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General characterization of the work

Actuality of the Problem

Often, in applications it becomes necessary to replace the functions by another,
in some sense more simple, functions. There are different methods of such a
replacement of functions. Among these methods the most popular is the
interpolation as well as approximation. The problem of univariate polynomial
interpolation was considered already by Lagrange and Newton who got
fundamental results in this field. It should be noted that in the univariate case
this problem was widely discussed and the problems of both theoretical and
practical interest mainly got their complete solutions. In the case of multivariate
interpolation situation is quite different. In fact the main investigations in this
area started only in last four to five decades. As it turns out despite the univariate
case the correctness (unisolvence) of multivariate interpolation essentially
depends on the geometrical distribution of interpolation nodes. The first major
results in multivariate polynomial interpolation were obtained by Berzolari,
Radon, as well as by Chung and Yao.

At the present stage of this theory significant results were obtained by Boyanov,
deBoor, Gasca, Lorenz and other mathematicians. Multivariate polynomial
interpolation is a basic tool in applied mathematics and it has applications in
many areas, including numerical methods, computed tomography, and computer
aided geometric designs. Note that unlike the wunivariate polynomial
interpolation in higher dimensions even many fundamental problems still
remain open.

In the thesis we discuss the problem of correctness of a multivariate mean-value
Lagrange interpolation, where interpolation parameters are integrals over certain
sets of finite and non-zero Lebesgue measure. It is worth noting an important
fact that the Lagrange mean-value interpolation is applicable in the case of
integrable functions while the pointwise interpolation may be inapplicable since
in this case the pointwise values of the function may not be defined.

The Aim of the Thesis

The aim of the present work is to investigate the correctness of certain mean-
value multivariate interpolation problems. We give a complete characterization
of the problem in a special case where the mean-values are taken over
measurable sets which are shifts of an arbitrary fixed set with finite non-zero
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Lebesgue measure. We characterize certain cases of non-correct interpolation
over circles. The correctness of the problem in dimension two for other special
cases also is considered.

The Methods of the Investigation

The methods of the theory of univariate and multivariate polynomial
interpolation are used. Also some methods of Linear Algebra and Culculus are
used.

Scientific innovation

e  The correctness of mean-value interpolation problem in dimension two and
degree not exceeding one with cut-regions is established.

e  The correctness of mean-value interpolation problem in dimension two and
degree not exceeding one in each variable with circles is proved.

e The correctness of mean-value multivariate interpolation problem for
arbitrary dimension and arbitrary degree of polynomials over the collection
of shifts of a Lebesgue measurable set of finite non-zero measure is
characterized.

¢ The mean-value Lagrange interpolation problem for dimension two and
arbitrary degree of polynomials over the collection of circles in a general
case is proved to be non-correct.

Theoretical and Practical value

The results obtained in the thesis have theoretical content and at the same time
they are directed toward the area of applications. In practice, the results can be
used in recovering of functions from given interpolation data and in sampling,
i.e., simplifying given complicated functions. Also the results can be used in
approximation theory, in multivariate Lagrange interpolation, in numerical
analysis.

Approbation of the Results

The results of the thesis have been presented in the following international

conferences:

e  The Applied Mathematics Conference, Zahedan, Iran, 2010, March 10-12.

e  The International Conference of the Jangjeon Mathematical Society, Iran-
South Korea, Ahvaz, Iran, 2010 Febreury 8-10.

The results also were presented at

¢  The general seminar of the Faculty of Informatics and Applied Mathematics
of Yerevan State University, 22 September 2011.

4



Publications
The results of the thesis were published in four scientific articles in the Journals
which we bring at the end of the Avtoreferat.

The Structure and Volume of the Ph. D. Thesis

The thesis consists of preface, three chapters, conclusion and list of references.
The publications of author are eight articles. The number of references is 55.
The volume of the thesis is 78 pages.

The main content of the thesis

Chapter 1. First we introduce the univariate interpolation problem. Then we
introduce the multivariate mean value interpolation problem. In order to give a
precise description of the problem we bring some definitions and introduce the
relevant notation.

The space of interpolation polynomials in k variables of total degree not
exceeding n is denoted by ¥ = I, (RY), ie.,

Hf’t ={px) = Z a,x¥:a, € R},
lylsn
where
X = (xl!'”!xk) € Rk!y = (YI!".!YR) € Zﬁ!

— 11 Yk —
xV=xit xS lyl= oty S

n+k

Also denote by N: = N;, == N(n,k): = dimlIIf = ( K

), the dimension of

interpolation space.
Denote by

X, = {x(l),-u,x(s)} c Rk
a set of distinct nodes of interpolation.
The classic Lagrange interpolation parameters are the values of a function at
given nodes.
Definition 1.3.1 The Lagrange interpolation problem (ITX,X,) is called correct
(poised), if for any values {c,,"*,cs} there exists a unique polynomial p € II¥,
satistying the conditionsp(x®) = ¢;,i = 1, ..., s.
In other words, the Lagrange interpolation problem is to find a unique
polynomial of the form



p(x) = Z a,x¥ € Hf’t
lylsn

such that

p(x®) = Yivisn ay(x(i))y =¢, i=1,..,5s. (1.3.1)
The correctness of interpolation means that (1.3.1) considered as linear system
has a unique solution for arbitrary right hand side values. A necessary condition
for this is that the number of unknowns equals the number of equations, i.e.,

s=N.

We know that in this case the linear system (1.3.1) has a unique solution for
arbitrary values {cy, ..., ¢}, if and only if the corresponding homogeneous system
has only trivial solution. In other words we have
Proposition 1.3.1 The Lagrange pointwise interpolation problem (ITX,Xy) is
correct if and only if p € Hﬁ,p(x(i)) =0,i=1,...N=>p=0.
Equivalently, the interpolation problem (II, Xy) is not correct if and only if

Ppelll,p+0, p(xP)=0,i=1,..,N. (1.32)
Here, we consider two general correct problems [1]. We denote by same letter,
say h, both the hyperplane and its equation, i.e., h(x) = 0, where h € TI.
Definition 1.3.2.1.1 The set of nodes I, #I = dimIIX* lying on a hyperplane h is
called basic in h for the space of polynomials 11X, or just I - basic in h, if each
polynomial of Ik vanishing at I vanishes identically in h, i.e.,

Vp,pEHlﬁ,p =0onl=>p=0onh
The following theorem of Bezout is a basic tool in interpolation [1].
Theorem 1.3.2.1.1 (Bezout) Assume that p € I1X and h is a hyperplane in R¥.
Then, p has linear factor h if p vanishes at h:
p=0onh=p =hq,qEH]§_1.

Definition 1.3.2.1.2 The set of nodes y € R¥, #y = N(n,k) is called

Berzolari-Radon set, if there are n + 1 hyperplanes hy, h;, ..., hy, 1 such that:
(k+n—1

wey ) of them are X -basic in h,

(k+n—2
k=1

Finally,
(',::i of them belongs to h,.;\{h;Uh, U...Uh,}.
Note that the number of the nodes lying on all hyperplanes is

<k+n—1)+<k+n—2)+ +(k—l)_N

k-1 k-1 k-1

Proposition 1.3.2.1.1 ([1, 2]) Each set of nodes x € R¥, #y = N(n,k) satisfying
the Berzolari-Radon construction is a poised set for interpolation with ITX.
In the next theorem we bring the description of Chung and Yao natural lattice:

of them are ITX_;-basic in h, and they do not belong to k, and so on.

6



Definition 1.3.2.2.2 Let h be a hyperplane. A set of nodes y C h is said to satisty
geometric characterization for Hlﬁ (GCk for short), if
1. #y=NMnk)
2. For each fixed node A € x there are n hyperplanes h{,h3, ..., h# in h whose
union contains all the nodes of ¥ but not A.
Let us note that the second condition means that the fundamental polynomial
for the node A is a product of linear factors:
Pa =Va-hi.h3 ..k,
where h{,h4,...,h# are the hyperplanes which union contains y\A and also y,
is constant. In this case we say that the node A uses the hyperplanes
hé,h4, ..., h#. Thus, in view of Proposition 1.3.2.1.1 each GC,, set is I - poised.
In particular, from Proposition 1.3.2.1.1 follows that all nodes of a GC,, set are
not contained in the union of n hyperplanes. Therefore, the number of
hyperplanes used by a node in GC,, sets is exactly n.
Let us denote the set of hyperplanes used by thenode A € y by
Hax = (1, ),
Definition 1.3.2.2.3 We say that the set of hyperplanes H = {hy, ..., i;},l = k
is in general position in R, if the intersection of each distinct k hyperplanes of
H is exactly one point and intersection of each k + 1 hyperplanes is empty.
Next let us bring examples of some sets satisfying the geometric characterization
of Chung-Yao.
The Natural Lattice of Chung-Yao. We start with
Definition 1.3.2.2.4 The set of nodes y € R¥, #y= N is called a natural lattice of
degree n in R¥ or briefly ML.,,, if there aren + k hyperplanes H = {hy, ..., b1}
In general position, the set of all intersection nodes of which form y.
Thus, the set of intersection nodes of arbitrary n + k hyperplanes in general
position form a GC,, set. The following theorem of Chung and Yao takes place:
Theorem 1.3.2.2.1 (Chung-Yao) Let the set of n + k hyperplanes be in general
position. Then the natural lattice generated by these hyperplanes is poised for
interpolation with ITX .
The Newton Lattice. One can define the Newton lattice of degree n as image of
the set
{a €ZK, |al<n}
under an arbitrary linear transform. This is a special case of Berzolari-Radon
construction. Therefore it is a poised set for I, too.
Next we introduce mean value interpolation (MVI) problem. We consider a
mean-value Lagrange interpolation problem where interpolation parameters are
integrals over certain sets.
Definition 1.4.3.3 Ler D ={4;SR*:i=1,..,N} be a collection of N
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measurable subsets of R* with finite nonzero Lebesgue mesures. The problem
of finding polynomial p € II¥ such that

fAi p(x)dx=¢;, i=1,..,N, (1.4.3.3)
wherec; are arbitrary given numbers, is called MVI problem.
We denote this MVI problem by (I1%, D).
Definition 1.4.3.4 The problem (I1¥,D) is called correct if for any numbers
ci, i =1,..., N there exists a unique polynomial p € II¥ satistying (1.4.3.3)
Next we are going to consider Kergin interpolation which is based on some
mean-values over (k-1) dimensional simplexes.
Kergin Interpolation.  The correct interpolation schemes considered so far have
one important property in common: the dimension of the interpolation spaces
coincides with the number of interpolation nodes. A different approach has been
taken by Kergin, 1980 ([19]). He gives a linear projection from the space C™(Rk)
(continuous differentiable functions on R¥) onto the space of polynomials of
degree not exceeding n. He constructed, for given nodes Xy, ..., %, € R¥, an
interpolation polynomial of degree not exceeding n. This interpolant becomes
unique because of additional interpolation constraints. Let us bring some
notation for the differential operators which will appear in this research. For
a = (ay, ..., a;) € ZX we denote by D% the differential operator

« R AVIC)
Df(x) =9 055

and, for a polynomial p € ITX, we write

(D)= ) agD”,

aEZ’i
for the associated differential operator. If v is a point in R¥, we denote by D,
the directional derivative operator, which corresponds to the linear polynomial
p(x) = v-x, x € R¥, where - denotes the Fuclidian product in R¥. Likewise,

X = (61! '"!fk)!

repeated directional derivative with respect to v, denoted by D;;, corresponds to
the polynomial p(x) = (v - x)", x € R¥. Denote also a convex hull of a set X by
[X],1e,

n n

xX]= {Z /L-x("),zl A=11€ER,,i=0, ...,n} where X = {x©, ..., x®}
= c ]R’é. ’

More precisely, we have the following result,

Theorem 1.4.3.2 (Kergin) For any set of n + 1 points x©, ..., x™ € R¥ there

is a unique mappingp: C"(R¥) » I1¥ with the property that for any

f € C™(R¥), any constant coefficient homogeneous differential operator

q(D), q € 1%, and any subset | € {0, ...,k}, with #] = degq + 1, there exists a
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pointx in the convex hull [X], X = {xU):j € J} such that
(a(DYPr)(x) = (a(DIF)(x). (1.43.4)

Next we are going to present the mean-value interpolation introduced by
Hakopian.
Definition 1.4.3.4 We say that a finite set of nodes X ¢ R¥ is in general position
ifvol,([Y]) # 0 forany Y € X with #Y >k + 1.
Let us denote X(j):={V € X:#V =j},0 <j <|X| for an arbitrary finite set
X c Rk,
Theorem 1.4.3.4 (Hakopian) Suppose that the node set X = {x(9,...,x0} c R¥
withr > k + 1 is in general position. Then for arbitrary values
there exists a unique polynomial p € T1,,;_,(R¥) such that

vol [V " pdpx-1 =4,V € X(k),
where [V] is the convex hull of the set V.

Chapter 2. Here we consider the MVI problem in dimension two.
Definition 2.1.1 We call a set L of lines in the plane to be in general position if
any two lines intersect at a point and no third line Is passing through those
Intersection points.
For a set of lines in general position, we call cut regions the bounded regions
whose boundary points belong to the lines while no interior point is such. In
other words, cut regions are bounded regions cut by the given set of lines.
For n + 3 lines in general position, we have the following.
Lemma 2.1.1 Ler the lines Ly,...,Ly,3 be in general position, where n > 0.
Then, there are exactly (";2) cut regions.
Then, we present a conjecture proposed by Hakopian and prove it in a special
case.
Conjecture. Let the lines Li,L,,...,Lyy3 be in general position. Then, mean
value interpolation with I, and cut regions is correct.
Theorem 2.2.1.1 Suppose that the lines L,,...,L, are in general position. Then,
the mean value interpolation with I, and three cut regions is correct.
Next, via the definition of IIZ;, we consider another special case of this
problem called rectangular pointwise interpolation.
Let

p ENZ © p(x,y) = a+bx +cy + dxy. (2.3.1)
Here we consider the correctness of the interpolation problem in two different
ways: by using pointwise interpolation and mean-value interpolation with
circles.
The first one is a special case of the well-known tensor product interpolation:

9



The Lagrange poitwise interpolation problem with I1%, is correct if the nodes are
vertices of a rectangle whose sides are parallel to the coordinate axes.
Next, we consider rectangular mean-value Lagrange interpolation problem
where interpolation parameters are integrals over certain circles. In this case we
are going to find a unique polynomial p € [T, such that

(/) [ [, P y)dxdy =c;, i=1,..4 (233)
where ¢;'s are arbitrary given numbers and D;'s are circles with arbitrary radii
and centers at vertices of a rectangle whose sides are parallel to the coordinate
axes.
We denote this mean-value interpolation problem by (IT;, C), where C is the set
of the above circles:

C={Dsi=1,..4}

We have:
Theorem 2.3.1. The mean-value interpolation problem (II2,,C) s correct.

Chapter 3. In this chapter we introduce MVI problem in higher dimension. Let
A be a set in R¥. The following set we call A- shift of 4
Ty(4):=A+A4:={y+ Ay € A} where 1€ R¥ and vol,(4) # 0.
Let us fix a set of N distinct nodes A:= {4;:i =1,...,N} ¢ R¥.
The following set we call the set of A - shifts of A4:

To(4):={Ty(4):1 € A}.
In the following theorem we give a simple characterization of the correctness of
mean-value interpolation with IT¥ and T, (4), i.e., (II¥, T, (4)).
Theorem 3.2.1 The mean-value Lagrange interpolation problem (I1¥,T,(4)) is
correct if and only if the Lagrange pointwise interpolation problem (I1¥,A) is
correct.
the following linear transformation

L:TIE > TT% given by L[p](1):= J, p(x—dup € Ik,
The proof of Theorem 3.2.1 is based on the following
Proposition 3.2.1 The linear transformation L is one to one.
Then we consider two important applications of Theorem 3.2.1.
Denote by
B.(@):={x:llx—al<sr}

the ball with center a € R¥ and radius 7.
Consider an arbitrary set of N distinct balls in R* of same radius r:

B:={B.(a;):i=1,..,N}.
Corollary 3.3.1. The mean-value interpolation problem (IT¥,B) is correct if and
only if the Lagrange pointwise interpolation problem (I1X,A) is correct, where
A ={a;:i =1,...,N} is the set of centers of the balls.
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Now we consider the second correct MVI problem. Let a number k € Z, and
arbitrary points ay, ..., @, € R¥ be given such that vol,(S) # 0, where S is
the simplex [ay, ..., ax]-

It is convenient for us to introduce the Newton lattice for II¥_, inside the
simplex S as follows:

k
1
Awi=Ay(m) = (%, = a0 +7 ) vi(a;— a0y €T}
i=1

whereT' = {y:y = (¥1, ., Vi) EZX, |y| <n-—1}.

Here we consider a correct mean-value interpolation based on the Newton
lattice. We are going to recover a function integrable on S by using
interpolation parameters that are its mean-values over some smaller similar

simplexes s, inside S. Namely, the small simplexes are:

1 1
sy =[xy, %, +;(a1 —Qg), s Xy +;(ak —ay)],

where x, € Ay, y €T. Setalso

$= 10,7 (@~ @p)r (@~ )]
The set of small simplexes coincides with Ty (s), i.e., the set of Ay —shifts of
the simplex s.
Corollary 3.3.2.1. The mean-value interpolation problem (IT%_,, Ty, (s)) is
correct.
At the end, we present a non-correct problem for general degree in dimension
two.
Let us consider mean-value interpolation with polynomials of arbitrary degree
with regions some of which are concentric circles while the others are arbitrary.
Denote by [n] the greatest integer less than or equal to n.
Theorem 3.4.1.1 Suppose that among the regions of mean-value interpolation
problem (I12,D) there are [n/2] + 2 concentric circles, wheren > 1. Then the
mean- value interpolation problem (I12,D) is not correct.
Finally, we mention the following our conjecture which is based on evaluations
by Mathematica programme:
Conjecture. Suppose that among regions of interpolation problem (115, D)
there are m+ 2 circles of same radius with centers on a straight line, where
n = 1. Then the mean-value interpolation problem (I12,1D) is nor correct.
It is easy to show that the number (n + 2) can not be decreased.
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uvonenkru
ukhpnuh (fwhubthwp dwupy

LUGrULdP UPRPL UrgtRLE Y FULUTUUD
UPQUMYUUL YErULEM3UL

Ushiwnwupnid putiupyniud £ Lwgpuudh dhohtt wpdtputipny puquuswth
dhowpluwl  puunph  dogpuinipjutt . hwipgp, npunbn dhowpldwit
wuwpwubwnpbpp htunbkgpuytp G npny Jippwdnp ny qpn Lhpkgh swthny
puqunipnibibpny: Zwpl b gl dh Yuplnp hwbqudwip, np dhohtt
wipdtpubpny vhowplyniudp Yhpwnkih £ hinkqpbih $niuyghwitinh nhwpnid,
dhtynbkin Yhnwght vhowpynudp Yupnn £ b Yhpwnkih sthub], putth np ipdws
Iniughwikiph Yhwnughtt wpdtputinp upnn i b npnodus sihukg:
‘Lwu ghunwplnud Gup dhohtt wpdbputipny tplswth dhowpynidp: Ywukup
np  hwppnipjutt Uky qugnn minhnubph  pwqunipmiipn  punhwinip
nnoipjub Uk k Epl guwuugws tplnt ninhn huwungdnud B kY fhund
nnplk Eppnpng ninhy sh whginid wyn huwndwb Yhnndy:
Utlp sqhpuquignn qnudwpughtt wunhdwih puquuunudutph hwdwp
niukup hinlyuy wpnyniipp
m Gupwnnpbup L,,...,L, mnhnubkpp pughwimp gpoipjut Uy bu: Uy
ntwypnd  Uhohtt wpdbpubpny btpYswth  dhowplinidp  hwppnipniiuhg
ninhpitpny Jupws vwhdwiuthwl whpnygpibtpnyd b 12-ny Loqphn k:
Utup ghunnwplynd tup dhohtt wpdbputipny tplswth dhowplydw junhpp
wl pun jpipuputynip hnthnpuwfuh dkhp sghipuquugnn wunhdwuh
puquunudubpny’
pe?, ©p(x,y)=a+bx+cy+dxy.
m Uhohti wpdtpubpny bphsuh thewnplnudp &qphwn b 77;nd b C=
{C,, ...,C4}ny, npntn C;-tpp Judwywlwt swpwdhyubpny opowtittp b,
npnilg  YEuwnpnubbpp  Ynopphtwnwluwt wpwbgputphtt  qniquihbn
Ynnutpny ninquiljjut ququptbpt ki
Ujtinthtnl  dbup putwpynud  Gup Twgpuudh dhohtt  wpdbpubpny
puquusuth  dhowpldwi juunhpp wjtiwhuh pwqunipnitubpny, npnup
ponpp Uvh Jipowynp ny qpun LEpkgh swhny puqunipjui nhnuowpdtp G
Lowimltup T;(4)-nY 4 puqunipjutt A-nbquowpdp’
Ty(A):=2+4:={y+ Ay €4},
npunkn A € R¥,vol, (4) # 0.
Stnuowpdtph npqws puqumipyut A:={1;:i =1,..,N} ¢ R¥ hunlwp
wowbwlykup Th(4):= {T)(4): 1 € A}n{ 4 puqunipjut A - mnknuowpdtnh
13



puquUnipniip:
Ubklp wwjhu kip TM¥-nd b T,(4)n] dhohti wpdbphbtpn] puquuswuth
Upgwplpwh  Jutmph® (17, TA(4))-h & gpumppul  hbnljuy — wupg
pumpughpp
m Upohlti wpdlplbpny (1§, TA(4)) Lwgpuiidh dpowplwt fulighpp
dogpun Euyl b dhuyl uyh pkwpnid, Epp dogpun F Lugpnuibdh §Enughl
Upowpllwdr (115, A) julighpp:
‘Lowtwljklp B, 1= {x: | x —a 1< r}ny a € RF YJknpning b r punwnny
gminp: Yhunwplkip RE-md tngh pwpwnny guijugws N wwppkp
quntph

B:={B;,:i=1,..,N}
puqunipniip: Ukup bwjunpy pughwinip wpyniiphg unwimd Eup
m Qhpkpny dpohl wpdkphlpny (I, B) Lwgpubdh dhowpldul fubinhpp
dogpun F uyl b dhuyl uyh pkwpnid, Epp dogpun F Lugpnuibdh §Enughl
Upowplufml (1K, A)  Jjubghpp, npunkp A= {a;:i=1,..,N}- qlpkph
Jhnpnbibph puqunipmni bl E
Zwonpr Juplnp htnbwipp vnwinwd Eup htnlyw) nhwph hwdwp: Yhgnip
S [ag - ar] updypbpu k a; € RF ququplbpny huly s = [0,%(a1 -
ag),...,= (@, — a9)]. Uklip pudwitm bup S-p N(n, k) thnpp
uhdy kputibtph  pwqumpub’ T, (s), npp  s-h Ay-nbknupwpdukph
puqunipnibte k: Ujdd pwtigh Ay puqunipniup Juqunid k Uplnnuh
guiig TT¥_;-h hudwp, Ukip winwbmd Lup.
w Uhghli wpdlpllpny (15_y, Ty, (5)) Lugpubdh dhowpfumb
[uliphpp dogpfun E:
Ujunthtnl dkup ghnnwplynud Gup dhohtt wpdbputipny dhownpldwi junghpp
RZ-nid wyb nhypnid Epp npnp wpudbnpbp hwdwykinpni ppewtitpnny
dhohtt wpdtpubtp & Thgnip D-u Updws opowlnkpp wwpniuwynn
puqunipniit ki : Uy ghypnid niubup
 Upohti wpdlplitpny (117, D) Lugpuitidp dhpupluul julighpp dpgpfun sk
btplk D — hwywpnibwnid F [n/2] + 2 hudwlkinapni spowd:

dhponud upkup dbp htnlyw] quplwsdp, npp hhdudws L Mathematica
dpwgpny hwpuplubph Ypu’

 Upoht wpdlplikpny (117, D) Lugpuitidh dhpupluul fulighpp dpgpfun sk
kplh D — hwywpnibwnid | n + 2 anyh pwnun/nny ppowilikp, n> 1,
npnlg jEnnpnbbbpp quin/nid Ea dEy ninph ypuw :

Zbow L YGumnnigh) ophtwl], npp gnyg k wmuwjhu, np n+2 phyp wyunky
hiwpwynn sk thnppuguty:
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3AKJIIOYEHUE
Xetiponnax Paxcemap ®apz

O MHOT'OMEPHO UHTEPIIOJIAIIVUU JIATPAHXA 110 CPEJHUM
3HAYEHUAM

B pabore oOCyxZaeTcsi BOIPOC KOPPEKTHOCTH 33Jaill MHOTOMEpHOI
cpenHe3HavyHOU WHTepmosAnuu Jlarpamka, e mapaMeTpaMi WHTEPIIOISIUY
SIBJIAIOTCS MHTETPAJIBL 10 HEKOTOPhIM MHOXKECTBAM KOHEYHOM 1 HeHYJIeBOM Mepbl
JleGera. CrnemyeT OTMETHTh OZHO Ba)KHOE OOCTOATEIBCTBO - CpeLHe3HaYHas
unTepnonanusa Jlarpaimka IpUMeHHMa B CIydae MHTETPHPYeMbIX (GyHKIuuit
XOTS IIOTOYEYHAs] UHTEPIIOJIAIVS MOXKET ObITh U HEIIPUMEHUMOM TaK KaK B 3TOM
Clydae IIOTOYEYHbIe 3HAUEHUS HHTETPUPYEMBIX GYHKIMUHM MOTYT OBITH H
HeOIIpe/ieIeHHBIMH.
CHavana paccMaTpuBaeM 3afiady [BYMEpHOM CpeIZHe3HAUHON HHTEpPIOIAIUN
Jlarpamxa.
CKakeM, 9YTO MHOXECTBO IIPIMBIX Ha IUIOCKOCTH HAXOAWUTCSI B OOIIeM
TIOJIOXKEHUH, €C/IU KaKZpIe JBe MPSIMble IIepeCceKaloTCs B OLHON TOYKe U HUKAKas
Ipyras ImpsMas He IIPOXOJUT depe3 9Ty TOUKY.
[l MHOTO4/IEHOB CYMMApHOIi CTelleH! He ITPeBbIIAONiel e[IHUIBI IMeeM:
m IIpezpmosnoxum, uro mpsmsie Ly, ..., L, Haxozsarcs B obuieM monroxeHuu. Torga
IByMepHas cpenHesHauHas uHTeprmonsuus Jlarpamka c [I? U oTpesaHaHHBIMU
MIPSIMBIMU OT IIOCKOCTH OTPaHUYEHHBIMHU OOJIACTAMH SBJISETCS KOPPEKTHOM.
Msr paccMaTpuBaeM AByMEpHYIO CpefHe3HaueHYI0 WHTeprosanuio Jlarpaika
TAK)K€ C MHOTOWIEHAMH CTElleHH He IIPEBhIMIAIOMEN eJUHHUIBI 110 KaKAOH
OTZeIbHOM IlepeMeHHOMN:

pe?, ©p(x,y)=a+bx+cy+dxy.
m /[BymepHas cpenHesHauHas nHTepnossaunu Jlarpamka c [12; u ¢
C={C,..,C,} sBugercas KoppekTHOW, rze C; KPyrHm C IPOM3BOIBHBIMA
pafuycaMy IeHTPbl KOTOPBIX - BEPIIMHBI JI0OOTO IPSIMOYTOJBHHKA, CTOPOHBI
KOTOPOT'O [TapaJiieIbHBl KOOPAMHATHBIM OCSIM.
Jamee ™Mbl O0OCy’kZaeM MHOTOMEPHYIO CpeSHE3HAYHyI0 WHTEPIIOJIAIUIO
Jlarpama II0 MHOXeCTBaM, KaXKZOe W3 KOTOPBIX SBJISETCA CABUIOM OZHOTO
(bUKCHPOBaHHOTO MHOXXeCTBa, JleGeroBa Mepa KOTOPOr0 KOHEYHA M OTJIHYHA OT
uyns. Ilycrs Ty(4) ecrs A-casur muoxectBa A4, Te., T(4):=21+4:=
{y+2A:y€eA}, rme 2€R¥ vol,(4) #0. [na JaHHOTO MHOXECTBA CIBHUTOB
A:={A;:i=1,..,N} € R¥, o6osmaumm wepes Tp(4):= {T(4):1 € A}
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MHOXeCTBO A-CIBUTOB MHOXecTBa A.

Mbr  fmaeM  IPOCTYIO — XapaKT€PUCTUKY  KOPPEKTHOCTH  MHOTOMEpHOIt
cpenHesHauHo#t uHTeproaAnyuy Jlarpamka c 1K u ¢ Ty (4), t.e., (11X, TA(4)):

m 3ajava MHOrOMepHOI cpefHe3HauHO# uHTepHoanuu Jarpatmwka (11X, Ty (4))
KOppeKTHa TOIZa M TOJBKO TOrZA KOTJAa KOPpPEeKTHa 3aJjada MHOTOMEpPHOM
moroueunoit unTepmonauuy Jarpamxka (X, A).

O6o3maunm uepes Bg,:= {x:|| x —a |< r} map paguycar c uerrpom a € R¥.
Paccmorpum 3 R¥ mMHOMKECTBO m06EX pasHbrx N pasHBIX MAPOB OIHOTO Painyca
B:={By,:i=1,.., N}

C mpezuzyero obIero pesyIbTara MbI IIOIyIaeM

m 3ajava MHOIOMEpPHOM CpeIHe3HAYHOU WHTepnossauuy Jlarpamxka ¢ mapamu
(ITX,B) xoppexkTma Torma ¥ TONBKO TOTJAa KOTJa KOPPEeKTHA 3ajada
MHOTOMepHO# moTodewHol unTepronsmuu Jlarpamka (115, A), rae

A ={aj:i =1, ..., N} ecTb MHO)X€CTBO LIEHTPOB IIAPOB.

Kax BaxHOe cjIeACTBHe OTMETHM TakKe caefyomuit cayydait. Ilycts S cummiekc
[ag, ..., ax] ¢ BepumHamu a; ER¥ u s = [O,%(a1 - ao),...,%(ak —agy)]. Mst
pasgensem S Ha MEOXecTBO N(n, k) manenxux cummnexcos T, (S), koropoe
ectb MHOXeCTBO Ay-caBuroB s. Temeps 3ameTuM, YTO MHOXeCTBO Ay sBIfeTcs
cerkoit Hetorona mis Hﬁ_l. Orcroza MsI IOTy4aeM

m 3azavya cpemHe3HayHOU uHTepnosiuuu Jlarpamxa (H,’f_l,TAN (s)) aBnsercs
KOPPEKTHOM.

Jarnee MbI paccMaTpuBaeM cpeiHe3HauHyIo uuTeprnonsuuio Jlarpamxka B R?

B CjIydae KOr[ja HEKOTOpble IlapaMeTpHI AB/AIOTCA CPeZHBIMH 3HAYEHUIMU IIO
KpyraM GpUKCHPOBaHHOTO LI€HTpA.

ITycts D MHOXeCTBO coziepiKalliee yKa3aHHbIe KPYTHU. Torza numeeM

B 3azavya cpefgHe3sHauyHOH wuHTepmoiianuu Jlarpamka (Hfl, ]D)) ABJIAeTCA
HeKOppeKTHO, eciu D cogepxkur [n/2] + 2, n = 1, KpyroB IeHTPBI KOTOPbIX
COBIIAZAIOT.

B KOHIfe OTMETUM CJIeAYIOIYIO HAllly TUIIOTe3Y, OCHOBAHHOM HA BRIYHMCIEHUN II0
mporpamme Mathematica

B 3azavya cpegHe3sHauyHOH wuHTepmoiianuu Jlarpamka (Hfl, ]D)) ABJIAeTCA
HEKOppeKTHOH, ectu D comepxur n+2,n=1, Xpyros ogHOro pajuyca
LEHTPHI KOTOPBIX HAXOZATCA Ha OJHOM IIPSIMOIL.

OrMeTHM, ITO JIETKO ITOCTPOUTH IIPUMEP IIOKA3bIBAIOLINIL YTO YHUCIO N + 2

37eCh HEBO3MOXKHO YMEHBIIHUTb.
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