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Overview

Relevance of the topic. It is well known the theorems of Fatou [9] about non-

tangential convergence, which have many applications in different mathematical
theories including analytic functions, Hardy spaces, harmonic analysis, differential
equations and etc. There are various generalization of these theorems in different
aspects. Almost everywhere convergence over some semi-tangential regions investi-
gated by Nagel and Stein [25], Di Biase [7], Di Biase-Stokolos-Svensson-Weiss [8].
Sjogren [32, 33, 34], Ronning [27, 28, 29], Katkovskaya-Krotov [17, 21], Krotov
[19, 20], Brundin [5], Mizuta-Shimomura [24], Aikawa [3] studied fractional Poisson
integrals with respect to the fractional power of the Poisson kernel and obtained
some tangential convergence properties for such integrals.

Littlewood [22] made an important complement to the theorem of Fatou, proving
essentiality of non-tangential approach in that theorem. Lohwater and Piranian [23]
proved, that in Littlewood's theorem almost everywhere divergence can be replaced
to everywhere and the example function can be a Blaschke product. Aikawa [1]
obtained a similar everywhere divergence theorem for bounded harmonic functions
on the unit disk, giving a positive answer to a problem raised by Barth [[4], p. 551].

In the thesis it is considered convolution type integral operators with general ker-
nels and it is investigated some generalizations of theorems of Fatou and Littlewood.

Besides, it is studied some questions of equivalency of differentiation bases. The
classical theorems of Jessen-Marcinkiewicz—Zygmund [15] and Saks [31] determine
the optimal Orlicz space for the basis of all rectangles. Due to Zerekidze [38, 39, 40]
and Stokolos [36], the same results can be formulated also for the basis of all dyadic
rectangles as well as for the basis of rare dyadic rectangles generated from a given
sequence of positive integers. In the thesis it is studied the full equivalence of those
bases and it is shown that they do differentiate different set of functions, depending
on density of the sequence. At the end of the thesis it is also considered quasi-
equivalent bases and the set of functions that such bases differentiate.

Goals. Generalize the theorem of Fatou for convolution type integral operators
with general approximate identities in different functional spaces. Describe the
connections between general approximate identities and optimal convergence re-
gions for such operators. Generalize the theorem of Littlewood for convolution type
integral operators with general kernels. Investigate fully and partially equivalent
differentiation bases.



Research methods. Methods of theory of functions, harmonic analysis and

mathematical analysis.

Scientific novelty. All results are new and are the following:

1.

It is found a necessary and sufficient condition on A(r) that ensures almost
everywhere A(r)—convergence for convolution type integral operators in both
spaces of bounded measures and integrable functions. Moreover, in the case
of bounded measures, the convergence occurs at any point where the measure
is differentiable. In the case of integrable functions, the convergence occurs

at any Lebesgue point of the function.

. It is discovered a necessary and sufficient condition on A(r) that provides

almost everywhere A(r)—convergence for the same convolution type integral
operators in the space of essentially bounded functions. Additionally, the

convergence occurs at any Lebesgue point of the function.

Under general assumptions, it is constructed a characteristic function such
that the convolution with general kernels possesses everywhere divergent prop-
erty along a given tangential curve. Particularly, it is proved that there exists
a bounded harmonic function having everywhere strong divergent property

along a given tangential curve.

Under general assumptions, it is constructed a bounded function, which is the
boundary values of some Blaschke product, such that the convolution with
general kernels owns everywhere divergent property along a given tangential

curve.

It is found a necessary and sufficient condition for the full equivalence of basis
of rare dyadic rectangles and the basis of complete dyadic rectangles in R2.

It is proved that two quasi-equivalent bases of some density basis in R™ dif-

ferentiate the same set of non-negative functions.

Theoretical and practical value. All the results and developed methods rep-

resent theoretical interest and are applied in theories of orthogonal series, harmonic

functions and differentiation of integrals.

Approbation of results. Most of the results were reported in the following

conferences:



e On theorems of Fatou and Littlewood, International Conference, Harmonic
Analysis and Approximations VI, September 12-18, 2015, Tsaghkadzor, Ar-

menia.

e On an equivalency of di erentiation basis of dyadic rectangles, Armenian Math-
ematical Union Annual Session dedicated to the 100th anniversary of Professor
Haik Badalyan, June 23-25, 2015, Yerevan, Armenia.

e On theorems of Fatou and Littlewood, Armenian—Georgian Conference, Septem-
ber, 2014, Tsaxkadzor, Armenia.

Publications. Main results of the thesis are published in 5 works (4 papers and
1 presentation), which are listed at the end of references.
Structure and volume of the thesis. The thesis consists of introduction, three

chapters, conclusion and bibliography with 45 items. Total number of pages is 75.

Thesis content

The following remarkable theorems of Fatou [9] play significant role in the study
of boundary value problems of analytic and harmonic functions.

Theorem A (Fatou, 1906). Any bounded analytic function on the unit disc
D ={z € C: |z| < 1} has non-tangential limit for almost all boundary points.

Theorem B (Fatou, 1906). If a function p of bounded variation is differentiable
at xg € T, then the Poisson integral

Py, dt) = — / Lo dpu(t)
’ 21 Jp 1 —2rcos(z —t) + 12
converges non-tangentially to p'(xo) as r — 1.

These two fundamental theorems, have many applications in different mathe-
matical theories including analytic functions, Hardy spaces, harmonic analysis, dif-
ferential equations and etc. There are various generalization of these theorems in
different aspects. Almost everywhere convergence over some semi-tangential regions
investigated by Nagel and Stein [25], Di Biase [7], Di Biase-Stokolos-Svensson-Weiss
[8]. Sjogren [32, 33, 34], Ronning [27, 28, 29], Katkovskaya-Krotov [17, 21], Krotov
[19, 20], Brundin [5], Mizuta-Shimomura [24], Aikawa [3] studied fractional Poisson
integrals with respect to the fractional power of the Poisson kernel and obtained



some tangential convergence properties for such integrals. More precisely they con-
sidered the integrals

PO (e, f) = [ PO =0y de = / [Py (x — 0]/ £ (1) .

T c(r)

where
1—r2

Pz)= —m———,
() 1—2rcosx + r2

O<r<l1, €T

is the Poisson kernel for the unit disk and

e(r) = /T[Pr(t)]l/2 dt = (1—r)t/? logliiT

is the normalizing coefficient. Here, the notation A =< B means double inequality
c1A < B < ¢ A for some positive absolute constants ¢; and ¢, which might differ
in each case.

Theorem C (see [32, 27, 28]). For any f € LP(T), 1 <p < o0

lim P2z +6(r), f) = f(x) (1)

almost everywhere x € T, whenever

p .
6(r)| < {C(l -7) (log 1ir) Zf 1<p<oo, (2)
ca(l=r)%, forany 0 <a <1 if p= o0,

where ¢, > 0 is a constant, depended only on «.

The case of p = 1 is proved in [32], 1 < p < oo is considered in [27], [28].
Moreover, in [27] weak type inequalities for the maximal operator of square root
Poisson integrals are established.

Theorem D (Ronning, 1997). Let 1 < p < co. Then the mazimal operator

Pio(, f) = sup P2 (2 +6,[f])
10]<c(1—r)(log 2-)°
1/2<r<1

is of weak type (p,p).
In [17] weighted strong type inequalities for the same operators are established.

Related questions were considered also in higher dimensions. Saeki [30] studied Fa-
tou type theorems for non-radial kernels. Korani [18] extended Fatou's theorem for
the Poisson-Szego integral. In [25] Nagel and Stein proved that the Poisson integral

on the upper half space of R**! has the boundary limit at almost every point within
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a certain approach region, which is not contained in any non-tangential approach
regions. Sueiro [37] extended Nagel-Stein's result for the Poisson-Szego integral.
Almost everywhere convergence over tangential tress (family of curves) were inves-
tigated by Di Biase [7], Di Biase-Stokolos-Svensson-Weiss [8]. In [17] and [3] higher
dimensional cases of fractional Poisson integrals are studied as well.

In Chapter 1 we thoroughly investigate the connection between approximate
identities and convergence regions. In particular, how the non-tangential conver-
gence is connected to Poisson kernel and bounds (2) to the square root Poisson
kernel.

We introduce A(r)—convergence, which is a generalization of non-tangential con-

vergence in the unit disc, where A(r) is a function
A:(0,1) = (0,00) with lirri A(r) =0. (3)
r—

Let T = R/27Z be the one dimensional torus. For a given z € T we define A(r, z)
to be the interval [z — A(r),z + A(r)]. If A(r) > 7 we assume that A(r,z) = T. Let
F,.(z) be a family of functions from L!(T), where r varies in (0,1). We say F,.(z) is
A(r)—convergent at a point x € T to a value A, if

lim sup |F.(f)— A|=0.
r—1 0eX(r,z)

Otherwise this relation will be denoted by

lim  F,(0) = A. (4)

0eX(r,z)

We say Fy.(x) is A(r)—divergent at = € T if (4) does not hold for any A € R.

Denote by BV (T) the functions of bounded variation on T. Any given function
of bounded variation p € BV (T) defines a Borel measure on T. We consider the
family of integrals

B (adp) = [ gl =t du(t). we BV (D) (5)
where 0 < r < 1 and kernels ¢, € L*°(T) form an approzimate identity, that is

Pl [op(t)dt —1asr —1,

D2. pi(x)= sup e (t)] = 0asr—1, 0<|z|<m,
x| <|t|<m



®3. sup ||¢klh < oo.
0<r<1

In case of p is absolutely continuous and du(t) = f(t)dt for some f € LP(T), 1 <
p < 00, then the integral (5) will be denoted as @,.(z, f).

Carlsson [6] obtained some weak type inequalities for non-negative approximate
identities:

Theorem E (Carlsson, 2008). Let {¢(x) > 0} be an approxzimate identity and
p(r) = llerll; P, where 1 < p < oo and g = p/(p — 1) is the conjugate number of p.
Then for any f € LP(T)

sup [P, (z +0, f)| < C(M|fP(2))"/?, w€T,
|6]<cp(r)
0<r<1

where the constant C' does not depend on function f.

Although Theorem E gives a general connection, we will see that the regions
associated with function p(r) are not optimal in general and can be improved. The
central question of Chapter 1 is the following:

Question. For a given approzimate identity {¢,} what is the necessary and

sufficiant condition on A(r) for which

o lim @, (z,dp) = p/(z) almost everywhere for any p € BV (T)?
r—1
YEA(r,z)
o lim @, (z,f)= f(x) almost everywhere for any f € LP(T), 1 <p<oo?
r—1
YyEX(r,x)
An analogous question can also be formulated for f € C(T). However, in this
case it can be shown that (3) already sufficient for everywhere A(r)—convergence.

We prove that the condition
TT(\, @) = limsup A(7)]|¢r]|co < 00
r—1

is necessary and sufficient for almost everywhere A(r)—convergence of the integrals
®,.(z,du), p € BV (T) as well as ®,.(z, f), f € L*(T). Moreover, we prove that
convergence holds at any point where p is differentiable for the integrals ®,.(z, dy)
and at any Lebesgue point of f € L!(T) for the integrals ®,.(z, f).

Definition 1.1. We say that a given approzimate identity {p,} is regular if each

or(x) is non-negative, decreasing on [0, x| and increasing on [—, 0].



Theorem 1.1. Let {¢,} be a regular approximate identity and A(r) satisfies the
condition TI(A, ¢) < co. If p € BV (T) is differentiable at xo, then

ln @, (2, dy) = 4 (x0).
EN(r,z0)

An analogous theorem holds as well in the non-regular case of kernels, but at this
time the points where (5) converges satisfy strong differentiability condition.

Definition 1.2. We say a given function of bounded variation p is strong differ-
entiable at vy € T, if there exist a number ¢ such that the variation of the function
w(x) — cx has zero derivative at x = xg.

If v is absolutely continuous and du(t) = f(¢)dt then this property means that

xo is a Lebesgue point for f(x), i.e.

h
lim —/_h\f(m) — f(zo)|dz = 0.

It is well-known that strong differentiability at zy implies the existence of ' (xg),

and any function of bounded variation is strong differentiable almost everywhere.
Theorem 1.2. Let {¢,} be an arbitrary approxzimate identity and A(r) satisfies

the condition TI(A, p) < co. If u € BV (T) is strong differentiable at xy € T, then

lim @, (z,du) = /' (z0).
r—1
zEX(r,x0)

The following theorem implies the sharpness of the condition TT(A,¢) < oo in
Theorem 1.1 and Theorem 1.2.

Theorem 1.3. If {¢.} is an arbitrary approzimate identity and the function
A(r) satisfies the condition TI(\, p) = oo, then there exist a function f € L'(T) such
that

limsup @, (y, f) = oo
yer)\?;,z)
forallx € T.

Thus, the condition TT(A,¢) < oo determines the exact rate of A(r) function,

ensuring such convergence. It is interesting, that this rate depends only on the values

llor]lco- Notice that, if the kernel ¢, coincides with the Poisson kernel P, (which

is a regular approximate identity), then || P, [ = 12 and the bound TT(), P) < oo

coincides with the well-known condition

lim sup Ar) < 00, (6)

r—1 —-T

9



guaranteeing non-tangential convergence in the unit disk. So, Theorem 1.1 implies
and generalizes Fatou's theorem. Furthermore, if we take the fractional Poisson

kernel P2 (which is regular as well), then

—1
1 1
P o= —||PY?||oo = [ (1 = 1)1
[Pt C(T)II >l (1 —r)log T—

and from Theorem 1.1 we deduce (1) when p = 1 with an additional information
about the points where the convergence occurs.
Additionally, some weak type inequalities are established for the associated max-

imal operator ®%, which is defined as

®i(z,f)= sup |®.(y,f)|= sup /wr(y—t)f(t)dt‘- (7)
|lz—y|<A(r) lz—y|<A(r) |/T
o<r<l1 o<r<i

Theorem 1.4. Let {p.} be an arbitrary approzimate identity and for some
1 < p < oo the function \(r) satisfies

(A @) = sup A(r) [l ]|ocipn(r)P " < o0,
o<r<1

where

@«(r) = sup |zpy (z)].
xeT

Then for any f € L*(T)
®3(z, f) < C(M|f]P(@)'", z€T,

where the constant C' does not depend on function f.
Using the standard methods, it can be shown that these weak type inequalities

imply almost everywhere A(r)—convergence with the condition
My (A, ) = lim sup A(r) [ pr[looip ™ (r) < o0,
r—

from which we can conclude (1) when 1 < p < oo as well as Theorem D.
An analogous necessary and sufficient condition will be established also for almost
everywhere A(r)—convergence of ®,(z, f), f € L*(T), and this condition looks like

dA(r)
Moo (A, ) = limsup lim sup/ o (t)dt =0,
§—0 r—1 —8A(r)
which contains more information about {¢,} than TT(\, ) does.

10



Theorem 1.5. If {¢,} is a reqular approximate identity consisting of even func-
tions and the function \(r) satisfies Tloo(A, ) = 0, then for any f € L*°(T) the
relation

lim &, (y, f) = f(x)
yEX(T,x)
holds at any Lebesgue point x € T.

Theorem 1.6. If {¢,} is a reqular approximate identity consisting of even func-
tions and the function \(r) satisfies Too (N, @) > 0, then there exists a set E C T,
such that @, (z,1g) is A(r)—divergent at any x € T.

One can easily check that in the case of Poisson kernel P, (t), for a given function
A(r) with (3), the value of TT (A, P) can be either 0 or 1. Besides, the condition
Moo (A, P) = 0 is equivalent to (6), and T (A, P) = 1 coincides with

Ar)

lim sup =00
r—1 -T

Now suppose that A(r) satisfies the condition (2) with p = co. Simple calculations
show that for such A(r) and for the square root Poisson kernel p/ 2)(75) we have
Moo (A, P1/2)) = 0. Hence, Theorem 1.5 implies (1) when p = oo with an additional
information about the points where the convergence occurs. Taking A(r) = (1 —7r)¢
with a fixed 0 < a < 1 we will get TToo(\, P1/?)) = 1—a > 0, and applying Theorem
1.6 we conclude the optimality of the bound (2) in the case p = oo too.

In the definition of \(r)—convergence the range of the parameter r is (0,1) with
the limit point 1, that is, we consider the convergence or divergence properties when
r — 1. We do this way in order to compare our results with the boundary properties
of analytic and harmonic functions in the unit disc. Certainly it is not essential in
the theorems. We could take any set Q C R with limit point ry which is either a
finite number or co. We may define an approximate identity on the real line to be a
family of functions ¢, € L>(R) N L1(R), r > 0, which satisfies the same conditions
®1 — P83 as approximate identity on T does. We just need to make a little change
in the condition ®2, that is to add H(pj ~]I{‘t|25}H1 —0asr —0forany 6 > 0. In
this case usually convergence is considered while » — 0. Analogously, all the results
Theorem 1.1—Theorem 1.6 can be formulated and proved for the integrals

@ (adp) = [ oo =) du(®). weBV®). >0, (®)
R
and they can be done just repeating the proofs with miserable changes.

11



Any function ® € L*®(R) N LY(R) with [|®|; = 1 and ®* € L'(R) defines an
approximate identity by

gor(x):%q) (;) as r—0.

Operators corresponding to such kernels in higher dimensional case were investi-
gated by Stain ([35], p. 57). Note for such kernels we have

1 * *
[erlloo = = l1®lloc,  @x(r) = sup 2@ (z)| < [[@*[]1
r z€R

and therefore, for 1 < p < oo, the condition TT, (A, ¢) < oo takes the form A(r) < c-r.
The case p = oo can be done in the same way as we did it for the Poisson kernel.
The value TTo. (A, @) can be either 0 or 1, the condition Ty, (A, @) = 0 is equivalent to
A(r) < c-r and the condition MMy (A, ®) = 1 is equivalent to limsup,_,o A(r)/r = oc.
The bound A(r) < ¢ r characterizes the non-tangential convergence in the upper
half plane and it turns out to be a necessary and sufficient condition for almost
everywhere A(r)—convergence of the integrals (8).

In addition, we would like to bring one consequence of our results, that we consider
interesting.

Corollary 1.1. If o,(z, f) are the Fejer means of Fourier series of a function
f € LYT) and 0,, = O(1/n), then on(x + O, f) — f(x) at any Lebesque point
zeT .

Littlewood [22] made an important complement to the theorem of Fatou, proving
essentiality of non-tangential approach in that theorem. The following formulation
of Littlewood's theorem fits to the further aim of the thesis.

Theorem F (Littlewood, 1927). If a continuous function X : [0,1] — R satisfies
the conditions

o A(r)
A(1) =0, lim = 00, (9)

r—=11—7r

then there exists a bounded analytic function f(z), z € D, such that the boundary
limit

lim f (rei(”)‘(”))

r—1
does not exist almost everywhere on T.

There are various generalization of these theorems in different aspects. A simple

proof of this theorem was given by Zygmund [41]. In [23] Lohwater and Piranian
proved, that in Littlewood's theorem almost everywhere divergence can be replaced

to everywhere and the example function can be a Blaschke product. That is

12



Theorem G (Lohwater and Piranian, 1957). If A(r) is a continuous function
with (9), then there exists a Blaschke product B(z) such that the limit
lim B (rei(x+>‘(r))>

r—1

does not exist for any v € T.

In [1] Aikawa obtained a similar everywhere divergence theorem for bounded
harmonic functions on the unit disk, giving a positive answer to a problem raised
by Barth [[4], p. 551].

Theorem H (Aikawa, 1990). If A(r) is a continuous function with (9), then
there exists a bounded harmonic function u(z) on the unit disc, such that the limit

lim u (rei(“')‘(r)))

r—1

does not ezist for any v € T.

Related questions were considered also in higher dimensions. Littlewood type
theorems for the higher dimensional Poisson integral established by Aikawa [1, 2]
and for the Poisson-Szego integral by Hakim-Sibony [12] and Hirata [14].

In Chapter 2 we generalize Littlewood's theorem for the integrals ®@,.(x, f) with
more general kernels than approximate identities. Namely, we consider the same
integrals @, (x, f) with a family of kernels {¢,.} satisfying

Pl [Lop(t)dt—1 as r—1,
4. p.(xr) >0, z€T,0<r <1,
D5, supg,er |@rlloo <00, 0<7T <L

We introduce another quantity
dA(r)
(A, ¢) = limsup lim inf/ or () dt <TToo (A, )
6—0 L Jsx@)

and prove the following theorems.

Theorem 2.1. Let {p,} be a family of kernels with 1, &4, 5. If a function
A € C[0,1] satisfies the conditions A\(1) =0 and TT*(\, @) > 1/2, then there exists a
measurable set EE C T such that

limsup @, (z + A(r),Ig) — limi{lf D, (z+ A(r),Ig) > 21T — 1.
r—

r—1

13



In the case of Poisson kernel under the condition (9) we have TT* =1 > 1/2.
Therefore, Theorem 2.1 implies the following generalization of Theorem F and The-
orem H, giving additional information about the divergence character.

Corollary 2.1. For any function A € C[0,1] satisfying (9), there exists a har-
monic function u(z), z € D on the unit disc with 0 < u(z) <1, such that

lim sup u (rei(””"”\(T))) =1, liminfu (Tei("”)‘(r))) =0,
r—1 r—1
at any point x € T.

The higher dimensional case of this corollary was considered by Hirata [14]. We
construct also a Blaschke product with Littlewood type divergence condition as
in Theorem 2.1, which generalizes Theorem G. In this case a stronger condition
(A, ¢) = 1 is required.

Theorem 2.2. Let a family of kernels {¢,} satisfies &1, &4, &5 and for \ €
C[0,1] we have A(1) = 0 and TT*(\, ¢) = 1. Then there exists a function B € L>°(T),
which is the boundary function of a Blaschke product, such that the limit

}1_% D, (x + A(r), B)

does not ezist for any x € T.
Note that, as Theorem 1.1—Theorem 1.6, Theorem 2.1 can also be formulated

and proved for the integrals
B, (2, f) = / on(z— ) f(®)dt, feL'(R), 0<r<l, (10)
R

where the kernels ¢, € L (R) N L!(R) satisfy the conditions @1, &/, ®5. Further-
more, notice that for any positive function ® € L>=(R) N L*(R) with ||®||; = 1 the

kernels )
r = d
oola) = o (

1_r>, reR, O<r<l1 (11)

satisfy the conditions @4 and ®5. One can check, that for the Poisson kernel and
for (11) the following conditions are equivalent

lim Ar)

r>11—r

=00 < IT"(\, ) =1 < TI"(\, @) > 0.

Therefore, if the kernels in (10) coincide with (11) and A(r) satisfies (9), then Theo-

rem 2.1 formulated for the integrals (10) implies everywhere strong-type divergence

14



for (10), which covers the one-dimensional case of a theorem obtained by Aikawa
in [3].
Now we proceed to the Chapter 3.

n

Let R™ be the family of half-open (or half-closed) rectangles [] [as, b;) in R™ and
i=1
DR" be the family of dyadic rectangles of the form

n ,2_1 .i ' )
H{] ,J), Jiym; €7, i=1,2,...,n. (12)

gmi ’ gmi
=1

Definition 3.1. A family B of bounded, positively measured sets from R™ is said
to be a differentiation basis (or simply basis), if for any point x € R™ there exists
a sequence of sets Ey, € B such that © € Ey, k = 1,2,... and diam(Ey) — 0 as
k — oo.

Let B be a differentiation basis and Ljo.(R™) be the space of locally integrable
functions:

Lioc(R™) = {f: f € L(K) for any compact K C R"}.

17 J, S

The integral of a function f € Ljo.(R™) is said to be differentiable at a point € R
with respect to the basis B, if dg(xz, f) = 0. The integral of a function is said to

For any function f € Lio.(R™) we define

op(z, f) = lim sup
diam(E)—0,z€E€B

be differentiable with respect to the basis B, if it is differentiable at almost every

point. Consider the following classes of functions
F(B) ={f € Lioc(R™) : dp(x, f) = 0 almost everywhere },
FH(B) ={f € Lioc(R™) : f(x) >0, 5(x, f) = 0 almost everywhere }.
Let ¥ : RT — R* be a convex function. Denote by W¥(L)(R") the class of

measurable functions f defined on R™ such that ¥(|f|) € L*(R"). If ® satisfies the
As-condition ¥(2z) < k¥(z), then ¥(L) turns to be an Orlicz space with the norm

||f\1/=inf{c>0: /w('i') <1}.

The following classical theorems determine the optimal Orlicz space, which functions
have a.e. differentiable integrals with respect to the entire family of rectangles R"
is the space

L(1 +1log™ L) *(R") c L*(R"),
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corresponding to the case W(t) = t(1 4+ log™ )"~ ([10]).

Theorem I (Jessen-Marcinkiewicz-Zygmund, [15]). L(1 + log®™ L)""(R") C
F(R™).

Theorem J (Saks, [31]). If the function ¥ satisfies

U(t) = o(tlog" ' t) ast — oo,

then W(L)(R™) ¢ F(R™). Moreover, there exists a positive function f € W(L)(R™)
such that dgn(z, f) = co everywhere.

Such theorems are valid also for the basis DR™. The first one trivially follows
from embedding L(1 + logt L)"~}(R") c F(R") C F(DR™). The second can be
deduced from the following

Theorem K (Zerekidze, [38] (see also [39, 40])). FT(DR") = FH(R").

Let A = {v; : k = 1,2,...} be an increasing sequence of positive integers.
This sequence generates rare basis DR'A of dyadic rectangles of the form (12) with
m; € Ayi = 1,2,...,n. This kind of bases first considered in the papers [36],
[11], [13]. Stokolos [36] proved that the analogous of Saks theorem holds for any
basis DRA with an arbitrary A sequence. That means L(1 + logt L)~ 1(R") is
again the largest Orlicz space containing in F(DRR). Oniani and Zerekidze [26]
characterised translation invariant as well as net type bases formed of rectangles
that are equivalent to the basis of all rectangles in the class of all non-negative
functions. Karagulyan [16] proved some theorems, establishing an equivalency of
some convergence conditions for multiple martingale sequences, those in particular
imply some results of the papers [36], [11], [13].

In spite of the largest Orlicz spaces corresponding to the bases DRZ and DR?
coincide, they do differentiate different set of functions, depending on density of the

sequence A. We prove that the condition
YA = sup(Vga1 — Vg) < 00
keN

is necessary and sufficient for the full equivalency of rare dyadic basis DR% and
complete dyadic basis DR2.
Theorem 3.1. If A = {v} is an increasing sequence of positive integers with
YA < 00, then
F(DRA) = F(DR?).
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Theorem 3.2. If A = {v;} is an increasing sequence of positive integers with
YA = oo, then there exists a function f € F(DRZ) such that

L%Aﬂoﬂzm

lim sup
len(R)—0, z€ REDR?

for any x € R™.
Definition 3.2. A basis B is said to be density basis if B differentiates the integral
of any characteristic function Ig of measurable set E:

dp(x,Ig) =0 at almost every x € R™.

We will say that the basis B differentiates a class of functions F, if basis B differ-
entiates the integrals of all functions of F.

Definition 3.3. Let Bi,B>; C B be subbases. We will say that basis By is
quasi-coverable by basis By (with respect to basis B) if for any R € By there exist
Rp,e B, k=1,2,...,p and R’ € B such that

C-

RCRCR., R=||Rs

k=1
diam(R') < ¢-diam(R), |R|<c|Rk|l, k=1,2,...,p,
P
D IRl <€|R|, |R| < clR|,
k=1
where constant ¢ > 1 depends only on bases Bi, By and B. We will say two bases
are quasi-equivalent if they are quasi-coverable with respect to each other.
We prove that quasi-equivalent subbases By, By of density basis B differentiate
the same class of non-negative functions.
Theorem 3.3. Let By and By be subbases of density basis B formed of open sets

from R™. If the bases By and By are quasi-equivalent with respect to B then

FH(By) = Ft(Ba).
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QU eNPNFT

Whwpuibpp punugud t tptp gifuhg:

Unwohtt gilumd nuunudwuhpynud G ng-pnpwthnnuyhtt gnuqudhypnipjwd yhpwptip-
Jup dunpnih ptinptith npny pnhwipuwgnuittip pnhwinip Ynphqny thwpenyp phyh
htyptignwy owbipuynpitph hwdwp: Lhpdmdymd L Gnp gmquihypmipud ptuwy,
A(r)—qmguihypnipymb, npp hwinhuwimy £ dhwynp opgwbinud ng-pnpnthnnuijhl gni-
quihypnipyul ponhwipugnd: Ljwpugpdmd b pbnhwinip Ynphqbtph b qniqudh-
nipjub ouphdwy phpnypittph Juwnp: Upuguo wpnnmbpbtipp pinhwtpugind o
twl onpwthnnuyhtt gniquihypnipyud htip Juuywd npny wipnynibpbtip:

1. Upugyly £ wihpudbop b pujupup wuydwd A(r) $mblyghugh hwdwp, npl
wwwhnymd b pnhwinp Ynphgny thwpnype phuh htpgpuy owtipuypnptph
hwdwpjw wikbniptip A(r) —gqmquihpnipinbp Yapowynp swhtiph b htnpigptih
Pmbyghwdiph upwoneyniubtpnud: WYkht, yepowynp swthh nhypmu gni-
quuihypmpimbp pbnh moh guiugwd ftapnud, npptin guthp nhotiptiighh L,
huy htpigptith $niyghwyh ntiypmd qniquidhypnipynibip pinh mh $nibiyghwjh
gulugwd Ltptigh Ytpnud:

2. Ldwhunphy wihpudtop b pujupup wuydwb wpugyt) b owb bugbu vwhdw-
Owthwy $nibyghwbtiph pupwdnipyud hwdwp: Con npnud, gniqudhynieiniin
ntinh nbh $mbyghwyh gujugwd Lupkgh Yhgnud:

Bnlipnpn giiund htipugnipymu &b Lhppyninh ptinptidh npnp pnhwitpugnudttin pin-
hwtinip Ynphgny thwpenyp phwh htyptigpug owtipupnpbtin huwdwp: Lhppymnh ptinpbip
hwinhuwind £ Sunpmp phinptivh upbnp (pugnid’ jupmgbng wiwhyphly $ndyghw
dhwynp opowtih Yypw, nplt odipgwd £ hwdwpyuw wikbniptip pupudhypnipjud hungplni—
pywdp ppywd pnpwthnnuyht Ynph tpluybpny: Quwytipyymd o Lhpiymh ptnptudh
tinynt phuyh pnhwopugnuibtin, npnop odipywd G wdiktniptip pupudhypnipjwd hug-
Ynipyudp:

3. Upynud G pinhwbnmp wuwydwbbbp, npnig wnjuympyub ghiypnid jupnigynid
L wjwhuh pimpwugphg $niblyghw, nph thwenype phyh hiptiqpug owtipugnpp
ynpyud onputhnnuiht Ynph Gpluytpny pupudpgpnud Ewdtbmpbp: Uwubwnpu-
puip, ppywd pnputhnnuiyhtl Ynph hwdwp Junnigymd £ uwhdwbuthwy hwpdn@ihy
$mbyghw, npp Ynph Gpuybpny wppuhwppnd £ wdtiiniptip nidtin qpupudh-
iyl hugpynipynb:
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4. Lpymb bl pinhwinip wuwydwbbtp, npnig wnuynpyud nbypnd jupngymyd k
uwhdwiuwthwly $nmblghw, npb hptbthg tpquyugbnd £ Apywolth wpypunpyuh
tgnuyht wpdtipttipn bW odynwd £ updwd onpwithnnuyhtt Ynph Gpluyopny wibkiini—
ptip pupudhpnpjub hupynipjudp:

Gppnpn ginifup tdhpgud £ R™ quupwdnipynibbpmd nhbtiptighw; pughuliiph hw-
dwpdbipnipyjut npny hwpgtipht: Yhyppupyynd b onup Gpnuujuitt ninnuitlyymabbph b
pnnp bpynuwlju@ nupnuiblyymabbph phy hwdwpdbpnipgniop R?  qpupudnipgniinod:
Bpynt nhdbiptitghw pwghubitiph tholt uwhdwiynd £ pjugh-hwdwpdtipnipynid b nh—
pupiymud G0 $nidyghwdtip npnbip nhdpbiptitigynud G wyn pwghubtiph Gupdwdp:

5. Uypugyty £ wihpudtoy b pudupup wugdwi, nph gtgpenod R? pupudnipni-
Onud nup Gpynuuyub ninnublynibbtphg juquywd pughup U pninp Gpimujut
ninnublynibitinphg ququywd pwghup nhytipitgmy Gt tnyd $mayghwdtiph pug-
dnipynibn:

6. Qyugnigynmud t, np R” quupwdnipymbnd dhubnyl pgpmipyjut pughuh tpynt
pyugh-hwdwpdtip tiipwpwqghulitip nhytipiognud Go tnyb ng-puguuwjub $may-
ghwitiph puqunipjniop:
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SAKJIFOYEHUVE

Jwuccepralys COCTOUT U3 TpeX IJIaB.

B rnaBe 1 uccnenyiorcs 0600mmenns Teopembl Pary jisi MHTETPAIBHBIX OIEpa-
TOPOB THUIIA CBEPTKU € 00IUME sijpamu. Bomurcs A(T) —CXOAUMOCTD, sSIBIISIOLIASI-
cst 0000IIEHNEeM HEKACATEJIbHOM CXOIMMOCTH B eMHUYIHOM Kpyre. ONucanbl CBs3u
MEXK/Iy siIpaMU U 00JIACTSIMUA ONTUMAJIBHON CXOIUMOCTH JIJIsi TAKUX OIEPATOPOB B

Pa3HBIX (DYHKITMOHATHHBIX TPOCTPAHCTBAX.

1. O6Hapy:kKeHO HeOOXOAMMOE M JIOCTATOUHOE yeaoBue i A(r), obecreduBaro-
IEr0 TIOYTU BCIOLY A(7)—CXOIUMOCTD JIJIs MHTErPAJIbHBIX ONEPATOPOB THIIA
CBEPTKHU B 000X MPOCTPAHCTBAX OTPAHNIEHHBIX MEP U HHTETPUPYEMBIX (DYHK-
muit. Bosee Toro, B CIydae OrpaHUYeHHBIX MED CXOIUMOCTD IIPOUCXOIUT B JIIO-
Ooii TouKe, Tie Mepa nuddepeniiupyeMa. B ciaydyae nunrerpupyemMbix dyHKITNH,

CXOJIMMOCTB ITPOUCXOUT B J1000i1 Touke Jlebera dbyHKIMN.

2. O6HapyKeHo HeOOXOJUMOe U JIOCTATOYHOEe ycjoBue it A(r), obecrieduBaio-
IIETO MOYTH BCIOLY A(7)—CXOIUMOCTBD [IJIsl TeX YK€ MHTerPaIbHBIX OLEePATOPOB
THIIA CBEPTKH B IIPOCTPAHCTBE CYIIECTBEHHO OrpaHnYeHHbIX PyHKImii. Kpome

TOr0, CXOJIUMOCTH ITPOUCXOIUT B Ji000i Touke Jlebera dpyHKIUN.

B rnaBe 2 uzydarorcs HEKOTOpbIe 0000IIeHNsT TeopeMbl JINTTIBYHa, KOTOpas Jie-
JlaeT BasKHOe JonojiHeHne K Teopeme Dary, co3maBasi aHAJIUTUIECKYIO (DYHKIIUIO,
00JIAIAIONTY IO TOYTH BE3/I€ PACXOMAIIMMCS CBONCTBOM BIOJb JAHHOM KacaTeIbHOMN
KpuBoii. Te Ke mHTErpaabHbIE OTIEPATOPHI TUTIA CBEPTKHU PACCMATPUBAIOTCS ¢ OoJtee
obmumu sapamvu. [lonydenst a1Ba Buma 006061eHnit Teopemsl JIuTTasyaa, obagaro-

X BCIOAY PaCXOIANTUMCI CBOMCTBOM.

3. Ilpu obuux mpemrooKeHusIX CTPOUTCS TaKas XapaKTepUCTUIecKas (yHK-
U, TIPU KOTOPO# CBEPTKA, ¢ OOIIIUMHU s IPaMU 00J18/Ta€T BCIOLY PACXOIATIIAMCS
CBOMCTBOM BJIOJIb JIAHHON KacaTeJIbHOM KpuBoil. B wacTHOCTH, TOKa3aHO cyTIe-
CTBOBAHWE OTPAHUYCHHON TApMOHUYIECKON (DYHKIINU, UMEIOIIEN BCIOMY CHJIb-

HOE pacxojidliieecd CBOMCTBO BJIOJNb JIAHHON KacaTeJIbHOI KPUBOIL.

4. Tlpu obmux MPeIoIOXKEHUIX CTPOUTCS OrpaHUIeHHAs (DYHKITHS, STBJISAIONIA-
fACsl TPAHUYIHBIM 3HAUEHUEM HEKOTOPOT'O MMpou3BeieHus BIiske, mpu KOTOPOit
CBEPTKA C OOIIUMU sIpAMU 00JIAIAET BCIOLY PACXOISIIMMCS CBONCTBOM BIIOJIb

JAHHOU KacaTeJbHOU KPUBOIi.
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[naBa 3 mocBsiliieHa, HEKOTOPBIM BOIIPOCAM IKBUBAJEHTHOCTH UMD depeHIIna b
wbIx OasmncoB B R™. Vccaenyercs mosHasi SKBUBAJIEHTHOCTD 0a3uca PEIKUX TUAU-
YECKUX IPSMOYTOJBHUKOB M GA3KCa MOIHBIX A HICCKIX MPSMOYTOIBHIKOB B R2,
BBenena KBa3u-3KBUBAJIEHTHOCTD MEXKIY JABYMs auddepeHInaIbHbIMU 6a31ncaMbl
B R™ u paccmaTpuBaeTcss MHOXKECTBO (DYHKIHIA, KOTOPbIe IudOEPEHIUPYIOT TaKue

0a3UCHI.

5. ObHapyKeHO HeOOXOIMMOE U JIOCTATOYHOE YCJIOBHE JIJIsi IIOJIHOM SKBUBAJIEHT-
HOCTH 0a3uca PeJIKUX JUAINIECKUX IPSIMOYTOJLHUKOB U 0a3WUCa MOJIHBIX JIha~

JANYICCKUX IIPAMOYTOJIBHUKOB B RZ.

6. /lokazano, 9T0 JBa KBAa3W-9KBUBAJEHTHBIX 0a3MCa HEKOTOPOTO IJIOTHOCTHOTO
6asznca B R muddepeHnupyoT OJHO U TO Ke MHOXKECTBO HEOTPHUIATETHHBIX

byHKIIIH.
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