
A. I. Alikhanian National Science Laboratory

(Yerevan Physics Institute)

Narek H. Martirosyan

Markov processes in thermodynamics and statistics

Thesis for acquiring the degree of candidate of physical-mathematical sciences

in division 01.04.02 (Theoretical Physics)

Scientific supervisor

Doctor of phys.-math. sciences

Prof. N. Akopov

YEREVAN 2017



Contents

Introduction and Motivation 9

1 No-pumping theorem for non-Arrhenius rates 22

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.2 Master-equation and the Floquet theorem . . . . . . . . . . . . . . . . . . . . 25

1.3 No-pumping theorem for a single field and destination rates . . . . . . . . . . 28

1.4 Approximate no-pumping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

1.5 Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2 Free energy for non-equilibrium quasi-stationary states 38

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.2 Two-temperature Markov dynamics . . . . . . . . . . . . . . . . . . . . . . . . 40

2.3 Time-scale separation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.4 External fields, work and free energies . . . . . . . . . . . . . . . . . . . . . . . 43

2.5 Non-equilibrium free energy for the activation rate. . . . . . . . . . . . . . . . 44

2.6 Cooling by means of entropy reduction . . . . . . . . . . . . . . . . . . . . . . 46

2.7 Tree-like topology of the slow variable. . . . . . . . . . . . . . . . . . . . . . . 50

2.8 Quasi-continuous limit for the slow variable. . . . . . . . . . . . . . . . . . . . 51

3 Adaptive heat engine 56

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.2 The functional degree of freedom . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.3 The structural degree of freedom . . . . . . . . . . . . . . . . . . . . . . . . . 60

1



3.4 Adaptation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.5 Restricted adaptation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.6 Full adaptation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4 Statistical tests for MIXMAX pseudorandom number generator 67

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.2 Visual demonstration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.3 Statistical testing with TestU01 . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.4 Kolmogorov-Smirnov tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.5 χ2 tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.6 Serial tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.7 Parallel streams of MIXMAX . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5 The Optimal Approach for Kolmogorov-Smirnov Test Calculation in High

Dimensional Space 81

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.2 Formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.3 Binning technique and Kolmogorov distribution . . . . . . . . . . . . . . . . . 84

Conclusion 87

Bibliography 90

2



List of Figures

1.1 Time-averaged current Φ = Φ12 = Φ23 = Φ31 given by (1.20) for a three-level

system (n = 3) and β = 1 versus the parameter ϕ1 for Kramers, Fokker-Planck

(F–P) and destination rates; see (1.46). Ei(t) are given by (1.46), where τ = 3.

Other parameters in (1.46): ϕ2 = ϕ3 = 0, and ε1 = 1
3
, a1 = 1, ε2 = 2

3
, a2 =

2, ε3 = 1, a3 = 3. For Kramers rates δij = 1 in (1.4). Hence for ϕ1 = 0 or

ϕ1 = 2π, the external field satisfies (1.40) and holds the no-pumping theorem

Φ = 0 for the destination rates, as seen on the figure. If (1.40) holds, Φ ≈ 0

for the Kramers rates (1.1, 1.4) and the Fokker-Planck rates (1.1, 1.5). . . . . 33

1.2 The same as in Fig. 1.1, but with τ = 1, i.e. the external fields change faster

than in Fig. 1.1, where τ = 3. For this range of parameters the Fokker-Planck

rates hold an approximate no-pumping theorem, while the Kramers rates do

not. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

1.3 The same as in Fig. 1.1, but with τ = 0.1; cf. Fig. 1.2. The external fields

change faster than in Fig. 1.1 and in Fig. 1.3. The no-pumping theorem ap-

proximately holds for the Fokker-Planck (FP) rates. . . . . . . . . . . . . . . 34

1.4 The same as in Fig. 1.1, but ϕ2 = π, ϕ3 = 3π
2
. In this example conditions (1.40)

do not hold and the probability currents are sizable for all studied rates. . . . 34

1.5 Instantaneous probability currents Jij(t) given by (1.12) for β = 0.01 and

Kramers rates (1.1, 1.4). In (1.46) I took: Ei(t) = − i
2

+ i
2

cos
(

2πt
3

+ πi
2

)
, and

for barriers: δij = 1. It is seen that Jij are much larger than their time-average

Φ = Φ12 = Φ23 = Φ31. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3



1.6 Time-averaged current Φ = Φ12 = Φ23 = Φ31 (dashed curves) given by (1.20)

and W given by (1.53) (full curves) versus the inverse temperature β and for

various rates. In (1.46) I took: Ei(t) = i
3

+ i cos
(

2πt
3

+ iπ
2

)
. . . . . . . . . . . . 37

2.1 max(piα− p̃iα) vs. ε, where piα are the exact stationary probabilities, while p̃iα

are calculated via the time-scale separation approach. We found that max(piα−

p̃iα) = max|piα − p̃iα| . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
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Introduction and Motivation

A variety of physical phenomena can be described within a deterministic approach, where

no randomness is involved in their time-evolution, i.e. the same initial conditions always lead

to the same final result. Typical examples of these are ordinary differential equations, e.g. the

Newton’s laws of motion, the Schrödinger’s equation etc. But there are many situations where

the deterministic approach is not applicable. Unlike deterministic situations, in stochastic

processes the future behaviour of the system is not uniquely defined by its initial conditions.

Rather the system’s variables are described by a time-dependent probability distribution.

The latter does again obey deterministic (normally differential) equations which refers to a

suitable stochastic process, i.e. to a collection of random variables (X(t), t ∈ T ), where T is

the index set. Note that any deterministic process is a special case of some stochastic process

in the sense that the deterministic case events occur with probability one [1].

There is a class of deterministic processes which appear to be stochastic but is not, they

are modeled by deterministic algorithms and can be over-sensitive to small changes of initial

conditions. An important example of such a system is the pseudo-random number generators

(PRNG) [2–4] for generating numbers whose statistical properties are close to the properties

of random numbers. A large number of these systems appear in chaos theory, a classic ex-

ample is the butterfly effect exhibited by nonlinear deterministic systems [5]. More generally,

depending on the purpose of modeling, one may choose between deterministic and stochastic

approaches to the same phenomenon [1, 6–8].

Stochastic processes have countless applications in numerous areas of science such as

physics, chemistry [9], biology [10, 11], neuroscience [12, 13], information theory [14], image
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recognition [15–17], cryptography [18], ecology [19] etc.

Four main factors define stochastic process: state space, transition probabilities between

states, index set and the relationship between random variables at different times. Depend-

ing on whether the index set is discrete or continuous, processes are called discrete-time or

continuous-time. In this work we will focus on continuous-time, discrete-space stochastic

processes with the Markov (or memory-less) property: the probability distribution of future

states depends on the current distribution and is independent of the history of states. Such

processes are called Markov processes after Andrey Markov [20]. The notion of time can be

somewhat generalized: in statistical inference the sample’s size of the data plays the role of

time, i.e. as we acquire more data points, our probabilities change.

The basic example of a physical system with a continuous-time Markovian behaviour is

the Brownian motion, i.e. the random movements of particles in a liquid. Though it was

observed by a number of scientists, e.g. by Jan Ingenhousz (1785) who is also famous for

the discovery of photosynthesis, the phenomenon is named after Robert Brown (1773-1858)

whose discovery was due to systematic studies of pollen grains suspended in water. The

theory was advanced by Einstein, Smoluchowski and Langevin. The research into Brownian

motion greatly contributed into the development of the theory of stochastic processes.

In March 1905 (also known as the miracle year) after explaining the photoelectric effect

creating the quantum theory of light, in April, Einstein explained the Brownian motion via

random collisions of the particle by molecules of water. His mathematical description of

Brownian motion was important since it was evidence for the existence of atoms [21]. The

Einstein’s theory was confirmed experimentally by Jean Perrin (1870–1942) [21]. The Ein-

stein’s theoretical explanation contains itself the concept of Markov processes and its main

equations, those by Chapman-Kolmogorov and Fokker-Planck [9, 22]. Independently from

Einstein, Smoluchowski studied the Brownian motion via discrete space and discrete time

approach. In his approach the Brownian particle at each discrete time-step jumps to the

left or to the right, with equal probability. These type of stochastic processes, where only

transitions to neighbouring cites are allowed, are called birth-death processes analogous to

random walks. The Smoluchowski’s approach to random walks coincides with Einstein’s fa-
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mous diffusion equation ∂P (x,t)
∂t

= D ∂2P (x,t)
∂x2 , where D is the diffusion constant and P (x, t)

is the probability for Brownian particle to be at point x at time t. Finally, Paul Langevin

(1908) obtained the same result for the mean-squared displacement of the Brownian parti-

cle (as Einstein) by introducing a random force in the Newton’s law. The Langevin equation

demonstrates the time-scale separation inherent in the Brownian motion: the particle is much

slower than the correlation time of the random force. Hence the latter can be modeled via a

white noise.

The Markov process is the most commonly used tool for modeling random evolution. Most

systems found in nature satisfy the memory-less property, provided that their state-space is

suitably enlarged [23]. Markov processes have a huge variety of applications in physics,

statistics, chemistry, biology, Internet, genetics etc; e.g. an Internet application of Markov

chains (discrete-time Markov process) is the PageRank algorithm [24] used by Google to rank

pages after searching websites.

When transition rates between states are known then the time-evolution of probabilities

of states of a Markovian system are governed by the so-called master equation; a system of

first-order (in time) differential equations [9]

dpi
dt

=
∑

j
[ρi←jpj(t)− ρj←ipi(t)], (1)

where pi(t) is the probability of a system to be in state i at time t, and ρi←j is the transition

rate from j to i. Note that the transition rates may depend on time and must be positive. The

transition rates are said to satisfy detailed balance condition (DBC) when for the stationary

state psi the equality ρi←jpsj = ρj←ip
s
i holds for every pair (i, j), i.e. all probability currents

between states vanish in the stationary state.

In physics, Markovian systems are widespread in non-equilibrium thermodynamics and

statistical mechanics, where the macroscopic behaviour of a many-particle system is stud-

ied through probabilistic description of states. A system in contact with a thermal bath

eventually settles into an equilibrium state which is characterized by zero energy flux be-

tween the bath and the system. The virtue of thermal equilibrium is that the probability of
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finding a system in any micro-state, has a universal form that depends on its energy via the

Boltzmann’s factor, e−En/kT/Z, where the partition function Z =
∑

n e
−En/kT ensures normal-

ization. Z encodes statistical properties of an equilibrium system: thermodynamic variables,

such as the total energy, free energy, entropy, pressure etc, can be deduced from Z or its

derivatives. Much of the equilibrium statistical mechanics is developed and understood by

the Boltzmann’s distribution, which also forms the groundwork of molecular biology [25,26].

Though thermodynamics provides an efficient description of equilibrium states, almost all real

systems and processes are far from equilibrium, because they do exchange matter, energy, and

information with their environment. Thus the main aspect of non-equilibrium systems is their

openness. A daily example of this is the Earth, where there is a continuous energy flux from

the Sun and re-radiation back into the space. In essence, all biological systems are open and

survive via balanced input and output of energy, matter and information [27, 28]. Driven

complex fluids, turbulence, fractures, glasses, foams, colloidal suspensions etc do demonstrate

non-equilibrium physics [29,30].

A specific but important type of non-equilibrium states is realized when a stochastic system

is coupled with external fields (via time-dependent, periodic transition rates) and a thermal

bath. If the time-dependency is absent, the system settles into the stationary, equilibrium

state psi = peq.i ∝ e−Ei/T . The detailed balance property (time-reversibility) implies that all

probability currents between any pairs of states vanish. These features are absent when the

external fields are time-periodic. The Floquet theory shows that the system settles into a time

periodic state [31,32], i.e. the probabilities of states become time-periodic functions with the

same period as the external field. During one time-period the stochastic system jumps back

and forth between its states, and this motivates us to look at features of time-integrated (over

the period) probability fluxes from one state to another.

The physical implication of integrated probability current is seen in experiments on arti-

ficial molecular catenane systems [33], where rotation of smaller ring like molecule along the

larger molecule is induced by external periodic perturbations. These molecules consist of two

or more interlocked rings, the stationary larger ring and the smaller rings which can jump

between binding sites around the larger one. These systems are called molecular rotors since
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they are made up with stator (stationary larger ring) and rotators (smaller rings that can

rotate around the larger ring). However, in order to use catenanes as molecular motors, i.e.

to use it for performing work, unidirectional rotation of smaller rings is needed. The directed

motion emerges solely due to an external fields, e.g. laser light and temperature changes

result to cyclic conformational changes at binding sites which enables small rings to jump

between discrete binding sites in unidirectional manner. It is obvious that without external

fields thermally induced transitions will not create any unidirectional motion (clockwise or

counterclockwise) on average.

The molecular motors is an area of intense research and there has been achievements

in synthesizing artificial molecular motors. These artificial molecular machines are much

smaller than the cell’s size, so they can be used to move things at micro level, change the

form, contract muscles, attack cancer cells etc. Artificial machines are not autonomous, they

are controlled by external parameters such as temperature change, laser light, or chemical

gradients. Many examples of these small nano-machines are presented in [34], which include

molecular shuttles, switches, ATP, DNA-based machines, catenanes [33, 34] etc. Because

of the small sizes, molecular systems display strong fluctuation, hence they are studied in

the framework of stochastic processes. Understanding how to control these small motors by

external fields in thermal environment raises new theoretical challenges. One of the control

techniques is when external parameters are changed periodically which can pump a desired

directed motion. Hence the term stochastic pump is introduced to describe periodically driven

discrete-state Markov systems by examining probability currents in the periodic regime. This

situation is met in the above mentioned catenane system where it was shown that in order to

obtain directed motion one should also vary barriers between binding sites rather than only

binding energies [33, 35]. This is the so-called no-pumping effect when probability currents

between different states are zero.

Rahav, Horowitz and Jarzynski [36] first derived a no-pumping theorem (no-pumping the-

orem) which shows that the time-averaged probability currents nullify in the steady periodic

(Floquet) state generated by time-periodic external fields acting on a Markov stochastic sys-

tem when transitions between states have Arrhenius-type time-dependence [37]. This feature
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of nullification makes an analogy between features of steady periodic and equilibrium states,

because in the latter situation all probability currents vanish explicitly. Later works include

those in [32,35,38–44]. However, the assumption on the Arrhenius rates is fairly specific, and

it need not be met in applications. In this work a new mechanism is identified for the no-

pumping theorem, which holds for symmetric time-periodic external fields and the so called

destination rates (see 1.6). These rates are the ones that lead to the locally equilibrium

form of the master equation, where dissipative effects are proportional to the difference be-

tween the actual probability and the equilibrium (Gibbsian) one. The mechanism also leads

to an approximate no-pumping theorem for the Fokker-Planck (1.5) rates that relate to the

discrete-space Fokker-Planck equation.

A system coupled with two or more thermal baths having different temperatures is another

simple example of non-equilibrium situation, because there is a continuous energy flux through

the system [45]. Since the system is much smaller than the baths (i.e. the surrounding

environment), the system will settle into non-equilibrium steady state (NESS), where final

bath temperatures are equal to the initial temperatures. In a NESS, the probabilities of

states do not change in time, hence the properties of the system like energy, concentrations

remain constant, but there are nonzero fluxes of energy, particles etc through the system. For

example, proper concentrations of various ionic species inside cells, e.g. sodium, potassium,

are maintained constant through continually moving ions across the cell’s membrane [46].

Importantly, homeostatic processes which ensure a constant internal environment in cells

lead to a NESS [47].

For a Markovian dynamics with time-independent transition probabilities, the Perron-

Frobenius theorem ensures that system reaches a NESS [48]. Moreover, it is unique if the

process is ergodic, i.e. there is a nonzero transition probabilities between each pair of states.

In contrast to equilibrium, where the probability distribution over the states is given by the

Boltzmann’s distribution, there is no similar explicit formula for NESS. Such NESS prob-

ability distributions are computed numerically from the master equation. A stochastic de-

scription based on master equation provides a framework to non-equilibrium thermodynamics

(stochastic thermodynamics) enabling to extend thermodynamic concepts (such as entropy
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production, work, free energy etc) beyond equilibrium states. The master equation is used to

study systems at NESS, e.g. chemical reaction network at NESS [49–51] etc; see [45,49,52,53]

for general discussions of NESS and its biochemical applications.

One can distinguish non-equilibrium stationary states from equilibrium ones via proba-

bility currents: in NESS there are states characterized by non-zero probability flows between

them [54]. Thus, a NESS is characterized not only by psi , stationary probability found from

master equation, but by pair of distributions: (psi , Jij), where Jij 6= 0 is probability current

from j to i [54]. In fact probability currents play a central role in non-equilibrium systems.

These currents encode physical properties of the system, because energy, matter, information

fluxes can be computed with Jij; in this context see the above-mentioned discussions of the

no-pumping theorem experimentally observed in catenanes.

The effectiveness of thermodynamics is that its concepts can be applied to non-equilibrium

states. The response of the equilibrium system to a small external field is expressed by the

fluctuation-dissipation (F-D) relations [55,56] which relates thermal fluctuations of the system

from its average state with the energy dissipation, e.g. Einstein–Smoluchowski relation [57] for

the Brownian motion. The F-D theorem is typically formulated by means of linear response

function [56]. Various approaches have been proposed for extensions of F-D theorems for

systems slightly perturbed from NESS where the notion of effective temperature (ET) is

used [58,59].

The concept of ET is reviewed in [60] with applications to ideal and real gases, electro-

magnetic radiation, nuclear collisions, granular systems, glasses, sheared fluids, amorphous

semiconductors and turbulent fluids. Ref. [60] also presents different definitions of ET includ-

ing those based on F-D relations. Various biological systems in NESS are understood via the

notion of ET, e.g. red-blood cells [61], self-propelled particles in an autonomous regime [62],

where their collective behaviour can adapt to changing environment etc. This adaptivity

property plays a central role in designing artificial systems [63]. Another intriguing example

of a system in NESS described by ET is the "hot Brownian motion" [64–69], i.e. the motion of

a laser-heated nano-particle. Here the NESS is established due to a different temperatures of

the laser-driven particle versus the environment. Due to a time-scale separation hot Brown-
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ian particles carry with them a hot halo, this provides several nanotechnological applications,

among them one can mention “Photothermal Correlation Spectroscopy" (PhoCS) [70].

Time-scale separation means that a part of a system operates very fast compared to

the rest. Hence the dynamics of the system is described in terms of slow variables due

to eliminating the fast ones (adiabatic elimination) [71]. The adiabatic elimination works

because the fast variables have reached their steady state for fixed slow variables. Physical

examples of time-scale separations include the elimination of fast variables for atomic motion

in laser light [72], the separation of slow and fast time scales associated with temperatures

in the climate model [73], the derivation of the hydrodynamic equations from the Boltzmann

approach etc.

The idea of time scale separation is also widely used in different areas of biology, including

gene regulation, ligand-gated ion channels, enzyme kinetics, G-protein coupled receptors,

etc [74]. It was first introduced in biochemical systems to describe enzyme kinetics [74,75] in

which free enzyme and the enzyme-substrate complex are fast variables, while the substrate

and product were regarded as slow variables.

The time-scale separation has important thermodynamic consequences, e.g. the Helmholtz

free energy can involve only slow variables [76], i.e. it does not depend on fast variables. Recall

that free-energy difference 4F define the quasi-static (isothermal) work: 4F = W (the line

over W denotes an average over an ensemble of measurements of W ), i.e. the free energy is a

measure of the amount of usable energy that can do work at finite temperature. In contrast,

if the system is driven from one equilibrium state to another by non-quasi-static external

parameters, then W ≥ 4F . Jarzynski derived his famous equality [77, 78] directly relating

non-equilibrium work and free energy difference. Another non-equilibrium relationship be-

tween work and free energy difference was put forward by Crooks [79]. The Jarzynski and

Crooks relations are important for findng free-energy profiles of reaction coordinates [80–82].

An open problem is how to extend the notion of free energy to NESS. This extension is

to be sought in terms of Markov processes through the master equation [45,76,83–85].

Here we aim at characterizing the NESS of a discrete-state, continuous-time Markov sys-

tem with time-scale separation when put in contact with two reservoirs [85]. In our model the
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driving protocol is such that external fields act only on the slow variable. This assumption

is quite realistic because it is normally difficult to have a precise control on variables that

move fast. In our model the transition probabilities between states of slow variable have

the so-called Activation rate form or slow variables live in three-like structure. These three

conditions

- time-scale separation between variables of the system

- partial controllability (external fields couple only with the slow variable)

- specific transition rates with an effective detailed balance

are needed for the existence of free energy in this non-equilibrium system. Here we have

shown a number of interesting features, e.g. in contrast to its equilibrium counterpart, the

non-equilibrium free energy can increase with temperature.

When the environment is divided into three parts: hot, cold and work reservoirs, then a

system can operate as heat engine: at one stage the system is heated absorbing energy from

hot reservoir, at another it is cooled delivering energy to the cold reservoir, and some amount

of heat energy input is used to perform work. Reverse operation transforms the system into

a refrigerator or heat pump. Heat engines ushered in the Industrial Revolution, examples of

them in daily life include Internal combustion (e.g. steam engine, steam turbines at power

stations) and External combustion (e.g. diesel and petrol engines in cars and airplanes)

engines.

Nowadays nanotechnological techniques makes possible to design these engines at the

nano-scale, which are strongly influenced by thermal fluctuations. Hence they are modeled

within the framework of quantum and stochastic thermodynamics [58, 86–100]. Stochastic

heat engines (SHE) are conventional analogs of heat engines where random behaviour of energy

currents play important role in the work-extraction. Non-zero energy currents are associated

with non-zero probability fluxes which define average energy lost or gained by thermal bath

because for states j and i with energies Ej, Ei the probability flux (ρi←jpj − ρj←ipi) indeed

define energy lost(gained) through (Ei−Ej)(ρi←jpj−ρj←ipi). With discrete number of states

these energy flows is resulted from population inversion between the states of the system.

Note that SHEs are also studied in NESS regime.
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The creation of small engines is very appealing due to the need of energy harvesting [101,

102] i.e. extracting energies from ambient sources (e.g. solar power, wind energy, temperature

gradients, tidal power etc). Capturing small amount of energies from ambient sources has

also economical and ecological importance, e.g. it leads to burning less fossil fuel (hence

produce less flue-gas such as CO2) for generating electricity. Temperature differences are

everywhere in both natural and human-made environment. Hence it can be used to do work,

e.g. thermoelectric generators (TEG) convert heat (temperature gradient) into electrical

current using Seebeck effect [103]; see the recent work [104] of present and future applications

of TEGs. Note that the efficiency of TEGs like for any heat engine is limited by the Carnot’s

theorem.

Like TEGs SHEs can operate whenever there is temperature gradient. The origins of

SHEs can be traced back to thought experiments of thermal (Brownian) ratchets, system

consisting of a ratchet connected to a paddle wheel by an axle. The system is imagined to

be small enough that the wheel can rotate bombarded by randomly moving molecules. The

idea of a hypothetical ratchet mechanism was introduced around 1900s by French physicist

Lipmann as perpetual motion machine of the second kind since since he believed that the

ratchet will rotate in one direction only. In 1912, Smoluckowski first showed that there is no

violation of the Second Law of thermodynamics [105]. The problem was later discussed and

extended by Feynman [106, 107], in 1963, who showed that such a mechanism can work as a

heat engine when different parts are at different temperatures. The Feynman’s ratchet model

fostered the development of Brownian motors [87,108–112], nano-scale systems that do work

in the presence of thermal noise and external fields. Fields can be in the form of time-periodic

driving, ratchet-like (spatially asymmetric periodic) potentials, temperature, concentration or

chemical gradients etc. Note that Brownian motors with asymmetric environment can result

to a net pumping of particles into the some direction [108], e.g. motor proteins exhibit this

phenomenon for intracellular transport. In this context, ratchet-based periodically driven

molecular pumps [108] are very similar to the system discussed in section first chapter. Ref.

[110] discussed a system driven by time-periodic changes of temperature, where the system is

in the Floquet regime.
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Experimentally, SHEs including the Brownian heat engines have been realized recently

[87,113–117], their realization is mainly due to the development of optical trapping techniques

[118,119].

However, a major limitations for heat engines is that their functioning demands external

control to perform thermodynamic cycle, e.g. the Carnot cycle is implemented by the specific

sequence of adiabatic and isothermal processes. The realization of Carnot cycle at the micro-

scale with optically trapped Brownian particle is discussed in [113,114].

Smaller engines may be autonomous [96, 97], but they are not adaptive to environmental

changes, e.g. for fixed environment (thermal baths) there are internal parameters, under

which the machine may act as a heat-pump or refrigerator. Hence they do demand fitting

between internal and environmental parameters [89–95].

We study a model for an adaptive heat engine [120], where due to feedback from the

functional part the engine’s structure adapts to given thermal baths. Hence no on-line control

and no external fitting are needed. Our approach is motivated by photosynthesis: the major

heat engine of life that operates between the hot Sun temperature and the low-temperature

Earth environment. It does have adaptive features that allow its functioning under decreased

hot temperature (shadowing) or increased cold temperature (hot whether) [121, 122]. Such

engines can be useful for fuelling devices employing unknown and/or scarce resources; e.g.

they can adapt to results of they own functioning that makes the bath temperatures closer.

Both in equilibrium and non-equilibrium stationary states one needs to compute averages

of observables by summing or integrating over high-dimensional state space. In equilibrium

situation the state space is determined by Boltzmann weights, hence averages of observables

are computed by Boltzmann distribution. However, apart from a few models [123], it is not

usually possible to compute analytically such averages or partition functions in statistical

physics. At the same time the state space of physical systems is very large, e.g. in 3-

dimensional Ising model the number of spin configurations with particles at 10N lattice sites

is 210N , or for a system consisting ofN classical particles one needs to compute 6N dimensional

phase space integrals. In the absence of exact solutions numerical approaches are used. In any

numerical approach the goal is to compute integrals with small number of function evaluations.
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Hence the results are obtained at the the price of a statistical errors. Classical numerical

integration techniques include Newton-Cotes type formulae, Gaussian quadratures, Romberg

integration [124, 125] etc. However, classical numerical integration methods are well applied

to one-dimensional cases [126].

The Monte Carlo(MC) method is one of the most important numerical techniques in sta-

tistical physics and not only [127,128] which is mainly used for high-dimensional integration,

random sampling and optimization [129]. The idea behind MC method is simple: to obtain

numerical results by random sampling. Hence a central question is how to draw random

samples according to a specified distribution without so much numerical efforts. In [130]

Metropolis et. al. introduced an algorithm (Metropolis also known as Metropolis-Hastings

algorithm) to generate random samples with desired distribution. The idea behind is to gen-

erate Markov chain over state space whose limiting distribution is of interest [1, 130–134].

In equilibrium situation this means to generate random states with Boltzmann weights. In

order to ensure relaxation to equilibrium state transition probabilities can not be arbitrary.

A sufficient (but not necessary) condition for transition rates that define stationary state is

detailed balance constraint (1.8,3.2), which define stationary state: dpn/dt = 0 (1.7,3.1). One

of the choices of rates are Metroplis rates [130] (see the first section), the first choice used in

statistical physics [135].

The central component of any MC method including Metropolis algorithm are random

numbers, and it was their use that promoted the development of pseudo-random number gen-

erators(PRNG) [129], mathematical algorithms by which computers produce random num-

bers. By contrast, true random number generators (TRNG) produce random numbers from

physical phenomena. However to use TRNGs in MC simulations is not practical since they

are not fast in the sense of generating numbers. They are also non-deterministic(numbers can

not be reproduced) and have no period. Most PRNGs produce random numbers which are

uniformly distributed in the interval of [0,1]. Hence PRNGs should pass statistical tests of

uniformity. While satisfying the criterions of "good" PRNG such as long period, portability,

repeatability, efficiency, uniformity, however statistical properties and time characteristics of

PRNGs are crucial to consider a generator as "good".
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To address these challenges the renewed version of MIXMAX PRNG [136, 137] based on

Anosov C-systems and Kolmogorov K-systems has been introduced in [2,138,139]. The MIX-

MAX is matrix-recursive PRNG and it has been shown that the properties of the MIXMAX

generator is improved with increasing the size N of MIXMAX matrix [2].

More recently, the MIXMAX has been included in ROOT and Class Library for High

Energy Physics (CLHEP) software packages [140] and claims to be a state ofart generator due

to its long period, high performance and good statistical properties. In this paper the various

statistical tests for MIXMAX are performed. The results compared with those obtained from

other PRNGs, e.g. Mersenne Twister [3], Ranlux [4], Linear congruential generator (LCG)

reveal better qualities for MIXMAX in generating random numbers. The Mersenne Twister

is by far the most widely used PRNG in many software packages including packages inHigh

Energy Physics (HEP), however the results show that MIXMAX is not inferior to Mersenne

Twister [141].
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Chapter 1

No-pumping theorem for non-Arrhenius

rates 1

1.1 Introduction

A wide range of systems appearing in physics, chemistry and biology can be modeled

by Markov processes. Physically, Markov dynamics is the main tool for describing open

systems (both quantum and classical) that interact with energy and/or particle reservoirs

[143]. Hence it is at the core of non-equilibrium thermodynamics [142]. It is also the main

tool for describing chemical reactions [9]. Among its biological applications one can mention

conformational dynamics of biological molecules [144,145], ion channel gating processes [146],

dynamics of predation, epidemic processes, genetics of inbreeding [147] etc. Such applications

are frequently developed within random walk models, e.g. chemotaxis, biological motions [148]

etc.

Generically, a Markov dynamics with time-independent transition rates relaxes to a sta-

tionary state. For a single-temperature reservoir (equilibrium thermal bath) this stationary

state amounts to the Gibbs distribution at the bath’s temperature [9, 143]. The equilibrium

nature of the bath is reflected in the detailed balance condition that ensures nullification of
1The results considered in this chapter are published in Ref. [32].
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all probability currents in equilibrium [9,143].

The concept of the stationary state is generalized, if the stochastic system is subject to

an external time-periodic field [31, 143, 149]. The system still forgets its initial conditions

and appears in a non-equilibrium, time-dependent state, whose probabilities oscillate with

the same period as the external field. This is the content of the Floquet theorem (outlined

below), and this motivates us to look at features of time-integrated (over the period of the

field) probability currents from one state to another. Now the no-pumping theorem [32, 35,

36,38–41,43,44] states that probability currents nullify for an arbitrary time-periodic external

field provided that the (time-dependent) transition rate ρi←j(t) > 0 from state j to i holds

the Arrhenius form [37]

ρi←j(t) = eBij+βEj(t), (1.1)

where Bij = Bji refers to the time-independent transition state, β = 1/(kBT ) is the inverse

temperature, and Ej(t) is the oscillating energy of the state j. Transitions from one state to

another are induced by a thermal bath at temperature T , because if the bath is absent then

due to energy conservation transitions between different states are also absent. Transition

rates ρi←j(t) can be time-dependent solely due to an external field that acts on the system

making its energies Ej(t) time-dependent.

Thus the no-pumping theorem shows that the non-equilibrium, time-dependent state still

holds an effectively equilibrium feature of nullifying (time-average) currents. (Whenever also

Bij in (1.1) are time-dependent, non-zero time-averaged currents are not excluded.) Hence

the theorem fits naturally to the continuing effort of understanding the statistical mechanics

of periodically driven systems using analogies with the equilibrium (i.e. time-independent)

situation [149–152]. Recent works established several interesting relations between a driven

system that hold the detailed balance condition and a similar system that is kept unnder

constant (time-independent) non-equilibrium conditions [153]; in this context see also [154,

155].

Note that the same proof of the no-pumping theorem applies to rates more general than
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(1.1), but this generalization (though useful for its own sake) is achieved at the cost of violating

the detailed balance condition [39]. I.e. formally the results of [39] refer to non-equilibrium

baths.

The virtue of the no-pumping theorem is that it applies to all oscillating external fields.

Its major drawback is that the Arrhenius form (1.1) does not hold in many important appli-

cations, where simultaneously the detailed balance is required. For example, the Metropolis

rates (the main tool of the Monte-Carlo dynamics), hold (1.1) with

Bij = −βmax[Ej(t), Ei(t)] (1.2)

hence

ρi←j(t) = min[1, eβ[Ej(t)−Ei(t)]]) (1.3)

We see that Bij cannot stay time-independent, if Ei(t) and Ej(t) are time-dependent. Further

important examples of non-Arrhenius rates include Kramers rates that emerge out of diffusion

in energy landscape [9] and corresponds in (1.1) to

ρi←j(t) = e−βδij+β(Ej(t)−max[Ei(t),Ej(t)] ), (1.4)

where δij = δji is energy barrier or activation energy that separates Ei and Ej. Another

important example is the Fokker-Planck rates

ρi←j(t) = eβ[Ej(t)−Ei(t) ]/2, (1.5)

which allow to match the discrete-space master equation for the Markov dynamics with the

continuous-space Fokker-Planck equation [156]. For all these cases, the standard formulation

of the no-pumping theorem would just allow non-zero time-averaged currents for a suitably

chosen external field, i.e. the theorem is not very informative.

Here the aim is to extend the no-pumping theorem to rates different from (1.1) (the

detailed balance is always assumed to hold).
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First, it will be shown that the no-pumping theorem|time-integrated probability currents

nullify|holds for the destination rates

ρi←j(t) = e−βEi(t), (1.6)

under an additional sufficient condition that the external fields are (effectively) time-symmetric.

The mechanism is more general since it nullifies the currents for certain non-symmetric ex-

ternal fields as well.

The destination rates (1.6) lead to the locally-equilibrium form of the master equation,

which is driven by the difference between the actual probability and the equilibrium one; see

the discussion after Eq. (1.23). There is a long and successful tradition of applying locally-

equilibrium master equations in non-equilibrium physics. It was initiated via the model

proposed in 1954 by Bhatnager, Gross and Krook [157–161], and since that time proved to

be very useful [162]. In particular, the rates (1.6) were employed in [163] for describing the

dynamics of a paradigmatic disordered statistical systems (the Random Energy Model), and

found to be in agreement with experiments. Below I show that|in contrast to the Arrhenius

rates (1.1)|the destination rates provide a reasonable approximation for other rates (e.g. the

Fokker-Planck rate). Hence their experimental success is not accidental.

Second, it will be demonstrated numerically that the same mechanism that leads to the

exact no-pumping theorem for the destination rates ensures an approximate validity of this

theorem for the Fokker-Planck rate.

1.2 Master-equation and the Floquet theorem

Let a system can be in discrete states [i = 1, ..., n,]. A master equation describes the time

evolution of the probability of a system to occupy the state i

ṗi ≡ dpi/dt =
∑

j
[ρi←j(t)pj − ρj←i(t)pi], (1.7)
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where pi(t) is the probability of a system to be in state i at time t, and ρi←j(t) > 0 is the

transition rate from j to i. It is assumed that for any fixed time t, there is the global detailed

balance at inverse (time-independent) temperature β:

ρi←j(t) e
−βEj(t) = ρj←i(t) e

−βEi(t). (1.8)

Note that ρi←j(t) are rates, not probabilities, hence they have units of [time]−1, and they

are not restricted to the interval [0, 1]. The master equation conserves the total probability

d
dt

∑
ipi = 0 so that the normalization is preserved with a normalized initialization. Moreover,

master equation with positive rates ensures positive probabilities pi ≥ 0. Eq. (1.7) can be

written in the matrix form

ṗi =
∑n

j=1
wijpj, (1.9)

where wij matrix elements are defined as follows

wij = ρi←j i 6= j,

wii = −
∑

j 6=i
ρj←i (1.10)

Due to external field(s) acting on the system, the energies Ei(t) are time-periodic functions

with period τ :

Ei(t) = Ei(t+ τ). (1.11)

The instantaneous probability flux from state j to state i is

Jij(t) = ρi←j(t)pj(t)− ρj←i(t)pi(t), Jij = −Jji (1.12)

Before specifying the external field, let me remind the Floquet theorem, which is necessary

for defining the no-pumping theorem. Using the normalization of probabilities
∑n

i=1 pi = 1,

we obtain from (1.9)

ṗi =
∑n−1

j=1
wijpj + win(1− p1 − . . .− pn−1) =

∑n−1

j=1
(wij − win)pj + win, (1.13)
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Thus we get from (1.7, 1.9, 1.13)

Ṗ = W (t)P (t) + b(t) (1.14)

where P (t) = [p1(t), ..., pn−1(t)] and b(t) are (n− 1)× 1 vectors and W (t) is (n− 1)× (n− 1)

matrix:

bi = Win, Wij = wij − win, i, j = 1, . . . , n− 1, (1.15)

wij = ρi←j − δij
∑

j 6=i
ρj←i, i, j = 1, . . . , n. (1.16)

The solution of (1.14) with initial condition P (t0) is

P (t) = A(t, t0)P (t0)

+

∫ t

t0

dsA(t, s)b(s), A(t, s) ≡ ←−e
∫ t
s duW (u), (1.17)

where ←−e is time-ordered or chronological exponent. For t� t0, the state P (t0) is forgotten,

which is equivalent to A(t, t0)P (t0)→ 0. Taking t0 = −∞ in (1.17) we get from (1.17)

P (t) =

∫ t

−∞
dsA(t, s)b(s). (1.18)

Recalling that W (t) and b(t) are time-periodic with the same period, by making the substi-

tution s− τ = x in (1.18) we see that P (t) is also time-periodic with the same period.

P (t+ τ) = P (t) (1.19)

This is the content of the Floquet theorem: for sufficiently long times, the stochastic system

subject to time-periodic driving appears in a steady periodic state. This motivates us to

characterize this state via time-averaged probability currents [cf. (1.12)]

Φij =
1

τ

∫ a+τ

a

Jij(t)dt, (1.20)
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where once the system is in its steady periodic (Floquet) state due to a � t0, Φij does not

anymore depend on a. Below I shall employ a = 0 in the averaging. This implies that initial

conditions are posed at much earlier time: t0 → −∞. From antisymmetry of Jijs (1.12) it

follows that the integrated currents are also antisymmetric:

Φij = −Φji (1.21)

Note that we do not consider cases, where the transition matrix describes an reducible chain.

There the system does not generally forget its initial state.

1.3 No-pumping theorem for a single field and destination

rates

Using the normalization condition for probabilities

∑
j

pj(t) = 1 (1.22)

we obtain from (1.7) for the destination rates (1.6)

ṗi = e−βEi(t) − pi(t)Z(t), Z(t) ≡
∑

j
e−βEj(t). (1.23)

This is the main advantage of rates (1.6): the equations for the probabilities decouple from

each other, making it convenient for studying systems with irregular distribution of energies

[163]. Note that (1.23) can be written as

ṗi = −Z(t)[ pi(t)−
e−βEi(t)

Z(t)
] (1.24)

showing that the change ṗi of the probability is proportional to the difference between

this probability and its equilibrium value e−βEi(t)

Z(t)
. This makes connection between the studied

destination rates and the Bhatnager, Gross and Krook kinetic equation [157–162].
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Now (1.6, 1.12) imply

Jij = ṗipj − ṗjpi = pje
−βEi − pie−βEj . (1.25)

The no-pumping statement I propose is that for field (1.11) [plus additional symmetry

conditions to be specified below], and for rates (1.6), it holds

〈ṗipj〉 ≡
∫ τ

0

dt ṗi(t)pj(t) = 0, (1.26)

thereby nullifying also the time-averaged current Φij = 0; see (1.25, 1.20). Note (1.26, 1.23)

can be written as

〈e−βEipj〉 = 〈pipjZ〉. (1.27)

Hence the validity of (1.26) is obvious in the limiting case of very slow time-dependence, where

the probabilities freeze to their Gibbsian (quasi-equilibrium) values: pi(t) = e−βEi(t)/Z(t).

To prove (1.26), we start from (1.23) and introduce there a new time-variable s

ds

dt
= Z(t), s =

∫ t

0

duZ(u). (1.28)

Due to Z(t) > 0, the s-time relates to the t-time by a one-to-one mapping. Since Z(t+ τ) =

Z(t) [see (1.23, 1.11)], we get from (1.28):

s(t+ τ) = s(t) + σ, σ =

∫ τ

0

duZ(u). (1.29)

Thus if pi(t) (in the Floquet regime) is τ -periodic, pi(t) = pi(t+ τ), then pi(s) is σ-periodic:

pi(s) = pi(s+ σ). (1.30)

Note that the integral in (1.26) stays invariant under changing the time:

∫ τ

0

dt ṗi(t)pj(t) =

∫ σ

0

ds
dpi(s)

ds
pj(s). (1.31)
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We get from (1.23)

dpi(s)

ds
= −pi(s) + e−βEi(s)/Z(s). (1.32)

We now introduce the Fourier-expansion for σ-periodic functions g(s+ σ) = g(s)

g(s) =
∞∑

n=−∞

ĝne
2πisn
σ , (1.33)

ĝn =

∫ σ

0

ds

σ
g(s) e−

2πisn
σ =

∫ σ

−σ

ds

2σ
g(s) e−

2πisn
σ . (1.34)

and apply it to pi(s)→ p̂i, n and e−βEi(s)/Z(s)→ ψ̂i, n. Note that ĝ∗n = ĝ−n, since g(s) is real.

Substituting Eq. (1.33) into Eq. (1.32) we obtain

∞∑
n=−∞

2πin

σ
p̂i, ne

2πisn
σ = −

∞∑
n=−∞

p̂i, ne
2πisn
σ +

∞∑
n=−∞

ψ̂i, ne
2πisn
σ , (1.35)

which implies the following relationship between p̂i, n and ψ̂i, n

p̂i, n = ψ̂i, n

[
1 +

2πin

σ

]−1

. (1.36)

Using (1.36) we obtain for the integral in (1.31)

∫ σ

0

ds
dpi(s)

ds
pj(s) =

∞∑
n=−∞

∞∑
m=−∞

2πin

σ
p̂i, np̂j,m

∫ σ

0

ds e
2πis(n+m)

σ , (1.37)

where we employed the Fourier expansion of (1.32). Now keeping the terms m = −n

∫ σ

0

ds
dpi(s)

ds
pj(s) =

∞∑
n=−∞

2πin

σ
p̂i, np̂j,−n

∫ σ

0

ds

=
∞∑

n=−∞

2πin ψ̂i, nψ̂j,−n
1 + (2πn

σ
)2

= −
∞∑
n=1

4π n Im[ψ̂i, nψ̂j,−n ]

1 + (2πn
σ

)2
, (1.38)

where we used relation (1.36). If now ψ̂i, nψ̂j,−n = ψ̂i, nψ̂
∗
j, n is real, the sum in (1.38) is zero.

Thus the integrals in (1.38, 1.31, 1.26) nullify.
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Let now Ei(t) in (1.11) are even:

Ei(t) = Ei(−t). (1.39)

Then s(t) is an odd function of t [see (1.28,1.29)], and hence Ei(s) = Ei(−s). Then ψ̂i, n

and ψ̂∗j, n are real [see (1.34)], and the integral in (1.38, 1.31, 1.26) nullifies thereby proving

the no-pumping theorem. A more general situation, when the same reasoning applies, and

ψ̂i, nψ̂j,−n is real, takes place when Ei(t) in (1.11) can be made even after a suitable time-shift

γ which does not depend on i:

Ei(t− γ) = Ei(−t− γ). (1.40)

This is because in the Floquet regime the origin of time can be chosen arbitrary. In particular,

(1.40) includes (1.46), where ϕj does not depend on j.

To prove that (1.40) makes ψ̂i, nψ̂j,−n = ψ̂i, nψ̂
∗
j, n real, note that the new Fourier coefficient

of shifted function is equal to the Fourier coefficient of unshifted function multiplied by the

phase factor

ψ̂newi, n =
1

σ

∫ σ

0

ds
e−βEi(s−γ)

Z(s− γ)
e−

2πisn
σ = ψ̂i, ne

−i 2πnγ
σ

Since ψ̂newi, n is real due to (1.40) it follows

ψ̂i, nψ̂j,−n = ψ̂newi, n ψ̂
new
j, n = Real (1.41)

I stress that (1.40) gives only a sufficient condition for the validity of (1.26). The following

example illustrates this fact. Let me take i = 1, 2, 3 = n (three-level system), σ = 1 and define

energies Ei(s) so that the following relations hold

e−βEi(s)/Z(s) = ci + dis+ fis
2 for 0 ≤ s ≤ 1, (1.42)

while for s > 1 and s < 0, e−βEi(s)/Z(s) is continued from (1.42) periodically with the period

σ = 1. These functions are not continuous, but they can be considered as limits of continuous
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functions. This suffices for the sake of the present example.

In (1.42), ci, di and fi are constants, which should ensure the normalization and positivity

of the probabilities e−βEi(s)/Z(s). In particular, I choose
∑3

i=1 ci = 1 and
∑3

i=1 di =
∑3

i=1 fi =

0 for normalization. Now generically (1.42) do not define any symmetric functions of s.

However, we get

ψ̂k, n =
fk + i (dk + fk)nπ

2n2π2
, (1.43)

Im[ψ̂i, nψ̂j,−n ] =
fjdi − fidj

4π3n3
. (1.44)

The nullification of all currents amounts to Im[ψ̂i, nψ̂j,−n ] = 0 for all i and j. Generally,

this requires three conditions fjdi = fidj to be imposed on fi and di. But due to
∑3

i=1 di =∑3
i=1 fi = 0, it suffices to take a single condition f1d2 = f2d1. This ensures fjdi = fidj and

thus nullifies all currents.

1.4 Approximate no-pumping

The above no-pumping theorem concerns the destination rates (1.6). It is not valid exactly

for other interesting rates, e.g. Kramers (1.4) or Fokker-Planck (1.5); see Figs. 1.1–1.3.

Now Figs. 1.1–1.3 show numerical results, where the time-averaged current for a three-level

system is compared for three different rates: destination (1.6), Kramers (1.4) and Fokker-

Planck (1.5).

Note that for a tree-level system(with connected states: ρj←i ≥ 0,∀i, j) from Eqs. (1.21,1.7,1.19)

in the periodic steady state we have [40]

Φ = Φ12 = Φ23 = Φ31. (1.45)

Numerics was carried out for the following concrete form of Ei(t):

Ei(t) = εi + ai cos

(
2πt

τ
+ ϕi

)
, i = 1, 2, 3, (1.46)
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where εi, ai and ϕi are constants.
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Figure 1.1: Time-averaged current Φ = Φ12 = Φ23 = Φ31 given by (1.20) for a three-level
system (n = 3) and β = 1 versus the parameter ϕ1 for Kramers, Fokker-Planck (F–P) and
destination rates; see (1.46). Ei(t) are given by (1.46), where τ = 3. Other parameters in
(1.46): ϕ2 = ϕ3 = 0, and ε1 = 1

3
, a1 = 1, ε2 = 2

3
, a2 = 2, ε3 = 1, a3 = 3. For Kramers rates

δij = 1 in (1.4).
Hence for ϕ1 = 0 or ϕ1 = 2π, the external field satisfies (1.40) and holds the no-pumping
theorem Φ = 0 for the destination rates, as seen on the figure. If (1.40) holds, Φ ≈ 0 for the
Kramers rates (1.1, 1.4) and the Fokker-Planck rates (1.1, 1.5).

For (1.46) conditions (1.40) are satisfied e.g. for ϕi = ϕ for all i = 1, 2, 3. This situation

includes, e.g. the dipole coupling with an external, periodic electric field [143].
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Figure 1.2: The same as in Fig. 1.1, but with τ = 1, i.e. the external fields change faster
than in Fig. 1.1, where τ = 3. For this range of parameters the Fokker-Planck rates hold an
approximate no-pumping theorem, while the Kramers rates do not.

Figures 1.1–1.3 refer to different values of the time-period τ in (1.46). Figs. 1.1–1.3

demonstrate that under condition (1.40), the value of the time-averaged probability current
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Figure 1.3: The same as in Fig. 1.1, but with τ = 0.1; cf. Fig. 1.2. The external fields change
faster than in Fig. 1.1 and in Fig. 1.3. The no-pumping theorem approximately holds for the
Fokker-Planck (FP) rates.

nullifies exactly for the destination rates and it is approximately zero (with a good precision)

for the Fokker-Planck rates (denoted as F–P in Figs. 1.1–1.3). For the Kramers rates the

situation is different: it also predicts an approximately zero time-averaged probability current,

but only for a sufficiently large τ ; see Fig. 1.1.

Fig. 1.4 gives an example of a situation, where (for all studied rates) the time-averaged

currents are sizable, since conditions (1.40) do not hold.
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Figure 1.4: The same as in Fig. 1.1, but ϕ2 = π, ϕ3 = 3π
2
. In this example conditions (1.40)

do not hold and the probability currents are sizable for all studied rates.

Note that all above numerical examples did not refer to high temperatures. Clearly,

probability currents generally nullify for large temperatures, but one can identify a regime,
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where the instantaneous time-dependent currents are still sizable, though their time-averages

are practically zero. This is shown in Fig. 1.5, where the ratio between instantaneous and

averaged currents amounts to ∼ 10−3. This high-temperature version of the no-pumping

theorem holds for all studied rates and it does not need conditions (1.40).
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Figure 1.5: Instantaneous probability currents Jij(t) given by (1.12) for β = 0.01 and Kramers
rates (1.1, 1.4). In (1.46) I took: Ei(t) = − i

2
+ i

2
cos
(

2πt
3

+ πi
2

)
, and for barriers: δij = 1.

It is seen that Jij are much larger than their time-average Φ = Φ12 = Φ23 = Φ31.

1.5 Work

To keep the system in the non-equilibrium state, the external field dissipates work into

the thermal bath. Now the work relates to energy (and not probability) currents through the

system. Hence it is important to study it in the context of the no-pumping theorem.

The rate of work can be calculated via the standard formula

dW

dt
=
∑
i

pi(t)Ėi. (1.47)

The positivity of the time-averaged work W is deduced from the positivity of the entropy

production (see e.g. [58] for this concept, its physical meaning is clarified below)

Se(t) =
1

2

∑
ik

(wkipi − wikpk) ln
wkipi
wikpk

≥ 0, (1.48)

where wik is defined in (1.16). Now writing as ln wkipi
wikpk

= ln wki
wik

+ln pi
pk
, we note that the second
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term amounts in (1.48) to − d
dt

∑
i pi ln pi

1

2

∑
ik

(wkipi − wikpk) ln
pi
pk

= −1

2

∑
i

ln pi
∑
k

(wikpk − wkipi)

−1

2

∑
k

ln pk
∑
i

(wkipi − wikpk) = −1

2

∑
i

ṗi ln pi −−
1

2

∑
k

ṗk ln pk

= −
∑
i

ṗi ln pi = − d

dt

∑
i

pi ln pi, (1.49)

where we used Eq. (1.7). Due to Floquet theorem this term disappears after the time-averaging

Eq. (1.48).

∫ τ

0

dt Se(t) =
1

2

∫ τ

0

dt
∑
ik

(wkipi − wikpk) ln
wki
wik

. (1.50)

From detailed balance condition (1.8) we have

ln
wki
wik

= βEi − βEk. (1.51)

Substituting (1.51) into (1.50) and following the same procedure as in (1.49) we get

∫ τ

0

dt Se(t) = −β
∫ τ

0

dt
∑
i

ṗiEi. (1.52)

Thus we obtain from the first term the positivity of the time-averaged work:

W =

∫ τ

0

dt
∑
i

pi(t)Ėi = −
∫ τ

0

dt
∑
i

ṗi(t)Ei

= T

∫ τ

0

dt Se(t) ≥ 0. (1.53)

Applying the Clausius inequality to the bath|recall thatW turns to the heat Q received by

the equilibrium thermal bath at temperature T , and then Q/T is smaller or equal to the bath

entropy increase|it is seen that
∫ τ

0
dt Se(t) gives a lower bound for the bath entropy increase

per cycle.

Note from Fig. 1.6 that the average work decays to zero both for high and low tempera-
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tures. There is no no-pumping (i.e. no-work-dissipation) theorem for it.
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Figure 1.6: Time-averaged current Φ = Φ12 = Φ23 = Φ31 (dashed curves) given by (1.20) and
W given by (1.53) (full curves) versus the inverse temperature β and for various rates. In
(1.46) I took: Ei(t) = i

3
+ i cos

(
2πt
3

+ iπ
2

)
.
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Chapter 2

Free energy for non-equilibrium

quasi-stationary states 1

2.1 Introduction

One reason for effectiveness of thermodynamics is that its concepts and ideas apply be-

yond the domain of equilibrium states, e.g. in real life thermodynamics is applied to systems

having different temperatures, even though such states do not belong to equilibrium. There

are specific mechanisms for this applicability, e.g. thermodynamics applies to systems that

are perturbatively close to equilibrium [142, 165–167]. Another general mechanisms is the

time-scale separation. In fact, this mechanism is inherent in the structure of thermodynam-

ics, which is built up via the notion of a quasi-static process [166]. It is also important in

statistical physics of open systems, where even low-dimensional systems can play the role of

a thermal bath, provided that they are fast [168, 169]. A related point is seen in stochastic

thermodynamics, where the notion of white (i.e. fast) noise is relevant [170].

There is already a body of work concerning thermodynamic aspects of systems with time-

scale separation [171–189]. In particular, much attention was devoted to the effective tem-

perature of glassy systems, where the time-scale separation emerges from the many-body
1The results considered in this chapter are published in Ref. [85].
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physics [171, 173–175]. Recent works studied time-scale separation in stochastic thermody-

namics focusing on dissipative features such as entropy production [176–181].

Time-scale separation is a much wider notion, and it is frequent also in biology and society,

where it allows to reduce the complexity of emergent structures [190,191]. Indeed, components

of such systems enjoy a certain autonomy (though in different ways): fast variables “live” under

fixed values of the slow ones, while the slow variables “see” stationary distributions of the fast

ones.

We aim to look at a class of stationary, non-equilibrium states for a Markov stochastic

system that is out of equilibrium due to interaction with two different thermal baths; see [45]

for an introduction to such systems. We impose three conditions.

– Time-scale separation: the system under consideration consists of two variables, fast

and slow.

– Partial controllability: external fields act on the slow variable only. This assumption

can be validated from operational reasons: it is normally difficult to have a precise control on

variables that move fast.

Both conditions need not hold for the equilibrium situation (equal temperatures of the

thermal baths), where thermodynamics applies under any type of controllability and the ratio

of characteristic times.

– Transition rates of the slow variable hold certain constraints|they are given by activation

rates, or the slow variable lives in a tree-like structure|that amount to an effective detailed

balance that holds after averaging (tracing out) over the fast variable.

Under these conditions the slow (isothermal) work done on this system admits a potential,

i.e. there exists the free energy. This definition is unambiguous, because the work is defined

for an arbitrary non-equilibrium state [167]; see the discussion after (2.15) for details of this

point. Hence the free energy need not have further equilibrium features. Indeed, we show

that its behavior with respect to temperature changes can be different from the features of

the equilibrium free energy.
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2.2 Two-temperature Markov dynamics

Consider the following master equation for two discrete variables i = 1, ..., n and α =

1, ..., N (see e.g. [142,170]):

ṗiα =
∑

j
[ρij|α pjα − ρji|α piα]

+ε
∑

γ
[ωαγ|i piγ − ωγα|i piα], (2.1)

where piα is the joint probability of i and α, ρij|α and ωαγ|i are the transition probabilities for

i← j (for a fixed α) and α ← γ (for a fixed i), respectively. In (2.1), ε is a small parameter

that makes {α} slower than {i}. We assume that all sums over Latin (Greek) indices run

from 1 to n (from 1 to N).

The transitions are controlled by different thermal baths at temperatures T = 1/β > 0

and Ts = 1/βs > 0 respectively. Hence the transition probabilities ρij|α and ωαγ|i hold the

detailed balance conditions (see e.g. [142,170]):

ρij|α e
−βEjα = ρji|α e

−βEiα , (2.2)

ωαγ|i e
−βsEiγ = ωγα|i e

−βsEiα . (2.3)

Without loss of generality we parametrize (2.3) as

ωαγ|i = eBαγ|i+
βs
2

(Ei γ−Ei α), Bαγ|i = Bγ α|i, (2.4)

where Bαγ|i accounts for the symmetric part of α↔ γ.

2.3 Time-scale separation

Time-scale separation holds when ε in (2.1) is sufficiently small; see Figs. (2.1,2.2). This

is a reliable approximation, since its predictions are close to the exact stationary probability

even for moderately small ε; see Fig. (2.1).
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We now work out the stationary state (ṗiα = 0) of (2.1) for a small ε following the

standard perturbation theory approach; [192] for a rigorous presentation and [71] for a physical

discussion. One puts into (2.1)

piα = B
[0]
iα +

∑
a≥1

εaB
[a]
iα , (2.5)

and obtains for successive terms which are of order O(1) and O(εa), respectively:

∑
j
[ρij|αB

[0]
jα − ρji|αB

[0]
iα ] = 0, (2.6)∑

j
[ρij|αB

[a]
jα − ρji|αB

[a]
iα ]

+
∑

γ
[ωαγ|iB

[a−1]
iα − ωγα|iB[a−1]

iα ] = 0, a ≥ 1. (2.7)

Note that there are solvability conditions found from summing (2.7) over i:

∑
iγ

[ωαγ|iB
[a−1]
jα − ωγα|iB[a−1]

jα ] = 0, a ≥ 1. (2.8)

Now (2.6) and (2.8) with a = 1 are solved as

B
[0]
iα = p̄i|αp̄α, (2.9)

where we used (2.2), the stationary conditional probability p̄i|α of the fast variable has the

equilibrium form

p̄i|α = e−βEiα /Zα[β] , Zα[β] =
∑

k
e−βEkα , (2.10)

and where the probability p̄α of the slow variable is found from (2.8) with a = 1

∑
γ
[Ω̄αγ pγ − Ω̄γα pα] = 0, Ω̄αγ ≡

∑
i
ωαγ|i p̄i|γ. (2.11)

The meaning of (2.9) is that the fast variable relaxes to the conditional equilibrium, which

determines via (2.11) and the effective rates Ω̄αγ the probability of the slow variable.
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Figure 2.1: max(piα − p̃iα) vs. ε, where piα are the exact stationary probabilities, while
p̃iα are calculated via the time-scale separation approach. We found that max(piα − p̃iα) =
max|piα − p̃iα|
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Figure 2.2: |〈E〉 − 〈Ẽ〉| vs. ε, where 〈E〉 =
∑

iα piαEiα is the exact average energy in the
stationary state, 〈Ẽ〉 is the average energy calculated via the time-scale separation approach,
and ε controls the slow-fast limit in (2.1). The value of 〈E〉 (not shown on figure) is some
100–150 times larger than |〈E〉 − 〈Ẽ〉|.

Due to
∑

iα piα =
∑

iα p̄i|αp̄α = 1, (2.9) implies normalization condition:
∑

iαB
[a]
iα = 0

for a ≥ 1. Thus B[1]
iα is found from this condition, (2.7) with a = 1, and (2.8) with a = 2.

Expectedly, for a small ε we getB[1]
iα = O(ε). Now the Fig. (2.1) confirms this fact with numeric

results, but it also shows that the difference between (2.9) and the true joint probability is

sublinear function of ε for a larger values of ε. Hence time-scale separation can be applied
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beyond the small ε situation which is favorable for the approximation

piα = p̄i|αp̄α, (2.12)

that we adopt from now on for the stationary probability piα of (2.1).

In Figs. (2.1,2.2) time-scale separation approach versus numerically exact features of the

stationary distribution given by (2.1) is presented. In Eqs. (2.2, 2.3) we took β = 1, βs = 10,

Eiα = αi2/N and n = 2, where N (n) is the number of different states for the slow (fast)

variable. For transition rates in (2.2, 2.3) we choose the Kawasaki rates: ρij|α = e
β
2

(Ejα−Eiα)

and ωαγ|i = e
βs
2

(Eiγ−Eiα).

2.4 External fields, work and free energies

External fields are introduced via time-dependent parameters a(t) = (a1(t), ..., aA(t)) in

the energy Eiα(a) of the system. We assume that

Eiα(a) = Eα(a) + Êiα, (2.13)

where Êiα does not depend on a. Eq. (2.13) means that external fields couple only with the

slow variable, e.g. because it is difficult to control fast objects. The stationary probabilities

(2.12) depend on parameters a through (2.13).

Now a(t) is slow as compared to the relaxation of both fast and slow variables. The

temperatures T and Ts are constant. Hence the (quasi-stationary) probabilities of the system

are found from (2.12), where a is replaced by a(t). The differential thermodynamic work w

is [142] [see (2.13)]

w =
∑

iα
p̄iα ∂aEiα =

∑
α
p̄α ∂aEα, (2.14)

where ∂a is the gradient in the a-space. Note that relations between thermodynamic and

mechanic work have to be specified in the context of concrete applications [193]. This has to
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do with the following freedom in the definition (2.14): ∂aEα (and hence w) will change upon

adding to Eα a factor ϕ(a) that does not depend on α, but depends on a (this is akin to

the gauge-freedom of the potential energy in mechanics). Hence the energies Eα need to be

specified, before defining the work w [193].

Each component of w = (w1, ..., wA) can have a separate physical meaning, since compo-

nents of a may be driven by different sources.

The integral work is a line integral in the a-space:

W =

∫ tf

tin

dt
da

dt
w(t) =

∫ af

ain

da w, (2.15)

where ain = a(tin) and af = a(tf) are the initial and final values of a(t) reached at times tin

and tf , respectively. We stress that (2.15) refers to slow changes of parameters a(t), but if we

change p̄iα in (2.14) to the time-dependent probability piα found from (2.1), then the same

expression for work applies for arbitrary processes [167].

The work admits a potential (i.e. free energy F) if

w = ∂aF, W = F(af)− F(ain). (2.16)

If (2.16) does not hold, the work extraction (i.e. W < 0) by means of a slow, cyclic (ain = af)

variation of a is possible. Indeed, if W 6= 0, then W changes its sign when the cycle is passed

in the opposite direction. The extracted work is determined by the closed-contour integral.

Below we give pertinent examples of W 6= 0 for cyclic processes; see (2.41). Now we turn

to studying cases, where (2.16) does hold despite of the fact that Ts 6= T .

2.5 Non-equilibrium free energy for the activation rate.

An example of slow dynamics is given by the activation energy rate in (2.4) [170]

ωαγ|i = eβsEiγ , Bαγ|i = βs(Eiγ + Ei α)/2. (2.17)
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One interpretation of (2.17) is that there is a barrier with energy E∗ that is larger than all

other energies. Choosing E∗ = 0, we see that ωαγ|i in (2.17) assumes the standard Arrhenius

form. The rates (2.17) appears in no-pumping theorem when one considers barrier energies

equal to zero [32,35,36,38–41,43]

Now Ω̄αγ in (2.11) depends only on γ: Ω̄αγ = Ω̄γ. The probability p̄α in (2.11) is found

via the detailed balance condition

Ω̄αγ p̄γ = Ω̄γαp̄α. (2.18)

This leads to

p̄γ ∝ 1/Ω̄γ. (2.19)

Thus we get from (2.10, 2.11, 2.13, 2.17)

p̄α = µαe
−βsEα

/∑
γ
µγe

−βsEγ , (2.20)

where µα corresponds to the weight of the energy Eα and expresses via the statistical sum of

the fast variable:

µα = Ẑα[β] / Ẑα[β − βs], (2.21)

Ẑα[β] ≡
∑

k
e−βÊkα . (2.22)

Note that µα does not depend on a due to (2.22) and (2.13). Eqs. (2.13, 2.16, 2.20) imply

the existence of a free energy:

F = −Ts ln
[∑

α
µα e

−βsEα
]
. (2.23)

Recall that F is defined up to a constant,

F→ F + C, (2.24)
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that can depend on anything besides a [193]. Eq. (2.23) is obtained under a specific choice

of C that proves useful below when calculating derivatives of (2.23).

2.6 Cooling by means of entropy reduction

The free energy Feq(a) = −T ln
∑

k e
−βEk of an equilibrium system is a decreasing function

of the temperature:

∂TF eq(a) = −Seq(a) ≤ 0, (2.25)

where Seq(a) is the entropy. Since Feq(a) is defined under a specific choice of an additive

and temperature-dependent constant [cf. (2.24)], (2.25) changes for a different choice of the

constant. Hence (2.25) cannot be interpreted directly. But it can be related to the work-cost

of a cooling process via externally-driven parameters a(t) [194].

Normally, cooling means temperature reduction of a macroscopic system that has a single

and well-defined temperatures both initially and finally (i.e. an equilibrium system), and then

cooling also means that the final entropy (together with the final temperature) is smaller than

the initial one. But the needs of NMR-physics [195], atomic and molecular physics [196,197],

quantum computation [198] etc led to generalizing this definition [194,199,200]. In these fields

one needs to reduce the entropy of a system that is coupled to a fixed-temperature thermal

bath. Reducing the bath temperature is not feasible. But it is feasible to reduce the entropy

via external fields. For instance, in NMR spin systems, entropy decrease for a spin means its

polarization increase, which is necessary for the NNR spectroscopy [195].

Thus, cooling amounts to an isothermal process, where a(t) slowly changes from ain to af

and achieves a lower final entropy. For the equilibrium situation this means Seq(af) < Seq(ain)

(dynamic aspects of this problem are analyzed in [194]). Now

∂T [Feq(af)− Feq(ain)] = Seq(ain)− Seq(af) ≥ 0, (2.26)

compares two setups at different temperatures, but the same values ain → af of the external
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fields. Eq. (2.26) means that the work cost Feq(af) − Feq(ain) of cooling increases with the

temperature T , i.e. cooling from a higher temperature is harder, as expected.

Turning to the non-equilibrium free energy F, we characterize its temperature dependence

via ∂TsF|T and ∂TF|Ts , since T and Ts are independent parameters. We deduce for the

activation energy rate (2.17, 2.21):

∂TsF|T = −Ss −
∑

α
p̄α

[
βsÊα(β − βs) + lnµα

]
(2.27)

= −Ss −
∑

α
p̄α

∫ βs

0

dy [ Êα(β − βs)− Êα(β − y) ],

∂TF|Ts =
β2

βs

∑
α
p̄α

[
Êα(β − βs)− Êα(β)

]
, (2.28)

where

Ss = −
∑
α

p̄α ln p̄α (2.29)

is the entropy of the slow variable [cf. (2.25)], and

Êα =
1

Ẑ(β)

∑
k

Êkαe
−βÊkα (2.30)

is the conditionally averaged energy of the fast variable; cf. (2.10). Êα(β) monotonously

decays from maxk[Ekα] to mink[Ekα] when β goes from −∞ to ∞. Hence we get in (2.27,

2.28):

∂TsF|T ≤ 0, ∂TF|Ts ≥ 0. (2.31)

Now we explore implications of ∂TF|Ts ≥ 0 for a cooling process. Denote by

Ŝα(β) = −
∑

i
p̄i|α ln p̄i|α = βÊα + ln Ẑα, (2.32)

the entropy of the fast variable conditioned by a fixed value α of the slow variable; cf. (2.10).

Recall that Ss +
∑

α p̄αŜα(β) amounts to the full entropy −
∑

iα p̄iα ln p̄iα.

We denote: Ŝ1 = minα[Ŝα]. Then we can define a cooling process, where all energies Eα 6=1
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in (2.13) slowly increase leading to p̄1 → 1; see (2.20). Though the process is realized by

external fields holding the partial controllability restriction (2.13), we still get a cooling of the

whole (slow plus fast) system. Indeed, not only the entropy Ss of the slow variable decreases

to zero, but also the conditional entropy of the fast variable decreases from its initial value∑
α p̄αŜα(β) to a smaller value Ŝ1(β).

We note that the considered cooling process can also decrease the internal energy of the

system. Recall that the internal energy is defined as [cf. (2.12), (2.13)]

∑
iα
Eiαp̄i|αp̄α =

∑
α
Eαp̄α +

∑
α
Êαp̄α, (2.33)

where Êα is defined after (2.28). Since Ŝα and Êα are equilibrium quantities, Ŝα is an increas-

ing function of Êα. Hence it is possible to choose Ê1 = minα[Êα] in addition to Ŝ1 = minα[Ŝα].

We can also choose E1 = minα[Êα]. Then p̄1 → 1 means that the internal energy (2.33) de-

creases during the cooling.

The cooling process incurs a work cost [cf. (2.23)]

∆F = −Ts ln[µ1e
−βE1 ]− F ≥ 0, (2.34)

where F is the initial free energy. Now ∆F > 0 means that the work is taken from the external

source, hence this is indeed a work cost.

The change of ∆F with the temperature T of the fast variable reads from (2.28):

∂T∆F|Ts = −β
2

βs

∑
α
p̄α

[
Êα(β − βs)− Êα(β)

−Ê1(β − βs) + Ê1(β)
]
. (2.35)

Let us now indicate several scenarios for ∂T∆F|Ts ≤ 0 in (2.35), and show that they are

consistent with condition Ŝ1 = minα[Ŝα] that defines the cooling process. For example, in

(2.35) one can take Ê1(β − βs) ' Ê1(β), but Êα 6=1(β − βs) 6' Êα 6=1(β). Another example is

to make βs small. Then Eα(β − βs)− Êα(β) ∝ Ĉα amounts to the heat-capacity Ĉα ≥ 0, and

then ∂T∆F|Ts < 0 can be implied by Ĉα 6=1 > Ĉ1, which is consistent with Ŝ1 = minα[Ŝα].
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We conclude from ∂T∆F|Ts ≤ 0 that it can be easier (in terms of the work-cost) to cool

from higher temperatures than from the lower ones. Note that the result survives also in

the near-equilibrium limit β ' βs. With the same logics, one shows from (2.27) that when

increasing the temperature Ts of the slow variable, one normally has ∂Ts∆F|T ≥ 0 [cf. (2.26)],

and we revert to equilibrium with [∂Ts∆F|T + ∂T∆F|Ts ]T=Ts ≥ 0.

It is interesting to compare the result of work-cost for entropy reduction with the Mpemba

effect [201–203]. The phenomenon was observed independently under various circumstances;

apparently, its existence was known already to Aristotle [204]. It can have relatively straight-

forward physical explanations, e.g. some part of the hotter water can evaporate thus decreas-

ing its amount and making its cooling easier. Another explanation is that a fast cooling can

force the water out of local equilibrium [205]. Once such straightforward scenarios are ruled

out experimentally, the Mpemba phenomenon disappears [204] (nobody was so far able to

replicate the original data by Mpemba and Osborne). It is still possible that the phenomenon

survives due to a different chemical composition of a heated water (which may lead to a dif-

ferent concentration of dissolved gases) [206]. At any rate, the phenomenon is not observed

once one ensures the identical chemical composition of both samples, e.g. by boiling them

first and only then setting them to different initial temperatures [204].

Let us now discuss how our result differs from the above Mpemba phenomenon (without

predetermining its causes).

First of all, our cooling is not spontaneous. We focus on an (isothermal) entropy reduction

of the system by means of external fields. (Still our cooling process is slow and it leaves the

system in its locally stationary state.) Hence we study not the speed of cooling, but its

work-cost, as determined by the free-energy. We find that this cost is smaller, if one starts

to cool at a higher temperature. Such an effect is impossible in equilibrium, because the

equilibrium free energy is a decreasing function of the temperature. However, we show that

this effect survives close to equilibrium. Hence the second major difference with the Mpemba

phenomenon is that our effect is explicitly out of equilibrium, as it relates to two different

temperatures.
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2.7 Tree-like topology of the slow variable.

Free energy (2.23) exists for general rates (2.4), if the topology of connections between the

states α, γ, ... in (2.11) is that of a tree (a network without loops or closed cycles): for a fixed

i, ωαγ|i 6= 0 (and hence Ω̄αγ 6= 0) only along branches of a tree; see Fig. (2.3) for examples. Let

node σ0 be the root of the tree. This root can be chosen arbitrarily, the freedom of choosing

Figure 2.3: Four examples of tree-like structures. Bold points denote states, and lines between
them indicate on inter-state transitions.

it will connect to an arbitrary constant (2.24) in the free energy. Each node σ of the tree

is related to σ0 via a unique path σσ′...σ′′σ0. The stationary probability p̄σ of σ is deduced

from (2.11), it is made of the transition probabilities along this unique path:

p̄σ =
Ω̄σσ′Ω̄σ′...Ω̄...σ′′Ω̄σ′′σ0

Ω̄σ′σΩ̄...σ′Ω̄σ′′...Ω̄σ0σ′′
p̄1, (2.36)

where p̄1 is gotten from normalization. We add to (2.13):

Bαγ|i = Bαγ(a) + B̂αγ|i, (2.37)

where B̂αγ|i does not depend on a. Now Bαγ(a) cancels out in (2.36), and (2.36) reduces to

(2.20), where [cf. (2.22)]

µσ>1 =
Ω̂σσ′Ω̂σ′...Ω̂...σ′′Ω̂σ′′σ0

Ω̂σ′σΩ̂...σ′Ω̂σ′′...Ω̂σ0σ′′
, µ1 = 1, (2.38)

Ω̂αγ =
1

Ẑγ[β]

∑
i
eB̂αγ|i+

βs
2

(Êiγ−Êiα)−βÊiγ . (2.39)

Hence the free energy (2.23) applies with µα given by (2.38). For (2.17), this free energy
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differs from (2.23) due to a choice of the constant C in (2.24).

Note that the tree topology supports the detailed balance: Ω̄γαp̄α = Ω̄αγ p̄γ. This relates

with the Kolmogorov’s criterion for the detailed balance: for all loops of the connection

network the product of the transition probabilities Ω̄γα calculated in the clock-wise direction

should be equal to the product in the anti-clock-wise direction [54]. For a tree-like network

there are no loops, hence the criterion holds.

For general rates already one loop (i.e. a three-level system) may suffice for invalidating

the existence free energy. But we expect that loops will be less relevant for multi-dimensional

models. Indeed, let us return to p̄α ∝ µαe
−βEα , p̄iα ∝ e−βÊiα , but instead of (2.13) we assume

that only one externally-driven parameter (out of two) pertains to the slow variable:

Eiα(a) = Eα(a1) + Êiα(a2). (2.40)

Eq. (2.40) is the minimal situation, where the work-extraction via a slow, cyclic process is

possible.

We get for the rotor of the work w [cf. (2.14) and (2.22)]:

∂a2wa1 − ∂a1wa2 = 〈 (∂a1E ) ∂a2 [ lnµ− Tβs ln Ẑ ] 〉

−〈 ∂a1E〉 〈 ∂a2 [ lnµ− Tβs ln Ẑ ] 〉, (2.41)

where 〈X〉 ≡
∑

α p̄αXα. Eq. (2.41) shows how far is the work from having a gradient when the

partial controllability (2.13) does not hold. It also determines the amount of work extracted

from a cycle in the (a1, a2)-space. Now since (2.41) is a correlation, the existence of a gradient

for wa can be recovered if fluctuations are negligible.

2.8 Quasi-continuous limit for the slow variable.

Recall that the index γ = 1, ..., N numbers the states of the slow variable. We now

consider the case, where these states are arranged over a segment of a line (1D situation), so

that only transition from one neighbour state to another are allowed. This is an example of

51



birth-death processes that have many applications [9]. If the segment is finite and the states

are homogeneously and densely located in it, then one can pass to the continuous limit, where

instead of a discrete index γ we shall have a continuous variable x [22, 156]. The continuous

limit is achieved by

Ei γ → Ei(x), Ei γ+1 → Ei(x) + ε̂E ′i(x), (2.42)

where x is a continuous parameter, ε̂ is a small parameter (the distance between the states γ

and γ + 1 on the segment), and where A′(x) ≡ dA(x)/dx. We also denote

Bγ+1 γ|i → Bi(x). (2.43)

Since Ei γ+1 ≈ Ei γ we expand in (2.4) over a small ε̂

ωγ+1 γ|i = exp
[
Bγ+1 γ|i

]
(1 + βs(Ei γ − Ei γ+1)/2), (2.44)

and get in (2.1) (see [22, 156] for similar derivations):

∑
γ
[ωαγ|i piγ − ωγα|i piα]

= βs

[
eBαα+1|i (Ei α+1 − Ei α)

pi α+1 + pi α
2

− eBα−1α|i (Ei α − Ei α−1)
pi α−1 + pi α

2

]
+eBα+1α|i(pi α+1 − pi α)− eBαα−1|i(pi α − pi α−1)

= βs[ζi α+1 − ζi α] + ξi α+1 − ξi α, (2.45)

where we denoted

ξi α+1 ≡ eBα+1α|i (pi α+1 − pi α),

ζi α+1 ≡ eBαα+1|i (Ei α+1 − Ei α) (pi α + pi α+1)/2. (2.46)
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Hence (2.45) can be written [see(2.42,2.43)]

βs[ζi α+1 − ζi α] + ξi α+1 − ξi α = ε̂[βs∂xζi(x) + ∂xξi(x)] (2.47)

Note that ζi(x) and ξi(x) are proportional to ε̂

ζi(x) = ε̂eBi(x)pi(x)∂xEi(x),

ξi(x) = ε̂eBi(x)∂xpi(x) (2.48)

Eqs.(2.1, 2.45, 2.47, 2.48) lead to:

ṗi(x, t) =
∑

j
[ρij|x pj(x)− ρji|x pi(x, t)] + ε ε̂2∂xJi(x, t), (2.49)

Ji(x, t) ≡ βs e
Bi(x) pi(x, t)E

′
i(x) + eBi(x) p′i(x, t), (2.50)

where pi(x) is the joint probability of i and x:
∑

i

∫
dx pi(x, t) = 1, and Ji(x, t) is the

probability current related to the slow variable.

Eq. (2.49) shows that as compared to (2.1) the slow-fast limit is facilitated due to the

additional small factor ε̂2. This is confirmed by Fig. 1 which shows that the slow-fast limit

improves when the number N of states of the slow variable is large. Thus the above continuous

limit is a way to get the time-scale separation naturally.

We treat (2.49) wih the same time-scale separation argument (2.5–2.11) with minor modi-

fications for the continuous case. The stationary conditional probability is still p̄i|x ∝ e−βEi(x).

For the stationary probability density p̄(x)|which holds the zero-current condition
∑

i Ji(x) =

0|we obtain from (2.49, 2.50):

p̄(x) ∝ e−βsE(x)µ(x), µ(x) = eh(x)
∑

i
e−βÊi(x),

h′(x) = (β − βs)
∑

i Ê
′
i(x)eB̂i(x)−βÊi(x)∑
i e
B̂i(x)−βÊi(x)

, (2.51)

where by analogy to (2.13, 2.37): Ei(x;a) = E(x;a) + Êi(x), Bi(x;a) = B(x;a) + B̂i(x).

The free energy is given as in (2.23) by F = −Ts ln
∫

dxµ(x) e−βsE(x). Note that it goes to
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the equilibrium expression for Ts = T .

A particular case of (2.51) is when Bi(x) does not depend on i, i.e. B̂i(x) = 0. Now the

non-equilibrium free energy reads [183]:

F◦ = −Ts ln

[∫
dx (

∑
i
e−βEi(x) )βs/β

]
. (2.52)

The following features of F◦ are deduced directly from (2.52) [183]. They all are very similar

to those of the equilibrium free energy.

– F◦ is the potential for the work without restriction (2.13), i.e. now a can also enter

Êi(x):

Ei(x;a) = E(x;a) + Êi(x;a). (2.53)

– For the temperature-derivatives of we get

∂TF
◦|Ts = −S, ∂TsF

◦|T = −Ss, (2.54)

where S ≡ −
∫

dx
∑

kp̄k(x) ln p̄k|x and Ss ≡ −
∫

dx p̄(x) ln p̄(x) are, respectively, the condi-

tional entropy of the fast variable, and the marginal entropy of the slow variable. Hence the

anti-thermodynamic cooling effect noted in (2.35) is impossible here.

Note the analogy between (2.54) and the equilibrium formula ∂TFeq = −Seq. It leads

us to F◦ = U − TsSs − TS, where U =
∫

dx
∑

kp̄k(x)Ek(x) is the average (overall) energy.

This expression for F◦ already appeared in the physics of Brownian motion [182, 183] and

glasses [175].

Eq. (2.52) has an intuitively appealing meaning [182–189], since it implies that the free

energy −T
∑

i e
−βEi(x) of the fast variable (evaluated at a fixed value of the slow variable)

serves as an effective potential Ueff(x) for the (Gibbs) distribution of the slow variable: p̄(x) ∝

e−βsUeff(x). And then F◦ is the free energy related to that effective Gibbs distribution: F◦ =

−Ts ln
∫

dx e−βsUeff(x). While this heuristic explanation is frequently applied in statistical

physics, we should keep in mind from the above derivation that F◦ exists due to the continuous
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limit, e.g. assuming B̂αγ = 0 in the discrete case does not recover the above equilibrium

features (for T 6= Ts).
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Chapter 3

Adaptive heat engine 1

3.1 Introduction

Heat-engines drove the Industrial Revolution and their foundation, viz. thermodynam-

ics, became one of the most successful physical theories [207]. Extensions of thermody-

namics to stochastic [58, 170] and quantum domain [86] led to new generations of heat en-

gines [58,86,88–100]. As everyone could observe, the work-extraction function of macroscopic

heat-engines requires external on-line control, e.g. the Carnot cycle performing the optimal-

efficiency cycle do demand a careful external control of its functioning, one should provide

the specific sequence of adiabatic and isothermal processes [207,208]. Smaller engines studied

within stochastic or quantum thermodynamics may not demand on-line control, i.e. they are

autonomous [96,97], but they do demand fitting between internal and environmental param-

eters [89,90,92–95,197], e.g. because for fixed environment (thermal baths) there are internal

parameters, under which the machine acts as a heat-pump or refrigerator performing tasks

just opposite to that of heat-engine. Such fitted engines are susceptible to environmental

changes, e.g. when the bath temperatures get closer due to the very engine functioning. Car

engines treat this problem by abandoning the partially depleted fuel (i.e. the hot bath), and

using fresh fuel.
1The results considered in this chapter are published in Ref. [120].
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Here we study a rudimentary model of autonomous, adaptive heat engine. Adaptive means

that the engine can work for a sufficiently general class of environments, i.e. it needs neither

on-line control, nor an externally imposed fitting between its internal parameters and the bath

temperatures. In particular, the engine can adapt to the results of its own functioning. Hence

adaptive engines can be useful for fueling devices via unknown or scarce resources [209].

The major biophysical heat engine, viz photosynthesis|which operates between the hot Sun

temperature and the low-temperature Earth environment [210]|does have adaptive features

that allow its functioning under decreased hot temperature (shadowing) or increased cold

temperature (hot whether) [121,122].

Recently, several physical models concentrated on adaptive sensors, adaptive transport

models etc [122, 176, 211–216]. These studies clarified thermodynamic costs of adaptation

scenarios [122, 176, 213–216]. Other research lines related adaptation with (poly)homeostasis

[217] and models of artificial life [208,218].

For analyzing the adaptation and its resources for heat engines, we need a tractable and

realistic model that is much simpler than e.g. its prototypes in photosynthesis. The model

ought to consist of the proper heat-engine and a controller that ensures the adaptation; see

Fig. 3.1. Together they form an authonomous system.

3.2 The functional degree of freedom

We choose one of the most known models of quantum/stochastic thermodynamics that

was introduced and studied as a model for maser [89, 90, 92, 93, 197]. Related models were

studied in the context of photovoltaics [98]. The model has three states: i = 1, 2, 3. Each

state i has energy Ei. Transitions between different states are caused by thermal baths that

can provide or accept necessary energies. We assume that the resulting dynamics is described

by a Markov master equation [9]:

ṗi ≡ dpi/dt =
∑

j
[ρi←jpj − ρj←ipi], i, j = 1, 2, 3, (3.1)
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where pi(t) is the probability of the state i at time t, and ρi←j > 0 is the transition rate from

j to i. We assume for simplicity that each transition i↔ j couples with one equilibrium bath

at temperature Tij = Tji = 1/βji; see Fig. 3.1. The equilibrium nature of each bath imposes

the detailed balance constraint for transitions [9]:

ρi←j e
−βijEj = ρj←i e

−βijEi , βij = βji. (3.2)

We take one temperature infinite: β21 = 0. This bath is then a work-source, because due to

dS21 = β21dQ21 = 0 it exchanges energy dQ21 6= 0 at zero entropy change dS21 = 0. The

other two thermal baths are the ones necessary for any heat-egine; see Fig. 3.1. Below we

ensure its function for a large range of β31 6= β32.

Figure 3.1: A schematic representation of the model. There are three thermal baths at
temperatures T32, T31 < T21 = ∞; each one drives a single transition among three engine
levels 1, 2, and 3. The bath with temperature T21 =∞ is the source of work. A controller x
interacts with energies, but does not couple directly with the baths.

Since each bath causes only one transition i↔ j,

Kij = Kji = (Ei − Ej)(ρi←jpj − ρj←ipi), (3.3)

is the average energy lost (if Kij > 0) or gained (if Kij < 0) by the bath per time-unit; see
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(3.1). In the stationary state these energy currents Kij hold K31 +K32 +K21 =
∑3

i=1 ṗiEi = 0,

as necessary for the average energy conservation. Eq. (3.1) implies for stationary probabilities

p1 =
1

Z
[ρ1←2ρ1←3 + ρ3←2ρ1←3 + ρ2←3ρ1←2],

p2 =
1

Z
[ρ2←1ρ2←3 + ρ3←1ρ2←3 + ρ2←1ρ1←3],

p3 =
1

Z
[ρ3←1ρ3←2 + ρ2←1ρ3←2 + ρ1←2ρ3←1] (3.4)

where Z ensures
∑3

i=1 pi = 1. Using (3.2–3.2) and ρ1←2 = ρ2←1 due to β21 = 0 we get

K21 =
Ê2

Z
ρ2←1 ρ1←3 ρ3←2

[
1− e(β32−β31)Ê3−β32Ê2

]
, (3.5)

K31 = −Ê3K21/Ê2, K32 = (Ê3 − Ê2)K21/Ê2, (3.6)

Ê2 ≡ E2 − E1, Ê3 ≡ E3 − E1. (3.7)

The heat-engine functioning is defined as [cf. (3.3)]

0 > K21 = −(E2 − E1)(p2 − p1)ρ1←2, (3.8)

i.e. the energy goes to the work-source with the power |K21|. Inequality (3.8) shows that

the heat-engine functions via population inversion between energy levels E1 and E2: when

driving the transition 1 ↔ 2, the work-source gains energy in average. Using (3.5, 3.7) we

write (3.8) as

Ê2[(1− θ)Ê3 − Ê2] > 0, θ ≡ β31/β32. (3.9)

Eq. (3.9) demands different temperatures: β32 6= β31. It also demands tuning between the

energies Ê2, Ê3 and θ: it is impossible to hold (3.9) for a wide range of θ by means of constant

Ê2 and Ê3; e.g. if (3.9) holds for 1 > θ due to Ê3 > Ê2 > 0, then it is violated for 1− θ < Ê2

Ê3
.

Tuning is necessary, since for suitable values of Ê2 and Ê3, the machine can function also as

a refrigerator or as a heat-pump.

The efficiency (power divided over the incoming current) η of the engine is given as (see
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(3.5, 3.6, 3.9))

η ≡ −K21

max[K31, K32]
≤ ηC ≡ 1−min[θ,

1

θ
], (3.10)

η = max

[
Ê2

Ê3

,
Ê2

Ê2 − Ê3

]
(3.11)

where η depends only on energy differences Ê2 and Ê3 [see (3.6)], and the Carnot value ηC

bounds η from above, as deduced from (3.9). For η → ηC inequality (3.9) saturates, and (3.5,

3.6) show that all Kij nullify (power-efficiency trade-off) [58,86,95]; see [219] for most recent

discussion of this trade-off.

3.3 The structural degree of freedom

The controller x should ensure adaptation to continuous environmental variations; hence

it is continuous. x and i interact via energies Ei(x). The joint probability pi(x, t) of x and i,∫
dx
∑

i pi(x, t) = 1, evolves via the Fokker-Planck plus master equations [cf. (3.1)] [9]:

ṗi(x, t) =
∑3

j=1
[ρi←j(x)pj(x, t)− ρj←i(x)pi(x, t)]

+
1

γ
∂x[pi(x, t)E

′
i(x)] +D∂2

xpi(x, t), i = 1, 2, 3, (3.12)

where E ′i(x) ≡ dEi(x)
dx

, γ > 0 is the friction constant, and D > 0 is the diffusion constant.

ρi←j(x) is specified in (3.22); it holds (3.2) with Ei → Ei(x) and Ej → Ej(x).

Eq. (3.12) has a wide range of chemical and biological applications [156,220–222,222–229].

It accounts for enzyme dynamics, where a reaction (to be accelerated) is described by a

discrete variable i that interacts with a coarse-grained conformational coordinate x of the

enzyme [222–228]. The existence of x was inquired from experiments [156,220–222,222–226],

and also deduced from microscopic models [227, 228]. Reactions of photosynthesis are also

known to interact with conformational degrees of freedom [230]: the main mechanism of the

photosynthesis adaptation was located in conformational changes of the thylakoid membrane

that bounds light-dependent reactions [121].
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Eq. (3.12) has similarities with recent models for quantum heat engines; but there the

continuous variable is employed for storing the extracted work [99,100].

The harmonic choice of interaction energies Ei(x) verified itself well in various applications

[222,223,226,227,229]

Ei(x) = a(x− bi)2 + ci, i = 1, 2, 3, (3.13)

where a > 0, bi and ci are constants; a is i-independent, since Ei(x) have the same shape for

x→ ±∞. Eq. (3.13) was explained in [228] via quantum chemistry.

The exact stationary solution pi(x) of (3.12) is not found. We need an explicit form of

pi(x), since from within pi(x) we should search for adaptation-friendly shapes of Ei(x). This

issue is solved, if we assume in (3.12) that x is slow: 1
γ
, D � ρi←j(x). This is realistic for

enzymes, where x includes large molecular groups whose motion is slow [225, 226]. A virtue

of the slow limit is that it decreases energy costs related to control, akin to the standard

reversibility limit of thermodynamics; see below. The slow limit can be justified introducing

in (3.12) the conditional probability pi|x(t) [235],

pi(x, t) = pi|x(t)p(x, t),

∫
dx p(x, t) = 1,

3∑
i=1

pi|x(t) = 1,

and collecting fast terms:

ṗi|x =
∑3

j=1
[ρi←j(x)pj|x − ρj←i(x)pi|x]. (3.14)

Slow terms are found from (3.12, 3.14) by summing over i:

ṗ(x, t) =
1

γ
∂x[p(x, t)

3∑
i=1

pi|xE
′
i(x)] +D∂2

xp(x, t). (3.15)

Since i is fast, pi|x in (3.15) can be taken as time-independent, i.e. pi|x is found from (3.2)

upon replacing there ρij → ρij(x) [235]. The stationary probability of x is found from (3.15)
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via the zero-current condition p(x)
∑3

i=1pi|xE
′
i(x) + γD∂xp(x) = 0:

p(x) ∝ e−Ψ(x)/(γD), Ψ′(x) ≡
∑3

i=1
pi|xE

′
i(x), (3.16)

where Ψ′(x) = dΨ
dx
. Using

∑3
i=1 pi|x = 1 we define [cf. (3.7)]

Φ′(x) ≡
∑3

i=2
pi|xÊ

′
i(x) = Ψ′(x)− E ′1(x), (3.17)

Êi(x) ≡ Ei(x)− E1(x). (3.18)

3.4 Adaptation

The energies Ei(x) do not depend on β31 and β32. We choose Ei(x) as follows. First, there

is a unique maximally probable value x̂ of x, which is the minimum of the effective potential

Ψ(x), i.e. [from (3.16, 3.17)]:

Φ′(x̂) = −E ′1(x̂), Φ′′(x̂) > −E ′′1 (x̂), (3.19)

where the latter condition means stability.

Second, the heat-engine conditionK21(x) < 0 holds in a vicinity of the maximally probable

value x̂ [cf. (3.9, 3.18)]:

Ê2(x)[(1− θ)Ê3(x)− Ê2(x)] > 0, x ' x̂, (3.20)

Work-extraction should also hold in average [cf. (3.2, 3.3)]:

〈K21〉 = ρ1←2

∫
dx Ê2(x)p(x)(p1|x − p2|x) < 0. (3.21)

Eq. (3.20) implies (3.21), if γD is small enough, because in this limit the probability of x

concentrates around x̂; see (3.16). More generally (e.g. out of the slow limit), the adaptation

criterion can be based directly on (3.21).
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The adaptation scenario implied by (3.17, 3.20) is as follows. Assume that the machine in

its stationary state is already working as a heat-engine for certain bath temperatures β31 and

β32. If one of them (or both) change, pi|x goes out of the stationary state. As shown by (3.17),

this moves x̂ to a new value, where according to (3.20) the heat-engine function is recovered.

We stress that in this feedback scheme, x does not interact directly with the baths: the change

of x̂ comes from pi|x; see (3.17). Using a feed-forward scheme, where x directly couples with

the baths, does not lead to advantages with respect to adaptation, because it changes only

friction and diffusion in (3.12). It is possible to study scenarios, where in addition to the

heat-engine function (3.20) the adaptation optimizes the heat-engine efficiency η or its power

|K21|.

To search for adaptation, we focus on the following class of transition rates [cf. (3.1, 3.2)]:

ρi←j(x) = fij[Ej(x)− Ei(x) ], (3.22)

where fij[y] holds (3.2). Eq. (3.22) includes the Kramers’ rate fij[y] = eβij [∆ij+min(y,0)], where

∆ij = ∆ji is the barrier height [9], and fij[y] = eβijy/2 that relates to the discrete-space Fokker-

Planck equation [156]. The constraint (3.22) relates to one of conditions of the no-pumping

theorem [32,35,36,38–41,43].

Eqs. (3.22, 3.18, 3.2) imply that ρij(x), the stationary pi|x, and Φ′(x) in (3.17) depend on

E1(x) only via Ê3(x) and Ê2(x). Hence we study Φ′(x) for given Ê3(x) and Ê2(x), look for

a domain where (3.20) holds, and then define x̂ via (3.19) by choosing a suitable E1(x) that

does not depend on β31 and on β32. This is achieved by plotting Φ′(x) as a function of x

under different values of β31 and β32.

Note that (3.20) confines the shape of Ê2(x): since (3.20) should hold for θ → 1, there

exists x0 such that x̂ → x0 for θ → 1, and Ê2(x0) = 0. In the vicinity of x0, Ê3(x) is either

finite or goes to zero slower than Ê2(x), so that (3.20) still holds for θ → 1 and x̂→ x0.
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3.5 Restricted adaptation

Let us first assume that one temperature (say β31) takes arbitrary positive values, while

another one (β32) is fixed. Adaptation is necessary here, since θ = β31/β32 is an arbtrary

positive number, hence (3.20) cannot be valid for x-independent Ei. Applying the above

method, we deduce that (3.17, 3.20) for adaptation can be satisfied for the experimentally

motivated choice (3.13) for Ei(x); see Fig. 3.2.
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Figure 3.2: Restricted adaptation scenario. Φ′(x) given by (3.17, 3.22) with fij[y] = eβijy/2.
(Similar results hold for all other physical choices of fij[y]; see (3.22).) We assume Ê3(x) = −x,
Ê2(x) = x − 2; see (3.18, 3.13). Now heat-engine conditions (3.20) hold for x > 2 if θ > 2,
and for x ∈ ( 2

2−θ , 2) if θ < 2. Normal (resp. dashed) curves: Φ′(x) for x that support (3.20)
under β32 = 1 (resp. β32 = 0.7) and various θ = β31/β32. They are indicated from the top
to the bottom in the right (resp. left). The magenta (bold) curve shows −E ′1(x), where
E ′1(x) = 1.8(x − 2) + 0.680289; cf. (3.13). Intersections of −E ′1(x) with Φ′(x) determine x̂.
Conditions (3.19) hold for all normal curves, and none of dashed curves.

Since the validity domain (3.20) of the heat-engine shrinks to a point for θ → 1, we need

progressively smaller values of Dγ in (3.16) for ensuring the average work-extraction (3.21)

under θ → 1. If the diffusion of x is caused by an equilibrium bath, we get Dγ = T in

(3.12) [9], and the temperature T of this bath should be sufficiently low for (3.21) to hold.

If this is the lowest temperature, there is a heat current KA towards it tending to increase

it. Hence this low temperature is a resource; see [176, 213–216] for related results. In the

slow limit, KA = O( 1
γ
) can be much smaller than the energy currents Kij of the heat-egine.

Eqs. (3.6, 3.9 3.10) imply that Kij → 0 for high efficiencies η → ηC. In that case KA stays
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finite and is the dominant energy current.

3.6 Full adaptation

Let now both β31 and β32 vary. Fig. 3.2 shows that the set-up which worked for a fixed β32

does not apply: adaptation conditions (3.19) break down in a vicinity of θ = 1. Topologically,

changing both β32 and β31 destroys fine-tuned equality in (3.19); see Fig. 3.2.

We argue that adaptation conditions (3.19) cannot hold together, if both β31 and β32 vary,

and if d
dy
fij[y] ≥ 0; see (3.22). The latter holds for all physical examples we are aware of,

and means that the transition from one energy to another is facilitated, if the lower energy

increases or the higher energy decreases.

The only way we found for recovering adaptation is to assume that x is subject to a

negative friction: γ < 0. Note that the γ < 0 and D > 0 situation is stable, since (3.15) does

predict relaxation to (3.16).

One way to achieve γ < 0 is to subject x to a negative-temperature (population-inverted)

thermal bath: β < 0. Eqs. (3.12) with γ ∝ β < 0 is then an effective description of quasi-

continuous, but discrete degrees of freedom. Negative temperatures are known for various

systems whose energies are bounded from above [236–240]. Now β < 0 is a resource, since

when coupled to positive temperatures, β tends to increase [236]. Physically, β < 0 means a

reservoir of stored energy, and the fact that β decreases means that this energy is spent for

adaptation.

Other examples of negative friction include negative resistance of electric circuits [232],

negative viscosity of driven fluids [233], and the negative absolute mobility for Brownian

systems [234].

Now Dγ < 0 in (3.16), and the most probable x̂ means that inequalities in (3.19) are

reversed. New adaptation conditions are (3.20) and [instead of (3.19)]

Φ′(x̂) = −E ′1(x̂), Φ′′(x̂) < −E ′′1 (x̂). (3.23)

These conditions can be satisfied, as seen in Fig. 3.3. In contrast to the previous scenario,
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Figure 3.3: Full adaptation scenario (γ < 0). Φ′(x) with fij[y] = eβijy/2 for varying β31

and fixed β32; cf. Fig. 1.1. We assume Ê3(x) = x/2, Ê2(x) = x − 2, and (3.20) holds for
x ∈ ( 4

1+θ
, 2). Normal (resp. dashed) curves: Φ′(x) for x that support (3.20) under β32 = 1

(resp. β32 = 3) and various θ = β31/β32, as indicated from the top to the bottom in the left
(resp. right). The magenta (bold) curve shows −E ′1(x), where for the considered range of x,
E ′1(x) = −0.1(x− 2)− 0.5. Adaptation conditions (3.23) hold for all curves, and for all β31,
β32.

now Φ′(x) is very robust with respect to changing β31 and β32, i.e. the adaptation is achieved

for all β31 and β32 (excluding a |γD|-dependent vicinity of β31 = β32). Though the choice of

E1(x) is more flexible than for the previous restricted adaptation scenario, it cannot belong

to the set (3.13) of harmonic functions. For γD < 0, x should change in a bounded domain;

otherwise for the natural shape of energies (Ei(x) → ∞ for x → ±∞) one gets a non-

normalizable p(x) in (3.16).
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Chapter 4

Statistical tests for MIXMAX

pseudorandom number generator 1

4.1 Introduction

In recent years, there is a growing interest on PRNGs in different branches of physics

and not only. A good PRNG is important to have guaranteed results of Monte Carlo(MC)

methods. There are many software packages for MC simulations where PRNGs are the central

components. Among these packages one can mention the Geant4/CLHEP [140], a widely used

simulation toolkit in HEP for modeling the passage of elementary particles through matter,

also used for medical and space science simulations.

PRNGs are also crucial in Markov Chain Monte Carlo (MCMC) methods which are used

for sampling from desired probability distribution by constructing Markov chain on state

space whose stationary distribution is of interest [1, 131, 132]. Uniform PRNGs play a cen-

tral role in constructing such Markov Chains. Most of MCMC algorithms are developed

within random walk models. A widely used example of random walk Monte Carlo method is

Metropolis–Hastings algorithm [131–134] which is also included in the list of the top 10 al-

gorithms [241]. MCMC methods are mainly used for sampling from large dimensional spaces
1The results considered in this chapter are published in Ref. [141].
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and computing multidimensional integrals. For example, in statistical mechanics, one needs

to compute thermal averages of quantities, such as the total energy, magnetization, etc. by

performing multidimensional integration or summation over configuration space. However,

the total number of configurations can be very large, e.g. in 3-dimensional Ising model the

number of spin configurations with particles at n3 lattice sites is 2n
3 . In thermodynamic

equilibrium the probabilities of occurring each configuration is represented by Boltzmann

distribution. Thereby having samples drawn from Boltzmann distribution one can compute

expectation values of thermodynamic quantities.

The necessity to have large amounts of simulated data imposes a strict requirements on

PRNGs, such as statistical properties of generated numbers, swiftness in number generation,

replicability, lengthiness of generated random cycle and independence of produced random

numbers. To address these challenges the renewed version of MIXMAX PRNG [136, 137]

based on Anosov C-systems and Kolmogorov K-systems has been introduced in [2, 138, 139].

The MIXMAX is matrix-recursive PRNG and it has been shown that the properties of the

MIXMAX generator is improved with increasing the size N of MIXMAX matrix [2]. The

period of MIXMAX is also increased with increasing N and it can be reach up to 1057824, note

that the period of commonly used version of Mersenne Twister based on Mersenne prime has

the period of 219937 − 1.

While having a long period, however statistical properties and time characteristics of

PRNGs are crucial to consider a generator "good" or "bad". In this paper we will present the

results of the statistical tests performed with the matrix size of N = 256 which is considered

to be a default dimension of MIXMAX matrix with flexibility to be further increased.

4.2 Visual demonstration

We can reveal the defect of uniform PRNGs simply plotting random points in high-

dimensional Euclidean space, if these points form lattice structure then to a first approxi-

mation we can say that PRNG has defects in generating random points since the space is not

filled uniformly. The Fig.1 shows the comparison of MIXMAX with the Linear Congruential
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Generator(LCG), which is known to be defective PRNG. In contrast to LCG MIXMAX does

not form lattice structure. We obtain these figures by generating two U(0, 1) random number

sequences and assigning a point in two-dimensional space.

Figure 4.1: Random points in two-dimensional space generated by LCG(up) and MIX-
MAX(down)

4.3 Statistical testing with TestU01

Most of PRNG algorithms produce numbers uniformly distributed in the interval of (0, 1),

hence PRNGs should pass statistical tests of uniformity. Many empirical statistical testing

packages implement tests for these purposes, some of which are [242–245]. Most of the

statistical tests implemented in these packages are discussed in Knuth’s book [246], e.g. the
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package [243] implements mainly tests of Knuth. Currently, one of the well known tools for

statistical testing is TestU01 software library which provides implementations of the empirical

statistical tests for uniform PRNGs. It contains more than 160 different empirical tests and

offers several batteries of tests including the most powerful one, i.e. the ’Big Crush’. When a

specific statistical test is applied to random numbers produced by PRNG the p-value of the

test is printed as a measure of deviation from null-hypothesis, which in our case is uniform

distribution of random numbers. In comparison with other libraries TestU01 is more flexible

and efficient, and it can deal with larger sample sizes and has wider range of test statistics

than other libraries.

In the Table 4.1, the outcome of TestU01 BigCrush suite applied on MIXMAX, Mersenne

Twister and LCG is stored by using 64-bit computer with Intel Core i3 −4150 processor of

clock speed 3.50× 4GHz.

Table 4.1: TestU01 BigCrush suite results

PRNG Total CPU time BigCrush Failed test’(s) p value

MIXMAX 2h 43m 51s All tests were passed

Mersenne Twister 3h 19m 27s 3 0.9990, 1− 10−15

LCG 3h 30m 33s 22 < 10−300

As we can see from the table the MIXMAX passes the same test suite faster than Mersenne

Twister and does not fail any test. TestU01 test suite has been applied to Ranlux PRNG

with its modifications Ranlux24, Ranlux48. It is observed that Ranlux though having good

statistical properties is very slow at generating random numbers. Comparing with MIXMAX

Ranlux24 is 10 times slower and Ranlux48 is 17 times slower. This fact makes it not convenient

for the use in generation of large amount of random numbers.
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4.4 Kolmogorov-Smirnov tests

Kolmogorov-Smirnov (K-S) test is one of the powerful tools that can be used to examine

the statistical features of PRNGs.

Though one-dimensional (1D) K-S test is already implemented in TestU01, we perform

K-S test independently for various parameters of sample size (n) and extract the distribution

of K-S test statistic. The idea behind the test is to calculate maximum distance between

expected Cumulative Distribution Function(CDF) F (x), F (x) = Pr(X ≤ x) and measured

or Empirical Cumulative Distribution Function(ECDF) Fn(x) of n data points

Fn(x) =
1

n
(number of xi ≤ x) (4.1)

The null hypothesis H0 is whether the sample of n random numbers comes from expected

distribution F (x) or not. If data comes from F (x), then the strong law of large numbers

provides Fn(x) → F (x), as n → ∞. The latter is strengthened by the Glivenko-Canteli

(G-C) theorem [247], which states that under H0 hypothesis

Pr( lim
n→∞

supx |Fn(x)− F (x)| = 0) = 1 (4.2)

Hence the difference between CDFs can be used as a measure of agreement between a data

and a given distribution. There are several statistical tests based on (G-C) theorem known

as Cramer-von Mises tests [248, 249]. The key feature of tests based on G-C theorem is that

their distributions are independent of the hypothesized models under H0 when data sample

is large.

The one dimenisonal(1D) K-S test is defined as follows:

Dn = supx |Fn(x)− F (x)| (4.3)

Under null hypothesis the distribution of
√
n · Dn converges to Kolmogorov distribution for

sufficiently large n when F (x) is continuous [250]
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lim
n→∞

Pr(
√
n ·Dn ≤ x) ≡ K(x) = 1− 2

∞∑
i=1

(−1)i−1e−2i2x2

(4.4)

It is of interest to note that for small values of n Kolmogorov distribution is not adequate,

but there is a way to compute p − value for randomly produced Dn [250].

In Fig. 4.2 the normalized histogram of
√
n · Dn data points for MIXMAX and Mersenne

Twister is presented and compared with Probability Density Function (PDF) of Kolmogorov

distribution:

f(x) = K ′(x) = 8x
∞∑
i=1

(−1)i−1i2e−2i2x2

(4.5)

The histograms in Fig.(4.2–4.7) are normalized to unity dividing each bin entry by the prod-

uct of sample size and bin width (n · width). Visual comparison shows that under H0 the

distribution of
√
n ·Dn follows the PDF of Kolmogorov distribution. Due to fast convergence

of the series of partial sums in Eqs.(4.4,4.5) it suffices to take limited number of terms in the

sum, e.g. the first 100 terms are enough.
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Figure 4.2: Distribution of
√
n · Dn for MIXMAX and Mersenne Twister. The size of a

samples is n = 108 and the number of different replicas is 104. The black curve is the PDF of
Kolmogorov distribution.

Two-level tests can be used on K-S test to give evidence of visual coincidence on Fig. 4.2.

For this purpose chi-square test(next section) is applied. It has been checked that both

distributions agree with theoretical expectation (black curve) in 95% Confidence Level (CL).
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Figure 4.3: Distribution of
√
n · Dn for MIXMAX and Mersenne Twister for 2-dimensional

case. The size of a samples is n = 103, note that n is the total number of random points
in 2-dimensional space, i.e. 106 numbers are generated by PRNGs, the number of different
replicas is 104. The black curve is the PDF of Kolmogorov distribution. The shape of
histogram shows clear shift from Kolmogorov distribution. MIXMAX and Mersenne Twister
that have been used in these studies give almost the same distributions for

√
n · Dn which

seems to be independent from dimension of Kolmogorov-Smirnov test.
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Figure 4.4: Distribution of
√
n · Dn for the 1th and 31th projections of MIXMAX RNG in

comparison with the theoretical expectation (black curve). The sample size is n = 108 and
for each projection 104 different replicas are generated.

In multidimensional K-S test one have d-dimensional data (d ≥ 2) and to test H0 it is

needed to compare d-variate ECDF with the hypothetical d-variate CDF. The complication

in multidimensional case is caused by the ambiguity in definition of the CDF since there are
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2d − 1 independent ways of defining CDFs.

There have been proposed different ways to calculate the multidimensional K-S statis-

tic [251], [252]. In [251] four quadrants around all combinations (xi, xj) of data points is

considered and D is taken as the maximum of 4 differences between CDFs over all quadrants.

Therefore this idea makes the test statistic independent of ordering the data. The number of

all pairs (xi, xj) for N points is equal to N2, therefore to calculate Dn one needs to compute

differences between CDFs in 3N2 quadrants(the probability for fourth quadrant is found from

normalization). This method suffers from the computing time when N is large. In [252], it

is proposed to consider only observed points rather than all combinations thereby reducing

the computational time by computing the differences for 3N quadrants only. It is possible to

compute Dn with computationally higher efficiency introducing a binning technique applied

to a continuous multidimensional data, i.e. discretizing the data space. The idea of binning

technique is discussed in the next chapter whose results are published in [253]. In [254] the

algorithm for 2D K-S test is presented when only one CDF from all possible configurations

is taken into account. As a result of it, the procedure used to compute D evaluating the

difference of CDFs is reduced to a small number of data points. In our studies we have

extended the standard definition of one dimensional cumulative distribution to its two dimen-

sional “analogue” and computed K-S statistic using algorithm presented in [254](see Fig. 4.3).

Three-dimensional extension of K-S test is presented in [255], where it is considered 8 CDFs,

and using MC techniques the table of critical values are also presented in this paper.

To detect possible non-uniformities in the multidimensional random sequences of MIX-

MAX PRNG, an arbitrary selected projection has been checked via Kolmogorov-Smirnov test

and the results are compared with that of the first projection. In Fig. 4.4, the probability

density distributions of Kolmogorov-Smirnov statistic are presented for the 1th and the 31th

projections and the comparison is provided with the expected distribution.
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4.5 χ2 tests

The chi-square χ2 test is one of the famous statistical tests which is met in many ap-

plications when one deals with grouped or binned data. The Chi-Square test is applied to

categorical sample distributions unlike the K-S test which using each random point compares

continuous sample distributions with hypothesized ones. The χ2 statistic has the following

form [246,256]

χ2 =
k∑
i=1

(Oi − Ei)2

Ei
, (4.6)

where Oi is the observed number of data points in ith bin and Ei = npi is the expected

number of data points falling into ith bin, here pi is the probability that observation falls into

ith bin. To apply the test to PRNGs [0,1] interval is divided into k bins and the χ2 statistic

is computed noting that pi = 1/k. If H0 is true then statistics defined in (4.6) computed for

random samples follows chi-squared distribution with ν = (k − 1) degrees of freedom

gν(y) =
2−

ν
2 e−

y
2 y

ν
2
−1

Γ(ν
2
)

, (4.7)

where Γ(ν) is gamma function. It is useful to introduce new random variable x = y
ν
and

consider the PDF of x denoted as fν(x). This enables to get rid of small numbers in PDFs

when ν is big. Since

1 =

∫
fν(x)dx =

∫
gν(y)dy (4.8)

it follows that

fν(x) = νgν(νx) =
2−

ν
2 ν

ν
2 e−

x
2ν x

ν
2
−1

Γ(ν
2
)

(4.9)

The new random variable introduced in (4.9) is called reduced chi-square. The distribution

of reduced chi-square for MIXMAX and Mersenne Twister is shown in Fig. 4.5 in comparison

with theoretical expectation.
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Figure 4.5: Comparing denisty histogram of reduced chi-square for MIXMAX and Mersenne
Twister with the PDF in (4.9). The size of a samples is n = 106 and the number of different
replicas is 104.

4.6 Serial tests

The serial test also known as chi-square test of independence is multidimensional analogue

of chi-square test which checks the independence between two or more random variables

[246,257]. When serial test is applied to PRNGs one divides random sequence into groups of

non-overlapping d-tuples (xid, xid+, ..., xid+k−1), where i = 1, 2, ..., n
d
, hence the elements of d-

tuple are considered as realizations of d random variables and the relationship between them is

of interest . If xis are U [0, 1] random variables then k-tuples are uniformly distributed in [0, 1]d.

To check this each dimension of unit hypercube is divided into k bins and the data of d-tuples is

binned into [0, 1]d. Now chi-square statistic (4.6) is applied to this data comparing the number

of observations falling in each sub-hypercube with theoretical expectation: Ei,j,...,d = npi,j,...,d,

where the joint probability pi,j,...,d of d-dimensional data point to fall into (i, j, ..., d) sub-

hypercube is the product of probabilities of each individual coordinate to fall into appropriate

bin, which is the condition of independence.

pi,j,...,d =
d∏

n=1

pn =

(
1

k

)d
(4.10)
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Unlike the non-overlapping tuples, the overlapping d-tuples of random sequence fall on neigh-

boring parallel planes. The largest distance between adjacent parallel hyperplanes is called

the spectral test statistic [246, 258–262]. If the largest distance is small then it implies that

overlapping d-tuples are more uniformly distributed in unit hypercube, therefore PRNG is

considered good.
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Figure 4.6: Comparing denisty histogram of reduced chi-square with the test distribution
(4.9) for 3-dimensional(up) and 5-dimensional(down) cases.

The Fig. 4.6 shows d = 3 and d = 5 dimensional cases of serial test, where each dimension

is divided into k = 10 bins and the histogram of reduced chi-square test statistics is compared

with the distribution of (4.9) with appropriate degrees of freedom. The reduced chi-square

distribution reveals no significant distinction between MIXMAX and Mersenne Twister. Note
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that the serial test here is applied to single random stream and measures correlations between

adjacent random tuples. This test can be also applied to different streams to check the

independence between them.

4.7 Parallel streams of MIXMAX

All tests described in previous sections use one stream generated by PRNG. However,

in multiprocessor stochastic computations it is important to have uniformly distributed and

statistically independent simultaneous random streams partitioned across the processors [263–

267]. Different parallelisation approaches of PRNGs have been studied in literature [267,269–

271]. One trivial technique for parallelisation is to take random seeds on each processor, but

since every PRNG has finite number of states, one should be careful in order to avoid possible

overlapping between different streams. MIXMAX has very large state space, therefore even

taking random seeds on each processor does not affect the independence between multiple

streams. Another approach is to take single sequence and partition it into different processors.

MIXMAX provides skipping-ahead algorithm which enables to skip forward by large amount of

numbers in sequence, this technique guarantees the non-collision of partitioned streams [269].

The check for randomness of each individual stream can be done via the standard chi-square

or K-S tests. The test of independence of multiple streams can be done via parallel version

of serial test simply forming d-tuples of random numbers taken from each of d streams at a

time. However, it is not practical to test empirically all random streams when the period is

very large, different techniques for testing parallel streams can be found in [267].

The serial test up to dimensions d = 7 has been performed and it is observed that multiple

streams of MIXMAX are statistically independent which is also guaranteed by underlying

theory of MIXMAX.

One can analyze the independence and uniformity of parallel streams using the fact that

the sum of n independent U [0, 1] random variables follow Irwin–Hall distribution of order

n [272].
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Figure 4.7: The distribution of Irwin-Hall of order (2,5,10,15) compared with density his-
togram of data.

Under H0 if each stream of PRNG is generated from uniform distribution then the random

sequence resulted from element-wise addition of multiple streams has Irwin–Hall distribution.

The Irwin–Hall distribution has the following form

fn(x) =
1

2(n− 1)!

n∑
i=1

(−1)i
(
n

i

)
(x− i)n−1sgn(x− i), (4.11)

where sgn(x − i) is sign function. When n = 2, then (4.11) reduces to the well known

triangular distribution

f2(x) =


x, 0 ≤ x < 1

2− x, 1 ≤ x ≤ 2

(4.12)

Table 4.2: p-values from chi-square test

Test n = 2 n = 5 n = 10 n = 15

p-value 0.76 0.97 0.39 0.37

In Fig. 4.7 visual comparison of the data with Irwin–Hall distribution is shown, where up
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to 15 random streams is taken to form the sum. To check visual consistency of the histogram

and model prediction in Fig.(4.7) chi square test is applied for comparison with Irwin-Hall

distribution. The Table 4.2 represents p-values of chi square statistic.
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Chapter 5

The Optimal Approach for

Kolmogorov-Smirnov Test Calculation in

High Dimensional Space 1

5.1 Introduction

One of the most important tasks nowadays is the numerical experiments on super com-

puters with the modeling of the sophisticated physics system. The Monte Carlo method is

used for solving the problems where the high dimensional integration is involved. To use

the Monte Carlo method for analysis of the high energy physics experimental and theoretical

problems we have to solve the problem of the quality of the pseudo-random generators, which

should have a strong statistical feature, also a large period of sequences and a high speed

of generating of the pseudo-random number. The K-S test is used to compare how well the

ECDF of a sample fits the CDF of the reference distribution by computing the maximum

distance between these two functions. The K-S test is applied to exactly continuous data,

and for dimensions d ≥ 2 we have to compute the distance on infinite points then take a

maximum, because when d ≥ 2 for CDF and ECDF we have d-dimensional surfaces.
1The results considered in this chapter are published in Ref. [253].
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Several algorithms for computing the two-dimensional K-S test were proposed [251, 252,

254,255]. We propose another approach for 2 and higher dimensions. Our method is based on

discretization of the space introducing a binning technique applied to continuous multidimen-

sional data. This technique does not correspond to the usual K-S test principle, but we show

that it is possible to compute K-S statistics very precisely with the quite computationally

efficient algorithm taking minimal bin number. Here our K-S test results are obtained using

the well-tested uniform Mersenne Twister PRNG [3], which is included in CERN library [268].

In the proposed paper we describe a new technique, which allows to reduce essentially the

number of the bins and correspondingly decrease the needed time and memory used.

5.2 Formalism

In one-dimensional (1D) case to check whether the sample of n random numbers come

from uniform distribution in the [0, 1] range or not we need to compute K-S test with the

CDF of uniform distribution

F (x) = x (5.1)

Usual (unbinned) approach in 1D case looks as follows:

(i) n numbers should be sorted in increasing order {x1, x2, . . . , xn} , xi ≤ xi+1

(ii) Dn is computed in the following way:

Dn = max
0≤x≤1

|Fn(x)− x| = max
1≤i≤n

{∣∣∣∣ in − xi
∣∣∣∣ , ∣∣∣∣i− 1

n
− xi

∣∣∣∣} , (5.2)

where Fn(x) is ECDF of n data points

Fn(x) =
1

n
(number of xi ≤ x) =

k

n
, x = x1, . . . , xn (5.3)

k in (5.3) is the number of random points out of n with x1, . . . , xk ≤ x.

The unbinned approach can be also applied for 2D case following the algorithm described

in [254], which has been used for the performed studies.
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In the 1D binned approach the [0, 1] interval is divided into b bins, then n random numbers

are distributed in b bins according to their values. The ECDF is again defined as:

Fn(x) =
k

n
(5.4)

The difference is that here x takes values of bin edges: x = i
b
, i = 1, . . . , b. For example, if

b = 10, we have the bins edges like {0.1, 0.2, . . . , 0.9, 1} and k is the number of points whose

values are less than equal to the value of bin edge. Therefore, the advantage of the method

is that if n is quite large then ECDF can be defined with a relatively small number of points

(b < n). Now Dn is computed as follows

Dn = max
0≤x≤1

|Fn(x)− x| = max
1≤i≤b

|Fn(xi)− xi|

= max
1≤i≤b

∣∣∣∣∣
∑i

j=1 Yj

n
− i

b

∣∣∣∣∣ , (5.5)

where Yj is the number of observations that do fall into jth bin.

The 1D binned method can be generalized for higher dimensions. In two-dimensional case

(when only one CDF from four possible configurations is taken into account, see the section

of Kolmogorov-Smirnov tests in the previous chapter) the corresponding expression for Dn is

Dn = max
0≤x1≤1
0≤x2≤1

|Fn(x1, x2)− x1x2| = max
1≤i≤b
1≤j≤b

|Fn(xi, xj)− xixj|

= max
1≤i≤b
1≤j≤b

∣∣∣∣∣
∑i

m=1

∑j
n=1 Ymn
n

− ij

b2

∣∣∣∣∣ , (5.6)

where Ymn is the number of observations that fall into category {m,n}. Here it was used

the usual definition of joint CDF(ECDF) of two independent uniform random variables, i.e.

FXY (x, y) = Pr(X ≤ x, Y ≤ y) = xy. Note that each axis is divided into b bins.

The generalization of the formula for any dimension d has the form
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Dn = max
0≤x1≤1

...
0≤xd≤1

|Fn(x1, . . . , xd)− x1 . . . xd| = max
1≤i1≤b
...

1≤id≤b

|Fn(xi1 , . . . , xid)− xi1 . . . xid|

= max
1≤i1≤b
...

1≤id≤b

∣∣∣∣∣
∑i1

m1=1 . . .
∑id

md=1 Ym1...md

n
− i1 . . . id

bd

∣∣∣∣∣ (5.7)

5.3 Binning technique and Kolmogorov distribution

We aim to show that the PDF (or mean) of Kn computed via binning technique with

small number of bins (b < n) is close to the exact PDF (or mean of exact PDF) given by

Kolmogorov distribution in 1D case [250]

f(x) = 8x
∞∑
i=1

(−1)i−1i2e−2i2x2

,

< Kn >=

∫ ∞
0

xf(x)dx = 0.8687 . . . (5.8)

Now visual comparison of Fig.(5.1) confirms that binning technique approach is reliable

approximations since distribution of K105 computed b = 104 is close to the Kolmogorov

distribution.

Figure 5.1: Binning technique approach vs Kolmogorov distribution. Following to notification
on this figure the size of a samples is N = 105, the number of bins n (in the text N is denoted
as n and n is denoted as b), and the number of different replicas is M = 104. The black curve
is the PDF of Kolmogorov distribution.
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Figure 5.2: Binning technique approach vs Kolmogorov distribution. The size of a samples
is n = 105, the number of bins is 104, and the number of different replicas is M = 104. The
black curve is the PDF of Kolmogorov distribution.

In Fig.(5.2) the dependence of Kn on the number of bins is presented for 1, 2 and 3D

cases. Here one can recognize the clear dependence on the number of bins (b). Taking into

account the obtained saturating shape for such dependencies we performed the fit with the

following fitting function:

fp
fit = p1 + p2e

−p3x (5.9)

The meaning of the parameter p1 corresponds to the saturation level, which can be achieved

in particular with quite large value of b, i.e. for fixed n b ⇒ n . Although, using very

high values of the bin number is not practical in the sense of the needed CPU time and

memory, especially in case of higher (d > 4) dimensional space. We can compute < Kn >

using a limited number of bin points, then estimate the saturation parameter b, then make
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a correction for the average value of < Kn > estimated with e.g. b = 10, introducing the

correction factor: C10 = p1− < Kn(b = 10) >, this approach seems to be very interesting and

effective in order to realize the behaviour of < Kn > estimation in case of high dimensional

space. Also the exponential coefficient p3 which regulates the speed of convergence to the

saturation level, can be used to check the quality of different PRNGs. It should be noted,

that the used fitting function is quite stable in respect to the variation of the fitting point

numbers. In 3D case with the total number of points (ntotal = 11), this variation was 11, 9,

7, 5. In 2D case with the ntotal = 19: 19, 15, 11, 7, and in 1D case with ntotal = 75: 75, 55,

35, 15. This is an important feature of the functional form used for a fit, because in case of

essentially higher dimensions one can compute with the binned method a limited number of

points, perform the fit and estimate the saturation level.
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Conclusion

It was shown that there is a mechanism by which the no-pumping theorem|time-averaged

probability currents nullify in the Floquet regime|holds for the destination transition rates

(1.6) (which hold the detailed balance condition). A sufficient condition for this validity is

that the external time-periodic fields acting on the stochastic system hold the time-symmetry

(1.40). Similar time-symmetry conditions (together with the space symmetry of the external

potential) govern the current-generation regimes of various ratchet models; see [164] for a

recent review. It should be interesting to understand in more detail possible relations betweem

the no-pumping theorem and the (no) current-generation in ratchets; this is left for future

work. In the regime, where the no-pumping theorem holds exactly for the destination rates,

there is an approximate no-pumping theorem that holds for the physically pertinent Fokker-

Planck rates.

It was studied a class of non-equilibrium stationary states generated by two thermal baths

at different temperatures. Three conditions were assumed:

(i) Variables of the system have different characteristic times.

(ii) External fields act only on the slow variable.

(iii) The transition rates of the slow variable are such that (under time-scale separation)

it holds an effective detailed balance. Examples of the effective detailed balance are the

activation transition rate for an arbitrary topology of connections, and arbitrary rates for a

tree-like topology.

Conditions (iii) are similar to those governing the no-pumping theorem.

Under conditions (i)–(iii) there exists a non-equilibrium free energy. It describes quasi-
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stationary isothermal processes, and is defined via the potential of the work done via a

slow variation of external parameters. As compared to its equilibrium counterpart, the non-

equilibrium free-energy can be an increasing function of the bath temperature. As a physical

demonstration of this feature we studied the free-enery cost of the isothermal cooling (i.e.

entropy decrease via slow external fields): this cost can decrease if the cooling starts from a

higher temperature. It is interesting to compare this finding with the called Mpemba phe-

nomenon: given two samples of water that are identical except of their initial temperature, the

initially hottter samples cools (and freezes) quicker than the colder one. This can have rela-

tively straightforward physical explanations, e.g. some part of the hotter water can evaporate

thus decreasing its amount and making its cooling easier. Mpemba phenomenon disappears

once such scenarios are ruled out. To compare our finding with the Mpemba effect, we first of

all note that our cooling is not spontaneous. We focus on an (isothermal) entropy reduction

of the system by means of external fields. (Still our cooling process is slow and it leaves

the system in its locally stationary state.) Hence we study not the speed of cooling, but its

work-cost, as determined by the free-energy. The effect we found is impossible in equilibrium,

because the equilibrium free energy is a decreasing function of the temperature. However, we

show that this effect survives close to equilibrium. Hence the second major difference with

the Mpemba phenomenon is that our effect is essentially out of equilibrium, as it relates to

two different temperatures.

The existence of the free energy is facilitated in the (one-dimensional) continuous limit of

the slow variable. Now time-scale separation comes out naturally, and there is a situation,

where a non-equilibrium free energy exists for all driven parameters, i.e. assumption (ii) can

be relaxed.

It was studied a model for an adaptive heat engine that can function under scarce or

unknown resources. Several physical limitations for the adaptation concept were uncovered.

They relate to the prior information available about the environment, i.e. whether both bath

temperatures vary or one of them is fixed.

The detailed studies of newly released MIXMAX PRNG was performed. The empirical

statistical tests of uniform random number generators implemented in TestU01 software li-
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brary were applied to MIXMAX and other generators available in market. The main goal

was to compare the features of MIXMAX with the most widely used Mersenne Twister. In

addition to TestU01 (which gives p-value of statistical test when applied to random numbers

produced by PRNG) some tests were performed independently for various parameters of sam-

ple size. The analysis reveal compatible statistical features of MIXMAX and Mersenne, but

better time characteristics for MIXMAX in generating random numbers.

A new approach to optimize the Kolmogorov-Smirnov discrepancy calculation with the

binned method for high dimensional spaces by means of reducing the used bin number is

developed. This approach approach allows to extend the estimation of Dn to very high

dimensional spaces with reasonable requirements to the CPU time and memory, and, thus, to

provide very important tests of the PRNGs, which are used to apply the Monte Carlo method

for solving of essentially high dimensional physics problems.
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