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General description

Topicality: There are many types of Bonus-Malus Systems (BMS) used in the world. They
have various applications. Insurance companies operating in some countries are highly
recommended to apply the same BMS for a particular class of insurance such as Compulsory
Third Party Liability (CMTPL) insurance in Armenia. The most developed countries in this
area, mainly European ones, entitled full or partial freedom to insurance companies by
developing a highly competitive market. The common characteristic of these systems is that
the transition of a policyholder from one BMS class to another is described by the number of
claims incurred by that policyholder. In applying this rule many problems are arise which
cannot be solved by the experience rating methods used up to now. The application of
martingale theory in this field gives new opportunities to introduce more efficient systems.
The topicality of the dissertation is conditioned by the study of the current issues of BMS’s and
finding new ways to solve them.

Objective and Issues: The main aim of the dissertation is the construction of new BMSs,
which will include the number of claims and aggregate claim amount components as a
posteriori risk classification. The systems constructed here must be financially balanced and
the future malus of a policyholder must be proportional to the loss incurred by insurance
company because of him. On the basis of the given dissertation the following problems have
to be studied:

e Analyzing currently operating BMSs; considering the approaches of solving or
eliminating their current issues

e  Suggesting new systems satisfying to optimal BMS definition

e  Analyzing suggested systems’ applicability by using Armenian CMTPL insurance
market data

Research Methods and Informational Backgrounds: Two new BMS models are presented
in the following dissertation. On the basis of the first model’s construction stands the
martingale approach. For the second model the Markov process have been applied where the
parameters of the model were estimated with the Expectation Maximization (EM) algorithm.

The data used in the dissertation has been gained from “IngoArmenia” Insurance CJSC,
from the official site of the “Armenian Motor Insurance Bureau” and from the professional
literature sources.

The databases were analyzed with the help of Easy-Fit, SPSS and MS Excel software
packages.

Scientific Novelty:

1.  An alternative model for BMS was proposed where a necessary and sufficient
condition was found out for the premiums of the insurance policies’ portfolio to
form a martingale series.

2. It was shown that the proposed model can reach to a stationary state.



3. An upper bound for the ruin probability in the alternative BMS was found out with
the help of martingales and supermartingales.

4. It was stated the claim amount below which the “bonus hunger” phenomenon arises
in the alternative BMS model

5. A generalized BMS model was proposed where the transition of the policyholder
among BMS classes described by his/her current class, by number of claims and by
aggregate claim amount

6. Estimates for generalized BMS model parameters were stated with the help of
“hidden” Markov models (HMM) and change of measure

7. For the claims number and aggregate claim amount random variables hypothesis for
distributions were made on the basis of data received from insurance company.

8. Comparative analyzes of the current BMS with BMSs proposed in the dissertation
were done.

The all results presented in the dissertation are new.

Practical and Theoretical Significance: The main results of this research have theoretical
and practical character as well. The models presented in this work can be used by insurance
companies as well as by the supervisory and decision-making participants of the insurance
market for the research, strategic and commercial purposes.

Approbation: The main results of the dissertation have been presented in the scientific
seminars held in the department of Actuarial Mathematics and Risk Management of YSU, in
the IX International Academic Congress “Contemporary Science and Education in Americas,
Africa and Eurasia”, Rio De Janeiro, Brazil, 18-20 July, 2015. The results have been discussed
at the “IngoArmenia” insurance company and at the Central Bank of Armenia.

The main results of the dissertation are presented in 4 (four) articles, 3 (three) of which
were published in the journals accepted by Supreme Certifying Commission (SCC) of Armenia
and one was included in the SCOPUS database. The references can be found at the end of this
booklet.

The Structure and the Content of the Dissertation: The dissertation is stated in 109 pages
(the appendix is excluded); consists of an introduction, four main chapters, conclusion,
appendix and the list of 134 cited references.

Overview and main results

The first chapter of the dissertation is devoted to the international experience of
functioning BMS’s, to the ways of their study, to their current issues and to the problem-
solving methods and approaches applied up to now.

Bonus-Malus System is a tool used by insurance companies to “penalize” the policyholders
responsible for one or more claims by a premium surcharge (malus) and to “reward” the
policyholders who had a claim-free year by awarding discount of the premium (bonus).

Describing BMS one should mention their main characteristics, which are:
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e BMS classes (with the help of them one recognizes the amount of future premium)

e The beginner’s class (new policyholder join to the system from that class)

e  The transition rules (the pre-defined conditions in case of which the policyholder
moves from its current class to another)

The BMSs were used from 1950’s. They can be applied in different areas of insurance but
they appear mainly in motor transport insurance (CASCO) and in motor third party liability
insurance for road vehicle (MTPL).

The Section of International Actuarial Association for Actuarial STudies In Non-life
insurance (ASTIN) was created in 1957. In those years at ASTIN’s conferences great attention
was paid to the problem of “fairly constructed premium”. To solve this problem
mathematically the policies with no-claim-discount system were considered. Actually the no-
claim-discount system is the special case of BMS.

Many of the BMS in practice follow a Markov chain consisting of a finite number of
classes any of which corresponds to some percentage of the base premium. The premium can
be reviewed upward or downward depending on a policyholder’s past record of reported
accidents and in accordance with transition rules (see for instance [1], [2], [3] and [4] ). To get
the next class occupied by a policyholder it is enough to have information on its current class
and the number of claims made by him during the current period. This come to show that the
BMS can be described as Markov chain: the future (the class occupied in ¢ +1 year) depends
on present (on the current class and on the number of claims during the current period) and
does not depend on past (the full history on claims number and occupied classes in
1.2,...t — 1 periods). To analyze BMS with Markov chain transition matrix on a long time
period one should discuss its stationarity problem. The solution of this problem is used by the
actuaries of insurance companies for the long term forecasting. Several algorithms have been
proposed in order to compute the stationary distribution of the policyholders’ in a given BMS.
Dufresne [5] proposed a very nice technique requiring independence between the annual
numbers of accidents per policyholder. We should note that the Dufresne’s method would not
be applicable to BMS with non-uniform penalties per claim while the technique described in
[6] remains applicable for all BMS. Dufresne adapted the reasoning to the mixed Poisson case
in his work [7], but at the cost of many numerical difficulties. On the basis of the model
offered in [5], the authors of [6] search the stationary distribution with the non-parametric
NPMLE method. This method was used also in [2] for the TPL insurance case. It is possible
that the system could not reach to its stationary state at all or the rate of convergence to
stationary state may be slow in comparison to the typical sojourn time of a customer in the
portfolio. This problem was discussed in [8], [9], [10] considering the Bayesian view of
premium calculation which can be found in [11], [12], [13]. There are BMSs which are not
Markovian. One of such systems is Belgian BMS which is a “dying” one. From 2004 Belgian
companies have complete freedom of using their own BMSs. The Markov property disturbed
due to the special bonus rule sending the policyholder in the malus zone to initial class after
four claim-free years. The works referred to this special bonus rule and to Belgian BMS are [3],
[14], [15], [16]. Lemaire [3] proposed to split the classes from 16 to 21 into subclasses. This
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method gives an opportunity to get free from the special bonus rule and consider the model as
a Markov chain again.

From practical point of view it is well known that the existing BMSs possess several
considerable disadvantages which are difficult or even impossible to handle within the
traditional theory of experience rating [17]. Therefore it is necessary to examine them from
different point of view. The existing systems are based on the following characteristic: the
claim amounts are omitted as a posterior tariff criterion. This characteristic leads to the
following disadvantages:

i. Regarding an occurred claim, the future loss of bonus will in many cases exceed the
claim amount.

ii. In many cases it gives the policyholder a filling of unfairness especially when a
policyholder makes a small claim and the other one a large; they have the same
penalty within the same risk group.

iii. The consequence of (i and ii) is the well-known bonus hunger behavior of
policyholders.

iv. Bonus hunger behavior leads to asymmetric information between policyholders,
insurers and regulators.

Many authors have focused on the disadvantages mentioned above. To diminish some of
the disadvantages (i-iv) Holtan [17] suggested the use of very high deductibles that may be
borrowed by the policyholder to the insurance company. In [18] he suggested using
deductibles depending on the BMS class of the policyholder. Among the disadvantages (i-iv)
the huge share belongs to the problem which in 1960 Philipson [19] called “hunger for
bonus”. Grenander [20] derives equations to determine a rule of the form “pay the damage if
its amount is smaller than a critical value and claim it otherwise”. Martin-Lof [21] shows that
a decision rule of the form formulated in [20] is optimal in the sense that it minimizes total
expected costs. The decision rule is derived by applying the general theory of Markov decision
processes, which find an optimal control iteratively by using dynamic programming. As a
consequence of bonus hunger, adverse selection and moral hazard phenomena, information
nonconformity among insured, insurers and their regulators arises. Rothschild and Stiglitz [22]
and Stiglitz [23] discussed how to design an optimal insurance contract to deal with adverse
selection and moral hazard. Dionne and Lasserre [24], Cooper and Hayes [25] discussed the
multi-period insurance contract, and pointed out the experience ratemaking and risk
classification can solve information asymmetry.

The main reason for BMS disadvantages (i) and (ii) is the application of big maluses for
claims with small severity. A reliance or “sense of fair-dealing” to the BMS will arise when the
“punishment” of a policyholder as a malus is proportional to the loss incurred by insurance
company because of him. This leads to BMS construction with taking into account the claim

severity as well.

One of the first models of BMS designed to take severity into consideration is Picard [26].
Picard generalized the Negative Binomial model in order to take into account the subdivision

6



of claims into two categories, small and large losses. In order to separate large from small
losses, two options could be used:

v The losses under a limiting amount are regarded as small and the remainder as large.

v Subdivision of accidents in those that caused property damage and those that cause
bodily injury, penalizing more severely the policyholders who had a bodily injury
accident.

Pinquet [27] designed an optimal BMS which makes allowance for the severity of the
claims in the following way: starting from a rating model based on the analysis of number of
claims and of costs of claims, two heterogeneity components are added. They represent
unobserved factors that are relevant for the explanation of the severity variables. The costs of
claims are supposed to follow Gamma or Lognormal distribution. The rating factors, as well as
the heterogeneity components are included in the scale parameter of the distribution.
Considering that the heterogeneity also follows a Gamma or Lognormal distribution, a
credibility expression is obtained which provides a predictor for the average cost of claim for
the following period. Frangos and Vrontos [28] assumed that the number of claims is
distributed according the Negative Binomial distribution and the losses of the claims are
distributed according to the Pareto distribution, and they have expanded the frame that
Lemaire [3] used to design an optimal BMS based on the number of claims. Applying Bayes’
theorem the posterior distribution of the mean claim frequency and the posterior distribution
of the mean claim size given the information about the claim frequency history and the claim
size history for each policyholder for the time period he is in the portfolio have been found
out. For more on this subject see Vrontos [29]. In [28] the development of a generalized BMS
is presented, which integrates the a priori and the a posteriori information on an individual
basis. In this generalized BMS the premium is a function of the years that the policyholder is
in the portfolio, of his number of accidents, of the size of loss that each of these accidents
incurred, and of the significant a priori rating variables for the number of accidents and for
the size of loss that each of these claims incurred. Pitrebois at al. [30] suggested introduction
of claim amount in the model via premium adjustment factor, which is calculated according to
credibility techniques. Bonsdorff [31] discussed some asymptotic properties of Bonus-Malus
systems based on the number and on the size of the claims. Analyzing BMS current issues in
the following dissertation suggested to leave traditional methods discussed up to now and
construct systems, which are basically different from those ones. The systems constructed
here are financially balanced and the future malus of a policyholder is proportional to the loss
incurred by insurance company because of him.

In the second chapter a new BMS model, constructed on the basis of “optimal” BMS
principle, is suggested. One of the main actuarial principles is the presupposition of financially
balanced insurance product. Generalizing the principle of financially balanced BMSs Lemaire
[3] defines the concept of optimal BMS, which has two conditions. BMS is called optimal if it
is:



e  Financially balanced for the insurer, i.e. the total amount of bonuses is equal to the
total amount of maluses

e  Fair for the policyholder, i.e. each policyholder pays a premium proportional to the
risk that he imposes to the pool.

In the view of probability theory, the bonuses and maluses provided by the insurer are
random variables, while still the detailed definition of “the total amount of bonuses (or
maluses)” remains uncertain. Therefore we offer the following statement of the “optimal”
BMS: Financially balanced for the insurer, i.e. the expected value of total amount of bonuses is
equal to the expected value of total amount of maluses.”

In other words, this statement can be interpreted as “the expectation of the BMS total
premiums collected by an insurance company remains constant”.

One of the processes satisfying to this condition is the martingale series widely known in
probability theory.

Let us consider a portfolio of an insurance product. Suppose that a series of independent
and identically distributed random variables ¥y,¥5. ... are yearly aggregate claim losses of that
portfolio, given on a ({&L.F.(FJly=p F) filtered probability space where Fp = {@,£2} and
F, = ¢{¥. V5 ..} }. And suppose that ¥;, ¥, ... random variables are so that E¥ <! 3 condition
is satisfied. Let’s denote F,.PF,... as random variables, which describe yearly aggregate
premium charge for that portfolio, where F, = comst is given and the other members of that
series are defined by the following formula:

B =(1—ay )P _;+ f¥n nzl 1
where F,-is an aggregate premium collected for n-th year of the portfolio.

¥, —is an aggregate claim loss for the given portfolio within {# —1;n) time interval. It is
necessary to note that ¥}, is independent of B, _; forall n, { = 1.

@ = (. Fp_1)n=1 is a predictable series with @, € (0,1}, which will be called a series of
bonus factors.

B = (B, Frn_1Jn=y is also a predictable series with fi, € (0.1], which will be called a series
of malus factors.

Lemma 1: The series F = (B,.F,) constructed by formula (1), where t,, and f, areF, _;-

measurable, is a martingale if and only if*
@, _ EY
Sﬂ. 'F'ﬂ.—l

Suppose that the distribution function of aggregate claim is given ¥ ~F,{x). Then with the

v o
feTin—a

¥—Pyn _ E¥
Fyilg)-EY

@, = —
and @n = T B

help of quantile method &, and fi, expressed as fy =

where ¥, is a critical value of aggregate claim amount stated by an insurance company and

Fr l[E:I is the inverse distribution function.

The results are presented in [40].

Lemma 2: The coefficients i, and 3, have finite limits ast. — .
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Lemma 2 leads us to a conclusion that starting from some time t the bonus and malus
coefficients will not depend on time and we can consider the following model
P.=(1-a)P_, +FVs k=t 2
Consider a BMS portfolio where the capital amount at a time i is decreased by the total
amount of claims for time interval {i —1,{] and increased by premiums collected at the time
i. In addition to the assumptions of independence and identical distribution for ¥, here we
assume also that Varl = ==,

The surplus process of the portfolio is then defined by
n n

Uﬂ:tﬂ.+zp;l- —Z ¥
k=1 k=1

where & = U} is the initial capital of the portfolio, F;, is the aggregate premium defined
with (27 and ¥}, is the aggregate claim amount of the portfolio for time interval (& — 1.&].

Definition 1: The event that U ever falls below zero is called ruin:

Ruin = {U, < 0 for some n}

Definition 2: The time t{w)when the process falls below zero for the first time is called
ruin time:

ofu) = infin = 0;U, < 0}.

The probability of ruin is then given by

L,'.'JI:H.‘I =F (U%Ur. = 0} |UD:‘.‘.E.] =F (E%Uﬂ < DlUD = ’.‘_E.::l = _PI:T{‘.‘_.!.:| = )
ezl &

Write

= Yy By = ¥y — (1 — @By — ¥ = (1= D¥— (L= DPy.y

This variable shows the net loss of the portfolio at time k.

]

The total net loss of the portfolio up to time 7t is defined as
S,=Zy++Zy nz1, 5=0

So, for the probability of ruin we have the following equivalent expression:

Wi = i -5 = —ul= 1 |

w(w) =P (=5, = —u) = P(sups, > )

Definition 3: (Net Profit Condition): The process Z satisfies to the net profit condition
(NPC), if

EZ=(1-FEV-{1—a)f <0

Taking the expectations in {2} with some rearrangements, recalling F, = EF; martingale
property and using the i.i.d. property of ¥}’s we have the following NPC

o< f.

Making some rearrangements we get:
A 1

5, = Z FR—ZPR = €, — (g—l:]:-fﬂ +§Gﬂ

k=1 k=1
(1= [L=(1mz]"™)
o

Where Cn = Py sMp =¥y +o+ ¥y Gy = (1— )"y + -+ (1 — @)y
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Denote gy (t) = Ee™ the moment generating function of the random variable ¥.
Lemma 3: For any y =0, and for any . € (0,1) satisfying the NPC, the sequence
G52

e (e-))

Is a martingale.
Lemma 4: For any y =10, such that @(y) < 2 and for any a,f € (0,1 satisfying the
NPC, the sequence

g 155+

Py (}f%(l — ) )
Is a supermartingale.
Lemma 5: For any y =10, such that .\y) < o and for any &, € (0,1) satisfying the

Gi,'!:

NPC, the sequence

g¥in

(3

" oy (—'F (%— 1) ) o7 (?gtl - crjl)

; ;

Is a supermartingale.
Theorem 1: If for some ¥y = 0, the process 5, given by (3) iIs a supermartingale, where

S5,— —x asn— x, then

i) <

—Fu

g

- ;r'L'f?‘:-

oi(-r(§-1))ei(vEa-w)

Tiw) < =

In the third chapter of the dissertation another new BMS model is introduced, where the
next BMS class of a policyholder is determined by the number of his claims and by the
aggregate claim amount.

Consider a set of L policyholders. Each policyholder belongs to one of a finite number £ of
classes (tariff groups) sorted by order; class 1 being the one with lowest premiums etc. That is,
each premium depends on the class to which a policyholder belongs. Each year the class of a
policyholder is determined on the basis of the class of the previous year, on the number of
claims and on the aggregate claim loss reported during that year. If no claim has been
reported, then the policyholder gets a bonus expressed in the lowering to a class with a lower
premium or stay at the lowest premium class. Otherwise the policyholder may stay in the
same class or gets maluses by being shifted to a higher class with possibly higher premium.
New policyholders are assigned to a certain class.
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Tet x if!, be the number of policyholders in a class i at time #, wherei =1.2,....C.
Then X, = (x2, ....x5) will be the distribution of policyholders among classes at time n. It is
obvious that the state space 55 = {{x. rj;, s X iE 11 of X, process is finite.

We split the positive half of the real line into a convenient set of disjoint intervals
Iy, 150, Iy and discuss the aggregate claim of each policyholder on those intervals. We will
denote by Hy the number of policyholders whose aggregate claim in the n-th year falls in
interval I;, i = 1.2....K. So, H, = (HX ...HF) row vector will show the distribution of
policyholders among the reported aggregate claim intervals.

Consider the number of reported claims. Its state space will be the space of natural
numbers {0, 1, 2 ...}. Without any distortion we can suppose that it is limited by some
number . We will denote by N the number of policyholders who have reported
i, i=0.1....N claims during the n-th year. Then N, = (N}, .... ¥}") row vector will be the
distribution of policyholders among the reported claim numbers.

Assumptions underlying the model:

e The processes X, H and N are Markov chains which, for technical reasons and
without loss of generality!, accordingly live on the standard basis { 8y, '“’Elfxl}’
{fj_; ---,,ﬁjﬂ.ﬂ and {hj_, ---;h|5:;|} in R mI5#l and respectively R where the i-th
component of each vector &, f; and h; is 1 and others are 0 (see [32], pg. 5). |5%|,
|55] and | 54| are the sizes of 5y, 55 and 5y, sets accordingly.

e Itis assumed that the movement between classes is based on the current class of the
policyholder, on the number of claims and on the aggregate claim reported in the
year. So the movement of process X between its states depends on levels of X,,_;,
H,_jand N,,_, and the transition matrix is not time-dependent.

e The next assumption refers to aggregate claim process. It is assumed that the
aggregate claims are not independent, so the aggregate claim of a policyholder in any
year depends on the aggregate claim and reported claims number of the previous
year. We can conclude that the movement between states of process ,, is based on
the values of H,,_; and N,,_; as well. The transition matrix is time-dependent and is
not known in advance.

e The yearly reported claim numbers for each policyholder are also suggested
dependent. It is assumed that reported claims number of a policyholder depends on
the claims number reported last year and on the policyholder’s current class of BMS.
In other words, the movement from one state for process iV, to another is founded

1 . . . . .

Consider the process Xj with Sy ={s;,...5;} finite state space. Let consider the
0. ifk =i
1ifk=i
easy to note that for any &k only one component of Xj is 1 and others are 0. So, instead of

function @y (57} = . We will construct the process Xy = (@4 (X ). oo, @y (X)) Tt is
process X, we will consider the process X which is generated by it and which state space is

5y = {&4, .85 the space of unit column vectors.
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on N,_; and on X,_;. For this process also the transition matrix is assumed a
stochastic one.

The time-dependence of transition matrices can be explained by change of policyholders’
behavior year by year. They can make conclusions based on their insurance history and be
more professional. As an example in motor insurance, the driver can be more careful and
make fewer claims if he has many claims in the previous year. On the other hand, he can
prefer to cover some small claims himself if he is on the higher bonus class.

Let 1, = o{X;. H;_1.Ny_y. k = n} be the complete filtration generated by processes ¥, H
and i up to the n-th year.Write

P(Xr! =g Kooy =8pHy_ = fic*"."'fr!—l = hm] £ Pjikm

5 i 5 5‘! . . .
Here B = (P sm :I_lll":lj_lf:l 1| r'r:l=11s a |5l 2 |5.]155115,] stochastic matrix of tensor

FPLate " P |Sallswl)
mapping R¥xl155l1%| into mI*¥ and has the form B = ( : E : , where
Plsdiarr " Plsyldsyd |5l vl

E_E{IPJ'.[FW. =1

Lemma 6: The process X has the following semimartingale representation (or Doob
decomposition): Xy = BXy_y & Hy_y (& Nyy_y + V. where the |5y| % 1 column vectorV,, is an
I, martingale difference.

The same analysis as for Markov chain X shows that the Markov chains H and N have
similar representations but with time-dependent transition matrices J,, and 4,,. For matrices
@, and A,we develop processes {J, and A,, for which transition matrices are not time-
dependent. So, we have the following BMS model, which is a HMM:

A =BXp @ Hy @ + 1

Hy = QnHp_1 @ Ny + W

‘Err! :Ari:ﬁ'Tn—i'E'Xn—1+ Ly 4
'? n=1D0 q n-1+ B

A, =KA, ,+T,

It must be noted that the constructed model is a revised and an extended one described in
[33]. It has the following peculiarities:

e  The model, developed here is “policyholder-oriented”, that is the considered group
of policyholders is divided into subgroups from 3 different points of view:
v’ partition by levels of BMS
v’ partition by groups of aggregate claim amounts
v/ partition by number of reported claims
In [33], the partition is applied to two different events: first of all the group of
policyholders is divided on subgroups by BMS levels and the other partition applied
to the set of reported claims, which are sub grouped by claim amount.
e  The process Z, is the distribution of claim numbers by claim amount intervals in
[33], so E_"; 1Z ;,'. represents the total number of claims and it means that a
policyholder, who makes more than one claim during the entire year, can appear in
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different groups of claim amounts simultaneously. In the model presented in this
paper, H,, is the distribution of policyholders among aggregate claim amount groups,

o E_"; 1 H f" represents the number of policyholders and it means that policyholder’s

location within the aggregate claim amount intervals can be identified uniquely.

e In comparison with [33], where the transition between BMS levels depends on the
reported claim numbers, in the model, presented in this paper, the above-mentioned
transition depends on the aggregate claim amount, reported by policyholder as well.

Define A, = [[F.;4;, where

I5xd |5k| |5wl oy e W S g e MV g P 5wl 15w] q 'I:‘?'“I-' {H g b (H g Fo Ny P )
A = | | | | | |@j_uﬂﬂ) > (;s_n v‘)
en N
ijmiRe1med LR e Grilm),

5wl 15xd y AN RN oy Py

% (ff.g W ':ﬂ':' )
apmtip= \duew(m)

where { ., }denotes the usual scalar product and iy = 45 = 1.

Let ;;be the complete filtration generated by {: Ko Hy o Ny Op Apk = 1".',} .

Lemma 7: The sequence of random variables {Ay}ysp is @ {Gn.P} martingale with
expectation E Ay =1,

According to Radon-Nicodym theorem and Kolmogorov’s extension theorem (see [32],
Appendix A), with the help of measure F we can define the “real world” measure P as follows:

Ei LAy (5]
Theorem 2: Under probability measure P, as defined from P via (5) the dynamics (4)
hold.
Theorem 3: Joint distribution of processes H, and N, expressed via their marginal
distributions is as follows:
P(Hp = foNg = hylGn-sXn—y = €p Hn g = fio Vny = Rin) = Qo jom (M) 0y mi(70)-
Theorem 4: The unnormalized probability g, (w, @) satisfies the recursion:

|5
. B ) . )
Gnlw. @) = RE Kooy @ Hpoy @ Np_p X} XZW&.rHﬂ—l'E' Ny fo
=1
|5kl @l5gll5wl Al5x |55l
XE{;I:INn—l'E'Xﬂ—Ehu}X z Z dmu'l‘:rﬁgr!—j.':“*ﬂ:'*
=1 v=1 =1

where gy, @) is the initial joint probability of ), and 4.,.
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Lemma 8: The unnormalized joint conditional probability distribution of reported claim
numbers and aggregate claim amounts has the form:
- . B L
.E'I:Hﬂj"'.-'ﬂzlﬂwﬂ i= {EXH_L W H, ;"'uﬂ_l,.&’ﬂ}
|55 ] |50 @ 10 | 5] Al F] | 2l

XZZ z Z Fl @by @ Ny, fobho (AN,
=1i= 1 w=1
B Xp_s.ht }Qr":”-'ém'
Theorem 5: The m step prediction for joint probability distribution of the processes Hy, and
N, given the information T, has the form

'-'( r'+rrl_[{Hr'+t*fsr}U"r'+tJ ..ar} ]

IT.E‘ISHIIS .-I Al5y| |5k 5% |5xl
= Z Gz, z,u,001) Z Z | ||:P_.,,L3:,u.:, .;.,,.)_:,L':E'L:l
gy oy sy =1 Ty w @y =1 fmfy=1 0=

m

| | . . . W - . -+ 1
X pju-m.irgl:u: q‘gﬂ-b‘gtutliw t+1) I::'iil:;-mi'lr_il:Ii‘m"-“" l’ldml‘mt—lrc:rl::rt—l
r=1

: f{{Hﬂ, f;:‘}{h’n, k i)_:‘:I- T ]gﬂ (&g ).
The results are presented in [41].

Consider the Extended model of BMS {47. The system is described with the following set
of parameters:

Pigom: bi =118, k=1l m= LISNI*}

Qerilm).  sr=1054 I=1]5,
g = Sy U= m, w = 1[5,
e WU = m '
ko w8 = LA[S]5,]
Our purpose is the estimation of the model parameters. It is presented here in two
methods.

1. Estimation with EM algorithm. One of the best methods of HMM’s coefficient
estimation is the EM algorithm which is described detailed in [32].
Define

Apfiem L R (K oty e He_ g, fihNe_ g R}
H:'"r-f_g'h = ZioolHe follHe_y, foH(Ne_y B}
:fr:'"n"'" 2 Bl Ry MV R Ny 80) ()
T 2 Thl Qe buhQeos by)
AnE 2 TR (AL mgA_pmg)
Each figure in (6), for the corresponding process mentioned on the left top angle,
represents the number of jumps of the process from one state to another up to time 7.
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Each figure in the next set of notations shows the number of occasions up to time # for

which the corresponding Markov chain was in the mentioned state
o™ 2 T X e HHe_y fid Ny R
oy £ Bl Hep frlWe_y hy)
f"r'ﬂ nt 2 LiatlNe g hp (X g e (M
“of £ Ty by}
405 £ T {A;_ymg)
It is obvious that the figures in (6) and (7) are random variables

Remark: For each process holds the relationship ¥, [ijl_ = tog
To replace parameters 8 by & in (4) we define the following likelihood function
n_15x 15u 15w LA AN ST W

F'_.um':ﬂ )
|5:-:| |5-;| §eri(m)
l_[ [1w)

re=1i=
|5y |5J.| & ()} (N Py N oy Py 0 B
wrw Tt )

>< (
dpstinet b ey

q15xl 5w | - L .
)

[T (e
L= 1 w

HIF.lr; :'::H:—L.nfr:'::Nl:—L I-':I:'

AlSxl|5u c (Ao A mg)
m )
<[] (=2)
TA=1 wd

where in the case of # = 0 we take § = 0 and =1
It is not difficult to show that I}, is a martingale-measure, so according to the Radon-

Nycodim theorem there exists a measure F3 so that el = I holds.
1

Lemma 9: Under the measure F§ the analogue of the system (4) holds for parameter set &

Theorem 6: The new estimates of parameter set 8 given the observations up to time 1. are

given by )
}'TJ ik HS-“.S_?'I. Nj-ﬁi.LL"h'
o - - n o - n
P j.item = W* Tortim) =gz Guel®) =
o d a
mn mn
" Q:I.-n.-u - n .-13- wd
?‘.H = -t mn =
:..-u ’ iy ARLY e
gy ﬂﬁ

where Ty = E(*T7.) And “85 = E( @],
2. Parameter Estimation with Recursion. For getting the parameter estimation in the
previous part we have to do some prior assumptions on the probability distribution of
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parameter set &, but if we have the initial distributions the recursive estimation of the
parameters can be done. The new estimate in this case is presented as the previous estimate
corrected with the new information.

We assume that & takes values in some set & £ R'. Suppose we have the measure F under
which the processes of the system (4] are i.i.d.. According to Theorem 2 we define the “real
world” measure P under which the system (4) holds. Consider the unnormalized joint
conditional density:

iy (j.8) = E(An (X041 (8 € d8))|7,)
where I{4] is the indicator function of 4.

The normalized joint conditional density is:

, 2 (j.6)

RO =g

[ O (. 2

Theorem 7: The unnormalized joint conditional density it,(j.8) satisfies the recursion:
15 5l ISl
a,(j.8) = Z Z Z @{-‘_f’”‘ ) )
=1 g=1m=1 W I
Write g,,(a, a5, 8) for the unnormalized joint conditional density of processes J,, and 4,,:
nlw.@.68) = E(Agld, b WA mo ) (8 € d8)|3,)
The normalized joint conditional density is:

. Gnlw. o, &)
_ i"
fulw, w.8) —Emsfmuzmns | (0. @, u)du

Theorem 8: The unnormalized joint conditional density g, {w, o, &) satisfies the recursion

|55
900, ,8) = (F Koy @ Hoos ® Vo T waﬁﬁ £ ® Ny )
155l r.E'|51'-:||5. | A5l | 5l

XZ{‘&D“!I"H—LEXH—i’hu}X Z Z AR msln_ (05, 8)
=1 =1 g=1

The results are presented in [42].

The last chapter is devoted to the BMS analysis and testing of new models presented in the
dissertation by a comparative analysis with the BMS used in Armenian CMTPL insurance. To
determine the BMS behavior and forecast premium amount to be collected, it is very
important to model the number of claimed accidents to insurance company and the amount
lost by the company due to a policyholder. Claims number and claim amount are random
variables for insurance company. For modeling each of them some probability distributions
are used. Those distributions are listed and characterized for instance in [11], [34] and [35]. To
accept or reject any distribution one must state a statistical hypothesis. The statistical
hypotheses were checked with Kolmogorov-Smirnov and y? statistics, which description and
applications are described for example in [36], [37], [38], [39]. Calculations of the statistics
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were made with the help of computer packages Easy-Fit, SPSS and MS Excel. For the claims
number variable the Poisson, Negative Binomial, Binomial, Geometric and Hypergeometric
distributions were checked. All distributions were rejected with 10% of significance except of
Negative Binomial one. It was accepted with the same level of confidence for 2013, 2014, 2015
and aggregate data. For the aggregate claim amount variable 42 different types of distributions
were tested with the help of EasyFit package. Some of them were rejected with the 10% of
significance. The others accepted with 90% of confidence are presented in Table 4.5 of the
dissertation.

The analysis of the Alternative BMS shows that the estimates of « and |} with the help of
distributions of the aggregate claim amount are not invariant to distributions: for different
distributions we find different values. But the model gives opportunity to developers
constructing flexible systems by fixing the loss ratio beforehand. Tablel shows the
comparative analysis of the collected premiums according to current BMS and Alternative
BMS suggestions. Presented data include all policyholders with one year insurance policy
disregarding the fact of claiming. It is obvious that the aggregate premium collected by the
insurance company according to the current BMS is less than the Base premium with 1.2%-
2.3%. This fact means that the introduction of BMS leads to some additional losses to the
company. The results got from the Alternative BMS are better, than from the current BMS as
the gap between next premium and base premium is less than 0.54%. This fact comes to
confirm that the Alternative BMS is constructed according to the “optimal” BMS statements.
From the comparative analysis presented detailed in [43] we can conclude that for the most
part of the policyholders the Alternative BMS is preferable than the current BMS. In addition
to that, the Alternative BMS is not incurring additional losses to the company and the
company can state its loss ratio at the start of the insurance year.

2013 2014 2015
Current Alternative Current | Alternativ | Current | Alternat
BMS BMS BMS e BMS BMS ive BMS

Year premium/Base 100.04 100.03
premium 98.81% 99.68% 98.79% 99.73% % %
Next premium/Base
premium 98.22% 99.56% 97.68% 99.46% 97.87% 99.33%
Year premium/ Previous
year premium 99.41% 99.88% 98.88% 99.73% 97.83% 99.30%

Tablel

The BMS presented in the Chapter 3 of the dissertation differs from the current one by the
additional term, which is the aggregate claim amount. So, the next level of BMS for a
policyholder is determined by the number of claims and aggregate claim amount incurred to
the company during the current year. To discuss a more flexible system we take transition
rules between BMS classes presented in the Table2

Number of claims Aggregate Claim Interval Level (+/-)
0 -1
1 (0-100,000] +1
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1 (100,000-500,000] +4
1 (500,000-1,500,000] +7
1 (1,500,000+) +10
2 (0-100,000] +2
2 (100,000-500,000] +5
2 (500,000-1,500,000] +8
2 (1,500,000+) +11
3+ (0-100,000] +3
3+ (100,000-500,000] +6
3+ (500,000-1,500,000] +9
3+ (1,500,000+) +12

Table2

Table3 helps to identify the percentage of policyholders to which the Extended BMS has
harder or smoothed terms compared with the current BMS.

Number of Aggregate Claim Amount (AMD)
Claims (0-100000] (100000-500000] (500000-1500000] (1500000+)
1 49% 43% 7% 1%
2 14% 69% 14% 3%
3+ 2% 66% 28% 4%

Table3

For the policyholders making one claim the terms of Extended BMS are smoother for 49%,
are the same as current BMS for 43% and are harder for 8%. For the policyholders with two
claims the Extended BMS is smoother for 83%, and the current BMS for 3%. From the last
row of the Table3 it is obvious that the Extended BMS is the same for only 4% of the
policyholders with three and more claims, but for the others it is smoother than the current
BMS. So, enlarging this analysis to the group of all policyholders with any claim we conclude
that two models have the same malus for 39.5% of them. The Extended BMS has harder terms
than the current one for 7.5% of policyholders having any claim. On the other hand, the
current BMS is harder than suggested Extended BMS for 53% of claimed policyholders.
Although, Extended BMS is smoother for most of policyholders, forecast amount of premiums
to be collected for 2016 is 100.11% of the base premium in opposite to the current BMS’s
97.87%.
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Upnyniupubpp tkpfuyugdus ku [40]-[43] wpjumnwpubpnud:
Annoranus

ITepexoz, oT ofHOrO Kiacca K Apyromy B cucreme Gouyc-maryc (CBM) onpezeinsercs
KOJIMYeCTBOM 3asBOK, IIPeJCTaBIE€HHBIX CTpaxoBaTeineM. I[IpuMeHeHue 3TOro IpaBumiIa
MPUBOJUT K psLy IpoGieM, KOTOpble He MOIYT OBITh PpelIeHBl MeTOJaMH OIeHOK,
HCIIOJIB3yeMbIX A0 cux nop. [IpuMmeHeHHe TeopuM MapTHHIAJIOB B STOH OGJIACTH JaeT
HOBBIE BO3MOXXHOCTH [JIsI BHezpeHus Gosnee sddextuBHbIX cucteM. OCHOBHOMH IIeIbI0
guccepranuy ABigercs mocTpoeHume HOBbIXx CBM, Koropsle kak amocrepuopHas
xIaccudukanua pucka OyZyT cofep:KaTh KOJIMYECTBO 3afBOK M CYMMAapHBIH MCK OT
crpaxoBarens. Mogenu, IOCTPOEHHBIe B [IUCCEpPTAlMM, [JO/DKHBL OBITh (PUHAHCOBO
cOajaHCHpOBaHHBIE HMMalyC CTpaxoBaTeslf [OJ/DKEH OBITh IIPOINOPLUOHANBHO YiiepGe
MPUYMHEHHOTO CTPaXOBOM KOMIIAHMM. B OCHOBe AMccepTallMyM H3Y4eHBI CJeyIOolIve
pOGIeMBIL:

° Hccnenosats gpeticTBytomyie CBM M MeTOZBI pelleHHS WIM CMATYEHUA TEKYIIUX
mpoGeM.

e IlpenmoXXuTh HOBbIE CHCTEMBI YZOBIETBOPAIOLINE YCIOBUIO onTrManbHOH CBM.

e IIposectn amanus mnpepmaraembix CBM Ha ocHoBe mamHbIX cucremsr OCAT'O
(obs3aTesIbHOE  CTpaxOBaHWE  OTBETCTBEHHOCTH,  BO3HHKAWOIEe  BCIEACTBUE
9KCILTyaTalliy TPAHCIOPTHBIX CPEACTB) B APMEHUH.

B muccepranuy HOJTy4eHsI CIeLyIOLIMe Pe3yIbTaThl:

v llpemnoxkeHa ambrepHaTuBHas wMogeab CBM, yunThiBaromas SKBHBAJIEHTHOCTH
(uHaHCOBBIX 00s3aTENBCTB CTPAXOBaTeNss M CTPAaXOBOM KOMIIAHWM, a TaKKe
MIOJIyYeHO HeoOXOLUMOe U JOCTaTOYHOEe YCJIOBHE, IIPHU KOTOPOM IIpeMUHU IOopTdhess
CTPaxOBBIX JJOTOBOPOB COCTABIIAIOT PAJ, MAPTUHIAJIOB.

v TloxasaHo, 4TO [Jisl IIPEJJIOKEHHON MOZENM MOXET GBITH JOCTUTHYTO COCTOSHME
CTaI[MOHAPHOCTH.

v" C HOMOLIBIO OLEHOK, UCIIOJIB3YIOIMX CBOMCTBA MapTUHIAIOB U CylepMapTHHIAJIOB,
TOJMyYeH BEPXHUI IIpefiel BEPOATHOCTH pa3opeHus /A1 IIpeJCTaBIeHHOHN
anprepHaTHBHOM Mogenu CBM.

v' TlonyueH pasMmep CTpaxoBoro yuepba, IpPH KOTOPOM y CTPAaxOBaTess BO3HUKAET
moBesieHye “GOHYCHOTO roosa’.

v IlpennoxeHa pacuupeHHas Mogens Mapkosckoit CBM, rze mepexoz crpaxoBaresis
u3 oguoro kiaacca CBM B zpyroil ompenensercs ero TEeKyIIMM KJIaCCOM, YHCIOM
3aBOK M CYMMapHBIM HCKOM B Te4eHUe TOAa.

v' Jna pacumpenHoit Mogenn CBM ¢ momompio “ckpbiThix” Mogeneil Mapkosa u
u3MeHeHUeM Mep IIOIy4eHbI OlleHKU IIapaMeTpOB.

v' Ha ocHoBe smmupudeckux gaHHBIX 0 cucreMe OCAT'O crpaxoBoii KoMIaHHUH
«MHTOAPMEHU/» 6slna IpoBefeHa IIpOBepKa THUIOTe3 /JJI BEPOATHOCTHOTO
pacmpesieJleHUA YMCIIa 3aIBOK ¥ CYMMapHOTO HUCKa.

v'  IlpoBesieH CpaBHUTENBHBIH aHanus Mexngy Ttekyweii CBM, npumensemoii B
HacTosuee BpeMs B ApMeHUH, U cucteMaMu bM, npefijioXKeHHBIMH B AMCCEPTALIUH.
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PesynbraTsl mucceprauuu omyGanKoBaHsl B pabortax [40]-[43].

24



