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GENERAL CHARACTERIZATION OF THE THESIS

The thesis is devoted to development of numerical algorithms for data fitting problem by
least squares method using quadratic and cubic Bezier curves. Below we give briefly a
general characterization of the present investigation.

Actuality of the Subject. The least squares method is one of the most efficient tools
for data processing. The best fit in the least squares sense is the model for which the sum of
squared residuals has its smallest value, a residual being the difference between an observed
value and the value given by the model. For this purpose algebraic polynomials,
exponential, logarithmic and other functions were commonly used. More recently, in
connection with the development of computer technologies, along with the above mentioned
classic functions, great attention is paid to the use of parametric curves and, in particular,
splines and Bezier curves. Using parametric curves makes their representation independent
of the choice of co-ordinate axes. Least squares curve fitting has found many applications in
computer graphics, automatic design, pattern recognition and etc.

Least squares problems fall into two categories, linear and nonlinear. The linear prob-
lem has a closed form solution while the nonlinear one leads to quite complicated
computations. Parametric curve fitting is just a nonlinear problem. There are different
approaches to solve this problem, each having its advantages and disadvantages. In recent
years, the need in creating effective computational algorithms for data fitting problems has
been greatly increased and stimulates the working out new numerical methods and their
theoretical substantiation.

The Aim of the Thesis. The aim of the work is the development of a technique to
construct quadratic and cubic Bezier curves that solve data fitting problem by the least
squares method. In solving that problem, the shape of the curve depends on the choice of the
curve points which we put into correspondence to data points, so-called parameterization. 1t
should be noted that parameterization is the principal and the most difficult problem to be
solved during the process of approximation. One may to follow different ways to determine
the points of curve mentioned above, depending on the aim pursued. However, all currently
existing approaches to solving the parameterization problem are far from be perfect. In
connection with the foregoing, in the present study the following main tasks were set:

- development of numerical algorithms for solving the least squares problem by

using quadratic and cubic Bezier curves;

- solution of the parameterization problem in the most natural for data fitting form by
putting the requirement of minimality of the distance from a data point to the
desired curve;

- construction of approximating quadratic and cubic Bezier curves with fixed
endpoints;

- construction of approximating quadratic and cubic Bezier curves with loose
endpoints.

Object of Investigation. Quadratic and cubic Bezier curves for data fitting by the least
squares method.

Methods of Investigation. The methods of numerical analysis, linear algebra, matrix
analysis and calculus have been used.

Scientific Innovation. In the thesis we develop effective and quite simple imple-
mented algorithms to solve the problem of constructing quadratic and cubic Bezier curves
that approximate data by the least squares method. The direct solution of the
parameterization problem, implying the requirement of minimality of the distance from the
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point to the desired curve, leads to a rather complicated problem of nonlinear optimization.
In order to circumvent this serious from a computational point of view obstacle, in the
present work we propose a practical solution of the problem via constructing so called
minimizing sequences of the control points. Such an approach allows to reduce the problem
to be solved to a series of linear least squares problems.

Theoretical and Practical Value. The results obtained in the thesis have theoretical
content and at the same time they are directed toward applications. They can be used in
development of effective data fitting computational procedures.

Approbation of the Results. The results of the thesis were presented at the seminars
of the Chair of Numerical Analysis and Mathematical Modeling of Yerevan State University
and at the general seminar of the Faculty of Informatics and Applied Mathematics, Yerevan
State University.

Publications. The results of the thesis were published in three scientific articles.

Structure and Volume of the Thesis. The thesis consists of introduction, two
chapters, conclusion and the list of references. The number of references is 37. The volume
of the work is 80 pages.

THE MAIN CONTENT OF THE THESIS

In the Introduction the actuality of the topic is discussed, the aim and the problems of
the thesis are formulated.

Let us give first the main definition. The Bezier curve is a parametric curve that is a
polynomial function of the parameter 7. The curve of degree 7 is defined as follows. Given
points £5. £1..... B, the Bezier curve is

n
l

B() =SH .Hf‘(l— OB, teo]] ()

n
where H iH is the binomial coefficient. The points £;.Z =0.1.....,7 are called control points

of the Bezier curve. Two are endpoints: £% 1is the origin endpoint and £, is the destination
endpoint.

In Chapter 1 we consider data fitting problem by the least squares method with
quadratic Bezier curves

B(t)=(1- )P, +2t(1- )P +t’P,, t<€[0,1] (2)

where £5(xy,%0), B(x,,y,), P, (x,,y,) are control points. The problem will be formulated
below.

In Section 1.1 the problem to determine the distance from a point to a quadratic
Bezier curve (2) is set. This problem is an important component part of computational
algorithms in data fitting by the least squares method.

Having a point ¢(&.77), define a function

f@FB@®O-ql.
Let us formulate the following problem.
Problem 1.1.1." Find a value ¢* €[0.1] such that

S (") =min f (1)
0« .
1 The numbering of problems; statements-and definitions is given in accordance with the text of the thesis.



As a matter of fact, the value #* minimizes the distance from the point 4 to the curve
B(1),i.e., B(™) is the point on the curve B(?) closest to the point 4 . From now on #*
will be referred to as a knot. The function /(¢) is a polynomial of fourth degree. To solve
the Problem 1.1.1, we have to find the roots of the equation fU(#) =0. Thus, the problem to
determine the distance from a point to the quadratic Bezier curve is reduced to the one to
find the roots of the polynomial of third degree.

The Section 1.2 has an auxiliary nature. There is derived a computational procedure
for calculating the real roots of cubic polynomials.

In Section 1.3 an algorithm Bezier2Dist[ 7. ... = t*,D"] to determine the
distance from a point ¢ to a given quadratic Bezier curve (2) is derived. The input data of
the algorithm are control points £%- 43, 4%, the point 4 and the accuracy of calculation € .
The output data are the knot " and the square of deviation D = B )- q|*.

The Section 1.4 is devoted to data fitting by quadratic Bezier curves with fixed
endpoints £% and £ . Note that this version will be used further as an essential component
part of more general formulation of the problem.

Let a set of data points

q.(&.n,), i=12,....N

3)

where N =2, is given. Suppose a set of knots 7" =(#,,%,,....,£y) is somehow specified. The
following notation will be used:

E(R:T) =X | B(t)- 4,

4
The problem of data fitting by Bezier curve (2) with fixed endpoints in the least
squares sense is usually formulated as follows:

find a control point F (x,,y,) for which the sum of square deviations (4) accepts the
minimum value.

In a solution of the raised problem, the shape of the curve is influenced by the choice
of the knots #;, i =L.2....., N which we put into correspondence to the data points (3). This is
so-called parameterization problem. One may to follow different ways to determine the
knots, depending on the aim pursued. It should be said that the matter of choosing the knots
is one of the key items in data fitting problem.

Here we will consider a version of data fitting by the least squares method. For each
data point ¢,, 1 <i <N we assign the knot 7 which minimizes the distance from that point
to the desired curve, i.e.,

| B(t)- q;|=min| B(®)- ¢,
Let 77 =(#,13 ,....,ty) . Formulate the following problem.
Problem 1.4.1. Find a control point 17 for which the sum
N
E(R;T)=)|B(t)- g,

i=
accepts the minimum value.
Obviously, that in the raised problem the knots 7 €[0.,1], i =1.2,...., N depend on the
control points of the curve. This relationship is nonlinear and is given implicitly. In this way

we encounter with sufficiently complicated kind of nonlinear optimization. Therefore, here
we develop another approach and instead of the Problem 1.4.1 solve a related problem the
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essence of which is to build a so-called minimizing sequence of control points (see below
Definition 1.4.1). This approach reduces the problem of approximation to a series of linear
least squares problems. To this end we formulate first an intermediate “weak’ problem.

Problem 1.4.2. For a given set of knots T =(t,t,,....t5) find a control point
B (x,,y,) for which the sum E(B:;T) defined in (4) accepts the minimum value.

In the thesis an algorithm Bezier2FixEndsGivenKnots[ 7. P.{q;}/5.T = P] to find
the control point /7 and, by this very fact, the desired quadratic Bezier curve is constructed.

Let us now introduce a notion. Suppose there is a sequence of control points B*,
k =0.,1,... Accordingly, there is a sequence of quadratic Bezier curves
BY@)=(1-t)’P +2t(1- )P +*P,,  k =0,1,...
For each point B’ we define a set of knots 7 =", #5"....,¢\") such that
| B (")~ g, |=min| B (1)~ ¢,| i=12,...N
0 ? :
Then, in accordance with (4), let
N
E(k) EE(P](k);T(lc)) :Z| B(k)(l‘l.(k))- q. |2 ’ k =0.1,... (5)
i
Definition 1.4.1. We say that the control points B, & =0.L.... form a minimizing
sequence if
E® <p®b k=12, (6)
Let us formulate a new problem which we will consider instead of the Problem 1.4.1.
Problem 1.4.3. Suppose the endpoints £ and £ are given. Construct a minimizing
sequence of control points B, k =0.1.... and corresponding sequence of quadratic Bezier
curves B (1), k =0.1....

We developed the following numerical algorithm to solve the Problem 1.4.3.

Algorithm Bezier2FixEndsMinimSeq [£,. P.{g,}/4.£,6 = B, B (1), E]
1. Input £ (xo,30), P (x5, 3,) ,{q.(5,.m)} 5 . .6 .
2. Preprocessing:

2a. compute control point B (x\”, p):

(0) 1 g (0) 1 g
X = L - .
1 Né‘&z yl NZ:;T]

2b. get the curve
BY@)=(1-1)’R +2t(1- HP” +1’°P, , t€[0,1];
2c¢. for the values 7 =1.2,..., NV ;
run the algorithm Bezier2Dist[ 7. P'” . P,.q,.€ = ;¥ ,D"];
get T =(",65°,...t0");
2d. compute
N
) — (0)
E —%'Di ,
3. For the values £ =L2.... while E* " - E® > do:
3a. run the algorithm Bezier2FixEndsGivenKnots[ 5, 7.{q,};5. T *D = p®7

3b. get the curve
B @) =(1- )’ B, +2t(1- )PP +£°P, , t€[0,1];
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3c. for the values ¢ =L.2,.... NV :
run the algorithm Bezier2Dist[ 7, B, P, q,, ¢ = t,D"];
get T =", t{",..,t);
3d. compute
S

i=

3e. Output P, BY ), E .
End

We prove that the control points A“’, & =0.L... calculated by the algorithm
Bezier2FixEndsMinimSeq actually form a minimizing sequence.

Theorem 1.4.1. Let the endpoints 3 and P, are fixed. Then for the quantities E®

computed by the algorithm Bezier2FixEndsMinimSeq the relations E <E“ ", k =1,2,...
hold.

In Section 1.5 we consider data fitting problem for quadratic Bezier curves with loose
endpoints. Suppose we have a Bezier curve (2) constructed by control points %, 53, 5
and a set of knots 7" =(¢,.%,.....¢y) . Define a sum of square deviations

E(F,,P,P;T) EZIB(@)- q, . (7)

For each data point ¢,, 1 <i <N we assign the knot # which minimizes the distance from
that point to the desired curve, i.e.,

| B(t')- g, |=min| B(t)- ¢, |,
Let 77 =(¢,13 .....ty) . Formulate the following problem.
Problem 1.5.1. Find control points v, 57, £ for which the sum
N
E(R,R,P;T") =) Bt g,
i =]

accepts the minimum value.

As in previous case (fixed endpoints), here we also encounter with complicated kind of
nonlinear optimization. Therefore, here we also develop another approach and instead of the
Problem 1.5.1 solve a related problem of constructing a minimizing sequence of control
points, as we done in the previous section.

Let us introduce the following notion. Suppose there is a sequence of triples
(R°,B",P"), k =0.,1,... of control points. Accordingly, there is a sequence of quadratic
Bezier curves

BP@) =(1-t)’B" +2t(1- )PP + 2P,  k =0,1,...
For each triple (B, B, B”’) we define a set of knots 7 =(#",4".,....7§") such that
|BO")- ¢, |=min| B (1)~ ¢, |, i=12...N
0<< ? '

In accordance with (7), let

N
E(k) EE(PO(k),Pl(k),Pz(k);T(k)) :Z| B(k)(tl_(k))_ q. |2 ’ k =0.1,... (8)

i=

Definition 1.5.1. We say that the triples of control points (PP, B, PP k =0.1,...

form a minimizing sequence if
E® <p®b k=12, 9)



To construct a minimizing sequence of triples of control points we solve first the
following “weak” problem.

Problem 1.5.2. For a given set of knots T find control points F,(xo,¥0), B (x,,¥,),
P, (x,,y,) for which the sum E(Fy, B.P:;T) defined in (7) accepts the minimum value.

An algorithm Bezier2GivenKnots [{g,}/.,.,7 = F,, B, P,] to find the control points

r,, R, P, and, by this very fact, the desired quadratic Bezier curve is developed. The
theoretical justification of the algorithm was done. Namely, it was shown that the
correctness of the algorithm depends on the nonsingularity of a third order matrix

A4 =[oy, )i o the i, entries of which are proportional to the quantities
Z i (- 1) %™ The following statement holds.

Lemma 1.5.1. If the set of knots T =(t,.t,,....t5) contains at least three distinct from
each other knots, then the matrix A is positive definite.

We set the problem which we solve instead of the Problem 1.5.1

Problem 1.5.3. Construct a minimizing sequence of triples of control points

(B, B, P"), k =0.L.... and corresponding sequence of quadratic Bezier curves B"® (¢)
k =0,1,...

Below we give a numerical algorithm to solve the Problem 1.5.3.

Algorithm Bezier2MinimSeq [{¢,};5.£,6 = ", B, P, B" (t),E™]

1. Input {q,(gnnz)}zN:l s 8’5 .
2. Preprocessing:
2a. compute

gmln _1121% g gmax _maxg , 77m1n 112112 77: s 77max _1]’2%])\,( 771

2b. compute control points £ (x¢”, v5”) , B (x{”, y{), P (O)(xéo),yzo))
lf gmax - gmin —nmax - nmm then

) _— ) — ) — ) _— ) — ) — .
xO ~ Smin ‘x2 max ° X S (gmax gmm) y _nmm s y2 _nmin D yl _T’max >
otherwise

(0) — (0) — 0) —

0 _— ) —
min * x2 gmm ” max 2 yO

=Min s V5 Miax > Vi ——(nmax +1in)
2c. get the curve
B?(t) =(- 1)’ B +2t(1- HB” +*P” , t€[0,1];
2d. for the values 7 =1.2,.... NV :
run the algorithm Bezier2Dist[ 7", P'”, P\”,q,,¢ = 1° ,D{"1;
get T =, £2,..1):
2e. compute
N
©) — (0)
E _,-Zz. D
3. For the values & =1.2.... while E*" - E® >§ do:
3a. run the algorithm Bezier2GivenKnots[{g,}/-. 7" " = B", " P"];
if the algorithms has been failed (singularity of the matrix A4) set
p® =ptn
P* =P*" and run the algorithm
Bezier2FixEndsGivenKnots[ 2", B, {g,}},,T* " = B*];
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3b. get the curve
Bty =(1- 0’ BV +2:1(1- nPO +’P" | te[0,]1];
3c. for the values ¢ =1.2,.... NV :
run the algorithm Bezier2Dist[ 7", B, ", q,,e = 1t/ D" ];
get T =",6"....6);
3d. compute
g o

i=
3e. Output Po(k),Pl(k),I)z(k),B(k)(t), E(k) )
End

Then we prove that the algorithm Bezier2MinimSeq actually leads to a minimizing
sequence.

Theorem 1.5.1. For the quantities E® computed by the algorithm Bezier2MinimSeq
the relations E© <E“V, k =1,2,... hold.

In Section 1.6 we present the results of numerical calculations that confirm the
practical effectiveness of the proposed approach.

Thus, in Chapter 1 we have developed an approach to solve a problem regarding least
squares approximation of data points with quadratic Bezier curves. A solution of the problem
has been obtained via constructing a minimizing sequence of control points.

In Chapter 2 we solve data fitting problem by the least squares method with cubic
Bezier curves

B(t) =(1- )’ R +3t(1- )’ B, +3t>(1- )P, +’P,, t<[0,1] , (10)
where 5, (xo,0), B (x,, 3,5 (x,,y,), (x5, ¥3) are control points.

In Section 2.1 the problem to determine the distance from a point to a cubic Bezier
curve (10) is considered. Having a point ¢(&.77), define a function
f@FB®-ql”.
Problem 2.1.1. Find a value t* €[0.11 such that

S =min 1)

An algorithm Bezier3Dist[ 5. 5. 2. P.q,¢ = t*,D"] to solve the Problem 2.1.1 is
derived. The input data of the algorithm are control points £%. 43, £%, 4% the point 4 and
the accuracy of calculation € . The output data are the knot #* and the square of deviation
D" 5B()-ql.

The Section 2.2 is devoted to data fitting by cubic Bezier curves with fixed endpoints
£ and £% . Note that this version, similarly to the case of quadratic Bezier curves, will be
used further as a essential component part of more general formulation of the problem.

Let a set of data points
q;(5-m),  i=12,..N (11)
where N =3 is given. Suppose a set of knots 7" =(#,,%,,...,Zy) is specified in a certain way.
The following notation will be used:

E(P,P;T) =D B(t)- ¢, . (12)

i=l
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The problem of data fitting by Bezier curve (10) with fixed endpoints in the least
squares sense is usually formulated as follows:

find control points B (x,,y,) and P,(x,,y,) for which the sum of square deviations

(12)

accepts its minimal value.

In a solution of the raised problem, the shape of the curve is influenced by the choice of
the knots 7, i =1.2,..., N which we put into correspondence to the data points (11). Here we
will follow the approach developed in Chapter 1.

For each data point ¢;, 1 <i <N we assign the knot #” which minimizes the distance
from that point to the desired curve, that is,

| B(t")- q,|=min| B()- ¢,
Let 79 =(,z5 .....ty,) . Formulate the following problem.
Problem 2.2.1. Find control points P, (x,,y,) and P,(x,,y,) for which the sum

N
E(R,P;T") =3 B(t/)- ¢,
=1
accepts the smallest value.

By the reason mentioned above, here we will set and solve another least squares type
problem related to the Problem 2.2.1. For that let us formulate first an intermediate “weak”
problem.

Problem 2.2.2. For a given set of knots T =(t.t,.....ty) find control points
B (x,,y) and P,(x,,y,) for which the sum E(R,P,;T) defined in (12) accepts the
smallest value.

An algorithm Bezier3FixEndsGivenKnots [7,,7.{q,}/5.7 = F,,P,] to find the

control points #3 , £ and, by this very fact, the desired cubic Bezier curve is developed. It
was shown that the correctness of the algorithm depends on the value of the determinant

=y 3
y O

N N N

where B =D t/(1-t)', y=61-1),6=3t'(1-1)". The following statement was
=l i= =1

proved.

Lemma 2.2.2. The determinant A is equal to zero in the following two cases:
1) if t,=0ort, =1 foralli=12,..N,

11) if there exists a non-empty set of knots {tl ’tl ""’ti }such
[ )
t, =t, ==t =t where t. 0.1, while all remaining knots are equal
either to O or 1;

otherwise A #0.

Let us introduce a notion which we have already used in Chapter 1, when considering
quadratic Bezier curves. Suppose there is a sequence of couples (B*,P*), & =0.L,... of
control points. Accordingly, we have a sequence of cubic Bezier curves

B @) =(1- 1)’ P, +3t(1- )’ B® +3¢>(1- )PP +£’P,,  k =0,1....

For each couple (P", ") we define a set of knots 7" =(¢{°,#{",...,z") such that

10



| B (") g, |=min| B ()~ ¢,|, i=12,...N
0= ?
In accordance with (12), let

N
E® EE(})](/C),PZ(/();T(/()) :Z| B(k)(ti(k))_ q. |2 k =0.1,... (13)

9
i=

Definition 2.2.1. We say that the couples of control points (B*,P"), & =0.1,...

form a minimizing sequence if
E® <ptd k=12, (14)

Let us formulate now a problem which we will consider instead of the Problem 2.2.1.

Problem 2.2.3. Suppose the endpoints £% and £ are given. Construct a minimizing
sequence of couples of control points (P, P"), k =0.1,... and corresponding sequence of
cubic Bezier curves B® (t), k =0.,1,...

We developed the following numerical algorithm to solve the Problem 2.2.3.

Algorithm Bezier3FixEndsMinimSeq [, 2,{¢,}/,0,e = B, B, B® (1), E®]
1. Input By (x4,¥0) ,R;(x3:y3) ,{q[(g,-,n,-)}fvﬂ ,6’8 .
2. Preprocessing:

2a. compute initial control points B and P :

L s o=_1fs .
ORI LRSS WRVE

PO —
1

2b. get the curve
BO@)=(1-t)’ P +3t(1- 1)’ B +3>°(1- P +£’P,, t€[0,1] ;
2c. for the values ¢ =1.2,.... N :
run the algorithm Bezier3Dist[ 7, B, P, P,,q,,¢ = 1" ,D1;
get T =(",2,...,t%);
2d. compute
N
0) _ 0
E® — Z:l' D .
3. For the values £ =1.2.... while E*" - E® >¢ do:
3a. run  the algorithm  Bezier3FixEndsGivenKnots
[F. P g, 5. T = RO PP,
3b. get the curve
BY(t) =(1- )’ B, +3t(1- )’ PP +3°(1- )PP +£°P,, t€[0,1] ;
3c. for the values 7 =1.2..... NV :
run the algorithm Bezier3Dist[ £, B, B, P,.q,,e = 1 ,D{"];
get T =1/, 0{,...t);
3d. compute

N
E(k) :ZDi(k) )
i =l
3e. Output P, P", B (1), E® |
End

We prove that the couples of control points (B*,P*’), & =0.1.... calculated by the
algorithm Bezier3FixEndsMinimSeq form a minimizing sequence, according to the given
above Definition 2.2.1.
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Theorem 2.2.1. Let the endpoints £ and £ are given. Then for the quantities E®
computed by the algorithm Bezier3FixEndsMinimSeq the relations E® <p*V,
k =1.2.3.... hold.

In Section 2.3 we consider data fitting problem for cubic Bezier curves with loose
endpoints. Suppose we have a Bezier curve (10) constructed by control points 4%, /7,
P, P and a set of knots 77 =(¢,%,.,....Z5) . Define a sum of square deviations

N
E(R,B,P,P;T)=)|B(t)- q.|. (15)

For each data point ¢,, 1 <i <N we assign the knot 7 which minimizes the distance from
that point to the desired curve, i.e.,

| B(t)- q;|=min| B(®)- ¢,
Let 77 =(¢,13 .....ty) . Formulate the following problem.
Problem 2.3.1. Find control points £, B, . P for which the sum
N
E(R,P,P,P;T") =) | B(t!)- ¢,
=

accepts the smallest value.

To avoid complicated kind of nonlinear optimization, here we also instead of the
Problem 2.3.1 solve a related problem the essence of which is to build a minimizing
sequence of control points, as we done in the previous section.

Suppose a sequence of quads (R“,R"“,P",P") k& =0.l... of control points is
given. Accordingly, we have a sequence of cubic Bezier curves
BO@t) =(1- 1) P +3¢(1- £ P +32(1- HP® +£P® | k =0,1,...
For each quad (B°,B",P",P"") we define a set of knots 7" =(¢{,£{"....ty") such
that
| B (")~ g, |=min| BY(®)- q,|, i=12,..N
In accordance with (15), set
E® =gp®, p® ph p® 7y :ﬁ'| BPP)- ¢, . Kk =0,,.. (16)
i=l
Definition 2.3.1. Let us say that the quads of control points (£ ,B", P, P"),
k =0,1,2,... form a minimizing sequence if
E® <p®b k=123, (17)
To construct a minimizing sequence of quads of control points consider first the
following “weak” problem.

Problem 2.3.2. For a given set of knots T find control points F£,(xy,¥0) , B(x,,¥,),
P, (x,,y,) and P(x5,y3) for which the sum E(F,,F.,P,.,P:T) defined in (15) accepts
the smallest value.

An algorithm Bezier3GivenKnots [{g,},..7 = F,,B,P,P] to find the control
points 4%, 23, P, £ and the desired quadratic Bezier curve is developed. The theoretical
justification of the algorithm was carried out. Namely, it was shown that the correctness of

the algorithm depends on the nonsingularity of a fourth order matrix 4 =[e,, 1i .- the @4,
entries of which are proportional to the quantities Y, Y- )™ The following

il

statement holds.
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Lemma 2.3.1. If the set of knots T =(¢,¢,,....¢
each other knots, then the matrix A is positive defini

Now we can solve the following problem.

Problem 2.3.3. Construct a minimizing sequence 2P, PP, P, PRy k =0.1,...

~) contains at least four distinct from
te.

of

quads of control points and corresponding sequence of cubic Bezier curves B (1),

k =0,1,...

We developed a numerical algorithm to solve the Problem 2.3.3.

Algorithm Bezier3MinimSeq [{g,},5.6.¢ = P,

1. Input {g,(§.n)}5,0 €
2. Preprocessing:
2a. compute

k),Pl(k),Pz(k),f;(k),B(k)(l‘),E(k)]

g . —m1n§ & ax —max§ 7. —mmn Mimax =MAX7, -

1s<N 1s<N 1s<N
2b. compute control point B (x5”,ys”), B (x, y1°>),P;°>(x;0>, ¥,
PO (xs”, 47
if Enax = Smin ZMmax = Mmin then
(0) =S min > y(()O) =N min >
X§°) =& an 73 S
0 =28 +6) /3, 1 T
20) =(Ein +280)/3, J’zO) M max >
otherwise
x(()O) =&in » y(()O) =N min >
S R/
(0) =& x> yIO) =(2Nnin M)/ 35
“’) =Es I 0 +200,0,)73;

2c. get the curve
B =1-t)’ P +3t(1- 1)’ P +3¢*
2d. for the values 7 =L.2..... NV :

run the algorithm Bezier3Dist[ 7",

(0) _(t(O) Z‘(O) t/(\/O));

get T
2e. compute

(1- HP” +£’P”, te[0,1] ;

(0) (0) (0) ) 7.
BV.RV. BT = 0, D]

g = o

i=
3. For the values & =1.2.... while E**" -

3a. run the algorithm Bezier3GivenKnots[

E® =6 do:

N k-1 k k k k
{935, 7" = R, R, PV, VT,

if the algorithms has been failed (if the matrix A4 is singular) set 7"’ =F"“",

P =P " and run the algorithm

Bezier3FixEndsGivenKnots[ 2", P\,

3b. get the curve
BP() =(1- 1)’ PP +3t(1- 1) PP +3¢°
3c. for the values 7 =1.2,..., NV :

run the algorithm Bezier3Dist[ 7",

13

{9,357 = RV, PV,
1- DR +£PY | refo]];

(k) (k) (k) (k) (k)q.
RO, PP P® g6 = 1% D]



k) k k k
get T =(,0°,..,t\);
3d. compute
N
E® =3 D"

i=
3e. Output ])O(k)D})l(k)9P2(k)7P3(k)ﬁB(k) (t), E® )
End

The algorithm Bezier3MinimSeq actually leads to a minimizing sequence of quad of
control points.

Theorem 2.3.1. For the quantities E® computed by the algorithm Bezier3MinimSeq
the relations E <E“", k =1,2,... hold.

In Section 2.4 we present the results of numerical calculations that confirm the
practical effectiveness of the proposed approach to solve the data fitting problem with cubic
Bezier curves.

THE MAIN RESULTS OF THE THESIS

As a consequence of the research carried out in the thesis, the following principal
results in the field of data fitting have been obtained.

* New numerical algorithms to solve data fitting problem by the least squares method
with quadratic and cubic Bezier curves have been developed.

* A solution of the parameterization problem, which is based on the requirement of
minimality of the distance from a data point to the desired curve has been obtained.

e Numerical algorithms to construct approximating quadratic and cubic Bezier curves
with fixed endpoints have been developed.

¢ Numerical algorithms to construct approximating quadratic and cubic Bezier curves
with loose endpoints have been developed.
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PE3IOME
Hypu Axman CyJseiiman

PA3SPABOTKA AJITOPUTMOB AIIITPOKCUMAILIMN
JAHHBIX C ITOMOIIBIO KPMBbBIX BE3bLE

JluccepranimoHHas paboTa MOCBSIIEHA pa3padOTKe BBIYMCIUTEIBHBIX AITOPHTMOB
amMMpPOKCUMAIH  AKCTIEPUMEHTAIBHBIX JTAaHHBIX METOJIOM HaWMEHBIINX KBaIpaTOB C
UCMOJIb30BaHUEM KBAIPAaTUYHBIX U KyOU4eCKUX KpUBBIX besbe.

Meton HauMEHBIINUX KBaAPATOB SIBISAETCS OAHUM M3 Hambosiee 3 (HEeKTUBHBIX CPENICTB
pemeHus 3aaa4 0OpaOOTKM M CINIAXKMBAHUS HKCIICPUMEHTAIBHBIX JaHHBIX. MeToJ mMeeT
MHOXXECTBO MPHMEHEHUI B KOMITBIOTEPHOH Tpaduke, aBTOMATUYECKOM MPOCKTHPOBAHMUH,
pacro3HaBaHMM O0pa30B M JApYrux oOjacTsax. B kadyecTBe anmmpOKCUMHUPYIOIIUX MOTYT
UCTIOJIb30BaThCsl (PYHKIUU PA3IAYHBIX KJIACCOB, HANPUMEp, alreOpandecKue MHOTOUICHHI,
nokasaresibHble, Jorapupmuueckue u aAp. (yHKuMH. B mocimeaHee Bpems, Hapsxy cC
YIOMSIHYTBIMHM BBIIIE “KJIACCUYECKUMM~ (DYHKIUSAMH, OOJIbIIOE BHUMAaHHE YAENIAETCS
UCTIOJIB30BAHUIO TTAPAMETPUIECKIX KPHUBBIX M, B YaCTHOCTH, KpUBbIX bezpbe. Hamomuum nx
onpenenenue. Keaopamuunas xpusas besve, omnpezaenseMas TpeMsi KOHTPOJIbHBIMU
toukamu 4%, £3 u £, 3agaercs BeIpakeHUEM

B(t) =(1-t)’R, +2t(1- )P, +t’P,, t<[0.1].
Kybuueckas kpusas Bezve, KOTOpas ONpPENENSIeTCs YKE YeTHIPbMS KOHTPOJIHHBIMU TOYKAMH
5, R, P, u £ 3anaeTcs BEIpaKECHUEM
B(t) =(1- t)’P, +3t(1- t)’ P, +3t°(1- )P, +t°P,, t€[0,1].

[locraHoBKa 3ajaul HaWMEHBIIMX KBaApaToB. IlycTh HMMeeTcs HEKOTOpbIil Habop
JaHHbIX ¢;, { =1.2,...., N B ciydae KBaApaTUYHON KpUBOM TpeOyeTcs HAMTU KOHTPOJIbHbIE
touku 4%, 4 u £ Tak, YT0OBI MUHUMHU3UPOBATH CYMMY

N
E(R, B, PT!) =Y | BG)- g,
=l

B ciyuae kyOudeckoit KpuBOMl TpeOyeTcst HAWTH KOHTPOJbHBIE TOUKU Fo, /7,55 u 13
TaK, 4T00bI MUHUMH3UPOBATh CYMMY

N
E(E),R,%,E,Td) EZ| B(tid)_ q; |2 .
=1

d d .d d d d
B mocraHOBKe 3a7a4 y4acTBYIOT HA00pHI yzn06 1T =(t .15 ,....ty), 0 <tf <1, rnue y3en ¢

MUHUMU3HPYET PACCTOSHUE OT TOUKU ¢; 110 TpeOyeMoil KpUBOH, TO €CTh
d _ .
|B(ti )' q; |_%r51t12| B(t)' q; |

CII0HOCTD 3/1€Ch 3aKJIFOYAETCA B TOM, YTO Y3Jbl 1’ ¢ =(t,15 ,....t5) TaKKe TOUIeKAT orpe-
JEJICHUI0. JTO TaK Ha3bIBacMasl 3ajiavya napamempusayuu, KOTopas SBISICTCS KIOYCBON H
HauboJIee CIOKHOM 3a/1a4eid, TPOYIOIIe CBOEro pelIeHus B POLecce almpOKCUMAIIUH.

B nacrosmeit nuccepranuu pazpaboTaH U TEOPETHUECKH 0OOCHOBAH HOBBIN MOIXOJ K
MPAKTHYECKOMY PEIICHUIO IMOCTABICHHBIX 3ajad alPOKCUMAIIMK U TTapaMeTpU3aiiy. 3aK-
JFOYaeTCsl OH B TIOCTPOCHUHM TaK HA3bIBAEMBIX MUHUMUSUPYIOWUX NOCIE008AMENbHOCMEU
KOHTpOJIbHBIX To4YeK. CyTh 3TOro moaxoaa TakoBa. IlycTh mMeercs HEKOTOpas MOCIe-
noBatenbHOCTh Tpoek (£, B, P®) k =0.1,... (kBampaTH4HbI ciIydaii), 60 YeTBEPOK
(R, B, PV, P),  k =0.l,..(kybuueckuii  Cilydail) KOHTPONBHBIX TOYEK U
COOTBETCTBYIO-  IMas  MOCIEIOBATENILHOCTh  KpUBHIX  besbe B (¢), k =0,1,...
(KBagpaTU4HbBIX, JIMOO, COOTBET-CTBEHHO, KyOmueckux). Jlyis Kaxmod Tpoiiku, mbo,
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COOTBETCTBEHHO, 4YETBEPKM KOHTPOJb-HBIX TOYEK ompenensercs Habop  y3JIOB
k k k k
T® =@®,",...,t\) takux, 4yro
(k) (k) — i | R .
|B (Z[ )' q; |_1(El12|B (t)' q,; |, i =12,...,N .
3aTeM BBIYMCISIOTCS CyMMBI
N
" — Y0 2 _
EQ =Y |BY1")- q,F, & =0.l..
i=
ByaeM TOBOpHUTBH, YTO TPOMKH, JIMOO, COOTBETCTBEHHO, UYETBEPKHM KOHTPOJBHBIX TOYEK

00pa3yIOT MUHUMUIUPYIOWYIO NOCTE008AMENbHOCMb, ECIIN
E® <p®b k=12,

NMeHHO NOCpEeACTBOM aJrOpUTMOB MOCTPOCHHUSI MUHUMH3UPYIOIIMX MOCIEI0BATEb-
HOCTEH pellleHa B JUCCepPTAalMM 3aJlaya amnmnpoKCUMAIMM JaHHBIX METOJOM HaWMEHBLINX
KBaJpaToB. PaccMOTpeHbl [1Ba BapuaHTa 3aJauyd OTHOCHUTEIIBHO KpalHUX KOHTPOJIBHBIX
TOYEK — ¢ (PUKCHUPOBAHHBIMH U CO CBOOOJHBIMU KOHIIaMH. UHUCIIEHHBIE pacdeThl MOATBEp-
KAAOT 3PPEKTUBHOCTH MPEIaraeMoro rnojaxoa.

OCHOBHBIE PE3VIIBTATBI AUCCEPTALMA

B pesynbrare mpoBeeHHBIX B paboTe MCCIENOBAaHUN MOITYYEHBI CIETYIOIUE OCHOB-
HBIE PE3YJIBTATHI B 00JIACTU TEOPUH ANNPOKCUMALIMH TAHHBIX.

® Pa3paboTaHbl HOBbIE AJITOPUTMBI ANNPOKCUMAILMU JaHHBIX METOIOM HaMMEHBLIMX
KBaJ[PaTOB C TIOMOIIBIO KBaPAaTHUHBIX U KyOMUECKUX KpUBBIX besbe.

¢ [lomyyeHo pelieHHe 3aJaudl MapaMETPU3ALNH, B OCHOBE KOTOPOTO JIEKHT TpeOo-
BaHHWE MUHUMAJIbHOCTU PACCTOSHUS OT MPHUOIMKaeMO TOUKH 10 TpeOyeMoil KpUBOH.

® Pa3paboTaHbl aNrOpUTMbl MOCTPOECHUS AMIPOKCUMHUPYIOUIMX KBaJpPaTUYHBIX U
KyOnueckux KpuBbix be3be ¢ GUKCHpPOBaHHBIMU KPAaHHUMU KOHTPOJIBHBIMU TOUYKAMHU.

b P33pa6OTaHBI AJITOPUTMBI TTIOCTPOCHHUA AIIIPOKCUMUPYIOIIUX KBAJAPATHYHBIX H
KY6PI‘—I€CKI/IX KPHBBIX besne co CBO6OI[HBIMI/I KpaﬁHI/IMH KOHTPOJIbHBIMH TOYKaAMMH.
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Uuononku
LnLph Uhdwin UnctjJdwl

FE2PE3Ph UNrernd SY3ULLErr UNSUryuuy
uLanrriULErr UcUunryu

UwnGUwhpununtpjntup uyppdwd E  RPGghtih pwnwynwuwhu W
hunpwUwnpnwjhu YnpGpnd thnpowpwpwywu ndjuutnh dnuinwpydwu
hwoynnwywlu wignphpJdutph dwydwup thnppwagnyu pwnwynwuhutph
Jbpnnh Uhpwndwup: ®nppwgnyu pwnuw-ynruhubph JGpnnp
wJGUwwnnyntuwybun dhpngubiphg dGyu £ thnpawpwpwyuwlu tnnyjuutph
bwydwu W hwpptgdwlu puunhputGph |nddwlu hwdwn: UGpnnu nlup
pwadwuwhuh  Yhpwnnipjnluutpn  hwdwywnpgswhu  gpwdbhyuuyned,
wywnndwwn  Uw-puwgdédwlu, wwwnyGpubnph sdwUuwgnnnipjwlu W wyl
ninpnnutpnud:  UnwnwnpynnutGnh nGpnud  wpnn Gu ogunwagnnpdyb)
nwppbn nwuh dnLuyghwubn, ophuwy, hwUpw-hw?dwyuwl
pwodwlunwdutp, wunhwuwjhlu, [nguphpdwywu W wj $nuyghw-
utn: dGpphu dwdwuwyutpnud, h phdu 4yGpp pywpydwéd “nuuwywu”
dnLuy-ghwutph, wnwyt| npwnpneeinlu £ udhpynud ywpwdbunpwyuwl
ynnGph oquwagnpédwup W, Jwulwdnpwwbu, PRPLghGh ynptnphu:
Jdbnhhptup Upwug uwh-dwunwduubnp: RGghtih pwnwyniuwyhlu 4npn,
nppn nnnpynud £ 7%, 2 W 2 Gnbp hGupwjhu yGuintGpnd, inpyned E

B(t) =(1- )’ P, +2t(1- )P, +t’P,, t€[0,1]
wnpwunwhwjnnipjwdp: Faghtih funnwUwnnuwyht 4npp, npp npnaynud £
wnpnbu &, 7, 2 W 2 ysnpu hGupwjhu yGintnpny, tinpyned E

B(t) =(1-t)’P,+3t(1- 1)’ P, +3t>(1- )P, +’°P,, t<[0,1]
wnwunwhuwjunnLpjwdp:

Onppwagnyl pwnwynwuhubph huunph npdwépp: thgnip nlubup
nyjwiutph hwjwpwédnL ¢,, i =L.2....N: PwnwynLtuwjhu Yynph nbwpnid
wwhwugynud E gl &, 4 W 2 hGupwjhu yGntGpp wjuwbu, np
hGunlyw gnedwpp |hup thnppwgnyup

N
E(R,P,PT") =) | Bt)- g,
i=

funpwuwnpnuwjihu Yynnh nGwpnwd Wywhwuedynwd £ qunu &, 45, 2 W &
hGupwjhUu 4GunGpp wjbwtu, nn
E(P()9Pl>])25P3;Td) EZ|B(tid)_ q; |2

agnuidwnpp  (huph huwpwynp  thhnppwagnyup: wunph npwoépnud
dwulwygned Gu T =@t ,....1%), 0=z <1 hwlgnygltnh
hwywpwéniubpp, npintkn 7’ hwugnygp Uhuhdhqwgunwd £ ¢, Ybunhg
JdhUsl. wwhwueynn Ynph hGnwynnpnrpjnitup, wjuhuplu®
| B(t)- q,|=min| B(®)- ¢, .

Ujunntn pwpnnipjntbl wyu £, np npnpdwlb GU GUpwlw ULwl
T =@/t ....ty) hwlgnygutipp: Uw wnwyb] pwpn W hhduwpwn nbn
nLtubgnn wjuwbu Yngwd wwpwdtinnhqughuwyh puunhnpu £, nnp |nLonud
E wwhwUugnid Uninwnpydwl wypngtuh hGug pupwgpntu:
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LGpyw  wwnbUwpununipniuncd . wydbp W innGuwywunnptu
hhduwynnpyty E npdwé dnunwpydwlu L wwpwdGinphqgwghwih
huunhpuGpp ypwywnhynptu nLéGint unp dnuinbignud: Uju Gupwnpnud E
wjuwbiu Yyngwi o hGupuwjhu yGuntph UhUuhuh-quglnn
hwgnnnwlwuncpyntultnh Yunnignid: Unintigdwl Encpynitup hGunlywiju
t.

Yhgnip nlubUp hGUupwjhu YGwntph &°.RY,A?), & =o.1... Gnuyubph
(pwnw-YnLuwjhu nbwp), ywd pwnwyutph &°,B°, PP, PY), & =0.1,...
(hunpwlwpnwihu  nGwp) hwenpnuywunieintt W RPtghbjh  Ynptiph
hwdwuwuwunwupuwu hwonpnuw-ywuncpynLl’ B® (@), k =0.,1,...
(pwnwynuwihu  ywd hunpwuwpnwiht  hwdwww-nwupiwluwpwn):
Udtu hGupwjphu yLGwntph Grjwyh Ywd hwdwwywunwupiwluwpwn
pwrjwyh hwdwn uwhdwudnd Et 79 =¢,49,...¢)  wjlwhuh
hwugnygutph hwydwpwdnt, np
|BY (")~ g, |=min| BY(0)- ¢,|, i=12...N:

UjunthGuinle hwpyyned GU hGuinlyw gnedwpubpp®
ED =31 BOW) - g, f

Lwiutlp, nn hGupwjhu yGuntph Gnjwyutpnp ywd
hwdwwwwunwuppwlbwpwn® pwnjwyutnp Ywaqunwd Gu JhUhdhquaglnn
hwonnnwwluntpynLl, Rk
EP <p®b k=12, :

<btug Jdhuhdhqwgunn hwonpnwyuwuntpjnLtultn ywnnLgnn
wgnphpdutnph Jhengny Et (nudynud thnppwagnyl  pwnwynwuhbbph
Gnwuwyny ndjujutGnh dnnnwnydwu puunhpp wwntbUwpununcpjwu Jby:
Thnwnpywd Gu puunph Gpyne wnwppGpwyutn® Ggpwjhu hGupwjhu
yGunGph $phpuwd L wquun ntwptphu hwdwwwwnwupuwl: FJuwjhu
huwdwnpyutpp hwunwwnnud GU wnwewnywd dninbgdwlu wpnnluw-
JGunipyniup:

USELUluNUNFBE3UL <hULUUUL UrM3nFuLeLerc

Whuwwnwupnd Juwuwnwpywd hGunwgnunnipynctuuGnh wprynctupned
unwgywdé Gu hGnlw] hhduwywlu  wpnniupubp ngwutnpp
Udnunnwpydwl puwgwywnned:

o Upwldtb] Gu PGghth pwnwyntuwihu W punpwUwnnwihu Ynptnhp
Jdhengny wnyjwjutGph dnunnwpydwlu unp hwynnwyuwl wighphpJdutn
thnppwanyu pwnwynt-uhutph dGpnnh Yyhpwndwdp:

e Uunwgdb] E wwpwdtGuinphqgwghwjh huunph (ntdnwdp, nph hhdpnud
puywd E YGunhg dhuzgle wwhwuednn Ynpp Gnwéd hGnwynpnipjwl
thnpnpwagnyup (hutGint wwhwuen:

« Upwydty GUu PLghth pwnwynuwhu W punpwluwnpnwihu
dninwpynn ynptph Ywnnigdwlu wgnphpdutn $hpuwd bLGgpwjhlu
hGupwjhU YGuntnph nGuwpnLu:

« Upwyyty GU PGghth pwnwynuwhu W punpwlUwpnwihlu
dninwnpynn ynptph  Juwnngdwlu wignphpdutn  wqww  Ggpwjhu
hGupwjhu yGuintph nGwpncd:

k =0.1,... -

3
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