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INTRODUCTION
In the middle of the 1970s John Madey [1] and colleagues constructed the
first free electron laser operating in the infrared wavelength range.
JOURNAL OF APPLIED PHYSICS VOLUME 42, NUMBER 5 APRIL 1971

Stimulated Emission of Bremsstrahlung in a Periodic Magnetic Field

Jonn M. J. Mapry
Physics Department, Stanford University, Stanford, California 94305
(Received 20 February 1970; in final form 21 August 1970)

The Weizsicker-Williams method is used te calculate the gain due to the induced emission of radiation
into a single electromagnetic mode parallel to the motion of a relativistic electron through a periodic trans-
verse dc magnetic field. Finite gain is available from the far-infrared through the visible region rajsing
the possibility of continuously tunable amplifiers and oscillators at these frequencies with the further
possihility of partially coherent radiation sources in the ultraviolet and x-ray regions to beyond 10 keV.
Several numerical examples are considered.

Todd Smith, John Madey, Luis Elias and Dave Deacon

Since that time tremendous progress has been made in the FEL technique
and free electron lasers now occupy an appropriate place among other

sources of coherent radiation.



When the first operating free electron laser was constructed, it seemed that
FELs would form only a small supplement to a long list of available at that
time quantum laser. Actually, the appearance of FELs led to a new direction
for sources of coherent radiation: they embodied the type of coherent
source to which all experimenters have aspired since the invention of the
laser. It is relevant to note that despite the FEL being referred to as a laser,
the principle of its operation is similar to that of conventional vacuum-tube
devices: it is based on the interaction of electron beams with radiation in
vacuum. From this point of view FELs form a separate class of vacuum-tube
devices capable of generating powerful coherent radiation at any wavelength
from the millimeter to the X-ray part of the spectrum similar to the
vacuumtube devices which generate coherent radiation at any wavelength,
from the kilometer to the millimeter range. Also, free electron lasers
possess all the attractive features of vacuum-tube devices. FEL radiation is
always totally polarized and has ideal, i.e. diffraction, dispersion. FELs are
capable of providing a high efficiency of transformation of the electron
beam power into radiation power. Remembering that electron accelerators
of driving beams for FELs can provide high average and peak power with an
effective transformation of electric power into electron beam power, one can
expect to reach a high level of total FEL efficiency and high peak and
average output radiation power.

Despite strong competition from conventional lasers, the FEL is
recognized nowadays as a unique tool for scientific applications requiring
tunable coherent radiation from the far-infrared or VUV to X-ray ranges.
Taking into account the future perspectives of the FEL, many industrial firms

undertake intensive investigations into FEL technology, aiming at
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constructing powerful UV FELs for industrial applications such as material
processing, lithography, isotope separation, and chemical applications.
Significant effort of scientists and enengineers working in the field of
conventional quantum lasers are directed towards the construction of X-ray
lasers.
Brawn Future X FELs

The last years have seen an exceptionally fast progress in the development
of a novel photon source with unprecedented performance figures, the X-
ray FEL.
A milestone of paramount importance for these developments was the first
lasing of LCLS in self amplified stimulated emission mode (SASE) at 1.5 A in
2009 [2], just three years ago. Before this it was not at all certain if the
SASE operation mode can be achieved at such short wavelength. Now LCLS
is a well established user facility with an exciting experimental program [3].

The importance of SASE stems from two key features. Firstly it allows
FEL operation in single pass mode, i.e. without mirrors. Secondly the
amplification process uses the shot noise of the electron beam as input, i.e.
no external seeding source is required. These two features allow application
of the SASE FEL mode over an extremely large wavelength range, spanning
more than five orders of magnitude from infrared light to hard X rays. More
important, SASE holds presently a monopoly for the production of intense
laser radiation for the EUV to hard X-rays wavelength domain. An excellent
overview of the theory of SASE and the theoretical, technical and
experimental developments towards its realization can be found in [4]. The
first implementation of SASE for a photon-science user facility is FLASH at

DESY [5-6], an EUV/soft X-ray FEL.
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In June 2011 the second hard X-ray FEL, SACLA, saw its first SASE
photon beam with a wavelength of 1.2 A [7]. SACLA uses technical solutions
quite different from LCLS featuring C-band RF for the linac, in-vacuum
undulators and a unique diode electron gun design with thermionic cathode.
In particular the linac and undulator technology of SACLA allows for a total
facility length as short as 800m, which is less than half the length of LCLS.

The biggest and most powerful amongst presently funded FEL
projects is the European XFEL presently under construction [8]. Its 17 GeV
superconducting linac will distribute ten times per second a train of 2200
electron bunches into three FEL lines and produce FEL radiation with
wavelength as short as 0.5 A. Future X-ray FELs are listed in [9].

SEEDING
Although SASE has paved the way for X-ray FELs and is the baseline mode
of operation for most facilities in operation or under construction it has
disadvantages inherent to the stochastic nature of the shot noise starting the
FEL amplification process. Since different time slices of the electron pulse
start the lasing process independently SASE FEL pulses consist of a number
of radiation spikes with a time and spectral distribution which changes
randomly from pulse to pulse. The duration of the spikes is of the order of
the FEL cooperation length. As a consequence pulse energy and spectral
shape fluctuates from pulse to pulse no matter how stable the initial electron
beam is. Even though the transverse coherence of SASE FELs is very good,
the longitudinal coherence is limited to the time of individual spikes. These
inherent drawbacks of SASE can be overcome either by seeding the FEL
process with a coherent external radiation source, i.e. a laser, or by

“selfseeding” with a spectral filter introduced in the SASE gain process.
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The initial step for seeding a short wavelength FEL by an external
laser is the modulation of the electron beam energy by overlapping laser
and electron beam inside an undulator magnet called modulator. For direct
seeding at the nominal FEL wavelength the initial laser has to be equipped
with a high harmonic generation (HHG) frequency conversion in a gas cell.
In this case the modulator has the same period as the FEL modulators.
Alternatively the electron beam is energy modulated at the wavelength of the
laser in a long period modulator and the longitudinal micro-bunching is
generated by an R56 element downstream of the modulator. The harmonic
content of the micro-bunching at the laser wavelength starts the FEL process
at the nominal FEL wavelength in the undulators downstream of the R56
element. This scheme is called High Gain Harmonic Generation (HGHG)
process.

Free-Electron Lasers are powerful, tunable, coherent sources of
radiation, which are used in scientific research, plasma heating, condensed
matter physics, atomic, molecular and optical physics, biophysics,
biochemistry, biomedicine etc. FELs today produce radiation ranging from
millimeter wavelengths to ultraviolet and X rays, including parts of spectrum
in which no other intense, tunable sources are available. This field of
modern science is interesting from the point of view of fundamental
research and very promising for further applications.

There are many alternative ways for FEL operation: Compton FEL,
Cherenkov FEL, FEL with media with periodically modulated refractive
indexes, Smith-Purcell FEL, Surface Plasmon FEL, FEL without inversion et
al. We will review here some types of FEL.

MPMRI
9



An important direction in the development of free electron lasers
Is a search for methods that will permit construction of a small-size FEL
operating at high frequencies. One of the ways to achieve this goal consists
of using small-period periodic structures and, in particular, media with
periodically modulated refractive indexes (MPMRI) [10-19]. Such media can
be constructed by using a solid-state superlattice [10,11], a structure
working in the construction material absorption edge frequency domain
[12,13], periodically spaced foil strips [14,15], an ion-acoustic wave in a
plasma [16], a gas-plasma medium with a periodically modulated degree of
lonization [17], etc.

To be more specific, let us discuss briefly the problem of preparation of
a gas-plasma medium. Such a medium can consist of a series of breakdowns
in a gas produced, e .g, by a train of pulses of an external laser. Such a
train can be focused by a mirror that is turned around an axis perpendicular
to the laser beam direction of propagaion. Subsequent laser pulses are
focused into spots equally separated from each other. As a result, a gas-
plasma medium with periodically modulated degree of ionization is formed [
17]. Some other possibilities to create a series of breakdowns in a gas
consist of using a sinusoidal transparent diffraction grating as a focusing
system or using a standing microwave in a waveguide filled with a gas, or
employing a gas discharge formed by a net-shaped electrode.

An important direction in the development of free electron lasers is a
search for methods that will permit construction of a small-size FEL
operating at high frequencies. Creation of compact inexpensive sources of
radiation operating effciently in visible, UV, or soft X-ray domains is one of

the most important directions in the development and investigation of Free-
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Electron Lasers. A short-wavelength radiation can be generated by a FEL
using either a high-energy (multy-GeV) electron beam or a short period
undulator. One of the ideas often mentioned and discussed in the proposal
context is that of a FEL using (MPMRI). MPMRI can be considered as a kind
of a volume diffraction grating. The following two types of MPMRI have been
proposed: (1) a gas-plasma medium with periodically varied density or
degree of ionization [10] and references therein and (2) a spatially periodical
solid-state superlattice-like (SLL) structure, which can be composed, e.g., of
a series of layers of different materials with different refractive indices [11]
and references therein. The experimental feasibility of a transition radiation
FEL was shown recently [12].
Smith-Purcell FEL

There is currently substantial interest in the development of THz sources for
applications to biophysics, medical and industrial imaging, nanostructures,
and materials science [20] (Mickan,Zhang). At the present time, available
THz sources fall into three categories: gas lasers, solid-state devices, and
electron-beam driven devices. Optically and electrically pumped molecular
gas lasers provide hundreds of lines between 40 and 1000 p m, but they are
inherently not tunable. Solid-state THz sources include p-type germanium
lasers, quantum-cascade lasers, and excitation of numerous materials with
subpicosecond optical laser pulses. p-type Ge lasers can be continuously
tunable from 1 to 4 THz, but require a large (1-T) external magnetic field,
and must be operated at 20 K [ 21] (Brundermann, Chamberin, Haller).
Electron-beam driven sources of THz radiation include backward-wave
oscillators (BWOs), synchrotrons, and free-electron lasers (FELs). BWOs are

commercially available, compact devices that operate from 30-1000 GHz
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and produce milliwatts of average power [ 22](Pierce), [2, 23] (Dobroiu et
al). Modern synchrotrons with short electron bunches, such as BESSY Il in
Berlin [ 24] (Abo-Bakr et al.) and the recirculating linac at Jefferson
Laboratory [ 25] (Williams), produce broadband radiation out to about 1 THz
with tens of watts of average power. Conventional FELs have also been
operated in the THz region at several laboratories, with average power as
high as hundreds of Watts [26-29] (Ramian; Vinokurov, et al.; Koike et al;
Jeong et al.). Coherently enhanced THz emission from relativistic electrons
in an undulator has been observed at ENEA-Frascati [30] (Doria et al.).

However, synchrotrons and conventional FELs require large facilities.

Another source of radiation in the THz region is Smith-Purcell (SP)
radiation. The effect discovered in 1953 by Smith and Purcell [31] and called
then by their names consists in emission of light by electrons moving above
a grating. Later, after the advent of Free Electron Lasers (FEL), it was
suggested to use the Smith-Purcell effect to create a new type of FEL - the
Smith-Purcell Free Electron Laser (SP FEL). From the very beginning, SP
FEL seemed to be very perspective to make a small-size FEL operate
efficiently in visible and UV frequency regions. In several papers [32] SP
FEL were investigated both theoretically and (to some extent) experimentally.
Recently, there has been a renewed interest in the SP system related to both
a possibility of using it to generate intense radiation from the millimeter to
optical region [33] and to implement it in nondestructive beam diagnostics
[34]. The experiments at Dartmouth College [35,36] have stimulated new
investigations concerning the SP FEL [37] (experimental) and [38]

(theoretical and particle-in-cell simulations).
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Unfortunately, these papers altogether indicate a lack of common
understanding even in such a basic problem as the main physical
mechanisms of efficient amplification in SP FEL. One of the open questions
is how high is the light frequency that can be expected to be produced by
SP FEL? Another important problem is: do electrons in the SP FEL interact
only with the surface grating or also with the whole bulk of the crystal whose
surface has a grating? This problem emerges, in particular, from the results
and calculations of [32] (Chang, McDaniel), in which the electron-crystal
interaction is assumed to give rise to some quantum interference effects

increasing drastically the SP FEL gain.

Surface Plasmon

Creation of compact inexpensive sources of radiation operating
effciently in visible, UV, or soft X-ray domains is one of the most important
directions in the development and investigation of Free-Electron Lasers.

A theory of stimulated radiation from relativistic electrons moving
above a two dimensional lattice of microscopic bumps has been developed. It
has been shown that the excitation of resonant electron-plasma oscillations
inside the bumps leads to intense monochromatic UV, visible or IR radiation,
A novel type of FEL, based on the interaction of electron beam with the two-
dimensional lattice, has been discussed. As reported in refs. [39-41], a new
kind of electromagnetic radiation may occur when a fast electron moves
close to a surface on which microscopic roughnesses exist. The radiation is
caused by the excitation of the collective resonance oscillations of electrons
of the material inside the roughnesses. As pointed out in ref. [39], this kind

of radiation was probably first observed in the UV region under the
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bombardment of metal foils by electrons at grazing incidence. For FEL
purposes a regular grid of identical microbumps may be used as a source of
coherent radiation . On the other hand, the Smith-Purcell radiation from
diffraction gratings is often considered from this point of view. The
objectives of the present proposal are to discuss the relationship between
the two kinds of electromagnetic radiation from electrons and to clearify the

advantages which the radiation from local plasmons (RLP) may have.

Our calculations show that, the main difference between the RLP and
the Smith-Purcell radiation lies in the resonance condition when the
polarizability of the bumps may be increased by several decimal orders. It
should be noted, however, that a linear diffraction grating with deep enough
grooves may have resonance properties similar to the resonance properties
of the isolated bumps, especially for the plasma oscillations perpendicular to
the grooves.

The radiation from the local plasmons has an evident advantage over
the familiar Smith-Purcell radiation due to the much higher intensity and the
gain which may be achieved in FEL devices. However, the resonance
conditions for the plasmons excitation may exist at definite frequencies
dependent on the bump shape, the dimension (if the higher multipoles are
excited) and the dielectric susceptibility of the material.

FELWI
Usually FEL [42,43] use the kinetic energy of relativistic electrons moving
through a spatially modulated magnetic field (wiggler) to produce coherent
radiation. The frequency of radiation is determined by the energy of

electrons, the spatial period of magnetic field and the magnetic field
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strength of the wiggler. This permits tuning a FEL in a wide range unlike
atomic or molecular lasers. However for purposes of achievement of short-
wavelength region of generation there are important possible limitations of

the FEL gain.

The idea of inversionless FEL or FELWI (FEL without inversion) was
formulated and discussed by one of the collaborators of this project M.O.

Scully and coworkers [44-48] and continued [ 50-55]. In the usual FEL the

whereE and

res ?

gain is an anti-symmetric function of the detuning A=E-E

E. are the electron energy and its resonance value in the undulator. The

res

integral of such a gain over A (or E) is zero. By definition, in FELWI

jG(E)dE;tO and mainly, G>0. Moreover, if in the usual FEL in the “hot-

beam” regime (i.e., in the case of a broad electron energy distribution) the
averaged gain is proportional to the squared inverse width of the
distribution function, (SE)?, in FELWI G(E) < (SE)*. Hence, in the case of
energetically wide beams the FELWI gain can exceed significantly the gain of
the usual FEL. This advantage of FELWI (compared to usual FELs) makes
such devices particularly interesting and potentially perspective in short-

wave-length regions.

The conditions jG(E)dE;to and G>0 imply that amplification of light

can take place almost at any position of the resonance energy E,. with

es

respect the energy E=E,, at which the electron distribution function f(E) is

maximal. In FELWI amplification can take place both at positive and negative

slopes of the function f(E,.), as well as its peak. This feature of FEWI is in a

res

great contrast with that of FEL, where amplification can take place only at

15



the positive slope f(E.)>0. This last condition is easily interpreted as the

res

condition of inversion: in FEL the number of electrons with E>E,. must be
larger than with E<E,, . In FELWI amplification can occur independently of
the relation between E_and E=E,. This means that for amplification in

FELWI it does not matter whether the number of particles with energy

E>E, Is larger than with energy E<E,, or not. This explains an origin of

res

the concept "without inversion" for the kind of FEL to be considered.

A concept of FELWI is related to that of Lasing Without Inversion
(LWI)  [49] in atomic systems - three-level systems or systems with
autoionizing atomic levels. In both cases effects of amplification without
inversion are explained by interference. But specific kinds of interference in
FELWI and atomic systems are significantly different. In atomic systems
amplification without inversion is attributed to interference of different
channels of transitions between the same initial and final atomic states. In
contrast, interference in FELWI has a purely classical character. A typical
scheme of FELWI involves two wigglers and a dispersion zone between
them. Field-induce corrections to classical electron trajectories acquired in
the first and second wigglers interfere with each other. A proper
construction of the dispersion zone can give rise to such a form of
interference which provides the described above spectral features of the
FELWI gain. So, the characteristic features of FELWI allow to distinguish it

as a novel FEL mechanism which has fundamental as well as applied value.

The materials of this dissertation have been extensively discussed with

experts in this area, and presented in several International scientifc centers

16



such as University of New Mexico (Albuquerque, NM, USA) , Texas A&M
University (Colledge Station, TX, USA), Thomas Jefferson Lab (Newport
News, VA, USA), University of North Texas (Denton, TX, USA), Brookhaven
National Lab (New York, NY, USA) etc.

They are reported in Conferences, Workshops and Meetings, such as:

- Physics of Quantum Electronics , 2009; 2010

- Central European Workshop on Quantum Optics Belgrade 2009; Turku
2010

- International Laser Physics Workshops Trieste 2004; Kyoto 2005;
Lousanne 2006; Trondheim 2008; Barcelona 2009; Sarajevo; Calgary
2012; Prague 2013; Sofia 2014; Shanghai 2015

-FEL ~ New York 2013

- IPAC, New Orlean 2012; Shanghai 2012; Kyoto 2011;

- NAPAC , Pasadena, 2014

- SPIE & Photonics, San Diego 2014

These results also have been reported on YerPhl seminars.

This dissertation is based on 23 publications in journals (IEEE . of
Quant. Electr.[79], Appl.Phys. Lett.[116], K2 TP(JHEP)[117],
KTD(ZhTP)[114,171], KBaHTOBaA InekTpoHuka (Sov.).Quant.Electr.) [66],
NIM A [165], Physica Scripta [55,166], Laser Physics [54], Laser Physics
Lett. [164,167,169], ). of Modern Optics [126,161,162,168,157,170 |,
N3sectna HAH Apmenun, dusuka [163,172,173], J. of Physics, Conf. Series
[174].

Single author publications are NIM A [165], Laser Phys. Lett. [167], J.of
Modern Optics [161,162,170].
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There are several scientic goals and aspects which were initiated
these studies, and this dissertation.

We will defend in this dissertation:
1. Investigation of spectral intensity of a spontaneous emission and the gain
of an external wave in the strophotron. The main resonance frequency is
shown to depend on the initial conditions of the electron, and in particular

on its initial transversal coordinate X,. The spectral intensity of a
spontaneous emission and the gain are averaged over x,. The averaged

spectral intensity is showh to have only a very weakly expressed resonance
structure, whereas in the averaged gain, the resonance peaks are shown to
be much higher than the nonresonant background. A physical nature of
these resonances remaining after averaging is discussed. The maximum
achieveable averaged gain and frequency of the strophotron FEL are
estimated.

2. We propose and describe an FEL in which an electron beam interacts
with a strong standing wave and the conditions are favorable for the
channeling of electrons between constant-phase planes. We describe the
equations of motion of electrons moving along the wiggler axis, the magnetic
field in which is spacially inhomogeneous.

3. A relativistic electron motion in a transversally inhomogeneous magnetic
field of a wiggler is shown to consist of fast (undulator) and slow
(strophotron) components. By separating fast and slow motions and by
averaging equations of motion over fast undulator oscillations, we find

spectral intensity of strophotron spontaneous emission in such a system. The

18



strophotron intensity of spontaneous emission is shown to be well separated
spectrally from the usual undulator parts.

4. A threshold condition for amplification without inversion in a free-
electron laser without inversion (FELWI) is determined. This condition is
found to be too severe for the effect to be observed in an earlier suggested
scheme because a threshold intensity of the field to be amplified appears to
be too high. This indicates that alternative schemes have to be found for
making the creation of an FELWI realistic.

The interaction between noncolinear laser and relativistic electron beams in
a static magnetic undulator has been studied within the framework of
dispersion equations. For a free-electron laser without inversion (FELWI),
the threshold parameters are found. The large-amplification regime should
be used to bring an FELWI above the threshold laser power.

5. We have used the framework of the dispersion equation to study
coherent Smith-Purcell (SP) radiation induced by a relativistic magnetized
electron beam in the absence of a resonator. We have found that the
dispersion equation describing the induced SP instability is a quadratic
equation for frequency; and the zero-order approximation for solution of the
equation, which gives the SP spectrum of frequency, corresponds to the
mirror boundary case, when the electron beam propagates above plane
metal surface (mirror). It was found that the conditions for both the
Thompson and the Raman regimes of excitation do not depend on beam
current and depend on the height of the beam above the grating surface.
The growth rate of the instability in both cases is proportional to the square

root of the electron beam current.
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6. A possibility of channeling of low-energy relativistic positrons in some
lonic crystals with axial symmetry with coaxial symmetry around separate
crystal axes of negative ions in some types of crystals, is shown. The
annihilation processes of positrons with medium electrons are investigated
in details. The lifetime of a positron in the regime of channeling is

estimated; the existence of long relaxation lifetime has been shown.

This dissertation consists of introduction, six chapters, summary and
Bibliography. The format will be as follows:
Introduction. In Introduction the topical character of problem is justified
and the preceding works on the subject are reviewed.
Chapter 1. Relativistic strophotron is a system in which fast electrons move
along a potential “trough” produced hy quadrupole magnetic or electric
lenses. Spectral intensity of a spontaneous emission and the gain of an
external wave in the strophotron are given by a superposition of
contributions from emission or amplification at different (odd) harmonics of

the main resonance frequency . (%). The main resonance frequency is

es

shown to depend on the initial conditions of the electron, and in particular

on its initial transversal coordinate X,. This dependence o,

res

(%,) is shown to
give rise to a very strong inhomogeneous broadening of the spectral lines.
The broadening can become large enough for the spectral lines to overlap
with each other. The spectral intensity of a spontaneous emission is
averaged over x,. The averaged spectral intensity is showh to have only a

very weakly expressed resonance structure, whereas in the averaged gain,
20



the resonance peaks are shown to be much higher than the nonresonant
background. A physical nature of these resonances remaining after
averaging is discussed. The maximum achieveable averaged gain and

frequency of the strophotron FEL are estimated.

Chapter 2. The gain of an external wave in the strophotron is given by a
superposition of contributions from  amplification at different (odd)

harmonics of the main resonance frequency o,..(x,).The gain is averaged

over X,. In the averaged gain, the resonance peaks are shown to be much
higher than the nonresonant background. A physical nature of these
resonances remaining after averaging is discussed. The maximum
achieveable averaged gain and frequency of the strophotron FEL are
estimated.

The nonlinear and quantum mechanical theories of amplification in plane

parabolic through are developed.

Chapter 3. A free-electron laser based on the channeling of a strong
standing electromagnetic wave crossing a beam of weakly relativistic
electrons is proposed and described. Allowance is made for the standing-
wave-field spatial inhomogeneity governing the unusual spectral structure of
the gain of a wave propagating parallel to the electron beam. Estimates
indicate that the gain should be sufficient for the construction of a free-
electron laser operating in the infrared range.

The spectral distribution of spontaneous emission and the gain for
electrons moving in a plane wiggler (an undulator) with inhomogeneous

21



magnetic field are calculated. It is shown that electrons perform
composite motion, consisted of a slow (strophotron) and fast
(undulator) components. The equations of coupled motion of electrons
is obtained by averaging the equations of undulator motion. It is shown
that the allowance for the magnetic field inhomogeneity leads to an
appearance of additional peaks both in the spectral distribution of

spontaneous radiation and in the gain.

Chapter 4. The spatial amplification of a wave in a magnetostatic undulator
with noncollinear electron and laser beams is studied in the framework of
the dispersion relation for single-frequency and collective regimes. The
dependence of the gain on the electron beam width is estimated with regard
to the spatial boundedness of the beams. The laser power threshold at which
the selection with respect to the transverse velocity is possible is obtained
for a free-electron laser without inversion.

A threshold condition for amplification without inversion in a free-electron
laser without inversion (FELWI) is determined. This condition is found to be
too severe for the effect to be observed in an earlier suggested scheme
because a threshold intensity of the field to be amplified appears to be too
high. This indicates that alternative schemes have to be found for making

the creation of an FELWI realistic.

Chapter 5. We have used the framework of the dispersion equation to study
coherent Smith-Purcell (SP) radiation induced by a relativistic magnetized

electron beam in the absence of a resonator. We have found that the
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dispersion equation describing the induced SP instability is a quadratic
equation for frequency; and the zero-order approximation for solution of the
equation, which gives the SP spectrum of frequency, corresponds to the
mirror boundary case, when the electron beam propagates above plane
metal surface (mirror). It was found that the conditions for both the
Thompson and the Raman regimes of excitation do not depend on beam
current and depend on the height of the beam above the grating surface.
The growth rate of the instability in both cases is proportional to the square

root of the electron beam current.

Chapter 6. A possibility of channeling of low-energy relativistic positrons in
some ionic crystals with axial symmetry with coaxial symmetry around
separate crystal axes of negative ions in some types of crystals, is shown.
The annihilation processes of positrons with medium electrons are
investigated in details. The lifetime of a positron in the regime of
channeling is estimated; the existence of long relaxation lifetime has been

shown.

23



Chapter 1. Relativistic Strophotron

The Chapter based on 3 publications [79,171]

1.1.  Overview

ORIGINALLY the name “strophotron” had been used [57,58] for a
nonrelativistic device with electrons injected and oscillating along the x axis,
the oscillations arising under the action of a constant electric field with a
scalar potential @ parabolically depending on x. The electron drift along

the z axis has been providebdy the y component of the same electric field

and by a constant homogeneous magnetic field BOOx.

In the relativistic strophotron [59], a relativistic electron beam is supposed

to be injected at the (x,z) plane under some small angle a<<1 to the z

axis. As the motion along the z axis is the main motion of the electron beam
itself in this case, there is no need in the y component of the electric field
and in the magnetic field BJ|Ox. In accordance with [59], we will consider

I“

here a relativistic electron beam moving in the potential “trough” produced
by electric or magnetic quadrupole lenses. The corresponding static
potentials are supposed to depend parabolically on x and to be independent

on yand z.

There were some publications earlier than [59] where the idea about
quadrupole lenses was mentioned (see some references below). But
probably the paper by Zaretsky and Nersesov [59] was the first one in which

this idea was formulated explicitly as a suggestion of a new type of a FEL.
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The paper [59] gives a correct description of ampiification at the main
resonance frequency ores which itself (as well as the gain) is found correctly

under the condition that the electron energy E is not too high (see below).

An attempt to describe amplification at higher harmonics in the paper [99]
was unsuccessful. In the relativistic strophotron, there is a small but not
negligible connection between the longitudinal and transversal electron
motions. This connection was not taken into account carefully enough in the
paper [99]. This is the reason why, for example, the paper [59] does not
contain a description of amplification at higher harmonics in the most
important case when the electromagnetic wave propagates along the z axis
and its amplification is most efficient.

The resonance frequency of the strophotron @, has been found correctly

for any & by Bessonov [60] when he considered some features of a
spontaneous emission of electrons channeling in a crystal. It should be
mentioned in this context that the geometry of a static field described above
corresponds to one. of the models which are often used [61,62] for a
description of the electron channeling in crystals. For this reason,
sometimes the strophotron is characterized by the term “macroscopic
channeling.”

Sometimes [63], vice versa, a crystal with electrons channeling in it is called
the “solid-state strophotron.” But, of course, there is a large difference
between the strophotron and the crystal. The electron channeling in crystals
Is accompanied by many other processes such as dechanneling,

bremsstrahlung, interaction with phonons, heating and damage of a crystal,
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absorption of radiation in the volume of a crystal, etc. All of these processes
require a careful analysis in a problem of channeling, but they have no
analogy in the scheme with external fields (the strophotron). Besides, there
Is a very pronounced difference in the scales of dimensions and energies: if
the diameter of a channel in a crystal is d =10°cm and the electron energy
g can vary from 2 MeV to 5 GeV [62], in the strophotron d=1cm and
£=10-50MeV (see the estimates below in Summary). This quantitative
difference will be shown to give rise to a very appreciable qualitative

difference in a physics of processes which can occur in these two schemes.

The resonance frequency w,, found in the paper [60] depends on the initial

condition of the electron: on the angle « and on the initial transversal
electron coordinate x. This conclusion is confirmed by the derivation of the

present paper. The dependence o, (x,) will be shown to be very important

res

for the strophotron FEL. Due to this dependence, there appears a very
strong inhomogeneous broadening of the spectral lines of emission and
amplification .

This broadening can become large enough for the spectral lines to overlap
with each other. Under these conditions, averaging overx becomes very
important and can essentially change the results. We will find both the
spectral intensity of a spontaneous emission and the gain of an external

wave averaged over x,, i.e., over the distribution of electrons in the cross

section of the beam. The averaged spectral intensity of a spontaneous
emission will be shown to have only a very weakly expressed resonance

structure with a dominating nonresonant background. The averaged gain
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will be shown to have a more noticeable resonance structure exceeding the
nonresonant background. The maximum achieveable averaged gain and

frequency of the strophotron FEL will be estimated.

Sometimes [62] the strophotron emission is considered as analogous to the
undulator emission, i.e., the emission from the system with a transversal
magnetic field periodically depending on z. Sometimes [64] the
strophotrons are not separated from the undulators at all, being called “the
undulators of the second class.” We will not use this name here. Of course,
this is a purely terminological question. But the main idea permitting the
joining of strophotrons and undulators [64] is based on a similarity of the
solutions of corresponding equations. Such a similarity does exist for a
single electron. A detailed comparison will be given in paragraph 1.2. But
the above-mentioned strong dependence . (X,) exists only in the
strophotron and does not exist in the undulator. For this reason, a very
pronounced difference between the strophotron and the undulator emission
can appear when the results are averaged over x,, i.e., when one considers
not a single electron, but the beam as a whole.

In the paper [65], the systems with quadrupole lenses have been criticized
because of a possible instability in the y direction (in the plane geometry
described above).

It is difficult to say now how important this difficulty is. We will not dwell
upon this problem here. We hope to consider later the geometry with an

axial symmetry in which we hope the problem of instability will be obviated,

27



but the main results of the present consideration will hold well, at any rate,

qualitatively.

1.2. Classical Theory of Emission and Amplification at Higher

Harmonics in the Relativistic Strophotron FEL

1.2.1. Electron Motion in Static Fields of

The Strophotron

We will consider separately two possible realizations of the strophotron

corresponding to the use of electric or magnetic quadrupole lenses.

A. Electric Field

Fig.1. Model of plane parabolic through for FEL .
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Let the scalar potential ®(x) have the form ®(x)=®d,(x/d)*> where ®, and

2d are the height and the width of the potential “trough.” The equations of

electron motion are

dp, 26Dy, dp,_ (1.2.1)
dt d dt

where P, are the components of the electron momentum along the x and

Z axes.

In accordance with the second equation (1.2.1), the longitudinal momentum

1/2
and energy are conserved: p, =const, & =(p§+m2) =const (we use the

system of units in which ¢ = 1). The first equation (1) can be transformed

into an equation for the transversal coordinate:

2+xQ2 (1-x2) =0, 0= 283320 . (1.2.2)
gZ

If [x<<1, (1.2.1) for x(t) turns into the equation of a harmonic oscillator
having the solution

X(t) = X, coth+%sith (1.2.3)

where x, and %, ~« are the initial transversal coordinate and speed of the
electron. The condition|X|<<1 is satisfied if |o|<<1 and
|%|Q<<1=27|%,|/ 4, <<1 where 1, =2zc/Q is the spatial period (along the z

axis) of transversal oscillations of the electron. These conditions and the

solution (1.2.3) will be referred to later as the “harmonic approximation.”
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Although p, =const, the longitudinal speed u, depends on time t because

the total kinetic energy ¢, =const. Under the condition |X|<<1,

v.=2=p_ le <Pz 1—ﬁ (1.2.4)
z z “kin £, 2 o
where
£ —X
2 (%) (1.2.5)
1 o
Z,=VyC0sax ~1l-———
27" 2

where v, is the total initial electron speed, y=¢,/mc*> >>1 is the relativistic

factor, and ¢, is the initial electron kinetic energy.

Under the condition |X|<<1, the anharmonicity of (1.2.2) (< x*) is small and
can be ignoreads responsible for small corrections only. On the other hand,
the small correction to v, (1.2.4), proportional to x*, may not be ignored

because the coordinate z appears often in the combination z — ¢t (see below)
in which the main term of expansion (1.2.4) almost completely cancels.

Equations (1.2.3) and (1.2.4) immediately yield

2 22 2 22
z(t):z‘o{(lJra J::("Q Jt+a ;gX;Q [sin(2Qt+¢0)—singoO]}

2 22 2 22 (126)
1 a" +xQ a“+xQ° . .
~t+{— + 0 t+ 0=~ [sin(2Qt + @, ) —sin
{ (2}/2 4 J 80 [ ( @) %]}
where ¢, = constant.
2 Qa QZ—XZQZ
SINg, =—; +0X§Q2 ,  COsg, :_052+—X%Qz' (1.2.7)
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In the harmonic approximation (1.2.3), the amplitude of transversal

oscillation of the electron is equal to a=(x; Jroﬂ/QZ)”2 . Depending on the

time transversal kinetic energy, ¢, (t) is given by

2
sun=e -8, = ol + ] -5, x v e (1.2.8)

In the static potential ®(x), the electron also has the potential transversal

energy

X2 X
ELpn = 0Py 7 =6 (1.2.9)
In the harmonic approximation (1.2.3), the total transversal energy is
conserved (as well as ¢, ):
&1 po(t) = Ein — €L = %(az + X% ) = const., (1.2.10)

All the solutions described above (1.2.3)-(1.2.10) are correct under the
assumption about a suddenly switching-on interaction which is applicable if
At<<27/Q where Atis the switching-on time or the time it takes for the
electron to traverse the transitional layer AL<<c/At. The condition AtQ<<2z
can be written as AL<<4,. This inequality is satisfied if, e.g., AL=.2-3cm and
4y =.10cm .

Under the assumption about a suddenly switching-on interaction, the
electron’s transversal energy jumps up at t = O to be increased by the term

£(xQ?/2). However, the total energy s is conserved because at the same

moment t = 0, the electron’s longitudinal energy &, has a jump equal to
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Ae, =—£(x;Q/2). This last conclusion can be confirmed by an analysis of the
equations of motion in the transitional layer where the scalar potential ®(x,z)
can be taken, e.g., in the form cD(x,z):cDo(sz/dzAL), 0<z<AL. Writing
down these equations explicitly and taking in them the limit AL >0 one can
check that the change of the momentum in this transitional layer is equal to
Ap,=0 and Ap,=-¢(xQ°/2) to confirm the formulated above conclusion
about the jump in Ae. Of course, |A¢,|<<e , and this jump almost does not

change the angle « (its change is =. axXQ? <<a).

B. Magnetic Field
Let the vector potential A0z be equal to A =-A/(x*/d*). The
corresponding magnetic field H||Oy is given by H(x)=2Ax/d’. The
equations of motion of the

electron have the form

dp, __2eA ., dp, _2eA (1.2.11)

dt dz ¢ dt dz

In this case, the total energy of the electron is

constants =,/p? + p?+m? = const . Equations ( 1.2.11 ) can be reduced to the
form of equations for the coordinates x,z because p=ev

g=v =— 2Dy v =2y (1.2.12)

X £d? togd?

The second equation (1.2.12) is immediately integrated to give

Z'Ingz(XZ—Xg)—i-VOCOSaE%Z(Xz—X§)+VOCOSa (1.2.13)
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where Q=(2e®, /gdz)”2

Substituting z (1.2.13) in the first equation (1.2.12), we find the nonlinear

equation for x(t):

5<'+XQZ(v0c03a+%£22(x2—x§)):0. (1.2.14)

Equation (1.2.14) differs from the corresponding equation (1.2.2) in the
electric field. But in (1.2.14), again the anharmonicity is small if «a<<1,

%|Q<<1. In the harmonic approximation equation, (1.2.14) has the same

solution (1.2.3) as (1.2.2). The longitudinal speed and coordinate can be
easily found in the harmonic approximation from (1.2.3) and (1.2.13), and
they can be shown to be given by the previous expression (1.2.6). Hence,
although the equations of motion of the electron in the electric and magnetic
fields (1.2. 1) and ( 1.2.1 1) do not coincide, their solutions in the harmonic
approximation x<<1 do coincide. This is the reason why both spontaneous
and stimulated emission in the strophotron do not depend on the kind of the
field (electric or magnetic) creating a potential “trough” for electrons.

Differing from the case of the electrostatic field in the magnetic
strophotron, both longitudinal and transversal energies of the electron are
continuous at the boundary, i.e., they have no jump at t = O even in the
approximation of a suddenly switching-on interaction.

Inside the strophotron, the transversal energy is determined similarly

to that given by (1.2.4):

2
v
g ()=e—ym+p’=c—\s’-p?le¢ ; # const.
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¢, depends on time tand ¢ (t=0)=2a’/2. In the harmonic approximation,
there is an integral of motion (additional to the total energy ¢, ) given by the

sum

2,2
£ =5L+5Q2X :g(a2+x§§22)=const (1.2.15)

In a quantum-mechanical description [ 59,66 ] this sum plays the role of the
effective transversal energy having the eigenvalues IhQ where [ is an

integer. This is the reason why for the sum (1.2.15), we use the notation ¢
It is necessary to emphasize that ¢, not the real transversal energy, and

hence it is not surprising that ¢, #¢, (t=0)=¢a’/2.

1.3. Quadrupole lenses scheme and equations of electron motion in

strophotron static fields

Usually the concept FEL is associated with undulator the magnetic field of
which is periodical function of longitudinal coordinate z. There exist other
systems too allowing transverse oscillations of electrons, and consequently,
there are other possibilities for creation FELs. In one of such system
movement of electrons was considered in plane parabolic potential , i.e. in
the field whose potential do not depend on one of the transverse
coordinates (for example, y) and on the longitudinal z and has square
dependence on the other transverse coordinate x. For the systems of this

type sometimes the term strophotron is used.

Single quadrupole lens, as it was well known, does not satisfy the above

mentioned conditions: his potential square depends on both transverse
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coordinates x and y (near axis Oz), if dependence on x is potential through
then the dependence on y is inverted through. So, in the direction Ox there
Is focusing and there are possible oscillations, and in the direction Oy
movement is aperiodic and the beam decay occurs. This means, that for

beam stability needed correction.

Here is described self consistent scheme of correction by use of additional
quadrupole lenses providing electron beam stability and oscillation

periodicity in both transverse coordinates.

A scheme is presented in Fig.2. Its base is long electrostatic or magnetic
quadrupole lens focusing electrons in direction Ox and defocusing in

direction Oy.

Let scalar potential #(x,y) of long electrostatic quadrupole lens has a form

¢=ﬁ(x2—y2), where ¢ and 2d height and width of potential through in

direction Ox. The equations of electron motion in this through have a form
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Fig. 2. Basic and corrective lenses layout.

do, _ _2¢¢y, Oy 24y, b, _g (1.3.1)

dt d d d dt

where p, , are components of electron momentum along axes Ox,0Oy, Oz.

According to third Eq. of (1.3.1) the longitudinal momentum and energy are

12 .
conserved p,=const, & =(p’+m’)" =const (here the system is used where

12

c=1). Taking into account p, =x(sl+pZ+p2) ", p,=y(&+p;+ pj)ﬂzthe second

and third Egs. Give

x+Q2x(1-3¢)" =0, Q= j‘;‘% (1.3.2)
&

z
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y-x(1-y2)" =o. (1.3.3)

At |x|<<1 Eq. (1.3.2) for x(t) turns to equation of harmonic oscillator having

a solution

X(t) = X, coth+%sith, (1.3.4)

where x, and x ~« Initial coordinate and velocity along Ox axis,

a=sina=p, / p electron entry angle in strophotron.

At |y|<<1 Eq. (1.3.3) gives exponential growing solution
y(t) = y, ch Qt+%sh§2t, (1.3.5)
where now y, and vy, initial coordinate and velocity along Oy axis.

In the case of magnetic lens with vector potential A| 0Oz, A :—i(xz—yz)

(the corresponding magnetic field H, :_%y’ H, :Zd—'i‘)x) the equations of

electron motion are

dp 2eA, dp, 2eA, dp, 2eA,, . .
M xv, —L=—2 , L — XX — . 1.3.6
dt da> % dt  d* 7Y dt d? (%x=yy) ( )

In this case total energy of electron is conserved

1/2
e=(pl+pl+pl+m’) " =const.

Equations (1.3.6) can be written as equations for x, y, z, because of p=sv

g=v, =2y gov =2y oy =2 ey, (1.3.7)
£ S d’e
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Fig.3. Electron trajectories in relativistic strophotron.

The third equation of (1.3.6) is immediately integrated giving

z':j—f‘;{(xz—xg)—(yz—y§)}+v0cosa
1/2
E%Z{(xz_xg)_(yz_yg)}+v0c05a, where Q:(Z;Afj :

(1.3.8)

Putting 2 (1.3.8) into first and second equations of (1.3.7) we find

nonlinear equations for x(t) and y(t)
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X+sz[v0 COSO(+%Q2(X2 —xj-)—%Qz(y2 —yé)}:o (1.3.9)

0. (1.3.10)

y—sz{vo c03a+%§22(x2 —xé)—%Qz(yz—yj)}

Equations (1.3.9) and (1.3.10) differ from corresponding equations (1.3.2)
and (1.3.3) for electric field. But as before in equations (1.3.9) and (1.3.10)

small anharmonicity can be neglected if |al<<1, |x,|Q<<1, |y,|Q<<1. In the

harmonic approximation equations (1.3.9), (1.3.10) have the same solutions
(1.3.4) and (1.3.5). Those equations show that there is a focusing in Ox
direction and there are possible electron oscillations, and there is
defocusing in direction Oy and occurs beam decay of the beam. This means

that for beam stabilization its correction is needed.

The well known hard focusing with crossed quadrupole lenses is used for
beam stabilization. Arrows in the figure indicate the positions of corrective
lenses along the Oz axis of the system at a distance z/Q from each other.
Indexes x and y show those transverse directions in which corresponding
lens is focusing. The corrected lenses are assumed to be short, so that their
length 1 is much less than focal length f . This assumption allows us to
not analyze in detail the electron motion in the corrective lenses, describing
their action instantaneous change in a component of the electron velocity on

f, where x and vy, values of the transverse coordinate at the

= f, Fy

intersection of electron i-th corrected lens.

Focal lengths of all corrected lenses (except first) we accept to be

[
[——y
—

-t (1.3.11)



where f'=2f s focal length of first lens located at the entrance (z=0),
and f, is focal length of basic quadrupole lens f,=z/2Q<<L. This choice
provides the electron motion periodicity on both transverse coordinates
(see Fig. ). Electron velocity in direction Oy, y changes his direction(sign)
during every correction (Fig.3. a,b), electron velocity in direction Ox , x

at the intersection of corrective lenses abruptly changed to +2x,Q , and
+x,Q at intersection first lens (see Fig.3. ). These abrupt changes in speed x

are small in comparison with its initial value x~ « if the condition holds

QAX, << (1.3.12)

where Ax, Is transverse size of the beam in the Ox direction

corresponding to the electrons fly in the vicinity of the Oz axis and giving an

effective contribution to the resonant radiation and equal é‘/iL’ where L
T
is system length, 2 - radiation wavelength (see (2.2.2)).

If the necessity of correction and focusing of the beam in the Oy direction is
evident, the need for focus adjustment in the Ox direction is associated
with the requirements of periodicity of the oscillations and the absence of

accumulated change of velocity x.

Under condition (1.3.12) jumps of velocity x are small and do not
essentially affect the nature of the oscillations x(t), Fourier expansion of

which has a form

X(t) = X, coth+%sin Qt—z—x(’(l—ZiAr L 1cosZth). (1.3.13)

2
T k=1
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Under the selected installation scheme of corrective lenses movement in a
second transverse coordinate y is also periodic with the same period 2z/Q if
y,=0. Condition y,=0 violates periodicity. During one period 2z/Q, vy
increases on y,/Q. The deviation from the strict periodic motion in y means
that for y, =0 is a certain degree of instability. This instability is small under

condition

E£Z%<<de (1.314)
AQ 2z /

where L is the system length, 21=2z/Q. The condition (1.3.14) means that

the increase of y independence on y,=00n the whole length L should be

less than transverse dimension of the beam in the y direction d,,.

With values L=300cm, d, =1cm the condition (1.3.14) gives

<< Z”Ldev _2x10° (1.3.15)

The condition of used approximation has a form

e"d,, <D,, 1/Q, (1.3.16)
where D, is a lens aperture in the Oy direction.

From the above it can be seen, that the movement of the electron beam in
the system of quadrupole lenses of the type described has a two-dimensional
character, and in each of them many harmonics of transverse oscillation
frequencies are essential. The problems of investigation spontaneous and
stimulated radiation in such a system on a higher harmonics of resonant
frequency are very complicated. Therefore below the simplified
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mathematical model will be considered - model of plane parabolic through.
It will be shown that in this simplified model, there are a number of physical
factors that were not previously taken into account, but are essential for the
correct evaluation of the real possibilities of amplification in FEL, based on

macroscopic channeling effect in the quadrupole lenses .

Note finally the stability of the motion of electrons in the system with a
quadrupole lenses. A small deviation of the focal distance sf << f does not

lead to instability in the movement in the x direction. In the direction y it

leads to increase of y coordinate, so that 5y0/y0=.N$, where vy, is

coordinate y at the entrance in system, &y, is increase on the system
length, N- number of periods, and fis lens focal length. The condition of

small deviation along y is &y, /y, <1, which is equivalent to the requirement

st _1

f N
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1.4. SPONTANEOUS EMISSIION OF THE STROPHOTRON
Using the solutions (1.2.3) and (1.2.6), we can find the spectral intensity of a
spontaneous emission of the electron. The spectral intensity of emission in

the most interesting case, along the z axis, is determined by the well-known

formula [67]

2

dE,

I dt xe'?
da)do 47r

0

(1.4.16)

where do is an infinitely small solid angle in the direction 0z, and .T is the
time it takes for the electron to traverse through the strophotrori.

Substituting x(t) (1.2.3) and z(t) (1.2.6) into (1.4.16) and expanding the

periodical integrand in the Fourier series, we obtain

0

dE, _T26%0% (.2, w22\ SIN" Y
Goo = Tont (@ XY 2= (0.0 -2.@) (1.417)

S

where J_ . .(2) are the Bessel functions,

T ? 2 22 2
u, =4—7/2[a)[1+%(0: +X2Q )]—2;/ Q(zs+1)} (1.4.18)

z =%(a2+x§£)2). (1.4.19)

Equation (1.4.17) describes the spectrum of emission consisting of a
superposition  of the spectral lines located at the odd

harmonic (2s+1)w

res

(s=0,1,2,..) of the main resonance frequency

P /s S (1.4.20)

1+ 722(052 + ijZ)

These lines are separated each from other by the term 24, and their width
is found from the condition u =1 to be on the order of 24 /QT. If the

number N,=QT=(L/4,) of electron oscillations at thel ength of the
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strophotron L is large erlough N,>>1, the spectral lines in'(1.4.17) for a
single electron do not overlap. A relative intensity of emission at the
harmonics with a number (2s + 1) is determined by the factor (J,(2)-J,(2)".

If ay<<1 and|x|Qy <<l , Z=(2s+1)/4y’(a’+xQ")<<s. In this case of rather

small y, «, and |x,|, only the main frequency o

res

(1.4.20) is emitted with an
appreciable intensity. Emission at higher harmonics s >> 1 becomes possible

only when ay>>1 or |x|Qy>>1. But, of course, in this case, the main

resonance frequency o

res

(1.4.20) falls down.

de
dw
0
_ 2y°Q) 32
O T R ) dZ > AX; =—;
> ol

Puc.4. 3aBucuMMOCTb  CMEKTpanbHOrO  PacnpefeneHna  CMOHTAHHOrO  W3Ny4YeHus

3NEKTPOHOB B PENATUBUCTCKOM CTPOCPOTPOHE OT YacToThl.

In accordance with the' remark made in the Introduction, the

resonance frequency o,

res

(1.4.20) has been obtained correctly in the paper
[60] (see also [62]).
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It is interesting to compare the results (1.4.17)-(1.4.20) to the
corresponding results for the plane undulator [65,68]. These formulas can
be reduced to the same form being expressed in terms of
the "undulator parameter" K, =eB 4, /2zmc* (B, and 4,. are the magnetic
field strength and the period of the undulator) which, in the case of a
strophotron, is replaced by K, :a(a2+X§Q2)ﬂ2 = A(Qa/c). Now (1.4.17)-

(1.4.20) take the form

(1.4.21)

where r, =e? /mc?2 is the classical electron radius,

(1.4.22)
0 =2 (1.4.23)
1+E K?

and the argument of the Bessel function Z (1.4.19) calculated at (2s+)a,, is

res

given by
2s+1 K2
z- . (1.4.24)
4 1+;K2

Formally, these results completely coincide with the results of the
papers [65,68]. Hence, for a single electron, the spectral intensity of a
spontaneous emission can be reduced to the coinciding forms in the cases of
the strophotron and of the plane undulator. But this coincidence will be
shown to disappear when, instead of a single electron, one considers the
electron beam as a whole. And the reason is in a different definition and
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parametrical dependence of the K parameter in the undulator and in the

strophotron.

1.5. AVERAGING OVER ELECTRON DISTRIBUTION
Although for a single electron, the spectral lines of emission (1.4.17) do not
overlap as long as QT 1, they can overlap for different electrons, i.e., for

different values of x,. This possibility results from a strong dependence of

o (1.4.20) on x,, which means that there is a strong inhomogeneous

res

broadening of the spectral lines. To take this broadening into account, we

must average (1.4.17) over x,. This averaging will be ddone with the use of

the Gaussian distribution function

1
fx) =g 7=

where d,=d,/2+/In2,d, is t he diameter of the electron beam, d, <d .

e i, (1.5.25)

But first we will qualitatively estimate the conditions under which the
inhomogeneous broadening exceeds the homogeneous width of the lines
20, 1QT . Let, for example, the diameter d, not be too large and x,=x?,

Then the shift of o, (1.4.20) which occurs when x, grows from O to d./2 is

equal t so, =(1/16)d’Qw’, . The corresponding shift of the line (2s+)aw,, Is

res

do,(1/16)d’Qam,.. The shift so, is larger than the homogeneous width

20, 1QT if

42 > A =2 (1.5.26)
w



If d?>Ax?=32/Qw, the shift sw, also exceeds the distance between' the
adjacent lines 20, and the lines overlap. In the strophotron with external
fields, the typical

values are: d,=1cm, Ax,=107cm, Ax =3x10°cm (see the Conclusion), and
d, >> Ax,,Ax, I.e., there is a strong inhomogeneous broadening and the lines

overlap.

In the process of channeling in crystal, this effect can be less
important because of a very small d (d=10°cm ), e.g., for y=10° and
0=2y"Q, Q=10"s" and AAx =3x10"cm>d, . Broadening of spectral lines can
be connected in this case with anharmonicity, but this effect is different
from that resulting from the dependence 2w, in (1.4.20). At lower energy,
£=10-50 MeV, there is an even more pronounced difference between real
and "macroscopic” channeling. For such energies, the number of levels in
the potential pit (ed,/7Q) in the case of a crystal is rather small (<10 [62]).
Hence, the anharmonicity is rather strong, and transitions between the
levels can have an essentially quantum mechanical nature.

Vice versa, in the strophotron, the number of levels can be extremely large
(up to 10?). In this case, the anharmonicity is very weak and well applicable.
Averaging (1.4.17) under the condition (1.5.26), we can replace the

factor sin’u /u’ by su, (some exclusions will be indicated below). From the

condition u, =0, we find

O)F__ 4 a2 _ 8
(%) = 5o @st)-; ]/ZQZ_Q({)(S Spin ) >0 (1.5.27)

where
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5, =22, @ 1 (1.5.28)
80 4207 2

The argument of the Bessel functions Z (1.4.19) is now equal to

Z(xozxés’)zzs=s+1—L. (1.5.29)

To simplify the formulas, we will use the following assumptions

ay>>1, w>>2°Q (1.5.30)
from which it follows, in particular, that s >>1. Under these conditions,
Z,<s(1.5.29) and both the index s of the Bessel function and its argument
Z, are large z,s>>1. Hence, the Bessel functions may be approximated by

the McDonald functions [102]

a S .
3.(2,)-3,.(2 )zz(s—zs)K {Z(st)yz}w&l{% 2} (1.5.31)
N N BN 27 Qr 3 o
Where
0 =32 0 (1.5.32)

A similar approximation also has been used in the theory of a spontaneous
emission in the plane undulator [ 68]. Now the averaged spectral intensity

takes the form

2

L S—s o w
dEw _ eZTC()f/Z i min 80
dodo 242 37%%d,0%%" £ §%\fs—s,, (1.5.33)

@ S 8(5—Snin)
Kys| — 7™ |exp| ———=~ |.
8 ZI{wmax s } p{ Qewd? }

If w0 @,, the McDonald function K,,(u) may be approximated by

r(2/3)

K, (U) ~ —a )
2/3 21/3u2/3

u[<<1 (34) (1.5.34)

to give
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1/2

w, PR

dEw _ Q
dodo /6 7125
" ) (1.5.35)
o~
© S SminT g0 exp _8(S_Smin)

X

2 ——.
413 2
—s . > s .
S8 in=L S [s Smin Qodg
All the terms of this series are well defined if s, is not close to an integer. In

this case, the sum over s (1.5.35) may be replaced by the integral over the

new variable x=(8/Qwd?)(s-s,,)to yield

_ gl3p2 [ gjezmzls

dEw _
dwdo 5213 712,213
272
1 Qg (1.5.36)
xofdxe x_x aZ
0 252 4i3
Qedg 2
1+ 5 X
(04

Rigorously, the lower limit of this integral is not zero x,, =(Ax,/d, )2 <«<1

(what corresponds to the condition s-s_ >1). But approximately x,, may be
replaced by 0. It gives an error =[x, <<1 because the integrand of (1.2.36)
only has a root singularity at the point x = O which is easily integrated.
Equation (1.5.31) describes the nonresonant background of a
spontaneous emission of the electron beam in the strophotron. When s_. is
not close to an integer, the resonance structure of a spontaneous emission
is completely smoothed out after averaging over x,.
As a function of w, the spectral intensity (1.5.36) grows »** as long
as w<a,, When o>a,, the M CDonald function K,,(u) in (1.5.33) becomes

exponentially small for s not too far from s This behavior of K,.(u) cuts
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the sum over s from the region of small s by a condition stronger than
s>s,, Hence, in the integral over x (1.5.36), the lower limit does not
become small, %, =(a/d.Q)(w/o,,)"

If «>>d.Q the integral (1.5.36) itself becomes exponentially small.

Thus, o

max

(1.5.32) is the frequency at which the spectral intensity

(cﬁa)lda)do) , has its maximum which, fora=d.Q, is on the order of

ﬁa) 2 2
Hda)do]m} =.e°QT " (1.5.37)

Now let s be close to some integer |s

—N|<<11 where N=[s ] or

min

N =[s,,]+1; [u] denotes the integer closest to u but less than u. In this case,

the term with s = N in the sum (1.5.33) becomes anomalously large and

tends to infinity when s, —N. This result indicates now that the factor
sinu,/u? in (1.4.17) may not be replaced by su, because it has a singularity
stronger than the s function. This is the reason why the term with s = N
can have a resonance character even after averaging over x,. Taking

separately only the resonance term s = N in the sum (1.4.17), we can

average this term over x, directly:

dE, 2\/Eez-rma)NS/2 2 | Oy
[dwdo]m_ 37TglzaeQa2]/4 Kars a)_ Fres (@) (1538)

max

where, under the conditions (1.5.30), o, :(4Q/a2)(2 N+1) and F_(o) is the

es

resonance form factor
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sin’ {52 + a;T (00—, )}

Fes(@) = [ d& : :
{52 " 0!8T (a)_a)N )}

(1.5.39)

Here we took into account that the interval Ax, giving the main contribution

to the integral over x. is determined by (1.5.26) and according to the given

assumption Ax,<<d.. For this reason, the exponential factor in the Gaussian
distribution function f(x,) (1.5.25) was replaced by the unity.
When w<a,, (1.5.38) with the aid of approximation (1.5.34) is

reduced to

_ F.(). (1.5.40)

2
ﬁw 31/325/6F2 (3) ezT 3/2a)N1/GQU3
dedo ) 7%, a’?

The resonances are located at w~w, =(2N+1)aw,.. In a general case,

es *

the given frequency of radiation @ can be realized by different electrons

with different values of x,. The larger x, is the smaller w, (1.4.20) is and the

larger s are necessary to provide the given . When x,=0, o, IS maximum
and the necessary s is minimum. Hence, there is the threshold number s
(equal to N =[s.,] or N=[s,,]+1 ), and this threshold number is realized by
the electrons with x, =0. At the threshold, the intensity of each harmonic has

its maximum because the factor sin*u /u? has, in this case, a stronger

singularity than the s function. This anomalously large contribution of the
(2N + 1) st harmonic at the threshold of its appearance means that even the

averaged intensity of a spontaneous emission
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concerns a resonance structure to some extent. The physical meaning of the

parameter Ax, (1.5.26) is that not all the electrons contribute to the

resonance part of emission, but only those which enter the strophotron near

the axis (x,=0) in a small interval of values of x;, x,|x|<Ax,. This is the

reason why the height of these resonance peaks is not too large. From

(1.5.36) and (1.5.40), we find

12

(dE/dedo) /(dE/dewdo) :.dTw <«<1. (1.5.41)

nr. 1/2

e

Hence, in a spontaneous emission, the nonresonant background is

much higher than the resonance peaks when N>N;.

The spectral width of the resonances is equal to the width of the curve

Fe(@) (1.5.39) Aw=8/a"T =2, (%, =0)/ QT << 2@, (%, =0). This width is small.
For this reason, remembering Madey’s theorem [70], one can expect that in
a stimulated emission, the role of resonances can be more important

because the derivative from the narrow function F (@) (1.5.39) can be large

enough. This conclusion is confirmed by the following consideration.

1.6. Summary
Relativistic strophotron is a system in which fast electrons move along a
potential “trough” produced hy quadrupole magnetic or electric lenses.
Spectral intensity of a spontaneous emission and the gain of an external
wave in the strophotron are given by a superposition of contributions from
emission or amplification at different (odd) harmonics of the main resonance

frequency o, (x,). The main resonance frequency is shown to depend on

es

the initial conditions of the electron, and in particular on its initial
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transversal coordinate x,. This dependence @, (x,) is shown to give rise to a

es

very strong inhomogeneous broadening of the spectral lines. The
broadening can become large enough for the spectral lines to overlap with
each other. The spectral intensity of a spontaneous emission is averaged

over X,. The averaged spectral intensity is showh to have only a very weakly

expressed resonance structure, whereas in the averaged gain, the resonance
peaks are shown to be much higher than the nonresonant background. A
physical nature of these resonances remaining after averaging is discussed.
The maximum achieveable averaged gain and frequency of the strophotron

FEL are estimated.

hapter 2.
The Gain, Nonlinear and Quantum Theories of Amplification RS

The chapter is based on publication [79,66,114]

2.1 THE GAIN

In principle, the gain in the strophotron can be found from the above
derived spectral intensityo f a spontaneous emission with the aid of Madey's
theorem in one of its versions [7/0-72]. But, unfortunately, as a rule, in a
derivation of these general relations between spontaneous and stimulated
processes, some assumptions are used. They require a check in any new
case. For this reason, we prefer a direct derivation of the gain from the
equations of motion.

We start from the following equations of motion of the electron in the

electrostatic field with the scalar potential @(x)=®,(x/d)> and in the
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electromagnetic wave propagating along the z axis with frequency » and

electric field strength amplitude E,:

dditz = eVy EO cosa(t—z),
dp, e @, (2.1.42)
T:eEO(l—vZ)cosw(t—z)— 2 X.

The total (kinetic + potential) energy of the electron is

2

g :(m2+pf+p§)ﬂ2+e®0% (2.1.43)

and the rate of its change is equal to [67]

% =eE,v, cos ot - ). (2.1.44)

In this paper, we will only investigate the linear gain to find which is
sufficient to obtain the first-order corrections x® and z®(t) to x©(t)and
70(t)

given by (1.2.3) and (1.2.6). These first-order corrections obey the equations

dp @

d—xt =—£,0Q°x" +eE, cosco(t -2 ),

0.0 (2.1.45)
Z—Zt =eE,v, coso(t—27).

The linear (field-independent) gain is determinedb y the second-

order («E;’) part of %(2.1.44) which can be expressed in terms of x®,

z®

—ddg;m =eE, {x¥ coso(t - ) + V2% sin w(t - 2)}.. (2.1.46)

The energy emitted by the electron during the time T is given by

*d
Ag=—£%dt. (2.1.47)
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On the right-hand side of the first equation (2.1.45), the cosine of the
periodical function in z?(t) (1.2.6) can be expanded in the Fourier series to
give the Bessel functions with the argument Z (1.4.19). Then the first

equation (2.1.45) is easily integrated to give p®

7

To integrate the second equation (2.1.43), we first use the relations

pX :VX pzz + m2 1
Jl—vf
dp, dv, «}pf +m? .\ p,dp, / dt

dt dt (1_\,5)3’2 VX\/l—vf\/pﬁmz'

(2.1.48)

dp (63)

Finding from the second equation (2.1.48) and then using the

condition v, <<1, we reduce the second equation (2.1.45) to the form

GO 4 2@ _ ﬁ(l—vﬁo) Jeoso(t-2?) _ii(vio) p?). (2.1.49)

& g, dt
Using p® found from the first equation (2.1.45), we can integrate
(2.1.49) to find x®. Now the correction v, to :©(t)(1.2.6) can be found from

the relation (1.2.4)

v, =&[1—lvfj
€ 2

z

which, in the first order, takes the form

)
v~ P oy, (2.1.50)

&V
In principle, all of these calculations are simple, although rather
cumbersome. They will be described in detail elsewhere. Here we will

present only the found result:

2273 2 22
Ag =2 BT w(a2+X§Q2) inra %<2
64¢,

7o (2.1.51)

d sin“u
e CACAEN R CA)
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The same result in the same manner can be derived from the classical
equations of motion in the case of the strophotron with a magnetic "trough."
We have also derived (2.1.51) using a different approach in the framework
of a quantum-mechanical description of electron motion [66].

To compare A¢ (2.1.51) in the strophotron to the corresponding
result for FEL with the plane undulator [73-78], we will rewrite (2.1.51) in a

different form using the effective "undulator parameter" K=K, =y Qa:

1.,
Ag:e2E§T3QK21+ZK
32¢.72 1

T 1K (2.1.52)

d sin’u,

2
du; u

S

x> (25+1) (3.(2)-3.,(2)).

In the case of the plane undulator, the results derived by Becker [73] and

Colson [75] written in the same form are given by

A= elEgT;/Q K2 (2st) dis Si?;“s (3.)-2.,@).
(2.1.53)
Where
K=K =Bk

und

27zmc®’
The result (2.1.53) also can be derived from the expressionfor the spectral
intensity of a spontaneous emission of [65] [coinciding with our (1.4.21)] by
the use of the relation between the characteristics of the spontaneous and
stimulated processes of [72].
A comparison of (2.1.52) and (2.1.53) shows that there is a

difference determined by the factor
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Numerically, this difference is not too important because %sgs%.

But, on the other hand, this result shows that there is not a complete
coincidence between the strophotron and the undulator, even at the single-
electron level. This difference becomes much more pronounced when we
consider the beam as a whole because of a difference in the definitions of
the K parameter in the undulator and in the strophotron. In the latter case,
the parameter K depends on x,, whereas in the case of the undulator, the K
parameter is x, independent.

Each term of the sums (2.1.51), (2.1.52) describes a stimulated
emission in the vicinity of the 2s + 1-st harmonic of the main resonance
frequency o, (1.4.20). Again, if « and x, are fixed, i.e., for a single
electron, the lines of stimulated emission do not overlap because they are

separated by the term o, exceeding their homogeneous width o, /QT

where QT >>1. The gain at higher harmonics is determined by the factor

(3.(2)-3,,(2))°. which is not small only if ;’(a®+xQ*)=K, >>1 . In this case,

the resonance frequency o,

res

(1.4.20) differs essentially from the resonance

frequency 27% found in [59]. This difference indicates once more that the

results of [59] are correct only for K < 1, and hence they are applicable only

for a description of amplification at the main frequency o, (1.4.20).
The expression of [59] for the gain at the main frequency o, is

res ?

correct under the conditions K < 1 and d, <Ax, where Ax, is determined by
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the right-hand side of inequality (1.5.26). Otherwise, under the condition
(1.5.26)
(d, >Ax,), the gain must be averaged over x,, and this procedure can
essentially change the result of [59].

For the beam as a whole, under the condition (1.5.26), again there is
a strong inhomogeneous broadening. It means that in a general case, after

averaging over x, many terms of the sum over s give their contribution to

the energy As emitted at a given frequency ». The nonresonance part of

dEw

the averaged emitted energy is found similarly ([da)do

J (2.1.33), (2.1.35)

and has the form

— BreEis”

-3/2 S, S, S,
A = 32W sszrmn:>1(s_smin) {¢(Xé))_ Xé)qp(xé))} (21 54)

where x® and s, are given by (1.5.27) and (1.5.28):

2

¢(xgs>):exp[_g-_;J(az )

e

o (2.1.55)
x(zlzm % j[JS(Z(xo))—JS+1(Z(x0))]2.

Similar to a transition from (1.5.35) to (1.5.36), the sum over s

(2.1.54) can be replaced by the integral over x=(8/Qwd?)(s—s,,)Under the

min

conditions (1.5.30), and if w<a,

max ?

1
31/3F2 (3) Te2E2a)l/2
0
16'21/672'3/2 SodeQ7/6a)5/6 (2.1 .56)
Ax, T odx . -
: d~0 W(?(X)—ZXCD (X))

€ Xmin

the result is given by

Agny. =

where
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Xin = (A% /de)2 <«<1
and
(x) —e [1+ Q'd, x] | (2.1.57)
(04

Now the lower limit of integration in (2.1.56) may not be replaced
by O because the integrand has too strong a singularity at the point x = O.

These are small x around x, which give the main contribution to the

integral (2.1.56). For this reason, the nonresonance emitted energy (2.1.56)

can be estimated as

LS A (2.1.58)

This is an estimate of the nonresonant background in an
amplification of the external wave.
Again the resonances in the emitted energy As appear when
] orN=[s_.]+1. A

Swin (1.9.28) Is close to some integer s, —N|<<1, N=[s

physical nature of these resonances is the same as previously: they
correspond to the threshold of appearance of a new channel of

amplification. The threshold corresponds to x,~0. The factor
(d/du,)(sin’u, /u?) in the sums (2.1.51), (2.1.52) has a stronger singularity at
the threshold than &'(x,). This is why this threshold term being averaged

over x, gives an anomalously large contribution to As.Th e result has the

form

. T5/2e2E2all2 ) -
AEres = 512 0 = 7 K22/3 —N Fres(a)) (21 59)
37°28\2¢,d Qy ,

max
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where again o, :(4Q/a2)(2 N+1) , o, =37°aQ.The factor of the resonance

curve F_(w) Iis given by

res

.2 2 aZT
sin { t3 (a)—a)N)} .
Fo(@)-[24 J_eTd e ) (2.1.60)
é_,: df 9 azT 8 da)
e

where F_ (o) (1.5.39) is the form factor of the resonance curve in a

res

spontaneous emission.

If w<a,, , with the aid of the approximation (1.5.34), (2.1.59) is
reduced to
31/3F2 (2) 5/2,22M1/3 413
— 3 ) TS2%?E20%0 " -
Agnr. = 16-21167[5/2 goaesz/G Fres (C()) (2.1 61)
Comparison with As,..(58) gives an estimate
A_Sres /A_Sn.r. = .(gﬂ-)?'/2 >>1. (21 62)

In a stimulated emission, the relation between the height of the resonance
peaks and the nonresonant backgrounisd inverse as compared to a
spontaneous emission. The nonresonant background (2.1.58) gives only a
negligibly small contribution to the gain which is determined mainly by the

resonance emitted energy Asw(2.1.59), (2.1.61):

1/2
87N, n(n2)"> NI L% ( o 0 =
G= n E—Oz A‘(;res = 7[3/2 \FO}/WZ » K22/3 - Fres (60) (21 . 63)

where a=d,Q, N, is the electron number density and 5 is the artificially

max

introduced factor taking into account the difference of dimensions of the
beam outside and inside the strophotron. This difference appears due to the

electron oscillations which effectively broaden the beam. If we take
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(%), ~d./2,  the  maximum amplitude  of  oscillations  is

8, =((1/4)d2 +(a?12))" and

d/2 (. 4?2\
y-2 ‘(“(mzj (2.1.64)

max e

If, in particular, d,=a/Q, n=1/5.

2.2. The Nonlinear Theory

The relativistic strophotron FEL is a system in which electrons move along
the parabolic one dimentional potential trough whose vector potential is
given by

A, =0x2 /2 (2.2.1)

Where x is one of the transverse coordinates, gis the magnetic field

gradient. The wave amplified to propagate along the axis of the trough (z -
axis). The classical equations of electron motion can be reduced to the form

Wz—ﬁcosw, (2.2.2)
o
. 1
(1+W)(0:(p(t0)—§§22w(x2—Xg), (2.2.3)

X+sz:—wx—ﬁ(ﬂ—xzjcosw
& \@

2 . 2
L% @_Q_(Xz_xg) ,
l+w| w 2

(2.2.4)

Where E,||Ox and ware the electric field strength and frequency of the

wave c=1, e is the electron charge,

p=alt-7), w=""2 (2.2.5)

&o
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Is the time - independent electron energy, the index “0” indicates the initial

value of the variables at the time t=t, when the electron enters the system
Q=(gels,)" (2.2.6)

Is a frequency of strophotron oscillations [79].

The terms in of Eq. (2.2.4) determine either small corrections to the
frequency Q(2.2.6) or small anharmonicity of oscillations. Here these small
corrections will be ignored, and all the mentioned terms in Eq.(2.2.4) will be

dropped out. In this (harmonic) approximation the field-freeE, =0 solution
of Eq.(2.2.4) is given by x© =a,cos[Q(t-t,)+6, |, where aO:(x§+>‘<§/QZ)”2 is
the field free amplidude of strophotron oscillations, ¢, =arctga/xQ,
X, =x(t=t), %Ja, a=a, Is the angle in the plane (x,z) under which the

electron enters the system. The first corrections to x®(t) (o« E,)have been

found in Ref. [79] and in this approximation x(t) can be written in the form
X(t) =a(t)cos[ Q(t—t,)+O(t) ] (2.2.7)

Where a(t) and 6(t) are some slowly varying functions (amplitude and

phase).
ara), |f << (2.2.8)

We will assume that in the general case the expression (2.2.7) for x(t) and

the condition (2.2.8) hold for any values of E;. This assumption about slow

variation of a(t) and a(t) is justified if

W<<l aQ<<1 (2.2.9)
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l.e. if the total change of electron energy is small in comparision with ¢,
and if the amplitude of oscillations “a” is small in comparision with their
period along
the z-axis 4, =27/Q. The letter condition means, in particular «<<1 and
d, Q<<1 , where d,is the diameter of the beam in the (x,z) plane (x,<d, ).
We will assume also that y=¢,/m>>1. Under these conditions Eq. (2.2.2)
gives |p/w|<<1. Besides, it is possible to show that the change of amplitude

sa=a(t)—a, is small in comparision a,, |sal<<a,. The condition aQ<<1 (2.2.9)

justifies also the mentioned above possibility to neglect all the terms in the

square brackets of Eq. (2.2.4).

The relative emitted energy w contains both fast and slow varying parts

w,, and w,,. The equations of motion (2.2.4) can be averaged over fast

slow *

period oscillations 2z Q™ to give equation for the slowly varying functions

w,,0 and sa only.

A procedure of separation of fast and slow motions does work well

enough only near resonances.

The strophotron FEL is characterized by it’s resonance frequency

o, =——2 __ (2.2.10)

Ampilification can occur near odd harmonics of o, , o~(2s+)a,.,

s=0,+1+2,...[79,66]. We will consider the case s 1 assuming the detuning

from the (2s+1)-st harmonic
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A :a)[iz+aggzj—(23+l)£2 (2.2.11)
2y 4

Is small A, <<Q.

Under these conditions the equations for w,,# and sa can be found

from Eq. (2.2.2), (1.3.3) and (2.2.4)

Vi =—eE2°Qa° [3.(2)-3..,(2)]siny (2.2.12)
&o
9:_%%, (2.2.13)
sa=——5 [3,(2)-3,,.,(2)]siny (2.2.14)
4]/2809 S s+1 1

Where w, is the slow varying part of w, Z=a’Qw/8,

2 t 22 \ t
v =at,+A,(t—t,)—(2s+1)0 + Zsin 20— L g)ao J'5adt—w£2—lz+%ﬁws,dt (2.2.15)
t t

/4

Is the phase of slow motion (resonance) motion of electron. The phase y is
determined not only by detuning A, and the phase ¢ of the transverse
electron coordinate x(t) (2.2.7), but also by the change of amplitude of x(t)

(2.2.7) sa(t) and by the change of electron energy w(t).

Combining Egs. (2.2.12), (2.2.13) and (2.2.14) we find equation for the

phase y (2.2.15), which can be written as the usual pendulum equation [80]

2

Y —siny (2.2.106)
du

With the initial conditions
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w(u=0) = at,, E—Z(ﬂ=o)=£1 (2.2.17)

Where the dimensionless time (or the saturation parameter) x is given by

y:t—to—{EEffa{;z+‘*5f2][as<z>—aw<z>]} , 2218)

A, =c—¢&., &, Isthatvalue of the initial electron energy at which A =0

(2.2.10)
4 - 3 a?+ XX
A ‘EAm’{‘F 7 j (2.2.19)
A, =ult.
The emitted energy Ac=¢w, is given by Eq. (2.2.12) or by the
following equivalent equation
pe—— 2 (As_gmd_'”]. (2.2.20)
R ENE S
yo4

In the weak field approximation Eq. (2.2.16) solved by the iteration method

to give results coinciding with the results of [79,66].

In the strong-field assumptions u>>1, A, >>|A| the phase yobeying
the pendulum equation and averaged over its initial value y,=w(t=t,) and

the energy As emitted by a single electron are known analytically [80].

The strong field characteristic detuning A, determines the order of
magnitude of the detuning A, at which the emitted energy As(A,) achieves

its maximum. The maximum emitted energy Asmin the strong field limit has

the order of magnitude
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Aémax [ AZ(Ag ] Ap). (2.2.21)

Hence, as a whole the function As(A,) in the strong field asymptotics n>>1

can be written as

2A

AF = w(1+;§£22] {1—\%sin[,u+%j}F(§—;], (2.2.22)

2

¥ 4

Where F(&) is some dimensionless function , F(&)=-F(-¢), F(0)=0, having
its maximum F(£)=.1 at &£=.1. In the region &<<1, F()=.£. For any

|£|>or <1, F can not be found and written down analytically and requires a

numerical calculation [81].

Sustituting o, ~ (2s+1)e,

res

(2.2.10) into Eq. (2.2.21) we obtain an estimate

of efficiency of RS FEL:

_Agny U
n==" N D (2.2.23)

Where N,=Qt/2z=L/4, is the number of strophotron oscillations along the
length of the system L. When s=0 the estimate (2.2.23) coincides with the
results well known in the usual undulator FEL [3 80]. When s becomes

larger, 1, decreases.

One of the main conclusions of our previous papers [79,66] consisted
in the prediction of a very strong inhomogeneous broadening connected
with a distribution of electrons over the beam’s crossection. The result has
been derived earlier [79,66] in the weak-field approximation. But, as a
matter of fact, this feature of RS FEL in general enough to hold good for

any field strength E,. The reason of this inhomogeneous broadening is in a
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strong dependence of resonance frequency w, (10) on the initial

transverse electron coordinate x, (through the amplitude a, ). To take into
account this inhomogeneous broadening in the strong field limit we must

average the emitted energy Az (2.2.22) over x,.

The gain is proportional to the averaged resonance emitted energy

(Az) and has a form

re:

ol ea 3/4
R () {M(JS(ZHH(Z))} ~ { .
G=—5%(AF) = - F.. (o) 1——sm(,u+—j ,
EO dQE5/4 i_'_i \]ﬂ-ﬂ
e 0 }/2 4
(2.2.24)

Where N, is the electron number density, F () is the form factor of

resonance curve.

As a function of E, the nonlinear gain (2.2.24) falls down as E;,** (in

contrast with the law E;¥* in the usual undulator FEL [80]).

2.3. Quantum Theory of Amplification in RS

The best-known free-electron lasers among the experimentally
implemented systems [82-84] are based on the use of undulators in which a
static transverse magnetic field varies periodically along the direction of
electron motion (Oz axis). A different free-electron laser is discussed in Ref.
[85]: in this case a beam of relativistic electrons is traveling in a static

magnetic or electric field, the potential of which is homogeneous along the
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direction of motion of electrons (OZ axis) and rises parabolically along one
of the transverse directions (Ox axis). The name strophotron is sometimes
used for these systems [86]. In other cases such systems are not
distinguished from undulators and are regarded as class 2 undulators.

The problem of amplification of an external wave is solved in Ref.
[85] without full allowance for the longitudinal and transverse electron
motion. We shall show that the changes in the longitudinal energy associated
with the emission (or absorption) of external wave photons have a
considerable influence on the frequency of the oscillations of the electrons
in the field and on the nature of the wave functions describing the
transverse electron motion. For these reasons there are major changes in
the expressions for the lasing frequency and for the gain, and there are also
changes in the ability of generation of higher harmonics and of conditions
corresponding to optimal amplification.

We shall analyze the dependence of the resonance frequency on the

initial transverse coordinate of an electron w

res

(%,) - We shall show that this
dependence results in a strong inhomogeneous broadening and overlap of
the gain profiles at different harmonics of the fundamental resonance
frequency. We shall assume these conditions in determining the gain
averaged over x,, i.e., over the distribution of electrons in a transverse
cross section of the beam. We shall show how the average gain retains its
resonance structure, but resonance amplification includes contributions of
only a small fraction of the beam electrons that enter the system close to the

axis (small values of x,). We shall conclude with numerical
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estimates of the maximum attainable lasing frequency and of the
corresponding gain.

A geometry of the fields similar to that considered in the present
study applies also to the case of emission of radiation as a result of
channeling of electrons and positrons in crystals [88,89]. In contrast to the
conventional channeling, the interaction of electrons with an external
macroscopic field (which can be described as macroscopic channeling) is
much simpler because there are no such problems as the absorption of
electromagnetic waves in a crystal, possible limits on the channeling length,
etc.

The feasibility of practical realization of a potential of this type is
considered in Ref. [90], when a system of specially oriented magnetic
quadrupole lenses located at equal distances from one another on the beam
axis iIs proposed.

We shall use a method based on the direct solution of the initial
secular quantum-mechanical problem, which in this respect differs from the
S-matrix approach [85]. We shall consider only the linear approximation
although the general equations obtained are valid also in the case of many-

photon processes and saturation.

2.4. EQUATIONS FOR THE AMPLITUDES OF TRANSITION
PROBABILITIES

Following Ref. [85], we shall consider planar geometry and assume
that a static electric or magnetic field is independent of one of the

transverse coordinates, for example, y. The field gradient is directed along

the OX axis.
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We shall consider an ultrarelativistic electron of energy
e=my>>m(h=c=1) movinginthe XOZ plane at a small angle o« to the OZ
axis and experiencing at an initial moment t=0 a static electric or magnetic
field with the potential or

D(X) =D, (x2/d?)  AX)=A,(Xd?), (2.4.1)
where ed,=e|A| and 2d are, respectively, the maximum height of a

transverse potential barrier and the size of the region of its localization

(aperture) in the direction of the OX axis; the A, vector is parallel to the O/
axis, i.e., the magnetic field is directed along the OY axis.

In the absence of an electromagnetic wave an electron experiences
translational motion along the OZ axis, characterized by a momentum p_and
an energy ¢ :\/m, oscillating in the transverse direction (along the OX
axis). The oscillation wave functions ¢ (x,e), satisfy the usual Schrodinger

equation obtained from the initial Klein-Gordon equation ignoring the
square of the potential ®(x) (we shall now obtain estimates justifying these
and other approximations):

d’p(x,&)/ dx* =[ 22 e®(x) -2 Q(e )(1 +1/ 2) | gy (X, &), (2.4.2)
where Q(a):(ZeCDolg‘)m/d is the oscillation frequency in a parabolic well; /
= 0, 1,2,... are the oscillation quantum numbers; ¢ (x,£)=[Q(s)s ]1'4;(,(.;),
z7(s) are the usual oscillation functions dependent on the dimensionless

variable ¢=(Q¢ )" and expressed in terms of Hermite polynomials [91].

We shall assume that an electromagnetic wave of frequency w
linearly polarized in the XOZ plane and described by the vector potential
A, = (E,/ w)cos[e(t - 2)], (2.4.3)
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where E, is the amplitude of the electric field in the wave, travels along the

OZ axis parallel to the direction of longitudinal motion of an electron beam.
We shall represent the wave function W of an electron by an

expansion

¥=>C,(tX exp{i [(p.+nw)z—(g + na))t]}, (2.4.4)

where n =0, + 1, + 2,... and the exponential factor allows explicitly for the
change in the longitudinal energy and the corresponding momentum as a
result of the absorption (n<0) or stimulated emission (n>0) of |n| quanta of

the wave (2.4.3).

The coefficients C (t,x) can be expanded in terms of any complete
system of functions dependent on x. The most convenient basis is a system
of functions ¢™(x)=¢(x ¢+nw), which satisfy Eq. (2.4.2) with a shifted
energy ¢ +nof and correspond to a shifted oscillation frequency

QY =Q(g +nw) :

C,(t,%) =Y (-1)'a, M) (x). (2.4.5)

The coefficients a,(t) represent the amplitudes of the probability of

finding an electron at the | th oscillation level on absorption (emission) of

\n\ quanta of the field (2.4.3). The equations for a,(t) follow from the

Klein-Gordon equation where we can ignore terms proportional to the

quantities ®*, A%, d’a,/dt’, and ®(da, /dt) (for estimates see below):
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-(1+1/2)Q -
dt 2y° ( ) 2

i%+ no. (nw)® . no(l+1/2)Q 3 (nw)*(1+1/2Q .
2y 2¢. 8 2¢? "

H eE0 A n
28(0;(_0 {<¢|

d| . a1 d
& §0|(' l)>an1,|' +<¢|

dx

@Ien+1>>an+l,|}, (2.4.6)
2, (0) = 5,05,

On the left-hand side of Eq. (2.4.6) all the terms are expanded in
Injw/e.0 1|. The relationship between the longitudinal and transverse motion
of electrons mentioned in the Introduction governs the dependence of Q®
on n and nonorthogonality
of the functions ¢ and ¢{™”. The nonorthognality of these functions means
that not only the transitions between the neighboring levels are allowed for,
but
also those between distant levels / and /. The difference between the
functions is governed by a small parameter w/g<<1, but the matrix
elements in the system of equations (2.4.6) have to be calculated rigorously
bearing in mind that if | >>1 and lw/g >>1, then 1>>k.k' , where k=1-I,,
and k'=1'—1,.

The matrix elements in the system of equations (2.4.6) can be
calculated by a method similar to that employed in Ref. [92], which finally

gives

2 2
i, { % o (o)’ nolQ kol Q3 (nw) I°Q}ank
7

2ey° 2¢ 26 8 &°
(2.4.7)

=iE;, {{J i (F2) + e (_Z)} &y {‘] eka (F2) + e (_Z)} NN }
K 2

2 2 2
where z=l,w/4e , E,, =(E,/2w)(,Q/2¢)"?and the sum over k "should include
only the terms with the values of k 'which are of parity opposite to k.
In the resonance approximation, when
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o~ ol =22s+0)y*Ql 1+1,Qy° 1 &) = (2s+ Do,

res

o (2.4.8)

where s=0, 1, 2, ... we can substitute k = (2s + 7)n, and k"= (2s + 1) (n+ 1)

in the system (2.4.7). Consequently, the equations for a,(t)=a become

n (2401
identical with the equations known from the theory of a free-electron laser
with an undulator [93]:

ia, —E,,,(2nA/ o+n?)a, =E,, (a,,+3,,), a,(0)=5,, (2.4.9)
where

En=(-D°E,R@);  FR(2)=3,(2)-3,.(2) (2.4.10)

and the following usual notation is introduced for the energy detuning A,
and the anharmonicity energy E,:
A, = (0] 2B,,)| (2s+DQ-1/ 20(1/ y* +1,Q/ £) |, (2.4.11a)
Eop = (@1 26)[ 01 y* - (25 +1)Q+3,.Qo/ 4¢ | (2.4.11b)
We shall finally obtain estimates of the approximations made on
transition from the Klein-Gordon equation to the system (2.4.7) bearing in
mind that (x*)=1,/(Qe), (x*)=17/(Qe)*, d/ét=.1/t, and using in estimates
the approximation ¢ =.m. We can easily show that the relative smallness of
the ignored terms proportional to d’a,/dt*, ed(da,/dt) and e’Ala, Is
governed by the small parameters 1/st, ¢ /e<1/y, and eA, /my"?,
respectively. The term proportional to ®* introduces into the system (2.4.9)
a contribution=.(°Q/ £)a, =[ 1307 / £+ 21,00’ | £ +(nQ)* / £ |a,. The n-independent
part of this contribution is readily removed by a phase transformation. The
part linear in n determines the correction to the detuning A, which is small
compared with 1,wnQ/¢ in respect of the parameter Q/w<<l1; the part

quadratic in respect of n governs the correction
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to E,,, which is small compared with 1,Q®’/£* In respect of the parameter

anh

g le<lly<<l.

2.5. RESONANCE FREQUENCY AND OUTPUT ENERGY
Equation (2.4.8) gives the resonance frequency of the system

w..expressed in terms of the number of an oscillatory level I, filled most

effectively at the initial moment in time t = 0.

The value of I, can be expressed in terms of the initial parameters of
the electron beam. A correct determination of |, requires the knowledge of

the initial transverse wave function of an electron in the form of a packet
localized at some

point x,. Expanding this function in terms of ¢t (x) of Eq. (2.4.2), we find

that the squares of the moduli of the coefficients in the expansion have a
narrow maximum at

|1, = pl 126+ %5Qe ] 2=(212Q)(a” +xQ°) = £Qa’ /2, (2.5.12)
where a(x,) =(x; +a’ /Qz)ﬂ2 is the classical amplitude of transverse oscillations

of an electron in a strophotron with an initial coordinate x, and the angle of

entry « into the field.
Substitution of I, from Eq. (2.5.12) into Eq. (2.4.8) gives
@, =22°QI[1+(y Qa)’/2]. (2.5.13)
This expression for the resonance frequency has been obtained
earlier in the theory of spontaneous emission during channeling of particles

in a crystal [88,94]. If yQa<<1, then the frequency o, of Eq. (2.5.13) is

identical with the result obtained in Ref. [85]: o, =2,°Q.
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We shall now calculate the energy AE emitted by an electron at a
frequency w in the direction of the OZ axis and governed by the expression

AE=-0Y n[a,[" (2.5.14)

According to Ref. [93], the simplest method of finding AE in an

approximation which is linear in E? involves solution of the system (2.4.9) by

perturbation theory in terms of E,, , which gives
ap - DT { , (©ay’ }Fs (S“'_UJ (2.5.15)
64¢e 7’ 4 dug | ug
where
Bt Hiﬁﬂj_ 2(2“1)9}, (2.5.16)
0] 4 4 2

The quantity AE, represents the energy emitted by an electron at a

frequency o=}, =(2s+)aw,, . For fixed values of a and x, the widths of the

res

gain profiles associated with the finite interaction time between an electron

and the system are sw~w,/N,, where N =Qt/2z is the number of

transverse oscillations of an electron in the transit time t across the system.
The separation between neighboring gain profiles is Aw=2a0,, >>dw, i.€., In
the case of a single electron the lines do not overlap if N =Qt/2z>>1.
However, in view of the dependence o.(x,) of Eq. (2.5.13), different
electrons (corresponding to different values of x, have different resonance
frequencies w,, and, consequently, different positions of the resonance
amplification lines.

The energy emitted by a beam at a frequency w can be found by

summing A AE, over s and averaging the total emitted energy

AE=>"AE, (2.5.17)
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with respect to x,. This procedure and the corresponding conditions are
described in the next section, where the average gain is found. However, we
shall first consider the problem of the similarity and difference between
free-electron lasers with an undulator and a parabolic trough (strophotron).
It is known that a free-electron laser with a planar linearly polarized
undulator can amplify a wave traveling along the axis at a frequency w close
to the odd harmonics of the fundamental resonance frequency [95-101]. The
formulas (2.5.13), (2.5.15), and (2.5.16) governing the energy emitted by a
single electron can be reduced to the form similar to the corresponding
formulas for a free-electron laser with an undulator [95-101] if we introduce

a parameter K =jQa/c, which
replaces the usual parameter for an undulator K,, =eB,4,/mc® (B, and 4,

are the undulator intensity and period). The major differences between
these two systems are observed when we consider a beam as a whole rather

than one electron. If K, is independent of the initial conditions, then in the

und
system under discussion we have K, =K, (x,2). For this reason the
averaging over x, is not as trivial as in the case of an undulator.

The relative efficiency of stimulated emission of the (2s + 1 )th
harmonic by a single electron is governed by the factor Fs of Eq. (2.4.10) in

Eq. (2.5.15). If yo0a<<1, then @, =2’ and the factor is
[~ (2s+D)w, ]~ L H(2s+D(2a)° 0 sC . Since the argument of the Bessel

functions in Eq. (2.4.10) is small compared with the index, it follows that

amplification of high harmonics is then impossible (AE, falls rapidly on

increase in s).
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Effective amplification at higher harmonics requires that the

parameter K, should be large: K ,>> 1, which we shall henceforth assume
to be correct. If K, >>1, then the resonance frequency o, of Eq. (2.5.13)

differes considerably from 2,’Q (o <<2y°Q). However, the lasing

res

res res

frequencies ©, =(2s+1)aw,. need not be small compared with 2’ because
the number s is fairly large. The possibility of increasing s is governed, as
usual, by the condition of a moderately strong fall of the average gain on

increase in s.

2.6. AVYERAGING OVER THE DISTRIBUTION OF ELECTRONS IN
A BEAM. GAIN
We shall consider a specific distribution of electrons in a beam along

the initial transverse coordinate described by the Gaussian function

f(x())z\/zla exp{—%}, (2.6.18)

e

where d, =d./(2J/In2) (d, is the diameter of the electron beam satisfying the

condition de <2d).

We shall first estimate the scale of inhomogeneous broadening of the
lines due to the scatter of x, and assume that the condition d.Q/a«l 1 is
satisfied.

The change in o, of Eq. (2.5.13) on variation of x, from 0O to
d,/2~d, Is equal to Aw, ~(1/16)d’Qw’, . The corresponding shift of the

res

emission line representing the (2s+l)th harmonic [

o, =2s+)w,, = %(28 +1)d’Qw’

res res *
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This shift exceeds the homogeneous line width sw~a, /N, If the

osc

parameter of the distribution (2.6.18) satisfies the inequality

d? > Ax; =16/ N Q. (2.6.19)

d? > A} =32/ Que,
then A, exceeds also dissipation between the neighboring emission lines
Aw=2a0,, and these lines overlap due to inhomogeneous broadening.
Clearly, if the condition d,<Ax, is obeyed, an inhomogeneous
broadening plays no significant role and averaging over x, does not alter AE

or, consequently, the gain. Therefore, the gain found in Ref. [85] is correct
If K, <<1 and d<Ax,.

For sufficiently large values of Q and t, necessary to ensure
acceptable values of the lasing frequency w and of the gain, the parameter
Ax, I1s very small so that the condition (2.6.19) is always satisfied by real
beams.

We shall now carry out averaging of the total output energy AE of
Eq. (2.5.17) integrating term by term this sum with respect to x, allowing for
the distribution function (2.6.18). In each term of the sum (2.5.17) the main
contribution to the integrals with respect to x, is made by small (~Ax, )

regions near the points x, such that u (x{)=0:

@y _ 4 2 _ 8
07 = 00 B30~ 7~ iy = g 9 20 (2.6.20)
where
s 20, o 1 (2.6.21)
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The argument of the Bessel functions z(x,) at the point x, = x{”

g g 1O
2(%, = X§ )_zs_s+2 a (2.6.22)

In view of the need to consider the possibility of amplification of
higher harmonics [s=.(ay)’], when z,<s and z,s>>1, we shall express the
Bessel functions in terms of the MacDonald functions [102]; then, the

relevant factor is

FSzZSJ;SS)KZ,{Z(S;\/ZS—S) } Zg;;ngss | (2.6.23)
where
o =37a 0 (2.6.24)

The range of values of s that make the main contribution to the

average total energy ((AE)), emitted at a given frequency w is found from

the condition s>smin. At a fixed frequency w the term in Eq. (2.5.17) with
the number s = s min becomes the dominant one after averaging with

respect to x,. This means that the resonance radiation appears mainly
because of electrons which enter a strophotron near the axis (x,~0) and are
characterized by the coordinate scatter Ax,. Such radiation is emitted at

frequencies o~ o? (x, =0)=(2s+Do,

res

(% =0)~(8sQ)/a”.
Averaging of all the other terms with s > s_min gives rise to a
nonresonance background, the intensity of which is less than the resonance

value because of the factor N 2% <<1.

The final result of averaging the sum (2.5.17) with respect to x, can

be represented in the form
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(EEo) [0l (6 =0) ]
= 3 2.6.25
<AE> 24\/§7T5/2de€7 K2/3 |:a)max j| Fres ((0) ( )

where
sin{éz O 020 = 0))}

: (2.6.26)
4 om0, -0)

res (a))

8'—-8

_éi
¢ d¢

is the form factor of the resonance curve of  width

Aw:.izt M«Z%S(XFO) and the value of the maximum is
o
[Fe(@)]  =.05.

Finally, the gain experienced by an external wave of frequency w is

given by the expression

o 8N, @2In2)"2 Nr e ( o ) <2 . 9.6.97
=n E <AE> \/_ 3/2 d877/ZQU2 o 2/3 wmax res(a)) ( . )

ma
where N, is the density of electrons in a beam; r,=e’/mc¢? is the classical

radius of an electron; 5=d,/2a(x,=0)=d.Q/2« is a factor which allows for
the overlap of the electron beam and the wave being amplified.
The dependence of the gain G of Eq. (2.6.27) on the frequency w

exhibits a steep fall at w>a,,, when the argument of the MacDonald

max’

function becomes large. Therefore, o,, of Eq. (2.6.24) is the maximum

frequency in a free-electron laser of the strophotron type and right up to

this frequency the gain can be significant.

2.7. CONCLUSIONS
Relativistic strophotron is a system in which fast electrons move along a

potential “trough” produced hy quadrupole magnetic or electric lenses.
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Spectral intensity of a spontaneous emission and the gain of an external
wave in the strophotron are given by a superposition of contributions from
emission or amplification at different (odd) harmonics of the main resonance

frequency o, (x,). The main resonance frequency is shown to depend on

es

the initial conditions of the electron, and in particular on its initial

transversal coordinate x,. This dependence @, (X,) is shown to give rise to a

es

very strong inhomogeneous broadening of the spectral lines. The
broadening can become large enough for the spectral lines to overlap with
each other. The spectral intensity of a spontaneous emission and the gain

are averaged over x,. The averaged spectral intensity is showh to have only

a very weakly expressed resonance structure, whereas in the averaged gain,
the resonance peaks are shown to be much higher than the nonresonant
background. A physical nature of these resonances remaining after
averaging is discussed. The maximum achieveable averaged gain and
frequency of the strophotron FEL are estimated.
Using (1.5.32) and (2.1.63) and taking w~w,, , d. ~a/Q, K,,(1)~05,

ax ?

and [F. ()| ~05, we find the follow ing formulas for the gain G and

max
frequency o :

N,T, L J(A)T,L>?

-3 6
G=6.8x10 x\ﬁy”z =1.8x10 SaFEovE (2.7.1)
@ =5.3x10" x 1°d,g (2.7.2)

where g is the gradient of the static f ield in the strophotron and J(A) is the

peak current in the beam (in amperes). When w=0,, the gain G (2.7.1)
does not depend on the static field of the strophotron. When o= o, the

gain G depends on g only parametrically through o~ w,, (1.5.32)(1.2.8) .
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For d,=1cm, /=10 A, y=10, g=10*0e/cm, and L = 3 m (65) (1.6.1) and
(1.2.66) gives
G=02%, ®=52x10°(1=364).

These estimates indicate a possibility of using the strophotron to
construct such a FEL in the IR region. Probably both the gain G and the
frequency o=, can be increased with the help of an additional
optirnization of the system [e.g., by the use of a “trough” with a varying
field gradientg =g (z)].

We would like to indicate here two features of the strophoton FEL
differentiating this device from the usual undulator FEL. 7) The
frequencyw=w,, linearly depends on the angle « under which the electron
enters the system.

Hence, o=w,, can be easily varied by a variation of «. 2) The value of the
“undulator” parameter K in the strophotron can be rather large. For
example, the parameters used above for the estimates correspond to

Q~22x10"s7,a~0.7, ay~7, K(x,=0)~7, and
3
S = O | 20055 (¥ =O)=§[K3(XO =0)]~130.

It seems also to be worthwhile to summarize the conditions under
which the results described are applicabie. These conditions are given by
inequalities (1.2.26) , (1.2.30) , by the assumptions « <<1, and
xQ<d, /4, <<1, QT 0 1, and also by the condition d, ~a/Q under which the
factor » in (1.2.63) is not too small. The strongest restrictions result from

the conditions o 1 and ay >>1 which give, for d,xa/Q

(A!27)>d, > 2127 y.
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These inequalities are fulfilled for the parameters used above in
estimates. We have ignored above both angle (A« and energetic (A¢) widths
of the beam. This approximation is justified if

Aala, Asle<<Awlw=.1/QT.
The corresponding restrictions are not too strong because QT is

really not too large (QT ~220in the example considered above).

nonlinear

Taking w=w,, ~3/°aQ , s=s_ (0=0,,) zg(a}/)S [79] for the saturation

parameter u we obtain

ﬂ:[ﬁeEo‘mj ‘ (2.7.3)

87 mc

A saturation occurs when x>2, E, >E, , Where the saturation field strength

0,sat

is given by

32zmc
E,..,=————. 2.7.4
0,sat \/§€Q(0{t)3 ( )

Substituting here g=10"0e/cm, L=3m, =0.7 we find E,=.10°V /cm.

This estimate shows that the gain saturates at rather moderate field E,
and hence the efficiency of the RS FEL is not too high. This result is not
surprising because we have considered here an amplification at very high
harmonics (s=100) . There is an evident way to increase the efficiency

constructing a tapered RS FEL, i.e. a system with g=g(z).
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Quant

Quantum-mechanical equations are derived for the amplitudes of the
probabilities of transitions in a free-electron laser when transverse electron
oscillations are due to a static potential, which is homogeneous in the
direction of motion of the beam, but has a transverse gradient. The
resonance frequency of the system is found and the linear gain is derived
for the odd harmonics of this frequency. Averaging of the gain is carried out
over the initial distribution of electrons in a transverse cross section of the
beam. Estimates are obtained of the maximum lasing frequency and of the
gain at this frequency.

Assuming that o~a,,, a~dQ, (7=05), (K,;0) ~05, and [F(®)].. ~05, we

can write Egs. (1.4.24) and (1.4.25) in the form
»=5.3x10"°d,g, (1.4.28)
G =7.6x10"°N,r,l>?/dY?y"? =2.1x10°3 __ r, |¥* /d2?y"" (1.4.29)
where g is the gradient of the field in a parabolic potential trough on the

axis of the system OZ (expressed in gauss per centimeter in the case of

magnetic quadrupole lenses); J .. is the total maximum current in the beam
(in amperes). It is interesting to note that the gain G of Eq. (1.4.29) at the
maximum frequency o=a,, Is independent of g.
Adopting in these estimates the value d, =1cm, J_ =100A, y =10 A, L
=2 m, and g =10 kG/cm, we find that
®=5.3x10"sec*(1=361), G=~1%.. (1.4.30)
These estimates show that in the case of the above parameters of the
beam and other components of the system, it is in principle possible to

construct a strophotron free-electron laser operating in the infrared range.
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We shall now note the singularities which distinguish a strophotron
free-electron laser from a conventional undulator laser.

1.The undulator parameter K, depends only on the initial conditions and

not on the relativistic factor y; it can be numerically large. In the above
example, we have

Ky (% =0=ay~77. The high value of K, shows that the maximum serial

number of the harmonic in which more or less effective amplification is still
possible is high: s =, /20,,(% =0)~0.3[(L/ 2)K,, (X, =0 ~168.

res

The gain profile extends from o, (%, ~0) and it consists of a

res

(x,=0) to 2s, 0,

large number of equidistant narrow gain lines.
2.The frequency of a wave amplified in a strophotron depends strongly
on the angle at which an electron enters a system. For a fixed value of s,

we have o «1/e?, whereas at s=s__, we find that @<« . Hence, it follows

that a strophotron provides an opportunity for continuous tuning of the
emission frequency because of a change in the entry angle «.

Clearly, there is a margin for increasing the gain. In particular,
preliminary shaping of an electron beam so that the angle of entry of
electrons into a strophotron depends on the initial transverse coordinate x,
Is a promising approach. In this sense the optimal distribution is that for
which the quantity o® +x2Q° remains constant over the whole beam diameter.
This can be achieved by, for example, use of a focusing device based on
electron-optical lenses.

In a system of this kind there is no strong inhomogeneous

broadening because of the distribution of electrons over x,, so that the gain
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of Eq. (29) increases by a factor (d,/Ax)* , i.e., by the two orders of
magnitude.

A quantum-mechanical description of the motion of an electron in
classical fields is not in conflict with the fact that the final results obtained
here do not contain the Planck constant 7. It is natural to expect the main

results of the present study apply also in the classical approach [79].

Chapter 3
Channeling on an intense light wave and in Wiggler with

Inhomogeneous Magnetic Field
The Chapter based on 5 publications [116,117,161,162,163]

3.1. Overview

The existing free-electron lasers (FELs) are based on the magnetic undulator
principle [103]. There have been many suggestions for the construction of
FELs based on different schemes[80] and an alternative FEL utilizing
channeling in a crystal has been proposed [61,62].

Similar ideas underlie the proposal to construct FELs on the basis of
"macroscopic channeling," i.e., by creating potentials of the type
represented by a flat parabolic trough ("strophotron") by a system of

magnetic or electrostatic quadrupole lenses [104,59,66,79,105].
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We shall propose and describe an FEL in which an electron beam interacts
with a strong standing wave and the conditions are favorable for the
channeling of electrons between constant-phase planes. In this way the
channeling concept is extended to the interaction of electrons with an optical
electromagnetic field.

The radiation emitted by electrons interacting with a standing wave under
the above-barrier transmission conditions was considered recently in Ref.
[106]. To the best of our knowledge the possibility of channeling of electrons

by a standing wave has not been discussed in the literature.

3.2. CHANNELING OF ELECTRONS BY A STANDING WAVE

We shall consider a relativistic classical electron in the field of a standing
wave in the geometry shown in Fig. 1. The potential of a standing wave will

be described in the form (c = 1)

A | oy |, A = wi [Eycoswy(t —x) —E,coswy(t +x)]  (3.2.1)

where E; ; are the amplitudes of the electric-field intensity of two traveling

waves propagating in opposite directions along the Ox axis and forming a
standing wave and w, is the frequency of this standing wave.

The Hamilton function of an electron in the field described by Eq.(3.2.1) is
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1/2
H=|R? +B>+(B,—ed®)" +m?| "~ p, + = [p2+(B, — eA®)" +m?],
) z )
(3.2.2)
where P, , . are the components of the electron momentumalong the
0x,0y,and Oz directions, and P,, = p,.. . It is assumed, that the electron

momentum p, along the Oz axis is much greater than the other components

of the momentum p,. and p,, . If, moreover, we assume that the
translational velocity of an electron along the Oy axis is zero, then P, = 0

and the electron transverse-motion Hamiltonian governed by the second
term on the right-hand side of the second equation in the system ( 3.2.2)

becomes

ny L [y 2 2 4(0)2 2
H, zan[px +e2A024m?| (3.2.3)

where it is assumed that p, ¥ = ¥ 5, and £, s the initial electron energy.

We shall assume that the motion of an electron along the

axis is slow compared with oscillations of the field described by Eq. (3.2.1)
in each of the two traveling waves, i.e., we shall assume that the

characteristic time of such motion is much greater than 2z/w,. In this
approximation the Hamiltonian of Eq. (3.2.3) can be averaged over the fast
oscillations which are included in the explicit dependence of 4™ on time ¢,

so that instead of Eq. (3.2.3) we have
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2 2 2 2 2
5 o g EyEq cOs2ipx jl g By Eax
H, =—"*—-——"= =+ const & =+ ——"—+ const .
28, 2wy ey 25, =
(3.2.4)

In the last approximate equality it is assumed that 2w,lx| <=, i.e., that the
amplitude a of the oscillations of an electron along the x axis is low
compared with 4,/4, where 1, is the wavelength of each of the two
traveling light waves in Eq. (3.2.1).
Averaging of the Hamiltonian H, of Eq. (3.2.3), dependent on time t, over
fast oscillations is a generalization of the corresponding procedure used
earlier for nonrelativistic electrons in the theory of the Kapitza-Dirac effect
[107].
The Hamiltonian of Eq. (3.2.4) describes the motion of an electron in a
potential (Fig. S5a)

U(x) = —f:f—‘-f;cc.s 2wy (3.2.9)

which in the case of low values of x represents a flat parabolic through. In
this approximation the motion along the Ox axis is in the form of harmonic

oscillations of frequency

0= s'izs-__E:}""': - gEy 2"/ ’ (3.2.6)

Sp fp

where E, =(E,E,)Y? .

On the basis of this assumption about the relative slowness of the motion
along the Ox axis the frequency Q and the field intensities E; and E, are

limited from above by the condition

0= wy (327)
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The height of the potential barrier of Eq. (3.2.5) (relative to U,,,) is

Upae = Unin = 380 (02/@5)* << & (3.2.8)
It follows from this inequality that the barrier height is much less than the
longitudinal electron energy, but it can be considerably greater than the
energy of transverse motion.
This condition reduces to the requirement of the smallness of the amplitude
of oscillations of an electron along the Ox axis:

a < Ay/4. (3.2.9)

The oscillation amplitude a is governed by the initial parameters of an
electron the angle of entry of the electron a (in the xz plane relative to the

Oz axis) and the initial transverse coordinate x, of the electron (Fig. 5a) :
a = (x,% + a®/05)V2, (3210)

The entry angle

a can be selected to be zero, which gives a = x, . The condition (3.2.9)
then means that approximately half the electrons characterized by vU(x) <0
Is confined by the channel, whereas the other half characterized by U(x) =0

undergoes strongly nonharmonic oscillations or it passes above the barrier

e 5w W
s
<
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FIG. 5. Schematic representation of the proposed free-electron laser utilizing a standing
electromagnetic wave (a) and the effective potential energy of an electron in the field of
the standing wave (b).

3.3. Interaction with the Field of a Wave being

Amplified and Separation of Fast and Slow Motion

We shall now assume that an electromagnetic wave of frequency w travels
along the Oz axis and the vector potential A || 0x of this wave is described by

A =Ecasm(t—z), (3.3.11)

where E is the amplitude of electric field.

The exact equations of motion of an electron in fields governed by the sum

of the vector potentials A of Eq.(3.2.1) and Is A of Eq.(3.3.11) are of the

form
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% = eE(1—v,)sinw(t —z) — ev, (E; sin wy (t — 2) + E; sin wy (t + 2)),

% =e[—E,(1—v,)sinw,(t —z) +E,(1+ v,.)sinw,(t+ 2)],

dpg

= —ev, Esinw(t —z),

(3.3.12)
where v, = p;/c are the components of the electron velocity and ¢ is the

electron energy.
The rate of change of the electron energy is equal to the work carried out

by the total electric field E,

j—: = —evE;,, = —ev, E sinw(t —z) — ev, [E;sin wy(t — z) — E; sinw, (t + z).

(3.3.13)

The second equation in the system (3.3.12) has the exact solution

py=¢v,=e G—icns wy (t — z) —z—zcc-s wg (t + z]) =eA®  (3.3.14)

The frequency @ can be less or greater than w,. However, in the difference
t —z the main terms balance out (z =~ t), so that a dependence of the

sin w(t — z) type becomes slow

compared with sin w,t or cos wyt.

In Egs. ( 3.3.12) and (3.3. 13) we shall separate the motion into fast

(of frequency = w, 2 w,) and slow, compared with with sin w,t and cos w,t,

and we shall find equations for the slowly varying components of the
velocities and momenta of an electron. We shall assume that the rapidly

varying components of &, x and of the projections of the velocity v,, v, and of
the momentum p,. , p, are small compared with the slow components.

Substituting the solution given by Eq. (3.3.14) into Eq. ( 3.3.13) and into the
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first equation in the system (3.3.12), we shall average the right-hand sides of

these equations over fast oscillations (of frequencies w, and 2w,). This gives

d : 2 :
Px — eE(1 —v,)sinw(t — z) — 55 gin 2wy X,

at =0 (3.3.15)

dpz de .
— =—=—¢ep . Esinw(t—=z).
dt dt x ( )

If, as usual, the change in the energy E of an electron during one pass
through an FEL is small compared with its initial value g, then in the last
term on the right-hand side of the first equation in the system (3.3.15) we
can replace ¢ with g,. If p, & g, > p,, eA©®,m, then in accordance with the
results of Sec. 2 we can distinguish in the electron energy & a small
fraction corresponding to the energy of transverse motion &,, which in turn

can be represented by a sum of the kinetic and potential energies,

£ = j—+ U(x), (3.3.16)

where U(x) is described by Eq. (3.2.5).

Comparing the resultant equations (3.3.15) and (3.3.16) with the equations
for an FEL of the relativistic strophotron type,x we can readily demonstrate
that at low values of x [in accordance with the condition (3.2.9)], when

sin 2wy x can be approximated by a linear function of x in the first equation
of the system (3.3.15), there is a complete analogy with a flat electrostatic
trough. The role of the effective field gradient along the trough axis is
played by the quantity

2eF, Ey

o
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3.4. GAIN
Using the above analogy with an electrostatic trough and employing the
published results of Refs. [66] and [79], we can write down directly-without
any calculations -the change in the energy of an electron in one pass across

a standing wave:

he= —ZEERCO () 4 EO T () LD ~ [ DT,

32&g szoduﬂ g

(3.4.18)
where t is the time for the transit of an electron across a standing wave, v,
is the initial velocity of an electron along the 0z axis, a is the amplitude of

the oscillations of an electron described by

Eq. (3.2.10), Z = 1/(swQa?), and

aZn?
4

u = fo(1-v0 +55) —0@s+ 1) (3.4.19)

At high electron energies such that £ > m, we have 1 — v_, = (2y?)~?
,wWhere y = £/m is the usual relativistic factor.
It is known, that if yQa > 1, the sum in Eq. (3.4.18) includes comparable
contributions of many terms with s > 1, i.e., effective amplification is
possible at high odd harmonics of the fundamental resonance frequency.
Then, the dependence of 1, on the initial transverse coordinate x, [via a(x;)
of Eq. (3.2.10)] and the averaging of A= over x,, i.e., over the distribution
of electrons in a transverse cross section of the beam, become important.
This complicates greatly the process of calculation of the gain nd reduces its
value. The gain decreases also considerably on increase in the harmonic

number. We shall therefore consider here only the simpler case when

yQa « 1, Z « 1, and s = 0, so that the dependence of the resonance
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frequency on x, can be ignored and the averaging over x, reduces simply to
replacement of a? with aZ~a,, .2 = 1,°/16 of Eq. (3.2.9). In this case the
change in the electron energy Az of Eq. (3.4.18) is related directly to the
gain G = —8nN, AcE~2 (N, is the electron density in the beam). The gain G
and the frequency of the wave being amplified are now given by

T 1N I20° d

G— (), u = Ll —v.0) - ], (3.4.20)

16ywg®redu L u

wx O1—v,)"", (3.4.21)
where 1, = e? /mc? is the classical radius of an electron and I = v_,t is its
amplification length.

It has been assumed so far that the field of a standing wave is homogeneous.

In fact, this is not true: in the focal region where E, = E;(z) and in
accordance with the definition of Eq. (6), we have Q = Q(z). The
dependence of the oscillation frequency (1 on the coordinate z along the

direction of motion of an electron makes the equations more complex. They

can be solved if the dependence (z) is slow, which is true if Q,d > 1,
where Q, = [Q(z)],0 = Q(0) and d is the laser beam diameter. Without

considering the details of the solution (see paragraph 3.5), we shall give the
results
G ~ —2m2e?N,a (1 — v,)0, wd?v,2e, b ()P (x), (3.4.22)

where @ (x) is the Airy function,

X = _5(d2fnﬂﬂuzjl“uﬂ5 =0y — (1 —vy), Vg =V, Vs = vy, = 0.
(3.4.23)
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The spectral dependence of the gain G(w) is shown qualitatively in Fig. 2,
where for the sake of comparison we included also the dependence G(w) in

a homogeneous field [Eq. (3.4.20)]..

04 0.

| A ) \\
6 o 2 2 4 6 \
6 4 2 2 4 6
02
02
04

FIG. 6. Spectral dependence of the gain in homogeneous (a) and inhomogeneous (b)

fields.

3.5. Inhomogeneity of the field in the focal region

If the standing wave electromagnetic field be homogeneous in the transverse
direction and had sharp edges, then the length in the gain formula for
amplification will be coincided with the beam diameter. But really it is not
SO.

The field E=./EE, in nonuniform in fjcal region. It can usually

approximated by Gaussian dependence

E,=Eyme?'®, d=d,/\2In2, (3.5.1)

— —0,max

where d, is a diameter of laser beam defined as the offset from the axis

z=0, where the radiation intensity is reduced by half compared with its
maximum value.
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Since, the electron oscillation frequency @ (3.2.6) depends on E,, and
therefore on z dependences on z (or on time t) will appear in resonance
detuning u (3.4.19). This fact forces us to revise a derivation of formulas
for the change of the electron energy A¢(3.4.18) and gain G (3.4.20).
Finally, such revision lead to certain connection between | and d, in
(3.4.20) and also qualitative changes in the form of dispersion dependence
G(w).

On the basis of the equation (3.3.13) is easy to see, that in the second-order
perturbation theory on E  the electron energy change rate is mainly
determined by the expression

dg(Z)

T =ev%wzEcosw(t—2) (3.5.2)

where v@=x®  z© and :z® are solutions of (3.3.15) in the zero and first

order on field E.

Equations for z(t) and x(t) following from (3.3.15) in the same
approximation as earlier (paragraph 3.4) turn to

eZ=—eEX(1-2)sinw(t —2),
X+ Q% (2)x =—€eE(l— 2 —X*)sino(t—2),

(3.5.3)

where frequency Q is determined by the same equation (3.2.6), but now
depends on z in accordance with (3.5.1).

In the first order approximation on E from equation (3.5.3) one can find

20 = 7,4V, (3.5.4)
K@ +Q%(z,+V,t)x=0. o
We assume Q(t) dependence is slow
“2—? 0 Q? (3.5.9)

In this approximation
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xO(t) ~ x, cos[j‘ Q(z, +vzot')dt’] (3.5.6)

For simplicity is accepted that x(—«)=0, («=0), and hence v, =v,.

The condition (3.5.5) is certainly not satisfied at very big values of |[t|, t<0,
at the same time, however Q(3.5.1) is very small, and x© ~x,. Therefore,

the solution (3.5.6) can be considered as a result of “sewing” of solution
x® ~x, in the region large negative t and quasiclassic solution (3.5.6) in the

region small values of | t |, where the condition (3.5.5) is fulfilled. In this
region under z,+v.t=.d, the condition (3.5.5) takes form

Q(d, /v,) >>1 (3.5.7)
I.e. the number of oscillations on the length d, should be larger.

The first order correction to z® (3.5.4) is easy to find using Egs. (3.5.3),
(3.5.4), (3.5.6). It contains integral over function

sin IQ(Z +Vt")dt"-sin[@(1—- vyt — wz, |

;{COS[JQ(Z +V,t")dt' — o1 - vyt + 0z, }
(3.5.8)
—cos“ Q(z, +v,t")dt + o(1-v,)t — wz, }

%cos{ J' Q(z, +Vpt")dt' — (1 —-v, )t + a)zo}

In the last approximate equality term varying with the total frequency
=.Q+w(l-v,) is omitted. Neglect of such rapidly oscillating terms is based on

the resonance approximation, in which it is assumed that the difference
Q-w(l-v,)is small compared with o(l-v,). Using approximate equality
(3.5.8) z is presented as

SO wjdt jdt”Q(z +Vt")- cos“dt"@(z +Vt") — oLV )t" — 1z, } (3.5.9)

2¢,

—00
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According to (1.5.6), (3.5.1), (3.5.4) frequency Q(z,+vt) has a maximum
value @ =Q, at t=t,=-z,/v,. We carry out the change of variables in
(3.5.9) t >t'+t,, t">t"+t,, t" >t"+t,. The argument of cosine (3.5.9) can

be presented as

. m m 4 4 t"VSQO 3 5 10
o+ [ Q™) — @1 Vo)t ~prUA-—be (3.5.10)
0

where

gozjdtQ(vot)—a)zO/v0 (3,5,11)

Is constant phase, which depends on the unperturbed value of the
coordinate z, at the moment t=0,

A=Q)—o(l-V,) (3.5.12)
Is resonance detuning in the region of maximal E .

The condition of application above used resonance approximation has a
form

Al << Q.

In approximate equality (3.5.10) it was accepted t"<<d,/v,. It is this region
of small t, which gives the main contribution to z® (3.5.9). The value of
corresponding interval At is determined from the condition , that the last
term in right side of equation (3.5.10) equals of the order of unity.

dz 13
At=.( ] (3.5.13)
QOVO
Integrand in (3.5.9) oscillates rapidly out of the interval |t"|<At, and
contribution of corresponding intervals in z® is small. By this reason
integrand dependence on t' has almost stepped character: it is small at
t'<At , rapidly increases in -At<t'<Atand remains constant at t'>At.
Taking into account this and neglecting changes of Q(t") on the small
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interval -At<t"<At, i.e. assuming Q(t")~Q, one can write from equqtion

(3.5.9)

O =M(t—to)e(t—to)]o dt'cos{goth'A—t’SVg?o} (3.5.14)
2¢g, i 3d
where 9(x)=0 atx<O0,and 6(x)=1,at x>0
Product v cosaw(t—2z)
v cosa(t—27) = % (t)sm[_[Q(z +Vt")dt' — o(L—Vy )t — coz}
(3.5.15)

(t —to)Svgﬂo :|

~ %00 A
~ 5 Sln[¢)+(t t,)A 3q?

As a result electron energy change rate, using z%(t) (3.5.14), can be
presented in the form

(2 2E2y201 2 2
de™”  e'E™%(1-v)Q (t—t)0(t—t,)
dt 450

13,,2
Sln{(erA(t t)— °(t t)}jdt co{ +UA- t:;’dgotﬁ}

(3.5.16)

We integrate this equation with respect to time, average over the constant
phase ¢ and find the average change in the electron energy

AE:—eZEZazg_VO)QS‘”jtdtjdt sm{A(t ty— Yoo (45 )}
L (3.5.17)
__7e’E’a (]Z'_VO)QOO)CD(X)CD'(X)
4v; e,
where @(x) Ayry function and her argument is
x_—A1/3( o ] (3.5.18)
VOQO

Now taking into account known asymptotic expansions of Ayry function at
|x|<<1, x>0, x < 0 one can find
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Az = - FEE 1) Qe exp{—ﬂmr"2 L}, A<0 (3.5.19)

e, 3 Vo
22,20 2
AF =€ E'a (12V°)Q°wd cos ﬂAmLﬂ2 , A>0. (3.5.20)
8Vo &, 3 VoS

2/3
Under condition A>>[\;—°j QF, but |AR<Q,.

Under condition A<0 (0>9Q,/(1-v)), Ag>0 (3.5.19), i.e. the energy of

ekectron increases, amplification effect of wave with frequency « is absent.

Under condition A>0 (w0<Q,/(l-Vv,), Az oscillates, changing the sign.
Several maxima occur in this frequency range in amplification, gathering
with decreasing frequency and their locations are determined from
condition

gAﬁ’Z vogd:gz =@2n+)z, n=012,.. (3.5.21)
The gain qualitative spectral dependence G(w)is shown in Fig. 6., where
the gain spectrum of the homogeneous fild is presented too for comparison.
Amplification line maximum numbers n_ having approximately the same
height is determined from the condition of application of resonance
approximation A, <Q,, which gives

- :.(Qodj o1 (3.5.22)

Vo

The width of each maximum has a same order as distance between them

%:.%, n>1. (3.5.22)
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3.6. On the Influence of Magnetic Field Inhomogeneity of the Plane
Wiggler on the Spectral Distribution of Spontaneous Radiation

and on the Gain

The free electron lasers (FEL) are high power tunable sources of coherent
radiation that are used in science research, for heating of plasma, in the
physics of condensed media, in atomic, molecular and optical physics, in
biophysics, biochemistry, biomedical engineering etc. The radiation
produced by present-day FELs has a range from the millimeter to the X-rays
waves, which no other similar high intensity tunable sources cover [110,111].
In contemporary science this range is of interest both from the viewpoint of

fundamental research and application.

In FELs [112,43] the kinetic energy of relativistic electrons moving through
the spatially modulated magnetic field of a wiggler is used for production of
coherent radiation. The frequency of radiation is determined by the energy
of electrons, the space period and the magnetic field strength of a wiggler.
This permits a retuning of FEL to be made in a wide range as opposed to the
atomic and molecular lasers. In a conventional FEL the magnetic field of
wiggler is constant, but it is inhomogeneous in the transverse direction [113].
It is important to take into account this inhomogeneity that causes a
composite motion of electrons: fast undulator oscillations along the wiggler
axis and slow strophotronic ones [79,66,105,114-119] in the transverse

direction.

In the present work we describe the equations of motion of electrons
moving along the wiggler axis, the magnetic field in which is spacially
inhomogeneous. The aim of the work is to calculate the spectral distribution

of spontaneous radiation as well as the gain.
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3.7. EQUATIONS OF MOTION

The vector potential of the magnetic field of undulator has the form [120]

sz—mcoshqoxsinqozj , (3.7.1)

0

where H, is the magnetic field strength, q,=2x/2,, % the wiggler period, j
the unit vector in y direction. Bellow we consider the problem in the paraxial

approximation
Qox<<1. (3.7.2)

Taking into account (3.7.2) the expression for magnetic field (3.7.1)

acquires the form:

2v2
H, :H0£1+ q°2X jcosqoz; H,=0; H,=Hygxsingyz. (3.7.3)

The equations of motion (c=1)
dp/dt =e[VH] (3.7.4)

in magnetic field (3.7.3) have the form:

X:—GH—(’qOXysin QoZ,
€
2y2
y:eHO{z‘(h q°2X Jcosqoz+qox>isinqoz}, (3.7.9)
€

2y2
Z :%(HMJ ycosqyZ,
€ 2

and the energy change is

de/dt =0, e=const.
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Expression (3.7.5) was obtained taking into account that p,,,=v,,.c.
It is seen that

242

2 :
(qozx sinqozj =qox>'<sinqoz+q°2X 2¢0SQoZ , (3.7.6)
[ 2cos yzdt = [ cos gozdz = AN%Z (3.7.7)

Qo

Using relations (3.7.6) and (3.7.7) we obtain after integration of the

second equation of (3.7.5)

. _eHy Qo?X? ) .
= (1+ : jsmqoz. (3.7.8)

By substitution of (3.7.8) in the first and third equations of (3.7.5) we
obtain with due regard for (3.7.2)

y (eH jz .,
X=—| — | xsin?q,z,
€

2
4 =—i[ﬁj sin 20z (1+ 0x?).
20,

€

(3.7.9)

Averaging the first equation of (3.7.9) with respect to the wiggler period

2n/q, and taking into account that (sin?q,z)=1/2, we have

X+02x=0. (3.7.10)
The latter has a solution
X =8, C0s(Qt +6;), (3.7.11)
where
szgos, a0=4,x02+g—22, coseozg, sineoz—a;og. (3.7.12)

The averaging of the second equation of (3.7.9) gives
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(2)%=0, (2)%=v, (2)”=wt (3.7.13)

Taking into account (3.7.11) and (3.7.13) the second equation of (3.7.9)
admits a solution

2 2 202 202
2 sin 20t + Q s.in{z(qo+Q)t+260}+a0 Q
200> 299° 164, 1609,

(3.7.14)

0z =

sin{2(go —Q)t— 20, |.

Thus, for z=z9 +5z we have

2 2 202
z:t{l—ziyz— ;; 2j+ js ~sin 2qot + ;310622 sin{2(qo +Q)t+ 20, } +
- ’ ’ ’ (3.7.15)
dy

164,

+

sin{2(go —Q)t - 26, |.

Here the allowance was made for the fact that 1-v=1/(2y?), where y=¢/(mc?)

is the relativistic factor, m the electron mass, ¢ the velocity of light and «

the electron energy.

The obtained results are valid in case of the following approximations:

o<l 2<1 aQ<l (3.7.16)

Jo

The electrons perform fast (undulator) oscillations in the longitudinal
direction (along the wiggler axis), whereas in the transverse one they
perform slow (strophotronic) oscillations in the direction of x. axis and fast

(undulator) oscillations in the direction of yaxis.

3.8. SPONTANEOUS RADIATION
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Using the solutions for x(3.7.11), y(3.7.8) and z(3.7.15) one can find the

spectral intensity of spontaneous radiation, that in the direction of z axis

(wiggler axis) is determined by formula [67]

T 2
Idt [n x V] eim(t—z) ’

0

de  e’w?
dodo 4n?

(3.8.17)

where do is an infinitesimal solid angle in the direction of z axis and T is the

time of electron flight through the undulator.

Using formula [102]

emm = 3 3, (A)e ™ (3.8.18)

with Bessel functions J3,(a), and omitting cumbersome calculations we obtain

de e2w’Q?T? i (|n+1'k'm o )ZESil’lsz , (3.81 9)

dwdo B 87!22(3]02 n,m,k=—o0 u
where

T 1
u :E{m(ﬁﬁu 2q02]_(2n+ 1)0o —2mQ},

Lo = Jnk (Z0) Jiem (Z2) I (Z2), (3.8.20)

2

0Q? 08,0’
4q,° , 4q,

Equation (3.8.19) describes the radiation spectrum consisting of a
superposition of spectral lines localized at combinated frequencies of odd
harmonics (2n+1)o.wm Of undulator resonant frequency and even harmonics

2mo.s Of strophotronic resonant frequency, where mn=0123,.... Here

2 2
Ores,und :%a Ores str :%. (3.821)
1+v2Q?/q, 1+v2Q?/q,
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3.9. GAIN

The gain may be found from the expression for spontaneous radiation
(3.8.19) with the help of the Madey theorem [70]. To avoid the use of some
assumptions made at obtaining of these general relations for the
spontaneous and stimulated radiations, we preferred to obtain the gain
immediately from the equations of motion.

Let an electromagnetic wave with vector potential propagates along z axis

(wiggler axis)
A =—Esinot-2)i, (3.9.22)
(O]

where o is the frequency of electromagnetic wave, E, the strength of
electric field, i an unit vector in the x direction.
The equations of electron motion in the wiggler (3.7.3) and

electromagnetic wave (3.9.22) fields are

%:—eHoqoxvysinqoz +eEq (1-v, )cosa(t - 2),
2,2

%:eH{vz (1+ q°2X jcosqozﬁtqovxxsinqoz}, (3.9.23)
2y2

ddiz =—eHgv, (1+ Go X Jcosqoz+eE0vX coso(t —2),

and the energy change is

% =eVE =eE,V, Cosm(t—z). (3.9.24)

The linear gain (field independent) is determined by the second order

electric field strength (< E;?) and is obtained from equation (3.9.24):

% =eEv,® cosm(t — 2 ) + eEowv, @ z® sinw(t — 2V ). (3.9.25)
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To obtain the gain one needs to find the first-order corrections in the field
(cE) x(), z@@) to x@@)(3.7.11) and z0@) (3.7.15).
The first-order corrections obtained from (3.9.23) satisfy the following

equations:

dn® _ —£,Q?X® + eEq (1-v, )coso(t — ),
dt (3.9.26)

dp,®
Z—t =eEv,@ coso(t—z).

Then we find x®@), z®@) from equations (3.9.26) and using the expressions

for xo@) (3.7.11) and zo() (3.7.15) obtain an expression for the energy

dt during T time of flight through the

=&

)
radiated by the electron ae=|
0

undulator, as well as for the gain

G= 4;'} Ae, (3.9.27)

where N, is the concentration of electrons in the beam.

Since all these calculations are simple, but laborious and cumbersome,

here we give only the resultant expression:

e2@w??N, T3 Q)& 2d (sinu)’
G=—— 2" 114220 ook —lome) — , 3.9.28
(1752 ) 5 o) 2] (3.9.28)

where the notations (3.8.20) were used. Equation (3.9.28) describes the
gain comprising the superposition of spectral lines, localized at combinated
frequencies of odd harmonics of (2n+1)m.... undulator resonant frequency
and even harmonics of 2me.. Sstrophotronic resonant frequency, where

mn=0,123,..., and o« and ... are determined by formula (3.8.21).
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3.10. CONCLUSION

ESTIMATES AND DISCUSSION

It should be pointed out straight away that within the existing
capabilities of laser energetics we can hardly expect amplification and
emission on the basis of the proposed scheme at very high frequencies. The
most realistic possibility is the use of such a scheme in the infrared
frequency range.

We shall express the maximum gain G of Eq. (2.1.22) and the
frequencies of the oscillations [Eq. (2.1.6) ] and of the wave being amplified

[Eq. (2.1.21) ] in terms of the energy in a laser pulse W and the pulse

duration t:

0,=327x1011—_ =

ydler)t/2 "’ 1—-vy

_ 12 Nedo®y (06)?
. G=45X%X10 ﬁd( ). 4)

where W is in joules, whereas W and ¢t are in centimeters. We shall

assume that a standing wave is created by €0, laser radiation characterized
by g = 9.6 X 10~*cm and w, = 1.96 X 10**sec™*. We shall assume that, in
accordance with the condition of Eq. (7), we have Q, /w, = 1/3. In this case

the following relationship lies between W,y,d, and t:

1 (E)ls’z —2.102 (25)

}r_d et
We shall consider the specific wavelength of the radiation to be

amplified; A = 16um (w = 1.18 X 10**s71). It then follows from Egs. (2.1.7)

and (2.1.21) that if Q, = w, /3, we must ensure that the electron velocity is

109



v, = 0.44¢, which corresponds to y = 1.116 and to a kinetic energy

£rin = (¥ — 1)mc? = 65KeV. We shall assume that the pulse duration 7 is
such that d =v,z (this is the minimum time ¢ in which an electron can
cross the whole interaction region). In this case Eq. (2.1.25) gives the
following relationship between W and d:

W =1.12x10°d>. (26)

The gain is then given by

G=9.8x10""NW?". (27)
If =1], (d =2.1 x107%cm, T = 1.6 ps ), we find that G ~ 1% for
N = 10*2¢m™3, which corresponds to a peak current density j = 50kA/cm?.
The very high current density has to be maintained over a short distance
equal to the diameter d of the laser beam.
If W=30), (d =6.41 X107 *cm,T =4.9ps), we find that G ~ 1% for
N =10%c¢m™3, i.e., the peak current density should be j = 5kA4/em?.

It follows from these estimates that, in principle, the above scheme can
ensure the necessary amplification in the infrared frequency range. The
value of the wavelength to be amplified, A = 16um, selected in our estimates
Is in no way unique: similar estimates are obtained also for the amplification
at other frequencies in the infrared range.

In a future communication we shall give a more detailed analysis of the
scheme described above, including its possible modifications aimed at

increasing the gain.
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It is shown that as a result of the allowance for magnetic field
inhomogeneity, some additional peaks appear in the spectral distribution of
spontaneous radiation and in the gain. Out of the multitude of these peaks
one can obtain ultrashort pulses using the well-known mode-locking method.
The peaks in the spectral distribution of spontaneous radiation and of the
gain are localized at combinated frequencies of the odd harmonics of
(2n+Doewme Undulator resonant frequency and even harmonics of 2mo.
strophotronic resonance frequency. In case of an undulator with constant

magnetic field the peaks are localized at odd harmonics of undulator

2 .
resonant freqUENCY . :12]%, and in case of a strophotron they are
+v Jo

localized at odd harmonics of strophotronic resonant frequency

27*QQ

PErOrER One may conclude thus, that due to the presence of
Ty o

Oresstr =

inhomogeneity in the magnetic field in the plane wiggler these two systems
(wiggler with the constant magnetic field and the strophotron) are integrated
in one unit and there appear peaks in the spectral distribution of
spontaneous radiation and in the gain at combined (odd undulator and even

strophotronic) resonant frequencies.

Chapter 4.
Free Electron Laser Without Inversion
The Chapter based on 4 publications [54,55,165,173]

4.1. Overview
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A threshold condition for amplification without inversion in a free-electron
laser without inversion (FELWI) is determined. This condition is found to be
too severe for the effect to be observed in an earlier suggested scheme
because a threshold intensity of the field to be amplified appears to be too
high. This indicates that alternative schemes have to be found for making

the creation of an FELWI realistic.

4.2. The threshold conditions for an FELWI (Single Particle

Approximation)

According to the realization [47], of FELWI is strongly related to a deviation
of electrons from their original direction of motion owing to interaction with
the fields of an undulator and co-propagating light wave. The deviation angle
appears to be proportional to energy gained or lost by an electron during its
passage through the undulator. Owing to this, a subsequent regrouping of
electrons over angles provides regrouping over energies. In principle, a
proper installation of magnetic lenses and turning magnets after the first
undulator in an FELWI can be used in this case for making faster electrons
running over a longer trajectory than the slower ones [50]. This is the
negative-dispersion condition that is necessary for getting amplification

without inversion [44].
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It is clear that the described mechanism can work only if the interaction-
induced deviation of electrons (with a characteristic angle «) is larger than

the natural angular width beam of the electron

a>d.. (4.2.1)

Fig. 7. The scheme of electronbeamafter first wiggler.

As the energy gained/lost by electrons in the undulator and the deviation
angle are proportional to the field strength amplitude of the light wave to be
amplified, condition (3.2.1) determines the threshold light intensity, only
above which amplification without inversion can become possible. This

threshold intensity is estimated below.

In the noncollinear FEL the electron slow-motion phase is defined as

=0z +kr—at (4.2.2)

where q=27z/4, and 4, is the undulator period, k and o are the wave

vector and frequency of the wave to be amplified, |k|=w/c, r=r(t) is the
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electron position vector and z=z(t) is its projection on the undulator axis.
Let the initial electron velocity v, be directed along the undulator axis Oz.
Let the undulator magnetic field H be directed along the x-axis. Let the
light wave vector k be lying on the (xz) plane under an angle ¢ to the z-
axis. Let the electric field strength ¢ of the wave to be amplified be directed
along the y-axis, as well as its vector potential A, wave and the undulator

wave

vector potential A,,, where

e = S cos(kr-at) , Ay :%cos 0, (4.2.3)

w

and ¢, and H, are the amplitudes of the electric component of the light field

and of the undulator magnetic field. The geometry corresponds to that in

[47].

The slow motion phase (4.2.2) obeys the usual pendulum equation
p=-a’sing ,

(4.2.4)
Where

(4.2.5)
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E, =ymc? is the initial electron energy and y is the relativistic factor. If L is
the undulator length, the ratio L/c is the time it takes for an electron to pass
through the undulator.

The product of this time and the parameter a of equation (4.2.5) is known

[43] as the saturation parameter .,

ﬂ:aTL:eL—\/E‘%HO . (4.2.6)

Amplification in an FEL (with H, =const) is an efficient one as long as x<1. At
u>1 the FEL gain G falls. The condition x=.1 determines the saturation field
& and intensity I . For example, at L=3m, H,=10'Ce, y=10?, we have

Eoem =-1.2x10°V /cm and 1, =.2x10°W /cm®. In our further estimates of the

S|

FELWI threshold field and intensity we will have to keep in mind that it is

hardly reasonable to consider fields stronger than the saturation field ¢, .

The pendulum equation (4.2.4) has the first integral of motion (kinetic +

potential energy of a pendulum = const).
.2

%—az cos[¢(t)] = const (4.2.7)

Initial conditions of equations (4.2.4) and/or (4.2.7) are given by
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-,
2}/2

es

?(0) =, p(0)=5=

(4.2.8)

where ¢, is an arbitrary initial phase, ¢ is the resonance detuning and «,,

is the resonance frequency for noncollinear FEL given by

2
a)res = Cq ~ 2}/ SqZ (429)
1-(v,/c)cos@ 1+y°60

with 9=0 (k,0z2).
In the case of a not too long undulator and sufficiently small energy width of
the electron beam, a characteristic value of the detuning is evaluated as

|6|=1/t=.c/L.

The rate of change of the electron energy is defined as the work produced
by the light field per unit time, and as it is well known [43], this rate is

connected directly with the second derivative of the slow-motion phase

€ £ E
o 2ngo~ chga. (4.2.10)

The last approximate expression is written down in the approximation of a

small change of the electron energy, |[E-Ej|<<E,. In this approximation,

equation (10) gives the following expression for the total gained or lost

energy of a single electron after a passage through the undulator:
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AE = E@_EO z%{(p(%}&] (4.2.11)

In the weak-field approximation (ux<<1) one can use the iteration method
with respect to a of equation (4.2.5) for solving equation (4.2.7). The zero-
order solution is evident and very simple: ¢ =5. In the first order in a’one

obtains

2

P =%(cos((po+5-t)—cos(¢o))ﬂ %=ﬂTZC : (4.2.12)

By substituting this expression into equation (3.2.11) we find the first-order

change of the electron energy

AE® =

E, .o, E ﬂzc 2 A
0 = 1’E, . 4213
2cq” T 2cq LY TanL ( )

Of course, both ¢ and AE® turn zero being averaged over an arbitrary
initial phase ¢,. But here we are interested in maximal achievable rather

than mean values of these quantities, and these maximal values are given

just by estimates of equations (4.2.12) and (4.2.13).
In accordance with the results of [47], equation (14), and [50], equation

(4.2.13), a transverse velocity v, and energy AE acquired by an electron

after a passage through the undulatorare directly proportional to each other
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v, =co2E | (4.2.14)

which gives in the first order the following estimate of the electron deviation

angle a:

(6] () @
a~ SV _gBET i gp to gy 2 YK (4.2.15)
Vv, c E, 4rL 4rL

where d is the electron beam diameter and we took #=d/L.

As said above, in the framework of a linear theory we can consider only such
fields at which i <1. Moreover, consideration of the case x>>1 has no sense
at all, because the corresponding fields are too strong and because
saturation makes the gain too small. For these reasons let us take for
estimates the maximal value of the saturation parameter p compatible with
the weak-field approximation, ux=.1. Let us take also 4,=3cm, d = 0.3 cm
and L=3x10’cm. Then, we get from equation (4.2.15) the following estimate

of the electron deviation angle:
a110°. (4.2.16)

At weaker fields and smaller values of the saturation parameter p the
deviation angle « is even smaller than that given by equation (4.2.16). But
even at p = 1 the angle « is very small. To make the estimate (4.2.16)

compatible with the condition of equation (4.2.1) one has to provide a
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natural electron beam angular divergence smaller than 10°. Unfortunately,
such weakly diverging electron beams hardly exist. For example, the
microtron accelerator in Yerevan produces a with about 3 or 4 orders of
magnitude larger angular divergence, and this can be a rather serious
obstacle for attempts of creating an FELWI. Hence, the creation of an FELWI
requires invention of alternative schemes in which threshold restrictions
would be much weaker than in the considered one. The interaction between
noncolinear laser and relativistic electron beams in static magnetic
undulator has been studied within the framework of dispersion equations.
For a free-electron laser without inversion (FELWI), the threshold
parameters are found. The large-amplification regime should be used to

bring an FELWI above the threshold laser power.

4.3. Collective Regime

Usually FEL [112,43] use the kinetic energy of relativistic electrons moving
through a spatially modulated magnetic field(wiggler) to produce coherent
radiation. The frequency of radiation is determined by the energy of
electrons, the spatial period of magnetic field and the magnetic field
strength of the wiggler. This permits tuning a FEL in a wide range unlike
atomic or molecular lasers. However for purposes of achievement of short-
wavelength region of generation there are important possible limitations of

the FEL gain.

The idea of inversionless FEL or FELWI (FEL without inversion) was

formulated and discussed by M.O. Scully and coworkers [44-48]. In the
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usual FEL the gain G is an anti-symmetric function of the detuning

A=E-E,, where E and E, are the electron energy and its resonance

res ?

value in the undulator. The integral of such a gain over A (or E) is equal to

zero. By definition, in the FELWI _[G(E)dE;tO and mainly, G>0. Moreover,

if in the usual FEL in the “hot-beam” regime (i.e., in the case of a broad
electron energy distribution) the averaged gain is proportional to the
squared inverse width of the distribution function, (sE)? , in FELWI
G(E) « (SE)™*. Hence, in the case of energetically wide beams the FELWI gain
can exceed significantly the gain of the usual FEL. This advantage of FELWI
(compared to usual FELs) makes such devices particularly interesting and

potentially perspective in short-wave-length regions.

Gain Gain

0 NG/ N~ G

0.2
. 0 ~— —_ G
0.4

(7.5 (05 (2.5 0 2.5 5 7.5 10 u7.50502.5 0 2.5 5 7.5 10

FEL FELWI

o o
N s

[G(Q)ua=0 [G()a>0

Fig.8. The Gain vs detuning, @ = w(v0 — vres)/c, which characterizes deviation of the
electron velocity or the laser frequency from the resonance condition for usual FEL(left)
and for FELWI(right).
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The conditions jG(E)dE;tO and $G >0 imply that amplification of light can

take place almost at any position of the resonance energy E,. with respect
the energy E=E,, at which the electron distribution functionf(E) s
maximal. In FELWI amplification can take place both at positive and negative

slopes of the function f(E,), as well as its peak. This feature of FEWI is in a

res

great contrast with that of FEL, where amplification can take place only at

res

the positive slope f(E,)>0. This last condition is easily interpreted as the

condition of inversion: in FEL the number of electrons with E>E,. must be
larger than with E<E,, . In FELWI amplification can occur independently of
the relation between E_ and E(0). This means that for amplification in
FELWI it does not matter whether the number of particles with energy

res

E>E, Is larger than with energyE<E,, or not. This explains an origin of

the concept "without inversion" for the kind of FEL to be considered.

More specifically, the idea of FELWI is based on a two-wiggler
scheme with a specially organized dispersion region between the wigglers.
In principle, the two-wiggler scheme is widely used in normal FELs. This
scheme (often referred to as an optical clystron) is known to provide a
somewhat higher gain with narrower amplification band than in a single-
wiggler FEL but it does not provide conditions for amplification without
inversions. The reason is in features of devices between two wigglers of a
FEL. In all the existing two-wiggler FEL these devices (or no special devices
at all) are the so-called positive-dispersion devices. This means that the
higher-energy electrons of a beam cross a space between the first and

second wigglers in a shorter time than the lower-energy ones. For creation

121



of FELWI, a device between the wigglers must be rather unusual: it must
provide the negative-dispersion regime in which the faster electrons spend
longer time in the dispersion region than the slower ones. This goal does

not look unachievable but this is not easy to reach it.

A concept of FELWI is related to that of Lasing Without Inversion
(LWI)  [49] in atomic systems: three-level systems or systems with
autoionizing atomic levels. In both cases effects of amplification without
inversion are explained by interference. But specific kinds of interference in
FELWI and atomic systems are significantly different. In atomic systems
amplification without inversion is attributed to interference of different
channels of transitions between the same initial and final atomic states. In
contrast, interference in FELWI has a purely classical character. A typical
scheme of FELWI involves two wigglers and a dispersion zone between
them. Field-induce corrections to classical electron trajectories acquired in
the first and second wigglers interfere with each other. A proper
construction of the dispersion zone can give rise to such a form of

interference which provides the described above spectral features of the

FELWI gain.

4.4. The Threshold and Deviated Angle

The basic idea of FELWI [44-48,50,51] is that the electrons, that have
passed the first undulator have a dispersion of the transverse velocity, and
as a consequence of the angle between the vector of velocity and the

wiggler axis, and this dispersion is directly connected to final gain of energy.
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Therefore the selection of a direction of electron motion is equivalent to the
selection of energy, that basically allows to change in a controllable way the
length of the drift region of electrons with different energies. This
mechanism can work only if the spread of the angle «, arising as a result of
interaction of electrons with the field in the first wiggler of FELWI, is larger
than the natural dispersion of the directions in the electron beam, Aqg,,,, .
This circumstance leads to the occurrence of the threshold for laser

radiation power at the point of entry of the FELWI's first wiggler.

The interaction of electron beam with laser field can be described by laws of
conservation for momentum p_ +p, =p, +p, and energy ¢, +¢ =¢.'+¢ . Here
p, and p,are initial and final momentums of electrons, p,and p are initial
and final momentums of laser field; ¢ and ¢ are initial and final energies
of light beam and ¢, and &, are initial and final energies of electrons. The
density of electromagnetic wave momentum is P, =(1/4zc)[EB]=ka/ (47xCc)A?,

where A is an amplitude of a vector-potential of laser field.

We can write for A, =A exp(k'L), where k” is a spatial growth rate of laser

field in a medium of an electron beam; L is a length of interaction. From

law of conservation we can expect that

|Ap|=|p, = p.|=|p. — p.|=Alexp[(2k"L)-1]. We can see that the change of

electron momentum |Ap| depends on the spatial growth rate k”: with the

growth rate k" rising, the change of electron momentum rises too. This
means that for noncolinear interaction the deviation of electron from its
original direction depends on both the spatial growth rate k” and the initial

amplitude A of laser field. The growth rate k” is a function on electron
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beam current; and the amplitude depends on laser power at the entrance of

undulator. Therefore, the condition « >« leads to the threshold of either

the laser power at the entrance of undulator or the electron beam density.

We consider the induced radiation by a mono-energetic beam of
electrons propagating in a wiggler. We assume that the static magnetic field

of a plane undulator A, is independent on the transverse coordinates x and

y. Also we approximate the static magnetic field by a harmonic function

n

A, =Ag, =(Ae™cc)e,, where k,=(0,0k,) is the wiggler wave vector; “c.c.
denotes the complex conjugation, e, is the unit vector along y axis. The

wiggler field causes an electron to oscillate along the y-axis. For this reason,
the electron interacts most efficiently with a light wave if the latter is linearly
polarized. We assume that the vector potential of the laser wave has a linear
polarization A = A (t,x,z) =a‘e" "™,

The dispersion equation of EM oscillations in the plasma like electron

beam medium is an algebraic equation of power four for wave vector k (see

equation (2) in [52]). Therefore, there are four solutions k;describing two
beam waves, slow and fast, having the forms k=w/utow, (o is a shape

factor), and two electromagnetic waves, one of which extends to the
direction of the beam moving while another propagates to the opposite
direction.The solution of the linearized equations for slow motion of the

electron in the xz-plane is [52,53]:
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Here a, =a,;/A is the dimensionless initial amplitude of wave j with wave
vector k;, | numbers four branches of oscillations in the electron beam
medium: two laser waves and two beam waves, i=(-usina;0;ucosa) is the
electron velocity; “c.c." denotes the complex conjugation. D, =(w—ku)’ - is
the dispersion function of electron beam wave associated with the beam
frequency Q,, where Q=cf[1-(ku)’/(kc)’ |/y,. Here «f =4ze’n,/m is square
of the Langmuir frequency of the electron beam corresponding density n,.

K is the undulator strength parameter, defined as normalized dimensionless

e

vector-potential of the undulator magnetic field K=—3

|A|. The total

relativistic factor of electrons y, is defined as 7/0:«/1+2K2(1—u2/c2)71/2. The
coefficients B and B, aref =y, (o-(ku))-of(ku)/(kc)  and

B, =;/O(a)—(kou))—a)§ lo.
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Fig.9. The scheme in xz -plane of undulator with non-collinear arrangement.

The equation of a trajectory (4.4.1) is obtained for mono-energetic electron
beam having the unlimited size and, therefore, indefinitely long interacting
with a electromagnetic field. Below we take into account the finite size of
electron and laser beams . At first, the non-collinear arrangement of
electron and laser beams leads to the finite area of them interaction. The
length of laser amplification in the medium of electron beam is
L, =21, /sin(e+6). Here 2r, is a width of the electron beam in the xz-plane.
The length, at which the electrons move acting by force of laser field, is
equal to L,=2r /sin(a+6). Here 2r_is a width of the laser beam in the xz-
plane. The working length of the wiggler

IsL,=L,cosa+L, cosd~2(r +r)/sin(a+06).

Second, at the entrance of undulator the perturbation of the velocity is

absent: sv=0, that leads to
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> [; e (4.4.2)

Using Eq.(4.4.2) we can rewrite the Eq.(4.4.1) in form

(0]
2 o Bk =B
_ c
oV =K =3,

Yo =1 D)

a,e (e 0! ~1)+cc (4.4.3)

]

Where Aw(j)=a)—(kjujis the detuning, & =k,r,, and r, is the initial
coordinate in the xzplane. a, are the amplitudes of waves at the point of

entry of the FELWI's first wiggler. For the problem of spatial amplification,

when the spatial growth rate is considered, the initial amplitudes a, are free

parameters. Other words say, we consider the problem of a laser amplifier

for the first section of such a FEL.

Assuming that the electron, incoming in the laser field at t=0 and

interacting during the time t=L, /u, deviates from the initial direction by the

angle Aa, we obtain

da =2 = 2K? C—z Re {iﬁﬁsin(a +0)ae™ (e‘m”‘”t —1)} . (4.4.4)

7o i=1 Po(j)

In the electron beam medium there are 4 branchesk; =k;(w) of oscillations,

namely, two beams and two laser waves. Under resonant condition

o=w,(k)=(Ku) -, only laser wave propagating to the beam direction has

maximal positive growth rate k” [54]. Under the condition of appreciable

127



amplification k"L>1 we can omit all waves in Eq.(4.4.1) except the amplified

one. The maximal value of this angle deviation is

Aa, ] chz%%sin(aj%)(e‘k% —1) (4.4.5)

max
b7 o

For single-electron approximation (Thompson regime), Eq.(5) reduces to

2 kL
g, =K2[ &) ¢ 2 K wasinge+6) 1 (4.4.6)
mex u K'u yZ K"

Here k” is given by Eq.(12) in Ref. [54]. Note that for the Thompson regime,

Q, /(k'u)<<1, and

413 13
= =%K‘z/37§/3(k0:?bj = o) =k (4.4.7)

Hence, the angle deviation of electrons depends on the growth rate as

ekt _1
kl!

Aa,,, =~NK"

(4.4.8)

As the growth rate diminishes k" —0, the angle of deviation Aa goes to zero

as
Aa,,, =Jk" 0.

The excess of Ae,, over the natural dispersion of the beam Aq,,, gives the

threshold value of laser amplitude a at the entry of the first wiggler. We

rewrite formula (4.4.5) using the overall laser power P=S(kr )| at the
4

point of entry of the FELWI's first wiggler, namely
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. E(m&] (Aoztbeam)zyé' (k_U] (4.4.9)
8l e ) 2K*f(k'L,) @,

The numerical value is

9 (AO[beam)zj/(‘)1 @ i
P>P,[110 2K2f(k”Le)(QbJ (W) (4.4.10)

Here f(x)=(e*-1) /x*.

For calculation we consider the case of small amplification k'L, =.1, when
f(k'L,)=.1. We assume also that Q,/(k"u)=0.3. Using the following values of
parameters [51]: y,=15, K=0.635 and Aq,,_, =5x10"“rad, we obtain value of
threshold P>P, 110°w for laser power P incoming in the first undulator of

FELWI. This power exceed the saturation power of the laser field for which
the nonlinear regime (saturation of laser field) occurs. Therefore, the
amplification regime in the first wiggler cannot be. One should decrease
Ae,,, and/or increase K (the reduction of y, leads to a drop of the
frequency of radiation from the optical to the radio-wave range) for lasers in
the linear regime of amplification. Using the limit of laser power
=.10°+10°W/cm* we obtain from formula (4.4.9) following estimation
Aa=.10"rad. This estimate coincides with the results of [54] and [55].

Note that the stable operation of FELWI demands that the value Ac,, should
exceed the value of natural dispersion Aq,_, In a few times. It is doubtful

that in an accelerator the natural angular dispersion of the electron beam

can reach such a small value, which is significantly smaller than 10°rad .
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This means, that the regime with k'L, >>1 or f(k'L,)>>1 should be used of to

realize the FELWI application. It can be anomalous Thompson or Raman
regime amplification. For collective (Raman) regime the maximal angle of

deviation is

2 kL
Aa,. =1K2(Ej ¥ yasin(a+0) &t (4.4.11)
2 uj 7 K"

where X =1+ (k,u)/ (k,cQ,7,) - Here k” is given by Eq.(10) in Ref.[131] and,

therefore, k" takes the large value. The threshold power of laser is

Pm=2(mczj (Affbeam)zﬂfg (4.4.12)
KZf (k'L,)

Ao (rad]

mEx !

111 T ] ] ] ] -I
il 0 Ll GO0 =0 1000
current [, [A)
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Fig.10. The deviated angle A«,,, as a function of a beam current | for two values of the

laser beam width: line 1 corresponds r_L=1.0cm and line 2 corresponds r_L=0.1cm.
Other parameters are: electron energy y =15, rms electron beam radius r_b=70 gz m,

laser wavelength 4 =359um, period of the wiggler magnets A, =2.73cm, normalized

wiggler field K=0.635, angle between laser and electron beam o+ =0.13.

In paper [51] the tolerance of the FELWI gain to the electron beam energy
spread has been demonstrated. For this spread 5y has been taken to be
extremely large, namely, §y=2.0 while the emittance was ¢=27zx10°m-rad .
Simulations have been performed to obtain the dependence of the FELWI
gain on the electron beam current. The results show that the gain is about
2 orders of magnitude larger than that for ordinary FEL. The simulation
have been carried out with the following set of realistic electron beam and
wiggler parameters that are sufficiently close to experimental situations [56]:
electron energy E=29.35MeV (y=15), emittance up to £=27x10°m-rad, rms
beam radius r,=70um, laser wavelength 2 =359um, period of the wiggler

magnets 4, =2.73cm, number of magnets per section N =32, normalized

wiggler field K =0.635, angle between laser and electron beam «+6=0.13rad .

For our calculations we choose the same parameters and assume that the
power of laser wave incoming in the first wiggler of FELWI is p=100w. The
results are presented in Fig. 5, which shows the angle deviation A«,, as a
function of a beam current 1 for two values of the laser beam width: line 1

corresponds r, =1.0cm and line 2 corresponds r, =0.1cm.
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Fig.11. The deviated angle A« as a function of a beam current | for two values of the
angle between laser and electron beams: line 1 corresponds «+3=0.5rad and line 2
corresponds «+ f=0.13rad. Other parameters are: electron energy y=15, rms
electron beam radius r_b=0.02cm, laser wavelength 4 =359um, period of the wiggler

magnets A, =2.73cm, normalized wiggler field K=0.635, r_L=1.0cm

Note that, under the condition 1>10A, Raman amplification [54] takes
place. The dependence of the angle deviation Ae,, on the laser beam width
has simple explanation. On the one hand, with increasing width r_ the laser
amplitude drops, under the condition P=const. But on the other hand, the

length of interaction L, increases proportional to the width r . Hence the

exponential term = grows.

The length of interaction can be changed with angle «+0  between the
electron and the laser beams. Fig.4 presents results for different values of
angle a+6$%$: line 1 corresponds «+6=0.05rad and line 1 corresponds
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a+0=0.13rad . The widths of the electron and the laser beams are r, =0.02cm
and r_=1.0cm, respectively. One can see that geometrical parameters, such
as the widths of the electron r, and the laser r. beams, the angle between

the directions of propagation of the electron and the laser beams, allow us

to choose an optimal scheme for FELWI operation.
4.5. Conclusion

Taking into account the finite sizes of the beams, the value of the threshold
laser power at the entry of the first undulator of FELWI, above which the
selection of electrons via the transverse velocity in the drift region is
possible, have been obtained for an FEL without inversion (FELWI). We find
that an FELWI cannot operate under a weak-amplification Thompson
regime, for which the spatial amplification is small: k"L_e << 1. Only a large-

amplification regime, k'L >>1, should be used to build an FELWI. It can be

either the anomalous Thompson or the Raman regime of amplification,
using an electron beam with overdense current density. For an FELWI
operation, the optimal angle «+6# between the electron and light beams is

shown to

depend on the the widths of the electron r, and the laser r, beams. The

mechanism of an FELWI can be realized in scheme of a ring laser.
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Chapter 5.

Smith-Purcell FEL

The Chapter based on 4 publications [126,166,167,168,174]

5.1. Overview

The spontaneous Smith-Purcell (SP) radiation is generated when an electron
or another charged particle passes close to the surface of a periodic
structure of some conducting material, i.e., a diffraction grating. The
radiation mechanism was predicted by Frank in 1942 [121] and observed in
the visible spectral range for the first time by Smith and Purcell [31] in
1953 and was called SP radiation. Although the SP radiation has been
studied by both experimental and theoretical methods for over 50 years
since its discovery, the experimental study of it using relativistic beams was

carried out only after 1992 [122-124].

Currently there is substantial interest in the development of THz laser
sources for applications to biophysics, medical imaging, nanostructures, and
materials science [20]. At the present time, the available THz laser sources
fall into three categories: optically or electrically pumped gas lasers, solid
state devices, and electron-beam driven devices. An interesting opportunity
for a convenient, tunable, narrow-band source is presented by the recent
development of a tabletop Smith-Purcell free-electron laser (FEL) at
Dartmouth [35]. This device has demonstrated super-radiant emission in the
spectral region from 300-900 x m, but barely exceeded threshold. To

improve this performance, it will be necessary to develop electron beams
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with improved brightness and a better understanding of how these devices
operate. Therefore, the experiment at Dartmouth College [35], where
coherent radiation in the SP system was observed, has stimulated new
investigations concerning the SP FEL as an open slow-wave structure [127-

136].

In [125] a single-particle classical theory of the Smith-Purcell free electron
laser is described. The gain is optimized with respect to the grating period
and the light incident angle.The optimal parameters of the device and the
optimal gain are found. The latter is estimated to be of the order of several
percent in thr IR frequency region. Here, only interactions of electrons with
a light field reflected from a rippled surface is considered. Finite sizes of

grating and of a light waist are taken into account.

In [126] it was found that the dispersion equation describing the induced SP
instability is a quadratic equation for frequency; and the zero-order
approximation for solution of the equation, which gives the SP spectrum of
frequency, corresponds to the mirror boundary case, when the electron

beam propagates above plane metal surface (mirror)

Several theories have been proposed to describe the operation of a Smith-
Purcell FEL. In particular, Schaechter and Ron [137] proposed a theory
based on the interaction of an electron-beam with a wave traveling along the
grating. The interaction is found to amplify the waves that are incident on
the grating and reflected by it, with a gain that depends on the reflection
matrix of the grating. They have found that the gain is proportional to the

cube root of the electron-beam current, which with the behavior of
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Cherenkov free-electron lasers and other slow-wave devices. More recently,
Kim and Song [127] have proposed a theory in which they assume that the
electrons interact with a wave that travels along the surface of the grating.
Assuming that at least one Fourier component of the traveling wave is
radiative, they have found that the gain is proportional to the square root of

the electron-beam current 12.

Previous theories of the SP-FEL have assumed that the electron beam
interacts with a wave the frequency of which is the same as that of the SP
radiation. It has recently been proposed that the beam interacts with an
evanescent mode of the grating that lies at a wavelength longer than the SP
radiation and radiates only when it reaches the end of the grating
[128,129,131]. When the group velocity v_g of this mode is positive, the
interaction corresponds to a convective instability and feedback must be
provided by an external resonator (or reflections from the ends of the
grating). When the group velocity of the evanescent mode is negative, the
interaction corresponds to an absolute instability and the SP-FEL oscillates
without external feedback if the current is above a threshold value called the

start current.

A rectangular grating is considered in the papers [128,129,131], assuming
that the entire space above the grating is filled by a uniform electron beam.
The authors of [128,129,131] have established the dispersion relation and
found the dispersion law k. It turns out that the dispersion equation allows
only evanescent solutions and the operating point of a Smith-Purcell free
electron laser is fixed by the intersection of the dispersion curve with the

beam line. The corresponding small signal gain follows the 1”* law.
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In the present paper we restrict ourselves to the study of only induced
Smith-Purcell instability, when the initially unbunched electron beam
interacts with a wave the frequency of which is that of the SP radiation. One
can select two theoretical target settings for SP radiation: the first is the
problem of generation of SP-radiation. In this case no waves are incoming
from the infinity. The SP system generates outgoing waves. The second
target setting is that the SP-system is amplifying or attenuating the waves
incoming from the infinity. One can expect that these different problems
have different solutions. In the present work we consider only the problem
of generation of waves by the SP-system with no incoming waves. In order
that mathematical problems do not cover physical picture, we consider the
simplest model of the beam, in which the infinitely thin sheet of beam
stabilized by external strong magnetic field is described by hydrodynamical

equations.

In the 5.2. paragraph, we present the basic equations that describe the
periodic solutions for a self-consistent system of a couple of Maxwell
equations and equations for the medium. In paragraph 5.3 we consider a
simple model of grating and obtain the dispersion equation for the SP-
system. Assuming that the depth of the grating groove h is a small
parameter permits us to solve analytically the dispersion equation. In
paragraphs 5.3, 5.4 we consider a general model for a metal grating and
obtain the dispersion equation and its solutions for the an arbitrary grating
profile. Then in paragraph 5.5, as an important example for the application
of the obtained results, we present a small signal gain of the SP FEL signal

in the case with a rectangular grating.
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5.2. Basic equations

In this section, we consider the solutions of a self-consistent system of
Maxwell's and beam's equations, which are linear in the field amplitudes.
We take a Cartesian coordinate system in such a way that the electron beam
propagates to the positive direction of the x axis in the vacuum over the
grating (parallel to the surface of the grating) as shown in Fig.13. For the
sake of simplicity, we consider a sheet of the beam which is infinite in the z-
direction and is stabilized by external strong magnetic field. We assume that
the system has the symmetry of translational invariance in the z direction.
This means that all physical values depend only on coordinates x and v,

and E_z=0.

Y

Sheet electron beam

| \/

N ——
[ | N S —
Gratmg

Figure 13. Schematic of a SP-FEL using a sheet electron beam. The sheet electron

beam is in the plane y=b. @ is the angle of observation, A, is the thickness of the

beam, d and h are the period and the amplitude of the grating, respectively.
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We start from Maxwell's equations:

vxE=—1%B  yB-o,
c ot
vxB=1E i VE_4n (5.2.1)
c ot C

where j and p are the current and charge density of the beam,
respectively. We assume the simplest model of the beam, so that the initial

distribution function of the electrons is expressed as

f, (6.1, py) = AN, O (Y -b)S (P, — My, U) (5.2.2)

where u=(u,0,0) is the initial velocity of electrons, y,=@-u?/c®)"* Is a
relativistic factor, A, is the thickness of the beam and n,, is its undisturbed

density. For a monoenergetic electron beam we can use the hydrodynamical

approach, namely, the equation of motion:

d—p:(é+vVJp:eE+eXxB (5.2.3)
dt ot o

and the continuity equation:
%p+divj:0 (5.2.4)

where j=vp=enyv, n, is the beam density.
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To describe the electromagnetic field in the vacuum space (p=0 and j=0 in
Egs. (5.2.1), we take advantage of Floquet’s theorem and expand the E and

B fields as:

E(y > b) _ z Ene—i(uHiq;r’

5.2.5
B(y>b)=) B e " ( )

above the beam level, and

E(y<b)= e_mZ(EEe“‘*r +E e )
y (e | (5.2.6)
oy <0 B 30

n

below the beam level. Here the wave vectors are
q;_r:(qnx’_—'—qny):(kx+nl’iqny) (5'2'7)

Where y=2z1/d is the wave number of the grating, and d is its period. The
sums in Eq. (5.2.5) contain only the waves outgoing from the system, while
the sums in Eq. (5.2.6) contain the waves propagating in both positive and
negative directions of the Y axis. Since the dispersion relation for

. . . 2 .
electromagnetic wave in vacuum space is o” =(q;) ¢*, we can write

N S )
qny_\/cz qnx \/CZ (kx+n;{) . (528)

The solution of Maxwell equations in the form of Egs. (5.2.5) and (5.2.6) is
complete, since the sums present both propagating electromagnetic and
surface waves. For propagating electromagnetic waves, we find that g; =k*,

wherek* =(k,,k ). All waves with a plus sign propagate to the positive

direction of Y axis, while waves with a minus sign propagate in the
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direction of the negative value on the Y axis. It means that the non-

propagating surface waves are

damped modes in the direction of their propagation, i.e. Imq, >0. The

solution (5.2.5)-(5.2.8) describes the case when the waves incoming from
infinity are absent, and, therefore, the solution (5.2.5)-(5.2.8) satisfies the

radiated boundary condition named as the Sommerfeld boundary condition.

There are only three non-zero components of electromagnetic field E,, E,

and B,. From the Maxwell equations for vacuum space we find

(E.a;)=0,B _Ch

n n n’

@ (5.2.9)
(Eq:)=0,B; = E:

n n-
@

Using these relations we can express the partial amplitudes of two
components in terms of the partial amplitudes of the third component. For

example, we can write the partial amplitudes of E, and B, in terms of the

partial amplitudes of E,: E, =—(q,/q,)E,,B, =—(»/q,c)E,,
E, =F(0y / dy)Ex, By =F(@/q,,0)E, . Since this operation breaks the symmetry
between the field components and will cause problems later during
analytical calculations, we will take a different approach and introduce the
potential P:

z Pne—i(qu;r’ y > b,

P= _ _ _ (5.2.10)
Z( Pre™" 4+ Pel®" )e"‘”t, y <b.

Equations (4.2.10) hold if the field components are determined by relations:
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- g --Pp 1P (5.2.11)
oy OX c ot

Equation (5.2.11) determines fields in the regions y>b and y<b separately.

To connect the partial amplitudes P, with P and P, we have to use the

boundary condition on the beam sheet. For the beam sheet we can write:

6)=06J,6(y-b) = (6],,0,0)5(y -b),

(5.2.12)
Sp=5p,6(y-b),

wheregp, and §j, are the surface densities of the disturbed charge and the
disturbed current, respectively. Integrating the Maxwell's equations with 5
and sj given by Eq. (5.2.12) over y in the infinite vicinity of point y=b we

find the boundary conditions on the sheet beam:

E,(b+0)=E,(b-0),
E (b+0)-E, (b-0)=4zdp,, (5.2.13)

B,(b+0)~B,(b-0) = “Z 51,
C

We assume that current and charge densities can be written as

51'5 — Zé‘jnse—iwwiq;r,

o (5.2.14)
5,05 — Zé‘pnse—lwtﬂan.
Then we can derive relations for the amplitudes P,P" and P, :
Pre™ —pre™™ = pe™”,
Prg® _pre ™ = p e _ 4j P g, (5.2.15)
Onx
Pn+eiqnyb _ n_e—iqnyb — I:)neiqnyb _4_7Z'ieiqnyb.
w
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The second and the third equations are the same if the continuity equation

for the Fourier components holds: wdp, =q,,5j,.. Solutions of Egs. (5.2.15)
are
pr=p 27 Pue

Ol (5.2.16)

P =27 Pos g0,
an

In order to find the density ¢p,, we linearize Egs. (5.2.3) and (5.2.4) using
small perturbations. We assume that v=u+¢sv, wheresv=(sv,0,0) and

p=p,+3 With p,=eAn 5(y-b). The linearized equation of motion

(ng]wf;j} (5.2.17)
has solution

SV, = D OV, e, (5.2.18)
Where

sy =1 _ En (5.2.19)

- my; o—(g;u)’

The linearized continuity equation

(§+uVj§p:—podiv5v (5.2.20)

gives a solution for the Fourier components &p, :

— an5VnX
op, = P, a)—(q;u)' (5.2.21)
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Then we find

A GO R
4ryy (@—(quu))*’

ns

where @, = (4ze’n,,/m)" is the Langmuir beam frequency.

The partial field amplitudes determined by Eq. (5.2.16) are

P =[L+K(n)]P,,
P, =K(n)e™™"P,.

Here we introduced the following notation

qny

[ 2 -3
K(n) = EAba)b 70 @—@u)y

5.3. Dispersion equation: particular case

(5.2.22)

(5.2.23)

(5.2.24)

The solutions obtained in the previous section define the amplitudes of the

field but do not determine its frequency and the growth rates of SP

instability. In order to get the frequency we have to consider the boundary

condition on the grating surface.

As a first step, we consider the simplest model of the grating, when the

equation of metal surface is defined as

y(X) =hsin(yx) =hsin (Zd—” x).
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The vector tangential to the surface is r, = (L, hycos(yx)). The boundary

condition (r,E(x,y(x))) =0 takes the form
E, (X, y(¥)) +hgcos(xX)E, (X, y(X)) =0. (5.3.20)

Here E, and E, are given by (5.2.11). Substituting the solutions of Maxwell
equations given by (5.2.10) and (5.2.23) in boundary condition (5.3.26),
multiplying by exp(-ipyx), where p=0;+1+2;+3..., and integrating then over
coordinate x within the interval (0,d) we obtain an infinite system of

algebraic equations for the partial amplitudes P, (see Appendix A):

Z{%fwn—ng“yJM&ﬂWM+Kmﬂﬁm44mm—Jm4%mm““Da=o (5.3.27)

ny

Here J_(x) are a Bessel functions.

a). 3-waves approximation

In order to cut the infinite system we assume that the amplitude of the
grating h is vary small. Since the Bessel function of the small variable x

drops as J, (x)~(x/2)*/a! with a increasing, the assumption that h is a

small parameter permits us to consider 3-waves approximation. We suppose

that there are only three non-zero partial amplitudes, namely, P,,, P, and
P.,. Other amplitudes are assumed to be zero. Then we get three algebraic

equations

MV =0 (5.3.28)
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where V is a column vector with components P, P, and P, M is a 3x3

n+l?

matrix expressed as

qn—lyan—l’ﬂ; vvvvvv Y
ﬂr:—li”’vqnyannn’ﬂ;ﬂ . (53.29)

7/;_1!1|H1,Bn_””qn+1yan+1
Here the coefficients are

a, =1+ K(n) (1—e2‘q“vb),
B = :Lg(qu T 70,)| 1+ K(m) (L+e™ ) |, (5.3.30)

+ h2 2
Vn =Eqny (qny i2;(qnx)an'

The nontrivial solution of the finite system of equations (5.3.28) takes place
if its determinant equals zero. This dispersion equation describes both the
spectrum of frequencies and the growth rates of the stimulated Smith-
Purcell radiation. Neglecting the small terms proportional to h* with p>4,

we obtain the following simple dispersion equation:
D(CO, k) = qn—lyqnqulyan—lanaml - qn—lyan—lﬂr;ﬁr:rl - ﬁr:—lﬁr:rqmlyaml =0 (53 31 )

The question is which the zero-order approximation for dispersion equation

is. In the absence of the beam, when ¢, =0, we find from Eq.(5.2.16) that
P =0 and P’=P, which means that E, =0 and E;=E,. Substituting this
amplitudes in the boundary condition we find that E ,=0. Since all

amplitudes are zero, the determinant of the system is not equal to zero.

Indeed, substituting @, =0 in equation (5.3.31) we get
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D(a), k, w, = O) = qnflyqnyanrly
2 5.3.32
+hZ {qn_ly (qr?y - anx )(q§+1y + qulx ) + qn+1y (qs—ly - Zq"—lx )(qu + lqnx )} #0. ( )

It has a simple physical explanation. In the absence of the beam, the
electromagnetic field in the system is absent too, because the grating does

not emit the waves.

Therefore we can not use the condition of @ =0 as a zero-order

approximation to solve the dispersion equation. Instead we use as zero-

order approximation condition of h=0, which gives

D(w,k,h=0)=0,,,0,,0,.1y % 1,%, 0. (5.3.33)

n-1y~“ny~*n+ly =

In the general case for an arbitrary angle ¢ the product of q,,,4q,4q,., does

not equal zero, therefore we can write

Dy(@,K) =, ,, 0, 0 (5.3.34)

n-1y~*ny n+1y:

Without loss of generality we assume that the n-mode of electromagnetic

spectrum excites in the system. It means that «,, which gives the following

equation
(@— (K, +nx)u)’ +%Aba)§y03qny (1—e2i“"vb) - 0. (5.3.35)
We seek the solution of the equation in the form
w=w,*Q,, (5.3.36)
where o, satisfies the equation (5.3.35) in the limit @, —0:
a, = (K, +nx)u, (5.3.37)
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which is the dispersion relation for longitudinal beam waves.

Taking into account the dispersion relation for electromagnetic wave in

vacuum

k, = cos6, (5.3.38)

“c
we find the frequency of the n-mode of the spectrum for the limit @, -0 as

the intersection point in the k ,» diagram shown in the Fig.8. :

w = (5.3.39)
1- pcosé

where p=u/cis the dimensionless velocity of electron, ¢ is the angle
between k* vector and positive direction of x-axis, i.e. the angle of
observation. Please do not confuse the n-mode in the spectrum of radiation

with the n-mode in g -spectrum of surface wave E,. With the help of Eq.

(5.3.39), from Eq. (2.2.8) we find that

Gy =i (5.3.40)

uy,

So the n-mode of the surface wave E, does not radiate, because it damps in

the positive direction of the y-axis.
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Fig.14. The dispersion relations for the electromagnetic wave w=k,c/cosé and the beam
waves with @, =(k,+ny)u, are shown in k,,® plane. The intersection points determine

the spectrum of frequency of Eq. (5.3.39).}.

Considering the presence of beam as perturbation and substituting the value
of g, from Eq. (5.3.40) in Eq. (5.3.35) we can derive the beam frequency

Q-

ne*

Q. =a)by02\/%£lezu;°} (5.3.41)

Here we give the physical interpretation of the solutions obtained. The
condition h=0 means that there is a flat mirror in the plane y. The
fluctuations of charge and current densities of the electron beam produce
fluctuations of the electromagnetic field, the plane wave of which is reflected
from the mirror. The resonant condition (5.3.39) is the crossing point of the
dispersion lines for the beam wave and the reflected electromagnetic plane

wave. The boundary condition yields a discrete spectrum, the modes of
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which contain two coupled frequencies: “high" frequency with o=, +Q,,
and "low" frequency with o=w,-Q,,. The beam frequency Q,, depends on
the height of the beam above the surface of y=0 and has the following

asymptotes:

o Ao,
@75 «/— ,,,,,, b — 0
Q, = 2u (5.3.42)

512 O,
— JAD,,,,b—>0.
@Yo U b

Now we shall consider the presence of grooves on the mirror (h=0) as a
perturbation and formulate the solution of the dispersion equation near the

synchronism point (5.3.36) as:
w=w,*Q, +0w, (5.3.43)

where 6w =da, +idw! is a complex number, and the imaginary part 5o is the

growth rate of the induced Smith-Purcell instability. Substituting solution
(5.3.43) in Eq. (5.3.31) and neglecting the small terms under the realistic

condition of {@, Q,, |so]}<<yu we obtain the dispersion equation for small

shift of frequency:

2

2 3 b
&UZiZancSa):hZAba)b (%j e 0 [X,(6,u)+iY,(6,u)]. (5.3.44)

5

Yo

For o=, the wave number q,,, Iis always an imaginary value. We rewrite

qn+ly = Ign+l )

Where gm=%J(n+1—ﬂcose)2—n2,82 . The wave number ¢, can be both

real and imaginary for o=w,. Under the condition
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1—,Bcose<n<1—,8cos¢9 (5 3 45)
1+ 1-p o

the wave number g, is real and then the coefficients

2
X. {HMJ{L(H?{_‘JJ_MJ,
a)n gn+1 a)n a)n

(5.3.46)
Y = 1__;(U7/§ Q¥ [ _2u |2
" @, @, @, qn—ly .
The other case is real under the condition
g(l—ﬁcow’l—ﬁcosé’j’ (5.3.47)
1+ 1-p5

when the wave number q,_,, =ig, ,is imaginary and then the coefficients

297 [ 2 (1,24 9ual 2475 \[ 9ot xu) x
X, =|1+420 || £ |1 LSl N A S A A
" [+ a)n J[gml( +wn] a)n ] [ a)n ]( a)n [ a)njgn—l] (5348)
Y =0.

n

here g, , = &\/(n +1+ Bcosd)> —n’p° .

nu
The quadratic equation (5.3.44) has simple solutions. Here we consider two
interesting cases. First, we shall consider the Thompson type of excitation in
a single-particle approximation, when the electron beam radiates as a single

particle or a bunch.

In this case the beam waves can be neglected and the condition of

generation is |sw|>>Q,,. Under this condition we can omit the second term

in the left-hand side of the dispersion equation and obtain the solution:

S, =100 [P @y oury iy (5.3.49)
2u u 7
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The growth rate of instability of the n-mode (5.3.39) (6w = e, +isw] ) in this

case Is

h A “ur . .
Sy =+ 263 ;:',’2 2h g wo (Xn+|Yn)1/45|n
0

%‘ (5.3.50)

where angle y is defined asV/:arccos(xn/ﬁ/Xfo).

For sufficiently large value of the relativistic factor y,, when the inequality
7, >>wb/u holds, the growth rate of instability is proportional to the square
root of inverse oo’ =.y,"*. The condition of the Thompson regime excitation

does not depend on the beam current; it has the following form:

ha)n |X +iY|

2u 2@
2y,| € e -1

This inequality holds for b—0 and for large values of the grooves depth h

>>1. (5.3.51)

of the grating.

The second case is the Raman (or collective) regime of generation, when the

influence of beam waves is appreciable and |6w|<<Q, . For the Raman

regime we obtain

,Zﬂ

A @, uyo )
4u? \J 2u \/ anb (xn+|Yn)' (5352)
1-

The growth rate of instability is

_2@
Uz

PRy & _Y,(6,u). (5.3.53)

n— 2 ﬁ
U 7/0 2U ::o



If Y,(6,u), then the high-frequency branch with o=, +Q, excites. In the

opposite case the low-frequency waves with o=a, -Q,, generate.

For sufficiently large value of the relativistic factor y,, when the inequality
7,0 @bluholds, the growth rate of instability is proportional to inverse y,:

sa"[) y;*. The condition for the Raman type of excitation is

hza)n2 |Yn|

<<1. (5.3.54)

2 w,b
2%l
4uy, B _q

It does not depend on Langmuir beam frequency (or beam current), but it

depends on the beam height b above the grating.

The mechanism of light radiation is as follows. The surface wave with mode
number n acting on the beam electrons perturbs the trajectories of the
latter. Electrons, oscillating near the equilibrium point of r=r,+ut, emit
electromagnetic waves. As, the amplitude of oscillation is proportional to the
magnitude of the surface wave at the beam height b, the value of the growth

rate depends on the beam height above the grating surface.

b). 5-waves approximation

In the previous subsection we considered the 3-waves approximation. When
9., =0 the 3-waves approximation does not work. It can be when
n~(l-Bcos@)(1+ ), for example, for n=1 and 6=0. In this case we have to
include additional surface modes and consider 5-waves approximation; we

assume that there are only five non-zero amplitudes: E, ,,, E, ,, E, and E_,

n-x?
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and E

n+2x *

Other amplitudes are assumed to be zero. Taking into account

that h is a small parameter and neglecting small terms as above, we obtain

the following dispersion equation:

D(a)! k) = (qn—2yan—zqn—lyan—lqn+lyan+1qn+2yan+2 - qn—lyan—lﬂn_ﬁ:ﬂ
_qn—Zyan—an—lyan—l n_+1ﬂr:r+2 _ﬂn_—zﬂrr—lqm—lyamlqnﬂyan+2)qnyan (53‘55)

- o+ - o+ _
_qn—Zyan—Zﬂn—lﬂn qn+1yan+1qn+2yan+2 - qn—2yan—2ﬂn ﬂn+lqn—lyan—lqn+2yan+2 =0

Considering the solution of Eq. (5.3.55) near the synchronism point

(5.3.43), we can rewrite the equation for se as

; 2 2 b
50 +20, 6= n %% Agu _g (5.3.56)
2 uy, B
where
uyl ) uy? .
A= qn—qun+2y {(1-’_ 274 an—lyﬂnﬂ _(]‘_ Ak jqnﬂyﬂn_l} (53.57)
o, w,
and
A= qn—qun—lyqn+lyqn+2y - qn—qun—lyﬂr;—lﬂr-]:Z _ﬁr:—zﬂrr—lqn+lyqn+2y' (5358)

For gq,,, =0 the shift of frequency 6w does not depend on the small

parameter h. This example shows that high orders of the surface modes can
play a significant role for the SP instability and, therefore, they should be

taken into account.

5.4. Dispersion equation: General form
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Now, when we know the form of the dispersion equation for the SP
instability, we can consider the general case. We assume that the surface of

grating is described by an arbitrary periodic function

y=y(x) wrere y(x):y(x+2%jand n is an integer. The metal grating is

assumed to have ideal conductivity. This approach excludes the cases of
rectangular grating and other gratings in which the form of the surface
cannot be described by a function. But the results of this approach can be

used for the

case of an arbitrary profile of the grating. Below we will show how this
approach can be used for the case of a rectangular grating. Substituting the
solutions of Maxwell equations in the general boundary condition for metal

surface
E (X, y(X)) + Y (X)E, (X, y(x)) =0, (5.4.59)

multiplying by exp(-ipyx), where p=0;+1+2;+3... and then integrating over
coordinate x within the interval (0,d) we obtain an infinite system of

algebraic equations for the partial amplitudes P, (see Appendix A):

> TP, =0, (5.4.60)
with the following coefficients

Tp = (qny +(n-p)x %}(G:pm K(n)]-G,K(n)e™" ). (5.4.61)

ny

Here
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27

Gt = J‘ei(n—p)étqnyy(f)dé, (5.4.62)

np
0

and &= yx is a dimensionless coordinate.

For a non-zero solution of Egs. (5.4.60) to exist, the determinant of the

system must be zero:

T,o| =0 (5.4.63)

This is the most general form of the dispersion equation for the Smith-
Purcell instability without resonator. Its roots give the spectrum of frequency
and the growth rates. As above, the zero-order approximation for dispersion
equation, giving the SP frequency spectrum, corresponds to the case with

the plane mirror boundary of y(x)=0, when G, (h=0)=275,, and the

dispersion equation takes the following form:

Dy (@, K) =] [a, ] [, =0 (5.4.64)

The value «, has been early defined in (5.3.30). The solutions of «, =0 give

the spectrum of resonant frequencies (5.3.36). Without loss of generality,
we assume that the mode of SP-spectrum with n excites. Then, expanding
the determinant on the sum over column n, Eq. (5.4.63) can be rewritten

as:

D(w,k) = Z T M™= (5.4.65)

where M™ is the main minor, corresponding to the matrix coefficient T, :
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T, (0-a,) (qnﬁ(n IO)J(Z"XJ ((a)—a)n)z—Qfm)

i v (5.4.606)
Aba)bza)n 723’70 qnx + -
_T}/ge (qny + (n p)Z qny j(an _an)'
Introducing the value
[qny +(n-p)x anJ (G =Gy )M
= (5.4.67)
(qny + (n - p)Z gnx JGerM ®
we rewrite Eq. (5.4.65) as
D(w.K) =(0-0,) -, -2, Aoy, iy g (5.4.68)

2uy,
For frequency o given by Eq. (5.3.43) we find (0-a,)’ -Q? =60* +20, 0.

Introducing the following notation

p——ln (5.4.69)

b

e -1
we obtain the final form of the dispersion equation for éw:
D(w,K) = 6w + 20, s+ 11, =0. (5.4.70)

The upper plus sign corresponds to the branch o=, +Q,,, while the lower
minus sign corresponds to the branch w=a0,-Q,. The solutions of Eq.

(5.4.70) are sw=+Q, (13{1—;1“). The complex frequency of SP instability is

o=0,+Q J1-u,, N=123,.. (5.4.71)

n
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The growth rate of instability is so"=0,, Im1- 4, . If |x,|<<1, we obtain the

collective regime of generation, when |sw|>>Q,, , with 5a)zi%§2bn,un. The

growth rate is 5a)”=4_r%an Im(g,) .

For |u,|>>1, we obtain the Thompson regime of generation, when |50|>>Q,,,

with  so=~+iQ,Ju,. The growth rate for the single-particle type is
do =+, Re(\fu, ) -

If one branch of coupled frequencies, for example, the branch with high

frequency, increases, then the other branch decreases and vice versa.

5.5. Rectangular grating

In this section, as an important example of application of the obtained
results, we present the small signal gain of a SP FEL in the case of a

rectangular grating.

In spite of the fact that our approach excludes the case of a rectangular
grating on the face of it, the obtained equation (5.4.60) can describe that
case. One of the ways is to calculate the coefficients in Eq. (5.4.60) with the
methodused in [128,132,134,138,]. The solution of Maxwell equations is
expressed as series of the cavity modes for the grooves space y < h . To
sew the solutions for y > h and for y < h gives the coefficients for Eq.
(5.4.60). In our paper we offer another method. In order to find the

coefficients G, we consider the grating with trapezoid form
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—h}
Fig.15. The function of f(x) given by Eq. (5.5.72).
Dx O<x<e¢
£
h, g<x<9—g
2
fg=d-x M 4 9, (5.5.72)
e 2 2 2
—h, 9+g<x<d—g
2
Dx—m, d-e<x<d
£ £

Substituting the function (5.5.72) in formula (5.4.62) and then integrating

we find

N 4n .
G;, = 2(z —2n)cos(g, h)+ ] nh sin(g,,h), (5.5.73)

ny

2n(-D"°
(n - p)77 + qnyh

s _ 2n
” (n - p)77 * qnyh

sinf(n— p) £, 1] + sinf(n— p)y ¥ G,
—rzp{sin[(n— PG, ]+ (<) sinl(n— )y F g, hl}.
(5.5.74)

Here n=y¢ is a dimensionless length.
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For the triangular form of grating n=r/2 and we get

. 2 .
Gi = ﬂhsm(qnyh), (5.5.75)

ny

(=)™ P

G = il sin[(n— p)%iqnyh]Jr

. T _
np T T Sm[(n_ p)z'i_qnyh]
(n— p);iqnyh (n— p)§+qnyh

—i{sinun— p)Z ., ]+ (1) sin[(n - p)fiqnyh]}.
n-p 2 2

(5.5.76)

For the rectangular profile of the grating »=0 and we find

G;, = 27 cos(q,,h),

5.5.77
G, :J_ri[(—l)””’ —1]sin(qnyh). ( )
n-p

With $|n|$ rising the coefficients T increase. In order to remove the

overfull data in numerical calculations we have to re-normalize the

coefficients T, :

Tnn = an’

(Y1 1 g, )sin(e,h) (5.5.78)
Tnp ) a (n_ p+xq§yjcos(qnyh) (1+K(n)(1+e ))

for imaginary q,, .

We can not make the analytic estimation of the upper limit for the absolute
value of the term. Instead we made a numerical test. We took into account
the (2N+1) surface modes, or in other words, we calculated the growth rate

using (2N+1) x (2N+1) matrix. The results of calculations are shown in Fig.16
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for the following parameters: mode of SP-radiation n=2, relativistic factor
gamma_0=2, beam current I,=2A/cm, period of the grating d=lcm,

amplitude of the grating h=1cm and height of the beam b=1cm.

.o T T T T T
Imi ,~_| — ] |I|'-";

- M s T L] -
s -

';_:' B ....ll.lllIlll ]

_] | | | 1 1
il 11l a0 an Ll 50 Gl

Fig.16. The dimensionless growth rate as a function of the matrix size (2N+1) x (2N+1) for
theta =0.5rad. The calculation parameters are: mode of frequency n=2, gamma=2, beam

current |, =2A/cm, period of grating d=1cm, amplitude of grating h=1cm, and height of

the beam b=1cm.

We can see that the results depend weakly on N for N > 48. Therefore, in

our calculation we have used N = 50.
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Fig.17. The growth rate as a function of the observation angle @ for different n modes
of SP-radiation. The calculation parameters are: relativistic factor y =4, beam current

I,=10A/cm, period of grating d=1cm, amplitude of the grating h=1cm, and height of the

beam b=1Icm.

In Fig.17 the dependence of the growth rate on the observation angle ¢ is
shown for the first four modes of the SP-spectrum for the following
parameters of calculation: relativistic factor y =4, beam current 1,=10A/cm,
period of grating d=1cm, amplitude of the grating h=1cm, and height of the
beam b=1cm. The growth rate has got several high narrow peaks, the width
of which is about 0.001~ rad. In real experiments this feature can be
observed only if the real electron beams have narrow spread of electrons
velocity. For the constant frequency o, the vagueness of the velocity &g
corresponds to the vagueness of the observation angle defined by the

formula

o).
:ﬁzs_fng (5.5.79)
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For s8=.0.0lrad and pg~1, #~50deg. we find that s9=.0.01rad. This means
that the peaks will be smoothed. So, the peaks of growth rate are realized

when the velocity spread of the beam is smaller than g =.0.01rad .

The maximal values of the growth rate for the first mode localize within the
range of 37deg.< ¢ <60deg.. With the number of the SP spectrum mode
increasing, the region, where the instability can excite, shifts to the large
values of the observation angle #. For n=2 the maximal values of the
growth rate are localized in the range of 55deg.< ¢ <100deg.. The
maximum values of the growth rate for n=3 are in the interval of 70deg.<

0 <110deg., while for n=4 are within the range of 90deg.< ¢ <120deg..

Fig.18 shows the growth rate as a function of the observation angle for
parameters close to those of the Dartmouth experiment [35]: the Lorentz
factor »=1.068493 (the corresponding electron energy E=35keV), and the

distance between the beam and the top of grating y,=20um (the

corresponding height of the beam b = 70 um).

6] - 108, (1)

. iy P
] 20 40 60 B0 100 120 140 160 180
angle of observation &, (deg)

Fif.18. The growth rate as a function of the observation angle ¢ for different n modes

of SP-radiation for parameters which are close to the parameters of the Dartmouth
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experiment [35]. The calculation parameters are: relativistic factor y=1.068493 (the
corresponding electron energy E=35keV), beam current 1,=10A/cm, period of grating
d=173 um, amplitude of the grating h=50m, and height of the beam b=70m (the

corresponding gap between beam and top of grating y, =20um).

Other parameters are beam current 1,=10A/cm, period of grating
d=173,y, =20um, and amplitude of grating h=50, y, =20um. In this case the
narrow peaks are absent. The first mode n=1 dominates in the range of
Odeg.< 0<147deg., while the second mode n=2 dominates within the
interval of 147deg.< ¢ <180deg.. So the mode with n=1 will excite first of
all at 9#=90deg.. Our calculation well agrees with the results of the

Dartmouth experiment, where only first mode was observed [35].

Fig. 19 shows the dependence of the growth rate on the beam current 1, for
n=1 mode of SP-radiation and observation angle ¢ = 38.75 deg. The
parameters of calculation are relativistic factor y =10, period of grating d=1
cm, amplitude of the grating h=1 cm, and height of the beam b=1cm. One
can see that within wide range of current values the growth rate places

under the law 0" =. /1, .

I I I I | I I I I
w1078, (57

0 20 40 60 B0 100 120 140 160 180 200
Beam current [, (A/em)
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Fig.19. The growth rate as a function of the beam current I, for n=1 mode of SP-

radiation and observation angle 8=38.75deg. The calculation parameters are: relativistic

factor y =10, period of grating d=1cm, amplitude of the grating h=1cm, and height of

the beam b=1cm.}

Fig. 20 shows the dependence of the growth rate on therelativistic factor
gamma for the first three modes of of SP-spectrum for the following

parameters of calculation: beam current 1,=10A/cm, period of grating

d=1cm, amplitude of the grating h=1cm, and height of the beam b=1cm.

] L 0 15 20 25 30 35 40 45 5D
relativistic factor

Fig.20. The growth rate as a function of the relativistic factor y,. (1) for n=1 mode of

SP-radiation and observation angle 6 =38.75deg, (2) for n=1 mode of SP-radiation and
observation angle 6 =32.83deg, (3) for mode n=3 of SP-radiation and observation angle

0 = 80.21deg. The parameters of calculation are: beam current 1,=10A/cm, period of

grating d=1cm, amplitude of the grating h=Icm, and height of the beam b=1cm.}

The growth rate dependence on relativity marks a complicated form;
function se’(y) oscillates and decreases with the relativity rising. The

maximum rate for the first mode corresponds to the high narrow peak.
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Our preliminary calculations show that the growth rate has of a complicated

nature.

5.6. Discussion

We have used the framework of the dispersion equation to study coherent
Smith-Purcell (SP) radiation induced by a relativistic magnetized electron
beam in the absence of a resonator. We have found that the dispersion
equation describing the induced SP instability is a quadratic equation for
frequency; and the zero-order approximation for solution of the equation,
which gives the SP spectrum of frequency, corresponds to the mirror
boundary case, when the electron beam propagates above plane metal
surface (mirror). It was found that the conditions for both the Thompson
and the Raman regimes of excitation do not depend on beam current and
depend on the height of the beam above the grating surface. The growth
rate of the instability in both cases is proportional to the square root of the
electron beam current. No feedback is needed to provide the coherent
emission. As an important example of the application of the obtained results
in [126] the growth rate of SP FEL in the case with a rectangular grating was
calculated. The calculated results are consistent with the experimental data

obtained by Urata [35].

We have presented a theoretical treatment of the small signal gain regime of
a SP FEL. Considering an electron beam of infinite thickness being at a
finite height above the grating, we have established the dispersion relation

for the electromagnetic waves excited. An arbitrary grating is described with
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metal boundary condition. The dispersion relation has been studied
considering amplification of the surface as well as radiation modes. An
analytical expression for the growth rate of SP instability has been derived.
The gain dependence on the beam relativity factor and the beam height
above the grating and the angle of observation has also been analyzed. We
have examined various limits of the growth rate depending on the electron
beam and grating parameters. Our calculations provided for rectangular
grating are in good agreement with the results of the Dartmouth
experiment, where only first mode of coherent emission by non-bunching

beam was observed [40].

We have obtained the equation (4.4.60), which connects E, and E; waves,
using general form of boundary condition for metal surface. Other authors
[128,132,134,138] have used an approach in terms of an impedance matrix.
Our approach yields an equation which has a more general form. Indeed, in
the particular case when 11, =IT, and G, =-G,,, equation (4.4.60) reduces to

np ?

equation (40) in ref.[134].

We have found that the zero-order approximation for the solution of the
dispersion equation of SP-generation corresponds to the plane mirror
boundary case, when the electron beam propagates above a plane metal
surface (mirror). We found that the "mirror" boundary condition gives a
discrete spectrum, the modes of which contain two coupled frequencies:
“high" frequency with w=w,+Q,, and "low" frequency with w=w, +Q,,. The
growth rates for both Thompson and Raman types of waves excitation are

proportional to the Langmuir frequency @, or square root of the beam
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current 172. The conditions for both Thompson and Raman types of

excitations do not depend on the Langmuir beam frequency (or beam
current), but depend on the beam height b above the grating. It is essential
that there is a distinction between the Vavilov-Cherenkov and the Smith-
Purcell instabilities. But there are a parallels between the Cherenkov and
the Smith-Purcell instabilities. The first of them is that no feedback is
needed to provide coherent emission. The second parallel is the following.
The operating frequencies and wavelengths for SP-spectrum are determined
as intersection points of the dispersion line for the electromagnetic wave
o=k c/cosd with the lines of the longitudinal waves w=k +nyu. We can
consider the longitudinal waves as beam waves, which excite in the beam
propagating in the vicinity of a surface with a periodic structure. Then the
Smith-Purcell instability is a specific case of the Cherenkov effect. Indeed,

the solution (4.2.19) of motion equation contains the pole

1
w—(k,+ny)u

which corresponds to excitation of eigenmodes in system quasi the Vavilov-

Cherenkov instability is.

The SP instability can excite only for radiative waves, when k, is real, and

therefore k,<w/c, and the condition (4.3.37) takes place. Recently Brau
and co-workers [128] have suggested that there is a nonradiative mode with
imaginary k,, which propagates along the grating incoming from infinity and
the wave number of which satisfies the condition of k >w/c, so that the

Vavilov-Cherenkov effect condition can take place. They have considered the
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Cherenkov instability of the evanescent mode of a rectangular grating as a
candidate for the induced Smith-Purcell radiation. They suppose that the
operating frequency and wavelength are defined by the intersection of the
dispersion curve of evanescent mode with the beam line w=(ku). In Phys.
Rev. STAB there have recently appeared two articles [139,140] reporting

experiments that do confirm the Andrews and Brau theory.

The induced Smith-Purcell and Andrews-Brau (AB) effects are similar. But
there are differences between them. One of them is that the dispersion
curve of the surface evanescent mode depends on the profile of grating. In
particular, the dispersion curve depends on the depth and width of the
groove on a rectangular grating. Andrews and Brau have obtained the
coefficient of the reflection matrix C_ =R_ +4,S,, for the case, when uniform
cold electron plasma moves with constant velocity above a rectangular
grating. The first term R of does not depend on the plasma density (beam
current) and is given by Equation (31) in Ref. [128]. We rewrite here this

term in the form of R, =tanh(y,H)f(AL), where H denotes the groove
depth, A the groove width, and L the period of the grating;

7 :((;zn/A)z—wZ/cz)ﬂ2 denotes the wave number. Under condition, when H

tends to zero, the coefficients R, are proportional to H and tend to zero
too. We find that the dispersion relation of |R, -4,,|=0 (equation (33) in

Ref. [128]) does not hold for shallow depth $H$. This means that there is a
threshold value for the groove depth, below which a grating cannot have a
dispersion relation in the absence of a beam. Note that we have obtained the
same result in Eq. (4.3.32). Thus, the Cherenkov instability of evanescent

mode does not excite in case of gravity with moderate depth below the
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threshold, while, as our analysis shows, the induced SP instability has not
such threshold in case of an ideal metal grating, with no Ohmic losses. The
second distinction between the SP and the AB effects is that there is a
threshold value for the beam velocity, above which the operating point
defined as the intersection of the dispersion curve of evanescent mode with
the beam line w=(ku) is absent. For the parameters used in [139] the
threshold value of velocity is about v=0.94c (Fig. 2 in [139]). Therefore,
only induced SP instability will excite in a SP FEL based on a relativistic

electron beam.

Donohue and Gardelle [140] have performed a simulation of generation of
SP radiation at terahertz frequencies using 2D code MAGIC for a
configuration similar to the Dartmouth experiment. They have found that the
first mode of SP-radiation excites first of all, which supports our results for
the generation of coherent SP-radiation; and then oscillations with
frequency corresponding to the Cherenkov instability of evanescent mode
excite during non-linear regime. They found also that non-radiated surface
waves propagating along the grating surface reflect and transform to
radiated mode from the ends of the grating. In this case the grating with
finite size is an open resonator. The growth rates of SP instability may
slightly depend on the grating length. The four-wave radiative Pierce
instability, which does not demand a resonant condition between the phase
velocity of the wave and velocity of particle, can excite [141,142]. But the
growth rate of such non-resonant instability will be noticeably small with
respect to the growth rate of the resonant SP instability. Therefore, the SP

instability will dominate.
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The amplification problem for SP-system, when incoming waves are, may
expect to correspond the Cherenkov case. If the dispersion equation tends
to equal zero as beam current vanishes, the solutions of dispersion equation
assume to get another forms, and the growth rate may be proportional to

the cube root of beam current 1’°. These phenomenon can be the subjects

of separate studies.
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Chapter 6.

Gamma Radiation Production Using Channeled Positrons Annihilation

in lonic Crystals
The Chapter based on 3 publications [157,169,170,172]
6.1. Overview

The search for short-wave coherent radiation generation always was an
essential problem of science due to its wide applied significance. The author
of paper [143] is one of the first to suggest the mechanism of radiation of
relativistic electrons at their movement in periodic structures (see also
[143]); later such structures were named undulators. This at the first sight
imperceptible paper has later essentially accelerated the process of creation
of such modern devices as synchrophasotrons and the lasers on free
electrons (see for example [112], [43]). There are many articles and reviews
on the short wavelength region of radiation. The overview [145] is devoted to
X -ray optics and future prospects. In spite of the fact that the technology of
generation of undulator radiation is being steadily developed and the
successes are obvious ([145], [147]) the problems are obvious too and

which remain unresolved up to now.

The frequency of undulator radiation is defined by the length of its periodic
element, which in FELs and undulators devices is macroscopic. The
drawback of undulators is that they are large and use high-energy

electrons.
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After the discovery of electrons (positrons) channeling in crystals [148-
150] accompanied by its short-wave radiation [151], there appeared a hope
that all the aforementioned problems can be solved. However, these hopes
up to now are justified only partially. In particular, the problem of
generation of short-wave radiation (X-ray) from less energetic electrons (of
order of several MeV ) at very small distances (of order of several micron)
has been solved. Now a new problem arises. The point is, that in the regime
of channeling the particles (electrons and positrons) usually live very short

time 110 +10"°sec.

However, this time is very short for the conversion of an appreciable part of
particle energy to energy of radiation. The short lifetime as well does not
conduce to use of external factors for control by beam of channeling

particles and improving of spectral characteristics of radiation.

The quantum theory of channeling for electrons and positrons has been
elaborated by many authors [151,152,62]. It is important to note that an
electron in a crystal can commit both planar and axial channeling. At the
same time only one type of real channeling for the positrons is known, the
regime where a particle is localized between two adjacent planes. The
possibility of axial channeling of positive particles has not been investigated
seriously up to now, because the crystallographic axes, irrespective of grade
of the crystal are been charged positively. However, investigation of
possibilities of axial channeling of positrons and, hence, formation of
metastable relativistic positron systems (PS) is a problem of utmost

importance for a radiation physics.
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Different methods have been proposed for generation of coherent gamma
rays based on the effect of channeled positron annihilation with the

electrons of media [153].

A scheme of an intense coherent gamma-ray source based on the
spontaneous radiation of positronium atoms in a Bose-Einstein condensate
(BEC) due to two-photon collective annihilation decay is investigated

analytically arising from the second quantized formalism [154].

Macroscopic channeling in magnetic systems and in an intense

electromagnetic wave is studied in [155].

In earlier studies [156] the possibilities of ionic crystals of type CsCl have
been investigated; it was shown, that at channeling of positrons around the
axes of negatively charged ions of CI~ the main factor of dechanneling -
the scattering of particles on phonons subsystem is absent. However, there
are such channels for positrons, as shows the analysis, also in other more

realistic crystals, for example, in crystal of SiO,.

In this paper the annihilation processes in the expansion of energy levels of
relativistic Positron Systems (PS) is analyzed and shown that PSs are

metastable.

6.2. Formation of relativistic positron system (PS)

In the previous paper [157] we have shown, that if a low-energy relativistic

positrons (5 - 20 MeV) are scattering under a small angles 9, (where 4 is a

Lindhard angle) on the axis <100> of chlorine ions CI-, then they fall into
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the regime of axial channeling. Moreover, the motions of positrons
concentrate between two cylinders with cross section circles 1 and 2 in
Fig.21 , which is very important from the point of view of movement stability.
In particular, the effective 2D potential of channeling does not depend on
temperature of media in a broad range of temperatures, as it was shown,
and has a depths of potential of an order of -10eV , which is sufficient for
the formation of several quantum states of transverse motion. Recall, that
this type of effective potential can be in other crystals too. For example, the

effective potential of negatively charged ions of 0, axes often used in

experiments with  SiO, crystal is such.

In other words, the relativistic positrons in described regime of channeling
do not interact with phonons subsystem. This means, that the main factor of
dechanneling of particles in considered case is absent. Taking into account
the symmetry of effective potential for positrons around negative ions axis

(see Fig.21) we can write the following analytical formula:

U(P):Uo(eizu5_2eia5)a ﬁz(P—Po)/Po, P=\/X2+y2> (621)
where the parameters for usual crystals are being found into intervals

D,=5-10eV, «=05:08 and p,010.5d, and d is a lattice constant.
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Fig.21. The lattice of $CsCI$ crystal, b) the lattice cell, c) the effective potential of axial canneling
for positron around the axis of negatively charged ions of Cl~

which in region of positron localization is described very well by Morse potential.}

Potential (6.2.1) was obtained and discussed in details in [156]. An analytical
expression is received for the effective interaction potential of a fast charged
particle with the ionic crystal of CsCl near the direction of axis <100> as a
function of the temperature of the medium in Ref.[157]. By numerical
analysis it is shown that the effective potential of axial channeling of
positrons along the axis <100> of negatively charged ions of

practically does not depend on the temperature of the media.
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Fig.22. Profile of the effective potential for the axial channeling of a positron along the
<100> axis of CI_ ions at various temperatures.

As one can see from Figures 22(a) - 22(d) of [157], for positively charged
fast particles around the <100> axis of ions there exists a rather broad
potential (width Ad 70.25d ) with the depth of order of - 10 eV , which
remains constant for a large range of thermal vibrations ,
A=u,/d =0.001-0.1 (u, are the thermal vibration amplitudes), i.e. for a broad

range of temperatures. In other words, a relativistic positively charged
particle, at scattering under a small angle on the <100> axis of CI~ ions,
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can be captured in the regime of axial channeling, during which the
scattering of a positron on the phonon’s subsystem does not occur. Based
on the symmetry of the resulting effective potential (Figures 22(a) - 22(d) of
[157] and Figure 21 b), the effective potential conveniently may be fitted by
the function (5.2.1).

It is important to note that the potential (5.2.1), as we have shown, well
enough approximates the exact effective field (6) of [157]. It is enough to
say, that in the regions where the potential U < - 4 eV , the approximation
error is below 1\%.

The full wavefunction of positron in the potential (5.2.1) in atomic units
n=c=1 is solved exactly and represented as [157]:
T(r)=ﬁe%<p,¢>, r=r(zp.0) (6.2.2)

where @(p,p) describes the wavefunction of localized state of positron
system (PS) with relativistic mass $\mu$ and is characterised by quantum

numbers of vibration n and rotation m correspondingly [158]:

D(p, p) = ﬁe‘m‘/’ysexp (—%) F(aby), m=0,+1+2,., (6.2.3)

where the following notations are made: y=2y,a "exp(-ap) and s=pa™, in

addition:

a:%(1+£)—i(ﬁ] , b:1+%

a ) aly, a

B = 20507+ Mc,, 7f=zyoops—%(z—§], (6.2.4)

v: =2uD,p; —M(l—ij, M =m?-1/4.
(24 (24

The localized state eigenvalues are presented by the following formula:
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(6.2.5)

2002
+ 1 z{M—3(a_l)(n+le}_ 1 zg(a_lj M4 '
2 Py ay, 2 2upy A\ v, ) @

where Yo =240, Py s

6.3. Processes leading to decay of positron-systems

After exception of major factor of dechanneling there still remain two

different processes, which lead to decay of PSs:

a) the annihilation of positron with electron of media on one gamma

photon;

b) the annihilation of positron with electron of media on two gamma

photons;

The main problem now is the investigation of the processes contributing to

the lifetime of PSs.
A. Decay PA on One gamma Photon

It is obvious that PS may be illustrated as a system having zero total spin
(like of parapositronium), because the skeleton of negatively charged ions
axis does not possess spin and, accordingly, there is no spin-spin interaction
between it and the positron. In other words, the interaction between
positron and the axis is only an electromagnetic one. Another distinction

between positronium and PS is the possibility of decaying of the last one on
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one gamma photon. Note, that in this case the conservation laws of energy

and momentum take place in view of presence of media.

This process is being defined by matrix element of first order [159]:

Q= < fls® ||> =2%iej“11* (r)ee ™y (r)d’rs (e, +&, — ), (6.3.6)

20
where ¥ and ¢, are the wave function and the total energy of positron, v
and ¢, designate the wave function and the energy of media's electron, q-is
the momentum of y photon, o-its frequency. Taking into account that the
distribution of electrons in positive as well in negative ions is given by

spherical model JMGR, we can write the wave function of electrons system

in a factorized form:
1 .
y(N=y(p.2,0)= ﬁe"“z’zz(p), (6.3.7)

where ,» is a momentum of media electron in the point z, it is supposed
that the random function ., has a zero average value. This means, that the

statistical averaging of random term in (6.3.7) is equal to unity (e"")=1. In

addition x(p) is Gaussian function, which is normalized to unity:

e, (6.3.8)

1
70 =
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Fig.23. The kinematic schema of momenta and angles between them.

Channeling occurs along the axis of the negatively charged chlorine ions
<100>, which are represented as negatively charged spheres with a radius
of p=p,. In the structure of CsCl , the nearest neighbors Cs* and CI
touch along the body diagonal [160]. p=p, Iis the radius of circle 3 (see
Fig.21), which is the bottom of potential well and the top of electron wave
function distribution as outer shell. Valence electron of CI™ is situated on

the outer shell of the sphere with radius p=p, on the circle 3 in fig.21.

The present research is devoted to the problem of formation of relativistic
positron systems in medium. These systems can be stable, as was shown

and hence, we can consider two different problems of radiation generation.

Since the main factor of dechanneling - the scattering of positrons on the
phonons in the considered case is absent, then the positrons will be in the
regime of channeling up to their decay. In this paper we have studied the
problem of decay of positron systems for which level populations are not

important.
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As to the second problem connected with the radiation generated as a result
of quantum transitions between the energy levels of positron systems, we

are planning to investigate it in the nearest future.

We can write the following expression for the effective differential cross-

section of annihilation:

do =

2y a e A (e v m0)oldo, 6.3.9

where do, =sin6dode is the solid angle element in which is situated a photon
momentum, v, and v, are summation indices of electron and positron spins
in the initial state. However, for the considered problem, the electrons spin
orientation does not play an important role and, correspondingly, later we
will ignore the summation. In weakly relativistic case, the term Q in (5.3.9)
is written in the following form:

- [¥ (eve ry (dr, =iivr, (6.3.10)
7

where ¥ is the operator of positron velocity, e - describes the unit vector of

photon polarization. The expression (6.3.10) may be transformed to

Q=L [(ep) ¥ @7 (a -

where ¥"(p") and y(q-p’) are Fourier transforms of corresponding wave
functions:
Y (p)=— J.exp —ip'r)¥(r)d°r,

27y (6.3.11)
= )sjexp —i(q-p)r]y(r)d’r.
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In  (6.3.11) p’-designates the momentum of positron, which in the
considered case in toto coincides with itsp, projection. The analysis of
expression for y(g-p’) shows, that the transition amplitude is more

probably if positron and photon momenta coincide i.e. g=p'.

Using the equality (ep)=p’sing and the above mentioned conclusion, we

can write the expression (6.3.11) in the following form (see Fig 23):

@2n)*

Q= (O)I p"¥"(p')sin 9d°p/, (6.3.12)

where d*p’= p/dédp/dp. .
The function ¥(p") is calculated simply:

)" e™ , ,
¥ — ® ,
(p") = 27 78 5(p,—p,)0,(p))

(6.3.13)
0, (p.) = [©(0.0)3, (p.p)\pdp.

The calculation of cross-section we will begin with averaging of expression
(6.3.12) by the photon polarization. It is obvious when we rotate the
polarization vector e around photon's momentum g at an angle of = , then,
as it can be shown, the angle & correspondingly changes within the limits
712-(B,- By ) <9 <xl2+(B,-B,), where 3, =arccos(q, /q) and
B, =arccos(p./ p'). After integration by angle ¥ in Eq. (6.3.12) it is easy to

find that

Q:_Z(ZIZ) ‘/}(0),[ p'\i'*(p')sm(ﬂq_ﬂp’)dgp" (5'3'14)
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Now substituting (6.3.13) into (6.3.14) and making the elementary
calculations we find:

2(27[)25 a0
—d (p.—a,)y(0) (6.3.15)

x[ D@, (p.)sin(B,-B,)d’p.,

Q:_

where p=.p’+p?, thes - function shows the momenta conservation law

on Z - axis.

Finally, we analyze the amplitude Q forward, which is a more probable
direction of PS decay on one y photon, when the PS does not rotate. In

this case, the equalities g, =0, B, =arccos(p,/p) and $m=0$ take place

with high accuracy.
We can substantially simplify expression (6.3.15) using these equalities:

2(27[)5/2

Q= d

3(p,—a,) ¥(0)p," [©,(p. )p.”dp,’, (6.3.16)

Now using the expression (6.3.16) and standard connection between
amplitude and transition probability [159] for the one-photon decay of PS

we can write the following assessment:
P 10°sec™. (6.3.17)

Note that in order to find assessment (6.3.17) we have used the

parameters of a CsCl crystal with a lattice constant d=0.4123nm.
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Figure 24. (Left) the cell of CsCl lattice, Cs+ ion is in the center of the cube (dark color) and Cl-
ions are in vertexes, (right) CsCl lattice, Cl- ions are in dark color.

B. Decay PA on Two gamma Photons

It is easy to understand that the PA similar to positronium and,
correspondingly the processes of their decaying should be similar too. This
means, that the probability of annihilation of PA is similar to positronium
annihilation and we can connect of PA decay with the probability of
annihilation of free pair of positron and electron. It is obvious, that in the
considered case the annihilation process does not depend on the

orientation of electron and positron spins.

The analysis of Fourier image of PA wave function ©,(p,) in a basic state

shows, that the probability amplitude to find positron and electron with
momenta p, and -p, is substantial for a momenta p, =.1/p,. Taking into
account the last one, the cross-section of the process for a low-energy
positron (namely such as the localization energies of positron) may be

represented as (see for example )[172]:

c=mr’/v,, (6.3.18)
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where r, is the electron's classical radius, v, =p, /u is the positron speed on

plane (x,y), where the positron's motion is localized between two circles 1

and 2 (see Fig 15, b).

Finally using (5.2.2) and (5.3.18), we can write the expression for
probability of PA decay on two y photons [159]:

1

P, = m‘d)o,o (P, )‘2 (vio), = d ‘(DO’O (P, )‘2 [110°cex ™, (6.3.19)

=0
20 4gp d

where @, (p,) describes the radial part of wave function PS which in the

"ground state" is written as @, (p,)-

4.4. Conclusion

A possibility of channeling of low-energy (5 - 20 MeV) relativistic positrons
in some ionic crystals with axial symmetry with coaxial symmetry around
separate crystal axes of negative ions in some types of crystals, is shown.
The annihilation processes of positrons with medium electrons are
investigated in details. The lifetime of a positron in the regime of
channeling is estimated; the existence of long relaxation lifetime has been

shown, 10°sec, which on a 10°+10° times is bigger than at usual cases.

Our investigations show, that problem connected with the short length of
dechanneling is solved if we consider the channeling of positrons of

energy 5 — 20 MeV, in particular, in  CsCl type ionic crystals along the
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chlorine ions axis <100>. In this case 2D relativistic positron systems are
formed in crystal , which are practically not interacting with the phonons
sub-system of lattice . All other types of influence on PS, collisions with
electrons of media, the scattering on lattice discreteness etc, are
perturbations of essentially small or similar to PS annihilation processes
order. In other words, in the mentioned way, it is with higher probability
possible to create 2D relativistic PSs in media with lifetimes bigger than
10°-107sec. This means, that we solved the main problem of creation of
nanoundulators, which have very large lifetimes and by which we can

control.

7. SUMMARY

In conclusion we enumerate the main results obtained in the thesis.

1. Relativistic strophotron is investigated as an alternative scheme for
Free Electron Laser. Spectral intensity of a spontaneous emission and
the gain of an external wave in the strophotron are found by a
superposition of contributions from emission or amplification at
different (odd) harmonics of the main resonance frequency o, (x,).

2. The main resonance frequency is shown to depend on the initial

conditions of the electron, and in particular on its initial transversal

187



coordinate x,. This dependence @, (x,) is shown to give rise to a very

res

strong inhomogeneous broadening of the spectral lines. The
broadening can become large enough for the spectral lines to overlap
with each other.

3. The spectral intensity of a spontaneous emission and the gain are
averaged over x,. The averaged spectral intensity is shown to have
only a very weakly expressed resonance structure, whereas in the
averaged gain, the resonance peaks are shown to be much higher
than the nonresonant background. A physical nature of these
resonances remaining after averaging is discussed. The maximum
achieveable averaged gain and frequency of the strophotron FEL are
estimated.

4. Estimates indicate a possibility of using the strophotron to construct
such a FEL in the IR region. Probably both the gain G and the
frequency o=, can be increased with the help of an additional
optirnization of the system [e.g., by the use of a “trough” with a
varying field gradientg =g (z)].

5. Comparision is done to indicate two features of the strophoton
FEL differentiating this device from the usual undulator FEL. 7) The

frequencyw=0,, linearly depends on the angle « under which the
electron enters the system. Hence, w=w,, can be easily varied by a
variation of «. 2) The value of the “undulator” parameter K in the

strophotron can be rather large. For example, the parameters used
above for the estimates correspond to Q~2.2x10°s?,a~0.7, ay~7,
K(%=0)~7, and s, =@, /20, (X% =0)=§[K3(xO =0)]~130.
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6. The nonlinear theory of radiation and
amplification is developed.

/. Quantum-mechanical equations are derived for the amplitudes of the
probabilities of transitions in a free-electron laser when transverse
electron oscillations are due to a static potential, which s
homogeneous in the direction of motion of the beam, but has a
transverse gradient.

8. A quantum-mechanical description of the motion of an electron in
classical fields is not in conflict with the fact that the final results
obtained here do not contain the Planck constant 7. It is natural to
expect the main results also in the classical approach [79].

9. Channeling of electrons moving across an intense standing light
wave is described. This effect is proposed to be used for the creation
of Free Electron Laser. Its linear gain is calculated and estimated.
Estimates indicate that the gain should be sufficient for the

construction of a free-electron laser operating in the infrared range.

10. We have shown that as a result of the allowance for magnetic
field inhomogeneity, some additional peaks appear in the spectral
distribution of spontaneous radiation and in the gain. Out of the
multitude of these peaks one can obtain ultrashort pulses using the
well-known mode-locking method. The peaks in the spectral
distribution of spontaneous radiation and of the gain are localized at
combinated frequencies of the odd harmonics of (2n+1)oe.e Undulator
resonant frequency and even harmonics of 2mo.. Strophotronic

resonance frequency. In case of an undulator with constant magnetic
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field the peaks are localized at odd harmonics of undulator resonant

2 .
frequency wre&undzﬂ, and in case of a strophotron they are
L+v2 /g’

localized at odd harmonics of strophotronic resonant frequency
2v2Q

O =——————. One may conclude thus, that due to the presence of
1+y°Q%/q,

inhomogeneity in the magnetic field in the plane wiggler these two
systems (wiggler with the constant magnetic field and the strophotron)
are integrated in one unit and there appear peaks in the spectral
distribution of spontaneous radiation and in the gain at combined (odd
undulator and even strophotronic) resonant frequencies.

11. Taking into account the finite sizes of the beams, the value of the
threshold laser power at the entry of the first undulator of FELWI,
above which the selection of electrons via the transverse velocity in the
drift region is possible, have been obtained for an FEL without
inversion (FELWI). We find that an FELWI cannot operate under a
weak-amplification Thompson regime, for which the spatial

amplification is small: k'L,<<1. Only a large-amplification regime,
k'L, >>1, should be used to build an FELWI. It can be either the

anomalous Thompson or the Raman regime of amplification, using an
electron beam with overdense current density. For an FELWI
operation, the optimal angle «+6 between the electron and light

beams is shown to depend on the the widths of the electron r, and the
laser r. beams. The mechanism of an FELWI can be realized in

scheme of a ring laser.

190



12.We have used the framework of the dispersion equation to study
coherent Smith-Purcell (SP) radiation induced by a relativistic
magnetized electron beam in the absence of a resonator. We have
found that the dispersion equation describing the induced SP
instability is a quadratic equation for frequency; and the zero-order
approximation for solution of the equation, which gives the SP
spectrum of frequency, corresponds to the mirror boundary case,
when the electron beam propagates above plane metal surface
(mirror). It was found that the conditions for both the Thompson and
the Raman regimes of excitation do not depend on beam current and
depend on the height of the beam above the grating surface. The
growth rate of the instability in both cases is proportional to the
square root of the electron beam current. No feedback is needed to
provide the coherent emission. As an important example of the
application of our obtained results in [126] the growth rate of SP FEL
in the case with a rectangular grating was calculated. The calculated
results are consistent with the experimental data obtained by Urata et.
al. [39].

13. A possibility of channeling of low-energy (5 - 20 MeV) relativistic
positrons in some ionic crystals with axial symmetry with coaxial
symmetry around separate crystal axes of negative ions in some types
of crystals, is shown. The annihilation processes of positrons with
medium electrons are investigated in details. The lifetime of a
positron in the regime of channeling is estimated; the existence of long
relaxation lifetime has been shown. 10°sec which on a 10°-10° times is

bigger than at usual cases. This means, that we solved the main
191



problem  of creation of nanoundulators, which have very large

lifetimes and by which we can control.
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Appendix
Boundary Condition for Dispersion Equation

Substituting electrical field in the form given by Eq. (5.2.6) into eq.
(5.4.59), we find

y

Z( E:Xein;(xﬂqnyy n En_xein;(x—iqnyy i E: y,(x)einlx+iqnyy i En_y y,(x)einlx—iqnyy ) _ O, (A1)

n

We multiply the equation by exp(-ipyx), where p=0,+1+2,43,..., and then
integrate it over coordinate x within the interval (0;d). Introducing the

dimensionless coordinate &= yx we find that

2zl

z . . 2 ) .
I y!(x)el(ﬂ'p)ZXilqnyy(X)dX= J‘ y;(g)el(n-p)giuqnyy(g)dg
0

’ 27 27 (A2)
_ .1 SiP)E [eiiqnyy(‘f)} T n-p J- ei(h-P)-fiiqny)’(f)dg — ;Hegp
ilqny 0 qny 0 e
Where
2z i
G: = J‘eu(n-p):ﬂqu(i)d £, (A3)

0

The latter is obtained assuming that y(0) = y(2x), because the function y(x)
is periodic. Substituting the relations E; =+iq, P and E, =+iq,P,’ in the

Eq.~\eqref{a:1} we can write

Z[qny + (n - p)l %J(Ggp I:>nJr _Gr;p Pni) =0. (A4)

n ny

Taking into account the relations (5.2.23) following from the beam model,

we get
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n ny

which is Eq. (5.4.60).

For the surface described by Eq. (5.3.25), we find that

27

V4
Gi _ J‘ei(n-p)giiqnyhsin(é)dé;=27z_(_1)n—piJ‘ei[(n-P)tiiqnyhsin(t)]dt
2

np
0 4 -

=27(-)""J,_,(¥q,h)=27J,_,(¥q,h)

where J, (x) are the Bessel functions.
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Z(qny +(n-p)x g }(Gﬁp [1+K(M)]-G,K(me™™" )P, =0,

(AS)



