ՀՀ ԳԱԱ ՄԵԽԱՆԻԿԱՅԻ ԻՆՍՏԻՏՈՒՏ

ՍՐԱՊԻՈՆՅԱՆ ՋԱՆԻԲԵԿ ԼԻՊԱՐԻՏԻ

ՕՐԹՈՏՐՈՊ ԳԼԱՆԱՅԻՆ ԹԱՂԱՆԹՆԵՐԻ ԵՎ ՈՉ ՓԱԿ ՄԻԱՏԵՍԱԿ ՇՐՋԱՆԱՅԻՆ ԳԼԱՆԱՅԻՆ ԹԱՂԱՆԹՆԵՐԻՑ ԿԱԶՄՎԱԾ ԿՈՆՍՏՐՈՒԿՑԻԱՆԵՐԻ ՏԵՂԱՅՆԱՑՎԱԾ ՏԱՏԱՆՈՒՄՆԵՐԸ

Ա.02.04 <<Դեֆորմացվող պինդ մարմնի մեխանիկա>> մասնագիտությամբ ֆիզիկամաթեմատիկական գիտությունների թեկնածուի գիտական աստիձանի հայցման ատենախոսության

ՍԵՂՄԱԳԻՐ

ԵՐԵՎԱՆ-2015

ИНСТИТУТ МЕХАНИКИ НАН РА СРАПИОНЯН ДЖАНИБЕК ЛИПАРИТОВИЧ

ЛОКАЛИЗОВАННЫЕ КОЛЕБАНИЯ ОРТОТРОПНЫХ ЦИЛИНДРИЧЕСКИХ ОБОЛОЧЕК И КОНСТРУКЦИЙ ИЗ ОДИНАКОВЫХ НЕЗАМКНУТЫХ КРУГОВЫХ ЦИЛИНДРИЧЕСКИХ ОБОЛОЧЕК

ΑΒΤΟΡΕΦΕΡΑΤ

диссертации на соискание ученой степени кандидата физико-математических наук по специальности 01.02.04 - "Механика деформируемого твердого тела"

EPEBAH- 2015

Ատենախոսության թեման հաստատվել է ՀՀ ԳԱԱ Մեխանիկայի ինստիտուտում։

ֆ.մ.գ. դ., պրոֆեսոր՝ Գ.Ռ. Ղուլղազարյան Գիտական դեկավար՝ Պաշտոնական ընդդիմախոսներ՝ ՀՀ ԳԱԱ թղթակից անդամ, ֆ.մ.գ. դ., պրոֆեսոր Ս.Հ. Սարգսյան ֆ.մ.զ. դ., պրոֆեսոր Ռ.Ս. Գևորգյան

Առաջատար կազմակերպություն՝

Երևանի պետական համայսարան

Պաշտպանությունը կայանայու է 2016թ. հունվարի 22-ին, ժամը՝ 14⁰⁰-ին ՀՀ ԳԱԱ Մեխանիկայի ինստիտուտում գործող 047 մասնագիտական խորհրդում (huugh 0019 p. Երևան, Մարշայ Բաղրամյան պող. 24/2) avsah@mechins.sci.am

Ատենախոսությանը կարելի է ծանոթանալ ՀՀ ԳԱԱ Մեխանիկայի ինստիտուտի գրադարանում Սեղմագիրն առաքված է 2015թ. դեկտեմբերի 21-ին։

Մասնագիտական խորհրդի գիտական քարտուղար՝ ֆ.մ.գ.դ.

Maes U.Y. Uwhwyjwu

Тема диссертации утверждена в Институте механики НАН РА

Научный руководитель: д.ф.м.н., профессор Г.Р. Гулгазарян Официальные опоненты: чл. корр. НАН РА, д.ф.м.н., профессор С.О. Саркисян д.ф.м.н., профессор Р.С. Геворкян Ереванский государственный университет Ведущая организация: Защита состоится 22-ого января 2016г. в 1400 часов на заседании специализированного совета 047 в Институте механики НАН РА (адрес: 0019 г. Ереван, пр. Маршала Баграмяна 24/2) <u>avsah@mechins.sci.am</u> С диссертацией можно ознакомитсья в библиотеке Института механики НАН РА

Арасоб А.В. Саакян Автореферат разослан 21-ого декабря 2015г. Ученый секретарь специализированного совета, д.ф.м.н.

<u>Актуальность темы</u>. Исследования колебательных процесов в цилиндрических оболочках и оболочечных конструкциях занимают важное место в динамике деформируемого твердого тела. Это обусловлено как потребностями самой теории, так и практическими вопросами авиастроения, судостроения, приборостроения, динамики энергетических сооружений, строительства, приборостроения сейсморазведки и др.

Важное прикладное значение имеет изучение собственных колебаний оболочек имеющие затухающий характер. Для тонких оболочек большое значение приобретают исследования собственных колебаний, локализованных у свободного края оболочки – краевые колебания.

Впервые упругие поверхностные волны были рассмотренны Рэлеем (Rayleigh, 1885). Им было установлено существование упругих волн, распространяющихся вдоль свободной границы полупространства, с амплитудой, экспоненциально убывающей с глубиной.

Изучение колебаний стержней, пластин и оболочек на основе точных решений трехмерных задач теории упругости является трудной задачей. Поэтому, разными методами трехмерные уравнения теории упругости приводят к двухмерным уравнениям. Эти методы условно разделяют на аналитический и метод гипотез. Для решения таких проблем в последние десятилетия широко используется асимптотический метод. Он получил развитие в работах Л.А. Агаловяна, И.И. Воровича, Р.С. Геворкяна, А.Е. Грина, А.Л. Гольденвейзера, С.О. Саркисяна, и др. В работах В.В. Власова и Н.Н. Леонтьева, Н.А. Кильчевского, А.И. Лурье, Х.М. Муштари и И.Г. Терегулова, С.П. Тимошенко, Н.А. Шульги, Г.И. Михасева и П.Е. Товстика и других ученых был развит аналитический метод приведения трехмерной задачи к двумерной, основанный на разложении искомых функций в ряд по малому геометрическому параметру.

В.С. Саркисяном и его учениками были развиты и использованы методы разложения по малым физическим и геометрическим параметрам.

С практической точки зрения наиболее распространение получила классическая теория Кирхгофа-Лява тонких оболочек. Широко применяются также уточненные теории, которые приводят к добавлению в дифференциальных уравнениях классической теории дополнительных членов, расширяющих в некотором смысле область применения классической теории.

С применением классической и уточненной теорий решено большое число задач статики и монографии Им посвящены линамики тонких тел. И работы А.С. Аветисяна. В.М. Александрова, С.А. Амбарцумяна, А.Г. Асланяна, Г.Е. Багдасаряна, А.Г. Баженова, А.Г. Багдоева, М.Б. Белубекяна, Е.И. Беспалова, В.В. Болотина, В.В. Василева, А.Т. Василенко, И.И. Воровича, В.Ц. Гнуни, А.Л. Гольденвейзера, А.И. В.В. Власова. Вильде, M.B. Э.И. Григолюка, Я.М. Григоренко, А.Я. Григоренко, А.Г. Горшкова, Шинкара, А.Н. Гузя, Г.Р. Гулгазаряна, Л.Г. Гулгазарян, В.Т. Гринченко, З.Н. Данояна, А. Ю. Ишлинского, К. Б. Казаряна, Ю. Д. Каплунова, Ю.К. Коненкова, Р.М. Киракосяна, А.Б. Китайгородского, В.П. Костромина, С.Г. Лехницкого, В.Б. Лидского, А.И. Лурье, В.В. Мелешко, Г.И. Михасева, Л.А. Мовсисяна, Х.М. Муштари, В.В. Новожилова, Б.Л. Пелеха, Э. Рейснера, В.С. Саркисяна, С.В. Саркисяна, Н.А. Шулги, И.Г. Терегулова, С.П. Тимошенко, П.Е. Товстика, К.Ф. Черныха и др.

Собственные колебания затухающих от свободного торца безмоментной круговой цилиндрической оболочки вдоль направления ее образующих, впервые изучены Р.А. Багдасаряном, М.В. Белубекяном и К.Б. Казаряном (1992).

Применяя специальные асимптотические методы, Ю.Д. Каплуновым и его учениками исследовано существование локализованных у свободного края собственных колебаний полубесконечной изотропной круговой цилиндрической оболочки (2000).

Г.Р. Гулгазаряном и его учениками изучены вопросы существования локализованных у свободного края, собственных колебаний ортотропных безмоментных и моментных цилиндрических оболочек.

В настоящей диссертационной работе исследован вопрос существования собственных колебаний безмоментной незамкнутой ортотропной цилиндрической оболочки переменной кривизны со свободными торцами и жестко защемленными граничными образующими [5].

Исследуются также собственные колебания тонкой упругой ортотропной круговой незамкнутой ЦО со свободными торцами и жестко защемленными граничными образующими (моментная задача) [3].

Исследуются собственные колебания тонкостенных упругих конструкций из одинаковых незамкнутых ортотропных ЦО со свободными и свободным и жестко защемленным граничными образующими [1,2,6].

Цель диссертационной работы

- Исследовать собственные колебания незамкнутых упругих безмоментных ЦО переменной кривизны со свободными торцами и жестко защемленными граничными образующими.
- Исследовать собственные колебания тонкой упругой ортотропной круговой незамкнутой ЦО со свободными торцами и жестко защемленными граничными образующими (моментная задача).
- Исследовать собственные колебания тонкостенной упругой конструкции из одинаковых круговых ортотропных ЦО со свободными граничными образующими.
- Исследовать собственные локализованные колебания тонкостенной упругой конструкции из одинаковых незамкнутых круговых ЦО со свободным и жестко защемленным граничными образующими.

<u>Научная новизна:</u>

- На основе классической теории ортотропных безмоментных ЦО исследованы собственные колебания незамкнутой ортотропной упругой ЦО с произвольной гладкой направляющей со свободными торцами, когда граничные образующие жестко защемлены.
- Получены дисперсионные уравнения для полубесконечной безмоментной ЦО со свободным торцом и жестко защемленными граничными образующими.
- Получены дисперсионные уравнения планарного и изгибного колебания для прямоугольной пластины со свободными противолежащими сторонами, когда остальные стороны жестко защемлены.
- Получены дисперсионные уравнения планарного и изгибного колебания для полубесконечной пластины-полосы со свободным торцом и жестко защемленными боковыми краями.
- Найдены дисперсионные уравнения для нахождения собственных частот возможных типов собственных колебаний ортотропной круговой ЦО открытого профиля со свободными торцами и жестко защемленными граничными образующими (моментная задача).
- Установлена асимптотическая связь между дисперсионными уравнениями поставленной задачи и аналогичных задач для прямоугольной, ортотропной пластины со свободными и жестко защемленными паралельными сторонами.

- Установлена асимптотический связь между дисперсионными уравнениями рассматриваемой задачи и задачи на собственные значения для полубесконечной пластины–полосы со свободным торцом и жестко защемленными краями.
- Установлена асимптотическая связь между дисперсионными уравнениями рассматриваемой задачи и задачи на собственные значения полубесконечной цилиндрической оболочки открытого профиля со свободным торцом и жестко защемленными граничными образующими.
- Найдены дисперсионные уравнения для нахождения безразмерных характеристик собственных частот возможных типов колебаний конструкции оболочечного типа составленной из одинаковых незамкнутых бесконечных и конечных ортотропных ЦО со свободными граничными образующими.
- Установлена асимптотическая связь между дисперсионными уравнениями рассматриваемых задач и аналогических задач для ортотропной пластинчатой тонкостенной конструкции (в частности, для аналогичных задач пластины-полосы и прямоугольной пластины) соответственно.
- Установлена асимптотическая связь между дисперсионными уравнениями рассматриваемых задач и задач на собственные значения для полубесконечной пластинчатой конструкции из счетного числа конечных и бесконечных пластин-полось (в частности полубесконечных пластин и пластин-полос) со свободным граничным образующим.
- Установлена асимптотическая связь между дисперсионными уравнениями рассматриваемых задач и задач на собственные значения для полубесконечной конструкции оболочечного типа составленных из счетного числа одинаковых ЦО (конечных и бесконечных) со свободным граничным образующим.
- Найдены дисперсионные уравнения для нахождения безразмерных характеристик собственных частот возможных типов колебаний конструкции оболочного типа составленных из одинаковых ортотропных незамкнутых круговых бесконечных и конечных ЦО со свободным и жестко защемленным граничными образующими.
- Установлена асимптотическая связь между дисперсионными уравнениями рассматриваемых задач и аналогичных задач для ортотропной пластинчатой тонкостенной конструкции (в частности, для аналогичных задач пластины-полосы и прямоугольной пластинкы) соответственно.
- Получена асимптотическая связь между дисперсионными уравнениями рассматриваемых задач и задач на собственные значения для полубесконечной пластинчатой конструкции из счетного числа конечных и бесконечных пластин-полос (в частности полубесконечных пластин и пластин-полос) со свободным граничным образующим.
- Установлена асимптотическая связь между дисперсионными уравнениями рассматриваемых задач и задач на собственные значения для полубесконечной конструкции оболочечного типа составленных из счетного числа одинаковых незамкнутых круговых бесконечных и конечных ЦО со свободным граничным образующим.

<u>Практическая значимость</u>. Полученные результаты могут быть применены при расчете динамического поведения тонких упругих, ортотропных и изотропных ЦО для выявления резонансных зон частот колебаний.

Основываясь на полученных дисперсионных и характеристических уравнений можно вычислить собственные частоты и коэффициентов затухания соответствующих форм колебаний.

Полученные асимптотические формулы, для дисперсионных уравнений, являются вспомогательным критерием для определения безразмерных характеристик собственных частот колебаний ЦО. С помощью полученных асимптотических формул, можно выяснить к какому типу колебаний соотвстствует полученные значения собственных частот.

Апробация работы.

Резуьлтаты диссертации докладывались и обсуждались.

- На международной школе-конференции молодых ученых 2007 (Цахкадзор 25-28 сентября, Армения)
- На международной школе-конференции молодых ученых 2009 (Агавнадзор 28 сентября-1 октября, Армения)
- На международной конференции "Актуальные проблемы Механики сплошной среды" (Дилижан, 4-8 октября, 2010, Армения)
- На семинаре кафедры математического анализа и теории функций АГПУ им. Х.Абовяна, (18 апреля 2014, Армения)
- На международной школе-конференции молодых ученых посв. 70-летию основания НАН Армении, 2013 (Цахкадзор, 1-4 октября, Армения)
- На семинарах "Механика тонкостенных систем" Института Механики НАН Армении. С 2006-2015.
- Общем семинаре Института Механики НАН Армении (21 апреля 2015).

<u>Публикация</u>. По теме диссертации опубликованы шесть научных работ, список которых приводится в конце автореферата.

<u>Структура и объем работы</u>. Диссертация состоит из введения, трех глав, заключения и списка литературы из 162 наименований. Общий объем работы состоит из 117 страниц, печатного текста, включая 13 таблиц, 8 рисунков и 4 графиков.

Содержание работы

<u>Во введении</u> обоснована актуальность темы и дан краткий обзор работ отечественных и зарубежных авторов по проблемам затронутым в диссертации. Изложена теоретическая и практическая ценность работы, дано краткое описание работы по главам.

В первой главе исследуются собственные колебания незамкнутых ортотропных упругих безмоментных ЦО переменной кривизны со свободными торцами и жестко защемленными образующими. Задача самосопряженная, неотрицательно граничными определенная И недопускает разделения переменных. Для нахождения собственных частот и соответствующих собственных форм применяется обобщенный метод сведения к обыкновенным дифференциальным уравнениям Канторовича-Власова. В качестве базисных функций используются следующие функции:

 $W_m(\beta) = 1 - \cos km\beta, \quad k = 2\pi/s, \ 0 \le \beta \le s, \ m = \overline{1, +\infty}$

В §1.1. исследованы собственные колебания безмоментной незамкнутой ЦО переменной кривизны со свободными торцами и жестко защемленными граничными образующими. Предполагается, что квадрат кривизны направляющей кривой поверхности оболочки можно представить в виде

$$R^{-2} = k^{2} \left(r_{0} / 2 + \sum_{m=1}^{\infty} r_{m} \cos km\beta \right), \quad k = 2\pi / s, \quad 0 \le \beta \le s, \quad \sum_{m=1}^{\infty} |r_{m}| < +\infty,$$
(1)

где $\beta(0 \le \beta \le s)$ является текущей длиной дуги направляющей кривой, а *s* -длина направляющей кривой. Для определения частот собственных колебаний оболочки необходимо найти ненулевое решение соответствующих уравнений безмоментной теории ортотропных ЦО

$$\sum_{j=1}^{3} l_{ij} u_j = \lambda u_j, \ i = \overline{1,3}$$
⁽²⁾

$$l_{11} = -B_{11} \frac{\partial^2}{\partial \alpha^2} - B_{66} \frac{\partial^2}{\partial \beta^2}, \quad l_{12} = -(B_{12} + B_{66}) \frac{\partial^2}{\partial \alpha \partial \beta} \quad l_{13} = B_{12} \frac{1}{R} \frac{\partial}{\partial \alpha}, \quad l_{21} = l_{12}$$
(3)

$$l_{22} = -B_{66}\frac{\partial^2}{\partial\alpha^2} - B_{22}\frac{\partial^2}{\partial\beta^2}, \quad l_{23} = B_{22}\frac{\partial}{\partial\beta}\left(\frac{1}{R}\right), \quad l_{31} = -l_{13}, \quad l_{32} = -B_{22}\frac{1}{R}\frac{\partial}{\partial\beta}, \quad l_{33} = \frac{B_{22}}{R^2}$$

при граничных услових

$$\frac{\partial u_1}{\partial \alpha} + \frac{B_{12}}{B_{11}} \left(\frac{\partial u_2}{\partial \beta} - \frac{u_3}{R} \right) \bigg|_{\alpha = 0, l} = \frac{\partial u_1}{\partial \beta} + \frac{\partial u_2}{\partial \alpha} \bigg|_{\alpha = 0, l} = 0$$
(4)

$$u_1 \Big|_{\beta=0,s} = u_2 \Big|_{\beta=0,s} = 0 \tag{5}$$

где $\alpha(0 \le \alpha \le l)$ является текущей длиной образующей, а u_1, u_2, u_3 -проекции вектора перемещений, соответственно в направлениях α, β и нормали к поверхности оболочки. B_{ij} -коэффициенты упругости. $\lambda = \omega^2 \rho$, где ω - угловая частота, ρ -плотность материала.

Спектр задачи (2), (4)-(5) не является чисто дискретным, а имеет ограниченные участки непрерывного спектра [5]. Исходя из метода Канторовича-Власова, решение системы (2) удовлетворяющее условиям (5), ищется в виде

$$u_{1} = \exp(k\chi\alpha) \left(\sum_{m=1}^{\infty} u_{m} \sin km\beta \right), \quad u_{2} = \exp(k\chi\alpha) \left(\sum_{m=1}^{\infty} v_{m}(1 - \cos km\beta) \right),$$

$$w = k \exp(k\chi\alpha) \left(\sum_{m=1}^{\infty} w_{m} \sin km\beta \right), \quad w = u_{3}/R,$$
(6)

где u_m, v_m, w_m, χ - неопределенные константы. Подставляя (6) в (2) в итоге получается бесконечная система уравнений [5].

$$\begin{pmatrix} (r_0 - r_{2m})A_m - 2\frac{B_{66}}{B_{22}}\eta^2 \end{pmatrix} w_m + \sum_{n=1,n\neq m}^{\infty} (r_{[n-m]} - r_{n+m})A_n w_n = 0, \ m = \overline{1,+\infty},$$

$$A_n = P_n / c_n, \ P_n = c_n + n^2 b_n - B_{12} / B_{22} \chi^2 a_n, \ n = \overline{1,+\infty},$$

$$a_m = \frac{B_{12}}{B_{11}} \chi^2 + \frac{B_{22}}{B_{11}} m^2 + \frac{B_{12}}{B_{11}} \eta^2, \ \eta^2 = \frac{\lambda}{k^2 B_{66}}, \ c_m u_m = \chi a_m w_m$$

$$b_m = \frac{B_{11} B_{22} - B_{12}^2 - B_{12} B_{66}}{B_{11} B_{66}} \chi^2 - \frac{B_{22}}{B_{11}} m^2 + \frac{B_{22}}{B_{11}} \eta^2, \ c_m v_m = -m b_m w_m$$

$$c_m = \chi^4 - \frac{B_{11} B_{22} - B_{12}^2 - 2B_{12} B_{66}}{B_{11} B_{66}} m^2 \chi^2 + \frac{B_{11} + B_{66}}{B_{11}} \eta^2 \chi^2 + (m^2 - \eta^2) \left(\frac{B_{22}}{B_{11}} m^2 - \frac{B_{66}}{B_{11}} \eta^2 \right)$$

$$(7)$$

Бесконечный определитель системы (7) относится к классу сходящихся определителей. Приравнивая определитель системы (7) к нулю, получается характерическое уравнение

$$D(\chi^2, \eta^2, B_{11}, B_{12}, B_{21}, B_{22}, B_{66}, r_0, r_1, \dots, r_m, \dots) = 0$$
(9)

Предположим, что $\chi_1, \chi_2, \chi_3 = -\chi_1, \chi_4 = -\chi_2$ различные корни уравнение (9) и χ_1, χ_2 имеют неположительные действительные части. Представим решение задачи (2),(4)-(5) в виде

$$u_i = \sum_{j=1}^{4} u_i^{(j)}, \, i = 1, 2, \, w = \sum_{j=1}^{4} w^{(j)}$$
(10)

где $u_i^{(j)}, w^{(j)}, i = 1, 2, j = \overline{1, 4}$ решения системы (7), имеющие вид (6) при $\chi = \chi_j$. Подставляя (10) в граничные условия (4) в итоге получается совокупность систем уравнений

$$\sum_{j=1}^{4} \frac{R_{1j}^{(m)}}{c_m^{(j)}} w_m^{(j)} = 0, \quad \sum_{j=1}^{4} \frac{R_{2j}^{(m)}}{c_m^{(j)}} w_m^{(j)} = 0$$

$$\sum_{j=1}^{4} \frac{R_{1j}^{(m)} \exp(z_j)}{c_m^{(j)}} w_m^{(j)} = 0, \quad \sum_{j=1}^{4} \frac{R_{2j}^{(m)} \exp(z_j)}{c_m^{(j)}} w_m^{(j)} = 0$$

$$R_{1j}^{(m)} = \chi_j^2 a_m^{(j)} - \frac{B_{1,2}}{B_{11}} w^2 b_m^{(j)} - \frac{B_{1,2}}{B_{11}} c_m^{(j)}, R_{2j}^{(m)} = \chi_j (a_m^{(j)}) + b_m^{(j)}), z_j = k\chi_j l$$

$$a_m^{(j)}, b_m^{(j)}, c_m^{(j)} - 3$$
Havenus a_m, b_m, c_m из (8) ПРИ $\chi = \chi_j$.
(11)

Приравнивая определитель системы (11) к нулю, получаются дисперсионные уравнения

$$Det \left\| m_{ij} \right\|_{i,j=1}^{7} = K_{2}^{2} (\eta_{m}^{2}, x_{1}, x_{2})(1 + \exp(2z_{1} + 2z_{2})) + \\ 8m_{11}m_{22}m_{12}m_{21}\exp(z_{1} + z_{2}) - (m_{11}m_{22} + m_{12}m_{21})^{2}(\exp(2z_{1}) + \exp(2z_{2})) - \\ 4m_{11}m_{22}(m_{11}m_{22} + m_{12}m_{21})(\exp(z_{2}) - \exp(z_{1}))[z_{1}z_{2}] - 4m_{11}^{2}m_{21}^{2}[z_{1}, z_{2}]^{2} = 0, \\ x_{j} = \chi_{j} / m, \eta_{m} = \eta / m, \ [z_{1}, z_{2}] = kml(\exp(z_{2}) - \exp(z_{1})/(z_{2} - z_{1}), \quad z_{j} = kmx_{j}l \end{cases}$$
(13)

Если $\chi_1 = mx_1$, и $\chi_2 = mx_1$ имеют отрицательные действительные части, то при $ml \to \infty$ уравнения (13) преобразуются к уравнениям [5].

$$K_2(\eta_m^2, x_1, x_2) = \delta_1 x_1^2 x_2^2 + \delta_2 x_1 x_2 + \delta_3 (x_1^2 + x_2^2) + \delta_4 = 0, \quad m = \overline{1, +\infty}$$
(14)

Уравнения (14) являются дисперсионными уравнениями для полубесконечной ортотропной безмоментной незамкнутой ЦО с произвольной плоской направляющей со свободным торцом, когда граничные образующие жестко защемлены.

В §1.2 исследованы частные случаи.

Случай а). Исследованы планарные колебания прямоугольной ортотропной пластины со свободными и жестко защемленными параллельными сторонами. В этом случае $R^{-2}(\beta) \equiv 0$ ($r_m = 0, m = \overline{0, +\infty}$). Характеристическое уравнение (9) распадается на уравнения

$$y^{4} - \left(\frac{B_{11}B_{22} - B_{12}^{2} - 2B_{12}B_{66}}{B_{11}B_{66}} - \frac{B_{11} + B_{66}}{B_{11}}\eta_{m}^{2}\right)y^{2} + (1 - \eta_{m}^{2})\left(\frac{B_{22}}{B_{11}} - \frac{B_{66}}{B_{11}}\eta_{m}^{2}\right) = 0, \ m = \overline{1, +\infty},$$
(15)

где $y = \frac{\chi}{m}$, а дисперсионные уравнения (13) принимают вид [5]

$$P(\eta_m^2, y_1, y_2) = -\left(\frac{B_{12} + B_{66}}{B_{11}}\right)^2 K_2^2(\eta_m, y_1, y_2)(1 + \exp(2z_1 + 2z_2)) - \\8m_1 m_{12}m_{21}m_{22}\exp(z_1 + z_2) + 4m_{11}m_{21}(m_1 m_{22} + m_{12}m_{21})[z_1 z_2](\exp(z_2) - \\\exp(z_1)) + (m_{11}m_{22} + m_{12}m_{21})^2(\exp(2z_1) + \exp(2z_2)) + 4m_{11}^2m_{21}^2[z_1 z_2]^2 = 0, \quad m = \overline{1, +\infty}$$
(16)

где y_1 , y_2 корни уравнения (15) с неположительными действительными частями, $z_j = kmy_j l$. Если y_1 и y_2 имеют отрицательные действительные части, то при $ml \to \infty$ уравнения (16) преобразуются в уравнения

$$K_{2}(\eta_{m}, y_{1}, y_{2}) = (1 - \eta_{m}^{2}) \left(\frac{B_{11}B_{22} - B_{12}^{2}}{B_{11}B_{66}} - \eta_{m}^{2} \right) - \eta_{m}^{2} y_{1} y_{2} = 0 \qquad m = \overline{1, +\infty}$$
(17)

Уравнения (17) являются дисперсионными уравнениями для полубесконечной пластины-полосы со свободным торцом, когда смежные краи жестко защемлены.

Случай б). Исследованы колебания безмоментной ортотропной круговой ЦО открытого профиля $R^{-2} = k^2 r_0 / 2(r_m = 0, m = \overline{1, +\infty})$ со свободными торцами и жестко защемленными граничными образующими. Характеристическое уравнение (9) распадается на уравнения

$$\left(\eta^{2} - \frac{B_{11}B_{22} - B_{12}^{2}}{B_{11}B_{66}} \frac{r_{0}}{2}\right)\chi^{4} - \eta^{2} \left(\frac{B_{11}B_{22} - B_{12}^{2} - 2B_{12}B_{66}}{B_{11}B_{66}} m^{2} - \frac{B_{11} + B_{66}}{B_{11}} \eta^{2} + \frac{B_{11}B_{12} - B_{12}^{2} + B_{66}B_{22}}{B_{11}B_{66}} \frac{r_{0}}{2}\right)\chi^{2} + m = 1, +\infty$$

$$+ \eta^{2} \left(m^{2} - \eta^{2} \left(\frac{B_{22}}{B_{11}} m^{2} - \frac{B_{66}}{B_{11}} \eta^{2} + \frac{B_{22}}{B_{11}} \frac{r_{0}}{2}\right) = 0,$$

$$(18)$$

а для нахождения безразмерной характеристики собственных частот η/m используются уравнения (13), в которых $x_1 = \chi_1/m$, $x_2 = \chi_2/m$, а χ_1 и χ_2 являются корнями уравнения (18) с неположительными действительными частями. В этом случае, для дисперсионных уравнений (13) при $r_0/m^2 \rightarrow 0$ справедливы следующие асимптотические формулы

$$Det \left\| m_{ij} \right\|_{ij=1}^{4} = \left(\frac{B_{11}}{B_{12} + B_{66}} \right)^{2} N_{1}^{2}(\eta_{m}) P(\eta_{m}^{2}, y_{1}, y_{2}) + O(r_{0} / m^{2}) = 0, \quad m = 1, +\infty$$
(19)

где $P(\eta_m^2, y_1, y_2)$ определяются по формуле (16) и $N_1(\eta_m) \neq 0$ [5].

Случай в). Исследованы колебания некруговой ЦО открытого профиля со свободными торцами и жестко защемленными граничными образующими.

В этом случае $R^{-2} = k^2 (r_0 / 2 + r_1 \cos k\beta)$ $r_m = 0, m = [2, +\infty].$

В конце главы произведены численные иследования.

Во второй главе исследованы собственные колебания тонкой упругой незамкнутой ЦО со свободными торцами и жестко защемленными граничными образующими (моментная задача) [3]. Задача самосопряженная, неотрицательно определенная и не допускает разделения переменных. Для нахождения собственных частот и соответствующих собственных форм применяется метод сведения к обыкновенным дифференциальным уравнениям Канторовича–Власова. В качестве базисных функций используются собственные функции задачи

$$w^{IV} = \theta^4 w, \quad w|_{\beta=0,s} = w'|_{\beta=0,s} = 0, \ 0 \le \beta \le s.$$
 (20)

Собственным значениям θ_m^4 , $m = \overline{1,+\infty}$ задачи (20) соответствуют собственные функции

$$w_m(\theta_m\beta) = \sin\frac{\theta_m s}{2}(ch\theta_m\beta - \cos\theta_m\beta) - \cos\frac{\theta_m s}{2}(sh\theta_m\beta - \sin\theta_m\beta), \ 0 \le \beta \le s, \ m = \overline{1, +\infty},$$
(21)

Используются следующие обозначения

$$k = \frac{\pi}{s}; \ \theta_m = k \, m \, \mu_m, \ m \in N; \ \beta_m = \int_0^s w'^2_m(\theta_m \beta) d\beta / \int_0^s w'^2_m(\theta_m \beta) d\beta \ .$$
(22)

В §2.1. исследованы планарные и изгибные колебания ортотропной прямоугольной пластины со свободными и жестко защемленными параллельными сторонами, используя базисные функции (21).

В качестве исходных уравнений применяются уравнения малых планарных колебаний, которые соответствуют классической теории ортотропных пластин

$$\sum_{j=1}^{2} l_{ij} u_j = \lambda u_i, \quad i = 1, 2,$$
(23)

где операторы l_{ij} , ij = 1,2 определены в (3). Граничные условия имеют вид

$$\frac{\partial u_1}{\partial \alpha} + \frac{B_{12}}{B_{11}} \frac{\partial u_2}{\partial \beta} \bigg|_{\alpha = 0,l} = \frac{\partial u_2}{\partial \alpha} + \frac{\partial u_1}{\partial \beta} \bigg|_{\alpha = 0,l} = 0 , \qquad (24)$$

$$u_1|_{\beta=0,s} = u_2|_{\beta=0,s} = 0.$$
⁽²⁵⁾

Решение системы (23) ищется в виде

$$(u_1, u_2) = \{u_m w_m(\theta_m \beta), v_m w'_m(\theta_m \beta)\} \exp(k\chi \alpha), \quad m = \overline{1, +\infty} ,$$
(26)

где u_m, v_m, χ неизвестные постоянные, а $w_m(\theta_m \beta)$ и *k* определены в (21) и (22).

В итоге получаются характеристические уравнения системы уравнений (23)

$$c_{m} = y^{4} - \frac{B_{11}B_{22} - B_{12}^{2} - 2B_{12}B_{66}}{B_{11}B_{66}} y^{2} + \frac{B_{11} + B_{66}}{B_{11}} \eta_{m}^{2} y^{2} - (1 - \eta_{m}^{2}) \left(\frac{B_{22}}{B_{11}} - \frac{B_{66}}{B_{11}} \eta_{m}^{2} \right) = 0.$$

$$y = \frac{\chi}{m_{*}}, \quad \eta_{m} = \frac{\eta}{m_{*}}, \quad m^{2}_{*} = m^{2} \mu_{m}^{2} \beta_{m}. \qquad m = \overline{1, +\infty}$$

$$(27)$$

Представляя решение задачи (23)-(25) в виде

$$u_{1} = w_{m}(\theta_{m}\beta) \left(\sum_{j=1}^{2} w_{j} u_{m}^{(j)} \exp(km_{*}y_{j}\alpha) - \sum_{j=1}^{2} w_{2+j} u_{m}^{(j)} \exp(-km_{*}y_{j}\alpha) \right),$$

$$u_{2} = w_{m}^{\prime}(\theta_{m}\beta) \left(\sum_{j=1}^{2} w_{j} v_{m}^{(j)} \exp(km_{*}y_{j}\alpha) + \sum_{j=1}^{2} w_{2+j} v_{m}^{(j)} \exp(-km_{*}y_{j}\alpha) \right).$$

$$u_{m}^{(j)} = \frac{B_{12} + B_{66}}{B_{11}} y_{j}, \quad v_{m}^{(j)} = \left(y_{j}^{2} - \frac{B_{66}}{B_{11}} (1 - \eta_{m}^{2}) \right) m\mu_{m}, \quad m = \overline{1, +\infty},$$
(28)

где _{y1} и _{y2} корни уравнения (27) с неположительными действительными частями и используя граничные условия (24), получаются дисперсионные уравнения [3]

$$\overline{E}_{m}(\eta_{m}) = K_{2m}^{2}(\eta_{m})(1 + \exp(2(z_{1} + z_{2}))) + \frac{8B_{11}^{2}m_{11}m_{22}m_{21}m_{12}}{(B_{12} + B_{66})^{2}}\exp(z_{1} + z_{2}) - \frac{B_{11}^{2}(m_{11}m_{22} + m_{21}m_{12})^{2}}{(B_{12} + B_{66})^{2}}(\exp(2z_{1}) + \exp(2z_{2})) - \frac{4B_{11}^{2}m_{11}^{2}m_{21}^{2}}{(B_{12} + B_{66})^{2}}[z_{1}z_{2}]^{2} - \frac{4B_{11}^{2}m_{11}m_{21}(m_{11}m_{22} + m_{21}m_{12})}{(B_{12} + B_{66})^{2}}(\exp(z_{2}) - \exp(z_{1}))[z_{1}z_{2}] = 0, \ m = \overline{1, +\infty}$$

$$[z_{1}z_{2}] = km *l (\exp(z_{2}) - \exp(z_{1}))/(z_{2} - z_{1}), \ z_{1} = km *y; l, \ j = 1, 2.$$
(29)

Заметим, что если y_1 и y_2 корни уравнения (27) с отрицательными действительными частями, то при $m_{sl} \rightarrow \infty$ уравнения (29) преобразуются в уравнения

$$K_{2m}(\eta_m) = (1 - \eta_m^2) \left(\frac{B_{11}B_{22} - B_{12}^2}{B_{11}B_{66}} - \eta_m^2 \right) - \eta_m^2 y_1 y_2 = 0, \quad m = \overline{1, +\infty} .$$
(30)

Уравнения (30) являются уравнениями Рэлея для полубесконечной ортотропной пластиныполосы со свободным торцом, когда краи $\beta = 0$, $\beta = s$ жестко защемлены.

Исследованы изгибные колебания ортотропной прямоугольной пластины со свободными и жестко защемлеными параллельными сторонами.

В качестве исходных уравнений применяется уравнение малых изгибных колебаний, которое соответствует классической теории ортотропных пластин

$$\frac{h^2}{12} \left(B_{11} \frac{\partial^4 u_3}{\partial \alpha^4} + 2(B_{12} + 2B_{66}) \frac{\partial^4 u_3}{\partial \alpha^2 \partial \beta^2} + B_{22} \frac{\partial^4 u_3}{\partial \beta^4} \right) = \lambda u_3$$
(31)

при граничных условиях

$$\frac{\partial^2 u_3}{\partial \alpha^2} + \frac{B_{12}}{B_{11}} \frac{\partial^2 u_3}{\partial \beta^2} \bigg|_{\alpha = 0, l} = \frac{\partial^3 u_3}{\partial \alpha^3} + \frac{B_{12} + 4B_{66}}{B_{11}} \frac{\partial^3 u_3}{\partial \alpha \partial \beta^2} \bigg|_{\alpha = 0, l} = 0$$
(32)

$$u_3\Big|_{\beta=0,s} = \frac{\partial u_3}{\partial \beta}\Big|_{\beta=0,s} = 0$$
(33)

где α ($0 \le \alpha \le l$) и β ($0 \le \beta \le s$) - ортогональные координаты точки срединной плоскости пластины; u_3 - нормальная компонента вектора перемещения точки срединной плоскости. *h*-толщина пластины.

Решения уравнения (31) ищется в виде

$$u_3 = w_m(\theta_m \beta) \exp(k\chi\alpha); \quad m = \overline{1, +\infty}$$
(34)

В итоге получаются характеристические уравнения

$$R_{mm} = m_*^2 a^2 \left(\frac{B_{11}}{B_{22}} y^4 - \frac{2(B_{12} + 2B_{66})}{B_{22}} y^2 + \frac{1}{\beta_m^2} \right) - \frac{B_{66}}{B_{22}} \eta_m^2 = 0, \quad m = \overline{1, +\infty}, a = \frac{h^2 k^2}{12}$$
(35)

Решение задачи (31)-(33) ищется в виде

$$u_{3} = w_{m}(\theta_{m}\beta) \left(\sum_{j=3}^{4} w_{j} \exp(km_{*}y_{j}\alpha) + \sum_{j=3}^{4} w_{2+j} \exp(-km_{*}y_{j}\alpha) \right)$$
(36)

где _{y₃} и _{y₄} корни уравнения (35) с неположительными действительными частями. Используя граничные условия (32) в итоге получаются дисперсионные уравнения

$$\overline{F}_{m}(\eta_{m}) = K_{1m}^{2}(\eta_{m})(1 + \exp(2(z_{3} + z_{4}))) + 8m_{33}m_{44}m_{34}m_{43}\exp(z_{3} + z_{4}) - (m_{33}m_{44} + m_{34}m_{43})^{2}(\exp(2z_{3}) + \exp(2z_{4})) - 4m_{33}^{2}m_{43}^{2}[z_{3}z_{4}] - (m_{33}m_{43}(m_{33}m_{44} + m_{34}m_{43})(\exp(z_{4}) - \exp(z_{3}))[z_{3}z_{4}] = 0, \ m = \overline{1, +\infty}$$

$$[z_{3}z_{4}] = km_{*}l(\exp(z_{3}) - \exp(z_{4}))/(z_{3} - z_{4}), \ z_{j} = km_{*}y_{j}l, \ j = 3,4$$
(37)

Заметим, что если y_3 и y_4 корни уравнения (35) с отрицательными действительными частями то при $m_{*l} \rightarrow \infty$ уравнения (37) преобразуются в уравнения

$$K_{1m}(\eta_m) = y_3^2 y_4^2 + 4 \frac{B_{66}}{B_{11}} y_3 y_4 - \left(\frac{B_{12}}{B_{11}}\right)^2 = 0 , \qquad m = \overline{1, +\infty}$$
(38)

которое являются дисперсионными уравнениями изгибного колебания для полубесконечной ортотропной пластины-полосы со свободным торцом, когда краи $\beta = 0$, $\beta = s$ жестко защемлены.

В §2.2. исследованы колебания цилиндрической оболочки открытого профиля со свободными торцами и жестко защемлеными граничными образующими.

В качестве исходных уравнений, описывающих колебания оболочки, используются уравнения, кототрые соответствуют классической теории ЦО [3]

$$\sum_{j=1}^{3} \left((h^2 / 12) n_{ij} + l_{ij} \right) u_j = \lambda u_j, \ i = \overline{1,3}$$
(39)

где дифференциальные операторы l_{ij} определены в (3), а дифференциальные операторы n_{ij} имеют вид

$$n_{11} = n_{12} = n_{21} = n_{13} = n_{31} = 0, \quad n_{22} = -\frac{1}{R} \left(4B_{66} \frac{\partial^2}{\partial \alpha^2} \left(\frac{1}{R} \right) + B_{22} \frac{\partial^2}{\partial \beta^2} \left(\frac{1}{R} \right) \right), \quad n_{23} = -\frac{1}{R} \left(B_{22} \frac{\partial^2}{\partial \beta^2} + \left(B_{12} + 4B_{66} \right) \frac{\partial^2}{\partial \alpha^2 \partial \beta} \right), \quad (40)$$

$$n_{32} = B_{22} \frac{\partial^3}{\partial \beta^3} \left(\frac{1}{R} \right) + \left(B_{12} + 4B_{66} \right) \frac{\partial^3}{\partial \beta \partial \alpha^2} \left(\frac{1}{R} \right), \quad n_{33} = B_{11} \frac{\partial^4}{\partial \alpha^4} + 2(B_{12} + 4B_{66}) \frac{\partial^4}{\partial \alpha^2 \partial \beta^2} + B_{22} \frac{\partial^4}{\partial \beta^4}.$$

Здесь u_1, u_2, u_3 - компоненты вектора перемещений точки срединной поверхности ЦО, h = толщина оболочки, $\lambda = \omega^2 \rho$, где ω – угловая частота собственных колебаний, ρ – плотность материала, B_{ij} – коэффициенты упругости. Граничные условия имеют вид

$$\frac{\partial u_1}{\partial \alpha} + \frac{B_{12}}{B_{11}} \left(\frac{\partial u_2}{\partial \beta} - \frac{u_3}{R} \right) \bigg|_{\alpha=0,l} = 0, \quad \frac{\partial u_2}{\partial \alpha} + \frac{\partial u_1}{\partial \beta} + \frac{4\mu^4}{R} \left(\frac{\partial^2 u_3}{\partial \alpha \partial \beta} + \frac{1}{R} \frac{\partial u_2}{\partial \alpha} \right) \bigg|_{\alpha=0,l} = 0,$$

$$\frac{\partial^2 u_3}{\partial \alpha^2} + \frac{B_{12}}{B_{11}} \left(\frac{\partial^2 u_3}{\partial \beta^2} + \frac{1}{R} \frac{\partial u_2}{\partial \beta} \right) \bigg|_{\alpha=0,l} = 0, \quad \frac{\partial^3 u_3}{\partial \alpha^3} + \frac{B_{12} + 4B_{66}}{B_{11}} \left(\frac{\partial^3 u_3}{\partial \alpha \partial \beta^2} + \frac{1}{R} \frac{\partial^2 u_2}{\partial \alpha \partial \beta} \right) \bigg|_{\alpha=0,l} = 0.$$
(41)

$$u_1|_{\beta=0,s} = u_2|_{\beta=0,s} = u_3|_{\beta=0,s} = \frac{\partial u_3}{\partial \beta}\Big|_{\beta=0,s} = 0,$$
(42)

где соотношения (41) являются условиями свободного края при $\alpha = 0, \alpha = l$, а (42) –условия жесткого защемления при $\beta = 0, \beta = s$. Здесь *l* длина образующей, а *S* длина направляющей окружности между граничными образующими. В первом, втором и третьем уравнениях системы (39), спектральный параметр λ формально заменяется на $\lambda_1, \lambda_2, \lambda_3$ соответственно. Пусть $R^{-1} = kr_0/2$, где $k = \pi/s$, а r_0 безразмерный параметр. Решение системы (39) ищется в виде

$$(u_1, u_2, u_3) = \{u_m w_m(\theta_m \beta), v_m w'_m(\theta_m \beta)\} \exp(k\chi \alpha), \quad m = \overline{1, +\infty},$$
(43)

где $w_m(\theta_m\beta)$ - определяется по формуле (21), u_m, v_m, χ - неопределенные константы. Подставляется (43) в (39). В итоге получаются характеристические уравнения [3]

$$R_{mm}c_{m} + \frac{r_{0}^{2}}{4} \left\{ c_{m} + m_{*}^{2}b_{m} - \frac{B_{12}}{B_{22}}\chi^{2}a_{m} + a^{2} \left[R_{mm}g_{m}d_{m} - m_{*}^{2}b_{m} \left(\frac{2(B_{12} + 4B_{66})}{B_{22}}\chi^{2} - \frac{m_{*}^{2}(1 + \beta_{m}^{2})}{\beta_{m}^{2}} \right) \right] + \frac{r_{0}^{2}}{4}a^{2}d_{m}(b_{m} + \frac{B_{12}}{B_{11}}\chi^{2}) + m = \overline{1,+\infty}$$

$$+ a^{4}m_{*}^{2}g_{m}l_{m} \left(\frac{B_{12} + 4B_{66}}{B_{22}}\chi^{2} - \frac{m_{*}^{2}}{\beta_{m}^{2}} \right) \right] = 0;$$

$$a_{m} = \frac{B_{12}}{B_{11}}\chi^{2} + \frac{B_{22}}{B_{11}}m_{*}^{2} + \frac{B_{12}}{B_{11}}\eta^{2}, \quad b_{m} = B_{1}\chi^{2} - \frac{B_{22}}{B_{11}}m_{*}^{2} + \frac{B_{22}}{B_{11}}\eta_{1}^{2}, \quad B_{1} = \frac{B_{11}B_{22} - B_{12}^{2} - B_{12}B_{66}}{B_{11}B_{66}},$$

$$c_{m} = \chi^{4} - B_{2}m_{*}^{2}\chi^{2} + \left(\frac{B_{66}}{B_{11}}\eta_{1}^{2} + \eta_{2}^{2} \right)m_{*}^{2}\chi^{2} + (m_{*}^{2} - \eta_{1}^{2}) \left(\frac{B_{22}}{B_{11}}m_{*}^{2} - \frac{B_{66}}{B_{11}}\eta_{2}^{2} \right), \quad d_{m} = \frac{4B_{66}}{B_{22}}\chi^{2} - m_{*}^{2},$$

$$B_{2} = \frac{B_{11}B_{22} - B_{12}^{2} - 2B_{12}B_{66}}{B_{11}B_{66}}, \quad l_{m} = \frac{B_{12} + 4B_{66}}{B_{22}}\chi^{2} - m_{*}^{2}, \quad g_{m} = \frac{B_{22}}{B_{66}}\chi^{2} - \frac{B_{22}}{B_{11}}m_{*}^{2} + \frac{B_{22}}{B_{11}}\eta_{1}^{2}, \quad a^{2} = \frac{h^{2}k^{2}}{12},$$

$$R_{mm} = a^{2} \left(\frac{B_{11}}{B_{22}}\chi^{4} - \frac{2(B_{12} + 2B_{66})m_{*}^{2}}{B_{22}}\chi^{2} + \frac{m_{*}^{4}}{\beta_{m}^{2}} \right) - \frac{B_{66}}{B_{22}}}\eta_{3}^{2}, \quad m_{*}^{2} = m^{2}\mu_{m}^{2}\beta_{m}, \quad \eta_{1}^{2} = \frac{\lambda_{i}}{B_{66}k^{2}}, \quad i = \overline{1,3}.$$

$$(45)$$

Пусть χ_j , $j = \overline{1,8}$ -попарно различные нули уравнения (44). Пусть $(u_1^{(j)}, u_2^{(j)}, u_3^{(j)})$, $j = \overline{1,8}$ нетривиальные решения вида (43) системы (39) при $\chi = \chi_j$, $j = \overline{1,8}$ соответственно. Решение задачи (39), (41)-(42) ищется в виде

$$u_i = \sum_{j=1}^8 w_j u_i^{(j)}, \ i = \overline{1,3}.$$
(46)

Подставляя (46) в граничные условия (41) в итоге получаются дисперсионные уравнения

$$Det \left\| m_{ij} \right\|_{i,j=1}^{8} = 0, \qquad m = \overline{1,+\infty}$$

$$x_{j} = \chi_{j} / m_{*}, \ j = \overline{1,8}; \ \eta_{im} = \eta_{i} / m_{*}, \ i = \overline{1,3}; \ \varepsilon_{m} = r_{0} / (2m_{*}), \ z_{j} = k\chi_{j}l,$$
(47)

Учитывая возможные соотношения между λ_1, λ_2 и λ_3 , заключаем, что уравнения (47) определяют частоты соответствующих типов колебаний.

Исследована асимптотика дисперсионных уравнений (47) при $R^{-1} \rightarrow 0$.

Пусть $\eta_{1m} = \eta_{2m} = \eta_{3m} = \eta_m = \eta/m$. Доказано, что уравнения (47) при $\varepsilon_m \to 0$ приводятся к виду

$$Det\left\|m_{ij}\right\|_{i,j=1}^{8} = N^{2}(\eta_{m})K_{3m}^{2}(\eta_{m})\overline{E}_{m}(\eta_{m})\overline{F}_{m}(\eta_{m}) + O(\varepsilon_{m}^{2}) = 0, \qquad m = \overline{1,+\infty}$$

$$(48)$$

где $\overline{E}_m(\eta_m)$ и $\overline{F}_m(\eta_m)$ определяются формулами (29) и (37) соответственно, $N(\eta_m) \neq 0$, а выражение для $K_{3m}(\eta_m)$ приведено в [3].

Из (48) следует, что при $\varepsilon_m \to 0$ уравнения (47) распадаются на уравнения

$$\overline{E}_{m}(\eta_{m}) = 0, \ \overline{F}_{m}(\eta_{m}) = 0, \ K_{3m}(\eta_{m}) = 0, \qquad m = \overline{1, +\infty}$$

$$\tag{49}$$

Из них первые два - дисперсионные уравнения планарных и изгибных колебаний аналогичной задачи для ортотропной прямоугольной пластины (со свободными и жестко защемленными параллельными сторонами). Корням третьего уравнения соответствуют планарные колебания цилиндрической оболочки.

Исследована асимптотика дисперсионних уравнений (47) при $m_*l \rightarrow \infty$.

Пусть χ_1, χ_2, χ_3 и χ_4 (корни уравнения (44) имеющие отрицательные действительные части). Тогда уравнения (47) приводятся к виду

$$Det \left\| m_{ij} \right\|_{i,j=1}^{8} = \left(Det \left\| m_{ij} \right\|_{i,j=1}^{4} \right)^{2} + \sum_{j=1}^{4} O(\exp(k\chi_{j}l)) = 0 \quad m = \overline{1, +\infty}$$
(50)

Откуда следует, что при $m_*l \to \infty$ уравнения (47) преобразуются в уравнения

$$Det \left\| m_{ij} \right\|_{i, j=1}^{4} = 0 , \quad m = \overline{1, +\infty},$$
 (51)

которые определяют частоты всевозможных локализованных собственных колебаний у свободного торца полубесконечной ортотропной круговой ЦО открытого профиля при наличии жесткого защемления на граничных образующих.

В конце главы приведены результаты численных исследований.

Показано, что асимптотические формулы (48), (50) дисперсионных уравнений (47) являются хорошим ориентиром для нахождения собственных частот задачи (39), (41)-(42).

В третьей главе исследован вопрос существования собственных колебаний тонкостенных упругих конструкций из одинаковых незамкнутых ортотропных ЦО со свободными, и свободным и жестко защемленным граничными образующими.

В § 3.1. исследованы колебания тонкостенной упругой конструкции из одинаковых незамкнутых ортотропных ЦО со свободными граничными образующими.

На срединной поверхности оболочечной конструкции вводятся криволинейные координаты (α,β) $-\infty < \alpha < \infty$: если составляющие ЦО бесконечны, $0 \le \alpha \le l$: если ЦО имеют длину l). β ($0 \le \beta \le \beta_0$) является длиной дуги направляющей кривой (Рис. 1 и 2). Через s обозначена длина арки ЦО срединной поверхности. В часности, при $\beta_0 = s$, имеем ЦО открытого профиля.

На линиях раздела цилиндрических оболочек кривизна направляющей кривой срединной поверхности имеет устранимые особенности

$$R_{(\beta)}^{-1} = \begin{cases} R^{-1}, ecnu \, ns < \beta < (n+1)s, \, n = 0, 1, 2, ..., N\\ Heonpedeneuo, ecnu \, \beta = ns, \, n = 0, 1, 2, ..., N \end{cases}$$

$$\lim_{\lambda \to ns \to 0} R^{-1}(\beta) = \lim_{\lambda \to ns \to 0} R^{-1}(\beta) = R^{-1}, \qquad (52)$$

где R радиус составляющей ЦО срединной поверхности. Значит гипотеза на которой основывается классическая теория ЦО нарушена. Следовательно, с механической точки зрения в окрестностях точки сингулярности уравнения классической теории не применимы. Для нахождения точных решений, используя уравнения классической теории ЦО, необходимо на линиях перехода составляющих ЦО использовать сопрягающие условия. Однако, это трудная задача даже для конструкции составленных из двух одинаковых ЦО, которые не имеют общее нормальное сечение. Для таких конструкций вопрос существования единственного решения для простых краевых задач остается открытым.

Строгое использование системы уравнений соответствующей классической теории ортотропных ЦО связано с введением промежуточных сопрягающих элементов, обеспечивающих непрерывность вектора перемещений точки срединной поверхности. Однако выполнение таких строгих сопряжений связано с произволом при задании вида сопрягающего элемента, что существенно усложняет расчеты, особенно при исследовании конструкций, состоящих из большого числа ЦО. Исходя из этого, здесь, вместо введения сопрягающих элементов, кривизна направляющей кривой цилиндрической оболочки заменяется соответствующим рядом Фурье с периодом 2s и применяются динамические уравнения классической теории ортотропных ЦО. Заметим, что сумма $s(\beta)$ ряда Фурье функции $R^{-1}(\beta)$ имеет вид.

$$s(\beta) = R^{-1}, \ -\infty < \beta < \infty, \tag{53}$$

Следовательно, согласно применяемому приближенному методу (асимптотический метод) полагаем

$$R^{-1}(\beta) = s(\beta) = R^{-1} , \ 0 \le \beta \le \beta_0$$
(54)

и используем уравнения (39) классической теории ЦО.

Обозначим $k = 2\pi n_0/l$, $n_0 \in N$, если конструкция составлена из одинаковых ортотропных незамкнутых круговых бесконечных ЦО, где *l* произвольное положительное число и $k = \pi/l$, если составляющие ЦО имеют длину *l* и $R^{-1} = kr_0/2$, где r_0 безразмерный параметр.

Граничные условия имеют вид

$$\frac{B_{12}}{B_{22}}\frac{\partial u_1}{\partial \alpha} + \frac{\partial u_2}{\partial \beta} - \frac{u_3}{R}\bigg|_{\beta=0,\beta_0} = \frac{B_{12}}{B_{22}}\frac{\partial^2 u_3}{\partial \alpha^2} + \frac{\partial^2 u_3}{\partial \beta^2} + \frac{\partial}{\partial \beta}\bigg(\frac{u_2}{R}\bigg)\bigg|_{\beta=0,\beta_0} = 0,$$
(55)

$$\frac{\partial u_2}{\partial \alpha} + \frac{\partial u_1}{\partial \beta}\Big|_{\beta=0,\beta_0} = \frac{\partial^3 u_3}{\partial \beta^3} + \frac{B_{12} + 4B_{66}}{B_{22}} \frac{\partial^3 u_3}{\partial \beta \partial \alpha^2} + \frac{\partial^2}{\partial \beta} \left(\frac{u_2}{R}\right) + \frac{4B_{66}}{B_{21}} \frac{\partial^2}{\partial \alpha^2} \left(\frac{u_2}{R}\right)\Big|_{\beta=0,\beta_0} = 0,$$

$$u_i(\alpha + 2\pi/k,\beta) = u_i(\alpha,\beta), \ i = \overline{1,3}.$$
(56)

$$\frac{\partial u_1}{\partial \alpha} + \frac{B_{12}}{B_{11}} \left(\frac{\partial u_2}{\partial \beta} - \frac{u_3}{R} \right) \Big|_{\alpha = 0,l} = u_2 \Big|_{\alpha = 0,l} = \frac{\partial^2 u_3}{\partial \alpha^2} + \frac{B_{12}}{\partial \beta} \left(\frac{\partial^2 u_3}{\partial \beta^2} + \frac{\partial}{\partial \beta} \left(\frac{u_2}{R} \right) \right) \Big|_{\alpha = 0,l} = 0.$$
(57)

Граничные условия (55)-(56) соответствуют конструкции оболочечного типа составленной из ортотропных одинаковых незамкнутых круговых бесконечных ЦО: соотношения (55) выражают условия свободного края при $\beta = 0$, $\beta = \beta_0$, а соотношения (56) условиями волнообразности колебания, (Рис. 1). Граничные условия (55), (57) соответствуют конструкции оболочечного типа составленной из ортотропных одинаковых незамкнутых круговых конечных ЦО: соотношения (57) являются условиями шарнирного закрепления по граничным направляющим $\alpha = 0$ и $\alpha = l$ (Рис. 2).

В первом, втором и третьем уравнениях системы (39) спектральный параметр λ формально заменим на $\lambda_1, \lambda_2, \lambda_3$ соответственно. Решение системы (39) ищется в виде

$$(u_1, u_2, u_3) = (u_{cn} \cos kn\alpha, v_{sn} \sin kn\alpha, \sin kn\alpha) \exp(k\chi\beta), \quad n = \overline{1, +\infty},$$
(58)

где *п* волновое число, u_{cn}, v_{sn}, χ -неопределенные константы. Подставляя (58) в (39), получим характерические уравнения [2]

$$R_{nn}c_{n} + \frac{r_{0}^{2}}{4} \left\{ c_{n} - b_{n}\chi^{2} + \frac{B_{12}}{B_{22}}n^{2}a_{n} + a^{2}(R_{nn}g_{n}d_{n} + 2\chi^{2}l_{n}b_{n}) + \frac{r_{0}^{2}}{4}a^{2}d_{n}(b_{n} - \frac{B_{12}}{B_{11}}n^{2}) - a^{4}\chi^{2}g_{n}l_{n}^{2} \right\} = 0,$$

$$r_{n} = \frac{B_{22}}{B_{11}}\chi^{4} - \frac{B_{11}B_{22} - B_{12}^{2} - 2B_{12}B_{66}}{B_{11}B_{66}}n^{2}\chi^{2} + \left(\frac{B_{22}}{B_{11}}\eta_{1}^{2} + \frac{B_{66}}{B_{11}}\eta_{2}^{2}\right)\chi^{2} + \left(n^{2} - \frac{B_{66}}{B_{0}}\eta_{1}^{2}\right)\left(n^{2} - \eta_{2}^{2}\right), \quad a_{n} = -\left(\frac{B_{22}}{B_{22}}\chi^{2} + \frac{B_{12}}{B_{12}}n^{2} - \frac{B_{12}}{B_{12}}\eta_{2}^{2}\right),$$

$$(59)$$

$$\begin{pmatrix} B_{11} & B_{11} & B_{11} & B_{11} \\ B_{n} &= \frac{B_{22}}{B_{11}}\chi^2 - \frac{B_{11}B_{22} - B_{12}^2 - B_{12}B_{66}}{B_{11}B_{66}}n^2 + \frac{B_{22}}{B_{11}}\eta_1^2, l_n = \chi^2 - \frac{B_{12} + 4B_{66}}{B_{22}}n^2 \\ g_n &= \frac{B_{22}}{B_{11}}\chi^2 - \frac{B_{22}}{B_{66}}n^2 + \frac{B_{22}}{B_{11}}\eta_1^2, d_m = \chi^2 - \frac{4B_{66}}{B_{11}}n^2, a^2 = \frac{h^2}{12}k^2 \\ R_{nn} &= a^2 \left(\chi^4 - \frac{2(B_{12} + 2B_{66})n^2}{B_{22}}\chi^2 + \frac{B_{11}}{B_{22}}n^4\right) - \frac{B_{66}}{B_{22}}\eta_3^2, \eta_i^2 = \frac{\lambda_i}{B_{66}k^2}, i = \overline{1,3} \end{bmatrix}$$

Предположим, что χ_j , $j = \overline{1,8}$ являются попарно различными нулями уравнения (59). Пусть $(u_1^{(j)}, u_2^{(j)}, u_3^{(j)})$, $j = \overline{1,8}$ нетривиальные решения вида (58) системы (39) при $\chi = \chi_j$, $j = \overline{1,8}$ соответственно. Представляя решение задач (39), (55)-(56) и (39), (55), (57) в виде $u_i = \sum_{j=1}^8 w_j u_i^{(j)}$, $i = \overline{1,3}$ и учитывая граничные условия (55), получаем дисперсионное уравнение

$$Det \left\| m_{ij} \right\|_{i,j=1}^{8} = 0$$
(60)

$$x_j = \chi_j / n, \ j = \overline{1,8}; \ \eta_{in} = \eta_i / n, \ i = \overline{1,3}; \ \varepsilon_n = r_0 / (2n), \ z_j = k \chi_j \beta_0$$

Учитывая возможные соотношения между λ_1, λ_2 и λ_3 уравнение (60) определяет частоты соответствующих типов колебаний.

Исследована асимптотика дисперсионного уравнения (60) при $R^{-1} \rightarrow 0$. Здесь предполагается, что $\eta_{1n} = \eta_{2n} = \eta_{3n} = \eta_n = \eta/n$. При $r_0 \rightarrow 0$ характеристические уравнения (59) преобразуются в совокупность уравнений

$$c_{n} = \frac{B_{22}}{B_{11}} \chi^{4} - \frac{B_{11}B_{22} - B_{12}^{2} - 2B_{12}B_{66}}{B_{11}B_{66}} n^{2} \chi^{2} + \frac{B_{22} + B_{66}}{B_{11}} \eta^{2} \chi^{2} + \qquad m = \overline{1, +\infty}$$

$$+ \left(n^{2} - \frac{B_{66}}{B_{11}} \eta^{2}\right) \left(n^{2} - \eta^{2}\right) = 0,$$

$$R_{nn} = a^{2} \left(\chi^{4} - \frac{2(B_{12} + 2B_{66})n^{2}}{B_{22}} \chi^{2} + \frac{B_{11}}{B_{22}} n^{4}\right) - \frac{B_{66}}{B_{22}} \eta^{2} = 0$$
(62)

Уравнения (61) и (62) являются характеристическими уравнениями для уравнений планарных и изгибных колебаний пластины соответственно. Дисперсионное уравнение (60) при $r_0 \rightarrow 0$ приводится к виду [2]

$$Det \left\| m_{ij} \right\|_{i,j=1}^{8} = \left(\frac{B_{22}}{B_{11}} \right)^{4} N^{2}(\eta_{n}) \left\{ \overline{F}_{0}(\eta_{n}) \overline{E}_{0}(\eta_{n}) K_{30}^{2}(\eta_{n}) + O(\varepsilon_{n}^{2}) \right\} = 0,$$
(63)

Выражения для $N(\eta_m)$ и $K_{30}(\eta_m)$ приведены в [2]. Из (63) следует, что при $r_0/n \rightarrow 0$ уравнение (60) распадается на уравнения

$$\overline{E}_{0}(\eta_{n}) = 0, \ \overline{F}_{0}(\eta_{n}) = 0, \ K_{30}(\eta_{n}) = 0.$$
(64)

Первые два уравнения являются дисперсионными уравнениями планарных и изгибных колебаний аналогичной задачи для ортотропной пластины-полосы со свободными краями

 $(k = 2\pi n_0/l)$ или прямоугольной пластины со свободными противоположными сторонами, когда остальные стороны шарнирно закреплены ($k = \pi/l$).

Третье уравнение из (64) определяет частоты преимущественно планарных колебаний.

Исследована асимптотика дисперсионного уравнения (60) при $\beta_0 \to \infty$. Здесь предполагается, что χ_1, χ_2, χ_3 и χ_4 (корни уравнения (59)) имеют отрицательные действительные части. При $\beta_0 \to \infty$ уравнение (60) приводится к виду

$$Det \|m_{ij}\|_{i,j=1}^{8} = \left(Det \|m_{ij}\|_{i,j=1}^{4}\right)^{2} + \sum_{j=1}^{4} O(\exp(k\chi_{j}\beta_{0})) = 0.$$
(65)

Из (65) следует, что при $\beta_0 \to \infty$ уравнение (60) преобразуется в уравнение

$$Det \left\| m_{ij} \right\|_{i, j=1}^{4} = 0$$
(66)

Уравнение (66), при $n \in N$, определяет частоты всевозможных локализованных собственных колебаний у свободной граничной образующей полубесконечной оболочечной конструкции составленной из счетного числа одинаковых ортотропных бесконечных ЦО ($k = 2\pi n_0/l$) (конечных ЦО ($k = \pi/l$)). В конце параграфа приведены результаты численных исследований.

В §3.2. исследованы локализованные собственные колебания тонкостенной упругой конструкции из незамкнутых ЦО со свободным и жестко защемленным граничными образующими.

Здесь используются те же обозначения, которые приведены в § 3.1. Граничные условия (55)-(57) сохраняются, только условия (55) заменяются условиями

$$\frac{B_{12}}{B_{22}}\frac{\partial u_1}{\partial \alpha} + \frac{\partial u_2}{\partial \beta} - \frac{u_3}{R}\Big|_{\beta=0} = 0, \quad \frac{B_{12}}{B_{22}}\frac{\partial^2 u_3}{\partial \alpha^2} + \frac{\partial^2 u_3}{\partial \beta^2} + \frac{\partial}{\partial \beta}\left(\frac{u_2}{R}\right)\Big|_{\beta=0} = 0, \quad (67)$$

$$\frac{\partial u_2}{\partial \alpha} + \frac{\partial u_1}{\partial \beta}\Big|_{\beta=0} = 0, \quad \frac{\partial^3 u_3}{\partial \beta^3} + \frac{B_{12} + 4B_{66}}{B_{22}} \frac{\partial^3 u_3}{\partial \beta \partial \alpha^2} + \frac{\partial^2}{\partial \beta^2} \left(\frac{u_2}{R}\right) + \frac{4B_{66}}{B_{22}} \frac{\partial^2}{\partial^2} \left(\frac{u_2}{R}\right)\Big|_{\beta=0} = 0$$

$$u_1\Big|_{\beta=\beta_0} = u_2\Big|_{\beta=\beta_0} = u_3\Big|_{\beta=\beta_0} = \frac{\partial u_3}{\partial \beta}\Big|_{\beta=\beta_0} = 0$$
(68)

Аналогичном образом как в § 3.1 в первом, втором и третьем уравнениях системы (39) спектральный параметр λ формально заменяется на $\lambda_1, \lambda_2, \lambda_3$ соответственно и решение системы ищется в виде (58). Подставляя (58) в (39) получаются характеристические уравнения (59). Аналогичным образом как в § 3.1 выводится дисперсионное уравнение.

$$Det \left\| m_{ij} \right\|_{i,j=1}^{8} = 0,$$
(69)

которое определяет частоты соответствующих типов колебаний.

Исследована асимптотика дисперсионного уравнения (69) при $R^{-1} \rightarrow 0$. Здесь, также предполагается, что $\eta_1 = \eta_2 = \eta_3 = \eta$, $\eta_n = \eta/n$. Характеристические уравнения (59) при $r_0 \rightarrow 0$ преобразуются в совокупность уравнений (61) и (62), а дисперсионное уравнение (69) приводится к виду

$$Det \left\| m_{ij} \right\|_{i,j=1}^{8} = \frac{B_{22}^{5}}{B_{11}^{4}B_{66}} N^{2}(\eta_{n}) \left\{ K_{30}^{2}(\eta_{n})\overline{B}_{0}(\eta_{n})\overline{P}_{0}(\eta_{n}) + O(\varepsilon_{n}^{2}) \right\} = 0,$$
(70)

Из (70) следует, что при $r_0/(2n) \rightarrow 0$ уравнение (69) распадается на уравнения

$$B_0(\eta_n) = 0, \qquad P_0(\eta_n) = 0, \quad k_{30}(\eta_n) = 0.$$
(71)

Первые два уравнения являются дисперсионными уравнениями изгибных и планарных колебаний аналогичной задачи для ортотропной пластины-полосы со свободным и жестко защемленными краями (при $k = 2\pi n_0/l$) или прямоугольной пластины со свободным и жестко защемленным противоположными сторонами, когда остальные стороны шарнирно закреплены (при $k = \pi/l$).

Исследована асимптотика дисперсионного уравнения (69) при $\beta_0 \to \infty$. Здесь предполагается, что χ_1, χ_2, χ_3 и χ_4 корни уравнения (59) имеют отрицательные действительные части. При $\beta_0 \to \infty$ уравнение (69) приводится к виду

$$Det \left\| m_{ij} \right\|_{i,j=1}^{8} = Det \left\| m_{ij} \right\|_{i,j=1}^{4} \cdot Det \left\| m_{ij} \right\|_{i,j=5}^{8} + \sum_{j=1}^{4} O(\exp(k\chi_{j}\beta_{0})) = 0.$$
(72)

Из (72) следует, что при $\beta_0 \to \infty$ уравнение (69) распадается на уравнения

$$Det \left\| m_{ij} \right\|_{i,j=1}^{4} = 0, \quad Det \left\| m_{ij} \right\|_{i,j=5}^{8} = 0$$
(73)

Первое уравнение из (73) совпадает с уравнением (66). Второе уравнение не определяет новые частоты.

В конце параграфа приведены результаты численных исследований. Анализ результатов, показывает, что значения характеристик собственных частот конструкции оболочечного типа, полученные предложенным приближенным методом, и соответствующих характеристик частот конструкции оболочечного типа с сопрягающими элементами (Рис.3) хорошо согласуются при радиусах сопрягающих элементов стремящихся к нулю ($r \rightarrow 0$).

На граф. 1(а) показана зависимость безразмерной характеристики собственной частоты от волнового числа *n*. Подрисунок показывает расчленения изибных и планарных волн. На граф. 2(а) показана зависимость безразмерной характеристики собственной частоты от волнового числа *n* изгибно-крутильных колебаний. Подрисунок показывает, расчленения изгибных и крутильных волн. На графиках 1(b) и 2(b) показаны разности между безразмерными характеристиками собственных частот полученные асимптотическим методом и методом прогонки для конструкции оболочечного типа с сопрягающими элементами (Рис.3).

 $\Delta \eta / n = (\eta_{npoconsu} - \eta_{acusnm}) / n$, для $n \in [1,10]$. При n > 3 $\Delta \eta / n \to 0$ для всех значений г. При r=0,1 $\Delta \eta / n < 10^{-6}$ для всех п. Это потверждает достоверность применимости приближенного (асимптотического) метода для изучения локолизованных колебаний конструкций оболочечного типа.

Заключение

При условии собственных колебаний, исходя из системы уравнений динамики соответствующей классической теории ортотропных ЦО рассмотрены задачи:

- Исследованы собственные колебания безмоментной ортотропной ЦО переменной кривизны со свободными торцами и жестко защемленными граничными образующими. Получены дисперсионные уравнения для нахождения собственных частот. В частности получены дисперсионные уравнения для полубесконечной ортотропной безмоментной незамкнутой ЦО переменной кривизны со свободным торцом, когда граничные образующие жестко защемлены. Для круговой ортотропной безмоментной ЦО открытого профиля со свободными торцами и жестко защемленными граничными образующими, найдены дисперсионные и характеристические уравнения для нахождения безразмерной характеристики собственных частот и коэффицентов затухания. Получены дисперсионные и характеристические уравнения прямоугольной ортотропной пластины со свободными и жестко защемленными параллельными сторонами. Получен аналог уравнения Рэлея для полубесконечной ортотропной пластины-полосы со свободным торцом и жестко защемленными смежными краями. Приведены результаты численных исследований.
- Исследован вопрос существования собственных колебаний тонкой упругой ортотропной круговой незамкнутой ЦО со свободными торцами и жестко защемленными граничными образующими (моментная задача). Получены дисперсионные уравнения для нахождения собственных частот возможных типов колебаний. Установлена асиптотическая связь между дисперсионными уравнениями рассматриваемой задачи и аналогичной задачи ДЛЯ Доказана асиптотическая прямоугольной пластины. связь между дисперсионными уравнениями рассматриваемой задачи и задачи на собственные значения полубесконечной ортотропной ЦО со свободным торцом при наличии жесткого защемления на граничных образующих. Приведены результаты численных исследований.
- Получены дисперсионные уравнения для нахождения собственных частот возможных типов колебаний для тонкостенной упругой конструкции оболочечного типа составленной из одинаковых ортотропных незамкнутых круговых бесконечных и конечных ЦО со свободными граничными образующими. Установлена асимптотическая связь между дисперсионными уравнениями рассматриваемых задач и аналогичных задач для ортотропной пластинчатой тонкостенной конструкции (в частности, для аналогичных задач пластины–полосы и прямоугольной пластины) соответственно. Доказывается также асимптотическая связь между дисперсионными уравнениями рассматриваемых задач и задач и задач на собственные значения для полубесконечных тонкостенных упругих конструкций оболочечного типа составленных из счетного числа одинаковых ортотропных незамкнутых круговых бесконечных и конечных ЦО со свободной граничной образующей. Численно показана эффективность полученных асимптотических формул.
- Получены дисперсионные уравнения для нахождения собственных частот возможных типов колебаний для тонкостенной упругой конструкции оболочечного типа составленной из одинаковых ортотропных незамкнутых круговых бесконечных и конечных ЦО со свободным и жестко защемленным граничными образующими. Установлена асимптотическая связь между дисперсионными уравнениями рассматриваемых задач и аналогичных задач для орто-

тропной пластинчатой тонкостенной конструкции (в частности, для аналогичных задач пластины–полосы и прямоугольной пластины) соответственно. Доказывается также асимптотическая связь между дисперсионными уравнениями рассматриваемых задач и задач на собственные значения для полубесконечных тонкостенных упругих конструкций оболочечного типа, составленных из счетного числа одинаковых ортотропных бесконечных и конечных ЦО со свободной граничной образующей. Численно показана эффективность полученных асимптотических формул и достоверность применимости приближенного (асимптотического) метода.

публикации

- 1. Гулгазарян Г.Р., Срапионян Дж.Л. О колебаниях тонкостенной упругой конструкции из незамкнутых цилиндрических оболочек со свободным и жестко защемленным граничными образующими// Актуальные проблемы механики сплошной среды, Ереван-2007. Стр. 156-158.
- 2. Гулгазарян Г.Р., Срапионян Дж.Л., Колебания тонкостенной упругой конструкции из незамкнутых ортотропных цилиндрических оболочек со свободными граничными образующими// Изв. НАН Армении механика Том 61. № 3, 2008. Стр. 28-40.
- Гулгазарян Г.Р., Срапионян Дж. Л., Колебания тонкой упругой ортотропной круговой незамкнутой цилиндрической оболочки со свободными торцами и жестко защемленными граничными образующими// Актуальные проблемы механики сплошной среды Том 1, Ереван 2010. Стр 219-223.
- 4. Срапионян Дж.Л., Изгибные собственные колебания прямоугольной ортотропной пластинки с противоположными свободными и жестко защемленными сторонами// Механика. Сборник трудов международной школы-конференции молодых ученых 2009. Стр 313-315.
- 5. Срапионян Дж.Л., Колебания безмоментной незамкнутой ортотропной цилиндрической оболочки переменной кривизны со свободными торцами и жестко защемленными граничными образующими// АГПУ им. Х. Абовяна, Ученные Записки, № 1(20). 2014 с.86-109.
- 6. Ghulghazaryan G.R., Ghulghazaryan R.G., Srapionyan Dg.L. Localised vibrations of a thin-walled structure consisted of orthotropic elastic non-closed cylindrical shells with free and rigid-clamped edge generators. ZAMM. Z.Angew. Math. Mech.93, №4, pp. 269-283. (2013).

Ամփոփում

Ելնելով օրթոտրոպ գլանային թաղանթների դասական տեսությանը համապատասխան դինամիկայի հավասարումների համակարգից ուսումնասիրված են հետևալ խնդիրները.

ուսումնասիրված են ազատ ծայրերով և կոշտ ամրակցված եզրային ծնիչներով ٠ փոփոխական կորության անմոմենտ օրթոտրոպ գյանային թաղանթի սեփական տատանումները։ Սեփական հաձախությունները գտնելու համար ստացված են դիսպերսիոն հավասարումներ։ Մասնավորապես, ստացվել են դիսպերսիոն հավասարումներ ազատ եզրով փոփոխական կորության կիսաանվերջ օրթոտրոպ անմոմենտ ոչ փակ գյանային թաղանթի համար, երբ եզրային ծնիչներն կոշտ ամրակցված են։ Ազատ ծայրով և կոշտ ամրակցված եզրային ծնիչներով բաց պրոֆիլով շրջանաձև օրթոտրոպ անմոմենտ գյանային թաղանթի համար ստացված են դիսպերսիոն և բնութագրիչ հավասարումներ, սեփական հաձախությունների և համապատասխան մարման գործակիցների անչափողական բնութագրիչների որոշման համար։ Ստազված դիսպերսիոն են և բնութագրիչ հավասարումներ ազատ և կոշտ ամրակցված զուգահեռ կողմերով ուղղանկյուն օրթոտրոպ սայի համար։ Ստազված է Ռեյեի հավասարման նմանօրինակն ազատ ծայրով ու կոշտ ամրակզված հարակիզ եզրերով կիսաանվերջ օրթոտրոպ սայ-շերտի համար։ Կատարված է թվային հետազոտություն։

- Ուսումնասիրված է ազատ ծայրերով և կոշտ ամրակցված եզրային ծնիչներով բարակապատ առաձգական օրթոտրոպ շրջանային ոչ փակ գլանային թաղանթի սեփական տատանումների գոյության հարցը (մոմենտային խնդիր)։ Ստացված են դիսպերսիոն հավասարումներ հնարավոր տիպի սեփական տատանումների հաձախությունների որոշման համար։ Ստեղծված է ասիմպտոտիկ կապ ուսումնասիրվող խնդրի դիսպերսիոն հավասարումների և ուղղանկյուն սալի համար նման խնդրի դիսպերսիոն հավասարումների միջն։ Ապացուցված է նաև ասիմպտոտիկ կապ ուսումնասիրվող խնդրի դիսպերսիոն հավասարումների և ազատ ծայրով ու կոշտ ամրակցված եզրային ծնիչներով կիսաանվերջ օրթոտրոպ գլանային թաղանթի սեփական արժեքների որոնման խնդիր դիսպերսիոն հավասարումների միջն։ Կատարված է թվային հետազոտություն։
- Բարակապատ առաձգական թաղանթատիպ կոնստրուկցիայի համար, որը բաղկացած է • միատեսակ օրթոտրոպ ոչ փակ շրջանային անվերջ և վերջավոր գյանային թաղանթներից, որի եզրային ծնիչներն ազատ են, արտածված են դիսպերսիոն հավասարումներ հնարավոր հարմոնիկ տատանումների սեփական հաձախությունները հաշվելու համար։ Ասիմպտոտիկ է հաստատված դիտարկվող խնդիրների դիսպերսիոն հավասարումների կապ համապատասխան սալատիպ կոնստրուկցիայի համար նման խնդիրների դիսպերսիոն հավասարումների միջև (մասնավորաբար սայ-շերտի և ուղղանկյուն սայի համար նման խնդիրների)։ Ասիմպտոտիկ կապ է հաստատված նաև դիտարկվող խնդիրների դիսպերսիոն հավասարումների և բարակապատ առաձգական թաղանթատիպ կիսաանվերջ կոնստրուկցիայի համար, որը բաղկացաց է հաշվելի բազմությամբ միատեսակ օրթոտրոպ ոչ փակ անվերջ և վերջավոր գլանային թաղանթներից, որի եզրային ծնիչն ազատ է, սեփական արժեքների որոնման խնդիրների դիսպերսիոն հավասարումների միջև։ Թվային եղանակով ցույց է տրված ստացված ասիմպտոտիկ բանաձևերի արդյունավետությունը։
- Բարակապատ առաձգական թաղանթատիպ կոնստրուկցիայի համար, որը բաղկացած է միատեսակ օրթոտրոպ ոչ փակ շրջանային անվերջ և վերջավոր գլանային թաղանթներից, որի եզրային ծնիչներից մեկն ազատ է, իսկ մյուսը կոշտ ամրակցված, արտածված են դիսպերսիոն հավասարումներ հնարավոր հարմոնիկ տատանումների սեփական հաՃախությունները հաշվելու համար։

Ասիմպտոտիկ կապ է հաստատված նաև դիտարկվող խնդիրների դիսպերսիոն հավասարումների և համապատասխան սայատիպ կոնստրուկցիայի համար նման խնդիրների դիսպերսիոն հավասարումների միջև (մասնավորաբար սայ-շերտի և ուղղանկյուն սայի համար նման խնդիրների)։ Ասիմպտոտիկ կապ է հաստատված նաև դիտարկվող խնդիրների դիսպերսիոն հավասարումների և բարակապատ առաձգական թաղանթատիպ կիսաանվերջ կոնստրուկցիայի համար, որը բաղկացաց է հաշվելի բազմությամբ միատեսակ օրթոտրոպ ոչ փակ անվերջ գյանային թաղանթներից, որի եզրային ծնիչն ազատ է, սեփական արժեքների որոնման խնդիրների դիսպերսիոն հավասարումների միջև։ Թվային եղանակով ցույց է տրված ստացված ասիմպտոտիկ բանաձևերի էֆեկտիվությունը և մոտավոր (ասիմտոտիկ) մեթոդի կիրառելիության իրավացիությունը։

Summary

Under the condition of natural vibrations and based on the system of equations of dynamics corresponding to the classical theory of orthotropic cylindrical shells (CSh) the following problems are investigated:

- Natural vibrations of a momentless orthotropic CSh of variable curvature with free edges and rigid-clumped boundary generatrices are considered. Dispersion equations for finding the natural frequencies are obtained. In particular, dispersion equations for a semi-infinite orthotropic momentless non-closed CSh of variable curvature with free ends when boundary generatrices are rigid-clumped are obtained. Dispersion and characteristic equations for finding dimensionless characteristics of natural frequencies and damping coefficients of a circular orthotropic momentless CSh of an open profile with free ends and rigid-clumped boundary generatrices are obtained. Dispersion and characteristic equations of a rectangular orthotropic plate with free and rigid-clumped parallel sides are derived. An analogue of Rayleigh's equation for a semi-infinite orthotropic layer-plate with free edge and rigid-clumped adjacent bounds is obtained. Results of numerical investigations are given.
- The problem of existence of natural vibrations of a thin elastic orthotropic non-closed circular CSh with free edges and rigid-clumped boundary generatrices (problem of moments) is studied. Dispersion equations for finding the natural frequencies of possible types of vibrations are obtained. An asymptotic connection is established between the dispersion equations of the considered problem and those of an analogical problem for a rectangular plate. Also, an asymptotic connection is proved between the dispersion equations of the considered problem on eigenvalues of a semi-infinite orthotropic CSh with a free end and under the rigid-clumped conditions for boundary generatrices. Results of numerical investigations are given.
- Dispersion equations for finding natural frequencies of possible types of vibrations of a thinwalled elastic shell construction composed of identical infinite and finite orthotropic non-closed circular CSh's with free boundary generatrices are obtained. An asymptotic connection is established between the dispersion equations of the considered problems and those of analogical problems for a thin-walled orthotropic plate-type construction (in particular, for analogical problems of a layer-plate and a rectangular plate), respectively. Also, an asymptotic connection is proved between the dispersion equations of the considered problems and those of problems on eigenvalues for thin-walled elastic semi-infinite constructions composed of a countable number of identical infinite and finite orthotropic non-closed circular CSh's with a free boundary generatrix. The efficiency of the obtained asymptotic formulae is proved by numerical calculations.
- Dispersion equations for finding natural frequencies of possible types of vibrations of a thinwalled elastic shell construction composed of identical infinite and finite orthotropic non-closed circular CSh's with free and rigid-clumped boundary generatrices are obtained. An asymptotic connection is established between the dispersion equations of the considered problems and those of analogical problems for a thin-walled orthotropic plate-type construction (in particular, for analogical problems of a layer-plate and a rectangular plate), respectively. Also, an asymptotic connection is proved between the dispersion equations of the considered problems and those of problems on eigenvalues of semi-infinite thin-walled orthotropic shell constructions composed of a countable number of identical infinite and finite orthotropic CSh's with a free boundary generatrix . The efficiency of the obtained asymptotic formulae and the validity of applicability of the approximation (asymptotic) method are established by numerical calculations.