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Introduction 

Topicality of the Dissertation: There are many types of Bonus-Malus Systems (BMS) used 

in the world. They have various applications. Insurance companies operating in some countries 

are highly recommended to apply the same BMS for a particular class of insurance such as 

Compulsory Third Party Liability (CMTPL) insurance in Armenia. The most developed 

countries in this area, mainly European ones, entitled full or partial freedom to insurance 

companies by developing a highly competitive market. The common characteristic of these 

systems is that the transition of a policyholder from one BMS class to another is described by 

the number of claims incurred by that policyholder. In applying this rule many problems are 

arise which cannot be solved by the experience rating methods used up to now. The application 

of martingale theory in this field gives new opportunities to introduce more efficient systems. 

The topicality of this dissertation is conditioned by the study of the current issues of BMS’s and 

finding new ways to solve them.  

The Objective and Issues: The main aim of this dissertation is the construction of new 

BMSs, which will include the number of claims and aggregate claim amount components as a 

posteriori risk classification. The systems constructed here must be financially balanced and the 

future malus of a policyholder must be proportional to the loss incurred by insurance company 

because of him. On the basis of the given dissertation the following problems have to be 

studied:  

 Analyzing currently operating BMSs; considering the approaches of solving or 

eliminating their current issues 

 Suggesting new systems satisfying to optimal BMS definition 

 Testing suggested systems by using Armenian CMTPL insurance market data  

Research Methods and Informational Backgrounds: Two new BMS models are presented 

in the following dissertation. On the basis of the first model’s construction stands the 
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martingale approach. For the second model the Markov process have been applied where the 

parameters of the model were estimated with the Expectation Maximization (EM) algorithm.  

The data used in this dissertation has been gained from “IngoArmenia” Insurance CJSC, 

from the official site of the “Armenian Motor Insurance Bureau” and from the professional 

literature sources.  

The databases were analyzed with the help of Easy-Fit, SPSS and MS Excel software 

packages. 

Scientific Novelty:  

1. An alternative model for BMS was proposed where a necessary and sufficient 

condition was found out for the premiums of the insurance policies’ portfolio to 

form a martingale series.  

2. It was shown that the proposed model can reach to a stationary state.  

3. An upper bound for the ruin probability in the alternative BMS was found out 

with the help of martingales and supermartingales.  

4. It was stated the claim amount below which the “bonus hunger” phenomenon 

arises in the alternative BMS model  

5. A generalized BMS model was proposed where the transition of the policyholder 

among BMS classes described by his/her current class, by number of claims and 

by aggregate claim amount   

6. Estimates for generalized BMS model parameters were stated with the help of 

“hidden” Markov models and change of measure 

7. For the claims number and aggregate claim amount random variables hypothesis 

for distributions were made on the basis of data received from insurance 

company. 
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8. Comparative analyzes of the current BMS with BMSs proposed in this 

dissertation were done.  

The all results presented in the dissertation are new.  

Practical and Theoretical Significance: The main results of this research have theoretical 

and practical character as well. The models presented in this work can be used by insurance 

companies as well as by the supervisory and decision-making participants of the insurance 

market for the research, strategic and commercial purposes. 

  Approbation:  The main results of the dissertation have been presented in the scientific 

seminars held in the department of Actuarial Mathematics and Risk Management of YSU, in the 

IX International Academic Congress “Contemporary Science and Education in Americas, Africa 

and Eurasia”, Rio De Janeiro, Brazil, 18-20 July, 2015. The results have been discussed at the 

“IngoArmenia” insurance company and at the Central Bank of Armenia.   

The main results of the dissertation are presented in 4 (four) articles, 3 (three) of which 

were published in the journals accepted by Supreme Certifying Commission (SCC) of Armenia 

and one was included in the SCOPUS database. 

The Structure and the Content of the Dissertation: The dissertation is stated in 109 pages 

(the appendix is excluded); consists of an introduction, four main chapters, conclusion, 

appendix and the list of 134 cited references. 

Short Description of the Dissertation 

The first chapter of the dissertation, which is called The Contemporary Research 

Perspectives of the Bonus-Malus Systems, is devoted to the international experience of 

functioning BMS’s, to the ways of their study, to their current issues and to the problem-solving 

methods and approaches applied up to now. The first chapter presents also the necessity of this 

dissertation; the main characteristics of the models introduced in this chapter which allow 

eliminating current BMS’s some problems.  
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In the second chapter called BMS Study under the Financial Balance Principle a new BMS 

model constructed on the basis of “optimal” BMS principle is suggested. Under the “optimal” 

BMS principle the maluses and bonuses provided by an insurance company during an insurance 

year are financially balanced. In this model for the calculation of the insurance premium the 

yearly aggregate claim amount paid by company is used. Parameters of the model are selected in 

such a way that the premiums collected by an insurance company will form a martingale series. 

It is suggested to apply a critical claim amount method for the evaluation of the model’s 

parameters. For the model presented in the second chapter of this work the upper bound for the 

ruin probability of an insurance company is also derived with the help of martingales. 

In the third chapter of this dissertation called BMS Analysis Using Hidden Markov 

Models another new BMS model is introduced, where the next BMS class of a policyholder is 

determined by the number of his claims and by the aggregate claim amount. The real number of 

claims and aggregate claim amount of a policyholder are considered as “hidden” Markov 

processes. The parameters of the model are estimated with the Expectation-Maximization (EM) 

algorithm. 

The last chapter is devoted to the testing of new models presented in this dissertation by a 

comparative analysis with the BMS used in Armenian CMTPL insurance.    
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CHAPTER1  

THE CONTEMPORARY RESEARCH PERSPECTIVES OF THE BONUS-MALUS 

SYSTEMS 

Introduction 

Bonus-Malus System (BMS) is a tool used by insurance companies to “penalize” the 

policyholders responsible for one or more claims by a premium surcharge (malus) and to 

“reward” the policyholders who had a claim-free year by awarding discount of the premium 

(bonus). 

Describing BMS one should mention their main characteristics, which are:  

 BMS classes (with the help of them one recognizes the amount of future premium) 

 The beginner’s class (new policyholder join to the system from that class)  

 The transition rules (the pre-defined conditions in case of which the policyholder moves 

from its current class to another)  

The BMSs were used from 1950’s. They can be applied in different areas of insurance but 

they appear mainly in motor transport insurance (CASCO) and in motor third party liability 

insurance for road vehicle (MTPL).     

The Section of International Actuarial Association for Actuarial STudies In Non-life 

insurance (ASTIN) was created in 1957.  In those years at ASTIN’s conferences great attention 

was paid to the problem of “fairly constructed premium”. To solve this problem mathematically 

the policies with no-claim-discount system were considered. Actually the no-claim-discount 

system is the special case of BMS.          

1.1. Bonus-Malus Systems as Markov Chains 

The first theoretical and practical works on construction of BMS belongs to Bichsel [1] 

and Buhlmann [2], who consider the problem under the game theory framework. Derron [3] 
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states “that a subsequent adjustment of premiums according to the past claim record can be a 

suitable way of obtaining a fair premium”. Gurtler [4], [5], [6] introduced a standard for 

evaluating the fairness of a premium. Derron [3] extends and complements the results obtained 

by Gurtler. Welten [7] points out that the bonus a policyholder obtains usually consists of at 

least three components depending on the length of time, which precedes the current insurance 

period: a component concerning the individual claim frequency, an individual random factor 

and a collective random factor. The last two components tend to zero for increasing length of 

time. The sum of these last two components, called “unearned bonus”, should be taken into 

account by insurance companies in the short run, and would lead to a bonus reserve. 

Many of the BMS in practice follow a Markov chain consisting of a finite number of 

classes any of which corresponds to some percentage of the base premium. The premium can be 

reviewed upward or downward depending on a policyholder’s past record of reported accidents 

and in accordance with transition rules (see for instance [8], [9], [10] and [11] ). To get the next 

class occupied by a policyholder it is enough to have information on its current class and the 

number of claims made by him during the current period. This come to show that the BMS can 

be described as Markov chain: the future (the class occupied in  year) depends on present 

(on the current class and on the number of claims during the current period) and does not 

depend on past (the full history on claims number and occupied classes in  periods).   

One of the characteristic features of Markov chain is its transition matrix. In the case of 

BMS it is the probability matrix of policyholder’s transition from one class to another which are 

explored in a number of works (see for example [12], [13]): The transition of policyholder from 

one state to another depends on the number of claims which is a random variable and 

represents a great interest from mathematical point of view. The probabilistic distributions of 

claim counts and their forecasting methods can be found in [14], [15], and [16]. The simplest 

and the most popular distribution considered is the Poisson distribution to which devoted the 

works [10] and [17] . 

To identify whether some probability law is applicable to claims distribution, Gosslaux 

and Lemaire [18] examined six different observed claim histories of automobile insurance third 
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party liability (TPL) portfolios received from five countries. They fitted the Poisson 

distribution, the Negative Binomial distribution, the Generalized Geometric distribution and 

the mixed Poisson distribution to each of them by the method of Moments and the Maximum 

Likelihood method1. They concluded that there is no single probability distribution law 

providing a good fit to all of them. Moreover, there was at least one example where each model 

gets rejected by a Chi-square test (at the level 10%). After them Kestemont and Paris  [19] 

defined a large class of probability distributions by using mixtures of Poisson processes and 

developed an efficient method of estimating its parameters. For the six data sets mentioned 

above they proposed a law depending on three parameters which always gives extremely good 

fits. Willmot [20] showed that the Poisson-Inverse Gaussian distribution merit consideration as 

a model for the claims distribution as it fits to data well. Furthermore, this law enjoys 

abundance of convenient mathematical properties. The author compared the Poisson-Inverse 

Gaussian distribution with Negative Binomial one and concluded that the fits are better with 

the Poisson-Inverse Gaussian in all the six cases studied in [18]. The Poisson-Inverse Gaussian 

distribution was investigated in [21] and [22]  as well. Ruohonen [23] considered a model for 

the claim number processes. The model is the weighed Poisson process with a three-parameter 

Gamma distribution as the structure function and is compared with the two-parameter Gamma 

model which gives the Negative Binomial distribution. He fitted his model to some data that 

can be found in the actuarial literature and the results were satisfying. Panjer [24] proposed to 

model the number of automobile claims with Generalized Poisson-Pascal distribution which 

includes three parameters (in fact it is the Hofmann distribution). The fits obtained were 

satisfactory, too. Note that the Poisson-Inverse Gaussian, the Polya-Appeli and the Negative 

Binomial distributions are special cases of this distribution. Consul [25] tried to fit the same six 

data sets by the Generalized Poisson law. Although the Generalized Poisson distribution is not 

rejected by a chi-square test, the fits obtained in [19], for instance, are always much better. 

Moreover, Elvers [26] proved that the Generalized Poisson distribution did not fit very well the 

data observed in automobile TPL insurance portfolio. According to Elvers’ note, the distribution 

hypothesis was in almost every case rejected by a chi-square test. Later Ter Berg [27] considered 

                                                           
1
 Some of the listed discrete distributions are presented in Appendix, Table A.1 
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slightly different model which involves the Generalized Poisson as well. He introduced a log-

linear model, which is able to combine explanatory variables. The results were satisfactory. 

Denuit [28] concludes that the Poisson-Goncharov distribution introduced in Lefèvre & 

Picard [29] is suitable to describe the claims count distribution in automobile insurance. Using 

approptiate evaluation methods he shows that the Poisson-Goncharov distribution is a good fit 

for the six data sets considered in [18] as well as for the other data sets achievable in actuarial 

literature. As a special case of probabilistic distribution introduced in [19], the authors of  [16] 

investigated ordinar Poisson, Poisson-Inverse Gaussian and Negative Binomial distributions. 

It was initially assumed that the claim process is homogeneous. In contrast to that 

assumption the experience shows that automobile insurance portfolios are manifold. The fact 

that in a portfolio the policyholders are drivers of different personalities and professional 

background, it forces researches to conclude that the claim processes are heterogeneous. In this 

case the mixture distributions are applicable where the “mixing” distribution becomes a tool for 

risk heterogeneity assessment. It assumes in mixture distributions that the number of claims 

follows to some distribution which parameter is not determined in advance and is random 

variable. The first reference to this statistical method is given by Albrecht [30]. Lemaire [31] 

uses the Gamma distribution for that parameter and get the Negative Binomial distribution for 

claims number process. This property was mentioned also in [15], [32], [33] and [34]: The BMS 

construction in that case is very simple. Trembley [21] used the Inverse Gaussian distribution to 

random parameter and get the Poisson-Inverse Gaussian distribution for claims number. It 

seems that in the above mentioned work [21] the construction of the model is very complicated 

where the use of modified Bessel functions is needed, but in fact it is not necessary. In [35]the 

automobile insurance portfolio assessment done with the help of a three-parameter distribution 

encompassing the Negative Binomial and the Poisson-Inverse Gaussian distributions, which was 

also discussed in [19] and is known as Hofmann distribution. With the help of Simar’s [36] 

“Non-Parametric Maximum Likelihood Estimation” (NPMLE) method in [35] the non-

parametric estimation used also to the claims number process. It is assumed that the claims 

number follows to the mixture Poisson distribution, but the “mixing” distribution is not known 

in advance. The estimation is given with the help of Maximum Likelihood method. Although 
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the NPMLE is a power method for claims number assessment, but it is not applicable to BMS 

construction. The disadvantage of that method is in its discrete nature. To eliminate this fact in 

[37] the smoothing of the method described in [36] was made with Gamma kernel. A similar 

work has been done in [38] where the Tucker-Lindsey moment estimation was smoothed with 

lognormal kernel.  

To analyze BMS with Markov chain transition matrix on a long time period one should 

discuss its stationarity problem. The solution of this problem is used by the actuaries of 

insurance companies for the long term forecasting. With the help of stationary distribution it is 

possible to identify the distribution of policyholders’ among BMS classes. Each BMS class 

corresponds to some premium level, so the total amount of future premium income can be 

evaluated. Several algorithms have been proposed in order to compute the stationary 

distribution of the policyholders’ in a given BMS. Dufresne [39] proposed a very nice technique 

requiring independence between the annual numbers of accidents per policyholder. Although 

the application of the Poisson process is possible, unfortunately, this independence assumption 

rules out all the mixed Poisson distributions. We should note that the Dufresne’s method would 

not be applicable to BMS with non-uniform penalties per claim while the technique described 

in [35] remains applicable for all BMS. Dufresne adapted the reasoning to the mixed Poisson 

case in his work [40], but at the cost of many numerical difficulties. On the basis of the model 

offered in [39], the authors of [35] search the stationary distribution with the non-parametric 

NPMLE method. This method was used also in [9] for the TPL insurance case.     

It is possible that the system could not reach to its stationary state at all or the rate of 

convergence to stationary state may be slow in comparison to the typical sojourn time of a 

customer in the portfolio. This problem was discussed in [17], [41], [42] considering the 

Bayesian view of premium calculation which can be found in [16], [43], [44].    

In most analysis of BMS it is assumed that the claim frequency of an individual 

policyholder remains constant during the time. This assumption implies to constant transition 

probabilities and makes it possible to model BMS as a homogeneous Markov chain [10]. 

However it is known that the claim frequency may be time dependent for many reasons. 
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Moreover, actuarial tools used to evaluate BMS such as the mean first passage times and 

stationary probabilities are not necessarily monotonic functions of claim frequency. That is why 

it is often difficult to determine these measures’ reaction to changes in claim frequency. In 

order to mitigate the assumption of a constant claim frequency in [45] is the concept of ergotic 

Markov Set-Chains defined by Hartfiel [46] used.  This method signifies a specific 

generalization of the idea of classical Markov chains, to analyze the consequences of claim 

frequency changes, to evaluate the possible change intervals of the transition probabilities, the 

stationary distributions as well as the mean first passage time.         

There are BMSs which are not Markovian. One of such systems is Belgian BMS which is a 

“dying” one. From 2004 Belgian companies have complete freedom of using their own BMSs. 

The Markov property disturbed due to the special bonus rule sending the policyholder in the 

malus zone to initial class after four claim-free years. The works referred to this special bonus 

rule and to Belgian BMS are [10], [47], [48], [49]. Lemaire [10] proposed to split the classes from 

16 to 21 into subclasses. This method gives an opportunity to get free from the special bonus 

rule and consider the model as a Markov chain again.   

1.2. Risk Classification in BMS 

One of the main tasks of an actuary is to design a tariff structure that fairly distributes the 

loading of current claims among its portfolio of current policyholders. If the insurance portfolio 

consist of heterogeneous risks, then it is fair to split the portfolio into homogeneous groups of 

policies with policyholders belonging to the same group paying the same premium.  

The classification variables used to partition the portfolio into homogeneous groups are 

called a priori classification variables. Their values can be determined at the start of the 

insurance. In TPL insurance, for instance, the commonly used classification variable are the age, 

gender, type and use of car, occupation, residential address, marital status, etc. To identify the a 

priori classification variables The Generalized linear models are used. The examples of their use 

in actuarial literature are [50], [51], [52]. 
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In the models which are only the function of time and of past number of accidents the 

characteristics of each individual are not taken into consideration. As mentioned in Dionne and 

Vanasse [11], the premiums do not vary simultaneously with other variables that affect the 

claim frequency distribution. One of the most interesting examples is the age variable. Suppose 

that age has a negative effect on the expected number of claims. It would imply that insurance 

premiums should decrease with age. Even though age is a statistically significant variable and 

premium tables are functions of time, the premium derived from BMS based only on the a 

posteriori criteria and not on age factor. 

In most practical situations some of important a priori classification factors such as driver’s 

knowledge of rules of the road, reflexes, driving style etc. cannot be taken into account. So, 

even after the a priori classification variables have been chosen, tariff groups may still be 

heterogeneous. In this case it remains to believe that these characteristics are revealed by the 

number and sizes of claims reported by the policyholders over the incoming insurance periods.   

   It is interesting to mention that in North America, emphasis has traditionally been laid 

on a priori ratings using many classifying variables, while in Europe much importance was 

placed on the a posteriori evaluation of policyholders and just a few a priori classifying variables 

were used. From 1994, however, European Union (EU) introduced a complete rating freedom 

and each insurance company now is free to set up its own rates, select its own a priori and a 

posteriori classification variables, and finally, design its own BMS. Most of the companies in EU 

have taken advantage of this freedom by introducing more rating factors.  

Thus, the next premium in BMS adjusted taking into account the individual claim 

experience of a policyholder. So, it turns out that the policyholders are classified by a priori 

classification variables initially and after each insurance period they are reclassified by BMS 

rules according to their claim experience.  

The a posteriori rate-marking is an efficient way of classifying policyholders into groups 

according to their risk. As noted by Lemaire [10], if insurers are allowed to use only one rating 

variable, it should be a merit rating variable, as merit rating variables are the best predictors of 

the claim frequency of a policyholder.  Besides encouraging policyholders to carefully driving, 
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merit rating systems aim to better evaluate individual risks, so that every policyholder in the 

long run will pay a premium corresponding to his own claim frequency. Such systems are called 

experience rating, merit rating, no-claim discount or bonus-malus systems.   

Dionne and Vanasse in [11] and [53] presented a BMS that integrates a priori and a 

posteriori information on an individual basis. This BMS is derived as a function of the number 

of accidents, of the years that the policyholder is in the portfolio and of the individual 

characteristics which are significant for the claim frequency. Picech [54] and Sigalotti [55] 

derived a BMS that incorporates the a posteriori and the a priori rate-marking, with the engine 

power as the single a priori rating variable. Sigalotti developed a recursive procedure to 

compute the sequence of increasing equilibrium premiums needed to balance out premiums 

income and expenditures compensating for the premium decrease created by the BMS 

transition rules. Picech developed a heuristic method to build a BMS that approximates the 

optimal merit-rating system. Taylor [56] developed the setting of a Bonus-Malus scale where 

some rating factors are used to recognize the differentiation of underlying claim frequency by 

experience, but only to the extent that this differentiation is not recognized within base 

premiums. Pinquet [57] developed the design of optimal BMS from different types of claims, 

such as claims at fault and claims not at fault.   

Another possible approach is the a priori construction of some risk homogeneous classes 

and then to build up a bonus-malus table for each class. Following this purpose, Lazar & all [58] 

have estimated the number of claims as the dependent variable with the Poisson regression 

model. Between the significance explicative variables there could be noted: the gender of the 

insured person, the brand of the car, the cylinder capacity of the engine, and the age of the car. 

Taking all this into consideration, the research made in [34] states that the ignorance of the 

claim size in a posteriori tariff systems is not always justified, even though the risk classification 

is homogeneous.    

1.3. BMS Current Issues  

Currently operating BMSs are multifarious as well as their analysis tools, comparison 

benchmarks and current issues.  
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For the diversity of BMSs’ such as presented in [59] there must be tools to make a 

comparison analysis among them. Loimaranta [60] develops formulas for some asymptotic 

properties of BMS, where the systems are understood as Markov chains. He introduces the 

quantities like efficiency of a BMS, discriminatory power of bonus rules and minimum variance 

bonus scale. The last one gives an asymptotic solution for the problem to find locally “the best” 

bonus scales for given bonus rules. On the basis of methods introduced in [60] Vepsalainen [61] 

studied the BMSs used in Denmark, Norway, Sweden, Finland, Switzerland and West Germany. 

Lemaire [62] defines an efficiency concept for a BMS, which differs from the concept given in 

[60]. De Pril [63] presented a more general concept of efficiency, which includes both earlier 

ones as special cases. On the basis of the above mentioned analysis tools Lemaire and Zi [59] 

compare 30 various systems of bonus-malus used in different countries. Lemaire summarizes the 

previous researches in [10] and [64]. He shows five measures of BMS efficiency  

 the relative stationary average level  

 the coefficient of variation of the insured’s premium  

 elasticity of the mean asymptotic premium with respect to the claim frequency  

 the average optimal retention  

 the rate of convergence of BMS  

From practical point of view it is well known that the existing BMSs possess several 

considerable disadvantages which are difficult or even impossible to handle within the 

traditional theory of experience rating [65]. Therefore it is necessary to examine them from 

different point of view. The existing systems are based on the following characteristic: the claim 

amounts are omitted as a posterior tariff criterion. This characteristic leads to the following 

disadvantages: 

i. Regarding an occurred claim, the future loss of bonus will in many cases exceed the 

claim amount. 

ii. In many cases it gives the policyholder a filling of unfairness especially when a 

policyholder makes a small claim and the other one a large; they have the same penalty 

within the same risk group. 
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iii. The consequence of (i and ii) is the well-known bonus hunger behavior of 

policyholders. 

iv. Bonus hunger behavior leads to asymmetric information between policyholders, 

insurers and regulators. 

Many authors have focused on the disadvantages mentioned above. The aim of these 

authors has not been to solve or eliminate the disadvantages, but rather to take them into the 

modeling account in connection with the mathematical optimization of the BMS.   

″Deductibles″ 

To diminish some of the disadvantages (i-iv) Holtan [65] suggested the use of very high 

deductibles that may be borrowed by the policyholder to the insurance company. He assumes a 

constant deductible for all policyholders, so it is independent of the level they occupy in BMS. 

Although this approach is technically acceptable, it causes considerable practical problems. 

Based on this in [66] suggested using deductibles depending on the BMS class of the 

policyholder.  This approach leads to competition in insurance market. The insurer is not 

inclined to leave the company after a claim as the deductible is payable after the claim 

submitting.      

″Bonus hunger″ 

Among the disadvantages (i-iv) the huge share belongs to the problem which in 1960 

Philipson [67] called “hunger for bonus”. Alting von Geusau [68] investigates “to what extent it 

is possible to develop a theoretical framework to test that a no-claim-discount-system will 

prevent the insured from submitting small claims to the insurance company”, and “that the 

insured who has just lost his no-claim discount will use every possibility for submitting claims 

with in his mind the idea that in this way he will earn back his higher non-reduced premium” 

[69]. 

Grenander [70] derives equations to determine a rule of the form “pay the damage if its 

amount is smaller than a critical value and claim it otherwise”. However, the equations are 

generally difficult to solve, and it is not proved that they really determine an optimal policy in 
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the sense that the total expected discounted cost of premiums and payments during a long 

future planning period is minimized. Haehling von Lanzenauer [71], [72], [73] analyses the 

problem on the assumption that a policyholder can cause at most one accident per year. 

De Leve and Weeda [74] suggest a mathematical model, where the policyholder can cause 

more than one claim in a year but after making one claim during an insurance period, the 

policyholder is placed in the class with the highest premium. The model called generalized 

Markov programming. It yields an optimal strategy, which is a function  that minimizes the 

expected costs for the policy holder. The function  is such that “if at any time  an accident 

occurs with damage  and no damages have been claimed since the last payment of premium, 

then  should be claimed if ”. In this approach the decision depends on the point of 

time during the year and the premium paid at the beginning of that year. Weeda [75] extends 

the analysis of the same model to case where the damage distribution is given by an arbitrary 

distribution and focuses on the theoretical aspects of the derived iteration scheme. However, 

although the model is continuous with respect to time axis, he considers discrete time for 

computational purposes. 

Martin-Lof [76] shows that a decision rule of the form formulated in [70] is optimal in the 

sense that it minimizes total expected costs. The decision rule is derived by applying the general 

theory of Markov decision processes, which find an optimal control iteratively by using 

dynamic programming. In that work, however, the analysis was restricted to the case where the 

policyholder takes a decision only at the end of an insurance period for the total amount of 

damage sustained during that insurance period. 

Haehling von Lanzenauer and Lundberg [77] develop a model which can be used in 

deriving the distribution of the number of claims for insurances with merit-rating structures. 

The problem is formulated and solved as a regular Markov process with the claim behavior 

integrated in the analysis. Haehling von Lanzenauer [78] develops an optimal decision rule for 

situations where the policyholder takes a decision more than once a year, which is valid for any 

merit-rating system. He splits up a year into a number of periods, which results in a discrete 

model in which the optimal critical claim size can be determined by dynamic programming. 
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However, this derivation of an optimal critical claim size is incomprehensible. Lemaire [79] 

derives an algorithm for obtaining the optimal strategy for a policyholder. In his model the 

policyholder remains always insured (the so-called infinite horizon model) which leads to a 

critical claim size which is independent of the year in which the accident takes place. Also, in 

order to compute the optimal policy, he uses policy iteration, which is very time-consuming, 

whenever the state space is large. He applies this algorithm in [62] to compare BMS used in 

Norway, Denmark, Finland, Sweden, Switzerland and West Germany. 

Hastings [80] presents a simple model based on a typical British policy, assuming that the 

number of accidents is Poisson and the amount of damage is Negative Exponentially distributed. 

He assumes an optimal critical claim size, which is constant throughout the year, independent 

of the number of claims already made during the year and of the time until the next premium 

payment. He determines optimal critical claim sizes, which minimize the long-run average 

costs of premiums and repairs. The problem is formulated as a Markov decision problem and is 

solved by dynamic programming. Almost all studies mentioned above have in common that 

they assume a discrete time axis. De Pril [81] gives a formulation based on a continuous time, 

where the optimal critical claim size can be determined by solving a set of recurrent differential 

equations. However, for solving these equations, one should make a discretization of the model, 

which gives rise to the same results as in [78]. Norman and Shearn [82]build on Hastings’ 

model, where they drop the restriction of a constant optimal critical claim size. Moreover, they 

present a much simpler state description than the one used by Haehling von Lanzenauer in [78]. 

The optimal decision rule has been compared with rules of thumb that appear to produce 

remarkably good results. Tijms [83] gives a model that is equal to the model presented in [82]. 

Kolderman and Volgenant [84] present a continuous model based on generalized Markov 

programming, applicable to BMS used by Dutch motor insurance companies. However, in the 

computational part of their study they use discrete time for numerical reasons. Lemaire [31] 

describes a simple model with the assumption that all claims are reported in the middle of the 

insurance period. Menist and Volgenant [85]compute the optimal critical claim size by 

considering the difference between the expected costs in case of claiming and that of not 

claiming damage. They restrict the analysis to a finite time horizon. Dellaert at al. [69] restrict 
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their work on TPL insurance, where there is no deductible, i.e. the total amount of damage is 

covered. The analysis is based on the suggestions of [82], where the time is discrete. This 

assumption is not very restrictive in practical situations as a policyholder generally allowed 

some time (at least 24 hours) to decide to claim or not to claim for damage. Dellaert at al. [86] 

consider the optimal behavior of a policy holder having vehicle damage insurance. Recurrent 

systems of formulas are derived in each of last two articles. The solution of systems gives the 

optimal amount limit above which the policyholder will claim the damage to the insurance 

company.    

″Information Asymmetry″ 

As a consequence of bonus hunger, adverse selection and moral hazard phenomena, 

information nonconformity among insured, insurers and their regulators arises. In the case of 

motor insurance the owner generally knows his driving level, the car’s performance and other 

status. It is easy to obtain a car’s information, while it is hard to recognize a car owner’s driving 

level directly. It is necessary to classify the customers’ risk and charge a reasonable premium, 

but the underwriting cost will be higher if the insurer wants to identify the risk more closely. 

Because of information asymmetry, speculative psychology high-risk costumers are more 

willing to insure in real life, compared to low-risk populations. This is adverse selection. The 

insurer therefore tends to develop a higher premium, low-risk populations (quality customers) 

will eventually be “driven out” of the auto insurance market, and the market efficiency will be 

reduced. After an insurance contract become effective, the insurer cannot be aware of the 

owner’s driving level and his cautious attitude. In case of an accident, the driver’s derogation 

measures cannot be observed either. The accident due to owner’s negligence and the fraud after 

the accident will increase the claims costs, so the insurer also faces moral hazard. Moral hazard 

can be subdivided into two types’ ex-ante and ex-post. Ex-ante moral hazard occurs before an 

accident. It concerns the impact of the policyholder’s actions on the probability of occurrence 

and severity upon occurrence of the insured event. For example, the policyholder would 

demonstrate ex-ante moral hazard if they smoked in bed only after the purchase of fire 

insurance. Ex-post moral hazard occurs during or after an accident, and affects the severity of 

the claim. For example, the policyholder would demonstrate ex-post moral hazard if they did 
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not pick up their wallet as they escaped from their burning house, which they would have done 

if they had not been covered by the fire insurance policy. Here is a concise figure of that: 

 

For a further discussion of the distinction between these two types of moral hazard see 

[87]. 

Rothschild and Stiglitz [88] and Stiglitz [89] discussed how to design an optimal insurance 

contract to deal with adverse selection and moral hazard.  Dionne and Lasserre [90], Cooper and 

Hayes [91] discussed the multi-period insurance contract, and pointed out the experience 

ratemaking and risk classification can solve information asymmetry. There are a lot of 

researches to answer the question: Do adverse selection and moral hazard exist in the auto 

insurance market? Kim. H, Kim. D, Im and Hardin [92] and Cohen and Siegelman [93] proved 

that moral hazard exists in South Korea’s auto insurance market. Unlike the studies of Dahlby 

[94] and [95], Puelz and Snow [96] and Cohen [97], where the existence of a coverage-risk 

correlation is suggested, Chiappori and Salanie [98] for French, Dionne et al [99] for Quebec 

and Saito [100] for Japanese automobile insurance markets use more refined methods and 

cannot reject a zero correlation between higher insurance coverage and more accidents in their 

data and cannot find evidence for asymmetric information. By analyzing the above mentioned 

results for Danish insurance market, Donnelly at all [101] prove that the existence of adverse 

selection depends on the research method and statistical tests. 

“Classification by Claim Severity” 

The main reason for BMS disadvantages (i) and (ii) is the application of big maluses for 

claims with small severity. A reliance or “sense of fair-dealing” to the BMS will arise when the 

“punishment” of a policyholder as a malus is proportional to the loss incurred by insurance 

company because of him.  This leads to BMS construction with taking into account the claim 

severity as well.  

One of the first models of BMS designed to take severity into consideration is Picard 

[102]. Picard generalized the Negative Binomial model in order to take into account the 

Adverse selection 

Underwriting 

Ex-ante moral hazard 

Receive a case 

Ex-post moral hazard 

Claim settlement 
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subdivision of claims into two categories, small and large losses. In order to separate large from 

small losses, two options could be used:  

 The losses under a limiting amount are regarded as small and the remainder as large.  

 Subdivision of accidents in those that caused property damage and those that cause 

bodily injury, penalizing more severely the policyholders who had a bodily injury 

accident.  

Pinquet [51] designed an optimal BMS which makes allowance for the severity of the 

claims in the following way: starting from a rating model based on the analysis of number of 

claims and of costs of claims, two heterogeneity components are added. They represent 

unobserved factors that are relevant for the explanation of the severity variables. The costs of 

claims are supposed to follow Gamma or Lognormal distribution. The rating factors, as well as 

the heterogeneity components are included in the scale parameter of the distribution. 

Considering that the heterogeneity also follows a Gamma or Lognormal distribution, a 

credibility expression is obtained which provides a predictor for the average cost of claim for 

the following period. Frangos and Vrontos [103] assumed that the number of claims is 

distributed according the Negative Binomial distribution and the losses of the claims are 

distributed according to the Pareto distribution, and they have expanded the frame that 

Lemaire [10] used to design an optimal BMS based on the number of claims. Applying Bayes’ 

theorem the posterior distribution of the mean claim frequency and the posterior distribution of 

the mean claim size given the information about the claim frequency history and the claim size 

history for each policyholder for the time period he is in the portfolio have been found out. For 

more on this subject see Vrontos [104].  In [103] the development of a generalized BMS is 

presented, which integrates the a priori and the a posteriori information on an individual basis. 

In this generalized BMS the premium is a function of the years that the policyholder is in the 

portfolio, of his number of accidents, of the size of loss that each of these accidents incurred, 

and of the significant a priori rating variables for the number of accidents and for the size of loss 

that each of these claims incurred. Pitrebois at al. [105] suggested introduction of claim amount 

in the model via premium adjustment factor, which is calculated according to credibility 
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techniques. Bonsdorff [106] discussed some asymptotic properties of Bonus-Malus systems based 

on the number and on the size of the claims.  

 

*** 

Analyzing BMS current issues in the following thesis suggested to leave traditional 

methods discussed up to now and construct systems, which are basically different from those 

ones. The systems constructed here are financially balanced and the future malus of a 

policyholder is proportional to the loss incurred by insurance company because of him.   
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CHAPTER 2  

BMS STUDY UNDER THE FINANCIAL BALANCE PRINCIPLE  

Introduction 

One of the main actuarial principles is the presupposition of financially balanced 

insurance product. After having analyzed 30 BMSs from around the world Lemaire and Zi [59] 

concluded that at the end of 30 years the average premium level of a policyholder will be about 

40%-70% of the starting (base) premium. Base premium is calculated by the financial balance 

principle. So, in long time period a financial imbalance arises, which will eventually result in 

the detriment of the company. Mentioned disbalanced condition can lead to serious financial 

consequences, even to a crash of the company. For the solution of this problem Sammaritini 

[107] suggested to permit a driver to move to a lower class only if the claim frequency of his 

preceding class is lower than a fixed value. Coene and Doray [108] presented 3 hypothetical 

BMSs, where the financially balanced system is achieved by using the premiums as parameters 

of the model.  The premium for each class of BMS will be determined in such a way that the 

total premiums received is at least equal to 100% of the initial premium after established 

number of years. 

Generalizing the principle of financially balanced BMSs Lemaire [10] defines the concept 

of optimal BMS, which has two conditions.    

BMS is called optimal if it is: 

 Financially balanced for the insurer, i.e. the total amount of bonuses is equal to the total 

amount of maluses  

 Fair for the policyholder, i.e. each policyholder pays a premium proportional to the risk 

that he imposes to the pool.  
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In the view of probability theory, the bonuses and maluses provided by the insurer are 

random variables, while still the detailed definition of “the total amount of bonuses (or 

maluses)” remains uncertain. Therefore we offer the following statement of the “optimal” BMS:  

“Financially balanced for the insurer, i.e. the expected value of total amount of bonuses is 

equal to the expected value of total amount of maluses.” 

In other words, this statement can be interpreted as “the expectation of the BMS total 

premiums collected by an insurance company remains constant”.  

One of the processes satisfying to this condition is the martingale series widely known in 

probability theory.  

2.1. Notations and Definitions 

Here are some notations and definitions from probability theory (see for instance [109]) 

used for the model construction. 

Suppose that all the observations made on a probability space , where  is the set 

of elementary outcomes ,  is a -algebra of subsets of  and  is a given probability measure 

on . 

Time and dynamics have a significant role for the model construction, so consider that a 

series of -algebra  is given: 

 

This non-descending σ- algebra series, otherwise called filtration, is interpreted as follows: 

the -th member of the series -is the known information about the observation up to time . 

So, suppose that the basic probabilistic model is  filtered probability 

space.  
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Definition 2.1: Let be some measurable space and  a borelian space with a 

system of  borelian sets. A real function  given on  is called -mesurable 

function or a random variable, if for any  

 

Or, it is the same as  is a measurable set in . 

Definition 2.2: Let  be a series of random variables given on . If 

 is -measurable for any , then we will say that  collection or just 

-is a stochastic series. 

Definition 2.3: If for  stochastic series  is -measurable as well, it will 

be written as  assuming  and  will be called predictable series. 

Definition 2.4: Let , then  stochastic series will be called a 

martingale, if for any : 

                                     (2.1.1) 

                     (2.1.2) 

 From properties of conditional expectation it is obvious that the second property of 

martingale definition can be rephrased by the following formula:  

 

for any  and specially if  then it can be written that  

               

Definition 2.5: Let , then  stochastic series will be called a 

submartingale (supermartingale), if for any  : 
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Theorem 2.1: (Doob’s theorem on submartingales2): If   is a submartingale 

with , then there exists   a.s. with  . 

Corollary 2.1: If   is a nonnegative martingale, then there exist 

 a.s. 

Theorem 2.2: (Markov’s theorem3) The law of large numbers is applicable for series of 

random variables , with any type of dependence, if the quantity  (a.s.) as 

.  

Definition 2.6: A random variable , which takes values from  is 

called a Markov time  with respect to a filtration , if for any  

 

In the case of  the Markov time  will be called a stopping time. 

Theorem 2.3: (Doob’s theorem on optional stopping time4) Let for a martingale 

(submartingale, supermartingale) series    is a stopping time with respect to 

 with , and for any  and some constant  holds 

 

then  and 

 

 

                                                           
2
 The proof of the theorem and its corollary are given in [109](pg.688) 

3 The proof can be found in [134](pg.294) 
4
 The proof is given in [109](pg.662) 
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2.2. Presentation of BMS as Martingale Series  

Let us consider a portfolio of an insurance product. Suppose that a series of independent 

and identically distributed random variables  are yearly aggregate claim losses of that 

portfolio, given on a  filtered probability space where  and 

. And suppose that  random variables are so that  condition 

is satisfied [110]. 

Let’s denote  as random variables, which describe yearly aggregate premium 

charge for that portfolio, where  is given and the other members of that series are 

defined by the following formula: 

        (2.2.1) 

where 

-is an aggregate premium collected for -th year of the portfolio. 

 –is an aggregate claim loss for the given portfolio within  time interval. It is 

necessary to note that  is independent of   for all , . 

 is a predictable series with , which will be called a series of 

bonus factors. 

 is also a predictable series with , which will be called a series 

of malus factors. 

Lemma 2.1: The series  constructed by formula (2.2.1), where   and  are 

-measurable, is a martingale if and only if:  
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Proof: Necessary:  Let series   and  are -measurable and the series constructed by 

 is a martingale. It means that the conditions of Definition 2.4 are satisfied  

 

Here the independence of ’s and the properties of conditional expectation (see [109], pg.270) 

were used. 

For the (2.1.2) condition of martingale definition it is necessary that:  

 

It is obvious that this result is equivalent to . 

Sufficiency: Let’s  and  are -measurable series and the relationship  holds.  

Let construct a series of  according to the formula  and show that , where 

 is a martingale. 

Calculate the conditional expectation by putting  in : 

 

                                          

Remark 2.1: The relationship  can be considered as loss ratio of the given insurance 

portfolio. 

2.3. Financial Stability Coefficient Estimates 

Offering a new insurance product the insurance company wishes to have a financially 

stable model. For that purpose it states its strategy for that risk portfolio and defines a premium 

level. The aggregate premium received for that portfolio must be sufficient to cover some level 

of aggregate claim with appropriate probability which is defined in the company’s strategy. This 

means that the company states some  critical value of aggregate claim and some  probability 
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and defines the aggregate premium  so that it is greater than  critical value with  

probability. This method is called a quantile method. Mathematically it is expressed as: 

          (2.3.1) 

Finding  and  presented in  is our main purpose but Lemma 2.1 gives us only 

their relationship (2.2.2). Suppose that the distribution function of aggregate claim is given 

. Let’s find  and  with the help of expressions ,  and financially 

stable and optimal BMS concepts. First of all let’s reform the left side of formula . 

 

It is obvious that 

 

Using inverse distribution function we get: 

 

Substituting  and making some rearrangements we get: 

                            

and 

                  

Hereafter we take the absolute values for  and  to avoid negative results. 

Lemma2.2: The coefficients  and  have finite limits as . 
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Proof: The nonnegative martingale  given with  satisfies to the conditions of 

the Corollary 2.1, so there exists finite  a.s. It is not difficult to note that 

 and for sufficient small  the condition is satisfied. So, we have 

 

and 

  

2.4. Upper Bound for the Probability of Ruin in the Alternative BMS 

Lemma 2.2 leads us to a conclusion that starting from some time  the bonus and malus 

coefficients will not depend on time and we can consider the following model 

 

Consider a BMS portfolio where the capital amount at a time  is decreased by the total 

amount of claims for time interval   and increased by premiums collected at the time . 

In addition to the assumptions of independence and identical distribution for , here we 

assume also that . 

The surplus process of the portfolio is then defined by 

 

where  is the initial capital of the portfolio,  is the aggregate premium defined 

with  and  is the aggregate claim amount of the portfolio for time interval . 

In addition to the independence of ’s, here we suppose also that they are identically 

distributed random variables (i.i.d.) and independent of  as described for model . In 

addition to that, assume also that . 
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Now recall some definitions from ruin theory (see for instance [15], [111]). 

Definition 2.7: The event that  ever falls below zero is called ruin: 

 

Definition 2.8: The time when the process falls below zero for the first time is called 

ruin time: 

 

The probability of ruin is then given by 

 

Write  

 

This variable shows the net loss of the portfolio at time .  

The total net loss of the portfolio up to time  is defined as  

 

So, for the probability of ruin we have the following equivalent expression: 

 

We know nothing about the independence of ’s, but we can calculate their variation. 

From   can be expressed as: 

 

So, using the independence of ’s we get 
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Using the relationship  and independence of  and we get: 

 

For  we can write: 

 

From  and  we conclude that  

 

where  are constants. 

In the case of  using Theorem 2.2 we have: 

 

So,  satisfies to the law of large numbers, that is , which in particular implies, that 

 or  according to the sign of . Hence, if , ruin is unavoidable in the 

case of any starting capital .  

Preposition 2.1: If   is finite and the condition  

 

holds then, for any fixed , ruin occurs with probability 1. 
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The insurance company should choose the bonus and malus coefficients in such a way, 

that . In this case the company avoids ruin occurring with probability 1 and may hope to 

have .  

Definition 2.9: (Net Profit Condition): The process  satisfies to the net profit condition 

(NPC), if  

 

Taking the expectations in , recalling  martingale property and using the 

i.i.d. property of ’s we have: 

 

which gives: 

 

By inputting it in the condition , we get the following NPC 

 

This result is in accordance with the interpretation of  as the loss ratio of the portfolio (see 

Remark 2.1). 

Using  for  we can write: 
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Denote 

 

and  

 

So, we have 

 

Denote  the moment generating function (m.g.f.) of the random variable . 

Lemma 2.3: For any , and for any  satisfying the NPC, the sequence  

 

is a martingale. 

 Proof:  Note that , Calculate 



36 
 

 

Lemma 2.4: For any , such that  and for any  satisfying the 

NPC, the sequence  

 

is a supermartingale. 

 Proof:  Note that 
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Calculate  

 

The second multiplier is 1 according to the definition of m.g.f. The denominator of the 

first multiplier is the same as the denominator of the  and we have that , so, 

the nominator is less than the nominator of , so we get: 

 

which is the definition of the supermartingale.                 

Lemma 2.5: For any , such that  and for any  satisfying the 

NPC, the sequence 

 

is a supermartingale. 

Proof:   Note that 
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Calculate 

 

Here ,  and  are positive according to their definition and NPC, so it can be 

proved that  (see for instance [112], [113]). For the second 

multiplier we write: 

 

Using Lemmas 2.3 and 2.4, for the first multiplier we have: 
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The inequality holds as . 

So, we get 

      

Now we can find an upper bound for the probability of ruin in the model .2 .  

Theorem 2.4:  If for some , the process  given by  is a supermartingale, 

where   as , then 

 

Proof: Doob’s Theorem 2.3 on optional stopping time for the supermartingale  at time 

 satisfies the inequality 

 

We cannot use the stopping time  directly because  and also because 

the conditions of the optional stopping theorem present a problem; however, using  

invokes no problems because  is bounded by . 

Using the condition , we get:   
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The second term in  converges to 0, as  due to the condition   as . 

Recall that , and . For  write 

 

So, we have the statement of the theorem.                             

2.5. Bonus Hunger Behavior 

One of the consequences of the bonus–malus systems is the willingness of the insured to 

overtake the small claims on its own debit and not claim them, to keep the reduced premium 

payment. This phenomenon is called the “hunger for bonus” and is discussed in the Chapter 1 of 

this dissertation. Some insurance companies actually enable policyholders to buy the bonus by 

paying extra premium. Thus the bonus–malus system becomes also a strong marketing 

instrument.  

While analyzing the effect of “hunger for bonus” it is necessary to answer the following 

question: “When the policyholder will not report the claim”? The answer is: “He will not report 

the claim if its amount is less than discounted value of all future premium reductions” [114]. 

The premium reductions are clearly given by difference between premiums paid in the 

different bonus classes. In general it can be expressed as follows.  

Let’s consider a policyholder, who is in the portfolio for   years and has just had an 

accident. We denote  for a premium after  years in the case that the policyholder will not 

claim this accident and will not have any accident during next  years. Using formula   

for , we get: 
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Let  be a premium after  years in the case that the policyholder will claim this 

accident and will not have any accident during next  years. Applying  for this premium, 

where  and , we have:   

 

 

 

 

The policyholder will claim for the mentioned accident, if the claim amount is greater 

than , where  

 

here  is the financial discount factor. 

So, the probability of claiming an accident is: 

 

where  is the claim amount distribution function.  
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2.6. Some Examples 

Example 1 

Suppose that the yearly aggregate claims of an insurance company are distributed 

exponentially with  rate: : Let’s find the coefficients  and , as well as the 

probabilities of claiming and ruin. 

The characteristics of an exponential distribution needed here are the distribution 

function , the expectation , the inverse distribution function 

 and m.g.f. . Substituting these expressions in 

, ,  and  we accordingly get: 

 

 

 

and 

 

Example 2 

Suppose that the yearly aggregate claims of an insurance company have a Pareto 

distribution with parameters  and  ( : For finding ,  and  we need 

the distribution function , the inverse of that distribution function which 

have the following view:  and the expectation, which is 
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expressed as . Putting the mentioned above expressions in ,   and 

 we get:  

 

 

 

The probability of ruin is not presented here as the m.g.f.  of the Pareto distribution is not 

known for  cases. 
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CHAPTER 3  

BMS ANALYSIS USING HIDDEN MARKOV MODELS  

Introduction 

In the world surrounding us we are able to see only one’s final decision, but what stands 

up behind that decision, what could compel him to make the decision is not known. One of the 

theories exploring that “hidden” processes is called Hidden Markov Models (HMM). HMM is 

used in cryptanalysis, gesture recognition, partial discharge, bioinformatics especially in DNA 

recognition, time series’ analysis and in other spheres.  In preceding years HMM has a wide 

application in the different branches of artificial intelligence as well. Those branches are speech 

and handwriting recognition, computer translations and so on. HMM with its different types 

are also used in different models of financial and insurance analysis (see [115], [116], [117], 

[118]), particularly in BMS models like in [13], [119], [120]. 

In BMS models as a “hidden” process considered the real number of insurance accidents. 

The insurer knows only about those accidents which were claimed. The “hidden” accidents are 

not included in the statistics of claims. So, the insurer has an issue to evaluate the real number 

of accidents otherwise estimations received from statistics will be biased from real values.   

In this chapter of the thesis an example of construction of a new BMS is considered, 

where the movement between classes is modeled as a discrete time Markov chain, which is 

dependent on the claim number and aggregate claim amount processes which are assumed to be 

a HMM. 

3.1. An Extended BMS Model Description 

Consider a set of  policyholders. Each policyholder belongs to one of a finite number  of 

classes (tariff groups) sorted by order; class 1 being the one with lowest premiums etc. That is, 

each premium depends on the class to which a policyholder belongs. Each year the class of a 

policyholder is determined on the basis of the class of the previous year, on the number of 

https://en.wikipedia.org/wiki/Gesture_recognition
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claims and on the aggregate claim loss reported during that year. If no claim has been reported, 

then the policyholder gets a bonus expressed in the lowering to a class with a lower premium or 

stay at the lowest premium class. Otherwise the policyholder may stay in the same class or gets 

maluses (penalized) by being shifted to a higher class with possibly higher premium. New 

policyholders are assigned to a certain class [121]. 

Let be the number of policyholders in a class  at time , where . 

Then  will be the distribution of policyholders among classes at time . It is 

obvious that the state space  of  process is finite. 

We split the positive half of the real line into a convenient set of disjoint intervals 

 and discuss the aggregate claim of each policyholder on those intervals. We will 

denote by  the number of policyholders whose aggregate claim in the -th year falls in 

interval . So,  row vector will show the distribution of 

policyholders among the reported aggregate claim intervals.  

Consider the number of reported claims. Its state space will be the space of natural 

numbers {0, 1, 2 …}. Without any distortion we can suppose that it is limited by some 

number . We will denote by  the number of policyholders who have reported 

 claims during the -th year. Then  row vector will be the 

distribution of policyholders among the reported claim numbers. 

Assumptions underlying the model 

 The processes ,  and  are Markov chains which, for technical reasons (that 

will become apparent later) and without loss of generality5, accordingly live on the 

standard basis ,  and  in ,  and 

                                                           
5
 Consider the process  with  finite state space. Let consider the function . 

We will construct the process . It is easy to note that for any  only one component of 

 is 1 and others are 0. So, instead of process  we will consider the process  which is generated by it and 

which state space is  the space of unit column vectors. 
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respectively , where the -th component of each vector ,  and  is 1 and others 

are 0 (see [122], pg. 5). ,  and  are the sizes of ,  and  sets accordingly. 

 It is assumed that the movement between classes is based on the current class of 

the policyholder, on the number of claims and on the aggregate claim reported in the 

year. So the movement of process  between its states depends on levels of , 

and  and the transition matrix is not time-dependent.  

 The next assumption refers to aggregate claim process. It is assumed that the 

aggregate claims are not independent, so the aggregate claim of a policyholder in any 

year depends on the aggregate claim and reported claims number of the previous year.  

We can conclude that the movement between states of process  is based on the values 

of  and  as well. The transition matrix is time-dependent and is not known in 

advance.  

 The yearly reported claim numbers for each policyholder are also suggested 

dependent. It is assumed that reported claims number of a policyholder depends on the 

claims number reported last year and on the policyholder’s current class of BMS. In 

other words, the movement from one state for process  to another is founded on  

and on . For this process also the transition matrix is assumed a stochastic one.  

The time-dependence of transition matrices can be explained by change of policyholders’ 

behavior year by year. They can make conclusions based on their insurance history and be 

more professional. As an example in motor insurance, the driver can be more careful and make 

fewer claims if he has many claims in the previous year. On the other hand, he can prefer to 

cover some small claims himself if he is on the higher bonus class.  

Let  be the complete filtration generated by processes  

and  up to the -th year. 

Definition 3.1: (Markov property (see [109] pg.788, and [123] pg.57)): A discrete-time 

stochastic process , with finite-state space , defined on probability space 

 is a Markov chain if  
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for all  and all states . 

The use of Markov property for process  gives: 

 

Conditional on the event , the above mentioned 

expression may be rewritten as: 

 

Write . Then  is a  stochastic matrix of 

tensor mapping  into  and has the form 

 

where the sum of elements of each column is 1: 

 

Definition 3.2: (Doob decomposition for discrete time, see [123], pg.57 Remark): A 

processes which is the sum of a predictable process and a martingale is called a semimartingale. 

Definition 3.3: (see [109], pg.655): The stochastic process  is called a 

martingale difference if  for all  and  (P-a.s.). 

Definition 3.4: (see [123], pg.58): Given two (column) vectors X and Y the tensor or 

Kroneker product  is the column vector obtained by stacking the rows of the matrix , 

where  is the transpose, which entries obtained by multiplying the -th entry of  by the -th 

entry of . 
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Lemma 3.1: The process  has the following semimartingale representation (or Doob 

decomposition): 

 

where the  column vector  is an martingale difference.  

Proof: Using the fact that Markov chain holds to expression 

 and the following famous property of 

conditional expectation 

 

where , it is easy to note that 

 

i.e.  is a sequence of martingale differences.                    

For the transition matrix of process  we will denote 

 

where index  indicates the time-dependence of  transition matrix. 

The same analysis as for Markov chain  shows that the Markov chain  has 

representation 

 

where  transition matrix has the following form: 
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Note that: 

 

and  is a  column vector, which is a martingale difference.  

As for others, for the process  let denote  

 

Similarly, for the process  Doob decomposition will be  

 

where  matrix has the form 

 

and 

 

 is a  column vector and is a martingale difference. 

To eliminate the time-dependence of transition matrices  and , we will develop 

matrix-processes, for which transition matrices will not be time-dependent.  

Consider the simplexes  and  with non-negative column vectors  

 and respectively , where  ( ) and   

 ( ). 
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By definition, each column of  and  is a point in  and respectively in . Let’s 

partition the sets  by the following way: 

 

and 

 

Let 

 

and 

 

That is  (accordingly ) is the Cartesian product of  ( ) copies of the 

ordered set  (accordingly ). In other words, it represents the set of 

 sized matrices generated by partition 

 of the set .  

We define the following Markov chain  (respectively ) on the set  ( ) as follows: if 

the first column of  ( ) is a point in  (accordingly in ), the second column in  

(accordingly in ), …, the last column in  (correspondingly in ), then        

 ( ), i.e.  ( ) keeps track only of the location of 

the columns of  ( ) in  (accordingly in ). So, with the help of 

( ) the matrix  ( ) can be defined identically. 

Write  ( ). We shall identify the ordered set  

(correspondingly ) with the standard basis ( ) of  

( ). So, for matrices  and we develop processes  and accordingly , for which 

transition matrices are not time-dependent and have the following form: 
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where  with 

and 

 

 is a sequence of martingale differences on -field . 

Similarly, 

 

where   with  

 

and

 

 is a sequence of martingale differences on -field . 

So, we have the following BMS model:    
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It must be noted that the constructed model is a revised and an extended one described in 

[13]. It has the following peculiarities: 

 The model, developed here is “policyholder-oriented”, that is the 

considered group of policyholders is divided into subgroups from 3 different points of 

view: 

 partition by levels of BMS 

 partition by groups of aggregate claim amounts 

 partition by number of reported claims 

In [13], the partition is applied to two different events: first of all the group of 

policyholders is divided on subgroups by BMS levels and the other partition applied to 

the set of reported claims, which are sub grouped by claim amount.   

 The process  is the distribution of claim numbers by claim amount 

intervals in [13], so  represents the total number of claims and it means that a 

policyholder, who makes more than one claim during the entire year, can appear in 

different groups of claim amounts simultaneously. In the model presented in this paper, 

 is the distribution of policyholders among aggregate claim amount groups, so 

 represents the number of policyholders and it means that policyholder’s 

location within the aggregate claim amount intervals can be identified uniquely.  

 In comparison with [13], where the transition between BMS levels 

depends on the reported claim numbers, in the model, presented in this paper, the 

above-mentioned transition depends on the aggregate claim amount, reported by 

policyholder as well. 

3.2. Hidden Markov Models. Change of Measure 

Hidden Markov model is a general tool for representing probability distributions over 

sequences of observations. The hidden Markov model gets its name from two defining 

properties. Let us denote the observation at time  by the random variable . First, it assumes 

that the observation at time  was generated by some process , whose state is hidden from the 
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observer. Second, it assumes that the state of this hidden process satisfies the Markov property: 

that is, given the value of , the current state  is independent of all the states prior 

to . The outputs  have the same property.  More detail about hidden Markov models see 

for instance [122] and [124].  

The processes  and , mentioned above, are hidden Markov models. To estimate their 

states recursively, we define a measure , on the measurable space , under which 

processes  and  are sequences of statistically independent and identically distributed 

random variables. The existence of measure  is provided by the following theorem of Radon-

Nicodym. 

Theorem 3.1: (Radon-Nicodym): If  and  are two probability measures on  such 

that for each ,  implies  , then there exists a nonnegative 

53unction , such that  for all . 

The function   is called the Radon Nicodym derivative. 

The probability measure  is referred to as the “real world” measure, under which we 

have the relations . 

Suppose that under the measure  the processes  and  are i.i.d sequences with the 

following distributions: 

 

 

 

where the corresponding matrices are 
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and 

 

Under the measure  the dynamics of  and  remains unchanged.  

 

where 

 

 

 

 

 

where  denotes the usual scalar product and . 

Let be the complete filtration generated by  . 

Lemma 3.2: The sequence of random variables  is a  martingale with 

expectation . 

Proof:  We have to show that  

 

From  we have . As  is  measurable; it is sufficient to show that 
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Using  representation of  and properties of conditional expectation, let’s calculate 

 

Under the measure  all processes are independent, so the expectation of the product can be 

written as the product of expectations, where each item equals to 1: 

 

as well as 

 

and finally 
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According to Radon-Nicodym theorem and Kolmogorov’s extension theorem (see [122], 

Appendix A), with the help of measure  we can define the “real world” measure  as follows:

 

Theorem 3.2: Under probability measure , as defined from  via  the dynamics 

 hold. 

Proof: Let’s present the generalized version of Bayes’ theorem (see [123], pg. 132) for the 

processes ,  and  , which are taking the following forms accordingly with the help of 

Lemma 3.2: 

 

 

Note that under the condition  and , 

formula  takes the form    
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For the condition  with , formula  takes 

the form 

 

as well as under the condition  and , formula 

 takes the form: 

 

So,  with  gives: 

 

 

where the distributions of processes  under the measure  and properties  

and  have been used. 
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The  with  and use of properties  and  gives: 

 

 

And  with ,  and  gives: 

 

Theorem 3.3: Joint distribution of processes  and  expressed via their marginal 

distributions is as follows:  

 

It means that under the measure  processes  and  are statistically independent ones.  

Proof: Using again the generalized Bayes’ theorem, for the joint distribution, we can 

write: 
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In this case, under the conditions ,  and  

for  we have: 

 

so,  takes the form: 

 

Define the measure valued process , which is unnormalized conditional 

probability under measure  

 

Using the generalized Bayes’ theorem, the normalized conditional probability takes the 

form: 

 

Theorem 3.4: The unnormalized probability  satisfies the recursion: 
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where  is the initial joint probability of  and . 

Proof: In view of  and  and using the distributions of  and  under 

measure  for  we write: 

 

 

 

 

 

Now recall the dynamics  for the processes  and , that is 

, and , and change the probability with 

expectation, for  we get: 
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It must be noted that the last equation holds due to distributions of  and  under the 

measure . In view of  for , we get the proof of the theorem.                                                                                                                    

3.3. Predictions for Claim numbers and Aggregate Claim Amounts 

It is important for insurance companies to predict the possible number and amount of 

future claims  years into the future.  

As a result of generalized Bayes’ theorem, the joint probability distribution of the claim 

numbers and aggregate claim amounts reported by a policyholder has the form: 

 

where the denominator is constant in the case of fixed .  

Having the information up to time , the above-mentioned distribution’s behavior at the 

end of current year is presented by the following Lemma: 

Lemma 3.3: The unnormalized joint conditional probability distribution of reported claim 

numbers and aggregate claim amounts has the form: 
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Proof: Using (3.2.1) and (3.2.2) and the distributions of and  under measure , we 

have 

 

 

 

 

We assume that the processes under the consideration are sequences of independent 

random variables under measure , so instead of condition we can write , and then we 

will get the following result: 
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Using the proof of Lemma 3.2 and the independence under the measure  we can change 

 by  in the condition, so we get the statement of Lemma 3.3.                                                            

We wish to get a formula for the  step prediction of the joint distribution function of 

claim numbers and aggregate claim amounts given the history up to time . First, we will find 

out it for 2 step prediction and then extend it to  steps.  

Consider the unnormalized conditional joint distribution of ,   

and  

 

By using the Markov property of and properties of conditional expectation, it is easy to 

note that  
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A similar relationship is valid for the process . 

Note that  and  are not included in . Using their distributions 

under ,we have: 
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Now applying the concept of mathematical induction to formula , for  steps we 

have the following theorem: 

Theorem 3.5: The  step prediction for joint probability distribution of the processes 

 and  given the information  has the form 

 

3.4. Evaluation of the Coefficients of Transition Matrices in Extended Bonus-Malus 

System 

Consider the Extended model of BMS . The system is described with the 

following set of parameters satisfying the conditions  and 

 : 

 

Our purpose is the estimation of the model parameters and it is presented here in two 

methods [125]. 
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1. Estimation with EM algorithm. One of the best methods of HMM’s coefficient 

estimation is the EM algorithm which is described detailed in [122]. 

We have to define a new set of parameters  

 

which maximizes the conditional pseudo log-likelihood functions  and satisfies 

to conditions  and . 

Define 

   

   

  

   

   

Each figure in (3.4.1) for the corresponding process mentioned on the left top angle 

represents the number of jumps of the process from one state to another up to time . 

Each figure in the next set of notations shows the number of occasions up to time  for 

which the corresponding Markov chain was in the mentioned state: 
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It is obvious that the figures in (3.4.1) and (3.4.2) are random variables.  

Remark 3.1: For each process holds the relationship . 

To replace parameters  by  in (3.1.6) we define the following likelihood function: 

 

where in the case of  we take  and : 

It is not difficult to show that  is a martingale-measure, so according to the Radon-

Nycodim theorem there exists a measure  so that  holds. 

Lemma 3.4: Under the measure  the analogue of the system (3.1.6) holds for 

parameter set . 

Proof: Let  be the complete filtration generated by . 

We have to show that under the measure  the following relationships are hold: 
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Note that in the case of information up to time , (3.4.3) gets the form:  

 

According to the Bayes’ theorem 

 

where  is the scalar product of any of our process with according unit basis 

. 

The denominator of  is:  

 

were the distributions of model processes and  and  

conditions for the parameter set  were used to get the result. 

Now calculate the numerator of  for each process which gives the statement of the 

Lemma: 
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Theorem 3.6: The new estimates of parameter set  given the observations up to time  are 

given by 

 

 

where  And . 

Proof: To estimate the parameters we use (3.4.1) and (3.4.3). For  we take the 

following form: 
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where  is independent of .  

And for others we take accordingly the forms: 

 

where  is independent of . 

 

where  is independent of . 

 

where  is independent of . 
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where  is independent of . 

For the conditional expectations we have 

 

where , , ,  and   must satisfy the analogue of 

, as well.  

Note that the conditional expectations also satisfy the relationship 

 

 Our purpose is to maximize (3.4.5) each time taking into account the constraints 

 or . Write  for the Lagrange multiplier and put 

 



73 
 

 

Differentiating in  and in  we get the result by equating the derivatives to 0: 

 

 

 

Note that . For example from the first equation , taking 

the sums of both sides we get: , taking into account 

 and  for the process , the optimal estimate for  is 
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. So we get the statement of the Theorem 3.6.    

                              

2. Parameter Estimation with Recursion. For getting the parameter estimation in the 

previous part we have to do some prior assumptions on the probability distribution of 

parameter set , but if we have the initial distributions the recursive estimation of the 

parameters can be done. The new estimate in this case is presented as the previous estimate 

corrected with the new information. 

We assume that  takes values in some set . Suppose we have the measure  

under which the processes of the system  are i.i.d.. According to Theorem 3.2 we 

define the “real world” measure  under which the system (3.1.6) holds. Consider the 

unnormalized joint conditional density: 

 

where  is the indicator function of . 

The normalized joint conditional density is: 

 

Assume given the initial density . 

Theorem 3.7: The unnormalized joint conditional density  satisfies the 

recursion: 

 

Proof: Suppose  is any real valued Borel function on  Then 
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On the other hand using the distribution of  under the measure  we get: 

 

Substitute the dynamics of  from (3.1.6): 

 

Using the second relationship of (3.1.6), the distribution of  as well as the formulas (3.2.1) 

and (3.2.2) we get: 

 

 

As  is arbitrary we see the result.         

Write  for the unnormalized joint conditional density of processes  and 

:  

 

The normalized joint conditional density is:  
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Assume given the initial density . 

Theorem 3.8: The unnormalized joint conditional density  satisfies the 

recursion 

 

Proof: Suppose  is any real valued Borel function on . Then  

 

Using  and  as well as the distributions of processes  and  under the 

measure , for  we have: 
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Using the dynamics of the processes  and , that is , and 

, we get: 

 



78 
 

 

As is arbitrary we have the statement of the theorem.                  

3.5. An Application of the Extended Model 

A practical example of the model described above is presented in this section. Let take a 

BMS with “C” levels of premium where the first level presents the lowest premium and the 

last level corresponds to the highest possible premium. Let take  and 

 intervals for possible aggregate claim amounts, where . We 

also assume that a policyholder can make 0, 1 or 2 claims per year (the claim numbers greater 

than 2 are considered as 2, so we write “2+”, that is two or more claims). The transition rules 

of a policyholder between the premium levels are given by the Table3.1. 

Number of claims Aggregate Claim Interval Level (+/-) 

0  -1 

1  +1 

1  +3 

1  +5 
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Table 3.1 

As an example we will explain the 5-th row of the table as follows: if the policyholder 

makes two or more claims during the year and the total loss of the company from that claims 

belongs to the second interval (that is to interval ), then the policyholder will be 

penalized by 4 levels from his/her current level for the next year. It is obvious that in case of 

no claim the probability of having 0 amount of loss is 1.      

If the policyholder is on the first level and makes no claim in the current year, then 

he/she stays at the same level on the next year. On the other side, if there is not sufficient 

number of levels to go up (for example if the policyholder is on the “C-1” level and makes 

“2+” claims, then he/she must be shifted by at least 2 levels up, but only 1 level remains to 

reach the maximum premium), then the policyholder moves to the highest level.  

From Table 3.1 we can conclude that the number of BMS levels must be about or even 

more than 20. Otherwise, soon after the start (in few years) the majority of policyholders 

will be concentrated about the highest level of premium. Considering for example 20 levels 

of BMS and 50 policyholders, we get the cardinality  . It is obvious 

that it would be too hard to work with a vector of that size in practice.  

When a policyholder changes his/her level of BMS, the process  changes its state, so 

instead of transition matrix of  it is enough to analyze the one step transition matrix of a 

policyholder between BMS levels which in the case of Table 3.1 is the following  

matrix: 

2+  +2 

2+  +4 

2+  +6 
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Note that the -th column represents the probabilities of movements from the current 

level  to the level which corresponds to the number of row of the matrix. Here 

 is the probability of having  claims (in case of  it is the probability of 

having 2 or more claims) and  is the probability that the aggregate claim 

amount of a policyholder who made  claims belongs to the  interval. 

In case of insurance event during the next year the policyholder will decide: “to claim” 

or “not to claim” and this will the “Hidden Process”. 

To get a more flexible BMS the decision-makers have to think about the values of  

and C. 

 

 

CHAPTER 4  

COMPARATIVE ANALYSIS OF THE BONUS-MALUS SYSTEMS 

Introduction 

Compulsory motor third party liability insurance (CMTPL) has been introduced in 

Armenian insurance market since 2011. Two years after that the Belgian BMS with 22 classes 
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was applied to CMTPL insurance. BMS classes are described in Table 4.1. In 2013 only the 

bonus was used and then in 2014 the malus was added as well.  

BMS Class Premium as Percentage of Base 

Premium 
Class 22 200% 
Class  21 180% 
Class 20 160% 
Class 19 152% 
Class 18 144% 
Class 17 136% 
Class 16 128% 
Class 15 120% 
Class 14 116% 
Class 13 112% 
Class 12 108% 

 

Table 4.1 

Transition rules of BMS used in RA are as follows:  

The use of Bonus-Policyholder gets bonus with 1 class if he had a CMTPL insurance 

policy for 345 days and had no claim during that period. 

The use of Malus-Policyholder gets malus with 4 classes for each accident claimed to 

insurance company.  

According to the official data the loss ratio of the CMTPL insurance in RA was 53% on 

December 31 of 2015, but it was fluctuated about  60%-75.4% during 2011-2014 years. More 

detailed information on CMTPL insurance and BMS in Armenia can be found on the official 

site of Armenian Motor Insurance Bureau [126].  

In this chapter of the dissertation the analysis based on data provided by an insurance 

company holding 22% of CMTPL insurance policies (hereafter we will call it “Company”) is 

presented. The main purpose is the testing of Alternative and Extended BMSs’ proposed in 

this dissertation and their comparative analysis with BMS used in RA (current BMS) [127].  

BMS Class Premium as Percentage of Base 

Premium 
Class 11 104% 
Class 10 100% 
Class 9 97% 
Class 8 94% 
Class 7 91% 
Class 6 88% 
Class 5 85% 
Class 4 82% 
Class 3 75% 
Class 2 65% 
Class 1 50% 
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4.1. Data Description 

Based on the legal restrictions, the company has provided depersonalized data with 

preservation of the personal data privacy law’s statutes for this analysis.     

Though, all companies in Armenia use the same BMS for CMTPL insurance policies, 

the movement percentage of policyholders between companies is high. The movement 

depends on the company’s rating as well as on the personal experience and opinion of the 

policyholder. So, after the end of the contract a certain group of policyholders’ change the 

company. This circumstance does not constitute an obstacle to the new company to 

determine the policyholder’s BMS next class, as all data concerning to CMTPL insurance and 

BMS are coordinated in one database which is achievable for all companies eligible to sign a  

CMTPL insurance contract.  

Not a long time has passed from BMS introduction, so having the current BMS class of 

a policyholder one can restore his claim history with high accuracy. For the claim amount of 

past years the average claim amount for the corresponding claim number was used.  

The company provided CMTPL insurance database for 01.01.2011-31.12.2015 period.  

As a result of preliminary analysis, the data concerning to 2011 and 2012 was ruled out, 

because the roughly statistics are diverge from those of 2013-2015. That period coincides 

with the BMS introduction. So, the experience approves the change of policyholders’ 

behavior after BMS introduction.    

On the next stage of the analysis the information on policies signed shorter than one 

year was excluded. This is done due to regulator factors of premiums used for policies with 

short time (see [128]). This regulator factors follow some distortion of the average premium.   

So, for the analysis 178,094 CMTPL insurance policy data was used. Some results have 

been gotten with differentiating the policy sign year and some other ones without 

differentiation. 

Table 4.2 shows the percentage of analyzed data of the insurance market in accordance 

with the policy sign year.  
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Policy sign year Percentage of analyzed data from 

insurance market  

2013 14.4% 

2014 15% 

2015 10.8% 

Percentage of all analyzed policies to all signed 

in the insurance market in 2015 
38.9% 

           Table 4.2 

4.2. Goodness of Fit Tests for Claims Number and Claim Amount Variables 

To determine the BMS behavior and forecast premium amount to be collected, it is 

very important to model the number of claimed accidents to insurance company and the 

amount lost by the company due to a policyholder. Claims number and claim amount are 

random variables for insurance company. For modeling each of them some probability 

distributions are used. Those distributions are listed and characterized in [14], [15], [16]. To 

accept or reject any distribution one must state a statistical hypothesis. The statistical 

hypotheses were checked with Kolmogorov-Smirnov and  statistics, which description and 

applications are described in [129], [130], [131], [132]. Calculations of the statistics were 

made with the help of computer packages Easy-Fit, SPSS and MS Excel.  

For the claims number variable the Poisson, Negative Binomial, Binomial, Geometric 

and Hypergeometric distributions were checked. All distributions were rejected with 10% of 

significance except of Negative Binomial one. It was accepted with the same level of 

confidence for 2013, 2014, 2015 and aggregate data. 

Here the goodness of fit test for the claim number distribution is presented. Let 

denote  the random variable representing the claim number of a policyholder in a year. We 

are suggesting that its distribution belongs to the class of the second-type Negative Binomial 

distributions’ (NB2). The probability mass function of that distribution is  

 

where  
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In this case the statistical hypothesis can be formulated as follows: 

 

where  is the group of parameters of the distribution . 

In the case of the Negative Binomial Type 2 distribution it is expedient to estimate 

model parameters with the method of moments. The expectation and the variation of the 

tested distribution are: 

 

According to the method of moments, the following system of equations must be 

solved to find the estimates    and :  

 

here  and  are calculated from the sample data.  

The solution of  is:  

 

For the discrete distributions the Pearson’s  goodness measure is usable (see for 

instance [130], pg. 301-302). The method is based on the Pearson-Fisher’s theorem, which 

can be formulated for the discrete random variable by the following way: if the hypothesis 

 is true, then the statistics given by  formula converges to the distribution 

, when . 
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where  is the number of the possible  values of the random variable ,  is the frequencies 

of the values  in the sample,  is the degrees of freedom for the  distribution 

and , where . 

 The hypothesis  must be rejected with the significance level , if 

, where  is the corresponding percentile point of the 

distribution  with  degrees of freedom. Otherwise, the hypothesis  is not 

rejected.  

For the goodness of fit test we use all statistical data received for the period 2013-2015 

years. There were data on about 430,000 policies, which is large enough to say that  

converges to infinity and the described procedure for goodness of fit test is applicable. The 

possible values of random variable  and their frequencies are presented in the Table 4.3  

  

0 407145 

1 21168 

2 1578 

3 200 

           Table 4.3 

Here  and . By inputting these 

values in  we get: 

 

Using Table 4.3 as well as formulas  and  for the Pearson’s 

statistics we get the value . For the given data in Table 4.3,  and the 

number of estimated parameters is . For the statistics  calculated by data given in 
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Table 4.3, in the case of  the percentile point   must be considered. 

We have  , so the hypothesis  does not rejected.  

 The results of goodness of fit tests for years 2013, 2014, 2015 and aggregate data with 

model parameters are presented in Table 4.4: 

Year Hypothesis 
 statistic 

 
Number of policies 

2013 NegBinom(0.895;0.987) 0.27 58821 

2014 NegBinom(0.897;0.809) 3.8 69725 

2015 NegBinom(0.933;0.543) 0.32 49548 

All NegBinom(0.897;0.504) 3.26 430091 

 Table 4.4 

For the aggregate claim amount variable 42 different types of distributions were tested. 

Some of them were rejected with the 10% of significance. The distributions accepted with 

90% of confidence are presented in Table 4.5. Some of the continuous probability 

distributions checked by goodness of fit test are presented in Appendix (Table A.2). Here we 

present the goodness of fit testing for the Log-Pearson Type 3 distribution function. 

Let’s denote  the random variable representing the aggregate claim amount given to a 

policyholder in a year by the insurance company. It will be a sum of random variables with 

the random count:  

 

where  is the amount of the policyholder’s -th claim in a year covered by company and  

is the number of claims of the same policyholder in the same year. We are suggesting that  

comes from the Log-Pearson Type 3 distribution (LP3), that is its probability density 

function is: 
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Here the statistical hypothesis is formulated as follows: 

 

where   is the group of parameters of the distribution . 

Calculation processes for the continuous distributions are much complicated and time-

consuming, so the statistical package EasyFit has been used as a helping hand.  

There are a number of well-known methods which can be used to estimate distribution 

parameters based on available sample data. For every supported distribution, EasyFit 

implements one of the following parameter estimation methods:  

 method of moments (MOM)  

 maximum likelihood estimates (MLE)  

 least squares estimates (LSE) 

 method of L-moments  

EasyFit uses the least computationally intensive methods. Thus, it employs the method 

of moments for those distributions whose moment estimates are available for all possible 

parameter values, and do not involve the use of iterative numerical methods. For many 

distributions, EasyFit uses the MLE method involving the maximization of the log-likelihood 

function. For some distributions, such as the 2-parameter Exponential and the 2-parameter 

Weibull, a closed form solution of this problem exists. For other distributions, EasyFit 

implements the numerical method for multi-dimensional function minimization. Given the 

initial parameter estimates vector, this method tries to improve it on each step of subsequent 

iteration. The algorithm terminates when the stopping criteria is satisfied (the specified 

accuracy of the estimation is reached, or the number of iterations reaches the specified 

maximum). More information on this package and its possibilities can be found in [133]. 
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Table 4.5

# Distributions 2013 2014 2015 All 

1 Burr 
k=0.11811  =0.79622 

=1.4161  =1.0000E+5 
N/A N/A N/A 

2 Burr (4P) N/A 
k=0.11811  =0.79622 

=1.4161  =1.0000E+5 

k=0.11811  =0.79622 

=1.4161  =1.0000E+5 

k=0.11811  =0.79622 

=1.4161  =1.0000E+5 

3 Fatigue Life =0.78958  =2.0154E+5 =0.8066  =2.0489E+5 =0.74986  =1.9550E+5 =0.79033  =2.0198E+5 

4 Frechet =1.7745  =1.2302E+5 =1.7194  =1.1859E+5 =1.9671  =1.2941E+5 N/A

5 Gamma (3P) =0.35406  =4.4379E+5  =1.0000E+5 N/A N/A N/A

6 Gen. Gamma N/A N/A k=1.2386  =0.94755  =3.1252E+5 N/A 

7 Log-Gamma =282.96  =0.04285 =276.58  =0.04388 =304.21  =0.03982 =283.01  =0.04286 

8 Lognormal =0.72086  =12.126 =0.72972  =12.136 =0.69454  =12.114 =0.72097  =12.129 

9 Lognormal (3P) N/A =10.095  =7.7681  =1.0000E+5 N/A N/A 

10 Log-Pearson 3 =2.5756  =0.44918  =10.969 =2.561  =0.45598  =10.968 =3.2099  =0.38766  =10.87 =2.6656  =0.44159  =10.952 

11 Pearson 5 =2.7055  =4.1055E+5 =2.6462  =4.0357E+5 N/A N/A

12 Pearson 6 1=3755.1  2=2.6988  =109.03 1=1281.3  2=2.6473  =315.26 1=1370.0  2=2.8299  =312.17 N/A

13 Weibull =1.1142  =2.7455E+5 =1.0796  =2.7821E+5 =1.1854  =2.6639E+5 N/A

14 Weibull (3P) =0.52299  =1.0842E+5  =1.0000E+5 N/A N/A N/A
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So, for the 2013-2015 aggregate data we get  estimates for the Log-Pearson 3 

distribution, using EasyFit. 

 

 The hypothesis on continuous distributions like  can be checked with the help 

of Kolmogorov-Smirnov’s non-parametric test. This test is based on the following statistics: 

 

where  is the volume of the sample. 

The hypothesis is rejected with the confidence level of , if the calculated value of 

the statistics  is greater than the table-value of the corresponding level of confidence 

for the statistics . 

EasyFit calculates the value of statistics  and gets . The table-value 

for this statistics is . EasyFit gives the corresponding   P-Value as well, which 

in this case take the value 0.0697. This means that the hypothesis is not rejected on the levels 

smaller than P-Value. 

4.3. Comparative Analysis of the Alternative and Current BMS  

Here we present a comparative analysis of the BMS currently working in RA and the 

Alternative BMS presented by  model in Chapter 2 of this dissertation. The 

comparison was made on the example of data described in section 4.1.   

We can use the quantile method and find values of   and  with the help of 

distribution of the aggregate claim amount. For different distributions we find different 

values. Thus, for example in the case of Log-Pearson 3 distribution we get   and 

 but in the case of Lognormal distribution they are  and . As 

mentioned in Remark 2.1, the ratio of bonus and malus factors can be interpreted as loss ratio 

of the system, so we have loss ratio 52. 68%, this is about the value of the 2015 year. But the 
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loss ratio was fluctuated between 60%-75.4% during 2011-2014 years, so it would be better 

to state the values of  and  by fixing some medium level of loss ratio. We can use only 

Lemma2.1 and fix loss ratio for example at the level 66.67% with  and according to 

formula  for malus factor get the value . Although the model parameters are 

not invariant to distributions, it gives opportunity to developers constructing flexible systems 

by fixing the loss ratio beforehand.   

In Table 4.6 the next premium and coefficient of bonus-malus for a policyholder with 

base premium of 60,000 AMD in case of different aggregate claim amounts are presented. It 

is clear from Table 4.6 that in case of small aggregate claims (up to 50,000 AMD) a 

policyholder has no malus; moreover, in some cases he may have some small bonus.  

In the current BMS a policyholder pays 116% of the base premium if he had one claim 

during the previous year. In case of the Alternative BMS the policyholder pays the same 

116% of the base premium if he has about 700,000 AMD aggregate claim for the previous 

year. Analyzed data shows that only 1.5% of aggregate claims are about 700,000 AMD, but 

the policyholders with one claim are 91%. So, the policyholders with aggregate claim 

amount lower than 700,000 AMD will prefer the Alternative BMS.  

A policyholder with two claims will pay 144% of the base premium for next year in the 

current BMS. In the analyzed data they form 8% of all policyholders. 

In the Alternative BMS the policyholder is “punished” with the same amount if he had 

aggregate claim with 1,800,000 AMD. The policyholders with that risk are only 0.68%. In 

addition to this, note that the policyholders with aggregate claim amount lower than 

1,800,000 AMD, which are about 99,5% of all policyholders, will pay less than 144% of the 

base premium in the Alternative BMS. So, they will prefer the Alternative BMS as well.   

If the policyholder makes 3 and more claims in the current BMS, his next premium 

forms 200% of the base premium. The same amount pays a policyholder in the Alternative 

BMS in case of a 4,000,000 AMD aggregate claim. 
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Base Premium 
  

60,000 0.01 0.015 

Aggregate Claim Amount 

for Current year 

Next year 

premium Bonus-Malus 

- 59,400 99% 

10,000 59,550 99% 

20,000 59,700 100% 

30,000 59,850 100% 

40,000 60,000 100% 

50,000 60,150 100% 

60,000 60,300 101% 

700,000 69,900 117% 

1,800,000 86,400 144% 

4,000,000 119,400 199% 

10,000,000 209,400 349% 

11,800,000 236,400 394% 

Table 4.6 

  It should be noted that Alternative BMS is not preferred for the policyholders having 

one claim with more than 700,000 AMD claim amount and for those having two claims with 

more than 1,800,000 AMD aggregate claim amount. These two groups of policyholders form 

only 4.7%. 

From Table 4.6 it can be concluded that the Alternative BMS had very hard terms for 

the policyholders with more than 4,000,000 AMD aggregate claim amount, but they are 

0.04% of all.   
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It would be very interesting to compare some extreme cases presented in Table 4.7, 

where the aggregate claim amounts, provided maluses and base premiums for some 

policyholders are included.  

Table 4.7 

Let compare the first and second cases, where the policyholders are in the same risk 

group (they pay the same base premium). They both make one claim during the year, but the 

claim amount of the first one is more than 6,000,000 AMD and the other’s is only 15,000 

AMD. According to the current BMS they will pay with 5,740 AMD more premium for next 

year. In reality it does not correspond to the loss incurred by them to the company. The 

Alternative BMS suggests taking with 96,332 AMD more his current premium from the first 

policyholder and from the other one not to take additional premium (moreover, give him 

some small bonus). The same analysis can be done for other policyholders presented in Table 

4.7. 

The next table shows the comparative analysis of the collected premiums according to 

current BMS and Alternative BMS suggestions. Presented data include all policyholders with 

one year insurance policy disregarding the fact of claiming. It is obvious from Table 4.8 that 

the aggregate premium collected by the insurance company according to the current BMS is 

Case Aggregate Claim amount  

(1 claim case) 

Penalty by 

current BMS 

Penalty by 

Alternative BMS 

Base 

Premium 

1 6,448,940 5,740 96,332 41,000 

2 15,000 5,740 -177 41,000 

3 5,352,000 20,720 79,521 74,000 

4 300,000 20,720 4,081 37,000 

5 45,000 21,560 -114 77,000 

6 42,000 26,880 102 48,000 

 

Aggregate Claim amount  

(3 and more claims case) 

   7 3,045,200 48,000 45,198 48,000 

8 1,537,000 48,000 22,575 48,000 

9 621,000 48,000 8,835 48,000 
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less than the Base premium with 1.2%-2.3%. This fact means that the introduction of BMS 

leads to some additional losses to the company. The results got from the Alternative BMS are 

better, than from the current BMS as the gap between next premium and base premium is 

less than 0.54%. This fact comes to confirm that the Alternative BMS is constructed 

according to the “optimal” BMS statements. 

So, we can conclude that for the most part of the policyholders the Alternative BMS is 

preferable than the current BMS. In addition to that, the Alternative BMS is not incurring 

additional losses to the company and the company can state its loss ratio at the start of the 

insurance year. 

 

2013 2014 2015 

 

Current 

BMS 

Alternative 

BMS 

Current 

BMS 

Alternative 

BMS 

Current 

BMS 

Alternative 

BMS 

Year premium/Base 

premium 98.81% 99.68% 98.79% 99.73% 100.04% 100.03% 

Next premium/Base 

premium 98.22% 99.56% 97.68% 99.46% 97.87% 99.33% 

Year premium/ 

Previous year 

premium 99.41% 99.88% 98.88% 99.73% 97.83% 99.30% 

Table 4.8   

4.4. A Comparative Analysis of the Extended and Current BMS 

The BMS presented in the Chapter 3 of this dissertation differs from the current one 

by the additional term, which is the aggregate claim amount. So, the next level of BMS for a 

policyholder is determined by the number of claims and aggregate claim amount incurred to 

the company during the current year. To discuss a more flexible system we take transition 

rules between BMS classes presented in the Table 4.9, where BMS classes are taken from 

current BMS presented in Table 4.1. 
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Table 4.9 

Bounds 100,000; 500,000 and 1,500,000 for aggregate claim amounts are taken from the 

fact that they are breakage points for the number of policyholders having aggregate claim 

amount under and above the mentioned points.    

Claim history data for 2013, 2014 and 2015 as well as for the whole period shows that 

the policyholders with aggregate claim amount less than 100,000 AMD are 46% of those 

making claims. The policyholders with aggregate claim amount in the range (100,000AMD-

500,000AMD] are form 45%, in the range (500,000AMD-1,500,000AMD] are 7% and more 

than 1,500,000AMD are 2%. 

Considering the 22 levels of BMS mentioned in table 4.1, 4 intervals for aggregate 

claims and 4 possibility of claims numbers mentioned in table 4.9 and taking for example 50 

policyholders, we get the cardinality of the processes  of the Chapter 3 equals: 

 ,  . It is obvious that it would be 

too hard to work with matrixes of these sizes in practice. When a policyholder changes 

his/her level of BMS, the processes  and  change their state, so instead of transition 

matrixes  and  it is enough to analyze the one step transition matrix of policyholders 

between BMS classes, groups of aggregate claims and groups of claims number. In addition to 

Number of claims Aggregate Claim Interval Level (+/-) 

0  -1 

1 (0-100,000] +1 

1 (100,000-500,000] +4 

1 (500,000-1,500,000] +7 

1 (1,500,000+) +10 

2 (0-100,000] +2 

2 (100,000-500,000] +5 

2 (500,000-1,500,000] +8 

2 (1,500,000+) +11 

 3+ (0-100,000] +3 

 3+ (100,000-500,000] +6 

 3+ (500,000-1,500,000] +9 

 3+ (1,500,000+) +12 
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this we do not have the same group of policyholders each year in practice, so it would be 

convenient to consider the proportions of the policyholders among BMS classes instead of 

numbers of policyholders. At the start of BMS all policyholders were at the base level which 

is the 10th level. So, the initial value of the process  is:  

. Aggregate claim intervals are (0-100,000];  

(100,000-500,000]; (500,000-1,500,000] and (1,500,000+) for which we have . 

Claims number can take the values 0,1,2, and 3+, so . By this approach matrix 

 will be a  matrix instead of .  For 2016 we have                     

 and  by statistical data. 

The frequencies of the policyholders by BMS classes take the following values for the current 

and Extended BMSs accordingly 

  
0 0 

0 0 

0 0 

0 0 

0 0 

0.006 0.006 

0.005 0.005 

0.005 0.005 

0.938 0.938 

7E-04 2E-05 

0.004 0.022 

0.002 0.003 

0.001 0.002 

0.035 0.014 

6E-04 0.001 

6E-04 2E-04 

3E-04 0.003 

0.002 3E-04 

8E-05 6E-05 

2E-04 3E-04 

1E-04 1E-04 

2E-04 4E-05 

Graph 4.1 shows the smoothness of the Extended BMS in comparison to the current 

one. The detailed analysis of the models is presented below. 
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           Graph 4.1 

In the case of current BMS a policyholder is “punished” with 4 classes of BMS for one 

claim in the year, but in the Extended BMS he can be “punished” up to 10 classes for one 

claim, if the claim amount is more than 1,500,000AMD and in contrast to this, he is 

“punished” with one class if the claim amount is small (less than 100,000AMD). 

 Table 4.10 helps to identify the percentage of policyholders to which the Extended 

BMS has harder or smoothed terms compared with the current BMS. 

Table 4.10 

Focusing our attention on transition rules of current BMS and on tables 4.9 and 4.10, 

we conclude that: for the policyholders making one claim the terms of Extended BMS are 

smoother for 49%, are the same as current BMS for 43% and are harder for 8%. For the 

policyholders with two claims the Extended BMS is smoother for 83%, and the current BMS 

for 3%.            

Number of 

Claims 

Aggregate Claim Amount (AMD) 

(0-100000] (100000-500000] (500000-1500000] 1500000+ 

1 49% 43% 7% 1% 

2 14% 69% 14% 3% 

  3+ 2% 66% 28% 4% 
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From the last row of the Table 4.10 it is obvious that the Extended BMS is the same for 

only 4% of the policyholders with three and more claims, but for the others it is smoother 

than the current BMS.    

So, enlarging this analysis to the group of all policyholders with any claim we conclude 

that two models have the same malus for 39.5% of them. The Extended BMS has harder 

terms than the current one for 7.5% of policyholders having any claim. On the other hand, 

the current BMS is harder than suggested Extended BMS for 53% of claimed policyholders. 

Although, Extended BMS is smoother for most of policyholders, forecast amount of 

premiums to be collected for 2016 is 100.11% of the base premium in opposite to the current 

BMS’s 97.87%. 

The Table 4.11 includes one step transition matrix for current BMS according to the 

distribution  mentioned in Table 4.4. 

For the construction of one step transition matrix of Extended BMS the same 

 distribution for claims number was used and for the aggregate 

claim amount the  distribution 

have been chosen.  The transition matrix of the Extended BMS is presented in Table 4.12. 

Although, all distributions in Table 4.4 are accepted with the same level of accuracy, visual 

analysis for distribution Log-Pearson 3 gives better results, i.e. the distribution, density, P-P 

and Q-Q plots lay on according sample data more accurately than for other distributions. 
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Table 4.11 

  
Transition Matrix of Current BMS 

Class 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 

1 0.923 - - - 0.070 - - - 0.007 - - - 0.001 - - - - - - - - - 

2 0.923 - - - - 0.070 - - - 0.007 - - - 0.001 - - - - - - - - 

3 - 0.923 - - - - 0.070 - - - 0.007 - - - 0.001 - - - - - - - 

4 - - 0.923 - - - - 0.070 - - - 0.007 - - - 0.001 - - - - - - 

5 - - - 0.923 - - - - 0.070 - - - 0.007 - - - 0.001 - - - - - 

6 - - - - 0.923 - - - - 0.070 - - - 0.007 - - - 0.001 - - - - 

7 - - - - - 0.923 - - - - 0.070 - - - 0.007 - - - 0.001 - - - 

8 - - - - - - 0.923 - - - - 0.070 - - - 0.007 - - - 0.001 - - 

9 - - - - - - - 0.923 - - - - 0.070 - - - 0.007 - - - 0.001 - 

10 - - - - - - - - 0.923 - - - - 0.070 - - - 0.007 - - - 0.001 

11 - - - - - - - - - 0.923 - - - - 0.070 - - - 0.007 - - 0.001 

12 - - - - - - - - - - 0.923 - - - - 0.070 - - - 0.007 - 0.001 

13 - - - - - - - - - - - 0.923 - - - - 0.070 - - - 0.007 0.001 

14 - - - - - - - - - - - - 0.923 - - - - 0.070 - - - 0.007 

15 - - - - - - - - - - - - - 0.923 - - - - 0.070 - - 0.007 

16 - - - - - - - - - - - - - - 0.923 - - - - 0.070 - 0.007 

17 - - - - - - - - - - - - - - - 0.923 - - - - 0.070 0.007 

18 - - - - - - - - - - - - - - - - 0.923 - - - - 0.077 

19 - - - - - - - - - - - - - - - - - 0.923 - - - 0.077 

20 - - - - - - - - - - - - - - - - - - 0.923 - - 0.077 

21 - - - - - - - - - - - - - - - - - - - 0.923 - 0.077 

22 - - - - - - - - - - - - - - - - - - - - 0.923 0.077 



101 
 

    

Table 4.12 

 

Transition Matrix of Extended BMS 

Class 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 

1 0.923 0.014 0.001 1E-04 0.050 0.005 5E-04 0.006 5E-04 6E-05 1E-03 9E-05 1E-05 - - - - - - - - - 

2 0.923 - 0.014 0.001 1E-04 0.050 0.005 5E-04 0.006 5E-04 6E-05 1E-03 9E-05 1E-05 - - - - - - - - 

3 - 0.923 - 0.014 0.001 1E-04 0.050 0.005 5E-04 0.006 5E-04 6E-05 1E-03 9E-05 1E-05 - - - - - - - 

4 - - 0.923 - 0.014 0.001 1E-04 0.050 0.005 5E-04 0.006 5E-04 6E-05 1E-03 9E-05 1E-05 - - - - - - 

5 - - - 0.923 - 0.014 0.001 1E-04 0.050 0.005 5E-04 0.006 5E-04 6E-05 1E-03 9E-05 1E-05 - - - - - 

6 - - - - 0.923 - 0.014 0.001 1E-04 0.050 0.005 5E-04 0.006 5E-04 6E-05 1E-03 9E-05 1E-05 - - - - 

7 - - - - - 0.923 - 0.014 0.001 1E-04 0.050 0.005 5E-04 0.006 5E-04 6E-05 1E-03 9E-05 1E-05 - - - 

8 - - - - - - 0.923 - 0.014 0.001 1E-04 0.050 0.005 5E-04 0.006 5E-04 6E-05 1E-03 9E-05 1E-05 - - 

9 - - - - - - - 0.923 - 0.014 0.001 1E-04 0.050 0.005 5E-04 0.006 5E-04 6E-05 1E-03 9E-05 1E-05 - 

10 - - - - - - - - 0.923 - 0.014 0.001 1E-04 0.050 0.005 5E-04 0.006 5E-04 6E-05 1E-03 9E-05 1E-05 

11 - - - - - - - - - 0.923 - 0.014 0.001 1E-04 0.050 0.005 5E-04 0.006 5E-04 6E-05 1E-03 1E-04 

12 - - - - - - - - - - 0.923 - 0.014 0.001 1E-04 0.050 0.005 5E-04 0.006 5E-04 6E-05 1E-03 

13 - - - - - - - - - - - 0.923 - 0.014 0.001 1E-04 0.050 0.005 5E-04 0.006 5E-04 1E-03 

14 - - - - - - - - - - - - 0.923 - 0.014 0.001 1E-04 0.050 0.005 5E-04 0.006 2E-03 

15 - - - - - - - - - - - - - 0.923 - 0.014 0.001 1E-04 0.050 0.005 5E-04 0.007 

16 - - - - - - - - - - - - - - 0.923 - 0.014 0.001 1E-04 0.050 0.005 0.008 

17 - - - - - - - - - - - - - - - 0.923 - 0.014 0.001 1E-04 0.050 0.013 

18 - - - - - - - - - - - - - - - - 0.923 - 0.014 0.001 1E-04 0.062 

19 - - - - - - - - - - - - - - - - - 0.923 - 0.014 0.001 0.062 

20 - - - - - - - - - - - - - - - - - - 0.923 - 0.014 0.064 

21 - - - - - - - - - - - - - - - - - - - 0.923 - 0.077 

22 - - - - - - - - - - - - - - - - - - - - 0.923 0.077 
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Here the above mentioned plots are presented: 

P-P Plot

Log-Pearson 3
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Q-Q Plot
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Cumulative Distribution Function

Sample Log-Pearson 3
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Conclusion 

In the first chapter of the dissertation a literature review of current BMS is presented. 

Analyzing the distributions applied for the claim number processes it can be concluded that 

claim history for each portfolio is unique and there is not a universal probability distribution 

that fits to all claim number processes good. Some problem-solving methods and approaches 

have been discussed to eliminate BMS’s current issues which are consequences of the 

transition rules between BMS classes including only claims number component. So, it is 

suggested to construct new BMS’s, which will include the claim severity as a premium 

calculation component.   

In the second chapter a new BMS model is presented, which was constructed on the basis 

of “optimal” BMS principle. Presented model eliminates the discussed disadvantages of many 

BMS’s. In the scope of the model  

 The policyholder has an opportunity to pay the same premium and even have a small 

bonus in the case of small size of claim. 

 Each policyholder will be penalized proportionally to his claim. 

 Policyholders will cover only a part of the claim occurred, so there will be no bonus 

hunger behavior. 

 Policyholders will report about each claim so the insurers and regulators will have an 

opportunity for the best evaluation of the system (risk frequency, claim amount, 

distribution of future losses, premium for new drivers etc.).  

The Extended BMS model, presented in the third chapter of this dissertation, can be a 

tool for constructing more flexible systems to eliminate some of the disadvantages of the 

current ones.  The model development is based on the Markov property. With the help of 

measure change techniques and HMMs, the recursive formulas for transition matrices and  

step predictions for claim numbers and aggregate claim amounts were derived. 
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The last chapter was devoted to the testing of new models presented in this dissertation 

by a comparative analysis with the BMS used in Armenian CMTPL insurance. The analysis 

showed that the Alternative BMS is preferable for most of policyholders as well as for the 

insurers.  It can be noted that in the case of Extended BMS there is no concentration of 

policyholders in some classes. Starting from the first insurance year policyholders are spread 

out on the most of BMS classes. This means that the risks of the system are distributed among 

policyholders accordingly to their own part of risk.  And due to this property, the Extended 

BMS being harder only for a small part of the policyholders (7.5%) provides good results in 

comparison with the current system. 



106 
 

 

Abbreviations 

ASTIN- Actuarial Studies in Non-life Insurance 

BMS-Bonus-Malus System 

CASCO- Casualty and Collision (voluntary vehicle insurance) 

CMPTL-Compulsory Motor Third Party Liability 

EM-Expectation Maximization 

HMM-Hidden Markov Model 

m.g.f. – Moment Generating Function 

MTPL-Motor Third Party Liability 

NPMLE- Non-Parametric Maximum Likelihood Estimation 

TPL-Third Party Liability 
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Appendix 

 

Discrete Distributions 
Table A.1 

Distribution Name Probability Function Mean Variance 

Poisson              
  

  

Negative Binomial 
  

  

Geometric  
  

Poisson-Goncharov 
  

N/A N/A 

Poisson-Inverse 

Gaussian    

 

 

 

Continuous Distributions  

(for ) 
Table A.2 

Distribution Name 

Probability 

Density 

Function                  
 

Cumulative 

Distribution 

Function  
Mean Variance 

Burr(XII)                         

(3-parameter) 
 

 
 

Moments 
 

 

Chi-Squared                          
    

  

  

Dagum                         

(3-parameter) 
             

 
  

 
 

 

Erlang                         

(3-parameter)   
   

  
  

Erlang                         

(2-parameter) 

 
  

  

Exponential                         

(2-parameter)   
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Distribution Name 

Probability 

Density 

Function                  
 

Cumulative 

Distribution 

Function  
Mean Variance 

Exponential                            
     

F (Fisher-Snedecor) 

or Pearson 5 
   

 

Moments 
 

 

Fatigue life6 

 
 

 

   

Fretchet        

(2-parameter) 

 
  

Moments 
 

 

Gamma                    

(2-parameter)        

 
    

Generalized Gamma              

(or 3-parameter) 
     

Pearson 5 or 

Inverse Gamma 
  

  
  

Weibull 

     

 

 

The following functions have been used 

1. Beta function 

 

2. Incomplete Beta function 

 

 

 

3. Gamma function 

                                                           
6
 where  and  are the cumulative distribution and probability density functions of the Standard Normal Distribution 
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4. Incomplete Gamma function 

 

5.  Regularized Incomplete Beta function 

 

 


