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INTRODUCTION

Actuality of the Subject

In our information society search is the main way for accessing the required
information. In parallel with Internet development and spreading of data as a service (DaaS)
[1] business model search moved from offline to online. We search online as publicly
accessible information like learning and research materials, music, photos and videos,
products in online stores as well confidential information like personal or commercial
documents, financial data, communication history, contacts etc. Actuality of the problems
considered in this dissertation are directly connected to the appearance and spread of the
DaaS model, that it why it is worth to note how this model has appeared and why it was
spread.

Nowadays the efficiency of data management is a fundamental need not only for
organizations, but also for individuals and with the incursion of computer devices and new
software applications, the amount of digital data produced by an average person or
organization in form of emails, multimedia files, records (e.g., financial transactions,
healthcare, tax documents, online-shopping, etc.) that they need to store and later access
using search is dramatically increasing. Effective management of large amount of varied
types of data requires powerful tools. And expecting that individuals will be able to develop,
set up and administer a complex data management system is not practical and feasible. The
same is for small or medium size companies; hiring corresponding professionals for the
management of the company’s databases is very expensive. DaaS architecture resolves
these issues [1], [2].

The motivation for DaaS architecture was the software as a service (SaaS) [3]
architecture (also referred as application service provider (ASP) model). SaaS is a software
deployment model in which the software hosted centrally (usually in the web) and licensed
on a subscription basis. SaaS has various advantages over the traditional software

deployment model; such as the lack of infrastructure configuration and maintenance in the



user side, transparent software and hardware upgrades, lower cost, remote access from
anywhere, etc. DaaS is a special case of SaaS when the software provided as a service is a
data management and sharing system. In other words DaaS provides to the client various
data management and processing functionalities as online services. It overcomes most part
of challenges of the traditional database delivery model, mainly related with the setup and
maintenance of software and hardware infrastructure.

The main entities of the DaaS model are the following:

e Data Owner: The party that allowed doing any kind of operations with the data, since
he owns it. It is assumed that the data owner has some storage capabilities and
computational power but these are far less than the server’s resources.

e Server: Stores and administers the owner’s data and provides interfaces for remote
data management for the owner and other possible users of the data. These interfaces
allow a user to do various types of data modification and search queries according to
the user’s authorization properties (permissions). The maintenance of the data storage
and the data administration duties (backups, software and hardware updates, data
reorganization, etc.) are entirely taken by the server.

e Users: The data owner and other possible parties who have data access permissions.
These permissions may be different for different users. For instance one user may be
able only to read the data or its part while the other may also has a write access. For
instance if the owner of the data is a company its employees and clients may play the
role of the users, wherein with different permissions.

The examples of DaaS applications are Amazon S3 storage [4], Microsoft Azure Storage
[5], cloud storages (such as Dropbox [6], Google Drive [7], Box [8], Microsoft OneDrive [9],
etc.) and this is just a small part of such applications.

As it was told the DaaS architecture provides multiple advantages, though it also has
challenges, and one of the main challenges is related with the security of the remotely
stored user’s data [10]. No matter what kind of data it is the most part of the owners view it

as a valuable asset and want to keep it secure. To ensure the security of data the server



should provide appropriate guaranties for data confidentiality and integrity. Particularly the
service provider has to employ authentication (such as Kerberos [11]), authorization &
access-control (such as LDAP [12]) and other traditional mechanisms for ensuring the
security of their system from the unauthorized and malicious outsiders and from different
kind of possible disruptive attacks. These mechanisms are very important, however they do
not guaranty the privacy of the data from possible server side adversaries (some malicious
program running on the server environment or a curious database administrator), besides
that there is always a risk that the data can be stolen due to a bug in the system of the
service provider and since in most cases it is not encrypted (Dropbox', Yandex Disk,
Microsoft OneDrive, Mail.RU Cloud, Google Drive, etc.) the attacker will be able to read it.
Serious clients are not satisfied with this level of security and to use these storages they
require the providers to involve additional encryption-based security mechanisms to ensure
the safety of their data. Searchable encryption (SE) schemes are such mechanisms and the
first part of the research done in the scope of this dissertation (see section 1.1, chapters 2
and 3) refers the issues of those schemes. The searchable encryption schemes ensure
confidentiality and privacy of the user’s data resided in a remote storage without losing
possibility of search wherein. There are various publications about these schemes published
in recent years [13], [14], [15], [16], [17], [18], [19], [20], [21], [22], [23], [24] etc.

The second part of the research (see section 1.2 and chapter 4) addresses another
practical problem related with search and security. Consider the following: there are two
parties, client and server. Client has some pattern p (it can be a piece of text, image or
music [25]; or some expression which indicates multiple values, such as regular expressions
[26], [27]) and the server has data D (can be some text, image or music etc.). The goal of
these two parties is one of the following®:

1. Check if the data D matches the pattern p (full match).

2. Check if some part of D matches the pattern p (partial match).

' Dropbox encrypts stored files only for advanced users. For usual users it keeps files in their original form to
be able to optimize storage space by removing duplicate files from different user.

2 Other variations of the problem are also possible but they are rare and in most cases can be represented as
combinations of the listed four.



3. Find the number of parts of D which match the pattern p (count of matches).

4. Find the parts of D which match the pattern p (all matches).
In other words they need to calculate some function F(p, D) which in first two cases has a
Boolean value, in the third case the value is a non-negative integer and in fourth case it is a
list of positions in D. There is also another requirement, assumed that p and D inputs of the
function F are confidential for their owners and none of them wants to share its input with
another party. Hence the evaluation of the function F should be done in some oblivious way.
This problem is denoted as secure pattern search or secure pattern matching (later SPM)
problem. The problem is a special case of more generic secure function evaluation (SFE)
problem with two arguments® [28], [29], [30], [31], [32], [33], [34], [35], etc. Though it is
considered as a standalone problem in big amount of publications [36], [37], [38], [39],
[40], [41], [42], [43], [44], etc.

Constructions intended to solve this problem may found their applications in privacy-

preserving genomic computations, remote diagnostics, data mining, face recognition, policy

checking, etc. [31], [45].

Objects of the Research

As was told the first part of the research addresses issues of the schemes which ensure
confidentiality and privacy of the user’s data deployed into a remote party without losing the
possibility of search queries.

One of the important aspects when designing such mechanism is the level of trust,
namely how much the data owner trusts the service provider. But even the highest level of
trust does not exclude the requirement of such mechanism since no matter how fair is the
DaaS provider it can be an object of attacks and hence should guarantee that even being
physically stolen the data will be safe.

Making things more secure, which is traditionally done by using encryption, comes with

its own costs. Hence another important aspect of these securing mechanisms is the

® This problem also denoted as two-party secure function evaluation problem.



supported functionality after applying the mechanism. For our case encryption complicates
data search, modification and sharing processes. However search is the most fundamental
functionality when working with data, hence having a securing mechanism which does not
support at least some kind of search is not practical beforehand. And that is why
searchability it the core requirement for these mechanisms, even so different constructions
support different types of search queries with different complexities.

The third important challenge for searchable encryption schemes is the system
restrictions. Usually the restrictions are put on the resources of the system, such as
memory, CPU, disk-space, network traffic, etc. So to be practically usable a searchable
encryption scheme should have reasonable complexities for search and modification
operations and use disk space, memory and network traffic rationally.

Another considerable characteristic of searchable encryption schemes is the encryption
model it uses: either symmetric or asymmetric. Symmetric SE schemes has better
performance characteristics than asymmetric schemes, however they are intended for only
one user: the owner of the key, while in asymmetric schemes the data owner who also owns
the key can delegate the ability of running queries to third party users providing them the
only public key.

So the first object of our research is SE schemes. It also worth to note that the area of
SE constructions has been determined by the Defense Advanced Research Projects Agency
(DARPA) as a very important one since it can be used to balance the national security and
privacy needs in information processing and aggregations systems [46]. And in this and
many other reasons over the recent years construction and analyze of SE schemes was and
remains an important problem in databases and cryptography and there are tons of
research materials dedicating this topic [19], [17], [18], [20], [47], [48], [49], [50], [51],
[52], [53] etc.

Besides research there are some applications in the industry (nCryptedCloud [54],
Sookasa [55], boxcryptor [56]) intended for securing the data stored in server using

encryption, though we found only a single application which supports search functionality



over encrypted data. It is a platform for building secure web applications called “Mylar”
[57]. There, to search over encrypted user documents the scheme described in “Multi-Key
Searchable Encryption” article by R. A. Popa and N. Zeldovich [58] is used. That scheme is
reviewed in the first chapter of this work.

In the first section of the first chapter a survey of the most practical SE schemes is
presented. There we discuss their pros and cons then in the second chapter we present a
method for delegating the ability of running search and modification queries to third party
users for symmetric SE schemes without proving them the keys of the scheme. To explain
the method we designed a new SE scheme by modifying the DSSE “Dynamic Searchable
Symmetric Encryption” scheme by S. Kamara and others [17]. Finally in the third chapter
we review some popular tools intended for securing public cloud storages, after that we
introduce an architecture of a system for securing existing public cloud storages using
searchable encryption. This architecture was embedded into the new system called
“SkyCryptor” [59] for making it to support search functionality over encrypted data stored
in “Dropbox” and “Google Drive” storages.

The second object of our research is secure patter matching problem and the protocols
which solve some of its variations. In the second section of the first chapter we briefly
review the operation principle of the existing SPM protocols and then in the fourth chapter
we introduce a novel SPM protocol, where classical regular expressions Invalid source
specified. are used as patterns and data considered as a text string.

To sum up, the objects of this research are SE schemes, SPM protocols and their

practical applications.

Research and Implementation Methods

In the research in general the methods and concepts of classical cryptographic theory
and concepts of white-box (later WB) cryptography are used. Besides that for implementing
applications for the proposed constructions patterns of object oriented programming (OOP)
and C++ as a programming language are used. Also some third party C++ libraries have

been used (such as Qt, Boot, CryptoPP, etc.).



Scientific Novelty

1. A novel method for delegating the ability of running search and modification queries
to the third party users of a symmetric SE scheme without proving them the keys of
the scheme.

2. Architecture which allows to store files in public cloud storages (Google Drive,
Dropbox etc.) in encrypted form wherein allows to run secure search queries over
those files.

3. A new efficient SPM protocol which allows the client to check if his regular expressions

with arbitrary input alphabet matches to the input string of the server.

Practical Significance

The new SE scheme designed and implemented within this dissertation allows the data
owner to store his files on the server in encrypted form and give ability to third parties to
run secure search and/or modification queries over these encrypted files without providing
them the encryption keys. Using the architecture provided in the third chapter this scheme
can be used to secure data stored in cloud storages. Such application can be used mostly
when working with legally or commercially sensitive files. For example a law firm wants to
give ability to his employees to search over the archive of the documents encrypted and
stored in the server without providing them the encryption keys.

The designed new SPM protocol due to its high performance and security

characteristics may be used in privacy preserving DNA computations.

Practical Implementation

Based on the results of the research search functionality was implemented and
integrated into the SkyCryptor [59] system for giving ability to its users to search for
keywords of the encrypted documents stored in Dropbox or Google Drive. The functional
allows a user to select a folder in the storage and make it secure by encrypting its files
recursively. But before encrypting the files client application automatically invokes keywords

of each file and use those to create/update the secure index stored in the SkyCryptor’s
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server by help of the special modification tokens. This secure index later allows running

search queries.

The corresponding implementation certificate is appended to the dissertation.

Provisions Presented to the Defense

A novel method for delegating the ability of running search and modification queries
to the third party users of a symmetric SE scheme without proving them the keys of
the scheme.

A new DSSE [17] based symmetric SE scheme which allows delegating the ability of
running search and/or modification queries to third parties using the method from the
previous point.

C++ library which implements the new SE scheme and a GUI application which uses
this library.

An architecture which allows to store files in public cloud storages (Dropbox, Google
Drive etc.) in encrypted form wherein providing secure search functionality over those
files. The architecture was implemented in SkyCryptor system.

A novel SPM protocol with no asymmetric operations which allows the client to check
whether his regular expression I' with arbitrary input alphabet ¥ matches the n-length
string x € X"

A C++ library and an application for demonstrating the designed SPM protocol.

Approbation

The results of the work on dissertation have been presented at:

International conference - Computer Science and Information Technologies (CSIT)
(Yerevan, Armenia) in 2015;

International workshop - NATO Advanced Research Workshop (ARW) (Aghveran,
Armenia), 2015.

Conference - Science and Technology Convergence (STC) forum (Yerevan, Armenia),

2016.
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e Seminars at Russian — Armenian (Slavonic) University, American University of Armenia

and at Institute for Informatics and Automation Problems of NAS RA.

Publications
The main topics of this dissertation are published four publications [60], [61], [62],
[63].
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CHAPTER 1. PRIOR ART AND BASE FOR THE CONTRIBUTION

In this chapter we talk about the prior research done on two cryptographic topics which
in some manner can be referred as topics related with the search and security.

The first topic is searchable encryption (SE) schemes. In the first section of this chapter
we briefly provide the history of SE schemes and review the most practical schemes pointing
out their different characteristics (such as dynamicity, multiuserness, efficiency, security,
etc.).

The second topic is the two party secure pattern matching problem. In the second
section of this chapter we briefly discuss characteristics of existing SPM protocols,
particularly the supported patterns.

After all in section 1.3 we introduce the approach of using a WB implementation of a
symmetric encryption algorithm as an alternative to public-key from the asymmetric
cryptographic model and provide applicability of such approach in the 1-out-of-N oblivious
transfer (later OT) protocol introduced in [64]. This ability of using WB instead of public
key and its application in the OT protocol are used in our constructions and here we

provide their brief descriptions.

1.1 SEARCHABLE ENCRYPTION SCHEMES

In opposite to the traditional data processing model (when the data owner deals with the
maintenance and administration of the data) in the model when the user data is
administered by a remote provider the nature of data processing changes, especially when
the trust level in the service provider is very low or perhaps the server is totally untrusted.
And in such case the service provider needs to provide appropriate theoretically argued
mechanisms of security. Searchable encryption (SE) schemes are such mechanisms [13],
[14], [16], [17], [18], [19], [20], [49], [50], [51], [65], [66], [67], [68] etc. They give ability

to store the data in the server in an encrypted form providing search functionality wherein.
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Each searchable encryption scheme is represented as set of protocols of the following

three types:

1.

Initialization protocols: in this stage based on the scheme’s security parameter k and
the initial data D (a set of documents) the set of the scheme’s keys K and a special
encrypted structure C are generated and C is stored to the remote server. This C
contains sufficient information to support search and possibly also modification
queries to invoke the required information or change it. Though to use that
functionality one should have the set of keys K or its some part.

Modification protocols (file addition, deletion and update): in this stage the user
generates corresponding modification token (or tokens) and passes it (them) to the
server which updates the encrypted construction € according to the instruction (add,
delete, update) hidden in that token(s). In some SE schemes modification tokens may
be passed to the server in multiple client-server communication rounds.

Search protocols: in this stage a search token which usually hides information about
one or more keywords is generated by the user and passed to the server. The later
one using this token and the encrypted structure € computes the encrypted result of
the query and passes it to the user, which later decrypts this results using
corresponding keys K. In most cases the search query is “find those documents which
contain the keyword w” and in that case to search Boolean combinations of multiple
keywords (say “find those documents which contain the keyword w; and w,) the user
should run multiple queries then merge/union the results, though there are a couple
of SE schemes which designed with native support of Boolean queries.

The schemes differ by a bunch of characteristics which refer mainly to one of the

following four categories:

1.

Security: The most important characteristic is the trust model for which the scheme
intended. The most studied trust model is the passive or curious but truthful adversary
model. At this model it is considered that the server implements its data and query

processing functionality according to the specifications, but there are one or more
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malicious individual(s) or spy applications (passive adversaries) on the server-side who
has access to the user’s data and his search and modification queries (for instance a
database administrator or some application running in the server can be considered as
a passive adversary). The passive adversary only tries to learn any meaningful
information about the stored data without modifying it or corrupting services provided
by the server.

Another important characteristic of the security is forward privacy (if we search for
something (keyword w) and later add a new piece of data (a new document) containing
it, the server does not learn that the new document has the keyword we searched
before) and backward privacy (query results doesn’t contain information about deleted
documents).

2. Multiuserness is defined based on the fact whether single or multiple users can initially
deploy (and later modify) the database and whether single or multiple users can
search. Searchable symmetric encryption (SSE) schemes* allow only a single user (key
holder) to write and read. While in searchable public-key encryption schemes® the
data owner may provide to third parties corresponding public keys for running search
queries.

3. Dynamicity: an SE scheme may or may not support data modification queries (add,
delete, edit) and based on that it is called static or dynamic. A static SE scheme only in
very rare cases can be considered as practical for real-life applications since in most
cases the data is dynamic and gets changed frequently that is why the most part of
prior research is done on dynamic SE schemes.

4. Performance, memory usage, data transfer volume and client-server communication
rounds. The most practical SE schemes have search complexity linear at the number of
results of the query while the used memory for the secure structure C is proportional
to the initial size of data plus total sum of numbers of keywords of each document.

Data transfer volume is usually constant and proportional to the size of corresponding

* Read about symmetric key cryptography in [109].
> Read about public key cryptography in [109].
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query token and the number of client-server communication rounds for the most
recent SE schemes is 1, while this numbers increase when Oblivious RAMs are applied
on a scheme.

Below we review the most efficient and practical searchable encryption algorithms with

different settings and analyze their pros and cons based on above characteristics.

1.1.1 INDEX-BASED SE SCHEMES

Modern searchable encryption schemes are based on the so called secure or encrypted
index approach. In the index-based SE schemes [14], [17], [19], [20], [47], [48], [50], [65],
[66] , [69], etc. the encryption is done by the data owner(s) (i.e. the client) and then all the
encrypted stuff is uploaded into the server.

In these schemes the data D is represented as a set of n files (or documents)
f<{fi,fo ... fn} and each file has a set of keywords associated with it and a unique
identifier (file ID) to differ files between each other. For instance for an office document
(word, excel etc.) the set of different words® written in those document may play the role of
keywords, for e-books the name, authors, chapter names, publisher, etc. can be used and
for multimedia files again the name, list of performers, director, year, name of the studio
and other fields of meta information can be used as keywords. Choosing correct keywords
is important since after encryption only they can be searched. What about file ID then the
path of a file relatively to some common for all files root directory or a hash of that path can
be used.

Usually we denote by W the set of all keywords of all files and the set the keywords of
the i-th file f; is denoted by W; € W. The ID of the i-th file will be denoted as fid;. Also by
|X| we denote the cardinality (number of elements) of the set or dictionary X, by “=" or ‘«’
signs we denote the assignment operation and by (ay,a,, ..,a,) we denote the

concatenation of a,, a,, ..., a,.

® Actually it is better to use the stem of a word instead of the word itself. And during search operation also
first of all change the keyword by its stem. This will give ability to find those documents which contain that
keyword in any of its forms (plural, singular, past, perfect, progressive etc.). See more about word stemming
in [110].
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The encrypted structure C in an index-based SE scheme is a pair (c,I). Here c is a
mapping of file IDs to file ciphertexts, namely ¢ & {(fid4, c,), (fid,, c;), ..., (fid,, c,)}, where
c; is the ciphertext of the i-th file encrypted usually by some symmetric encryption
algorithm, so the file encryption does not depend on the properties specific to the
encryption scheme. And I is the encrypted (secure) index and its construction is the point
where the SE schemes differ between each other.

Encrypted index is a data-structure designed in a special way which contains sufficient
information about keywords of each file, but to be able to read this information one should
have the set of the scheme’s encryption keys K or some part of them. As usual data
structures these indexes differ by their memory usage, supported operations and their
complexities. We will discuss construction of the encrypted indexes and their characteristics
in more details during our survey about the existing SE schemes.

While the encrypted index I and ciphertexts ¢ are uploaded into the server the client
(data owner) is able to search a keyword and find the list of files with this keyword. Some
indexes support search by Boolean expressions of the keywords (like “find list of files with
keyword w, but not w,), of course this can be achieved for other indexes as well by running
search for each of keywords and performing corresponding operations (intersection, union,
difference, etc.) on the result sets, but native support of such type of search may lead to a
better performance. Generally the search process works as follows: to search for a keyword
w the user generates a search token t,, and sends it to the server, given t,, and using the
encrypted index I the server finds the set of file ids fid,, & {fid;|lw € W;}i~; associated
with the keyword w. As a result the search query returns to the user these IDs and probably
also corresponding ciphertexts. For some cases the result of a search query may be not the
set of file IDs but some encrypted structure which hides those IDs and having
corresponding key the user may reveal them out. Hence generally the result of the query is
kind of a data access pattern, and it is usually called that way.

The modification process (if supported) of the encrypted data and its index (c, I) works

in a similar way. The user generates corresponding modification token and using it the
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server updates both the index I and ciphertexts of the files c. These modification tokens
contain the ciphertext of the added or edited file and obfuscated information about file ID
and its keywords (or only the changed ones).

The two main approaches for building an index are as follows:

e forward index: an index per document (Fig. 1.1(a)) which naturally reduces the search
time at least to the number of documents O(n). This is because one index per
document has to be processed during a query.

e Inverted index: a per keyword index (see Fig. 1.1(b) where m & |W| is the number of all
keywords). Depending on the amount of information we are OK to leak, the complexity
of searching a keyword w can be reduced up to O(|f,,|) in the optimal case, where f,,

is the subset of files containing the keyword w.

document id keywords keyword document ids
1 Wy, Ws, Wy wy 2,3,9
2 Wy, Wy, Wy, Wg, Wg wy 1,2,6,7,n
n Wy, Ws, W Wi, 1,3,8
(a) Forward index (b) Inverted index
Fig: 1.1

Due to better complexity of search operation most part of modern SE schemes use
inverted indexes. Though in both cases indexes use memory proportional to the sum of

keywords of all files 0 (X7 |W;]).

1.1.2 SECURITY AND PRIVACY
Before starting the discussion of the specific SE schemes here we talk a little about
security and privacy issues. The three statements below seem to be the most intuitive
requirements:
e The encrypted database (c,I) should leak minimal information about the initial

database f.
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e The search token t,, and the search algorithm itself should leak minimal information to
the server about the underlying keyword w.

e The modification token t,,,; and the modification algorithm should again leak minimal
information to the server about the keywords of the added, edited or removed
document.

These requirements sound good but there are a couple of important issues. First of all
the intuition is not sufficiently accurate. Namely there are lots of important details which
affect the security, but they are not mentioned in these statements (e.g., what does the word
“leak” and “information” mean here). The details are very important.

Besides formalism there is another issue with this intuition. Here nothing is said about
the results of search (data access pattern). Namely, it does not tell whether it is pertinent
for a searchable encryption solution to disclose to the server the list of document IDs
resulted by searching algorithm. The question has two possible answers. On one hand,
there could be an opinion that the disclosure of the data access pattern is fine since server
does not know the search query and learning only the names (IDs) of encrypted files which
match the search is not a serious problem. And since we want the server to return the
identifiers of those encrypted files then it definitely need to know which ones should be
returned (note that server doesn’t learn the content of the files). On the other hand, there
could be another opinion that, theoretically, the data access pattern unfolds some
information to the server. Namely, by tracking a sufficient large number of search results
some sophisticated statistical attacks can be used by the server to reveal some meaningful
information about the client’s data and queries. Even more, the argument that the server
should know the identifiers of the encrypted documents which match the query for
returning them is wrong, because there are various cryptographic OT protocols that allow
one side to send and item to another side without knowing the item which is being sent
(these are examples of OT and private information reveal protocols [70], [71], [64], [72],
[73], [74], [75]).
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Besides such protocols it is known how to design oblivious RAMSs: the system that allows
a user to read and write into the memory in a way that the memory device does not know
which locations have been accessed. These are examples of oblivious RAMs (ORAM) [76],
[77], [78] [79]. So ORAMSs can be used to hide the data access patter from the server after
search is completed. Of course this does not come for free: ORAMSs are very slow.

So the answer of the raised question depends on the security and efficiency tradeoff
which should be achieved by the scheme. If efficiency is not critical then it is always better
to consider a scheme which provides more security and on the other hand if the speed is
the priority, then unfolding the data access pattern might be a reasonable price for

achieving it.

1.1.3 SYMMETRIC SEARCHABLE ENCRYPTION SCHEMES

The idea of separating encrypted data and its index was not appeared at once. In the
paper “Practical Techniques for Searches on Encrypted Data” by Dawn Xiaodong Song,
David Wagner and Adrian Perrig from the University of California, Berkeley [13] the
searchable encryption problem has been explicitly considered for the first time and a

scheme with the search time linear at the size of the number of files has been presented.
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Fig: 1.2
The basic idea was to encrypt the file using any symmetric algorithm word after word in

a specific manner see the figure 1.2 above. In this scheme the key owner encrypts each
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word w; of each next file to a fixed size ciphertext Enc(w;) and then XOR’s it with a
pseudo-random stream’. To search some word having this construction the user should
again encrypt the word using the Enc algorithm, then try to XOR it by each part of the
ciphertext checking if the result is equal to the corresponding part of the pseudo-random
stream. This construction allows the data owner to give ability to the other party to search a
specific word w; on his behalf by providing only Enc(w;) to that party. Besides all this
construction supports insertions, deletions and modifications of files in a straightforward
way as each file is encrypted word after word. Because of non-practical characteristics such
as performance as well as due to the significant information leakage this construction is
unusable for practical applications.

Goh [14] was the first who proposed an SE scheme with secure-index approach. The
proposed secure index allows a user to search that encrypted documents which contain a
keyword without decrypting the documents also it allows adding new documents to the
encrypted database. In Goh’s construction an inverted index based on a Bloom filter [80],
[81] is used which keeps track of each unique keyword. Before being stored into the Bloom
filter each of the unique keywords goes through a pseudo-random function (PRF) twice. The
purpose of such operation is to make sure that for each of two or more documents, if they
associated with the same keyword the code word will represent them differently. The
solution requires linear search time, and because of the use of Bloom filter can result in
false positives, namely the search may return indexes already deleted from the index.
Nevertheless after Goh’s work the secure index approach is used as the basis of all
upcoming constructions.

Next we review a static® symmetric searchable encryption scheme which supports
search by Boolean expressions of the keywords. This SSE scheme is suggested in the paper
“Highly-Scalable Searchable Symmetric Encryption with Support for Boolean Queries” by
David Cash and others in [66].

" Here we do not discuss the details of pseudorandom stream construction, because these details address only
issues related to the security of the scheme, and from the point of view our survey are not important.
8 The construction was later extended to support also database modifications [82].
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The SSE is a tuple of four algorithms SSE & (Gen, EncInd, Trpdr, Search).
Specifications of these functions are given below:

e Gen(k): In this initialization step the data owner (client) using a random password
generates four k-bit°® uniformly random keys K = (K, Ks, Ky, K7). Also in this step a
hash-function with key F (for example HMAC or CMAC) and a symmetric encryption
scheme Enc/Dec (say AES) is chosen.

e EncInd(K, f): For the given set of files f client generates a secure index using
generated in the first step keys and stores them into the untrusted remote storage
(server). Secure index generation steps are the following:

a. Parse the collection of files f as V := (wi,fidwi)m

i=

) where m & |W| is the count
of all unique keywords in all files and fid,, & {fid;|lw € W;}/=, is the set of file
ids which contain the keyword w.
b. Initialize XSet empty set and A empty dictionary (hash-map).
c. For everyw € W keyword fill A and XSet as follows.
a. Initialize an empty list of k-bit strings t;
b. Set K, :=F(Ks,w), xtrap := F(Ky,w), and stag := F(Kp, w);
c. For all file IDs fid € fid,, of the w keyword:
1. Compute e := Enc(K,, fid) and append e to the list t,
2. Compute xtag := F(xtrap, fid) and add xtag to XSet;
d. Set A[stag] :=t.
d. The pair (4, XSet) is the encrypted index and should be stored into the remote
server along with the encrypted files!0 c.
e Trpdr(Kr, Ks, Ky, Wh,, Why, .., wp,): For searching some Boolean combination of j
keywords wy,,, wp,, ..., wy; the client generates special token (trapdoor) using the secret
keys Ks, Ky , K7 in the following way:

a. Setstag :=F(Kr,wy,) and K, :=F(Ks, wy,),

% k is a positive integer number (security parameter).
19 As it was already told in section 1.1.1 “Index-Based SE Schemes” file encryption can be done by any
symmetric encryption algorithm.
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b. Foreachi = 2,...,j set xtrap; := F (Kx, wp,)
c. Outputs the (stag, K., xtrap,, ..., xtrap,) as the trapdoor.

o Search((stag, K., xtrap,, .., xtrap,), A, XSet): Search is done by the server using
the trapdoor generated by the client. The server gets the trapdoor from the client and
performs the following actions:

a. t :=A[stag].
b. For each ciphertext e in t, it computes:
a. fid:=Dec(K,,e) and then
b. For all i for 2 to n checks whether fid file contains wy, by checking if
F(xtrap;, fid) € XSet. And returns fid if it contains only the required
keywords.

From the description of the secure index and query (trapdoor) construction and search
algorithm it is clear that using this approach any Boolean combination of keywords can be
searched after converting it to the disjunctive normal form and creating trapdoors for each
conjunction. It is easy to see that both structures of the index XSet and A use O(N)
memory, where N is the sum of the keyword numbers of all file (3|W;]).

In the real world the data is always dynamic meaning that files can be added or deleted
or even the content of each unique file may be changed in the data collection. In this
scenario it is desirable to index the data with dynamic methods allowing to efficiently
updating the secure index without requiring of re-indexing of the whole database at each
update. Below we review one of the most efficient searchable encryption dynamic schemes.

In [17] a practical SSE is presented which allows dynamically add and delete files from
the secure index in an efficient way. The construction is based on inverted index approach.
Here the scheme SSE consists of 9 algorithms (Gen, Enc, SearchToken, AddToken,
DelToken, Search, Add, Del, Dec). In scope of our brief survey here we describe only the
index construction and search methods referring the reader to the full paper for details on

how to update the secure index.
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Gen(k): At this stage the data owner selects a symmetric encryption scheme
SYM & (Gen, Enc, Dec) then s/he selects uniformly random three k-bit keys K, K,, K3
and generates the forth key K, « SYM. Gen(k) for encrypting the files. So the scheme
has four master keys K & (Kj, ..., K,), this keys should be never passed to the server,
they are used to encrypt files as well as to construct and later modify the secure index.
At this stage also three PRFs F, G, P and two keyed random oracles H,, H, are
chosen.

Enc(K, f): Using index generation keys K and the user’s document collection
f ¥ (f1 ... fn) constructs an encrypted index y and encrypted documents ¢ & (c; ...c,,)
in a special way:

a. Let A; and A, be search and deletion arrays with enough long length' and let T,
and T; be empty dictionaries. By 0' is an [-length string of 0's and by free is a
word that does not belong to W are denoted.

b. For each word we W:

1. Create the L, list of nodes (N; ... lewl) and chose random location in the
array Ag and store these nodes there. Here each node is the following pair:

N; 2 (Hy(Ky, 1) @ (idy;, ptrs(Nip1)); 73)

where id,; is the ID of the i-th file in f,,, r; is uniform randomly generated
k-bit string, K, := P, (w) and ptrs(Ns, |+1) & 010814,

2. Store the pointer to the first node of the L,, list in the search directory by
adding the following entry to the dictionary:

Ty[Fie, W)] := Gk, (W) @ (ptrs(N;) , ptra(Ny) )
where N* is the dual of N, i.e., the node in A; whose fourth entry points to
N in A.
c. For each filefin f:

" The length should be longer than the sum of the numbers of all keywords of each file by z + x. Where z

indicates the number of possible new elements of these arrays and x is the number of cells which will remain

unused.
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f.

g.

Create a list L; of dual nodes (Dl, ...,D|Wf|) and store them in |W;| random

unused locations in the array A, (here W, is the set of the keywords of the
file f) defined in the following way: each entry D; is associated with a word
w, and hence with a node N in L,, associated with the same file f. Let N,
be the node following N in L,, and N_; the node previous to N in L,,. Then

D; is defined as follows:

ptry(Di41), ptra(NZy), ptra(Nip), ptrs(N),
); 1 ).
ptrg(N_q), ptrg(N,q), Fg, (w)

Here 7/ is again k-bit uniformly random string, K := Py (id;), where id; is

D; & (HZ(Kf,ri') D (

the identifier of the file f, and ptr, (Dle| +1) der ologldgl

In the deletion dictionary T, for f file’s ID store L, list’s first node’s

pointer:

TalFx, (ids )] := Gy, (idf) @ ptrs(Dy)

Choose z unused cells from A; and A; from random locations and create a free
unencrypted list L. Let (Fy, ..., F;) and (F;, ..., F;) be the free nodes in 4; and

Ag, respectively. Set

T [free] = <ptrs(Fz)’ 010g|A5|>

and forz >i >1 set

Aglptrs(F)] := (0'°8If| ptr (F;_,), ptry (F)))

where ptr, (F,) & 0lo8l4s!,
Fill the remaining entries of A; and A, with random strings.
For 1 <i <n calculate ¢c; = SYM. Ency, (7).

Return (y,c), where y & (A, A4, T, Ty) and ¢ = (¢4, .., Cp)-

SrchToken(w, K; ... K3): the client uses the first three keys of K and the keyword w and

computes the search token:

to = ( Pr, (W), G, (W), Fi, (W)

and returns it.
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e Search(y,c,ty): the server takes the encrypted index, the search token and the
ciphertexts of documents and returns the search related ciphertexts in the following
way

a. Unfold ¢, as (ty,t,,t3) and return an empty list if t3 is not present in Tj.

b. Compute

(p1p1) =t © Ti[ts]
c. Compute (y, 1) :=N;:= Ag[p;] and decrypt first file ID associated with the
keyword hidden in the search token by computing
(idy, p2) = Hyi(ty, 1) @ y1
d. For each integeri > 2, decrypt node N; as above until p;,, becomes equal to
0'o8l4s|
Denote by I & {id,,id,, ...} be the set of file IDs received in the step [d.] and output
them as a result, or find their corresponding ciphertexts {c;} and output them.
Computationally Efficient Dynamic SSE
In [19] another efficient and dynamic SE symmetric construction is presented which
again provides sublinear search complexity. In this scheme for each document f € f a
separate key Ky is generated for encrypting that document and for each keyword w € W a
key K, is generated for its encryption. The server stores the searchable representation S,,
for the keyword w based on the K, key and a trapdoor T,, which represents the query from
the client for the that keyword. Also lets denote fid,, & {fid; | w € W;};=;. The construction
of the searchable representation for each w keyword is:
Sw & (P, (W), M(fid,,), R(w))

Where P is a pseudo-random function, and Pg,(w) is used to identify the searchable
representation for the keyword w; Kp is a K, driven key, M(x) is a masking function and
R(w) is a function that outputs some information for making possible to unmask fid,,. To
retrieve the documents associated with the keyword w the client generates the following

trapdoor

T = (P, (W), R’ (W)
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and sends it to the server. The server first searches Py ,(w) and if it is found, the associated
mask M(fid,) is unmasked using R(w) and R’(w). The server then sends the encrypted
data items (files) whose IDs occur in fid,, to the client.

The main idea of the second approach described in [19] is to use a chain of the same
hash function of length L

HY(a) =« H(H(...H(a) ...))
L

by computing the same H(*) function repeatedly L times using a as an argument of the first
computation. Let fid;(w) be the set of file identifiers which contain the keyword w and
have been added to the storage during the i-th update. In this cast the searchable

representation of the keyword w after updating the storage j times is:

s, (PKP (W), Ency, o) (Fidy W) , H'(K; W), .., Ency ) (fid; ) ), H (K, (w)))
where H' is a hash-function, Enc is an encryption algorithm and K;(w) % H!='"((w, K,,)),
where ctr is a counter stored in the client-side and incremented each time the storage is
updated. As can be seen here each list fid;(w) is encrypted with a unique key K;(w) and
having it the K;_;(w), ..., K;(w) keys of the previously added lists can be computed by the
server by computing j — 1 hash functions, but the next key K;,;(w) cannot be computed
since the hash function is not reversible. Based on above explanation assuming that S, has
already been updated j times, the next update of S, is implemented as follows:

For each unique word w € W:
e Construct fid;,,(w) :={ID;j|lw e W, }
e Increment the counter ctr :=ctr + 1,

o Compute the key K;;(w) := H" """ ((w, K,,))) ,
e Encrypt Enck,,, w) (fidj+1(w)),
e Send to the server the tuple (Pkp(w),EncKjH(W) (fidj+1(w)),1-1' (Kj+1(w))) and on

the server add that tuple to S,,,.

For this construction the search trapdoor for the word w has the following form
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Ty 1= (Pep W), H ((w, K, )) ) = (T, T2).
And the search is implemented as follows: using the trapdoor (T, ,T,2) and the searchable
representation S (hash-map of all S,, where P, (w) is the key of the mapping), search if Ty,
is a key for the hash-map S, compute H'(T;2), if H'(T2) = H' (Kj(w)), decrypt fid;(w) using
T,2, otherwise keep computing T.2 := H(T,2) until H'(T.2) = H' (Kj(w)). Repeat the same and
compute the identifiers of the previously added documents. Send the merged sets
fid,, ¥ fid;(w) U ...U fid;(w) to the client as a result.

Though this construction has good operation complexities however it has an important
limitation: the number of updates is limited by L.

Dynamic Searchable Encryption in Very-Large Databases:

In [82] a dynamic searchable encryption scheme is presented which efficiently searches
the server-side database of tens of billions rows. A basic algorithm is constructed based on
a generic dictionary construction and two other optimized versions are built on top of the
basic algorithm. Here we cover the basic construction and refer the interested reader to the
original paper for details of the algorithm’s next extensions.

Following to the formalization of Curtmola and others [65] the database DB is a list of
(id;, ;) keyword and set where W; c {0,1}* and id; € {0,1}*, also let W be the union of all
W, and DB(w) be the set {id; : w € W;}.

A implementation of the DB’s main structure: y dictionary is done by four
algorithms Create, Get, Insert and Remove.

o Create({(l;,d;)}): takes a list of label and data pairs{(l;, d;)}, where each label is
unique, and constructs the data structure y.

e Get(y,l): returns the data item d with the label [.

o Insert(y, (I, d)): outputs an updated data structure y that contains the new pair (I, d).

e Remove(y,1): outputs an updated data structure y that doesn’t contain the label L.

Let F be a variable-input-length PRF, and ¥ &' (Enc,Dec) be a symmetric encryption
scheme. Below we detail the database setup and search algorithms.

SETUP THE DATABASE
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e Chose a key K « {0,1}* and allocate the list L.

e For each weW keyword generate the keys K;=Enc(K,(1,w)) and
K, = Enc(K,(2,w)).

e Initialize the counter ¢ = 0.

e For each id; € DB(w) calculate [ := F(K;,c) and d := Enc(K,,id;) and increment c
by one. After add the pair (I, d) to the list L in lexicographically order.

e Sety:=Create(L).

e Outputs the user key K and y.

SEARCH THE DATABASE

Client: On input (K,w)

e Calculate the keys K; := Enc(K,{1,w)) and K, := Enc(K,{2,w)) then send them to the
server.

Server: Take as an input (K;, K,)

e Starting from ¢ := 0 and until Get returns NULL set:
d:= Get(y,F(Kl,c)) and id := Enc(K,,d).
e Return the list of revealed ids.

This scheme can be made dynamic with a simple trick of using another dictionary y™.
This dictionary is firstly empty and after each keyword addition to the database a
corresponding (1, d) pairs are being added into it. Searching keyword w is completed by the
server first by searching in y like in the static case and after in y*. The labels for y* are
computed using a w-based key sent by the client and a counter being incremented at each
step. The addition operation for the (id, W) pair requires the client to have the counter’s
current value for each of the w € W keywords. To keep these counters an additional
dictionary § is being employed. The directory for each keyword stores the value of the
counter (the number of updates where w was involved). § may be stored either at the client
or at the server being every time retrieved by the client for processing update operations.
The description of the new (id, W) pair addition algorithm into the database is below:

UPDATE THE DATABASE:
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e Calculate K* := F(K, 3).
e For each w € W keyword:
o Compute two keys Ki :=Enc(K*,(1,w)) and K; :=Enc(K*,(2,w)) as in the
previous case.
o Set c:=Get(5,w) (if w is not found in § then set ¢ := 0) and calculate the label
l:=F(K{,c) and data d := Enc(KJ, id) then increment c by one.

o After all insert the pair (w,c) into the dictionary § and insert the pair (I,d) into the

+

y*.
The search now implies the searching in both y* and y dictionaries. The server gets two

key pairs (K, K,) and (K;, K;) and performs the following actions.

e For ¢ = 0 until Get returns NULL e For ¢ = 0 until Get returns NULL
Set d := Get(y, F(Ky,c)) d :=Get(y*, F(K{,c))
And id := Enc(K,,d) id := Enc(K;, d)

This scheme can allow delete operations over the secure index only by keeping the
revocation list of all deleted data ids and next check each search result against the

revocation list.

1.1.4 PUBLIC-KEY KEYWORD SEARCH

In [83] the problem of searching in public-key encrypted data is studied. The main use
case of this scheme is considered the email gateway which needs to check emails for
specific words, such as «urgent» to route them accordingly. But the mail gateway should not
learn anything more about the encrypted messages. So, it is assumed that Bob sends emails
to Alice in an encrypted form. For this Bob encrypts the mail he is going to send using the
corresponding public-key of Alice after that appends to the ciphertext some footer
consisting from encryptions of all keywords of the email. Assuming that the keywords of the
email M are wy, w,, ...wy Bob sends the following:

(B (M), PKES(Kpup, W1), ..., PKES(Kpup, Wy ))
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Where K, is Alice’s public-key. The point of this encryption is that Alice can give the email
gateway a special trapdoor T,, so the gateway can check whether the encrypted email
contains the keyword without learning anything more about the encrypted message or the
certain keyword w.

The scheme is defined as a tuple of following algorithms:

KeyGen(s): Based on the parameter of the schemes security s generates a pair of
public & private keys K, and K.

e  PKES(K,yp, w): Encrypts the keyword w using K,,,,, public key in a special way to make
it searchable.

e Trpdr(K,,»,w): Using the private key K,,;;, the mail receiver generates a trapdoor T,
for the give key word w.

o  Check(Kyyp, S, Ty): Using the public key of the mail receiver K, and the trapdoor T,,
for word w checks if w = w' where S := PKES(K,,,, w'). As a result outputs “Yes” , or
“No”.

The construction of PEKS scheme is based on a bilinear mapping e from G, X G; to G,
where G, and G, are p prime number’s order groups. Namely:

1. Having g,d € G4, there is an efficient way to compute the value e(g,d) € G,

2. For any two positive x,y € [1, p] integers the following equality is true

e(g*,d”) = e(g,d)™”

3. For any d generator of the group G, the e(d, d) is a generator for the group G,.

Two hash functions H,, H, are used as building blocks. The definition of scheme is
described as follows:

e KeyGen(s): Based on the schemes security parameter s the primer number p of the
G, and G, groups is chosen. Also a generator g of the group G; and a random string
a < Z, are determined in this stage. Finally the pair of private and public keys are
defined K,,;, := (g, h), where h:= g% and K, := a.

o PKES(K,yup,w): For the keyword w first for a random z€Z, computes

t :=e(Hy(w), h?), t € G, then outputs S := (g% H,(t)) as result of encryption.
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e Trpdr(K,;, w): Calculates and returns H, (w)*»riv € G,.
o Check(Kpyp, S, Ty): First unfold S as (g7, H,(t)) and check if H,(e(Ty, g%)) = H, ().
The  correctness of this scheme comes from the fact that
Hy(e(Ty, 9%)) & Hy(e(Hy(W)% g%)) & Hy(e(H (w),g))™ and H,(t) & Hy(e(Hy(w), h%))
H2eH 1w, gazEH2eH 1w, g az
The security of this SE construction is proven for the chosen keyword attack assuming
that given a generator of the group d € G; and three values d*,d”,d” of the group G, the
advantage of an arbitrary polynomial time algorithm is negligible for computing the value

e(d, d)™? € G,.

1.1.5 MULTI-KEYWORD SEARCHABLE ENCRYPTION SCHEMES

In the multi-key setting [58] there are a set of users and each of them has multiple
encrypted files and there is a server who is responsible for storing these encrypted files.
Each of the users has access to some subset of files. A user can create a new file and give
the other users an access to that file by sharing with them the decryption key of that file.

The functionality goal is to allow a user to search keywords over all the files he allowed
to access (say n files) even if different keys are used to encrypted these files and different
users have encrypted them. Note, the user has all the keys for decrypting all n files,
however only one (not n) search query should be sent to the server. The multi-key
encryption scheme consists of the following algorithms - (Setup, KeyGen, Delta, Token, Enc,
Adjust, Match):

e Setup(s): Based on the scheme’s security parameter s generates the system
parameters.

e KeyGen(params): Takes the system parameters and returns secret keys such as the
user’s key and keys for file encryption.

e Delta(Ky, K>,): Calculates the delta between the two input keys.

o Token(K,w): Generates the search token tk for the specified keyword w using the

specified key K.
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e Enc(K,w): Encrypts the word w using the K key and outputs the ciphertext c.

e Adjust(tk,A): For the search token tk & Token(k,,w) and delta A% Delta(K;, K,)
generates a new search token tk’ = Token(K,, w).

e Match(tk,c): Checks if a single encrypted word ¢ matches the search query hidden in
the token tk and returns a Boolean value.

The key of the user i is denoted as UK;, and the encryption key of j-th file as K;.
Consider that a user, say Alice (with the key UK,) has n encrypted files stored on the
server, and each of them is encrypted by a separate key K; where 1 < j < n. Alice wants to
search the keyword w over all of these n files, so she uses the UK, key to compute a token
for the word w. In order to allow the server to match the token against the files encrypted
using the Ky, K, ..., K,, keys, Alice sends to the server some public information called delta.

Alice provides one delta per each of the K; keys, denoted as Ayg,k,. The server uses
Ayk,x; to convert the search token generated using the UK, key to a search token for K;

(the process called adjustment). In this way, the server obtains tokens for the word w for all
keys Ki,Kj, ..., K, receiving only a single token from Alice. Then it performs a traditional
single-key search using these tokens.

As a base for this multi-key SE scheme asymmetric bilinear mappings are used defined
as e:Gy X G, » Grbetween prime order p groups G,, G,, Gy. Such mapping has the
following properties:

1. Having a pair (g4,9,) € G, X G,, there is an efficient way to compute the value of

e(g1, 92).

2. For any two positive integers x,y € {1,2, ..., p} the following equality is true
e(91.97) = e(91.9)™
3. If g, is the generator of the group G, and correspondingly g, is the generator of the
group G,, then e(g,, g,) is the generator of Gy
For hash functions with appropriate output sizes H, and H, the searchable encryption

scheme with multiple keys is defined in the following way:
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e params < Setup(s): Based on the security parameter s returns the system
parameters: the prime number p, the groups G;, G, and G, the linear operator e, and
group generators g4, g, and gr.

e K < KeyGen(params): Returns K key random from the field Z,,.

e A« Delta(K;,K,): Returns A:= g,%2/K1; A € G,.

e tk « Token(K,w): Returns tk := H;(w)X; tk € G,.

e ¢« Enc(K,w): Select a random r « G; and return the pair

c:= (7”» Hy(r, e(H1(W),gz)K))

e tk' « Adjust(tk,A): returns tk':=e(tk,A) € Gy

e b « Match(tk',c): Parses ¢ := (r,h) and checks if h is equal to H,(r, tk") and outputs
1 or 0 based on the comparison result.

The correctness of this scheme comes from the following observations: having
params « Setup(s), K; « KeyGen(params), K, < KeyGen(params), A« Delta(K;,K,),
tk « Adjust(Token(K;,w),A) we can see that tk is equal to e(Hy(w)X1, g,%2/K1) which is
equal to e(H;(w),g,)X?, besides that H,(r,e(H,(w), g,)¥?) = H,(r,tk) which means that

Match(tk , Enc(Kl,W)) is equal to true.

1.2 SECURE PATTERN MATCHING

In this section another secure search problem is considered. While discussing the SE
schemes in the previous section we assumed that file keywords or their Boolean expressions
are being searched. And generally that kind of search is quite popular, usually to find some
materials on the web or in our personal computer we search for the words or phrases
about the required material using some search engines [84]. But sometimes it may be
required to search information (both text and multimedia) using patterns (for example
regular expressions [26] or image and voice patterns [25], etc.) so here we consider the
extended variant of search, that is search of patterns. Pattern search or pattern matching
(the process of detecting patterns in a set of data) is a fundamental operation in data

analysis and has various real-life applications in experimental sciences (biogenetics, physics,
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psychology, statistics, sociology, etc.), business (market analysis, strategy building, customer
behavior analysis, employee productivity analysis etc.) and in any other area the data
analysis is required.

More formally pattern search is a two-party operation where one party has a pattern p
and the other party has data D. In fact these parties may be the same when one has both
the search pattern and data, and this was the setting of the SE problem discussed in the
previous section and in chapters 2 and 3. But in this section and in chapter 4 we consider
the case when the owner of the data and the owner of the search pattern are different and
discuss search security issues which appear in such situation.

The requirement of the pattern matching problem and correspondingly the result of the
operation is usually one of the followings:

1. Check if the data D matches the pattern p (full match).

2. Check if some part of D matches the pattern p (partial match).

3. Find the number of parts of D which match the pattern p (count of matches).
4. Find the parts of D which match the pattern p (all matches).

Other variations of the problem also possible but they are rare and in most cases can be
represented as combinations of these four. So pattern search is the process of computation
of function F(p, D) where the return type of F is either a Boolean value (for first two cases),
either an integer (third case) or a set of positions in the data D (fourth case).

As we told pattern searching operation has two inputs'> and these inputs are hold by two
different parties. Depending on the trust level between these parties and confidentiality of
each of inputs different security issues may rise during pattern searching operation. For
example one of parties or both of them may want to hide their input from the other. Namely
neither the owner of the pattern wants to pass the pattern to the owner of the data and nor
conversely the data owner wants to pass the data to the pattern owner, but they want to run
one of the four pattern matching operations from the above list. In cryptography this

problem is denoted as SPM problem and various protocols have been designed in recent

2 In some cases number of inputs can be more, for example when pattern or the data is split between multiple
parties, but these cases are not considered in our work.
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years which provide a solution for it with different security characteristics and performance
[42], [40], [39], [43], [36], [38], [41], [37], [85], [86].

Before this we did not talk about the nature of data and pattern which being searched,
because the formulation of the secure pattern search problem does not rely on it. However
in all mentioned papers and in other materials we found it is considered that the data D is a
string of characters from some finite alphabet £ (D € £*) and the pattern p is a regular
expression [26] or some subclass of regular expressions (for instance in paper “5PM Secure
Pattern Matching” [42] the pattern is a string of characters from X which may have at most
one wildcard character, i.e. the character which matches any letter?3). Our secure pattern
search protocol described in chapter 4 also operates against these concepts of “data” and
“pattern” however we believe that the dramatic rise of amount of remote computations can
server as an impetus for research on “secure pattern search” problem for other types of
patterns and the semantics of data will also be considered.

Most part of the modern programming languages support of regular expressions. A
part of the languages (Perl, Ruby, JavaScript, AWK, Tcl etc.) has a built-in support and the
others for example C++, Java, .NET languages, Python etc. via standard or 3™ party library.
However the expressions supported by these languages are extended and the languages
generated by them'* cannot be denoted by classical regular expressions. That is why before
going forward it is worth to note that here and later in this thesis by saying regular
expression we mean its classical definition.

Definition 1.1 (regular expression): Regular expression is a string of constant
and operator characters (symbols) that denoting string sets and operations between these
sets, respectively.

For the finite alphabet £

1. @ is a regular expression which generations the empty set L(@) & @.

"3 For example if £ = {0, 1} and = is the wildcard character, then p can be 0 * 10 which matches to both 0110
and 0010 strings. The equivalent regular expression for this pattern is 0(0]1)10.
" The language generated by a regular expression is a set of strings which match that expression.

36



2. ¢ is a regular expression which generates the set which consist from “empty” string,
namely L(¢e) & {e}.

3. A letter a from the alphabet X is regular expression which generates the set
L(a) & {a}.

4. For regular expressions R, and R, their concatenation C & (R.R,) is a regular
expression generating the set of all possible concatenations of elements from L(R;)
and L(R,):

L(C) ¥ {xy|x €L(R,)andy € L(R,)}
and their alteration A & (R,|R,) is a regular expression generating the union of L(R;)
and L(R,) sets:
L(A) € L(R) UL(Ry)

5. If R is a regular expression then K & (R*) [Kleene Star [87]] generates the following

set:
L(K) & U L(RY)
i=0,1,2...

where R® ¢ ¢, and R' % (...((RR)R)...R).

i times

The secure pattern search problem is a special case of more generic two-party secure
function evaluation problem. In that problem there is a known for two parties function
F:UxV - Z, the first party has an input argument u € U and the second party has an
input argument v € V and the objective of these two parties to calculate F(u, v) allowing one
or both parties to learn the result, but none of the parties should learn an additional
information about the input of the another.

This problem has various real life applications. One such example is searching a
number of appearances of a specific DNA pattern among people of some specific group (the
FBI wants to allow biogenetical researchers (clients) to find the number of people among

the criminals who have a specific (featured by the researchers) pattern in their DNAs
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without providing the entire list of DNAs of such people, and without learning which
patterns have been searched). In this example the input argument of the first party is the
pattern and the input of the second party is the database of DNAs.

The next application is in banking: a person wants to take a credit from a bank. The
bank needs to check whether he fits to their requirements, particularly they want to check
his credit history storied in Credit Report Agencies (CRA). But full credit report of a person
may contain lots of private information as long as the criteria of the bank for giving a credit
for the person also may be private. So the bank may want to check his criteria with the CRA
without learning the full credit history and without providing the criteria to the CRA. The
range of applications of the two-party secure function evaluation problem is not limited to
the privacy-preserving genomic computations and credit checking, it can also be used in
remote diagnostics, graph algorithms, data mining, medical diagnostics, face recognition,
policy checking and in other areas. For more details see [32], it gives entire overview of the

problem and its applications.

1.3 WHITE-BOX ENCRYPTION AND ITS USAGE IN OBLIVIOUS
TRANSFER PROTOCOLS

The aim of traditional (both symmetric and asymmetric) cryptography is to ensure the
security of the system in black-box attack context. Namely it is assumed that the attacker
may have access to the output of cryptographic algorithms but it has no access to
algorithm’s execution process and environment itself. But in parallel with deploying
cryptography in software applications intended for consumer devices (such as mobile
phones, personal computers, gaming consoles, etc.) it appeared to be important to take into
consideration that an attacker may have access to more information than only the output of
crypto algorithms. Currently it should be considered that an attacker has a complete vision
of the software execution environment and its implementation. Namely the attacker can
analyze the assembler and the process of the software execution (memory chunks, system

calls, etc.) using various tools (such as disassemblers, debuggers, simulators, etc.). In the
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worst case the adversary may interfere by changing the assembler of execution. Such kind
of attack is denoted as white-box attack and the aim of WB cryptography (WBC) is
implementing an encryption/decryption algorithms (say AES or SAFER+ [88]) in a special
way to keep the cryptographic assets (keys and other secret information) secure against WB
attacks, particularly the cryptographic assets should not be stored in memory of the running
program in their original form. To do so these assets should be sewn up into the
implementation of the algorithm in such a way that it was impossible to invoke them even
having full access to the execution environment.

The figure 1.3 below illustrates high-level concepts of both black-box (classical) and WB
approaches of implementation of a cryptographic algorithm (either encryption or

decryption).

key plaintext (ciphertext) helper data  plaintext (ciphertext)

@

ciphertext (plaintext) ciphertext (plaintext)

Fig: 1.3
A black-box implementation of a crypto algorithm (the left hand side image) takes as an
input both the key and the plaintext (or ciphertext) and runs the steps of the encryption

(decryption) algorithm according to the specifications of the algorithm and returns

39



ciphertext (or plaintext) as a result while the WB implementation of the same algorithm with
the same key (the right side image) takes as an input only the plaintext (or ciphertext) and
some helper data and runs some changed encryption (description) algorithm but finally
returns the same ciphertext (or plaintext) as the black-box implementation was returned.
Here the helper data is not the key but it together with the changed encryption (decryption)
algorithm gives the same result as the implementation of the original algorithm with the key.

The academic study of WBC was initiated from the seminal work by Chow et al. [89]
And the major issue with the WB cryptography is the security. Intuitively the security of the
implementation of a crypto algorithm against WB attacks (also called as WB
encryption/decryption) is measured by the complexity of guessing the secret key or making
the opposite operation (decryption or encryption) by the WB attacker. And so far all existing
AES WB implementations have been broken (are insecure). However the recent work
“Design and Cryptanalysis of Secure WB Encryption Based on SAFER+ Algorithm” by G.
Khachatryan, M. Kuregyan et al. [90] introduces an approach for secure WB
implementation of SAFER+ block cipher which is proven that resistant against known WB
attacks of AES.

In the proposed approach the WB encryption routine is represented via lookup tables
based on the secret keys of encryption. These tables are considered accessible for the
attacker in each of the rounds and their main purpose is to hide the original cryptographic
keys of the algorithm while performing correct encryption operations. Such WB encryption
allows everyone who has access to the WB lookup tables to implement the encryption
operation, but since they don’t give ability to reveal the original key of encryption hence
only the owner of the secret key can decrypt the results of encryption and get the valid
plaintext. In this point of view the White-Box lookup tables can be considered as a
public key because using them everyone can encrypt messages, but only the secret key
holder can decrypt them. This idea plays a fundamental role in our constructions, since it
allows changing heavy public-key operations by thousand times faster symmetric key

operations.
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According to the formalism from [90] a WB encryption scheme WBES corresponding to
the block cipher algorithm (Gen,Enc,Dec) is a list of three (WBGen, WBEnc, WBDec)
algorithms performing in the plaintext space M, key space K and ciphertext space C, such
that given a k-bit length master secret key K <y K chosen at random from K, the algo-
rithms operate as follows:

o WB Table Generation: The owner of the secret key K generates WB encryption tables
with respect to K using the table generation public algorithm WBGen:

T « WBGen (K)

e Encryption: A random plaintext M «<g M chosen from the ciphertext space can be
encrypted to the corresponding ciphertext C given the WB tables T and the public
encryption algorithm WBEnc:

C < WBEnc (T; M) & WBEnc (P)

e Decryption: The ciphertext C can be decrypted back to the ciphertext M using the
secret key K and the decryption algorithm WBDec:

M < WBDec(K;C) & WBDecg(C)

e Relationship with original algorithms: For all M < M and T < WBGen (S) the following
two statements are correct

1. M = Dec(K; WBEnc;(M)) £ Dec x(WBEnc 1(M))
2. WBEnc;(M) = Enc(K; M) & Enc x (M)

In the proposed construction the security parameter k = 128, the plaintext and
ciphertext spaces and the key space all are comprised of 128-bit length strings.

Definition 1.2: A WB encryption scheme WBES & (WBGen, WBEnc, WBDec) is
secure against key recovery attacks if given T « WBGen (K) it is computationally infeasible
to extract the secret key K.

Definition 1.3: A WB encryption scheme WBES & (WBGen, WBEnc, WBDec) is
secure against reverse-engineering attacks if given T « WBGen (K) and any ciphertext
C = Encg(M) it is computationally infeasible to compute M.

Definition 1.4: A WB encryption scheme WBES & (WBGen, WBEnc, WBDec) is

computationally secure if for every xg,x; €{0,1}'*® the values WBEncy,,, (x,) and
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WBEncy ,.(x;) are computationally indistinguishable, where U,,g is a uniformly chosen
128-bit length key from the key space.

Definition 1.5: A WB scheme WBES & (WBGen, WBEnc, WBDec) is considered as
secure if it complies all three security definitions above.

Referring the reader to the paper [90] for more details later in our work we will
assume that a secure WB encryption scheme WBES = (WBGen, WBEnc, WBDec) exists.

The next construction block used in constructions designed within this dissertation is 7-
out-of-N oblivious transfer (OT) protocol. This is a two party (client and server) protocol
intended for solving the following problem. The client has a number i from 1 to n and the
server has a list of n secrets (sy,s,,...,5,), they should communicate and after that the
client should learn the i-th secret s;, but the server should not learn the i and the client
should not learn any information about the other secrets apart from s;. The figure 1.4 below

illustrates how the OT protocol works.

Client Init and Q(i) Server
E [ € {1, 2, ...,n} R(Q(D), Init) {sl,sz, . sn}
—
=
Fig: 1.4
Here:

e Init - Some initialization data.

e Qi) - Query token for number i which hides i from the server.

. R(Q(i), Init) - Response token which contains enough info to invoke s;, but nothing else.

OT protocols [91], [92], [93] are important cryptographic primitives having numerous

applications and particularly playing an essential role in secure function evaluation
protocols. On the other hand existing OT protocols are based on computationally expensive
public-key operations which remains the main obstacle for employing such protocols in
applications where the speed of computations is critical. But the possibility of using lookup

tables from WB implementation of SAFER+ encryption algorithm as an alternative to public-
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key made it possible to design OT protocols which use no asymmetric crypto operations

[94]. The new SPM protocol introduced in chapter 4 is based on that OT protocol.
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CHAPTER 2. A METHOD FOR DELEGATING SEARCH
FUNCTIONALITY TO THIRD PARTIES FOR SSE SCHEMES

In this chapter we introduce a novel method for delegating querying functional of a
symmetric SE scheme to the third parties without providing them any of the scheme’s
master keys. The method makes possible for third-parties to search on the user’s encrypted
database as well as update the database by adding (and deleting) new documents without
compromising the security of existing documents or corrupting the practical aspects of
scheme usage. The access to the query related files as well as the permission of updating
the database should be handled via access control mechanism set by the user and managed
by the server which is considered to be honest but curious. Only the master key owner is
able to decrypt the third-parties added files. The underlying idea of our approach is to
employ WB cryptography techniques to delegate the encryption functionality to third-parties
without revealing the secret key.

To demonstrate the method we construct a novel searchable encryption scheme
intended for multiple users based on the scheme called Dynamic Symmetric Searchable
Encryption [17] where the data owner can grant third-parties to search on his encrypted
database, as well as update the database without violating the master key security or adding

extra communication and/or computation efforts for each search.

2.1 DEFINITIONS AND NOTATIONS

Here we use the same notations as in the first chapter, namely the data is a set of n
documents (or files) f & {f, f> ..., f,} and each of them has a set of keywords W; associated
with it. By W we denote the set of all keywords from all files and for w € W by f,, < f we
denote the set of files associated with the keyword w. The ID of the i-th file is denoted by
fid;. Also by |X| we denote the cardinality (number of elements) of the set or dictionary X

and for a binary string w by |w| we denote its bit-length. =" and ‘<’ signs denote the

assignment operation and (a,, a,, ..., a,,) is the concatenation of ay, a,, ..., a,, strings. The set
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of the binary strings of length n is denoted as {0,1}", and the set of all finite binary strings
as {0,1}". We write x « X to represent that an element x being sampled from the
distribution X', and x < X to represent an element x being sampled uniformly at random
from a set X. Given a sequence of elements v we refer to its i*" element either as v[i]. If
the pair (s,v) is in the dictionary T, then T[s] is the value vassociated with s and we
writes € T to mean that there exists a pair in T with search key s. And finally we will
assume that WBES = (WBGen, WBEnc, WBDec) is a secure WB encryption scheme as it was
defined in section 1.3.

The dynamic SE scheme for multiuser users and one owner is a tuple of fourteen
polynomial-time algorithms SSE = (Gen, Enc, GenSearchGateway, GenUpdateGateway,
SearchToken, GatewaySearchToken, AddToken, GatewayAddToken, DelToken,
GatewayDelToken, Search, Add, Del, Dec) such that:

1. Gen: generates the secret keys for constructing the secure index and encrypting the
files as well as for generating search and modification tokens. Performer is the data
owner.

2. Enc: Takes the set of documents and the secret keys and outputs the set of ciphertexts
of these documents and secure index of the scheme. Performer is the data owner.

3. GenSearchGateway: Using the master keys of the scheme generates a special
gateway which can be shared with third-party users and be used for search token
generation. The data does not reveal the secret key. Performer is the data owner.

4. GenUpdateGateway: Again using the master keys of the scheme generates a special
gateway which can be shared with third-party users and for generation of update
tokens. Update tokens allow adding a new file or deleting an existing file. The gateway
does not reveal the master keys. Performer is the data owner.

5. SearchToken: Using the master keys and a keyword generates a special token
corresponding to the given keyword. This search token can be used by the server to

make search over encrypted index. Performer is the data owner.
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10.

11.

12.

13.

14.

GatewaySearchToken: Again generates the search token for a given keyword but
this time using the search gateway. Performer is the third-party user who has a
gateway for generating search tokens generated by the data owner using the
GenSearchGateway algorithm.

AddToken: Using the scheme’s master keys for the given file generates a special
addition token which can be used to update the secure index for adding information
about the keywords of the new file there. Performer is the data owner.
GatewayAddToken: Again generates a token for file addition but this time using the
update gateway. Performer is the third-party user who has a gateway for generating
update tokens generated by the GenUpdateGateway algorithm.

DelToken: Using the scheme’s master keys generates a deletion token for the given
file identifier which can be used to update the secure index by deleting from it
information about the file. Performer is the data owner.

GatewayDelToken: Again based on the file identifier generates a deletion token but
this time using the deletion gateway generated by GenUpdateGateway algorithm.
Performer is the third-party user who has the update gateway.

Search: Takes the search token generated either by the SrchToken or
GatewaySrchToken and returns the list of file identifiers (or their ciphertexts)
containing the keyword hidden in the token. Performer is the server.

Add: Takes the add token generated either by the AddToken or GatewayAddToken
and adds to the secure index information about the new file of the token. Performer is
the server.

Del: Takes the search token generated either by the DelToken or GatewayDelToken
and deletes from the secure index information about the file for which the token was
created. Performer is the server.

Dec: Using the passed key decrypts the ciphertext of a single file returned as a result
of Search and returns the plaintext document. Performer is the data owner or a third

party user how has the key for decrypting the files.
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2.2 THE ALGORITHM

Our multiuser SE Scheme is an extension of Dynamic Symmetric Searchable Encryption
scheme [17] which was briefly reviewed in the section 1.1, though the approach of using WB
cryptography can be used to extend most of the existing symmetric SE schemes to obtain a
multiuser SE scheme. The reason why we have concentrated on this solution is that it seems
to be the most efficient and dynamic scheme providing a reasonable tradeoff between
efficiency and security.

Let’s consider that SYM & (Gen, Enc, Dec) is a symmetric encryption scheme and
F:{0,1}* x {0,1}* - {0, 1},
G:{0,1}* x {0,1}* - {0, 1}¥,
P:{0,1}* x {0,1}* - {0, 1}¥,
R:{0, 13* x {0,1}* - {0, 1},
M:{0,1}* x {0,1}* - {0, 1}*,
L:{0,1}* x {0, 1} - {0, 1}*,
are PRFs, where k is the security parameter of the scheme . Let’s consider also that
H,:{0,1}* - {0, 1}*
and
H,:{0,1} - {0, 1}*
are random oracles. Besides that let
WBF: T x {0,1}* - {0, 1}*
be the white-box implementation of the function F with the input parameter T € Tz, which
is a WB table. And in the same way
WBG: T, x {0,1}* - {0, 1}*
WBP:Tp x {0,1}* - {0,1}*
WBR: Ty x {0,1}* - {0, 1}*
WBM: T, x {0,1}* - {0,1}*
WBL: T, x {0,1}* = {0, 1}*
are the WB analogues of the functions G, P,R, M, L.
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The 14 algorithms SSE = (Gen, Enc, GenSearchGateway, GenUpdateGateway,
SearchToken, GatewaySearchToken, AddToken, GatewayAddToken, DelToken,
GatewayDelToken, Search, Add, Del, Dec) of the multiuser SE scheme are described below:
e Gen (k): sample six k-bit strings K;,K,,K3, Ks,Ks K; uniformly at random and

generate K, « SYM. Gen(k). Output K & (Ky,K,,K3, K4, K5, Ke, K7).

e Enc(K,f): takes the index generation keys K and the collections of user’s files
f = (fi, ..., fn) and returns an encrypted index y and the set of encrypted documents
¢ = (cy, ..., ¢y) In the following way:

a. Let A; and A, be arrays and let T, and T,. Let also 0! be the [-bit string of zeros
and free be a word that does not belong to /.
b. for each keyword w e W:
1. Create the L, list of nodes (Nj ... lewl) then chose random locations for

them in A; and store them there. Each node is the following pair:

N; & (Hi(Ky, 1) D (idy;, ptrs(Ni41)); 11)

where r; is a uniformly random generated k-bit string and K, := Pk, (w)
and ptrs(Njs, j41) & 0°8l4s],

2. Store the pointer of the first node of the list L,, in the search directory by
adding the following entry:

Ts[Fi, W)] = G, (W) @ (ptrs(Ny) , ptra(N;))
where N* is the dual of N, i.e., the node in A; which fourth entry points to
N in A;.
c. foreachfilefin f:

1. Create a list L; of dual nodes (Dl, ...,D|Wf|) then chose random locations in
the A, and store those nodes there (here W} is the set of keywords of the
file f). A dual node D; is associated with a keyword w, and hence with a

node N in L, associated with the same file f. Let N,,; be the node following
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N in L, and N_; the node previous to N in L,. Then D; is defined as

follows:

ptrg(Diy1), ptrg(NZy), ptra(Niq), ptrg(N),
D, & (H Ke 1 , r!)
' 2( ! l) D ptrs(N_l),ptrs(N+1),FK1(W) )i T

Here r/ is a k-bit uniformly random sting. K; := Ly (id;), and
ptrg (D|Wf| +1) = 0losldl,
2. To remember the entry point of the list L, store it’s first element’s pointer

in the deletion table T:

Ta[Ri,(ids)] = My, (idr) @ ptra(D;)

Secure Index y Search Table T Deletion Table T,

wy —M‘F_};ﬂq::;ﬁ:_;:;;ﬁii FKl (Wl) i GKZ (Wl) @ (4'1) RK5 (fldl) - MK6 (fldl) @ 1

T A Fig (W) = Gg,(wp) @ (012) R (fidz) = My (fidy) © 5
wy b £ S P (ws) = G, (w3) @ (510) R (fids) = My, (fids) @ 4
e ree = 6
v f

__________

w, | wg |free| wy | wy | ws |free| w;

fo | A7l 5 | A | fo |AdB]] fo

<
<«

Search Array A;

--------
- ~
-~ ~

< < i X
| A | fa 0 fs | fa| f3 0 Deletion Array 4,
W3 Wq %) W3 Wi Wy
Fig: 2.1

d. Create the list Ls., for free word by choosing the zunused cells located in
random locations in A; and in A,. Let (F,,...,E,) and (Fj,...,F/) be that nodes

correspondingly in Ag and A,. Set
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Ti[free] := (ptrs(F), 0'°8!4s)
and forz >i >1 set
Aglptrg(F)] := (ptrs (Fi_y); ptrg (F))
where ptrg (Fy) = 0'°8l4s]
e. Fill the remaining entries of A; and A; with random strings.
f. Forl1<i<n setc :=SYM.Encg,(f;)

g. Output (y,c), where y & (45,44, Ts, Ty) and ¢ & (cy, ..., ).

In the figure 2.1 above a small example of secure index y is illustrated.

e GenSrchGateway(K;, K;, K3): the client takes the key (K3, K,, K3) and returns the search
gateway in the following way:
1. Computes the WB tables corresponding to the PRF F: {0, 1}* x {0,1}* - {0, 1}¥
for the specified key K;
Tr := WBGen(F, K;)
2. Computes the WB tables corresponding to the PRF G: {0, 1}* x {0,1}* - {0, 1}*
for the specified key K,
T; := WBGen(G, K,)
3. Computes the WB tables corresponding to the PRF P: {0, 1}* x {0,1}* - {0, 1}*
for the specified key K;
Tp := WBGen(P, K3)
Outputs the search gateway T, & (Tg, T¢, Tp).

e GenUpdGateway(K): the key owner uses the master keys K and generates the
(Tg, Tg, Tp) := GenSrchGateway(K;, K,, K3) according to the previous algorithm, then
generates the forth WB tables corresponding to the SYM.Enc algorithm and the
selected key K, as Tgp. := WBGen(SYM.Enc, K,) after which generates the WB tables
Tgr, Ty, T, corresponding to the functions R, M, L and keys Ks, K, K.

Outputs the update gateway T,, & (Tg, T, Tp, Tr, Tar, Tr, Tenc) -

50



e SrchToken(Ky, K,, K3, w): the key owner uses the key K;, K, and K; and keyword w

and outputs the following search token

toi= (P, (W), G, (W), Fie, (W)

o GatewaySrchToken(Ts, w): the third-party user uses the search gateway T & (T, T, Tp)

and the keyword w and outputs the next search token
t, 1= (WBPTP (W), WBGy, (W), WBF, (w))
as can be seen, two search tokens for the same keyword generated either using

SrchToken or using GatewaySrchToken algorithm are identical.

e Search(y,c, ts): the server uses the encrypted index, the search token and the
collection of the ciphertexts of all files and returns the search related file IDs (or their
ciphertexts) in the following way

a. Parses t; as (ti, ty t3) and if t3 € T; returns an empty list of file IDs (or
ciphertext) otherwise:
b. Reveal the pointer to the result list’s first node by computing
(p1,p1) = t2 @ Ts[ts]
c. Then parse (y;,11) := N; := Ag[p,] and decrypt it with t; by computing
(idy, p2) = Hy(t1,71) @ ¥1.
d. Fori =2, decrypt node N; as above while p; # 0'°8l4s!
e. Output the identifiers revealed during the algorithm {id,,id,, ..} or the

ciphertexts of the corresponding files.
e AddToken(K, f): computes a special addition token for the specified file f using the

master keys K of the scheme.

1. Let W, be the set of keywords of the new file.
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Compute
to = (R (ids), M, (idf), 1, s A )
where forall 1 <i < |Wj|:

L <FK1 (W), Gg, (W), (idy, 0) @ Hy (P, (W), 1)), ri,>
"~ \(0,0,0,0,0,0,F, (W) @ H (L, (ids), ), r{
Where r; and r; are random k-bit strings.

Compute ¢ < SYM. Ency, (f)

Output (Ta , cf)

GatewayAddToken(T,, f): for a new file f uses the T, & (Tg, T, Tp, Tr, Tos, Try Tene)

update gateway and computes the addition token similar to the one generated by the

AddToken(K, f) in the following way:

1.

2.

Let W, & (wl, ...,Wle|) be the set of keywords of the file f.
Compute t, = (WBFTR(idf),WBGTM(idf),/ll,...,/1|Wf|), where  for  all
ie{l..|w}:

[ WBFr, (W), WBGro(wy), (idy, 0) @ H,(WBP;,(w),11),
' 1,(0,0,0,0,0,0, WBF_ (W) ® H,(WBPr, (ids),7!), 1|

where r; and r; are random k-bit strings.
Compute ¢, < WBEncy, ()

Output (t,,cf)

DelToken(K, fid): using the master keys K and the file ID fid outputs a token for

deleting the file with that ID.

tq = (Rg (fid), Mk, (fid), L, (fid), fid)

GatewayDelToken(T,, fid): using the update gateway T, < (Ts, Tg, Tp, Tr, Tns Tty Tenc)

and the file id fid returns the following token:
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As can be noticed the resulted deletion token is similar to the token generated by the

DelToken(K, fid) algorithm for the same file ID.

Add(]’; C! ta) :

using the addition token generated either by the key owner or by the

eligible third-party user updates the secure index in a following way:

a. Parse t, as (ty,ty, A4,...,A4;,¢) and t; € T; return Error[FileAlreadyExists],

otherwise:

b. Forl <i <1,
1. Compute (¢,0) := Tg[free]. & is the last unused location in A and find the

&* pair of & in the A, array by getting (¢_1,¢&") := Ag[€].

2. Update the value for free word in Ty table to point to the penultimate free

node:

Tyifree] = (§-y, 084

3. Each 4; fori € {1, ..., [} refers to a single keyword w;, of the new file. So for

each i do the following.

Vi.

Reveal address of the LWAi list’s first node N,
(1 pD) = Ty[A[1]] @ 4 [2]
Create a new node at the location ¢ of Ag array and make it to point to
the node N; by setting:
As€] == (4 [3] @ (0,p1), 2 [4])
Update T, by setting:
L[4[ = )@t
Update the pair node of N; by setting

Ad [pI] = (Dl @ <O, E*' O' 0' fl 0! O), r )
where (Dy, 1) := Aylp7]

Update the dual of A [¢] by setting

Agl&] = (A [5] D (§24,0,p1,¢, 0,1, 4; [1]), 4; [6])
In the first iteration of the loop (if i = 1) update the T, table:

Talt1]:=8" D¢,

c. When the loop finished the secure index is updated so update the ciphertexts

collection by adding ¢ to c.
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Del()’; C, td)

a.

Parse t; as (tq,t,, t3, fid) and if t; & T, return Error[FileNotFound], otherwise:

b. Find Ly list’s first node:

C.

d.

e.

p; = Tylt1] @ ¢,

Start a loop with i :=1,

1.
2.

Parse (D;,r) := Ag4lp;] and compute (ay, ..., aq, 1) := D; @ H,(t5,1).
Delete D; by setting A4[p;] equal to a pair of random strings of (6 *
log|A4| + k; k)-bits length.
Find the pointer to the last unused node by getting (&, 0'°814s) := T,[free]
Increase the number of the unused nodes in the search array by one (the
deleted one) by setting:
T,[free] := (a,, 0'°84s)
Free the location of the D;'s dual by setting Ag[a,] := (¢, p;)
Let N_; be the previous node of D;'s dual. Update the node which comes
after N_; by setting:
Aslas] := (b1, b, @ a, © ae,7-1)
where (by, b,,7_,) := Aglas]. Also update the pointers of the pair node of
N_; by setting:
Aglay] := (b1, by, b3 @ p; @ as, by, bs,bg @ ay, B ag, u*,r>1) ,

Where (bli ey b6' /,l*, T‘jl) = Ad[az]

7.

let N,; be the node that follows D;'s dual. Update N,,'s pair’s pointer:
Agqlaz] :== (b1, b, © P{ © ay, bs,bs,bs D ay © as,bg, u*,754)

Where (bli ey b6' #*, T_:l) = Ad [ag]

8. Setp;,;:= a;.

Remove the ciphertext for file with fid ID from c.

Remove t, from T,

Dec(K, c): For a single ciphertext c output f := SKE.Decy, ().
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As can be seen the gateways generated for third-party users are based on the white box
tables corresponding to the secret keys. Using this construction the key owner can grant the
third-parties either search permission or both search and update permissions. Having only
the search gateway a third-party user cannot run modification queries (addition and
deletion).

Using the same method most of the existing single-user searchable encryption schemes
can be extended for supporting third-party user’s access to the data via search and/or

modification queries.

2.3 SECURITY

There is no formal framework developed for describing a multi-party SE scheme’s
security. Intuitively such a scheme should provide data security and secret key security
against malicious third-party users and the untrusted server. In all SE schemes the server is
considered as a possible passive adversary which is interested in obtaining more
information about the user’s data, however it never acts maliciously or interacts with
malicious users. The scheme described in [65] does not provide key secrecy at all. The
master key used for secure index construction is shared with all eligible third-parties. This
means a malicious third-party user is able to decrypt all secret information by hacking the
server’s database. The latest scheme described in [69] provides key secrecy at the cost of
additional communication round per query between the third-party and the key owner.

In our setting we also assume that the server is honest-but-curious which never acts
maliciously. Otherwise a malicious server can always act maliciously even without knowing
the secret information. For example it can return incorrect results to the search queries.
This consideration of honest-but-curious server is quite practical in real-life situations,
allows the owner of data to configure an access-control mechanism on server and control
the users’ permissions.

We specify the following security aspects:

1. Secret key’s security against third-party users.
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2. Data security against revoked third-party users
3. Data security against the honest-but-curious server.
4. Secret key security against honest-but-curious server

Proof Sketch #1: The third-party users are provided with the WB encryption tables
Tr, T, Tp, Tr, Ty, T, Tene Which hide the keys K3, K, K3, K4, K5, Ko, K;.  The secret key security
against third-party users is guaranteed by the security of WB table generation algorithm
against key recovery attacks. If the underlying WB encryption scheme is not resistant
against key-recovery attacks, the third-parties will be able to extract the secret keys from
the tables. This will open lots of security issues against the system’s overall security.

Proof Sketch #2: The data security against revoked third-party users is guaranteed by
the access control mechanism configured by the owner of the data on the server. The
revoked users should be rejected access by the server. In case the revoked user manages to
access the encrypted database (by hacking or stealing the database server) it will be able to
run queries and get the results though it wouldn’t be able to decrypt the index and get
plaintext information. This means that if the attacker is wondered in the content of specific
file, he can only make guesses which words can exist in that file and then check by making
query over the index. Finding a word he will never learn the position of the word or the
context of its usage. This is a significant security progress.

Proof Sketch #3: Data security against the honest-but-curious server is the most
important security aspect in the SE scheme. The server given the encrypted indexy &
(45, A4, Ts, Ty) and the set of ciphertexts ¢ & (cy,...,c,) should never learn any private
information regarding these files.

All practical SE schemes which are not based on Oblivious RAM [77], [76] approaches
leak some information. Intuitively a dynamic scheme should leak more information than a
static scheme or a scheme which provides lesser level of dynamicity. In [17] scheme a
formal framework is provided for describing the scheme’s leakage and a formal security
proof. Here it is shown that our multiuser scheme does not increase the system’s leakage

and provides the same security level as the scheme from that paper.
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Next the formal definitions of the leakage functions (£, L,, L3, £,) which altogether
describe the overall leakage of the scheme are provided.
o The £, leakage is described as
L, (F) 2 (14], {idw):3f € fiw € We}, id(Nses, {If Bres)
Here id is a function returning the unique ID of the word or the file. This function
shows the leakage of the search array size, the IDs of keywords and their total
number, the IDs of files and their total number and the size of each file.
o The £, leakage is described as
Ly,(f,w) ¢ (id(w), accpt(w))
This function describes the leakage of each word ID as well as access pattern which is
the IDs of all files containing the specified word w.

o The L; leakage is described as

L3(f, f) £ (d(f), {id(w), apprs(W) }wew. |f )

Here apprs(w) a Boolean with a value equal to 1 if w at least appears in one of the
existing files f, and with value 0 value otherwise. This function shows that having a
new file, the IDs of each unique word contained in that file and the appearance bit of
the word are revealed.

o The £, leakage is described as

Ly(f, fid) = (fid, {id(w), prev(fid, w), next(fid, w) hyew)
Here prev(fid,w) and next(fid,w) are the identities of the files before and after the

files with fid ID that contain w. If there are no files before or after fid that contain

the word then prev(fid,w) and next(fid,w) return NULL. This function shows that

file deletion reveals the identities of the words contained in the file as well as the
succeeding and preceding file identifiers containing the selected word.

Let A be a stateful adversary, SSE be the dynamic SE scheme described in the previous

section, S be again a stateful simulator and £ & (£,, £,, L3, £,) be the leakage functions as

they were described above. While discussing the data security let’s consider the following

experiments:
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Real,(k): The challenger runs Gen(k) to generate master keys K then the adversary A
sends to the challenger a set of files f and receives pair (y,c) < Encg(f) from it. After this
A creates | adaptive queries and sends to the challenger. Then for each query g &
{w,f,fid} the challenger sends to the adversary one of the search
ts < SrchToken(w, Ky, K;,K3); addition  (tq,¢f) < AddToken(K,f) or deletion t; «
DelToken(K, fid) tokens, for addition token it also sends the ciphertext of the file which is
being added. As a result of experiment A returns a bit b.

Ideal, ¢(k): The adversary A sends to the simulator S a set of files f. Given £L;(f) the
simulator S generates and sends a pair (y,c) to A. After this A creates | adaptive queries
and sends to the simulator. Then for each query q & {w, f, fid} the simulator sends to the
adversary one of the search t,; addition (t,, cs,) or deletion t,; tokens, for addition token it
also sends the ciphertext of the file which is being added. To generate search token the
simulator uses L, (f,w), for addition token it uses L;(f, f) and for deletion token L,(f, fid).
Here again as a result of experiment the adversary returns a bit b.

Definition 2.1 (dynamic CKA2-security): The SSE is L-secure against adaptive
and dynamic chosen-keyword attacks if for all probabilistic polynomial-time (PPT)
adversaries A, there exists a PPT simulator S such that

|Pr[Ideal, s(k) = 1] — Pr[Real, (k) = 1]| < negl(k)

The security of a multi-user scheme can be defined similarly to the security of a single-
user scheme, as the server should not learn anything about the documents and queries
beyond what can be inferred from the access and search patterns. The main security
theorem exposing the security of the scheme is defined as follows.

Theorem 2.1: The multiuser SE scheme described as a tuple of 14 algorithms SSE =
(Gen, Enc, GenSearchGateway, GenUpdateGateway, SearchToken, GatewaySearchToken,
AddToken, GatewayAddToken, DelToken, GatewayDelToken, Search, Add, Del, Dec) is £-
secure against adaptive and dynamic chosen-keyword attacks given a random oracles H;
and H,, PRFs F, G, P, R, M and L, secure white-box encryption algorithms corresponding

to that PRFs and a CPA-secure SYM encryption scheme.
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The security defined by this theorem claims that given a sequence of search, deletion or
addition tokens t & (t,, ..., t;) for the queries q ¥ (q4, ..., q;) generated adaptively the server
should not learn more information about either f than defined by the leakage functions L.

From the server’s point of view our settings differs from the single user configuration
by the fact that besides the data owner the tokens can be generated by the third-party

Users.

Suppose that the key owner generated a search token t;:= (PK3 (w), Gk, (W), Fy, (w))
and the third-party’s generated search token is t;’ := (WBPTP (w), WBGr,(w), WBFTF(W)) .

As WB scheme encryption with the WB tables results to the same ciphertext which is
obtained by regular  key  encryption since.  WB$r,(w) = $,,(w)  for
($,%) € {(F,1),(G,2),(P,3)} and Ty = WBGen($, Ky,), then the tokens t;" and t; are the
same. This means the server does not get anything more in the multi-user setup than it gets
in the single-user setting and the third-party generated tokens are indistinguishable from
the key-owner’s generated tokens. The same situation is in the case of addition and deletion
tokens. Thus the security against the server is the same as in the single-user scheme.

At high level this theorem is proved in the following way. The simulator S simulates the
pair (¥,¢) of secure index and set of file ciphertext getting as an input the set of file f and
using L, (f). £; returns the number of files, their sizes and ids and word ids and the size of
the search array A;. The generated index 7 can be constructed similarly to a real secure
index y, expect some actions. Namely outputs of the PRFs of the scheme are changed by
random values and all encryptions are done on strings of 0-s of appropriate length. The fact
that the encryption schemes are CPA-secure and functions F,G,P,R,M and L are pseudo-
random will ensure that ¥ is indistinguishable from y generated during real execution. The
simulated collection of file ciphertexts ¢ is generated in the same way and again encryption
scheme’s CPA-security guarantees the indistinguishability.

In the same manner the simulated tokens should be generated for search and update

operations from the information received from £,, L3, £,. However simulation of the tokens
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is more complex, because of keeping track of various dependences revealed during the
previous queries of the simulator.

We do not expose the full proof here which is shown in [17], as nothing will be changed
in the formal description related to the setting changes. As the tokens generated either by
the key-owner or third-party users are indistinguishable, the security proof remains the
same.

Proof Sketch #4: Third-party users are provided with the WB encryption tables
T, T, Tp, Tr, Ty, Tr, Tene Which hide the keys Ky, K, K3, Ky, Ks, Ko, K;. There is a risk that
some malicious third-party user will cooperate and share with the server his WB encryption
tables. In this case the server will be able to query the database as usual trusted user and
get statistical information about the database. He will be able also to generate the
corresponding tokens for each word. Having the history of queries, the server will be able
to reveal which queries had been made in the past by the users. Here again the secret key
security will be guaranteed by the security WB encryption scheme. If the WB scheme is

resistant against the key-recovery attacks, the secret key will not be revealed.

2.4 IMPLEMENTATION

To demonstrate our algorithms we implemented a C++ library and a demo application
which demonstrates the usage of that library. The library is named DSSE (dynamic
searchable symmetric encryption) and provides API for programming both client and server
side applications.

The main class of the client side APl is QueryTokenGenerator (see Fig: 2.2), which provide
the ability to create objects of SearchToken, DeleteToken (see Fig: 2.3) and AddToken (Fig:

2.4) types.
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fQueryTokenGeneratom EncryptionManager> 2 )
Template Class
= Fields
39 encryption_manager_
g" owns_encryption_manager_
= Methods
¥ ~QueryTokenGenerator
¥ generate_add_token (+ 2 overloads)
¥ generate_delete_token
¥ generate_search_token
¥ QueryTokenGenerator
. J
Fig: 2.2
( SearchToken (&) " DeleteToken (&)
Class Class
= Fields = Fields
4 CURRENT_VERSION_ 4 CURRENT_VERSION_
47 F Kl w_ 4’ FK5.f
47 G K2 w_ 47 file_id_
47 PK3_w_ 4¥ G_Ko_f_
= Methods 47 PK7f_
v deserialize = Methods
¥ get F Kl w W DeleteToken (+ 1 overload)
¥ get G K2w W deserialize
¥ get PK3w W% get F K5 f
¥ operatorl= ¥ get file_id
¥ operator== ¥ get G_Ko_f
% SearchToken (+ 1 overload) ¥ get PK/f
¥ serialize ¥ operatorl=
- % operator==
¥ serialize
b
Fig: 2.3




]

[ AddToken
Class

= Fields

CURRENT_VERSION_
F_K5_f_
file_ciphertext_
FILE_LEND_CHAR_
file_id_

file_path_

G_K6_f_
keyword_infos_
ethods

AddToken (+ 1 overload)
deserialize

get_F_K5_f
get_file_ciphertext
get_file_id

PN E% W

=

get_file_path
get_G_K6&6_f
get_keyword_infos
operatorl=
operator==

¢ O O O O O O L

L

serialize

= Nested Types

word _infos_ t : std::vector=...
Typedef

«:

WordInfo
. Struct

Fig: 2.4
Each of these token classes represents corresponding token object described in the
algorithm. All of the token classes have serialize() and deserialize() methods intended to be

used for the token’s transmission via socket.
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For creation of instance of the QueryTokenGenerator type itself an encryption manager
should be used. The encryption manager is responsible for providing seven encryption
boxes for the master keys K ... K, of the scheme. As it is a part of the key management we
provide an API for implementing custom encryption manager, namely an abstract class

EncryptionManagerBase (see Fig: 2.5)

' EncryptionManagerBase <EncryptionManager > 2] |
Template Class

= Fields

a7 eboxl_
# ehox2_
o ebox3_
4 eboxd
¥ ebox5_
eboxb_
ebox/_

= Methods

¥ encrypt

+¥ EncryptionManagerBase

W get_ebox_for_key (+ 1 overload)
J¥ operator=

¥ set_encryption_box

* Nested Types

Fig: 2.5
Also we provide two implementations EncryptionManagerSaferPlusBlackBox (see Fig: 2.6)
and EncryptionManagerSaferPlusWhiteBox (see Fig: 2.7) of the encryption manager
interface. First of which can be used by the data owner and the second one by the third-

party users.
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' EncryptionManagerSaferPlusBlackBox 2
Class
< EncryptionManagerBase<EncryptionManagerSaferPlusBla...

=l Fields
keyl_
key2_
key3_
key4d_
keys_
keyo_
key7_
= Methods

dump_encryption_box_to_file

ti t{ E{ C{ E{ u‘-‘ u‘-‘

dump_encryption_boxes_to_files
encrypt_via_ebox
EncryptionManagerSaferPlusBlackBox (+ 1 ove...
init_encryption_box_from_key

‘e ¢ "6 ¢

Fig: 2.6

' EncryptionManagerSaferPlusWhiteBox (&) |
Class
=+ EncryptionManagerBase<EncryptionManagersaferPlusW...

= Methods

4¥ encrypt_via_ebox
¥ EncryptionManagerSaferPlusWhiteBox

1* Init_encryption_box_from_file

L

Fig: 2.7
The sever side API’s main class is FileDbManager (see Fig: 2.8). This class manages the
database of files. It provides ability to search, add, delete files from the database using
corresponding search, add, delete tokens and custom implementations for database index
and database data. To create an instance of FileDbManager class the directory of file db
should be specified. Under that directory a directory “data” is being created for storing

encrypted files, and a file “index” for storing encrypted index of the file database.

64



FileDbManager<IndexiManager, DataManager>

Template Class

= Fields

@* data_manager_

g7 index_manager_

g* query_processor_callbacks_
= Methods

add_callback
add_file

delete_file
FileDkManager
get_all_files
get_file_ciphertext
get_file_ciphertexts
get_file_id
get_file_id_path_map
get_file_path
get_file_paths
get_path_file_id_map
remove_callback
search_files

= Nested Types

Ll S G Sl S CIE CEE S SR SR SR SR ¢

<

data_params_t : typename DataManager::params_t
Typedef

file_id_path_map_t : typename DataManager::file_id_path_map_t
Typedef

index_params_t : typename IndexManager::params_t
Typedef

path_file_id_map_t : typename DataManager::path_file_id_map_t
Typedef

query_processor_callbacks_t : std::set<FileDbQueryProcessorCallback* >
Typedef

Fig: 2.8
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For processing (reading, writing) the secure index which is done by the IndexManager
parameter of FileDbManager class two classes (FileDbiIndexManagerMappedFile and
FileDbIndexManagerinMemory) have been implemented. First of them stores the index in a
memory mapped file so it is stateful hence more practical, but the second one is only for

testing purposes since it gets deleted after application is finished (see Fig: 2.9).

%

( FileDbIndexManagerBase <FileDbIndexManager> 2

Template Class

= Fields
g index_path_

= Methods
7% FileDbIndexManagerBase (+ 1 overload)
¥ oget_deletion_array (+ 1 overload)

a* get deletion_table (+ 1 overload)
get_free_word

< 4 <

geft_index_path
get_search_array (+ 1 overload)
2% qget_search_table (+ 1 overload)
2" operator=

=

e ¢ ¢

* MNested Types

\_

public public
| FileDbIndexManagerMappedFile £ ' FileDbIndexManagerinMemory £

Class Class
=+ FileDblIndexManagerBase<FileDbIndexManagerMappedF... =+ FileDbIndexManagerBase<FileDbIndexManagerInMemar...
= Fields =l Fields

L{f deletion_array_ 47 deletion_array_

,_,N" deletion_table_ ,_,V deletion_table_

e index_file_path_ o search_array_

47 mmap_file_ 4* search_table_

#? search array_ = Methods

4# search_table_ 4* FileDbindexManagerinMemaory
= Methods 4" get_deletion array (+ 1 overload)

5* FileDbindexManagerhappedFile ¥ get_deletion_table (+ 1 overload)

¥ get_deletion_array (+ 1 overload) ¥ get_search_array (+ 1 overload)

a* get_deletion table (+ 1 overload) a¥ getsearch_fable (+ 1 overload)

a* get_search_array (+ 1 overload) -

2% get_search_table (+ 1 overload)

Fig: 2.9
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The demo QT based GUI application conducts both client and server side operations. At
the beginning it creates an empty file database then allows running queries against that
database from console. It allows to:

e Add a file or a directory to the database.

e Delete a file or a directory from the database.

e Search files with specified keywords.
The cryptographic primitives for our implementation are 128-bit SAFER+ [88] block cipher
algorithm and SHA-256 for hashing. The WB encryption scheme is based on the technology
described in [90].

During the implementation the following libraries are used:
e Boost Libraries version 1.55.0. (bind, lexical_cast, uuid and interprocess).
e Implementation of SHA256 and SHA224 by from Crypto++ library.

e Implementation of WB encryption algorithm based on 128-bit SAFER+.
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CHAPTER 3. IMPLEMENTATION OF SEARCH FUNCTIONALITY
OVER ENCRYPTED CLOUD DATA

Dropbox [6], Google Drive [7], Box [8], Microsoft OneDrive [9] or any other public
cloud storage provider stores and can read all information users store there. This is a very
serious security issue [10] and for all individuals and organizations that cares about the
security of their data but still wants to benefit from public cloud storages the only solution is
to use some encryption tool which will help to encrypt user information before uploading it
to the cloud. The design of advanced security solution for public cloud storages and for
distributed file storages in general is a hard scientific and technical problem [95], [96],
[97], [98], [99], [100], [67]. On the other hand, there is a tradeoff between security and
usability, as encryption eliminates the easy access to data via search and also makes the
sharing and collaboration harder. Various special cloud encryption gateways had been
developed in recent years aiming to secure the users data in public cloud storages without
compromising the sharing and collaboration features provided by the storage providers. In
this chapter we review the main solutions existing in this domain showing what level of
security is provided by each of them and their main advantages and disadvantages from
both the security and usability points of view. It is important that none of existing cloud
encryption gateways provide search functionality over encrypted data. Next we present our
own cloud encryption architecture which was embedded into a new cloud securing system
called SkyCryptor. It provides very high level security for users and implements search

functionality over encrypted data.

3.1 CLOUD ENCRYPTION GETWAYS

There are dozens of cloud encryption tools operating in the market. In this section we

review the most popular solutions.
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3.1.1 SOOKASA

Sookasa [55] is a new emerged cloud encryption gateway specially designed to help the
companies from regulated industries and facilitate compliance with six federal standards
such as HIPAA, FERPA, PCI DSS, GLBA, FINRA, SOX. It helps such organizations to store
their data in cloud in encrypted form and also have full visibility on how the data was used
or shared. However Sookasa does not provide a perfect secrecy as it handles all user secret
key management on behalf of the users.

Sookasa secures the users files in Dropbox in the following manner:

1. Sookasa creates a special folder in user's Dropbox.

2. The user put sensitive files in that folder which are seamlessly encrypted with AES-256
encryption [101] with unique file key randomly generated for that file.

3. Sookasa encrypts the key for file encryption with the Sookasa's public key. The key of
an encrypted file is stored at the beginning of the file.

4. The encrypted files are synced among all devices

5. When Alice shares some file with Bob and Bob wants to access Alice's encrypted file,
Sookasa's server takes the file’s key encrypted with the public key of the server,
decrypts it and sends the key of the file to Bob.

As can be seen Sookasa owns all encryption keys used for securing the users files. This
is a serious security drawback as the powerful adversary or Sookasa itself can always access
the users sensitive files Such solution may satisfy specific companies but it cannot be a
reliable security solution for companies which want to fully exclude the chance of their data

appearing into third-parties hands.

3.1.2 NCRYPTEDCLOUD

nCryptedCloud [54] is another cloud encryption gateway working with most cloud
storage providers such as Dropbox, Google Drive, OneDrive and Egnyte. It provides a rich
functionality of file/folder sharing and unlike Sookasa allows securing any file in any folder.

However from the security point of view there is still a little difference between Sookasa and
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nCryptedCloud. The later provide perfect security for individual files meaning the user does
not need to share the keys for file encryption with nCryptedCloud as far as the file is not
required to be shared with other users. But for securely collaborating on cloud files, the
user again needs to share the keys for encrypting files with nCryptedCloud's server. The
following list highlights the main file storing and sharing functionality.

File encryption works as follows:

1. Alice creates a secure unique password for her file.

2. Alice encrypts the plaintext data using AES-256 Zip encryption by using the generated
password.

3. Alice encrypts the file’s password using her public key and stores the encrypted
password of the encrypted Zip file on the server somewhere next to the encrypted file.

4. When Alice need to share the file with Bob, she encrypts the file’s password with
nCryptedCloud’s server’s public key and sends it also sends to the server.

5. When she wants to open the encrypted file, she just takes the encrypted password
from the zipped file and decrypts that using her private key. Next she uses that
password to decrypt the file encrypted by AES.

6. Bob receives the shared file and when he wants to access that files, nCryptedCloud
verifies that Bob has access to the file key and distributes it to him. Bob stores the
received key on his local store of the keys, so for further accesses he does not need
the nCryptedCloud to distribute him the file key.

Again the main drawback of nCryptedCloud is the fact that it can learn the secret keys
and/or passwords used for encrypting files. Although they claim that they never can access
the cloud encrypted files, theoretically they can do it having the cloud storage access token

for each user as well as the secret user generated keys for securing data.

3.1.3 BOXCRYPTOR

Boxcryptor [56] is the only gateway for cloud encryption among the existing solutions

providing a zero-knowledge service to users. Its secure key management is based on
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asymmetric RSA cryptosystem and here files are encrypted with AES-256 block cipher. Each
user has own pair of private and public keys. The file encryption procedure in the non-
corporate case works as follows:

1. Randomly create a secure file key.

2. Then encrypt the file using its key.

3. Using the public key of the user encrypt the file key.

4. Next to the ciphertext of the file append its file key.

5. In case when the file is shared among multiple users, encrypt its key using the public

key of each permitted user and append those ciphertext to the encrypted file.

The main drawback of Boxcryptor is the fact, that if the file is accessible for multiple
users then its key is encrypted as much times as the number of users and each of the
results is appended to the encrypted file. This causes the file to get re-encrypted every time
when the group of people having access to the file is changed. Also the file size is growing
linearly with number of people having access to it as for each new user having access to that

file a new ciphertext should be stored at the beginning of the file.

3.1.4 SKYCRYPTOR

SkyCryptor [59] is a novel cloud encryption gateway which goal is to provide zero-
knowledge security to users by preserving the main advantages of cloud storage services. Its
key management technique is based on so called proxy re-encryption scheme [102], [103],
[104] in which context the SkyCryptor service acts as a semi-trusted proxy server
responsible for keeping proxy re-encryption keys and re-encrypting the file encryption keys
upon authorized access request. Each user has a pair of public and private keys specific to
the proxy public key encryption algorithm. The encryption of a file works as follows:

1. For each file Alice generates a random key for file’s encryption and encrypts the file

with AES-256 CBC mode.
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Alice encrypts the file’'s encryption key with her public key via proxy public key
encryption algorithm. The key of the encrypted file is appended to the encrypted file
and is stored in the cloud.

When Alice wants make her file accessible for Bob, she creates a special proxy re-
encryption key and stores it in SkyCryptor servers. Alice also creates permission for
Bob allowing him to access the file.

When Bob wants to decrypt the Alice’s shared file, he takes the file key encrypted with
Alice’s public key from the cloud-stored file and sends it to SkyCryptor service.
SkyCryptor checks the permission and re-encrypts the ciphertext with help of the
proxy re-encryption key so the result is already the file key encrypted with Bob’s
public key. The result is sent to Bob.

Bob receives the encrypted file key, decrypts it with own private key and reveals the
key, which can be used finally to decrypt the encrypted file.

As can be seen, SkyCryptor server never learns the file keys. The proxy re-encryption

allows re-encrypting the ciphertext without decrypting them. This powerful technique allows

building an efficient and privacy-preserving cloud encryption gateway.

The next fundamental advantage of SkyCryptor is that it provides search functionality

over encrypted data based on proprietary searchable encryption algorithm.

3.2 SEARCHABLE ENCRYPTION IMPLEMENTATION ASPECTS

Providing zero-knowledge search functionality over encrypted data means that the host

server which keeps the user’s data and/or the searchable index, should not learn any

information about the file content at any moment of its operation. This means that the files,

searchable indexes or even search queries never should appear on servers in the plaintext

form. Among these security requirements the following issues should be considered while

implementing a secure indexing and search functionality for large-scale application.

The user can add files from different devices.

The user should be able to search from any of his devices or web application.
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e The user should have access only to his files.

The searchable encryption algorithm used by SkyCryptor requires several AES-256 keys
to be employed during secure index construction. Each user has specific searchable
encryption master key and all other keys required for index construction or search are
generated from the master searchable encryption key. As the user should be able to make
search from both web service and client applications, the master key should be accessible
on all this platforms. But from the other hand it should never be revealed at server side.
The master key generation and recovery is done as follows:

1. When the user first login via some client application, he generates the searchable
encryption master key among other encryption keys.

2. The user encrypts the searchable encryption master key with his password-key. The
password-key is an AES-256 key generated from the user’s password with help of key
stretching algorithm PBKDF2, which operates with HMAC-256 and 50000 iterations

and the username is taken as a salt value.

A A 1. Client(mobile application or
web) sends a secure search
request to Skycryptor

2. Skycryptor server searches
the query against the secure
index and returns

‘ correspondingfile identifiers

N

3. Client application can
A upload correspondingfiles

[ ] --D from Dropbox and view.
T
A ;

Fig: 3.1 (Secure Search Request)

3. The encrypted searchable encryption master key is stored in SkyCryptor servers.
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4. When the user logins to web portal, his password-key is generated at client site in
browser. When the user logins via client application, the password-key is generated at
user device with the client application.

5. After authenticating successfully the user gets ciphertext of his searchable encryption
key which can be decrypted with help of the password-key. All the other keys
necessary for secure searching are then generated from the master key.

6. Having the searchable encryption keys recovered already the user can post search

queries to the SkyCryptor servers. The search request flow is depicted in Figure 3.1.

Dropbox

A AA L\
T 1. Client(desktop and mobile)
adds file metadatato
Skycryptor servers
2. Dropbox syncs the new file
with cloud
3. Skycryptor server sends
notification to client for
indexing the new added file.
4. Desktop client application
E uploads the secure Index to
5 skycryptor servers

Fig: 3.2 (Secure Index Generation)

The SkyCryptor’s client application, which is responsible for file encryption/decryption
functionality, also allows to build a secure (encrypted) index on user files and which will be
uploaded to SkyCryptor’s server. The index generation flow is exposed in Figure 3.2 and is
comprised of the following steps:

1. When the user encrypts a new file, the file metadata such as file name and path is
posted to SkyCryptor server and the encrypted file is synced with the cloud service in

parallel. Note that the user can add new files from both desktop and mobile devices.
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2. The SkyCryptor server generates a new unique |ID for each new added file and creates
a special notification object which can prompt the user that the file should be indexed.
The notification contains the file’s local path as well as its unique ID.

3. The index file notifications can be processed only by the user desktop client
applications. The desktop application time-by-time checks for new notifications and
discovering a new notification starts processing it in the following way.

a. The application decrypts and tokenizes the file content getting all unique words
contained in the file

b. The file unique ID contained in the notification acts as the file unique identifier in
the secure index. The client application indexes the new added file according to
the specified secure searchable indexing algorithm. Secure index is an encrypted
index comprised of the encrypted keywords and encrypted file identifier in a
specific form.

c. The secure index is uploaded to SkyCryptor servers.
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CHAPTER 4. AN EFFICIENT SPM PROTOCOL

In this chapter we introduce a SPM protocol. The initial version of this protocol for
regular expressions with binary alphabet was published in proceedings of 10th international
conference on computer science and information technologies (CSIT) Yerevan, Armenia
after that the algorithm was extended to handle regular expressions with arbitrary length
alphabets and was published in proceedings of NATO Advanced Research Workshop [63].

We consider such SPM problem where the first party (the client) has a regular
expression r as a patternls as long as the second party (the server) has a text string X which
consists from the letters of the alphabet of the regular expression. Their objective is to
check whether the string X fully matches the regular expression r or in other words if X
belongs to the language generated by r (X € L(r)) allowing both parties to learn the answer
so that neither the client nor the server learned any additional information about the input

of another. More formally the protocol calculates the function:

_ (LifX € L(r)
R, X) = {O,ifX ¢ L(r)

Unlike other similar protocols [43], [38], [36], [39] our protocol uses no asymmetric
cryptography operations and it is proved that it is private against a malicious one party
(server) and fully secure against a malicious another party (client) (see the definitions in the
section 4.1).

After all we provide modifications for the protocol to cover the following variation of the
SPM problem:

a) The client or both parties want to learn whether the string X has a substring Y which

matches the pattern r (partial matching):

1,if3Y;YEXandY € L(r)

Fp(r X) = {O, otherwise

Here C sign is used to denote that Y is a substring of X or equal to it.

> Check the definition of regular expression and the language it generates in section 1.2.
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b) The client or both parties want to learn the number of substrings of the string X
which match the pattern r (number of matches):
Fs(r,X)={Y;YEXandY € L(r)}|
Where || capacity (number of element) of the set defined inside {-} braces.
c) The client or both parties want to learn positions of all substrings of the string X
which match the pattern r (positions of matches) :
F,(r,X)={(,j);0<i<j<|X|and X[i..j] € L(r)}
Where |X| is the length of string X and X[i..j] is the substring of X from i to j
positions inclusive assumed that indexing of positions of X starts from 0.
Similarly to the construction by Mohassel P., Niksefat S., Sadeghian S. and Sadeghiyan
B. described in “Efficient Protocol for Oblivious DFA Evaluation” [43] our protocol runs in a
single client-server communication round and in both client and server sides it has the
same as the protocol from [43] complexity of symmetric operations when the input alphabet
of the regular expression r is binary. But unlike [43] our protocol has no restriction on the

input alphabet of the regular expressions and it uses no asymmetric operations at all.

4.1 DEFINITIONS AND NOTATIONS

Deterministic finite automatons (DFA) [105] and regular expressions are equivalent
formalisms Invalid source specified., namely for each DFA it is possible to construct a
regular expression which generates the same language as the DFA and vice versa, for each
regular expression there is a DFA which accepts the same language as the regular
expression. That is why in the description of the protocol we will assume that the client has a
DFA T equivalent to the regular expression r, though in our C++ implementation of the
protocol client’s input is a regular expression which later gets converted to the equivalent
DFA using corresponding conversion algorithm [106], [107].

We will use the following security definitions:

Secure Two-party Computation: Let f = (fi,f,) of form f:{0,1}* x {0,1}* - {0,1}" X

{0,1}* be a two party computation and m be a two-party protocol for computing f between
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the parties p; and p,. The input of p, is x and the input of p, is y. Here we will briefly
define two notions of security.

a) Full security (simulation-based security) against malicious adversaries. This security
level is defined by requiring indistinguishability (perfect, statistical or computational)
between a real execution of the protocol and an ideal execution in which there is a TTP
(trusted third party) who receives the parties input, evaluates the function and outputs the
results to them.

b) Privacy against malicious adversaries: This level of security guarantees that a
corrupted party will not learn any information about the honest parties input. However, this
does not always guarantee that the joint outputs of the parties in the real world is
simulatable in an ideal world.

For more detailed discussion of these security notations refer to [108].

Looking ahead we want to note that our protocol, we prove is full-secure against one
malicious party and private against the other.

We will assume that the client has a DFA T(Q;Z; A;sq; F) with input alphabet
2 ={by, by, ..., b5|}; set of states Q ={qy,qs, ., qjq}; table of transitions Ajgxz, Where
Alg, b] € Q is the state following after state g through letter b; initial state s; and set of
accepting (or final) states F, while the server has an n length string X € ¥". Saying the
result of evaluation of I' on the string X (or simply I'(X)) we mean the Boolean value which

is 1 (or true) if the state

A [...A |Alsy, x[1]] X[2]] ...,X[n]]
is an accepting state (i.e. belongs to F) and 0 (or false) otherwise. By k we denote the
security parameter of the protocol. The pipe-sign | is used to denote concatenation of
strings and the circled plus sign @ is used to denote per-bit XOR operation. By [r] we
denote the ceiling of a real number r. In matrix indexing sometimes we use letters of the

input alphabet X and states Q instead of their numbers (i.e. b; instead of j, q; instead of j).
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4.2 THE CASE OF DFA WITH BINARY ALPHABET

At first let us consider the case when the input alphabet of the DFA X = {0,1} is binary,

we call them binary DFAs.

a)

b)

Brief description of the protocol: The main steps of the protocol are the following:

Client. Create a special evaluation matrix (DFA matrix) M of size n X |Q| X 2 intended
for evaluation of I on n-length binary strings.

Client. Create distorted DFA matrix GMr by permuting each row of the M matrix,
then encrypting each cell of the matrix using one time pad. As a result, to calculate
I'(X) it will be enough for the server to have the distorted DFA matrix GMr and a key
for each position i;1 <i <n of the string X corresponding to the letter of that
position.

Server: For each letter of string X create an OT query token [94] and send them all
along with the OT initialization data to the client.

Client. For each OT query token create an OT response token for the corresponding
key [94] and send them together with the distorted DFA matrix GMr to the Server.
Server. From OT response tokens invoke the keys for positions of the string X, then
compute I'(X) using those keys and GMr distorted DFA matrix.

Now let us look at these steps in more detail.

Step a): For evaluating I' on any n-length binary string we create a DFA matrix M of

size n X |Q| X 2 such that for each state g and letter b My[i,q,b] = Alq,b]Vi;1 <i<n-1

and Mr[n,q,b] = 1 if Alg, b] is a final state and Mr[n, q,b] = 0 if A[g, b] is not final. It is easy

to see that in such notation I'(X) is equal to

My [n M [Z,Mr[l,sl,X[l]],X[Z]] ...,X[n]]

Fig: 4.1 (a, b) below illustrate an example of DFA and its DFA matrix.
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Start X = 01...00
(a) A general binary DFAT (b) My (DFA Matrix of I)
Accepted
] (0, 0) (1, 0)
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1. -1 Iy =PER[11] |, +1..J,—1 | J1=PER[12] i +1...10|

Start X =01...00
(c) Permuted DFA Matrix P My

Fig: 4.1
Step b): Here it is worth to note that for any permutation P: Q — Q the DFA T is equal
(i.e. accepts the same set of strings) to the DFA T (Q; {0,1}; Ap; P[s1]; Fp) (Where for each

state q and letter Ap[P[q], b] = P[Alq,b]]; and Fp = {q: P71[q] € F}). The first stage of DFA

matrix distorting is based on this fact. Namely, we first create n random permutations of the
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DFA states Q and fill by them n rows of a n x |Q| permutations matrix PER, then we create
permuted DFA matrix PMr such that for each state q and letter b
PM[i, PER[i, q],b] = PER[i + 1, M¢[i, q, b]]
foreachi;1<i<n-1and
PMp[n, PER[n, q], b] = Mr[n, q, b]
Fig: 4.1 (c) above illustrates an example of a PMr matrix. Here it is not hard to observe

that in terms of PM matrix I'(X) is equal to
PM; [n, . PMp [Z,PMr[l,PER[l, sl],X[l]],X[Z]] ...,X[n]]

For the second stage of DFA matrix distorting we generate an n x 2 size matrix of
random k-bit keys K and an (n+ 1) x |Q| size matrix of k’-bit pads PAD; where for each
state g, and for each i;1 <i <n the PADI[i,q] is a random k'-bit string and PAD[n +

1,q] = 00...0. Here by k' we denote k — [log,|Q|]. For distorting the permuted DFA matrix
kl

we also need some CSPRNG (cryptographically secure pseudo-random number generator)
PRG:{0,1}¥ - {0,1}%*. Since the PRG receives a k’'-bit string as an input and returns 2k-bit
string as an output by PRG(Y,0) we denote the first k-bits of PRG(Y) and by PRG(Y,1) we
denote the second k-bits of PRG(Y). Having all these, we create the distorted DFA matrix
GM; such that

GMy[i,q,b] = (PMc[i,q,b] | PAD[i + 1,PM¢[i, q,b]]) ® K[i, b] ® PRG(PADIi,q],b)
for each i;1 < i < n, letter b and state q.

Step c): Having the distorted DFA matrix GMr and K[i, X[i]] for each i;1 < i <n the
server will be able to calculate I'(X) (we will see that in step e). Hence, here for each letter
X[i] of its input string the server generates an OT query token 0Ty, [i] and along with OT
initialization info OT;,;; sends them to the client. For the details of OT initialization info and
OT query token generation see [94].

Step d). For each OT query the token OTgyery[i] (1 <i<n) the client, using OT
initialization info OT,;; generates an OT response token OTgsponceli] Which carries
sufficient information to invoke K[i, X[i]] (see [94]). Then the client sends those response

tokens, distorted DFA matrix GMr, PER[1,s,] and PAD[1, PER[1,s,]] to the server.
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Step e): At this step first the server for each i;1 < i < n invokes K[i, X[i]] key stored in
the corresponding response token OTgsponceli]l (se€ [94]). Then having the keys, distorted
DFA matrix GMr, PER[1,s;] and PAD[1,PER[1,s,]] ,it runs the following algorithm to

calculate I'(X):

Evaluation of distorted DFA matrix

cur_state_id := PER[1,s,];

cur_pad := PAD[1, cur_state_id];

for eachrowi =1ton do

cur_state_id|cur_pad := GMp [i, curstateid,X[i]] (&) K[i,X[i]] 2>

PRG (cur_pad, X[i]);
end for

return cur_state_id

The step by step construction of the distorted DFA matrix implies that this algorithm will
give the same result as evaluation of the initial DFA matrix, so no additional proof is
required here.

These were all steps of the protocol for binary DFAs, now let us move to the case where

there is no restriction on the input alphabet of the DFA.

4.3 CASE OF NON-BINARY DFA

Here again the protocol consists from 5 steps and they are almost the same as in the
case of binary DFAs, the main difference is that the size of third dimension of M, PMr and
GMr matrixes is |Z| instead of 2.

Let us look at these steps in detail.

Step a): Create a DFA matrix My of size n x |Q| X |Z| such that for each state g and
letter b € £ Mr[i,q,b] = Alq,b] Vi;1 <i<n-—1and Mr[n,q,b] is equal to 1 if Alg,b] is a

final state and it is 0 otherwise. In such notation I'(X) is equal to
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My [n, M [Z,Mr[l,sl,X[l]],X[Z]] ...,X[n]]

Fig: 4.2 (a, b) below illustrates an example of DFA with its DFA matrix.

Step b): Here again we create n random permutations of the DFA states Q and fill by
them n rows of a n X |Q| permutations matrix PER, then we create permuted DFA matrix
PM; of size n X |Q| X |Z| such that for each state g and letter b € X

PMy[i, PER[i, q],b] = PER[i + 1, Mr[i,q, b]]
foreachi;1<i<n-1and
PMy[n, PER[n, q], b] = Mr[n,q, b]
Fig: 4.2 (c) below illustrates an example of a PMr matrix. In terms of PMr matrix I'(X) is

equal to
PMy [n . PM; [Z,PMr[l, PER[1, sl],X[l]],X[Z]] ...,X[n]]

Then we create an n x |Z| size matrix of random k-bit keys K and an (n + 1) x |Q| size
matrix of k'-bit pads PAD; here again for each state g, and for each i;1 <i <n the

PADIi,q] is a random k'-bit string and PAD[n+ 1,q] = 00...0, where k' is k — [log,|Q]].
kl

We also need some CSPRNG PRG: {0,1}*" - {0,1}**!, and by PRG(Y, j) we denote the j-
the k-bits of PRG(Y) for each j; 1 <j < |Z|. After all, we create the distorted DFA matrix
GMy such that

GMc[i,q,b] = (PMc[i,q,b] | PAD[i + 1,PMc[i,q,b]]) ® K[i,b] @® PRG(PADIi, q, b)

for each i;1 < i < mn, letter b € X and state q € Q.

Step c): And again having the distorted DFA matrix GMr and K[i,X[i]] for each
;1 <i<n the server will be able to calculate T(X). So here we start OT phase between
client and server for transferring corresponding keys and GMr.

For each letter X[i] of its input string the server generates an OT query token

OTguerylil and along with OT initialization info OT},,;; sends them to the client [94].
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Fig: 4.2

Step d): For each OT query the token OTgyery[i] (1 <i<n) the client, using OT
initialization info 0T, generates an OT response token OTgesponceli]l Which carries
sufficient info to invoke K[i,X[i]] [94]. Then the client sends those response tokens,

distorted DFA matrix GM, PER[1,s,] and PAD[1, PER[1, s;]] to the server.
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Step e): At this step firstly the server invokes K[i,X[i]] keys stored in the
corresponding response token OTgesponceli]l for each i;1 <i<n [94]. Then having the
keys, distorted DFA matrix GMy, PER[1,s,] and PAD|[1,PER[1,s,]] ,it runs the following

algorithm to calculate I'(X):

Evaluation of distorted DFA matrix

cur_state_id := PER[1,s,];

cur_pad := PAD[1, cur_state_id];

for eachrowi =1ton do

cur_state_id|cur_pad := GMp [i, curstateid,X[i]] (&) K[i,X[i]] 2>
PRG (cur_pad, X[i]);

end for

return cur_state_id

Here again the step by step construction of the distorted DFA matrix implies that this

algorithm will give the same result as evaluation of the initial DFA matrix.

4.4 PROTOCOL SECURITY

In our construction we use a WB based 1-out-of-n OT protocol. Such OT protocol is
considered to be secure if the underlying WB encryption schema is secure. In our case we
use WB encryption schema based on SAFER+ encryption schema. WB scheme can be
considered secure if no computationally bounded adversary is able to extract the master
encryption key from the WB encryption tables and no computationally bounded adversary is
able to make decryption functionality with help of only the WB encryption tables. So WB
scheme is considered to be secure if it is secure against key-recovery and reverse-
engineering attacks.

Taking into account this and security definitions from section 4.1 we see that according
to the theorem 1 from [43] this protocol is fully-secure when only one party is malicious and

it is private when both parties are malicious.
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4.5 IMPLEMENTATION

A C++ library has been created which implements the protocol. The implementation is

parameterized by the security parameter k. The main class is Gdfa template (Fig: 4.3 and

4.4).

P y
Gdfa<CharType, KEY_SIZE BYTES= | Nfa ¥
Template Class Struct

* Fields
* Methods

= Mested Types

alphabet _t: std::basic_string <char_t>
Typedef

char_t: CharType
Typedef

extended_pad_t: std::vector<ByteArray...

Typedef

Typedef

keys_t: std::vector<std::vector<ByteArr...

Typedef

letter_id_t : typename alphabet_t:size_t...

Typedef

matches_t : std::vector<std::pair<typen... Typedef
Typedef
transitions_t : std::vector<std::vector<st...
Nfa £ Typedef
Struct
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pad_matrix_t : std::vector<std::vector=<...
Typedef

per_letter_keys_t : std::vector<sdfa::Byt...
Typedef

permutations_t : std::vector<std::vector...

Typedef

permuted_dfa_matrix_t : std::vector<tra...

Typedef

reverse_alphabet_t: std::unordered_ma...
Typedef

state_flags t: std::vector<bool:

Typedef

state id t: std::size t
Typedef

string_t : std::basic_string <char_t>

Fig: 4.3
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Gdfa<CharType, KEY_SIZE BYTES>
Template Class

= Fields

47 alphabet_
encripted_
garbled_dfa_matrix_
IMITIAL_STATE
initialized_
is_state_final_
keys_
MISMATCH_STATE
num_bytes_in_max_state_
pad_matrix_
permutations_
permuted_dfa_matrix_
regex_
reverse_alphabet_

A EEEEE AR

transitions_
= Methods

¥ cleanup
consturct_garbled_transiticns_table
find_all_matches
find_eps_closure
find_move_closure
from_nfa_to_dfa
from_postfix_regex_to_nfa

Gdfa

get_keys

get_regex
get_regex_operator_precedence
initialize
is_binary_regex_operator
is_regex_ocperator
is_unary_regex_ocperator
matches

print_transiticns

set_alphabet

states_number

to_postfix_regex

6" ¢ ¢ ¢ %6 "¢ 6% ¢ ¢ ¢ 66" e ¢ ¢

validate

MNested Types

I+

Fig: 4.4
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As a client API class Gdfa allows to create the distorted DFA matrix from the input regex
and as a server API class it has find_all_matches() method which returns all positions of
substrings which match the distorted DFA.

The steps of the protocol are implemented in the demo application. The application acts
as both a client and a server. As a server, it receives a text string as an input, and as a
client, its input is a regular expression which it converts to the equivalent DFA using
Thompson’s construction algorithm [106] to create NDFA equivalent to the regular
expression then using subset construction algorithm [107] to convert the NDFA to the DFA.
After all it runs the steps a) — e) of the protocol and calculates the result of evaluation of the
DFA on the text string. During calculations it prints out time spent for different parts of

computations.

4.6 PERFORMANCE TESTING

Algorithm construction implies that overall number of computations depends on the
security parameter k, the number of the DFA states |Q|, the length of the text string n and
the number of letters in the DFAs input alphabet |Z|. Besides that, in the algorithm we have
generation of random pads and keys, as well as usage of CSPRNG, and depending on the
approach used for generation of random pads and keys and chosen CSPRNG the efficiency
of the algorithm may differ for the same input data (k, |Q|, |Z| and |X|). We did our
benchmarks for k = 128 and |Z| = 2 on a 64-bit Windows 7 PC with Intel® Core™ 2 Quad
Q6600 2.4 GHz processor and 4GB RAM, using SHA-256 as {0,1}*" — {0,1}**l CSPRNG
and C++ standard library’s rand() function for random pad/key generation. The method of
distorted DFA matrix construction shows and our benchmarks confirmed that the number
of operations, hence the spent time for distorted DFA matrix creation, is proportional to the
|@] - |Z] - n multiplication. The first table shows performance of distorted DFA matrix
generation of our implementation on inputs of different sizes. The table contains averaged

results from 10 runs for each pair of inputs.
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Table 4.1. Distorted DFA creation time when (sec):

0l " 10 100 1000 10000 100000
10 <0.001 0.002 0.017 0.17 1.7
100 0.002 0.017 0.17 1.7 17

1000 0.017 0.17 1.7 17 >100
10000 0.17 1.7 17 >100 >100
100000 1.7 17 >100 >100 >100

1000000 17 >100 >100 >100 >100

The second table shows the performance of the OT phase of the protocol and

performance of the distorted DFA matrix evaluation by the server.

Table 4.2. Time spent in OT phase when (sec):

OT query generation
OT response generation Distorted DFA
and response extraction
n (client) evaluation (server)
(server)
10 <0.001 <0.001 <0.001
100 0.002 <0.001 <0.001
1000 0.021 0.007 <0.001
10000 0.21 0.07 0.002
100000 2.1 0.7 0.02
1000000 21 7 0.2

The table shows only the dependency of efficiencies of the operations from n since the

number of OT queries/responses and the number of steps for distorted DFA matrix

evaluation is equal to n and do not depend on structure of DFA.
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4.7 CONCLUSION

Unlike other protocols for oblivious DFA evaluation published in recent years [31], our

protocol is totally free from public-key operations, and it makes it somewhat unique among

others. Table 4.3 below illustrates complexities of client and server computations and

network communication bandwidth of our and other recent protocols.

Table 4.3. Operation complexities of protocols

Round Client Computations Server Computations Network

Complexity | Asymmetric | Symmetric | Asymmetric| Symmetric |Bandwidth

Troncoso [36] 0(n) 0(n|QD) None 0(n|QD) 0(n|QD) 0(n|Qlk)
Frikken [38] 2 o(n+1Q omlel) | o+ | omlQl) | 0nlQlk)
Gennaro [39] [0(min{lQl,n})] 0(nlQ[) None olQD) None 0(n|Qlk)
Yao [28] 1 0(n) 0(n|Q|log|Q]) 0(n) 0(n|Q|loglQl) | 0(kn?)
Ishai [86] 1 0(n) None o(m|Q[) None 0(n|Q|k)
Mohassel [43] 1 0(n) 0(n) 0(n) omlQ) | o(nlQlk)
Thils;rot;)col 1 None om|Q) None 0o(n) on|Qlk)

It is also worth to note that our protocol allows both parties to learn only T'(X), but in

some applications it may be inconvenient or insufficient. In [43] it is shown that for each of

the following modifications of the problem it is possible to solve it after modifying their

protocol a little, and that those modifications have no security leakage. All those

modification of their protocol work for our protocol as well.

a. The client wants to hide the answer from the server.

b. The client or both parties want to learn whether the string X has a substring Y such

that T recognizes Y.

c. The client or both parties want to learn positions of all substrings of the string X

recognized by T.
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d. The client or both parties want to learn the number of substrings of the string X

recognized by T.
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CONCLUSION

At the first time the problem of construction of a searchable encryption (SE) scheme

was explicitly considered in 2000 by Dawn Xiaodong Song, David Wagner and Adrian

Perrig in their paper “Practical Techniques for Search on Encrypted Data”. Since that

various SE schemes have been propose which differ by:

1.

2
3.
4

The provided level of security and privacy;

The intended number of users;

The dynamicity (either supports data update queries or not);

Performance, memory usage, transferred data and client-server communication

rounds.

These schemes represented as set of protocols for deploying of a set of files f =

{fi, f2, -, fn} to a remote storage and working with these files after that. The protocols are

mainly of three types:

1.

Initialization protocol: in this stage based on the security parameter k of the scheme
and the initial set of files f keys K of the scheme, initial secure index I and ciphertexts
c of the files f are generated and the pair (I, c) is stored to the remote server.
Modification protocols (for file addition, deletion, edit): in this stage the corresponding
update token (or tokens) is generated by the user and passed to the server which
updates the pair (I, c) according to the instruction (add, delete, modify) carried by the
token(s). In some update protocols tokes are not passed at once, but the processing of
the instruction is done during multiple communication rounds.

Search protocols: in this stage the corresponding search token (or tokens) which hide
information about one or more keywords is generated by the user and passed to the
server. The later one using this token(s) finds the set of file ids associated with the
hidden keywords and passes them (probably also the set of ciphertexts of these files)

to the user.
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In this dissertation we provided a survey of the most part of SE schemes published in
recent years, and discussed their pros and cons based on the characteristics form the first
list [61]. Also we introduced a novel method for delegating the search functionality to third
party users in symmetric searchable encryption schemes and provided its implementation.

The knowledge obtained during the research on SE schemes was served as a basis in
launching a startup project SkyCryptor by Aram Jivanyan and team [59]. SkyCryptor
intended to provide security services for the users of public cloud storages (Dropbox and
Google Drive for the beginning). In particular it uses a comprehensive searchable
encryption scheme to provide both search and sharing functionals. And within the
SkyCryptor project another more practical problems have been considered, which we
provide as a part of this dissertation.

Within the research of SkyCryptor project we reviewed functionality of provided
services by the other players of the industry (Sookasa [55], boxcryptor [56], nCryptedCloud
[54], etc.) and understood the aspects of implementation of zero-knowledge search
functionality in encrypted cloud storages [60]. As a result of our research a zero-knowledge
architecture for supporting queries over encrypted cloud file have been designed an
integrated into the SkyCryptor.

The next problem considered is this thesis is the special case of multi-party secure
function evaluation problem denoted as “secure pattern matching/search” problem. After
the first publication in 1982 where secure two party computations were considered for the
first time by Andrew Chi-Chih Yao in the paper “Protocols for secure computations” [28]
the problem of multi-party secure function evaluation become a topic of active research.
Besides that its special case the two-party SPM problem, also become a hot investigation
topic as a part of the more generic problem as well as a standalone problem.

In this work we provided our protocol for oblivious regular expression matching (or
DFA evaluation) [63]. It is similar to the protocol described in the paper “An Efficient
Protocol for Oblivious DFA Evaluation and Applications” by Mohassel P., Niksefat S.,

Sadeghian S. and Sadeghiyan B. [43] and like that protocol provides full security against
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malicious client and privacy against malicious server. The advantage of our protocol is that
it does not use any public key operation in its algorithms and supports regular expressions
with arbitrary length input alphabets. In the dissertation benchmarks of the implementation

are provided showing its high performance.

94



REFERENCES

1]

2]

[3]

[4]

[5]

[6]

7]

[8]

[9]
[10]

(1]

[12]

[13]

[14]

Rajesh S., Swapna S., Reddy P. S., "Data as a Service (Daas) in Cloud Computing,"
Global Journal of Computer Science and Technology: Cloud & Distributed, vol. 12, no.
11, 2012.

Hacigiimiis H., lyer B., Mehrotra S., "Providing Database as a Service," In Proc. of

18th International Conference on Data Engineering (ICDE), 2002.

Software & Infromation Industry Association (www.siia.net), Software as a Service:

Strategic Backgrounder. Washington D. C., 2001.

(2006) Amazon S3, Cloud Computing Storage for Files, Images, Videos. [Online].

https://aws.amazon.com/s3/

(2010) Microsoft Azure Storage. [Online]. https://azure.microsoft.com/services/storage
(2007) Dropbox: file hosting service. [Online]. https://www.dropbox.com/

(2012) Google Drive: Shared disk. [Online]. https://drive.google.com/

(2005) Box | Secure Content & Online File Sharing for Businesses. [Online].

https://www.box.com/

(2007) Microsoft OneDrive: file hosting service. [Online]. https://onedrive.live.com/
Mather T., Kumaraswamy S., Latif S., Cloud Security and Privacy: An Enterprise
Perspective on Risks and Compliance.: O'Reilly Media, Inc., 2009.

Neuman B. C., Ts'o T., "Kerberos: An Authentication Service for Computer Networks,"
IEEE Communications Magazine, vol. 32, no. 9, pp. 33-38, 1994.

Arkills B., LDAP Directories Explained: An Introduction and Analysis.: Addison-Wesley
Professional, 2003.

Song D. X., Wanger D., Perrig A., "Practical Techniques for Search on Encrypted
Data," In Proceedings of IEEE Symposium on Security and Privacy, 2000.

Goh E.-J., "Secure indexes," Cryptology ePrint Archive, no. 216, 2003. [Online].
http://eprint.iacr.org/2003/216/

95


https://aws.amazon.com/s3/
https://azure.microsoft.com/services/storage
https://www.dropbox.com/
https://drive.google.com/
https://www.box.com/
https://onedrive.live.com/
http://eprint.iacr.org/2003/216/

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

Haciglimus H., "Privacy in Database-as-a-Service Model," University of California, PhD

Thesis 2003.

Bellare M., Boldyreva A., O’Neill A., "Deterministic and Efficiently Searchable
Encryption," In Proc. of the 27th Annual International Cryptology Conference on

Advances in Cryptology, pp. 535-552, 2007.

Kamara S., Papamanthou C., Roeder T., "Dynamic Searchable Symmetric

Encryption," In Computer and Communications (CCS), pp. 965-976, 2012.

Premasathian N., "Searchable Encryption Schemes: With Multiplication and

Simultaneous Congruences," International Conference on Information Security and

Cryptology (ISCISC), 2012.

Van Liesdonk P., Sedghi S., Doumen )., Hartel P., Jonker W., "Computationally
Efficient Symmetric Encryption," In Proc. of Secure Data Management (SDM) 7th
VLDB Workshop, 2010.

Kamara S., Papamanthou C., "Parallel and Dynamic Searchable Symmetric

Encryption," Financial cryptography and data security, pp. 258-274, 2013.

Chang Y.-C., Mitzenmacher M., "Privacy Preserving Keyword Searches on Remote
Encrypted Data," Lecture Notes in Computer Science: Applied Cryptography and
Network Security, vol. 3531, pp. 442-455, 2005.

Park D. J., Cha J., Lee P. ]., "Searchable Keyword-Based Encryption," Cryptology
ePrint Archive, no. 367, 2005.

Chase M., Kamara S., "Structured Encryption and Controlled Disclosure," Advances in

Cryptology - ASIACRYPT, vol. 5477, pp. 577-594, 2010.

Chai Qi, Gong G., "Verifiable symmetric searchable encryption for semi-honest-but-
curious cloud servers," IEEE International Conference on Communications (ICC), pp.

917-922, 2012.

Devlin K. J., Mathematics: The Science of Patterns: The Search for Order in Life,

Mind and the Universe, 1, Ed.: Scientific American Library, 1997.

96



[26]
[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

Lawson M. V., Finite Automata.: CRC Press, 2003, pp. 98-100.

Sheng Yu, Handbook of Formal Languages: Volume 1. Word, Language, Grammar.:
Springer, 1997, pp. 41-110.
Yao A. C., "Protocols for secure computations," In proc. of the 23rd Annual

Symposium on Foundations of Computer Science, pp. 160-164, 1982.

Chaum D., Crépeau C., Damgard |., "Multiparty Unconditionally Secure Protocols," In

Proc. of the 20th Annual ACM Symposium on Theory of Computing, pp. 11-19, 1988.

Lindell Y., Pinkas B., "An Efficient Protocol for Secure Two-Party Computation in the
Presence of Malicious Adversaries," EUROCRYPT '07 In Proc. of the 26th Annual
International Conference on Advances in Cryptology, pp. 52-78, 2007.

Koleshnikov V., Sadeghi A.-R., Schneider T., "From Dust to Dawn: Practically Efficient
Two-Party Secure Function Evaluation Protocols and their Modular Design," IACR

Cryptology ePrint Archive, no. 79, 2010.

Koleshnikov V., Sadeghi A.-R., Schneider T., "A Systematic Approach to Practically
Efficient General Two-Party Secure Function Evaluation Protocols and Their Modular

Design," Journal of Computer Security archive, vol. 21, no. 2, pp. 283-315, 2013.

Shelat A., Shen C., "Fast Two-Party Secure Computation with Minimal Assumptions,"
In Proc. of the ACM SIGSAC Conference on Computer & Communications Security
(CSS '13), 2013.

Frederiksen T. K., Nielsen J. B., "Fast and Maliciously Secure Two-Party Computation
Using the GPU," Applied Cryptography and Network Security: Lecture Notes in
Computer Science, vol. 7954, pp. 339-356, 2013.

Huang Y., Katz )., Evans D., "Efficient Secure Two-Party Computation Using
Symmetric Cut-and-Choose," Advances in Cryptology: Lecture Notes in Computer

Science, vol. 8043, pp. 18-35, 2013.

Troncoso-Pastoriza J. R., Katzenbeisser S., Celik M., "Privacy preserving error

resilient dna searching," In Proc. of the 14th ACM Conference on Computer and

97



[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

Communications, pp. 519-528, 2007.

Hazay C., Lindell Y., "Efficient Protocols for Set Intersection and Pattern Matching
with Security Against Malicious and Covert Adversaries," Theory of Cryptography, vol.
4948, pp. 155-175, 2008.

Frikken K. B., "Practical Private DNA String Searching and Matching through Efficient

Oblivious Automata Evaluation," Data and Applications Security XXIll, vol. 5645, pp.
81-94, 2009.

Gennaro R., Hazay C., Sorensen J. S., "Text Search Protocols with Simulation Based
Security," Lecture Notes in Computer Science: Public Key Cryptography - PKC, vol.
6056, pp. 332-350, 2010.

Hazay C., Toft T., "Computationally Secure Pattern Matching in the Presence of
Malicious Adversaries," Advances in Cryptology - ASIACRYPT 2010 - 16th
International Conference on the Theory and Application of Cryptology and
Information Security, pp. 195-212, 2010.

Vergnaud D., "Efficient and Secure Generalized Pattern Matching via Fast Fourier
Transform," Progress in Cryptology - AFRICACRYPT, vol. 6737, pp. 41-58, 2011.
Baron J., Defrawy E. K., Minkovich K., Ostrovsky R., Tressler E., "S5PM: secure pattern
matching," SCN'12 Proceedings of the 8th international conference on Security and
Cryptography for Networks, pp. 222-240, 2012.

Mohassel P., Niksefat S., Sadeghian S., Sadeghiyan B., "An Efficient Protocol for
Oblivious DFA Evaluation and Applications," In Proceedings of Cryptographers' Track
at the RSA Conference, pp. 398-415, 2012.

El Defrawy K., Faber S., "Blindfolded Data Search via Secure Pattern Matching,"
Computer, vol. 46, no. 12, pp. 68-75, 2013.

Baldi P., Baronio R., De Cristofaro E., Gasti Paolo, Tsudik G., "Countering Gattaca:
Efficient and Secure Testing of Fully-Sequenced Human Genomes," In Proc. of the

18th ACM Conference on Computer and Communications Security (CCS '11), 2011.

98



[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

(2002, December) Privacy with Security. Technical report, DARPA Information
Science and Technology Study Group. [Online].
http://www.cs.berkeley.edu/~tygar/papers/

Kurosawa K., Ohtaki Y., "UC-Secure Searchable Symmetric Encryption," Financial
Cryptography and Data Security: Lecture Notes in Computer Science, vol. 7397, pp.
285-298, 2012.

Kurosawa K., Ohtaki Y., "How to Construct UC-Secure Searchable Symmetric
Encryption Scheme," Cryptology ePrint Archive, no. 251, 2015.

Stefanov E., Papamanthou C., Shi E., "Practical Dynamic Searchable Encryption with
Small Leakage," NDSS Symposium, 2014.

Naveed M., Prabhakaran M. Gunter C. A., "Dynamic Searchable Encryption via Blind
Storage," Security and Privacy (SP), IEEE Symposium, pp. 639-654, 2014.

Strizhov M., Ray I., "Multi-Keyword Similarity Search Over Encrypted," Cryptology
ePrint Archive, no. 137, 2015.

Zhao F., Nishide T., Sakurai K., "Multi-user keyword search scheme for secure data
sharing with fine-grained access control," In ICISC, pp. 406-418, 2011.

Yang Y., Lu H., Weng |., "Multi-user private keyword search for cloud computing," In
CloudCom, pp. 264-271, 2011.

(2012) nCryptedCloud | Enterprise Grade Secure Cloud File Sharing and
Collaboaration. [Online]. https://www.encryptedcloud.com/

(2012) Sookasa | Fully integrated CASB and cloud security provider. [Online].
https://www.sookasa.com/

(2011) Encryption Software to Secure Files in the Cloud | Boxcryptor. [Online].

https://www.boxcryptor.com

(2014) Mylar: Platform for building secure web applications. [Online].

https://css.csail.mit.edu/mylar/

99


http://www.cs.berkeley.edu/~tygar/papers/
https://www.encryptedcloud.com/
https://www.sookasa.com/
https://www.boxcryptor.com/
https://css.csail.mit.edu/mylar/

[58]

[59]

Popa R. A., Zeldovich N.; "Multi-Key Searchable Encryption," Cryptology ePrint
Archive, no. 508, 2013.

(2016) SkyCryptor: Cloud Securing Gateway. [Online]. https://www.skycryptor.com/

[60] Jivanyan A., Hovsepyan M., "Implementation Aspects of Search Functionality Over

[61]

[62]

[63]

[64]

[65]

[66]

[67]

Encrypted Cloud Data," Transactions of IIAP of the NAS RA, Mathematical Problems
of Computer Science, vol. 44, pp. 101-108, Yerevan, Armenia, 2015.

Hovsepyan M., "Review of Searchable Encryption Algorithms," "Becmnuk” Poccuticko-

ApmsaHckul YHusepcumem, vol. 2, pp. 39-53, EpeBaH, Apmenusa, 2015.

Khachatryan G., Hovsepyan M., Jivanyan A, "Efficient Secure Pattern Search
Algorithm," In Proc. of 10th International Conference on Computer Science and
Information Technologies (CSIT) and IEEE: Conference, pp. 147-151 in CSIT and 90-
94 in IEEE, Yerevan, Armenia, 2015.

Khachatryan G., Hovsepyan M., Jivanyan A., "Two-Party Regular Expression Matching
Protocol without Asymmetric Cryptography Operations," Transactions of IIAP of the
NAS RA, Mathematical Problems of Computer Science, vol. 45, pp. 77-89, Yerevan,
Armenia, 2016.

Even S., Goldreich O., Lempel A., "A Randomized Protocol for Signing Contracts,"
Communications of the ACM, vol. 28, no. 6, pp. 637-647, 1985.

Curtmola R., Garay J., Kamara S., Ostrovsky R., "Searchable Symmetric Encryption:
Improved Definitions and Efficient Constructions," Journal of Computer Security, pp.
79-88, 2011.

Cash D., Jarecki S., Jutla C. S., Krawczyk H., Rosu M.-C., Steiner M., "Highly-Scalable
Searchable Symmetric Encryption with Support for Boolean Queries," In R. Canetti
and J. A. Garay, editors, CRYPTO Part I, volume 8042 of LNCS, pp. 353-373, 2013.
Kallahalla M., Riedel E., Swaminathah R., Wang Q., Fu K. E., "Plutus: Scalable Secure
File Sharing on Untrusted Storage," In Proc. of the 2nd USENIX Conference on File
and Storage Technologies, pp. 29-42, 2003.

100


https://www.skycryptor.com/

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[73]

[76]

[77]

[78]

Boneh D., Waters B., "Conjunctive, subset, and range queries on encrypted data," /In
TCC, pp. 535-554, 2007.

Jarecki S., Jutla C., Krawczyk H., Rosu M. C., Steiner M., "Outsourced Symmetric
Private Information Retrieval," In proc. of the ACM Conference on Computer and
Communications Security (CCS), 2013.

Chor B., Kushilevitz E., Goldreich O., Sudan M., "Private Information Retrieval,"
Journal of the ACM (JACM), vol. 45, no. 6, pp. 965-981, 1998.

Yekhanin S., "Private Information Retrieval," Communications of the ACM, vol. 53,

no. 4, pp. 68-73, 2010.

Noar M., Pinkas B., "Oblivious Transfer and Polynomial Evaluation," In Proc. of the
31st Annual ACM Symposium on Theory of Computing (SOTC), pp. 245-254, 1999.
Asharov G., Lindell Y., Schneider T., Zohner M., "More Efficient Oblivious Transfer
and Extensions for Faster Secure Computation," In Proc. of the ACM SIGSAC
Conference on Computer & Communications Security (CCS), pp. 535-548, 2013.
Rabin M. O., "How to exchange secrets by oblivious transfer," Aiken Computation
Laboratory, Harvard University, Technical Report TR-81 1981.

Kilian J., "Founding Cryptography on Oblivious Transfer," In Proc. of the 20th Annual
ACM Symposium on the Theory of Computation (STOC), pp. 20-31, 1988.

Bellare M., Rogaway P., "Random Oracles are Practical: A Paradigm for Designing
Efficient Protocols," In proc. of the ACM Conference on Computer and

Communications Security (CCS), 1993.

Goldreich O., Ostrovsky R., "Software Protection and Simulation on Oblivious RAMs,"
Journal of the ACM (JACM), vol. 43, no. 3, pp. 431-473 , 1996.

Kushilevitz E., Lu S., Ostrovsky R., "On the (In)security of Hash-based Oblivious RAM
and a New Balancing Scheme," In Proc. of the 22nd Annual ACM-SIAM Symposium on
Discrete Algorithms, 2011.

101



[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

Stefanov E., Van Dijk M., Shi E., Fletcher C., Ren L., Yu X., Devadas S., "Path ORAM:
an extremely simple oblivious RAM protocol," In Proc. of the ACM SIGSAC Conference

on Computer & Communications Security, pp. 299-310 , 2013.

Bloom B. H., "Space/Time Trade-Offs in Hash Coding with Allowable Errors,"
Communications of the ACM (CACM), vol. 13, no. 7, 1970.

Bellovin S. M., Cheswick W. R., "Privacy-Enhanced Searches Using Encrypted Bloom
Filters," Cryptology ePrint Archive, 2004 https://eprint.iacr.org/2004/022.pdf.

Cash D., Jaeger ]., Jarecki S., Jutla C., Krawczyk H., Rosu M.C., Steiner M., "Dynamic
Searchable  Encryption in  Very-Large Databases: Data Structures and

Implementation," Cryptology ePrint Archive, no. 853, 2014.

Boneh B., Di Crescenzo G., Ostrovsky R., Persiano G., "Public Key Encryption with
Keyword Search," Lecture Notes in Computer Science: Advances in Cryptology -

EUROCRYPT, vol. 3027, pp. 506-522, 2004.

Croft W. B., Metzler D., Strohnman T., Search Engines: Information Retrieval in

Practice. USA: Pearson, 2010.

Katz J., Malka L., "Secure Text Processing with Applications to Private DNA Matching,"

In Proc. of of the 17th ACM Conference on Computer and Communications Security

(CCS), pp. 485-492, 2010.

Ishai Y., Paskin A., "Evaluating Branching Programs on Encrypted Data," Theory of
Cryptography, vol. 4392, pp. 575-594, 2007.

Ebbinghaus, H.-D., Flum, J., Thomas W., Mathematical Logic.: Springer, 1994, p.
656.

Massey J., Khachatrian G., Kuregian M., "Nomination of SAFER+ as Candidate
Algorithm for the Advanced Encryption Standard (AES)," 1998.

Chow S., Eisen P., Johnson H., van Oorschot. P.C., "White-Box Cryptography and an
AES Implementation," In 9th Annual Workshop on Selected Areas in Cryptography
(SAC), pp. 15-16, 2002.

102



[90] Khachatryan G., Kuregyan M., Abrahamyan S., Jivanyan A., Karapetyan M, Oleynik A.,
"Design and Cryptanalysis of Secure White-Box Encryption Based on SAFER+
Algorithm," (submitted for publication), see more in http://cse.aua.am/applied-
cryptography-laboratory/.

[91] Lipmaa H., "An Oblivious Transfer Protocol with Log-Squared Communication.," In

Proc. of the 8th Information Security Conference (ISC), vol. 3650, pp. 314-328,
2005.

[92] Noar M. Pinkas B., "Efficient Oblivious Transfer Protocols," In Proc. of the 12th
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 448-457, 2001.

[93] Peikert C., Vaikuntanathan V., Waters B., "A Framework for Efficient and Composable
Oblivious Transfer," Advances in Cryptology (CRYPTO), pp. 554-571, 2008.

[94] Khachatryan G., Jivanyan A., "Efficient Oblivious Transfer Protocols based on White-
Box Cryptography," (submitted for publication), see more in http://cse.aua.am/applied-
cryptography-laboratory/.

[95] Rivest R., Smith A. C., Fu K. E., "Group Sharing and Random Access in Cryptographic
Storage File Systems," MIT, Master's Thesis 1999.

[96] Goh E.-J., Shacham H., Boneh D., "SiRiUs: securing remote untrusted storage,"

Network and Distributed Systems Security (NDSS) Symposium, pp. 131-145, 2003.

[97] Harrington A., Jensen C., "Cryptographic access control in a distributed file system,"
ACM Symposium on Access Control Models and Technologies (SACMAT), pp. 158-165,
2003.

[98] Fu K. E., "Integrity and access control in untrusted content distribution,"

Massachusetts Institute of Technology (MIT), PhD Thesis 2005.

[99] Rajan R., "Efficient and privacy preserving multi user keyword search for cloud

storage services," In [JATER, pp. 48-51, 2012.

[100] Lopez-Alt A., Tromer E., Vaikuntanathan V., "On-the-fly multiparty computation on the

cloud via multikey fully homomorphic encryption," In STOC, pp. 1219-1234, 2012.

103



[101] "Announcing the ADVANCED ENCRYPTION STANDARD (AES)," Federal Information
Processing Standards Publication 197, 2001.

[102] Ateniese G., Benson K., Hohenberg S., "Key-Private Proxy Re-encryption," In Proc. of
RSA Conference on Topics in Cryptology: Cryptographers' Track, pp. 279-294, 2009.

[103] Green M., Ateniese G., "ldentity-Based Proxy Re-encryption," In Proc. of the 5th
International Conference on Applied Cryptography and Network Security (ACNS), pp.
288-306, 2007.

[104] Blaze M., Bleumer G., Strauss M., "Divertible Protocols and Atomic Proxy
Cryptography," In Proc. of Advances in Cryptology - EUROCRYPT '98, International
Conference on the Theory and Application of Cryptographic Techniques, 1998.

[105] Hopcroft ). E., Motwani R., Ullman ). D., Introduction to Automata Theory,
Languages, and Computation (2 edition).: Addison Wesley, 2001.

[106] Thompson K., "Programming Techniques: Regular Expression Search Algorithm,"
Communications of the ACM 11, pp. 419-422, 1968.

[107] Michael S., Introduction to the Theory of Computation [Section 1.2, Theorem 1.19],
page 55.

[108] Goldreich 0., Foundations of Cryptography: Basic applications.: Cambridge
University, 2004.

[109] Stallings W., Cryptography and Network Security: Principles and Practice.: Pearson;
6 edition, 2013.

[110] Frakes, W. B., Stemming algorithms, Information retrieval: data structures and

algorithms.: Upper Saddle River, NJ: Prentice-Hall, Inc, 1992.

104



APPENDIX A. GLOSSARY OF ACRONYMS

API - Application Programming Interface
ASP - Application Service Provider

CRA - Credit Report Agency

DFA - Deterministic Finite Automata
DaaS - Data as a Service

GUI - Graphical User Interface

NDFA - Nondeterministic Finite Automata
OOP - Object Oriented Programming
ORAM - Oblivious RAM (random-access memory)
OT - Oblivious Transfer

PPT - Probabilistic polynomial-time

PRF - Pseudo-Random Function

SaaS - Software as a Service

SE - Searchable Encryption

SFE - Secure Function Evaluation

SPKE - Searchable Public-Key Encryption
SPM - Secure Pattern Matching

SSE - Searchable Symmetric Encryption
TTP - Trusted Third Party

WB - White Box

WBC - White Box Cryptography
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