o1+1 ,
m I . y J 1

and the function h,,(x) is constant on these intervals:
(ii) hp(x) = A forx e ' k=1,... np, (29)

besides, the following conditions are fulfilled:

(i) inf /1 () = inf [ IZIAL > 0, (30)
m Am

(iv) sup A + ) < oo (31)
m,k )‘le )‘Zl

In other words, for each function h,,(z), the interval [0,1] can be split into dyadic intervals so
that on each of these dyadic intervals the function takes values that are equivalent to the values
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of the function on the adjacent intervals, and the integrals over these intervals are greater than
some positive constant.

It turns out that if the functions h,, satisfy conditions (28)-(31), then one can choose new
dyadic intervals I so that together with conditions (30), (31), the following condition also will
be satisfied:

2| \Iﬁ"‘ll)
sup | —— + 0 | < +oo. (32)
m,k (|Ik—1| |Ik ’

Consider the series Y a,f,(z), and denote

v

o, (x) = Zanfn(x), o (x) = sup lo, ()]

n=0

Now we are able to state the main results of Section 4.2.

Theorem 4.2.1. Let the sequence of functions h,,(x) satisfy the conditions (28)-(31), the
sequence of partial sums o, converges in measure to a function f, and let the majorant o* of
partial sums o, satisfy the following condition:

lim hm(z)dz = 0. (33)

M= J{zel0,1]; o* (x)>hm(z)}
Then for all n > 0 we have
a, = lim (@), () En()d. (34)
0

The next theorem to some extent shows the necessity of condition (31) in Theorem 4.2.1.

Theorem 4.2.2. Let functions h,,(x) satisfy conditions (28)-(30), (32) and

A b1 )
su + = 400. 35
o (A;ﬂ_l Tog AT T AT log AT (35)

Then there exists a series Y~ a,f,, converging a.e. to a function f with a majorant o* satisfying
(33), but the coefficients a,,n > 0 are not recovered by formulas (34). In particular,

1 1
lim sup/0 Lf(@)]h,, () Po(2)dz = lim sup/O Lf ()], () d = +00.

m—00 m—o0

In Section 4.3 we prove uniqueness results for series in the Ciesielski system, which was first
introduced in [13]. Recall that the Ciesielski system {f(7}5° _ ., is the orthonormal spline system
of order r corresponding to the dyadic sequence. Note that the case r = 2 corresponds to the
orthonormal system of piecewise linear functions, i.e. to the classical Franklin system.

Multiple series in the Franklin system were studied in [44]. Let k be a natural number. Consider
a multiple Franklin series

> amf(x), (36)

mEN’g
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where m = (my,...,m;) € NF is a vector with integer coordinates, x = (z1,...,x;) € [0;1]* and
fn(x) = £, (x1) - - - £, (). It is said that a series (36) is rectangularly convergent at the point x

if the limit
i, 3 o
exists; here m < M means that m; < M;, j =1,...,k, and M = (M, ..., M};) — +00 means that
min; M; — +o0.
The following theorem holds (see [44, Theorem 10]).

Theorem 4.3.A. The series (36) is the Fourier-Franklin series of a function f € L1n*~! L([0; 1]*)
if and only if the series (36) a.e. rectangularly converges to f(x) and

{X c [0;1]% Sll\l/lp Z Amfm (x)| > )\}

m<M
Recently G. Gevorkyan [54] essentially strengthened Theorems 4.2.B and 4.3.A by using meth-
ods distinct from those applied in [44].

liminf X - = 0.

A—400

Theorem 4.3.B.([54]) The series (36) is the Fourier-Franklin series of a function f € L([0;1]%)
if and only if the following conditions hold:

1. the sums >  amfim(x) converge in measure to f;

m:m; <2V
> )\H =0.

Z amf") (x). (37)

m:m;>—r+2

2. liminf X -

A——+00

Y. amfn(x)

m:m; <2V

{x € [0;1])* : sup,

Consider a multiple Ciesielski series

Denote by 0,(x) the 2“th cubic partial sums of the series (37), i.e.
o,(x) = Z amfl (x). (38)
m:m; <2¥

Set 0*(x) = sup,, |0, (x)|. The following theorems hold.

Theorem 4.3.1. If the sums (38) converge in measure to zero and the following condition
holds:
liminf A - [{x € [0;1]* : 0*(x) > A}| =0, (39)

A——+o00

then all the coefficients of the series (37) are zero.

Theorem 4.3.2. If the series (37) is the Fourier-Ciesielski series of a function f € L([0;1]%),
then the sums (38) converge a.e. to f and

lim X [{xe€[0;1]":0%(x) > A}| = 0. (40)

A—400

Theorems 4.3.1 and 4.3.2 imply the following theorem.

Theorem 4.3.3. The series (37) is the Fourier-Ciesielski series of a function f € L([0; 1]*) if
and only if the following conditions hold:
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1. the sums 0, (x) converge in measure to f;

2. liminf)\ : |{X € [0;1]% : sup, |0, (x)| > A}

—+00

=0.

We have already stated several uniqueness theorems for Haar series (see Theorems 4.1.1, 4.1.B
and 4.1.7). Note that the partial sums of a Haar series are piecewise constant functions. In Section
4.4 we are interested in obtaining a result analogous to Theorem 4.1.7 for univariate piecewise
polynomial sequences.

In order to formulate the result let us give some necessary definitions.

Let » € N. Denote by S\ the space of piecewise polynomial functions whose restrictions on

each [2%, %) for 0 < k < 2™ — 1, are polynomials of degree not exceeding r, i.e.

SO = { frdeg(flj s ) <7 for 0< k<2 1},

Let P L[0,1] — S\ be the orthogonal projection, i.e.
(f,g9) = (P £, g) for all f e L[0,1], g€ S™.
Let a sequence of functions (.S,,),>0 satisty S, € S for n > (0 and
P(S,,) = S, for m > n. (41)
Set S*(x) = sup,, |Sn(z)|. We denote by D the set of all dyadic intervals, i.e.
= ko k+1
D= UD”’ where Dn:{[z—n,%);ngST—l}.

n=0
We call an interval I € D,, an interval of rank n and set r(I) := n.
Let functions h,,(x), hy, :[0,1] — R satisty the following conditions:

(1) 0 < hy(z) < hg(x) <+ < hy(x) <. Til_lgohm(x) = 00, (42)

(ii) there exist a constant C' > 0 and intervals I{",..., ;" € D so that I" N [* = 0,7 # j,
upm It =[0,1), and

sup h,(z) < C inf h,(z), (43)
forany m € N, 1 <k <n,,, and
(iii) in£/ hm(z)dz > 0. (44)
m, m

k

In other words, for any function h,, the interval [0, 1] can be split into small dyadic intervals, so
that the supremum and infimum of that function on each interval are comparable and integrals
over that intervals are bounded away from zero.

Theorem 4.4.1. Let the functions h,,(z) satisfy conditions (42), (43), (44). If the sequence

(Sn), satisfying (41), converges in measure to a function S and lim h(z)dx =
m—ro0

f{xE[O,l];S*(w)>hm(z)}
0, then for any g € S we have

This theorem actually enables to recover the sequence (S,,) from its limit S under the mentioned
conditions. Generally speaking, the limit may not be Lebesgue integrable.
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Udthnthnid

Uwntiwjununipniimd hbnwgnungmd Bt nuppbp uyuyt hwdwlwupgbph pughuntpyjut, gni-
quuhunnmpiui b hwynipjut hupgtn:

Unwohti qijunid unnwugyky tu Jhpotiwljutt ujupugpmpnititp pojnp wytt npnhmufubinh,
npnig hwdwywnwupiw Spwilyjhuth wuppkpuwt hwdwlwpgp pughu jud ny yuydwbw-
Jwl puqghu k LEpkgh, Zupnhh jud Q. Unniquyh [23,24] Ynnuhg tbpdnisyws nupubdnipnt -
Ubkpmud: ‘Uokp, np stwyws tupul, np yipohtt mupwsdnipjniuip hwiunhuwimd £ Zwpnghh mupu-
dnmipjut Eupwnwpwénipinil, dpwuljhuh wuppkpulwt hwdwlwupgp jud dhudwdwbuly
pughu (ny uyudwuwlwb pughu) L wyy bpynt nupusmpiniutbpnd, jud £ wyu sh hwnh-
uwtund pughu (0 wuywdwbwlwb pughu) wyny wnmwpwdmpniiitphg bny  Uklh hwdwp:
Uwnwugyh Etwl Epjpuswthwuljut tjupwgqpnipinit ponjnp wyt npnhnidubph, npnig hwdwww-
nwufuwb pupdp Jupgh uvyjuytubphg juquyjws oppnunpdw) hwdwlwpgp ny wuydwbwljwu
puqhu k Zupnhh nwpwsni pjntuncd: sy bu dSpwlyhuth wuppkpulwt hwdwlunpgh, wyhytu
£ oppnunpuw] uyjuyt hwdwlwpgh Zupphh mwpwsnipniunid ny yuydwbtwljub puqhunt-
pjul wywugngp  hhugws Edwubwynpuybu  hwdwywwnwupwb MEhh  punwljniuwght
dmtyghuyh bt dwutiwlh gnudwpbph dwdnpwtinh L tnputiph hwdwpdbtpnipjut ypu: Uklp
gnyg Lup gk}, np dpwtlhth puuwlwb hwmdwlwpgny swpptph NMEhh pwnwlniuwght
dnmuljghuyh b dwutwlh gnidwpubph dwdnpuwtnh judwjulub bpyniujut hwnguwsny
nwpwéyws LP unpukiph hwdwpdbpnipniup pninp p gpujut pyYkph hwdwp npny wuydwih
nkypnid: Puigh wyn, gnyg k wnpdb bwb wyn gquydwih wihpwdbownnipniup:

Bpynnpy gilunid nnumduwuhpynid £ wnwugph ypu qpn dhohting uwjjuytt hwdwlupgtph
puqhunipjut hwipgp Zupnhh mwpwsnipniumd: Unwgyl) Bu wthpudtown b pudupup wuy-

dwliibp wnwgph Yypw qpn vhohting judwjuljut $hpuwsd jupgh uwgjuyt hwdwljupgn duny
wnpnhdw hwdwp, npnug nhypnid hwdwywwnwupiwt hwdwlupgp pugqhu k Zwupghh nwpw-

dmipniumd: Unwugdws wuydwubbpp mwuppipymd Eu Zwpnhh mwpwénipnianid dhwynp
hwwnyjwsh ypw npnodwsd oppninpuduy uygjuytt hwdwljupgbph pughunipjut hwdwp wihpw-
dbonn it puwdwpwp wuydwbubkphg: Unwugph 4pw qpn vhohting dpwuljhuth hwdwlwpgbph
hwdwp unwgyt) b bwlb Zwupnhh mwpwsdnipniunid ny yujdwbwlwb pughun pjut hwdwnp
wihpwdbon b pudwpup wuydwhukp:

Eppnpn guoipup wihpdws b qniquivhnmpput hwpgbpht: Uwugmgyty £ np dpwblyhih

35



punhwtnip hwdwlwpgny owippp hwdwpyu wdkuniptp ny Wuwjdwbwljub gniquutn k npny
puqum pyul Jpw, wjt b dhwyt wyt phuypmd Epp wyn pwppp hwdwpjw wikimpbp pugupdwly
gqniquubtin E unyu puqunipjut ypu: Lul jurnigy by G bplpnpn jupgh vyypuyt hwdwljupgtbp,
nn judwyujut wipunhwn b twhwybu bhpuws njghwib sghpuquiignn  $muljghuyp
dniphth owippp punn wyn hwdwlwpgh njuw; hwjuwuwpwswih gniguudtn k:

2nppnpy g juntd uinwgyty Bu hwlnipjup yEpupkpnn wpngniuputpn: Ugugmgyt) &, np
P-wuinhlj qniquhbnwtthunubph ypw wnhwnhy dnituyghwts jupkjh Ekpuutqub] hp wmbwbgyu-
1hg, tpt tpw dwdnputinp pujuwpupnd £ npnowljh yuydwih: Yhpwnbing wju wpnniupp
uwnwgyl) kt Zwwph b Ninpoh pinhwipugpuws hwmdwljwpgbipny puquuwuwwwnhl owpptph qnp-
dwijhgubph JEkpujuiqdut pwbwdlbp wyny swppbph gnidwph vhongny, tpt owpph dwdn-
pwtwnp pujupupmd £ npnowljh wuwjdwth: Ldwbwwnhy pinpbd unwgyt) k iwb Spwtlyhup
nuuwlwt hwdwljupgny swpptph hwdwp, hsybu twb Junp wn unp puquutnututphg
punugus hwonppujuinm pniiitph hwdwp: Qhubjuynt hwdwlwpgny pupptph hwdwp
npnowlh wuydwbtiph wnjuwynipjut nhypmid unwgyt) E vhwlnipjut pinpbd:
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3akjIo4YeHue

B muccepranuu paccCMOTpeHBI BOIIPOCHI 6a3MCHOCTH, CXOLUMOCTH U e IMHCTBEHHOCTH /I CUCTEM

CILJIAaHTHOB.

B mepBoii ry1aBe IOSy4eHBI OKOHYATETbHBIE XapaKTepU3aIlUK BCEX ITOCIeZOBAaTEeIbHOCTEH, AJId
KOTOPBIX COOTBETCTBYIOLIAs ITeproandeckas cucrema OpankinHa sBisercs 6a3ucoM Uy 6e3yCoB-
HbIM 6a3ucoM B mpoctpacTsax Jlebera, Xapau u B mpoctpancTse BBegeHo# I'. Coysoii [23,24]. HecmoTtps
Ha TO, 4TO IIOCJIeJHEee IIPOCTPAHCTBO ABJIAETCA COOCTBEHHBIM ITOAIIPOCTPAHCTBOM IIPOCTPAHCTBA XapaH,
TeM He MeHee Ilepuoguyeckas cucrema PpankinHa unu siasercs 6azucoM (6e3ycIoBHBIM 6a31coM) B
O6OI/IX IIPOCTPAHCTBAX, MJIM OHd HE ABJISIETCA 6331/ICOM HHW B OJJHOM M3 HUX. HOJIY‘-IEHH TaKXXe reOMeTpH-
YecKas XapaKTepHU3allysd BCeX IT0CIe0BaTeIbHOCTeH, 711 KOTOPBIX COOTBETCTBYIOIIAs OPTOHOPMAIh-
Has CUCTeMa CIUIAWHOB BBICIIETO IIOPAAKA ABJIAETCS 0e3yCIOBHBIM 0a3MCOM B IIPOCTPAHCTBe Xapau.
Kak gns nmepuopuyeckoit cucrems: ®PpankinHa, Tak U I OPTOHOPMATbHOMN CHCTEMBI CILIAHHOB
BBICIIETO IIOPSZKA  IIPH JOKa3aTeabCTBe  0e3yCJIOBHOM  0asMCHOCTHM B IIPOCTPAHCTBe Xapau
HCIIO/IB3YEeTCA DKBUBATEHTHOCT L' HODM — COOTBeTCTByIomeid KBazparHOW QyHKiuu [Iamm u
Ma>KOPAHTBI YaCTUYHBIX CyMM. MBI JOKa3aal 5KBUBAJIEHTHOCTh [P HOPM IO ZBOMYHBIM OTpe3KaM
KBagpaTHOH ¢yHKIMY [I5711 1 MaXKOpaHThI YaCTUYHBIX CYMM JJIA PANOB IO KJIACCUYeCKOU cHCcTeMe
QpanHkIMHA A1 BCEX IOJIOXXUTETBHBIX P IPH HEKOTOPOM yCJIOBUHU. TakxKe II0Ka3aHO HEOOXOJUMOCTb

9TOI'O YCJIOBHA.

Bo BTOpOIi T1aBe McCIeAyeTcsa BOIPOC 6a3MCHOCTHU CHCTEM CIUIAWHOB C HyJIEBBIMU CPeJHUMHU Ha
ocu B mpocrpancTe Xapau. Iloxydersr Heo6X0AMMBIE U JOCTATOYHBIE YCIOBUA IJIA IIOPOXKAOm e
ITOCJIe0BATEIBHOCTH IIPH KOTOPBIX COOTBETCTBYIONASA CHCTEMA CIUIAMHOB C HYJIEBBIMU CPeSHUMU
ABgeTca 6asrcoM B mpocrpacTBe Xapau. IlomydyeHHBIe yCIOBUA Pa3THYHBI OT COOTBETCTBYIOMIHUX
YCJIOBUM IIOTyYE€HHBIX /IJI1 OPTOHOPMAaJIbHBIX CHUCTEM CIUIAHHOB OIpefieleHHbIX Ha eJMHUYHOM
orpeske. IlonydeHsl Takxe HEOOXOZMMBIE U JOCTATOYHBIE YCJIOBUA [ 6e3yCIOBHOI 0a3sHMCHOCTU

cucremsl PpaHKIMHA C HYJIEBBIMU CPEJHUMHU Ha OCH B IIPOCTPAHCTBe Xapu.

TpeTss r1aBa mocBsIIeHa BOIpocaM cxoauMocTu. JlokasaHo, 4To psaf o obieii cucreme Opankiiu-
Ha 6e3yCJIOBHO CXOAUTCS IIOYTHU BCIOLY Ha HEKOTOPOM MHOXKECTBE TOTZa ¥ TOJIBKO TOTa, KOTZIa OTOT
P71, aGCOTIOTHO CXOJUTCS IIOYTH BCIOLY Ha TOM JKe MHOXKeCTBe. TakyKe, IOCTPOEHBI CHCTEMBI CIITIaffHOB
BTOPOTrO ITOpsAAKa Takue, 4To psaf Oypbe Kakgoil HelpephIBHON QYHKI[UY, KOTOpAas He IIPeBbILIaeT

Hamepe/ 3aJdHHYIO Q)YHKH;I/IIO, JIOKaJIbHO PpaBHOMEPHO CXOAUTCA.
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YerBepTas riaBa MOCBALIEHA BOIIPOCAM eJMHCTBeHHOCTHU. /loKa3aHo, YTO afUTUBHYIO (PYHKIIHIO,
oIIpefleJIeHHYIO Ha [’-aIMYHBIX NapallelelIuIesiaX, MOXXHO BOCCTAHOBUTD U3 ee IIPOM3BOAHOM, ecin
Ma)XOpaHTa yZOBJIETBOPsAeT HEKOTOPOMY yCIOBUIO. [IprMeHsaa 5TOT pe3yibTaT IMOIydeHbl POPMYJIBI
BOCCTaHAaBJIMBAIONIVEe KO3 (UIIMEHTHI KPaTHIX PAZOB II0 cHCTeMaM Xaapa, Y ojIla 1 ux 00001eHuit
U3 CyMMBI P43, €CJIM MaXOPaHTa YaCTUYHBIX CYMM Y/IOBJIeTBOpsAeT HeKOTopoMy ycioBuio. [loxoxue
TeOopeMBI ITOJTyYeHBI JJIA PALOB IO KJIacCu4ecKoii cucreMe PpaHK/IMHA, a TAKOKe AJIA IOCIeTOBaTe b
HOCTe# KyCOYHO ITOJIMHOMHUAIBHBIX QYyHKIINH. IIpy HeKOTOpOM YCIOBHU TaKKe IIOJIy4YeHa TeopeMa

e JUHCTBEHHOCTHU JJI PAAOB IO cucTeMe YmceabCcKoro.
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