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INTRODUCTION

Almost in every field of natural science we are concerned with this or that type of control

problem: human beings want to subject to himself and control everything from time immemo-

rial. Sometimes we need to ensure demanded transition from current state into required one,

to choose the right trajectory for evader escaping the pursue of predator, to determine param-

eters of circuit leading to essential increase of its lifetime, to suggest a structure for design

extremely resistible to bending, to develop a heating regime using as less sources as possible etc.

The construction of even a simple controller without proper theoretical investigation is a very

hard and expensive task. The essential refinement of computers and corresponding software

done during the last decades allows now to model, construct and test controllers implement-

ing quite difficult tasks. This refinement has mainly done due to significant achievements in

mathematical control theory. It provides abstract models of controlled systems, investigates

those models, proposes solution methods and indicates ways to construct control algorithms

and methods of their computer realization.

Being an important subject and having separate importance, the modelling of controlled

systems is far not enough for its construction in practice. Control engineer more often needs

exact or approximate control programs and more or less confidence before starting to construct

something. Investigation of exact or approximate controllability of those models ensures that

confidence. But, naturally, the positive answer to the question about controllability of a

particular system is not yet sufficient to start the construction. The engineer has to know

what will happen with his controllable system subject to a particular influence. We believe

that the last aim of mathematical control theory, the construction of control algorithms and

methods of their computer implementation is the most important one.

There are two possibilities of control algorithms construction; using exact or approximate

approaches. The first type of approaches is efficient because unlike the second one it provides

both qualitative and quantitative picture and does not require so high computational cost
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and is efficient for computer implementation. The complexity of the way obtaining the exact

solution is mainly depend on the complexity of the mathematical model of the system and,

first of all, its thorough analysis is required. By now there are several methods allowing to

find the exact solution of the problem. Here we will mention only revolutionary ones: the

method of dynamical programming by R. Bellman [13], A. Butkovskiy‘s method of control

with compact support [22], N. Krasovskiy‘s method of moments [77], the variational approach

by J.–L. Lions [83], L. Pontryagin‘s maximum principle [101], the impulsive control method

by T. Yang [122].

These methods have been applied to solve numerous problems of theoretical and practical

importance in almost all areas of science and manufacturing. As a result of significant progress

in technology and computing, the opportunities of practical implementation and computing

devices have been rapidly increased. It led to an increase in the interest among researchers and

engineers to optimal systems and it turned out that present needs of both theoreticians and

engineers cannot be satisfied by those methods as they initially were. So, they were required

to be refined and extended in order to be applicable for solving control problems for more and

more complicated systems [2, 21,29,78,84,98,100].

That refinement brought also to development of approximation methods with very fast

and easy implementable numerical schemes [12, 15, 102], due to which now we have different

kind of control simulators. This branch of control theory continues developing more and more

intensively and, consequently, the necessity of exact solution was pushed to the background. It

is also explained by difficulties of investigation of the model. Nevertheless, occasionally there

appear publications on exact solution of particular control problems [16,41,45,46,53,54,70,74],

and though there are comprehensive studies of well-known control systems like wave and

heat equation, Lame system, Korteweg–de Vries equation etc., there still remain fascinating

problems of mentioned type rigorously unsolved yet [24, 116].

Among simple control systems which rigorous investigation requires overcoming significant

difficulties are the system with variable parameters, appearing in various applied branches of

science and manufacturing. First of all it is connected with difficulty of investigation of their

mathematical models, formulating as constraints (ordinary and partial differential, integral
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and difference equations etc.) with variable coefficients: the propagation of waves in non-

homogeneous media is described by the wave equation with variable coefficients, the solution

of heat equation with variable coefficients evaluates the distribution of the temperature in

a non-homogeneous body etc. Even though there are very accurate numerical methods for

solving partial differential equations like the mentioned ones [33], explicit solution is still of

interest. The explicit solution of those simple equations even for simple non-homogeneities

requires to involve some special functions [1, 37, 56]. The situation gets worse if the system

contains such singularities that its mathematical model does not admit classical solution and,

therefore, we have to deal with generalized (or weak solution) [89, 115, 119]. For example,

impulsive impact may move a point to another position in arbitrary short time leading the

trajectory of the point to be discontinuous [122].

An exhaustive by that time review of control and stabilization of distributed parameter sys-

tems can be found in [42]. Let us shortly mention only several of recent results directly related

to those herein. In [4] boundary L2 control problem is considered for a non-homogeneous string

and distributed L2 control problem for a non-homogeneous ring subjected to time-dependent

axial (stretching) tension. In both cases the null-controllability is aimed to achieve in finite

given time by choosing appropriate controls. Using the eigenfunction expansion method, the

investigation of controllability in both cases is reduced to a problem of moments. The sets of

initial data for the string and ring are described which may be driven to rest by the control.

The boundary C2 controllability for a non-homogeneous string is achieved and explicit formu-

las for the control functions are constructed in two-part article [16]. Both cases of constrained

and free initial and terminal conditions are considered. The travelling wave method is used

for the solution. In [62] the necessary and sufficient conditions of Neumann null-controllability

and approximate null-controllability are obtained for wave equation with coordinate depen-

dent potential. The controllability problems are considered in the modified Sobolev spaces.

The controls that solve these problems are found explicitly. It is proved that among the solu-

tions of the Markov trigonometric moment problem there are bang-bang controls solving the

approximate null-controllability problem.

The solution is even more complicated of boundary or distributed controllability analysis
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for systems on semi-infinite or infinite domains; that is why those problems are considered

rarely. Necessary and sufficient conditions for exact and approximate L2 null-controllability

are obtained in [34] for wave equation on half-axis with coordinate-dependent potential. The

Neumann boundary control function is bounded by a hard constant. Explicit expressions for

controls solving the exact null-controllability problem is constructed. Using the Fourier se-

ries expansion method, the approximate null-controllability problem is reduced to the Markov

power problem of moments and bang-bang resolving controls are found. In [35] necessary and

sufficient conditions of Dirichlet L∞-controllability and approximate L∞-controllability are

obtained for one-dimensional wave equation on semi-axis with coordinate dependent potential

having exponential decay at infinity. These problems are considered in the Sobolev spaces.

Using the transformation operator of the Sturm–Liouville problem on the positive semi-axis,

the control system replicates the controllability properties of the system with constant poten-

tial. Conditions of controllability for the system are obtained from those for the system with

constant potential. Article [63] deals with wave equation on semi-axis with coordinate depen-

dent continuous potential controlled either by Dirichlet or by Neumann boundary condition

chosen from L∞. The control systems are considered in Sobolev spaces. Using the opera-

tors adjoint to the transformation operators for the Sturm–Liouville problem, necessary and

sufficient conditions for null-controllability and approximate null-controllability are obtained.

Explicit forms for resolving controls are obtained.

Unlike control problems for one-dimensional wave equation with variable coefficients, there

is a great deal of literature devoted to (boundary and distributed) control of wave equation

with constant coefficients. We refer to [9, 22, 34, 45, 46, 53, 54, 111] and the references therein.

Boundary and distributed control problems for wave equation with variable coefficient in finite

and semi–infinite domains are considered in Section 2.

A particular mention is given to a linear partial integro-differential equation arising in

theory of waves [51,117]. Investigation of control problems for such systems is also extremely

complicated, but, with use of Butkovskiy‘s generalized method, we are going to derive simple

formula for boundary and distributed control of a partial integro-differential equation asso-

ciated with wave equation. Some optimal control problems for integro-differential equations
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are considered in [8, 25, 30, 61, 80]. Boundary and distributed control problems for partial

integro-differential equation are considered in Section 2.

Reduction of vibration amplitudes has been the subject of study of many researchers. More

recently, a quick increase in the development and application of passive energy dissipation de-

vices, such as viscoelastic dampers, viscous fluid dampers, metallic yield dampers and friction

dampers, has occurred. The objective of these devices is to absorb a portion of the input

energy, due to earthquake, wind or human excitation, for instance, reducing the dynamic re-

sponse of the structure. The use of passive energy dissipation devices reduces significantly

the dynamic response of structures subjected to dynamic actions. However, the parameters of

each damper as well as the best placement of these devices remain difficult to determine. Al-

though some studies on optimization of tuned mass damper and viscous/viscoelastic dampers

are being developed, the development of methods for optimum use of these devices are an

important research issue and is still lacking.

Particularly, problems of bending vibrations control (damping) for elastic beams and plates,

subjected to moving loads, are intensively studied at present owing to their practical impor-

tance [38,39,88,94,95,103,110,112]. Such problems, particularly, are the mathematical ground

for modeling and engineering bridges, over which trains are moving. In common, the control

(damping) of vibrations is carried out by changing the displacement of viscous or viscoelastic

dampers (often the Kelvin–Voigt model of viscoelastic body [27] is taken into account) with

fixed number and placements under the beam. The article [94] is devoted to analysis of up to

date investigations in the theory of simply supported beams, subjected to moving loads. The

vibrations, caused by each load separately are studied due to the fact that they can accumulate

and cause resonance phenomena. In [95] is devoted to damping of resonance vibrations of a

simply supported beam, subjected to moving loads, via viscous dampers connecting the beam

with an auxiliary beam located under it. Numerical analysis is performed and it is proved,

that it is possible to damp the beam vibrations under certain values of system parameters.

In [112], under the assumptions of the linear Euler–Bernoulli theory, a control problem about

damping of a simply supported finite beam vibrations, caused by influence of moving loads,

is solved. A viscoelastic damper, moving with given constant speed, is attached to the beam.
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Purpose of the control is the damping of vibrations of the beam at given moment. Finally,

in [88] the influence of passive viscous dampers on the dynamical behavior of an orthotropic

plate, subjected to moving loads, is revealed under resonance conditions. The plate is con-

nected via viscous dampers to simply supported beams parallel to its free edges. The control

is carried out by optimal choice of parameters of viscous dampers in order to damp transverse

vibrations of the plate.

Especially in the last decade, for utilization of these dampers in an economic way, several

researchers started to study the optimization of their parameters as well as their best posi-

tions in a structure. Recently, in problems of earthquake engineering, optimal locations and

reasonable number as well of such dampers are also under intensive investigation [39,90,103].

In [90] the simultaneous optimization of force and placement of friction dampers is proposed

and it is shown that the design of friction dampers can be done in a safe and economic way. To

solve this optimization problem, the recently developed firefly algorithm is employed, which

is able to deal with non-convex optimization problems, involving mixed discrete and continu-

ous variables. For illustration purposes, two common footbridges are analysed, in which the

cost function is to minimize the maximum acceleration of the structures, whereas forces and

positions of friction dampers are the design variables. The results showed that the proposed

method was able to determine the optimum friction forces of each damper as well as their best

positions in the structures. The maximum acceleration was reduced in more than 95 per. for

the Warren truss footbridge, with three friction dampers, and in more than 92 per. for the

Pratt truss footbridge, with only two friction dampers. In addition, the proposed methodology

is quite general and it is believed that it can be recommended as an effective tool for optimum

design of friction dampers for structural response control.

The mathematical model of such systems is constructed in terms of bilinear equations,

i.e. equations jointly linear in the state and control variables. They form one of the simplest

nonlinear systems and therefore applicable particularly to analyse of much more complicated

nonlinear systems. Such systems can be used to model a wide range of physical, chemical,

biological processes that cannot be effectively modelled under the assumption of linearity.

The concept of bilinear system was introduced in the 1960s and have been applied to
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various areas of science and technology. A great deal of literature related to the control

problems of such systems has been developed since that. Some control problems of bilinear

processes were solved for plasma, quantum devices, particle accelerators, nuclear power plants

and biomedicine (see [100] and the references therein). Nevertheless, there are open questions

remain in this field.

Besides tremendous theoretical importance, the bilinear systems have significant practical

importance: those arise in material distribution, structural and topology optimization prob-

lems. In direct statement, material distribution and topology optimization problems require

to minimize the material quantity in domain occupied by a design and the volume of that

domain in order to improve its desired properties. The aim of structural optimization is the

determination of an optimal lower cost structure for a design preserving or even improving

its feature properties. Therefore, in view of high cost of materials used in modern designs,

investigation of those problems are very attractive and particular recommendation to engineer,

based on solution of model problem, may be even cost saving.

For an exhaustive review of recent literature we refer to [100]. Here we mention only

those investigations, which are related to ours, but not included in [100]. Monograph [6]

is devoted to the exposition of new ways of formulating and solving problems of structural

optimization with incomplete information. Some research results concerning the optimum

shape and structural properties of bodies subjected to external loads. Particularly, optimal

design with incomplete information, accounting for the interaction between the structure and

its environment, properties of materials, existence of initial damages and damage accumulation

are studied. It is also is devoted to overcoming mathematical difficulties caused by local

functionals. Many aspects of structural optimization with incomplete information for rods,

beams, plates and shells. Particularly, shape optimization of beams, plates and shells with

uncertainties, crack positioning and orientations, and optimization of structural elements with

uncertain material properties are studied in a systematic and careful way. Important results

related to optimization of structures with a longevity constraint are obtained. Incompleteness

of information arises from uncertainties in initial crack length, orientation and positioning.

Nontrivial applications in various areas of industry, such as multi-objective optimal sizing
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of a beam under multiple load cases, contact stress minimization for elasto-plastic body in

contact with a rigid foundation, finding the shape of the header of a paper machine in order

to get an appropriate distribution of a fibre suspension, multidisciplinary and multi-objective

optimization of an airfoil, and shape optimization of a dividing tube, are presented in [47].

A bilinear control problem is considered in [17] for the two-dimensional Kirchhoff equation

describing the bending vibrations of a thin plate clamped along one portion of its boundary

and oscillating (free) along the rest portion of its boundary. The control function describes

the interaction of the plate with a linear elastic one parametric base under the plate and is

included in the state equation as bilinear term– as coefficient of the state function. First,

the well-posedness and regularity of the problem and the existence of an optimal control is

proved in appropriate Sobolev spaces, and then the optimality system is derived by means

of classical variational calculus. In [18] the same control problem is considered for the same

equation with free vibrating boundary conditions along the whole boundary, but the base

is k-parametric, which defines the quantity of unknown controls. The well-posedness and

regularity of the problem and the existence of an optimal control is proved in this case as

well. In recent article [87], special features of the general statements of material optimization

problems in space–time are discussed. Three open problems in this subject are proposed.

In [48] a class of shape/topology optimization problems governed by the Helmholtz equation in

2D is considered. To guarantee the existence of minimizers, the functional is relaxed and a weak

formulation of the problem is considered. Two numerical methods for solving such problems

are proposed and theoretically justified: a direct discretization of the relaxed formulation and

a level set parametrization of shapes by means of radial basis functions. Several numerical

aspects are also considered. The fundamentals, classical and non-classical results and reviews

on different issues of topological optimization can be found in [55].

Problems of vibration reduction of elastic structures with optimizing the dampers locations

and distributions are considered in Section 3 in terms of distribution and topology optimiza-

tion. In the same section a structural dynamic optimization problem is also considered.

The dissertation, particularly, is devoted to

• the extension of classes of distributed parameter systems admitting analytical exact
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solution. Butkovskiy‘s method of control with compact support [22] is extended in order

to be applicable also to systems whose behavior is still of interest after the control

influence is taken off and for systems having distributional solutions [65–71],

• the derivation of necessary and sufficient conditions for exact controllability and explicit

solution of boundary and distributed control problems for various model problems,

• the explicit solution of some particular optimization problems with state constraints.

Using the Bubnov–Galerkin procedure an efficient algorithm is suggested [72] for solving

optimal distribution problems in dimensions one and two [60, 73, 74]. The wave field

representations via vector and scalar potentials and time decomposition are applied in

turn to the structure optimization of a two-dimensional system [106],

• the suggestion of particular recommendations for mechanical and civil engineers to use

optimal structures for damping the bending vibrations in structures under moving loads,

• the determination of optimized structure for wave-guides propagating harmonic signals

with specified parameters.

The dissertation is mainly based on research articles of the author alone and coauthored,

the main results of which are published in [57–60, 65–74, 106], though not the all results

are included in here. Its hard to think of a title covering the whole material and being

concise. We stopped at current version as variable parameters meaning non-homogeneity

and dispersive nature of controlled systems in the second chapter and distribution function

and non-homogeneity of deformable bodies in the third section. Hope it will not give rise

for any misunderstandings. It is organized as follows. After Introduction it comes the first

preliminary chapter with list of main concepts and notations. It contains preliminaries of

the theory of distributions, including the definitions, main operations and relations, which

are necessary for interested readers without special mathematical background to correctly

repeat the operations, transformations and manipulations done, and the detailed, step-by-step

description of Butkovskiy‘s method of control with compact support [22] with proper examples,

as well as of its slightly modified (generalized) version. Some applications in deformable body
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mechanics are described. The second and third chapters of the dissertation are devoted to the

application of Butkovskiy‘s generalized method for investigating several particular interesting

problems mainly arising in solid mechanics, but describing other processes in natural science

as well.

The second chapter begins with introduction into Butkovskiy‘s generalized technique for

a relatively general equation and boundary conditions. Then we reduce boundary and dis-

tributed control problems for finite string to an infinite system of integral linear constraints

the Lp–optimal solution of which for 1 ≤ p ≤ ∞ is known from Subsection 1.3.1. L1–optimal

boundary control is found for semi-infinite string providing required (non-zero) terminal con-

ditions in the same way. Two problems of control with constant delay for the wave equation is

considered when the delay exists in Dirichlet boundary conditions and in distributed controls.

The system of integral constraints is derived in both cases. Finally, Butkovskiy‘s general-

ized method is applied for solving general boundary and distributed control problems for a

particular partial integro-differential equation associated with wave equation. The system of

necessary and sufficient conditions for its controllability are derived.

The third chapter contains explicit solutions of material distribution, topology and struc-

ture optimization problems formulated as initial-boundary value problems for bilinear systems

in partial derivatives. Two approaches are suggested to deal with such problems. In order to

reduce the model problem to a system, the Butkovskiy‘s generalized method is applicable to

which, the first approach suggests to use the Bubnov–Galerkin procedure. It turns out that

sometimes (when, for instance, the control function does not explicitly depends on time) it

is necessary to involve Butkovskiy‘s generalized method as well. In that manner the optimal

in the sense of wasted resources law of viscoelastic material distribution under an elastic fi-

nite beam subjected to moving point load is found. Among admissible controls the discrete

distribution of the viscoelastic material has the minimal support (volume), corresponding to

vibration absorbers (dampers). The solution is reduced to a standard problem of nonlinear

programming under restrictions of both equality and inequality types with respect to switching

points corresponding to the placements of the dampers under the beam. The same approach is

used to optimize the topology of elastic subgrade under a simply supported rectangular elastic
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plate subjected to a moving normal load in order to damp its bending vibrations in required

time. The same technique allows to prove that the piecewise distribution of the subgrade is

optimal among all admissible distributions. Numerical analysis reveals all important depen-

dences between optimal control function and internal, external parameters of the system. The

main limitation of this approach is that linearity of boundary conditions is required.

The second approach is still valid for nonlinear boundary conditions, but applicable for

solution of only dynamical problems. The main idea is in representation of the solution via

wave vector and scalar potentials. It is explained on the problem of structure optimization for

an infinite non-homogeneous elastic layer in order to allow propagation of periodic unidirec-

tional waves. Assuming that the density and the Young‘s modulus of the layer material vary

over its thickness according to the same law, it is proved that the piecewise non-homogeneity

(layered structure) of the layer is optimal among all admissible controls. Numerical compu-

tations allows to find the thickness and the material characteristics of each component layer.

The main limitation of this approach is that the solution may not always be represented via

those potentials.

Then come Conclusions, and Bibliography finalizes the dissertation.

The whole dissertation and its separate parts are presented in numerous scientific confer-

ences, seminars and colloquiums (2011–2015). Among others we appreciate the attention and

comments from the audience of

• Seminar series of Chair of Mechanics, Yerevan State University, Yerevan, Armenia, 2011-

2015,

• Seminar series “Wave Processes” coordinated by Prof. M. V. Belubekyan, Armenian

NAS, Yerevan, Armenia, 2011-2015,

• International scientific conference dedicated to S. Banach, Lviv, Ukraine, 2012,

• International scientific conference dedicated to N. Kh. Arutyunian, Tsaghkadzor, Ar-

menia, 2012,

• International summer-school “Geometry, Mechanics and Control”, Madrid, Spain, 2013,
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• International winter-school “Applications of Mathematics in Natural Science”, Interna-

tional Max Planck Institute, Leipzig, Germany, 2013,

• International Conference of Young Scientists and Specialists, dedicated to N. N. Bo-

golyubov, Joint Institute for Nuclear Research, Dubna, Russia, 2014,

• International Symposium “Youth, Science, Innovation”, Kazan, Russia, 2014,

• Allrussian conference “Problems of Control”, Moscow, Russia, 2014,

• Gene Golub SIAM summer school “Simulation, Optimization, and Identification in Solid

Mechanics”, Linz, Austria, 2014,

• Colloquium series “CeNoS” (Center for Nonlinear Sciences), Münster, Germany, 2014-

2015,

• SIAM conference on “Control and its Applications”, Paris, France, 2015.

The equations and their systems appearing herein covers processes also in other fields of

natural science and engineering and an interested reader can find many useful tools for dealing

with his particular problem. We hope, that the dissertation will make a small but appreciable

contribution in areas of optimal control, controllability analysis, optimal design, distribution

and topology optimization, and will be useful for engineers interested in various statements

and solving techniques of various optimal control problems.
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CHAPTER 1

PRELIMINARIES AND APPLICATIONS OF

CONTROL WITH COMPACT SUPPORT IN

DEFORMABLE BODY MECHANICS

The aim of this chapter is to outline preliminaries of the distribution theory and Butkov-

skiy‘s method of control with compact support, which are the basic tools for investigating the

control problems considered herein. It is written as concise as possible, and therefore we do not

claim the rigour. For further material and more details we refer to [20,22,109,115,118,124].

The chapter is organized as follows. In Section 1.1 main concepts and notations, symbolic

and nomenclature are brought in order to make each section or chapter of the thesis easy

understandable and even readable. In Section 1.2 the fundamentals of the theory of distribu-

tions are brought. The main distributions used below are defined and their main properties are

shown. Such operations as differentiation, limiting transition, convergence, Fourier integral

transform are defined. Butkovskiy‘s method of control with compact support and its extension

systems admitting generalized solution are described for a particular linear partial differential

equation in Section 1.3. The solution of boundary and distributed control problems is reduced

to an infinite system of integral constraints. Their Lp–optimal solution, 1 ≤ p ≤ ∞, and

conditions of its existence are brought treating them as a problem of moments. For further

purposes, the L1, L2 and L∞–optimal solutions are brought separately. Butkovskiy‘s general-

ized method is applied to solve boundary control problem for thermo-elastic layer modelled as

a coupled system of partial differential equations. The solution is reduced to countable system

of constraints.
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1.1 Main Concepts and Notations

Here we bring the main notations and concepts used throughout the thesis in order to let

the reader interested in a particular chapter or section herein find the definition of occurred

symbols directly here.

R the real line

R+ the positive semi-axis

C the complex plane

N the set of natural numbers

D[·] denotes state operator

∆ the Laplacian

Dq the weak derivative of the q ∈ N ∪ {0}–th order with respect to argument

Cp (O) the space of piecewise continuous in O functions

Lp (O), 1 ≤ p ≤ ∞ the space of Lebesgue measurable in O functions

T the space of test functions

D the space of distributions

Up = {u ∈ Lp[0, T ]; supp u ⊆ [0, T ]} denotes the set of admissible controls for 1 ≤ p <∞

U∞ = {u ∈ L∞[0, T ]; supp u ⊆ [0, T ], |u| ≤ u0}

Ud and Ub denote the sets of admissible distributed and boundary controls, respectively

O and ∂O the ordinary closure and the boundary of the domain O

ρ density1

λ and µ the Lame coefficients

ν the Poisson‘s ratio

E the Young modulus

c the elastic wave propagation velocity

D =
2h3E

3(1− ν2)
the bending stiffness of elastic plate, h is its thickness

α2 the viscosity parameter

γ the Euler constant

1All quantities below are supposed to have SI units of measurements.
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J and S the moment of inertia and the cross sectional area of beams

Bi the Biot number,

Tm(x) = cos(m arccosx), m ∈ N the Chebyshev polynomials of the first kind [1]

Jm(x) and Ym(x) the Bessel functions of the first and the second kinds [1]

W (x) the Lambert function [28]

Ft[η] ≡ η =

∫ ∞
−∞

η(t) exp [iσt] dt the Fourier distributional or generalized direct transform

of η(t) with respect to t

F−1
t [η] ≡ η =

1

2π

∫ ∞
−∞

η(σ) exp [−iσt] dσ the Fourier distributional inverse transform

Fs [η] =

∫ ∞
0

η(t) sin (iσt) dt and Fc [η] =

∫ ∞
0

η(t) cos [iσt] dt the Fourier sine and cosine

transforms of η: Fc [η] + iFs [η] = Ft[η]

σ the spectral parameter of the Fourier transform

δ(x) the Dirac delta function

θ(x) the Heaviside unit step function

θ(x, y) = θ(x)θ(y) the Heaviside two-dimensional function

sign x the sign function

χO(x) the characteristic (indicator) function of O

supp η = {x ∈ Rn; η(x) 6= 0} the support of the function η(x)

v(x) the distribution law of the control function: v ≥ 0, supp v 6= ∅

Re η and Im η denote the real and the imaginary parts of function η.

δmk = δkm Kronecker‘s symbol

δκµmk = δκk · δµm Kronecker‘s two-index symbol

{1;N} a short notation of {1, 2, ..., N}

The superscript T over columns or matrices denotes the transposition.

Several important theorems are brought in the following two sections in order to make the

dissertation complete and independent work and not to refer the reader to a particular chapter

of some book which are rare nowadays. Besides, in different books those are formulated

in different terminology and with different notations, so the reader with less knowledge in

mathematics (e.g. engineer) can be easily lost. That is the second reason why do we bring

them in the dissertation.
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1.2 Distributions and Their Fourier Transform

The necessity of introducing distributions usually arises in situations when a sufficiently

“good” continuous function becomes non differentiable in some points, series or integrals di-

verge, and the usual Fourier transform of a sufficiently simple function, for instance, constant,

does not exist. Namely, the distributions were introduced in order to “remove” such singulari-

ties. At this stage, generalized derivatives, convergence of series and integrals in a generalized

sense, and the distributional Fourier transform provides invaluable service to the investigator.

In this section we will briefly outline the main ideas and concepts of the mathematical

theory of distributions according to [20,109,115,118,124].

1.2.1 Test Functions and Distributions

A real valued infinitely differentiable function η : R→ R with supp η ⊆ [a, b] we shall call

test function. The space of test functions is denoted by T. The convergence in T is defined as

follows. A given sequence {ηι}ι∈N of test functions with supp ηι ⊆ [a, b], ι ∈ N, converges to

η ∈ T, if for any q ∈ N ∪ {0}

lim
ι→∞

η(q)
ι (x) = η(q)(x).

The operations of addition and multiplication by an arbitrary infinite differentiable function

are continuous with respect to that convergence.

To any ordinary function corresponds a linear continuous functional on T:

(f, η) =

∫ ∞
−∞

f(x)η(x)dx, η ∈ T. (1.1)

Linear continuous functionals on T are called generalized functions or distributions. The space

of distributions we denote by D. A distribution is called regular, if it is representable in the

form (1.1), otherwise– it is called singular. Distributions generated by locally measurable

functions are always regular. A common example of singular distribution is the Dirac delta

function, which puts in correspondence any test function η to its value at x = 0: (δ, η) =

η(0), η ∈ T.

According to the definition, shifted ordinary functions lead to advance of the test function:

(f(x− x0), η(x)) = (f(x), η(x+ x0)), η ∈ T.
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We shall say, that (f1, η) ≥ (f2, η) for any 0 ≤ η ∈ T, if (f1 − f2, η) ≥ 0. Particularly,

two distributions are equal, if (f1 − f2, η) = 0 almost everywhere in supp η. A sequence

{fι}ι∈N ∈ D converges to f ∈ D if (fι, η) → (f, η), η ∈ T. Obviously, it does not follow from

relation fι → f in L1
loc(R). Indeed, for example, 2ι3x2(1 + ι2x2)−2 → 0, x ∈ R, in L1

loc(R), but

for any η ∈ T, 2ι3 (x2(1 + ι2x2)−2, η) = πη(0), i.e. 2ι3x2 (1 + ι2x2)
−2 → πδ(x) in D.

Since for any η ∈ T, η(q) ∈ T as well, q ∈ N, then by virtue of equality
(
f (q), η

)
=

(−1)q
(
f, η(q)

)
, all distributions are infinitely differentiable and in D.

Further we will need to deal with derivatives of some well-known distributions. Heaviside

θ function generates a regular distribution

(θ, η) =

∫ ∞
0

η(x)dx, η ∈ T.

According to the definition we have (θ′, η) = − (θ, η′) = η(0) = (δ, η), η ∈ T.

Another regular distribution is defined by the sign function. There is an obvious relation

between sign and Heaviside distributions: (1− 2θ(x), η) = − (sign x, η), (1− 2θ(−x), η) =

(sign x, η), η ∈ T, and therefore (θ(x)− θ(−x), η) = (sign x, η), (θ(x) + θ(−x), η) = (1, η),

η ∈ T. It follows also that 2θ(0) = 1. According to the definition in the sense of distributions

Dsign x = 2δ(x). Note in this regard that even though sign x is odd and δ is even, θ is neither

odd, nor even.

Another regular distribution is defined by the characteristic (indicator) function

(
χ[0,1](x), η(x)

)
=

∫ 1

0

η(x)dx, η ∈ T.

There are several representations of this function by means of others. For example,(
χ[0,1](x), η(x)

)
= (θ(x)− θ(x− 1), η(x)) , η ∈ T, x ∈ R which is widely used in the preceding

sections. Using the distributional derivative of the Heaviside function, we may easily obtain

the distributional derivative of the characteristic function.

It will be useful to bring also the following relation

(µ(x)δ′(x), η(x)) = µ(0) (δ′(x), η(x))− µ′(0) (δ(x), η(x)) , η ∈ T,

which simply follows from the differentiation formula of the product µ(x)δ(x).
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While transition to non–dimensional variables and functions, the following relations are

used throughout the thesis without a special reference

δ (x− x0) =
1

|x0|
δ

(
x

x0

− 1

)
, θ (x− x0) =


θ
(
x
x0
− 1
)
, x0 > 0,

1− θ
(
x
x0
− 1
)
, x0 < 0.

One of the most important and commonly used operations in the theory of distribution

is the convolution. The relation (f1(x) · f2(x), η(x+ y)) ≡ (f1 ∗ f2, η), η ∈ T, in D is called

the convolution of distributions f1 and f2. If both f1 and f2 are regular then the convolution

f1 ∗ f2 reads as

f1 ∗ f2 =

∫ ∞
−∞

f1(x− y)f2(y)dy =

∫ ∞
−∞

f1(y)f2(x+ y)dy = f2 ∗ f1.

Note, that so-called integral equations of convolution types are widely used in numerous

applications (see Subsection 2.2).

1.2.2 The Fourier Transform of Distributions

One of the most powerful techniques to investigate the problems of mathematical physics

is the technique of integral transforms. In this section we will introduce the Fourier integral

transform for distributions or, simply, the distributional Fourier transform.

The Fourier integral transform of f ∈ L1
loc (R)

f(σ) ≡ F [f ] =

∫ ∞
−∞

f(x) exp [iσx] dx, σ ∈ R,

is bounded and, therefore, defines a regular distribution

(F [f ], η) =

∫ ∞
−∞
F [f ]η(σ)dσ, η ∈ T.

It is easy to see, that (F [f ], η) = (f,F [η]). This relation is accepted as a definition of the

Fourier transform of a distribution f ∈ D. The function f is defined via Fourier inverse

transform:

f(x) ≡ F−1[f ] =
1

2π

∫ ∞
−∞

f(σ) exp [−iσx] dσ.

A useful result for the Fourier distributional transform is the following.
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Theorem 1.1 (Wiener–Paley–Schwartz, [20,22,109,113,118,124]) A distribution f ∈

D is compactly supported in [−ϑ, ϑ] if and only if F [f ] (σ + iς), ς ∈ R, satisfying∣∣zι · f(z)
∣∣ ≤ Cιe

ϑ|ς| (1.2)

for all ι ∈ N ∪ {0} and corresponding real constants Cι.

In other words, if we denote by E the space of entire functions satisfying inequality (1.2),

the Wiener–Paley–Schwartz theorem states, that the Fourier distributional transform is a

bijection between D and E. From the other hand, the distributional Fourier transform is a

linear isomorphism from D onto itself [118].

This theorem plays a central role in derivation of boundary and distributed controllability

criteria according to Butkovskiy‘s generalized method (see Subsection 1.3.1).

In order to justify a certain phenomenon from physics viewpoint, in various applied prob-

lems of mathematical physics [43,44,56,60,67–74,106] it is necessary to prove, that the inverse

Fourier transform of the solution, obtained by means of that transformation, is real valued.

For this purpose, the following result is useful.

Corollary 1.1 It follows from the decomposition

F [f ] =

∫ ∞
−∞

[Re f(x) cos(σx)− Im f(x) sin(σx)] dx+

+ i

∫ ∞
−∞

[Re f(x) sin(σx) + Im f(x) cos(σx)] dx,

• F [f ] is real valued if and only if Re f(−x) = Re f(x) and Im f(−x) = −Im f(x),

• if f is real valued (Im f = 0) then F [f ](−σ) = F [f ](σ), at this if f(−x) = f(x), then

F [f ] is real valued and F [f ](−σ) = F [f ](σ),

• if f is purely imaginary (Re f = 0) then F [f ](−σ) = −F [f ](σ), at this if f(−x) =

−f(x), then F [f ] is purely imaginary F [f ](−σ) = −F [f ](σ).

Very often the distributional Fourier sine and cosine transforms are used. According to

definition, the distributional Fourier sine and cosine transforms of f ∈ D is

Fs[f ] =

∫ ∞
0

f(x) sin(σx)dx, Fc[f ] =

∫ ∞
0

f(x) cos(σx)dx, σ ∈ R+.

At that, obviously, F [f ] = Fc[f ] + iFs[f ]. The Fourier inverse sine and cosine transforms are

defined in the same manner.
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1.3 The Control with Compact Support

The explicit solution of control problems is always very important to considerably simplify

the qualitative analysis and to design of corresponding systems. There are several methods for

solving control problems explicitly for both continuous and discrete systems [13, 22, 77, 101].

Only a few of existing methods may give answer to the question about controllability of the

system and, at the same time, provide a method for constructing the required controls. One of

such methods is A. G. Butkovskiy‘s method of control with compact support [22]. Assuming,

that the control and state functions are concentrated on some finite time-interval in which the

control process is carried out, Butkovskiy‘s method provide an efficient procedure for obtaining

a system of necessary and sufficient conditions for exact controllability and simultaneously

restrictions on control function to be determined from. For this purpose, the well-known

Wiener–Paley theorem [22] is used. From those restrictions the unknown control function

may be obtained in two ways: either by constructing interpolating polynomials for the Fourier

image of the unknown function or by separating the real and the imaginary parts of the system

and obtain integral constraints. Actually, by means of Butkovskiy‘s method we obtain a whole

class of admissible for exact controllability functions, therefore optimality conditions may be

proposed.

In order to illustrate the method let us consider a one-dimensional system with distributed

parameters the state of which in time is described by a second order partial differential equa-

tion2. Let in rectangle O = {(x, t); x ∈ (0, 1), t ∈ (0, T )}

D[w] = f (x, t, ud(t)) . (1.3)

Let also

α0w(0, t) + β0
∂w(x, t)

∂x

∣∣∣∣
x=0

= u0
b(t),

α1w(1, t) + β1
∂w(x, t)

∂x

∣∣∣∣
x=1

= u1
b(t),

t ∈ [0, T ]. (1.4)

Here

D[w] ≡ A
∂2w(x, t)

∂x2
+B

∂w(x, t)

∂x
+ Cw(x, t)− a∂

2w(x, t)

∂t2
− b∂w(x, t)

∂t
,

2Definitely, the results remain true for higher order and higher dimensional systems of partial differential

equations and their coupled systems as well: corresponding generalizations can be done easily.
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the coefficients a, b, A, B and C are given and may be at most coordinate dependent, ud :

[0, T ] → R is a control function to be found, f : [0, 1] × [0, T ] × Ud → R, u0
b : [0, T ] → R and

u1
b : [0, T ]→ R also may be considered as control functions. Choosing the constants α0, β0 and

α1, β1 in appropriate way, we may obtain Dirichlet, Neumann and mixed boundary conditions.

The initial state of the system is supposed to be given:

w(x, 0) = w0(x),
∂w(x, t)

∂t

∣∣∣∣
t=0

= w1
0(x), x ∈ [0, 1]. (1.5)

Our aim is to find the explicit representation of distributed or boundary controls ud ∈ Ud

or u0
b , u

1
b ∈ Ub which ensure the given terminal state of the system

w(x, T ) = wT (x),
∂w(x, t)

∂t

∣∣∣∣
t=T

= w1
T (x), x ∈ [0, 1]. (1.6)

In addition, a functional describing a property of the system or the resources spend on control

process may be required to be minimized.

Henceforth, if the control process is carried out either by function ud or one of the functions

u0
b , u

1
b , we will say that we have a distributed or boundary control problem, respectively, and

call the corresponding control function distributed or boundary control. If the set Ub or Ud are

non-empty, the system is called controllable. If required conditions (1.6) are satisfied exactly

for some choice of controls (whether it be boundary or distributed), then (1.3)–(1.5) is called

exact controllable. Nevertheless, in some cases it becomes impossible to find controls such

that (1.6) is satisfied exactly: one can merely implement some state close to required one in

some sense. Then, (1.3)–(1.5) is called approximate controllable. Such a problem is considered

in Subsection 3.2. For simplicity of calculations, sometimes, we take wT (x) = w1
T (x) ≡ 0:

the algorithm can be easily extended otherwise. Then, if the set of corresponding admissible

controls is non-empty, the system is called null-controllabile.

It is supposed, that the transmission conditions concerning consistency of boundary con-

ditions and initial, terminal functions (1.5), (1.6), are satisfied:

α0w0(0) + β0Dw0(0) = u0
b(0), α1w0(1) + β1Dw0(1) = u1

b(0),

α0w
1
0(0) + β0Dw1

0(0) = Du0
b(0), α1w

1
0(1) + β1Dw1

0(1) = Du1
b(0),

α0wT (0) + β0DwT (0) = u0
b(T ), α1wT (1) + β1DwT (1) = u1

b(T ),
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α0w
1
T (0) + β0Dw1

T (0) = Du0
b(T ), α1w

1
T (1) + β1Dw1

T (1) = Du1
b(T ).

Let us now proceed to the solution of the problem. For this purpose we apply to (1.3), (1.4)

the Fourier real integral transform with respect to t. After simple algebraic transformations

we will finally derive:

D[w] = G(x, σ, ud(σ)), (x, σ) ∈ O1 ≡ (0, 1)× R, (1.7)

where

D[w] ≡ A
d2w(x, σ)

dx2
+B

dw(x, σ)

dx
+
(
C + aσ2 + ibσ

)
w(x, σ),

G(x, σ, ud(σ)) = f (x, σ, ud(σ)) + a
(
iσw0(x)− w1

0(x)
)

+ bw0(x),

α0w(0, σ) + β0
dw(x, σ)

dx

∣∣∣∣
x=0

= u0
b(σ),

α1w(1, σ) + β1
dw(x, σ)

dx

∣∣∣∣
x=1

= u1
b(σ),

σ ∈ R. (1.8)

Thus, now we need to solve boundary-value problem (1.7), (1.8). Let w1(x, σ) and w2(x, σ)

be the fundamental solutions of (1.7). Then, as it is well known [23,123], its general solution

may be represented as follows:

w(x, σ) = h1(σ)w1(x, σ) + h2(σ)w2(x, σ) + Λ(x, σ, ud(σ)), (x, σ) ∈ O1, (1.9)

where h1 and h2 are unknown yet,

Λ(x, σ, ud(σ)) =

∫ x

0

w1(x, σ)W1(ξ, σ) + w2(x, σ)W2(ξ, σ)

W (ξ, σ)
G(ξ, σ, ud(σ))dξ. (1.10)

Here W (ξ, σ) is the main and W1(ξ, σ),W2(ξ, σ) are the auxiliary Wronskians:

W (ξ, σ) =

∣∣∣∣∣∣∣
w1(ξ, σ) w2(ξ, σ)

dw1(ξ,σ)
dξ

dw2(ξ,σ)
dξ

∣∣∣∣∣∣∣ , W1(ξ, σ) =

∣∣∣∣∣∣∣
0 w2(ξ, σ)

1 dw2(ξ,σ)
dξ

∣∣∣∣∣∣∣ , W2(ξ, σ) =

∣∣∣∣∣∣∣
w1(ξ, σ) 0

dw1(ξ,σ)
dξ

1

∣∣∣∣∣∣∣ .
Substituting (1.9) into (1.8), with respect to unknowns h1 and h2 we will obtain a linear

system of algebraic equations:
(
α0w1(0, σ) + β0

dw1(x,σ)
dx

∣∣∣∣
x=0

)
h1(σ) +

(
α0w2(0, σ) + β0

dw2(x,σ)
dx

∣∣∣∣
x=0

)
h2(σ) = u0

b(σ);(
α1w1(1, σ) + β1

dw1(x,σ)
dx

∣∣∣∣
x=1

)
h1(σ) +

(
α1w2(1, σ) + β1

dw2(x,σ)
dx

∣∣∣∣
x=1

)
h2(σ) = u11

b (σ),
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in which

u11
b (σ) = u1

b(σ)− α1Λ(1, σ, ud(σ))− β1
dΛ(x, σ, ud(σ))

dx

∣∣∣∣
x=1

.

Let us represent its solution in the form

h1(σ) =
∆1(σ)

∆(σ)
, h2(σ) =

∆2(σ)

∆(σ)
,

where ∆ and ∆1,∆2 are the main and the auxiliary determinants of that system.

Thus, from (1.9) we have

w(x, σ) =
∆1(σ)w1(x, σ) + ∆2(σ)w2(x, σ)

∆(σ)
+ Λ(x, σ, ud(σ)), (x, σ) ∈ O1. (1.11)

Proceeding further, in order to apply the Wiener–Paley theorem [22] we need to extend

(1.11) in C:

w(x, z) =
∆1(z)w1(x, z) + ∆2(z)w2(x, z)

∆(z)
+ Λ(x, z, ud(z)), (x, z) ∈ [0, 1]× C. (1.12)

It can be proved, that if G(·, z, ud(z)) is entire, Λ(·, z) is entire as well, therefore (1.12) will

be entire if and only if its first term is entire. Denote by {zk}k∈N the roots of the equation

∆(z) = 0. Then, the last term will be entire if and only if the following equalities hold:

∆1(zk)w1(x, zk) + ∆2(zk)w2(x, zk) = 0, k ∈ N,

uniformly for all x ∈ [0, 1]. Since the functions w1(x, ·) and w2(x, ·) are linearly independent,

then from the last system it follows

∆1(zk) = 0, ∆2(zk) = 0, k ∈ N, (1.13)

It may be checked, that those equalities take place simultaneously, therefore we actually

need to use only one of them.

Thus, (1.12) is entire if and only if one of (1.13) holds. Those equalities are, in fact, the

constraints where the required control function must be determined from.

Substantially, the Wiener–Paley theorem gives necessary and sufficient conditions for exact

controllability of considered system and a possibility to construct the set of admissible controls

with compact support which ensures the controllability. As a result, we get an interpolation

problem with respect to the Fourier image of the required control functions which can be
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attacked by efficient techniques of interpolation theory. Then we will need to apply the

Fourier inverse transform to obtain the final solution. Instead of it, we may separate the real

and the imaginary parts of the interpolation restrictions to obtain the corresponding infinite

dimensional problem of moments.

In particular, if we have

a) Dirichlet conditions at both x = 0 and x = 1 ends, i.e. α0 = α1 = 1, β0 = β1 = 0, then

(1.13) reads as

∆1(zk) =

∣∣∣∣∣∣∣
u0
b(zk) w2(0, zk)

u1
b(zk)− Λ(1, zk, ud(zk)) w2(1, zk)

∣∣∣∣∣∣∣ = 0, k ∈ N;

b) Neumann conditions at both x = 0 and x = 1 ends, i.e. α0 = α1 = 0, β0 = β1 = 1, then

(1.13) reads as

∆1(zk) =

∣∣∣∣∣∣∣∣
u0
b(zk)

dw2(x,zk)
dx

∣∣∣∣
x=0

u1
b(zk)−

dΛ(x,zk,ud(zk))
dx

∣∣∣∣
x=1

dw2(x,zk)
dx

∣∣∣∣
x=1

∣∣∣∣∣∣∣∣ = 0, k ∈ N;

c) Dirichlet condition at x = 0 and Neumann condition at x = 1 end, i.e. α0 = β1 = 1,

α1 = β0 = 0, then (1.13) reads as

∆1(zk) =

∣∣∣∣∣∣∣
u0
b(zk) w2(0, zk)

u1
b(zk)− Λ(1, zk, ud(zk))

dw2(x,zk)
dx

∣∣∣∣
x=1

∣∣∣∣∣∣∣ = 0, k ∈ N;

d) Neumann condition at x = 0 end and Dirichlet condition at x = 1 end, i.e. α1 = β0 = 1,

α0 = β1 = 0, then (1.13) reads as

∆1(zk) =

∣∣∣∣∣∣∣∣
u0
b(zk)

dw2(x,zk)
dx

∣∣∣∣
x=0

u1
b(zk)−

dΛ(x,zk,ud(zk))
dx

∣∣∣∣
x=1

w2(1, zk)

∣∣∣∣∣∣∣∣ = 0, k ∈ N.

For example, when it is required to find the boundary control function u0
b in the case d),

we have

u0
b(zk) =

1

w2(1, zk)

dw2(x, zk)

dx

∣∣∣∣
x=0

[
u1
b(zk)−

dΛ(x, zk, ud(zk))

dx

∣∣∣∣
x=1

]
≡Mk, k ∈ N,
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as long as

∆(z) = w′1(0, z)w2(1, z)− w′2(0, z)w2(1, z) = 0, z ∈ C.

As it was mentioned above, we may consider this system as interpolation conditions, given

in nodes zk, construct appropriate interpolation polynomials for u0
b(z), and then apply the

Fourier inverse transform to obtain the required function u0
b . Following [22], we also may, and

are going to, separate its real and imaginary parts and obtain the countable system of integral

constraints as follows:∫ T

0

u0
b(t) exp [−ςkt] cos(σkt)dt =M1k,

∫ T

0

u0
b(t) exp [−ςkt] sin(σkt)dt =M2k, k ∈ N, (1.14)

M1k + iM2k =Mk.

The solution of (1.14) may be constructed explicitly, for instance, by the technique outlined

in [77], treating those constraints as problem of moments with respect to the unknown function.

This is an accepted approach in control theory of both concentrated [77] and distributed [22]

parameter systems. On the other hand side (1.14) is a countable system of Fredholm integral

equations of the first kind with C∞[0, T ] kernels.

Now let us consider some particular cases of (1.3) and explain the derivation procedure of

corresponding problems of moments. It is supposed, that ud(t) = u1
b(t) ≡ 0 and finding of u0

b

is required. All other cases should be analyzed in the same manner.

i) Equations of hyperbolic type. Partial differential equations of hyperbolic type, partic-

ularly, describe wave propagation, define electromagnetic field, and other processes in

natural sciences as well. Consider the one-dimensional homogeneous wave equation

(A = a = 1 and B = b = C = 0)

D[w] ≡ ∂2w(x, t)

∂x2
− ∂2w(x, t)

∂t2
= 0, (x, t) ∈ (0, 1)× (0, T ).

In case a) of (1.4) we have w1 = exp [iσx] and w2 = exp [−iσx] and

∆(z) =

∣∣∣∣∣∣∣
1 1

eiz e−iz

∣∣∣∣∣∣∣ = −2i sin z,
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therefore the roots of the equation ∆(z) = 0 will be zk = πk, k ∈ N, i.e. all the

interpolation nodes are real (ςk = 0). Then, (1.13) provides the system of restrictions

u0
b(πk) =

∫ 1

0

[
iw0(ξ)− 1

πk
w1

0(ξ)

]
sin (πkξ) dξ, k ∈ N.

Separating the real and the imaginary parts we will obtain a trigonometric problem of

moments ∫ T

0

u0
b(t) cos(πkt)dt = − 1

πk

∫ 1

0

w1
0(ξ) sin(πkξ)dξ,∫ T

0

u0
b(t) sin(πkt)dt =

∫ 1

0

w0(ξ) sin(πkξ)dξ,

k ∈ N.

So, in order to find the control function in this case we have to solve a system of

trigonometric moments problem.

ii) Equations of parabolic type. Partial differential equations of parabolic type, particu-

larly, describe heat conduction and diffusion processes, different types of flow, and other

processes in natural sciences as well. For simplicity we consider the homogeneous one-

dimensional heat equation (A = b = 1 and a = B = C = 0)

D[w] ≡ ∂2w(x, t)

∂x2
− ∂w(x, t)

∂t
= 0, (x, t) ∈ (0, 1)× (0, T ).

In case a) of (1.4) we have w1 = exp
[√
iσx
]

and w2(x, σ) = exp
[
−
√
iσx
]

and

∆(z) =

∣∣∣∣∣∣∣
1 1

e
√
iz e−

√
iz

∣∣∣∣∣∣∣ = −2 sinh
√
iz,

therefore zk = i(πk)2, k ∈ N, i.e. all interpolation nodes are pure imaginary (σk = 0).

Then, (1.13) provides the system of restrictions

u0
b

(
i(πk)2

)
=

1

πk

∫ 1

0

w0(ξ) sin (πkξ) dξ, k ∈ N.

These constraints are obviously real and can be rewritten as follows:∫ T

0

u0
b(t) exp

[
−(πk)2t

]
dt =

1

πk

∫ 1

0

w0(ξ) sin(πkξ)dξ, k ∈ N.

In practice we need a finite number of moment equalities. To handle this lack, we will use

the following theorem, giving an idea about the solution of an infinite dimensional problem of

moments if the solution of any of its truncated part is known.
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Theorem 1.2 ( [22], p. 76) There exists an n–dimensional vector function u ∈ Lp (T), 1 ≤

p ≤ ∞, T ⊂ Rn, resolving the infinite dimensional linear problem of moments∫
T

u(t)Kk(t)dt =Mk, k ∈ N, (1.15)

for given sequence of functions {Kk}k∈N ∈ Lq(T), p−1 + q−1 = 1, and constants Mk, if and

only if the inequality∣∣∣∣∣
m∑
k=1

Mklk

∣∣∣∣∣ ≤ l

[∫
T

n∑
κ=1

∣∣∣∣∣
m∑
k=1

lkKκk(t)

∣∣∣∣∣
q

dt

] 1
q

, ||u||Lp(T) ≤ l <∞,

holds for any finite set of constants {lκ}κ∈{1;m} ∈ R.

In other words, an infinite dimensional linear problem of moments is resolvable if and

only if the solution of its truncated part for any m ∈ N exists. Questions concerning the

convergence of the solution of the truncated part to that of the infinite system are studied in

traditional manners [22].

In [77] the L1, L2 and L∞–optimal solutions of finite dimensional linear problem of mo-

ments are constructed rigorously. In [22] the general solution of linear problem of moments

minimizing Lp–norm, 1 ≤ p ≤ ∞, is brought.

Theorem 1.3 ( [22], p. 72) The general solution u ∈ Lp (T), 1 < p ≤ ∞, of (1.15) for

some finite m exists, is unique and reads as

uo(t) = λqm

∣∣∣∣∣
m∑
k=1

lokKk(t)

∣∣∣∣∣
q−1

sign
m∑
k=1

lokKk(t), t ∈ T, (1.16)

where λm and {lok}k∈{1;m}, are determined as a solution of the following equivalent problems of

conditional extrema:

i) find

λm =
m∑
k=1

lokMk = max
{lk}k∈{1;m}

m∑
k=1

lkMk,

under the condition [∫
T

[
m∑
k=1

lkKk(t)

∣∣∣∣∣
q

dt

] 1
q

= 1.
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ii) find

1

λm
= min
{lk}k∈{1;m}

[∫
T

[
m∑
k=1

lkKk(t)

∣∣∣∣∣
q

dt

] 1
q

,

under the condition
m∑
k=1

lkMk = 1.

The minimal value of the norm ||u||Lp(T) is equal to ||u||Lp(T) = λm.

In the case when p = 1 (q =∞) the resolving admissible controls are determined as a weak

limit of (1.16) as follows

uo(t) =
J∑
j=1

uojδ
(
t− toj

)
sign

m∑
k=1

lokKk
(
toj
)
, t ∈ T, (1.17)

where toj ∈ T are determined from

vrai max
t∈T

∣∣∣∣∣
m∑
k=1

lokKk(t)

∣∣∣∣∣ = min
{lk}k∈{1;m}

vrai max
t∈T

∣∣∣∣∣
m∑
k=1

lkKk(t)

∣∣∣∣∣ ,
and uoj– from (1.15), with substituted (1.17) into it.

Remark 1.1 It is true, that δ /∈ L1 in usual sense and therefore the meaning of (1.17) must

be clarified. Furthermore, dealing with L1–optimal controls we will take into account only its

physical treatment: δ(t− t0) describes unit impulse acting at t0.

We will pass the proof of both Theorems 1.2 and 1.3, as they are brought in details in [22].

Definition 1.1 If the corresponding set Up 6= ∅, 1 ≤ p ≤ ∞, the system is called Lp–

controllable. The corresponding resolving controls are called Lp– controls. If in addition, the

solution is a minimizer of the Lp norm of the control function, then it is called Lp– optimal

control.

We finalize the subsection with this very useful and attractive result.

Theorem 1.4 ( [22], p. 101) Assume that the solution uj of the following problem of mo-

ments is known: ∫
T

uj(t)Kk(t)dt = δkj , j, k ∈ N.

Then, the solution of (1.15) reads as

u(t) =
∑
j∈N

Mjuj(t), t ∈ T.
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1.3.1 L1, L2 and L∞-Optimal Controls

In particular, let us consider the L1, L2 and L∞–optimal solutions of (1.14) for finite N :∫ T

0

u(t) exp [−ςkt] cos(σkt)dt =M1k,

∫ T

0

u(t) exp [−ςkt] sin(σkt)dt =M2k, (1.18)

k ∈ {1;N},

i.e. those minimizing the functionals

κ1[u] = ||u||L1[0,T ] ≡
∫ T

0

|u(t)|dt, u ∈ U1, (1.19a)

κ2[u] = ||u||2L2[0,T ] ≡
∫ T

0

u2(t)dt, u ∈ U2, (1.19b)

κ∞[u] = ||u||L∞[0,T ] ≡ max
t∈[0,T ]

|u(t)|, u ∈ U∞, (1.19c)

respectively, characterizing the linear momentum, the energy and the intensity of controls.

Remark 1.2 Naturally, we should put the subscript N to the unknown u in (1.18) to differ

it from the solution of the infinite system, but we omit it implying that dependence obvious.

The L1–optimal solution of (1.18) has the form (1.17) [67–74]. The intensities uoj are

constrained by

sign uoj = sign ho
(
toj
)
, j ∈ {1; J},

and are determined from the system

J∑
j=1

uoj exp
[
−ςktoj

]
cos
(
σkt

o
j

)
=M1k,

J∑
j=1

uoj exp
[
−ςktoj

]
sin
(
σkt

o
j

)
=M2k, k ∈ {1;N}.

The moments toj are determined from the equality

κ∞[ho] =

[
J∑
j=1

|uoj |

]−1

.

The number J of impacts must be determined from the condition
{
toj
}J
j=1
⊂ (0, T ). Un-

fortunately, it is non-unique [22,67–74,77].
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Here

ho(t) =
N∑
k=1

exp [−ςkt] [lo1k cos (σkt) + lo2k sin (σkt)] , t ∈ [0, T ],

and the optimal coefficients lo1k, l
o
2k are determined from the problem of conditional extremum:

ho
(
toj
)
−−−→
l1k,l2k

min, when
N∑
k=1

[l1kM1k + l2kM2k] = 1.

At this, the solution uo(t) of the truncated system (1.18) exists if and only if κ∞[ho] 6= 0 [77].

Then, for solvability of (1.14) according to Theorem 1.2 we have

Theorem 1.5 The L1–optimal solution of (1.14) exists if and only if

J∑
j=1

|uoj | 6= 0

for all N ∈ N. Then, (1.17) converges in L1 to the solution with N →∞ uniformly.

According to Theorem 1.3 the L2–optimal solution is [68–71]

uo(t) =
N∑
k=1

exp [−ςkt] [lo1k cos(σkt) + lo2k sin(σkt)] , t ∈ [0, T ], (1.20)

where the coefficients lopk, p ∈ {1; 2}, are determined from the system of linear algebraic

equations

JLo = M,

where Lo = (lo11 . . . l
o
1n l

o
21 . . . l

o
2N)T, M = (M11 . . .M1N M21 . . .M2N)T,

J =



J+
11 J+

12 . . . J+
1N J11 J12 . . . J1N

J+
21 J+

22 . . . J+
2N J21 J22 . . . J2N

...
...

...
...

...
...

...
...

J+
N1 J+

N1 . . . J+
NN JN1 JN2 . . . JNN

J11 J21 . . . J1N J−11 J−12 . . . J−1N

J12 J22 . . . J2N J−21 J−22 . . . J−2N
...

...
...

...
...

...
...

...

J1N J2N . . . JNN J−N1 J−N2 . . . J−NN



,

J±jk =

∫ T

0

exp [− (ςj + ςk) t]

 cos (σjt) cos(σkt)

sin (σjt) sin(σkt)

 dt,

Jjk =

∫ T

0

exp [− (ςj + ςk) t] cos (σjt) sin(σkt)dt.

(1.21)
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The following theorem gives necessary and sufficient conditions for exact controllability in

this case.

Theorem 1.6 L2–optimal solution of (1.14) exists if and only if

κ2[ho] =
N∑
k=1

(lo1k)
2 J+

kk + 2
N−1∑
j=1

N∑
k=j+1

lo1j
(
lo1kJ

+
jk + lo2kJjk

)
+

+
N∑
k=1

(lo2k)
2 J−kk + 2

N−1∑
j=1

N∑
k=j+1

lo2j
(
lo2kJjk + lo2kJ

−
jk

) (1.22)

is positive for all N ∈ N. Then, (1.20) converges in L2 to the solution with N →∞ uniformly.

Here the selfadjointness of L2[0, T ] is taken into account.

If all roots zk, k ∈ N, are real, i.e. ςk = 0, k ∈ N, instead of formulas (1.20)–(1.22) the

following should be used: the optimal control (1.20) reads as

uo(t) =
N∑
k=1

[lo1k cos(σkt) + lo2k sin(σkt)] , t ∈ [0, T ],

the system (1.21) is separated into two independent systems with respect to the coefficients

lopk, p ∈ {1; 2}, correspondingly:

J±Lo
p = Mp, p ∈ {1; 2},

Lo
p = (lop1 . . . l

o
pN)T , Mp = (Mp1 . . .MpN)T , J± = {J±jk}

N
j,k=1,

J±jk =

∫ T

0

 cos(σjt) cos(σkt)

sin(σjt) sin(σkt)

 dt,

and the expression (1.22) reads as

κ2[ho] =
N∑
k=1

(lo1k)
2 J+

kk + 2
N−1∑
j=1

lo1j

N∑
k=j+1

lo1kJ
+
jk +

N∑
k=1

(lo2k)
2 J−kk + 2

N−1∑
j=1

lo2j

N∑
k=j+1

lo2kJ
−
jk.

This corresponds to the case of the harmonic control [31].

L∞–optimal solution of (1.18) is

uo(t) = u0 · sign ho(t), t ∈ [0, T ]. (1.23)

The solvability of (1.14) in this case is provided by the following theorem.
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Theorem 1.7 L∞–optimal solution of (1.14) exists if and only if

κ1[ho] ≡ 1

u0

≤
N∑
k=1

1− exp [−ςkT ]

ςk

√
(lo1k)

2 + (lo2k)
2

for all N ∈ N. Then, (1.23) converges in L2 to the solution with N →∞ uniformly.

The case when all zk, k ∈ N, are real (ςk → 0) is obtained using l’Hospital‘s rule.

In a particular problem of optimal control, Theorems 1.5, 1.6 and 1.7, essentially, help

to construct the set of initial, terminal data, boundary functions, right-hand side and other

parameters of the state equation and control time T in terms of which the system is exact

controllable.

1.3.2 The Generalized Control with Compact Support

It follows from physical reasons that supp w(x, ·) ⊆ [0, 1], but in the general case it is

not necessarily identically zero outside [0, T ]. In such cases the Fourier transform cannot

be replaced by a definite integral with bounds 0 and T as it was done before. It turns

out, that from the viewpoint of the theory of distributions it is possible to handle this lack.

For that purpose we suggest to introduce a new generalized state function which will be

compactly supported in the rectangle [0, 1]× [0, T ] and coincide with the state function therein

[57–60,65–74].

Suppose we have to solve a control problem with fix end-points for abstract differential

equation

D[w] = f(x, t, ud(t)), (x, t) ∈ O × [0, T ], in D, (1.24)

where, for instance, O ⊂ R3, subjected to boundary conditions

B[w] = ub(t), (x, t) ∈ ∂O × [0, T ]. (1.25)

Here we have f ∈ D, therefore, the state function w ∈ D as well (see [89, 119]). D[·] is the

state operator, B[·] is the operator of the boundary conditions: they both are supposed to

have at most stationary or coordinate dependent coefficients.

The initial state of the system is supposed to be known:

Dmt w(x, t)
∣∣
t=0

= wm0 (x), m ∈ {0;n− 1}, x ∈ O, (1.26)
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n is the order of the highest time-derivative of the state function in (1.24).

The aim of the control problem is the ensuring of terminal condition

Dmt w(x, t)
∣∣
t=T

= wmT (x), m ∈ {0;n− 1}, x ∈ O, (1.27)

by means of an appropriate choice of control function. Functions (1.26) and (1.27) are chosen

from appropriate Sobolev spaces (see [42] for details). All data are supposed to be real-valued.

As above, the control may be implemented either by means of boundary function ub ∈ Ub

or distributed control ud ∈ Ud.

In order to obtain a state function compactly supported in O × [0, T ] we introduce the

operator

A[0,T ][η] ≡ η1(t) =


η(t), t ∈ [0, T ],

0, t /∈ [0, T ],

t ∈ R,

which puts arbitrary function η in correspondence with a function η1 compactly supported in

[0, T ] where it coincides with the main function η.

This operator may be represented in terms of the characteristic function

A[0,T ][η] = χ[0,T ](t)η(t) ≡ η1(t), t ∈ R.

Since further we will need to deal with distributions and their derivatives, it will be ad-

visable to have other explicit forms of this operator. For that purpose, we may use the

representation of the indicator function by means of Heaviside‘s function, given in Section 1.2:

A[0,T ][η] = [θ(t)− θ(t− T )]η(t) ≡ η1(t), t ∈ R. (1.28)

It is important to reveal, that the introduced operator A[0,T ][·] is a linear continuous map-

ping from the space of ordinary functions η into the Sobolev space of functions, which are

concentrated on [0, T ] with generalized derivatives of arbitrary order.

In order to solve the problem we apply the operator A[0,T ][·] to governing system (1.24),

(1.25). Taking into account the Leibniz rule of differentiation, we have

Dnη1(t) =
n∑

m=0

Cn
mDn−m [θ(t)− θ(t− T )]Dmη(t), t ∈ R.
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Since Dθ(t) = δ(t) in D, then

Dnη1(t) = [θ(t)− θ(t− T )]Dnη(t) +
n−1∑
m=0

Cn
mDn−m−1 [δ(t)− δ(t− T )]Dmη(t) =

= A[0,T ] [Dnη] +
n−1∑
m=0

Cn
mDn−m−1 [δ(t)− δ(t− T )]Dmη(t), t ∈ R.

Using the filtering property of the Dirac‘s delta, the second term at the right hand side is

well-defined by means of initial and terminal data (1.26), (1.27):

n−1∑
m=0

Cn
mDn−m−1 [δ(t)− δ(t− T )]Dmw(x, t) =

=
n−1∑
m=0

Cn
m

[
wm0 (x)Dn−m−1δ(t)− wmT (x)Dn−m−1δ(t− T )

]
, t ∈ R.

For instance,

∂w1

∂t
= [θ(t)− θ(t− T )]

∂w

∂t
+ w1

0(x)δ(t) + w1
T (x)δ(t− T ), t ∈ R,

∂2w1

∂t2
= [θ(t)− θ(t− T )]

∂2w

∂t2
+w1

0(x)δ′(t)−w1
T (x)δ′(t−T )+w2

0(x)δ(t)−w2
T (x)δ(t−T ), t ∈ R.

Thus, from (1.24), (1.25) we will have

D[w1] = f1(x, t, ud1(t))−W (x, t), (x, t) ∈ O × R, (1.29)

B[w1] = ub1(t), (x, t) ∈ ∂O × R, (1.30)

where W (x, t) contains the initial and the terminal data of the system derived in the men-

tioned manner. w1(x, t) = A[0,T ][w], defined for all t will be called generalized state function.

Obviously, the generalized state function is concentrated on [0, T ], i.e. supp w1(·, t) = [0, T ],

where the control process is carried out and it coincides with the state function w therein.

Now, we may apply the distributional Fourier transform to (1.29) and (1.30). As a result we

will obtain a Cauchy problem with respect to Fourier image of the generalized state function:

D[w1] = f 1(x, σ, ud1(σ))−W (x, σ), (x, σ) ∈ O × R, (1.31)

B[w1] = ub1(σ), (x, σ) ∈ ∂O × R, (1.32)

and we will be able to proceed as is suggested above and obtain equalities like (1.14). On this

way we have to use Wiener–Paley–Schwartz theorem 1.2 for distributions.
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As you can see, the main distinguishing feature of Butkovskiy‘s method of control with

compact support [22] and the method of control with compact support used in this thesis is

that in [22] the compactness of the support of the control and the state functions is assumed,

whereas here it is ensured by means of introduction of a generalized state function.

Coming back to (1.3) and (1.4) according to Butkovskiy‘s generalized method we have

D[w1] = G(x, t, ud1(t)), (x, t) ∈ (0, 1)× R, (1.33)

α0w1(0, t) + β0
∂w1(x, t)

∂x

∣∣∣∣
x=0

= u0
b1(t),

α1w1(1, t) + β1
∂w1(x, t)

∂x

∣∣∣∣
x=1

= u1
b1(t),

t ∈ R, (1.34)

where

G(x, t, ud1(t)) = f1(x, t, ud1(t))− aw0(x)δ′(t)− [aw1
0(x) + bw0(x)]δ(t).

Now we may apply the distributional Fourier transform to (1.3), (1.4) without troubling

about values of the state function w(x, t) outside the interval [0, T ] and proceed as it is

recommended above.

1.3.2.1 Applications in Deformable Body Mechanics

In this subsection we illustrate the use of Butkovskiy‘s method for solving boundary control

problems for a coupled systems of partial differential equations arise in thermo-elasticity. As

it was mentioned above, Butkovskiy‘s method is a powerful tool for dealing with control

problems for coupled systems of partial differential equations. Such systems arise in problems

of connected fields (thermo-elasticity, magneto-electro-elasticity, diffusion, etc.), that is why

illustration of this approach for such a system has practical importance. A relevant problem

of distributed control is considered in [93].

Let an isotropic homogeneous elastic infinite layer O∗ = {(x∗, y∗, z∗); x∗ ∈ [0, h], y∗ ∈ R,

z∗ ∈ R} is subjected to uniformly distributed normal (compressing) boundary stresses of

intensity σ0. The layer is in convective heat transfer with external medium according to

Newton‘s law. This leads to coupling of stresses σx∗ normal to sections in x∗ direction of the

layer and temperature Θ∗ of the layer. Introducing dimensionless variables and functions

x =
x∗
h
, t =

2t1 − T1

T1

π, t1 =
αΘ

h2
t∗, σx =

1− 2ν

E
σx∗, Θ =

1− ν
1 + ν

βΘΘ∗, α2 =
α2

Θ

h2c2
,
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the state of the layer can be described by [57]

∂2σx
∂x2

= α2

[
∂2σx
∂t2

+
∂2Θ

∂t2

]
,
∂2Θ

∂x2
= (1 + ε)

∂Θ

∂t
+ ε

∂σx
∂t

, x ∈ [0, 1], t ∈ [−π, π]. (1.35)

Here αΘ is the thermal diffusivity, βΘ is the coefficient of linear thermal expansion, α charac-

terizes the ratio of elastic wave and temperature propagation times, ε is the temperature and

deformation coupling factor. The boundary conditions take the form

σx = −σ0ub1(t),
∂Θ

∂x
∓ Bi (Θ−Θ0ub2(t)) = 0, x = 0; 1, t ∈ [−π, π], (1.36)

Here 0 < σ0,Θ0 = const. The “initial” conditions are supposed to be

σx = 0,
∂σx
∂t

= 0, Θ = 0, t = −π, x ∈ [0, 1].

Our aim is the (implicit or explicit) representation of the set of admissible controls U∞

providing “terminal” required conditions

σx = −σ0,
∂σx
∂t

= σπ, Θ = Θπ(x), t = π, x ∈ [0, 1].

Here σπ = const.

Applying the operator A[−π,π] to (1.35) and (1.36) we will obtain

∂2σx1

∂x2
= α2

[
∂2σx1

∂t2
+
∂2Θ1

∂t2

]
+W1(x, t),

∂2Θ1

∂x2
= (1 + ε)

∂Θ1

∂t
+ ε

∂σx1

∂t
+W2(x, t), (1.37)

W1(x, t) = −α2

[
(σ0 −Θπ(x)) δ′(t− π)− σπ + Θ′′π(x)

1 + ε
δ(t− π)

]
,

W2(x, t) = [(1 + ε)Θπ(x)− εσ0] δ(t− π), x ∈ [0, 1], t ∈ R,

σx1 = −σ0ub11(t),
∂Θ1

∂x
∓ Bi (Θ1 −Θ0ub21(t)) = 0, x = 0; 1, t ∈ R. (1.38)

Applying the procedure described in the previous subsection we will arrive at

g1(σ)h1(σ) + g1(σ)h2(σ) + g2(σ)h3(σ) + g2(σ)h4(σ) = −σ0ub11(σ) +
1

(−iσ)ε
W 2(0, σ),

g1(σ) exp [λ1(σ)]h1(σ) + g1(σ) exp [−λ1(σ)]h2(σ) + g2(σ) exp [λ2(σ)]h3(σ)+

+g2(σ) exp [−λ2(σ)]h4(σ) = −σ0ub11(σ)− Λ2(σ),

(λ1(σ)− Bi)h1(σ) + (−λ1(σ)− Bi)h2(σ) + (λ2(σ)− Bi)h3(σ)+

+ (−λ2(σ)− Bi)h4(σ) = −Bi ·Θ0ub21(σ),

(1.39)
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(λ1(σ) + Bi) exp [λ1(σ)]h1(σ) + (−λ1(σ) + Bi) exp [−λ1(σ)]h2(σ)+

+ (λ2(σ) + Bi) exp [λ2(σ)]h3(σ) + (−λ2(σ) + Bi) exp [−λ2(σ)]h4(σ) =

= Bi ·Θ0ub21(σ) + Λ1(σ),

with

λp =

√
1

2

[
(−iσ) [(−iσ)α2 + 1 + ε]±

√
(−iσ)2 [(−iσ)2α4 + (1 + ε)2 − 2(−iσ)(1 + ε)α2]

]
,

gp(σ) =
λ2
p(σ)− (−iσ)(1 + ε)

(−iσ)ε
, p ∈ {1; 2},

Λ1(σ) =
dΛ

dx

∣∣∣∣
x=1

+ Bi · Λ(1, σ), Λ2(σ) =
1

(−iσ)ε

[
dΛ

dx
− (−iσ)(1 + ε)Λ(x, σ)−W 2(x, σ)

] ∣∣∣∣
x=1

,

Λ(x, σ) =

∫ x

0

W (ξ, σ)

W (ξ, σ)

4∑
j=1

Wj(ξ, σ)wj(x, σ)dξ,

w1(x, σ) = exp [λ1x], w2(x, σ) = exp [−λ1x], w3(x, σ) = exp [λ2x], w4(x, σ) = exp [−λ2x] are

the fundamental solutions of transformed (1.37) by Fourier, W (x, σ) is the main and Wj(x, σ),

j ∈ {1; 4}, are the auxiliary Wronskians of (1.37).

Further, equating to zero the main determinant of (1.39) expanded in the whole C:

(
Bi2(g1(z)− g2(z))2 − g2

1(z)λ2
2(z)− g2

2(z)λ2
1(z)

)
sinh [λ1(z)] sinh [λ2(z)]−

−2g1(z)λ1(z)g2(z)λ2(z)(1− cosh [λ1(z)] cosh [λ2(z)]) = 0, z ∈ C, (1.40)

we have to find such ub11(zk) and ub12(zk)
3 that two auxiliary determinants (since we seek for

two boundary controls) of (1.39)

∆1(zk) = 0, ∆2(zk) = 0

for all k ∈ N. It will serve us as a system to derive constraints on control functions like (1.14).

Further, optimal in the sense of (1.19c) control may be found in the similar way as above [57].

3zk, k ∈ N, are the roots of (1.40).
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CHAPTER 2

BOUNDARY AND DISTRIBUTED CONTROL OF

VIBRATIONS IN NON-HOMOGENEOUS

STRUCTURES

The aim of this chapter is to show the efficiency of Butkovskiy‘s generalized method,

outlined in Subsection 1.3.2, in dealing with particular equations in partial derivatives and

underline its main features. In this order we have chosen such equations which widely appear

in many different areas of applications, and their well-posedness was already proved.

Below we solve boundary and distributed control problems for differential and integro-

differential equations in partial derivatives arising in numerous problems of wave propaga-

tion in non-homogeneous and dispersive media, respectively. Using Butkovskiy‘s generalized

method the solution is reduced to infinite dimensional linear problem of moments. Here we

collect only the controllability criteria allowing explicit representation for required controls.

Those controls are determined up to a function from wide class, so optimality of the control

process also can be considered in terms of results of Section 1. Nevertheless, we do not stop

on that issue in this chapter.

The chapter is organized as follows: in Section 2.1 the method is applied to solve boundary

and distributed exact controllability problems for one-dimensional wave equation with variable

coefficients in finite and semi-infinite domains. Particular mention is given to the case where

both boundary and distributed controls contain constant delay. Section 2.2 is devoted to

analysis of an integro-differential equation in partial derivatives for boundary and distributed

exact controllability and explicit representation of corresponding controls.

The material of this chapter is based on articles [65–71].
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2.1 Boundary and Distributed Control of Vibrations of

Non-Homogeneous Elastic Systems

Now we begin to apply Butkovskiy‘s generalized method to analyse the exact controlla-

bility of one-dimensional wave equation with variable coefficients and explain the procedure

of derivation of resolving systems which can be used in obtaining explicit solution. The state

equation is considered in finite and in semi-infinite domains in order to show the efficiency of

the method in both cases. The exact controllability is the main aim of the investigation. We

also concern with the case where the control function contains constant delay.

The propagation of one-dimensional waves in non-homogeneous media is of special the-

oretical and practical interest; first because the are described by almost-periodic function

(in contrast to the case of homogeneous media when periodic functions are enough), second

they appear in many real-life processes (in signal transfer [31], finance [36], damage identifi-

cation [114], etc.). The process is described by one-dimensional wave equation with variable

coefficients, characterizing the non-homogeneity of the medium. It considerably complicates

the analytical investigation.

In this section we are going to gather the main results of articles [65–70]. In those inves-

tigations the boundary and distributed exact controllability is considered for one-dimensional

wave equation with variable coefficients (all quantities and variables are supposed to be di-

mensionless)

∂

∂x

[
N(x)

∂w(x, t)

∂x

]
− ρ(x)

∂2w(x, t)

∂t2
= f(x, t) + ud(t)v(x), (x, t) ∈ O × (0, T ), (2.1)

subjected to some linear boundary conditions

B[w] = ub(t), (x, t) ∈ ∂O × [0, T ]. (2.2)

The domain O ⊂ R in some cases is considered to be finite, in some cases– semi-infinite.

The initial state of the string is supposed to be known:

w(x, 0) = w0(x),
∂w(x, t)

∂t

∣∣∣∣
t=0

= w1
0(x), x ∈ O. (2.3)
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Equation (2.1), particularly, describes the propagation of one-dimensional waves in non–

homogeneous media; for instance the longitudinal vibrations of linear-elastic, non-homogeneous

rod, at that w is its displacement, N is the elastic (Young‘s) modulus and ρ– its density. In

particular, if N ≡ const and only ρ = ρ(x), (2.1) describes the transverse vibrations of me-

chanical string, at that N is its tensile force. That is why hereinafter in this chapter we do not

specify the type of vibrating system and merely write vibrating system. Relying on physical

considerations, we assume that 0 ≤ N ∈ C(1)
p (O), 0 < ρ ∈ Cp (O).

Our aim is to find explicit representation for admissible controls u ∈ U and derive con-

trollability conditions for initial-boundary value problem (2.1)–(2.3) providing the terminal

conditions

w(x, T ) = wT (x),
∂w(x, t)

∂t

∣∣∣∣
t=T

= w1
T (x), x ∈ O. (2.4)

If we use the notation u without specifying whether is it boundary or distributed, we imply

that the reasoning is the same for both.

2.1.1 Elastic System Subjected to General Linear Boundary Con-

ditions: Finite Domain

We will deal with (2.1) in O = (0, 1) subject to boundary conditions

α0w(0, t) + β0
∂w(x, t)

∂x

∣∣∣∣
x=0

= u0
b(t),

α1w(1, t) + β1
∂w(x, t)

∂x

∣∣∣∣
x=1

= u1
b(t),

t ∈ [0, T ]. (2.5)

Here α0 + β0 > 0, α1 + β1 > 0 are constants: choosing them in a proper way, we may obtain

Dirichlet, Neumann or mixed boundary conditions.

Our aim is the providing terminal steady state for the vibrations system in finite fixed

time T > 0 choosing appropriate boundary or distributed controls. Suppose, that all the

transmission conditions concerning (2.3), (2.5) and null terminal conditions (2.4) are satisfied:

α0w0(0) + β0Dw0(0) = u0
b(0), α1w0(1) + β1Dw0(1) = u1

b(0),

α0w
1
0(0) + β0Dw1

0(0) = Du0
b(0), α1w

1
0(1) + β1Dw1

0(1) = Du1
b(0),

u0
b(T ) = u1

b(T ) = Du0
b(T ) = Du1

b(T ) = 0.
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Applying the operator A[0,T ][·] to (2.1), (2.5), we will arrive at

∂

∂x

[
N(x)

∂w1(x, t)

∂x

]
− ρ(x)

∂2w1(x, t)

∂t2
= f1(x, t) + ud(t)v(x)−W (x, t), (2.6)

W (x, t) = ρ(x)
[
w0(x)δ′(t) + w1

0(x)δ(t)
]
, (x, t) ∈ (0, 1)× R,

α0w1(0, t) + β0
∂w1(x, t)

∂x

∣∣∣∣
x=0

= u0
b1(t),

α1w1(1, t) + β1
∂w1(x, t)

∂x

∣∣∣∣
x=1

= u1
b1(t),

t ∈ R. (2.7)

It is quite obvious, that in order to provide null terminal conditions, the external pertur-

bations f must vanish before T . Let supp f1(·, t) ⊆ [0, ϑ] with 0 < ϑ < T . Then, in view of

the obvious relation

A[0,T ]

[
A[0,ϑ][η]

]
= A[0,ϑ][η], t ∈ R,

we have f1(x, t) ≡ A[0,T ][f ] = f(x, t) for all x ∈ [0, 1].

Applying distributional Fourier transform with respect to t to (2.6), (2.7) we will obtain

d

dx

[
N(x)

dw1(x, σ)

dx

]
+ σ2ρ(x)w1(x, σ) =

= f 1(x, σ) + ud1(σ)v(x)− ρ(x)
[
w1

0(x)− iσw0(x)
]
,

(2.8)

(x, σ) ∈ (0, 1)× R,

α0w1(0, σ) + β0
dw1(x, σ)

dx

∣∣∣∣
x=0

= u0
b1(σ),

α1w1(1, σ) + β1
dw1(x, σ)

∂x

∣∣∣∣
x=1

= u1
b1(σ),

σ ∈ R. (2.9)

Thus, we arrive at boundary-value problem (2.8), (2.9), therefore we may proceed as before.

Its general solution may be represented in the form

w1(x, σ) = h1(σ) exp [iλ(x, σ)] + h2(σ) exp [−iλ(x, σ)] + Λ(x, σ, ud1(σ)), (2.10)

(x, σ) ∈ [0, 1]× R,

where λ = λ(x, σ) is determined from the Riccati differential equation

∂ν

∂x
+

1

N(x)
ν2 + σ2ρ(x) = 0, (x, σ) ∈ [0, 1]× R, (2.11)

through the relation

iλ(x, σ) =

∫ x

0

ν(ξ, σ)

N(ξ)
dξ, (2.12)
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and [23,123]

Λ(x, σ, ud1(σ)) =

∫ x

0

[
f 1(ξ, σ) + ud1(σ)v(ξ)−W (ξ, σ)

]
K(x, ξ, σ)dξ, (2.13)

K(x, ξ, σ) =
sin [λ(x, σ)− λ(ξ, σ)]

λ′(ξ, σ)
.

The unknown coefficients h1(σ) and h2(σ) are determined from (2.9) as follows:

hp(σ) =
∆p(σ)

∆(σ)
, p ∈ {1; 2}, (2.14)

where (see Section 1.3)

∆(σ) =

∣∣∣∣∣∣∣
[α0 + iβ0λ

′(0, σ)] exp [iλ(0, σ)] [α0 − iβ0λ
′(0, σ)] exp [−iλ(0, σ)]

[α1 + iβ1λ
′(1, σ)] exp [iλ(1, σ)] [α1 − iβ1λ

′(1, σ)] exp [−iλ(1, σ)]

∣∣∣∣∣∣∣ , (2.15)

∆1(σ) =

∣∣∣∣∣∣∣
u0
b1(σ) [α0 − iβ0λ

′(0, σ)] exp [−iλ(0, σ)]

u11
b1(σ) [α1 − iβ1λ

′(1, σ)] exp [−iλ(1, σ)]

∣∣∣∣∣∣∣ , (2.16)

∆2(σ) =

∣∣∣∣∣∣∣
[α0 + iβ0λ

′(0, σ)] exp [iλ(0, σ)] u0
b1(σ)

[α1 + iβ1λ
′(1, σ)] exp [iλ(1, σ)] u11

b1(σ)

∣∣∣∣∣∣∣ , (2.17)

u11
b1(σ) = u1

b1(σ)− α1Λ (1, σ, ud1(σ))− β1
dΛ′ (x, σ, ud1(σ))

dx

∣∣∣∣∣
x=1

.

Now, in terms of obtained results we may conclude.

Theorem 2.1 Function u is admissible for (2.1)–(2.4) if and only if it is determined from

the countable system of equalities

∆1(z) = 0, (2.18)

as long as

∆(z) = 0, z ∈ C. (2.19)

The proof of the theorem merely repeats the steps described in Section 1.3.

Particularly, if we seek boundary controls u0
b1 ∈ U2, then the corresponding constants

Mk =M1k + iM2k will have the form

Mk = u11
b1(zk)

α0 − iβ0λ
′(0, zk)

α1 − iβ1λ′(1, zk)
exp [i(λ(1, zk)− λ(0, zk))] .
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Seeking boundary controls u1
b1 ∈ U2, we will arrive at

Mk = u0
b1(zk)

α1 − iβ1λ
′(1, zk)

α0 − iβ0λ′(0, zk)
exp [−i(λ(1, zk)− λ(0, zk))] +

+ α1Λ(1, zk, ud1(zk)) + β1Λ′(1, zk, ud1(zk)).

Finally, seeking distributed control ud1 ∈ U1, we will obtain

Mk =

[
α1R

[
f 1 −W

]
(zk)

∣∣
x=1

+ β1
∂R[f 1 −W ](zk)

∂x

∣∣∣∣
x=1

− u0
b1(zk)

α1 − iβ1λ
′(1, zk)

α0 − iβ0λ′(0, zk)
×

× exp [−i(λ(1, zk)− λ(0, zk))] + u1
b1(zk)

] [
α1R[v](zk)

∣∣
x=1

+ β1
∂R[v](zk)

∂x

∣∣∣∣
x=1

]−1

,

R[η](zk) =

∫ x

0

η(ξ)K(x, ξ, zk)dξ.

If one needs the controlled motion of the system, he has to apply Fourier inverse distribu-

tional transform to (2.10), taking into account (2.11)–(2.17):

w(x, t) = F−1
t [w] =

=
1

2π

∫ ∞
−∞

[h1(σ) exp [iλ(x, σ)] + h2(σ) exp [−iλ(x, σ)] + Λ(x, σ)] exp (−iσt) dσ,

(x, t) ∈ [0, 1]× [0, T ].

It is easy to check that

Re w(x,−σ) = Re w(x, σ), Im w(x,−σ) = −Im w(x, σ),

therefore, according to Corollary 1.1, its Fourier inverse transform is a real valued function:

w(x, t) =
1

π

∫ ∞
0

[Re w(x, σ) cos(σt) + Im w(x, σ) sin(σt)] dσ =

= F−1
c [Re w] (t) + F−1

s [Im w] (t), (x, t) ∈ [0, 1]× [0, T ].

As the extension of the integrand in the whole complex plane has no singularities, the integral

is well defined.

Let us illustrate the procedure of derivation of (1.14) in this case. Let

f(x, t) = Pδ(t− t0)δ(x− x0), (x, t) ∈ [0, 1]× [0, T ],

which corresponds to constant load P acting at t0 ∈ [0, ϑ] and concentrated at isolated point

x0 ∈ (0, 1). Then

Λ(x, σ, ud1(σ)) = P exp [iσt0]K(x, x0, σ) + ud1(σ)R[v](σ)−R
[
ρw1

0

]
(σ) + iσR[w0](σ).
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Suppose, that the displacements of the system are fixed at both ends, i.e. u0
b(t) = u1

b(t) = 0,

α0 = α1 = 1 and β0 = β1 = 0, and we are required to determine admissible distributed controls

ud ∈ U1.

In order to proceed, we need to solve special Riccati equation (2.11) and calculate λ from

(2.12). It is well-known in general it is not integrated by quadrature, nevertheless this can be

done in some particular cases [123]. Let, for simplicity

N(x) = N0 exp [γ1x] , ρ(x) = ρ0 exp [−γ2x] ,

with natural restriction from above N0, ρ0 > 0, γ1, γ2 are real parameters with γ1 · γ2 > 0.

Then, (2.11) admits exact solution [123]:

ν(x, σ) =
γ1

N0

η′ζ(ζ, σ)

η(ζ, σ)
, ζ(x) = exp [−γ1x] ,

η(ζ, σ) = ζ1/2

[
C1J 1

2q

(
|σ|
|γ1|q

√
ρ0N0ζ

q

)
+ C2Y 1

2q

(
|σ|
|γ1|q

√
ρ0N0ζ

q

)]
, q = 1 +

γ2 − γ1

2
:

It provides an oscillating solution of (2.8) for some values of the parameters γp, p ∈ {1; 2}.

Indeed, in order to have an oscillating solution, the coefficients of (2.8) must satisfy the

inequality [123]

2σ2 ρ

N
−
[
N ′

N

]′
− 1

2

[
N ′

N

]2

> 0, (x, σ) ∈ [0, 1]× R.

In this particular case we would have

4σ2 ρ0

N0

exp [−(γ1 + γ2)x]− γ2
1 > 0,

which provides a whole range of parameters γp, p ∈ {1; 2}.

Restricting consideration to the case γ1 = γ2 (softening factor), i.e. q = 1, from (2.12) we

have

iλ(x, σ) = − 1

N2
0

ln

∣∣∣∣η (ζ(x), σ)

η (ζ(0), σ)

∣∣∣∣ ,
and, in particular, if C1 = 1, C2 = 0–

η (ζ(x), σ) = ζ1/2J 1
2

(
|σ|
|γ1|
√
ρ0N0ζ

)
=

√
2|γ1|

π|σ|
√
ρ0N0

sin

(
|σ|
|γ1|
√
ρ0N0ζ

)
.

In this case

∆(σ) =

sin
(
|σ|
|γ1|
√
ρ0N0 exp [−γ1]

)
sin
(
|σ|
|γ1|
√
ρ0N0

)


1

N2
0

−

sin
(
|σ|
|γ1|
√
ρ0N0 exp [−γ1]

)
sin
(
|σ|
|γ1|
√
ρ0N0

)
−

1

N2
0

,
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∆1(σ) = Λ(1, σ, ud1(σ)).

The general solution of corresponding equation (2.19) for α ∈ R seems to be unreachable.

Though, for γ1 = 1 (α = 1) we obtain

z±k = σ±k =
2πk

1± exp [−1]
, k ∈ N,

i.e. they all are real: ςk = 0. We omit the case k = 0, since then we would have an identity.

In the same way when α = 0.5, 1.5, 2 etc. we obtain

z±k =
2πk

1± exp [−1]
,

correspondingly. Both z+
k and z−k satisfy asymptotic expansion of eigenvalues of differential

operator (2.8), which according to [22] is

zk ∼ 2πk

[∫ 1

0

1

N(x)
dx

]−1

, k →∞.

For k large enough z±k → πk, which is well-known [22]. Thus, the system (1.14) must be

considered for σk = z±k and ςk = 0.

Substituting this roots into extension (2.18) of determinant ∆1(σ), and equating it to zero,

we will have

Λ

(
1,

2πk

1± exp [−γ1]
, u1d

(
2πk

1± exp [−γ1]

))
= 0, k ∈ N.

After simple algebraic transformations with respect to Fourier transform of unknown control

function we will obtain

ud1

(
2πk

1± exp [−γ1]

)
=Mk, k ∈ N, (2.20)

where

Mk =
P exp [iσkt0]K(1, x0, σk)− [R [ρw1

0] (zk)− iσR[w0](zk)]
∣∣
x=1

R[v](zk)
∣∣
x=1

.

In particular case, where v(x) = δ(x− x1), x1 ∈ (0, 1), which corresponds to concentrated

control, we have

R [v] (zk)
∣∣
x=1

= K(1, x1, zk).

When control “reaches” one of the ends, i.e. x1 → 0+ or x1 → 1−,

lim
x1→0+

K(1, x1, zk) = lim
x1→1−

K(1, x1, zk) = 0, k ∈ N,
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i.e. admissible controls cannot be determined from (2.20), which should be expected [68–70].

On the other hand side, when x0 → 0+ or x0 → 1−, the coefficientsMk become independent

from external perturbations, which is also quite expected.

Separating the real and the imaginary parts of (2.20), we will obtain trigonometric infinite-

dimensional moments problem for admissible controls:∫ T

0

ud(t) cos(σkt)dt =M1k,

∫ T

0

ud(t) sin(σkt)dt =M2k, u ∈ U , k ∈ N.

Then, in order to find the Lp–optimal control, 1 ≤ p ≤ ∞, we will be able to apply the

procedure described in Subsection 1.3.1.

2.1.2 Boundary Controllability of Non-Homogeneous Elastic Sys-

tem: Semi-Infinite Domain

Now we will deal with (2.1) in O = R+ subject to Dirichlet boundary condition

w(0, t) = ub(t), t ∈ [0, T ], (2.21)

and the condition at infinity

lim
x→+∞

w(x, t) = m(t), t ∈ [0, T ]. (2.22)

The last condition is related with practical importance of one-dimensional waves propagating

in non-homogeneous media and having the given behaviour far from the wave source. We

additionally suppose that m ∈ L2[0, T ].

In this case the control is implemented by the boundary input u ∈ U1 and we are required

to find L1–optimal among those admissible controls. The existence of controls providing the

null-controllability for the system seems to be non-realistic, therefore we require the providing

non-zero conditions at t = T . The transmission conditions between (2.21), (2.22) and (2.3),

(2.4) are supposed to be satisfied:

u(0) = w0(0), m(0) = lim
x→+∞

w0(x), m(T ) = lim
x→+∞

wT (x),

Du(0) = w1
0(0), Du(T ) = w1

T (0), Dm(0) = lim
x→+∞

w1
0(x), Dm(T ) = lim

x→+∞
w1
T (x).
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Application of the operator A[0,T ][·] to governing system will lead us to

∂

∂x

[
N(x)

∂w1(x, t)

∂x

]
− ρ(x)

∂2w1(x, t)

∂t2
= f1(x, t)−W (x, t), (x, t) ∈ R+ × R, (2.23)

W (x, t) = ρ(x)[w0(x)δ′(t) + w1
0(x)δ(t)− wT (x)δ′(t− T )− w1

T (x)δ(t− T )],

w1(0, t) = ub1(t), lim
x→+∞

w1(x, t) = m1(t), t ∈ R. (2.24)

Note, that a wave equation, similar to (2.23) but with constant coefficients is obtained in

[44] in a contact problem about longitudinal vibrations of two semi-infinite elastic homogeneous

stringers attached to an elastic half-plane caused by harmonic perturbations applied on ends

of the stringers.

Repeating the same procedure as above in this chapter we will arrive at:

Theorem 2.2 Admissible control u1 ∈ U1 resolves the boundary control problem (2.23), (2.24)

if and only if it satisfies the countable system of equalities (1.14) with

Mk =M1k + iM2k = m1(zk) + (−1)kΛ(0, zk),

Λ(x, σ) =

∫ ∞
x

[
f 1(ξ, σ)−W (ξ, σ)

]
K(x, ξ, σ)dξ,

as long as

λ(0, zk) = πk, k ∈ N, (2.25)

in terms of 1

iλ(x, σ) =

∫ ∞
x

ν(ξ, σ)

N(ξ)
dξ, (x, σ) ∈ R+ × R. (2.26)

Here ν(ξ, σ) is still the solution of the Riccati equation (2.11) in R+.

Let in the particular case of the non-homogeneity considered in the last subsection γ1 = γ2,

C1 = 0, C2 = 1. Then, from (2.26) when γ1 = γ2 = 1 we have

iλ(x, σ) = ln |cos [|σ| exp[−x]]| , (x, σ) ∈ R+ × R,

and from (2.25)–

zk = σk = 2πk, k ∈ N,
1Arising improper integral must be understood in the sense of its Cauchy principal value.
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i.e. all roots of equation (2.25) are real (ςk = 0), which leads in system (1.14) to trigonometric

problem of moments.

Let for simplicity, that in the above mentioned case of the non-homogeneity

f(x, t) ≡ 0, m(t) ≡ 0, w0(x) = x2 exp [−0.25x] , w1
0(x) = x exp

[
−0.25x2

]
,

and we are aimed to ensure the steady state for the system at

T = 2

∫ ∞
0

dx

N(x)
=

2

N0

.

As it is known [22], it is the minimal time needed to damp vibrating non-homogeneous system.

It is an expected result: the time required to damp the vibrations decreases with increase of

the softening factor of the string. Then

M1k =
1

2πk

∫ ∞
0

ξ exp
[
−γ1ξ − 0.25ξ2

]
K(0, ξ, 2πk)dξ,

M2k = −
∫ ∞

0

ξ2 exp [−(γ1 + 0.25)ξ]K(0, ξ, 2πk)dξ,

K(0, ξ, 2πk) =
N0

2
exp [γ1ξ] cot [2πk exp [−γ1ξ]]

1− cos
2

N2
0 [2πk exp [−γ1ξ]]∣∣∣∣cos

1

N2
0 [2πk exp [−γ1ξ]]

∣∣∣∣ .
Particularly, when γ1 = 1

K(0, ξ, πk) =
N0

2
exp [ξ] sin [2πk exp [−ξ]] sign [cos [2πk exp [−ξ]]] .

Nevertheless, even in this simple case integrals above seem to be explicitly non-calculable.

Numerical calculations are done instead, and discrete graphics of the coefficients M1k and

M2k are plotted in Figures 2.1, 2.2. It is easy to see that those coefficients decrease with k

very fast.

Suppose now that

w0(x) = Hδ(x− ξ0), w1
0(x) = v0δ(x− ξ0), 0 < H, v0 = const,

which corresponds to a system the x = ξ0 point of which is initially shifted to small height H

at and left with constant velocity v0. Then

M1k =
v0

2πk
exp [−ξ0]K(0, ξ0, πk), M2k = −H

2
exp [−ξ0]K(0, ξ0, πk).
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Figure 2.1: Discrete plot of M1k for γ1 = 1.

Figure 2.2: Discrete plot of M2k for γ1 = 1.

The L1–optimal solution in this particular case by virtue of (1.17) takes the form

uo(t) =
J∑
j=1

uojδ(t− toj), t ∈ [0, 2] .

under the following system of restrictions:

J∑
j=1

uoj cos(πktoj) =
v0

2(πk)2
sin[πk exp [−ξ0]]sign [cos [πk exp [−ξ0]]] ,

J∑
j=1

uoj sin(πktoj) = − H

2πk
sin[πk exp [−ξ0]]sign [cos[πk exp [−ξ0]]] ,

k ∈ {1;N},

sign uoj = sign ho(toj), j ∈ {1; J},

where

ho(t) =
1

N

N∑
k=1

1

v2
0 + (πkH)2

[v0 cos(πkt) + πkH sin(πkt)] , t ∈ [0, 2] .
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Solution of this system may be obtained by numerical techniques of non-linear programming

[15].

Results of calculations done for ξ0 = 1 and different values of v0 and H are presented in

Table 2.1. Though the parameter ξ0 is fixed, the behaviour of optimal control against it may

give a rise to a new investigation. For example, when v0 = 1 and H = 0.1 the resolving control

uo takes the form

uo(t) = 9.05δ(t− 0.2)− 1.32δ(t− 1.)− 1.28δ(t− 1.79)− 6.45δ(t− 3.37), t ∈ [0, 2] .

It is plotted in Figure 2.3.

0 1 2 3 4 5 6
0

2

4

6

8

Figure 2.3: The optimal bang-bang control u against time.

2.1.3 Boundary and Distributed Control of Finite Elastic String

with Constant Delay

Using the fact that the Fourier integral transform provides a powerful technique to deal

with systems containing delay (after-effect or prehistory), we have considered also boundary

and distributed control problems in this case. Let (2.1) be subject to Dirichlet boundary

conditions

w(0, t) ≡ 0, w(1, t) = ub(t− τ), t ∈ [0, T ], (2.27)
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v0 H uoj toj

1 0.01 uo1 = 8.75, uo2 = uo3 = −1.25, to1 = 0.19, to2 = 1., to3 = 1.8,

uo4 = −6.25 to4 = 3.37

1 0.1 uo1 = 9.05, uo2 = −1.32, uo3 = −1.28, to1 = 0.2, to2 = 1., to3 = 1.79,

uo4 = −6.45 to4 = 3.37

10 1 uo1 = −1.53, uo2 = 1.21, uo3 = 1.38, to1 = 0.16, to2 = 0.94, to3 = 2.13,

uo4 = −1.4 to4 = 3.43

20 1 uo1 = 1.49, uo2 = −5.92, uo3 = −2.06, to1 = 0.23, to2 = 1., to3 = 1.765,

uo4 = 5.54 to4 = 3.03

Table 2.1: Control impacts and moments for N = 30, J = 4.

when ud ≡ 0, and

ud(t) = ud(t− τ) (2.28)

when mixed boundary conditions are given:

w(0, t) = 0,
∂w(x, t)

∂x

∣∣∣∣
x=1

= ub(t), t ∈ [0, T ]. (2.29)

In both cases 0 < 2τ < T is a constant delay. The control process is carried out by the

boundary input ub and distributed impact ud, respectively. It means that we must put α0 =

α1 = 1, β0 = β1 = 0, u0
b ≡ 0 in (2.5) in the first case and α0 = β1 = 1, β0 = α1 = 0, u0

b(t) ≡ 0

in the second case. Then, repeating the procedure described in Subsection 2.1.1 we will obtain

∆(σ) = −2i sin[λ(1, σ)− λ(0, σ)], ∆1(σ) = [Λ(1, σ, 0)− exp [iστ ]ub1(σ)] exp [−iλ(0, σ)] ,

in the first case, and

∆(σ) = −2λ′(1, σ) cos[λ(1, σ)− λ(0, σ)], ∆1(σ) = [Λ′(1, σ, ud1(σ))− ub1(σ)] exp [−iλ(0, σ)] ,

in the second case.

The initial data (2.3) are supposed to be the same. Our aim is still to find restrictions on

admissible control functions u ∈ U providing conditions (2.4) and represent them explicitly.

Solution of boundary control problem gives the following theorem.
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Theorem 2.3 Function ub ∈ U2 resolves the boundary control problem for (2.1), (2.27) if and

only if its Fourier generalized transform satisfies countable system of equalities

ub1(zk) = Λ(1, zk, 0) exp [−izkτ ] , k ∈ N, (2.30)

where points zk are determined from characteristic equations

λ(1, zk)− λ(0, zk) = πk, k ∈ N.

Solution of distributed control problem gives the following theorem.

Theorem 2.4 Function ud ∈ U1 resolves the distributed control problem for (2.1), (2.28),

(2.29) if and only if its Fourier generalized transform satisfies countable system of equalities

ud(zk) =

[
u1
b(zk)

λ′(1, zk)
+
∂R

[
W
]

(zk)

∂x

∣∣∣∣
x=1

]
exp [−izkτ ]

∂R[v](zk)
∂x

∣∣∣∣
x=1

, k ∈ N, (2.31)

where points zk are determined from characteristic equations

λ(1, zk)− λ(0, zk) =
2k + 1

2
π, k ∈ N.

Separating the real and the imaginary parts in (2.30) and (2.31) we will obtain infinite

system of problem of moments like (1.14). The explicit solution may be obtained by technique

described in Subsection 2.1.2.

2.1.4 Some Other Types of Non-Homogeneities Providing Explicit

Solution

There is a wide class of coefficients N(x) and ρ(x) providing explicit solution. As a matter

of fact, Riccati equation (2.11) admits analytical solution for power, trigonometric, inverse

trigonometric, hyperbolic and logarithmic coefficients [123].

Let2

N(x) = x−γ, ρ(x) = x−γ−2, γ ∈ R.
2Naturally, in all cases the parameter γ is taken in sense that N ≥ 0 and ρ > 0 for all x in considered

domain.
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Then, the general solution of (2.11) will be

|σ| lnx =

∫
dη

η2 + βη + 1
+ C,

where C is a constant,

η =
1

|σ|
xγ+1y, β =

γ + 1

|σ|
.

Interesting examples of non-homogeneity allowing explicit solution as well is

N(x) = a+ b sin(γx), ρ(x) = ρ0N
−1(x),

for a± b > 0, ρ0 > 0, corresponding to so-called weak non-homogeneity. Then the particular

solution of (2.11) is ν0 = −σρ0, therefore its general solution will be

ν(x, σ) = −σρ0 + ζ(x) exp

[
−2σρ0

∫ x

0

dξ

N(ξ)

]
,

in which

β(x) =

[
c−

∫ x

0

exp

[
−2σρ0

∫ ξ

0

dχ

N(χ)

]
dξ

]−1

.

The general solution of (2.11) has the same form also for N(x) = a + b cos(γx), N(x) =

a + b sinh(γx) N(x) = a + b cosh(γx), N(x) = a + b tanh(γx), N(x) = a + b coth(γx) with

corresponding expression for ρ(x) = ρ0N
−1(x).

Suppose now that

N(x) =
N0

sin(γx)
, ρ(x) = ρ0 sin(2γx), γ > 0.

Then

ν(x, σ) = −
η′ζ(ζ, σ)

η(ζ, σ)
, ζ(x) = cos(γx),

in which

η(ζ, σ) = ζ
1
2

[
C1J 1

3

(
2
√

2

3

∣∣∣σ
λ

∣∣∣√N0ρ0ζ
3
2

)
+ C2Y 1

3

(
2
√

2

3

∣∣∣σ
λ

∣∣∣√N0ρ0ζ
3
2

)]
.

The general solution of (2.11) has the same form also for

N(x) =
N0

cos(γx)
, ρ(x) = ρ0 sin(2γx),

with ζ(x) = sin(γx).
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Let

N(x) = N0
x

arcsinx
, ρ(x) = ρ0

arcsinx

x
,

with N0, ρ0 > 0. Then the general solution of (2.11) reads as

ν(x, σ) = β tan (C + βζ[x]) ,

in which

β = |σ|
√
ρ0

N0

, ζ

[
arcsinx

x

]
=

∫
arcsinx

x
dx,

and C is unknown constant. The same form with ζ [arccosx], ζ [arctanx] and ζ [arccot x] has

the solution of (2.11) for

N(x) = N0
x

arccosx
, ρ(x) = ρ0

arccosx

x
,

N(x) = N0
x

arctanx
, ρ(x) = ρ0

arctanx

x
,

and

N(x) = N0
x

arccot x
, ρ(x) = ρ0

arccot x

x
,

respectively.

Riccati equation (2.11) can be integrated by quadrature also in the case of some arbitrary

function ζ describing either N and ρ:

ν ′x +N0ζ(x)ν2 + ρ0σ
2ζ(x) = 0.

Naturally, in order to keep the physical treatment of the problem we have to consider only

the case ζ > 0. Then its particular solution will, obviously, be

ν0 = i|σ|
√
ρ0

N0

.

Therefore, its general solution can be written as follows

ν(x, σ) = ν0 + β(x) exp

[
2ν0N0

∫
ζ(x)dx

]
,

in which

β(x) =

[
C −N0

∫
ζ(x) exp

[
2ν0N0

∫
ζ(ξ)dξ

]
dx

]−1

.
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2.2 Optimal Wave Processing and Transmission in Dis-

persive Media

Many real processes very often are roughly modelled by ordinary or partial differential

equations. However, local character of differential equations does not allow us to take into

account such real-world phenomena, as, for instance, processes with memory (prehistory).

Introduction of integral terms into differential equation, thereby transforming it into that of

integro-differential type, is of help in some cases. As a common one-dimensional example of

such equations in finite interval the following one may serve:

D1[w] +

∫ b

a

K(x, s, t)D2[w]ds = F (x, t), (2.32)

where w = w(x, t) is the unknown function, K : [a, b] × [a, b] × T → R is a given function,

called kernel of the equation, T is finite or infinite interval, D1[·] and D2[·] are differential

operators, acting on unknown function, and F : [a, b] × T → R is the given right hand

side, satisfying certain constraints. If operators D1[·] and D2[·] are linear, contains ordinary

or partial derivatives, then equation (2.32) is called linear, ordinary or partial, respectively.

Furthermore, equation (2.32) is called symmetric, if its kernel is symmetric: K(x, s, ·) =

K(s, x, ·), and difference or convolution type, if K(x, s, ·) = K(x− s, ·).

The monograph [3] is devoted to thorough investigation and classification of integro-

differential operators. Main areas of integro-differential equations application are described,

and numerous problems mathematically formulated by those equations, particularly in the-

ories of elasticity and viscoelasticity, continuum mechanics, contact interactions mechanics,

growing body mechanics and fracture mechanics are considered ibid. In [105] the description

of some financial processes by partial integro-differential equations are investigated.

Accounting of such irreversible processes of wave energy transfer to medium particle as

dispersion and dissipation, is accompanied with introduction in ordinary wave equation of

some additional linear terms acting on unknown function, the form of which depends only on

physical mechanism of interaction between wave and medium. In general, the description of

wave propagation in a homogeneous isotropic medium with dissipation or dispersion properties
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occupied domain O ⊂ R3 in three-dimensional formulation is mathematically equivalent to

solution of the following wave equation:

∆w =
1

c2

∂2w

∂t2
+ L[w], (x, y, z) ∈ O, t > 0, (2.33)

where w = w(x, y, z, t) is the state function, and L[w] is a linear operator. Particularly, in

sound wave propagation problem in a dissipative medium [117]

L[w] ≡ α
∂∆w

∂t
,

where α characterizes the dissipative nature of the medium.

In propagation problem of electromagnetic wave in a dispersive medium [117]

L[w] ≡ β
∂2

∂t2

∫ ∞
0

K(τ)w(x, y, z, t− τ)dτ, (2.34)

where K, is a bounded function, characterizing the medium dielectric susceptibility, β char-

acterizes the dispersive nature of the medium. Typical examples of electromagnetic waves

include radio waves, TV signals, radar beams, and light rays. Besides, it arises in modelling of

many other phenomena in deformable body mechanics (electro-elasticity, growth mechanics,

statistical mechanics, etc.), that is why the investigation of control problems for equations

with such terms has also practical importance.

So, we begin our investigation with non-homogeneous, one-dimensional analogue of equa-

tion (2.33) in finite time interval (for simplicity, symmetric: it can always be done by linear

transformation of variable t) when (2.34) is taken into account:

∂2w(x, t)

∂x2
=
∂2w(x, t)

∂t2
+ ε

∂2

∂t2

∫ ϑ

−ϑ
K(τ)w(x, t− τ)dτ + ud(t)v(x), (2.35)

(x, t) ∈ O := (0, 1)× (−ϑ, ϑ),

subjected to boundary conditions

w(0, t) = u0
b(t), w(1, t) = u1

b(t), t ∈ [−ϑ, ϑ], (2.36)

(all quantities and variables are supposed to be dimensionless). ε is a positive constant.

From mathematics point of view, control process in boundary-value problem (2.35), (2.36)

may be carried out either by boundary function u0
b (input signal), or by function ud (signal

filter located in the medium).
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The state function is given at t = −ϑ:

w(x,−ϑ) = w−ϑ(x),
∂w(x, t)

∂t

∣∣∣∣
t=−ϑ

= w1
−ϑ(x), x ∈ [0, 1]. (2.37)

In the framework of accepted physical interpretation, (2.35), (2.36), in particular, describes

the transfer of one-dimensional electromagnetic signal (impulse) on a finite distance in disper-

sive medium, at that u0
b and u1

b are input and output signals, respectively. It covers also other

phenomena in electro- and magneto-elasticity. Unlike traditional statement of optimal control

problems for distributed parameter systems [22], demanding to ensure given state at t = ϑ

w(x, ϑ) = wϑ(x),
∂w(x, t)

∂t

∣∣∣∣
t=ϑ

= w1
ϑ(x), x ∈ [0, 1], (2.38)

we may demand to ensure one boundary condition by appropriate choice of the other one

when functions (2.37), (2.38) are given.

Our main purpose is to construct an efficient for numerical reasons algorithm of the fol-

lowing two problems solution.

The boundary control problem requires determination of admissible control functions u0
b ∈

U2 ensuring given output signal u1
b when data (2.37) and (2.38) are given and derivation of

necessary and sufficient conditions for exact controllability.

The distributed control problem requires determination of admissible control functions

ud ∈ U1 ensuring given output signal u1
b when input signal u0

b and states (2.37), (2.38) are

given, as well as find necessary and sufficient conditions for exact controllability.

Applying the operator A[−ϑ,ϑ][·] to (2.35), (2.36), in terms of D we shall derive

∂2w1(x, t)

∂x2
=
∂2w1(x, t)

∂t2
+ ε

∂2

∂t2
[K1 ∗ w1] + ud1(t)v(x) +W (x, t), (x, t) ∈ (0, 1)× R, (2.39)

w1(0, t) = u0
b1(t), w1(1, t) = u1

b1(t), t ∈ R. (2.40)

W (x, t) = W−(x, t)−W+(x, t),

W±(x, t) = [δ(t± ϑ) + εK1(t± ϑ)]w1
±ϑ(x) +

d

dt
[δ(t± ϑ)− εK1(t± ϑ)]w±ϑ(x).

It should be noted, that the function W (x, t) containing delay and advance of argument t
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is identically zero when t± ϑ /∈ [−ϑ, ϑ], at that

W (x, t) =



−W+(x, t), t ∈ [−ϑ, 0);

W0(x), t = 0;

W−(x, t), t ∈ (0, ϑ],

x ∈ [0, 1],

where

W0(x) = ε
[
K1(−ϑ)w1

−ϑ(x)−K′1(−ϑ)w−ϑ(x)−K1(ϑ)w1
ϑ(x) +K′1(ϑ)wϑ(x)

]
.

In transformed form (2.39) often occurs also in optics, mechanics and theory of probability

[40,51,117].

2.2.1 Control via Input Signal and Signal Filter

Applying now Fourier real generalized integral transform with respect to variable t to

(2.39), (2.40), after some algebraic transformations we will obtain:

d2w1(x, σ)

dx2
+ σ2[1 + εK1(σ)]w1(x, σ) = ud1(σ)v(x) +W (x, σ), (x, σ) ∈ (0, 1)× R, (2.41)

w1(0, σ) = u0
b1(σ), w1(1, σ) = u1

b1(σ). (2.42)

According to Butkovskiy‘s generalized method we have the following theorem.

Theorem 2.5 u0
b1 ∈ U2 resolves the first problem if and only if

u0
b1(zk) = (−1)k

[
u1
b1(zk)− Λ (1, zk, ud1(zk))

]
, k ∈ N, (2.43)

as long as

χ(zk) = iπk, k ∈ N. (2.44)

It was obtained taking into account that the general solution of (2.41), (2.42) reads as

w1(x, σ) = h1(σ) exp [χ(σ)x]+h2(σ) exp [−χ(σ)x]+Λ(x, σ, ud1(σ)), (x, σ) ∈ [0, 1]×R, (2.45)

with

hp(σ) =
[u1
b1(σ)− Λ (1, σ, ud1(σ))] exp [±χ(σ)]− u0

b1(σ)

exp [±2χ(σ)]− 1
, p ∈ {1; 2},
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Λ(x, σ, ud1(σ)) =
1

χ(σ)

∫ x

0

[
ud1(σ)v(ξ) +W (ξ, σ)

]
sinh[χ(σ)(x− ξ)]dξ,

χ(σ) =
√

(−iσ)2
[
1 + εK1(σ)

]
= i|σ|

√
1 + εK1(σ).

From Theorem 2.5 immediately follows

Corollary 2.1 If the kernel of (2.39) satisfies conditions

a) Ft[K1] is a real-valued function3,

b) 1 + εK1(σ) > 0, σ ∈ R,

then u0
b1 ∈ U2 resolves the first problem if and only if (cf. (2.43), (2.44))

u0
1(zk) = (−1)k

[
u1
b1(zk)− Λ (1, zk, ud1(zk))

]
, k ∈ N, (2.46)

as long as

χ0(zk) = πk, k ∈ N. (2.47)

To proof the Corollary 2.1, instead of (2.45) the following must be used:

w1(x, σ) = u0
b1(σ) cos [χ0(σ)x] +

u1
b1(σ)− u0

b1(σ) cos [χ0(σ)]− Λ (1, σ, ud1(σ))

sin [χ0(σ)]
sin [χ0(σ)x] +

+ Λ(x, σ, ud1(σ)), (x, σ) ∈ [0, 1]× R,

with

Λ(x, σ, ud1(σ)) =
1

χ0(σ)

∫ x

0

[
ud1(σ)v(ξ) +W (ξ, σ)

]
sin[χ0(σ)(x− ξ)]dξ,

χ0(σ) =
√
σ2
[
1 + εK1(σ)

]
= |σ|

√
1 + εK1(σ).

According to Corollary 1.1, condition a) of Corollary 2.1 holds, particularly, when K1(t),

t ∈ R, is an even function: K1(−t) = K1(t). Let us add that a condition similar to condition b)

of Corollary 2.1 is obtained also in [40] when introducing the solvability of Riemann problem

in theory of analytical functions. the well-posedness of (2.39), (2.40), when K1 ∈ L1[−ϑ, ϑ]

function is even and ud1, W ∈ L1[−ϑ, ϑ] is proved in [120]. It should be noted also, that

conditions a) and b) of Corollary 2.1 have simple physical treatment: the quantity ε(σ) =

1 + εK1(σ) is complex dielectric permittivity of isotropic medium with dispersion property

[51, 117], and those conditions are equivalent to assumption, that quantity ε(σ), σ ∈ R, is

3See Corollary 1.1.
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real-valued, because if so it is positive for all known materials. On the other hand, with

increase of propagating signal frequency to values similar to eigenfrequency of medium, the

difference between dielectric and conducting abilities of medium decreases, and it turns out,

that existence of imaginary part in dielectric permittivity expression from macroscopic point

of view is indistinguishable from conducting ability; they both lead to heat evaluation. Thus,

both conditions of Corollary 2.1 are practically realizable.

To obtain controlled electromagnetic wave field, we have to apply Fourier inverse general-

ized transform to (2.45). Then, on the basis of Corollary 1.1 from (2.45) we have

w(x, t) = F−1
t [w1] = F−1

c [Re w1]−F−1
s [Im w1] =

=
1

π

∫ ∞
0

[Re w1(x, σ) cos(σt)− Im w1(x, σ) sin(σt)] dσ,
(x, t) ∈ [0, 1]× [−ϑ, ϑ].

Separating the real and the imaginary parts of equalities (2.43), we will obtain the following

countable system of equalities:∫ ϑ

−ϑ
ub(t) exp [−ςkt] cos(σkt)dt =M1k,

∫ ϑ

−ϑ
ub(t) exp [−ςkt] sin(σkt)dt =M2k, k ∈ N, (2.48)

M1k + iM2k ≡Mk = (−1)k
[
u1
b1(σk + iςk)− Λ (1, σk + iςk, ud1(σk + iςk))

]
.

Let us consider two examples of optimal controls determination. First, determine L2–

optimal solution of system (2.48) for boundary control problem, when the control process is

considered in time-interval t ∈ [−π, π], ud ≡ 0, the second boundary condition, initial and

terminal data read as follows

u1
b(t) = cos(2t), w−π(x) = − cos(πx), w1

−π(x) = sin(πx), wπ(x) = cos(2πx), w1
π(x) = sin(2πx),

respectively, and the kernel of equation (2.39)– K1(t) = A[−π,π] [exp [−a|t|]], t ∈ R, a is a pos-

itive constant (Debye dispersion model). Note, that the transmission conditions, concerning

chosen data are satisfied.

It obviously satisfies condition a) of Corollary 2.1. Furthermore, as K1(σ) = a(a2 + σ2)−1,

therefore 1 + εK1(σ) > 0 for all σ ∈ R and positive constants ε and a. Then, from (2.47) we

will obtain

σk =

[√
γ2
k + a2(πk)2 + γk

] 1
2

, ςk =

[√
γ2
k + a2(πk)2 − γk

] 1
2

,
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2γk = (πk)2 − a(a+ 2ε), k ∈ N.

It is easy to see, that for large k roots σk do not depend on parameter a, whereas

limk→∞ ςk = a. But as ςk are controls damping factor, then one may conclude, that as faster

the kernel K1(t) decreases, as faster controls damp.

Add, that σk = O(k) when k → ∞, i.e. for k large enough they became equidistant.

Moreover, as a result of calculations was observed, that Mpk = O (k−3) , p ∈ {1; 2}, when

k → ∞, which justifies truncation of infinite system (2.48). At that for large k they do not

depend on factor α in range [0.01, 10]. The boundary optimal control function is plotted in

Figures 2.4, 2.5, when N = 80 and a = 0.25; 0.5; 1; 2. From this graphs it is obvious, that

when parameter a increases, absolute value of controls also increases.

Figure 2.4: Optimal control function for N = 80 when a = 0.25 and a = 0.5.

Let us proceed now to solution of the second problem. Instead of resolving system (2.43)

in this case we will obtain

ud1(zk) =
u1
b1(zk)− (−1)ku0

b1(zk)−R
[
W
]

(zk)

R [v] (zk)
, k ∈ N, (2.49)

for the same roots zk, where

R [η] (zk) =
1

iπk

∫ 1

0

η(ξ) sinh [iπk(1− ξ)] dξ.

A system of equalities of (2.48) type with respect to unknown control function can also be

obtained in this case with the same kernels, but with other right hand sides.
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Figure 2.5: Optimal control function for N = 80 when a = 1 and a = 2.

From an applications point of view, electromagnetic signals controlled by a point source

are especially important. This case corresponds to the substitution in resolving conditions

(2.49) v(x) = δ(x− x0) with x0 ∈ (0, 1). Then the relation

R [v] (zk) =
1

iπk
sinh [iπk(1− x0)] , k ∈ N,

should be taken into account. Note also, that when x0 → 0 or x0 → 1, i.e. when the source

“reaches” any of the medium boundaries, R [v] (zk)→ 0, while the numerator of (2.49) remains

bounded, therefore ud1(zk) can not be determined from (2.49).

Let us add that under the conditions of Corollary 2.1 in this case we will obtain:

ud1(zk) =
u1
b1(zk) + (−1)k+1u0

b1(zk)−R
[
W
]

(zk)

R [v] (zk)
, k ∈ N,

for the same roots zk, where

R [η] (zk) =
1

πk

∫ 1

0

η(ξ) sin [πk(1− ξ)] dξ.

Thus, admissible controls ought to be determined from infinite system (2.48). Its Lp–

optimal solutions, 1 ≤ p ≤ ∞, may be constructed according to Theorem 1.3. Corresponding

existence results also remain true (see Theorem 1.2).

As second illustrative example, let us consider the L2–optimal solution of system (2.48)

for distributed control problem, when

u0
b(t) = cos t, u1

b(t) = sin(2t), w−π(x) = (x− 1) cos(πx), w1
−π(x) = −2x cos(πx),
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wπ(x) = (x− 1) cos(2πx), w1
π(x) = 2x cos(2πx), (x, t) ∈ [0, 1]× [−π, π],

and v(x) = δ(x− x0), K1(t) = −A[−π,π] [b|t|−1], t ∈ R, b is a positive constant. Note, that the

transmission conditions, concerning chosen data are satisfied. The kernel K1 in this case also

satisfies condition a) of Corollary 2.1. Moreover, K1(σ) = 2b(γ + ln |σ|), where γ is Euler‘s

constant, and, therefore choosing parameter b in a certain manner one may satisfy condition

b) of Corollary 2.1 as well. Substituting results in (2.47), we will obtain

zk =
βk√

W
(
β2
k · exp

[
1
bε

+ 2γ
]) , β2

k =
(πk)2

bε
, k ∈ N.

Taking into account properties of that function we may prove, that all roots zk, k ∈ N, in this

case are real, i.e. ςk = 0. Moreover, zk = O(k) and Mpk = O (k−3) , p ∈ {1; 2}, when k →∞

as well. At that for large k they do not depend on factor ε in range [0.01, 10]. The optimal

control function is plotted in Figures 2.6–2.7 when N = 80 and x0 = 0.685.

Figure 2.6: Optimal control function for b = 0.001 (the upper) and b = 0.01 (the lower).
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Figure 2.7: Optimal control function for b = 0.1 (the upper) and b = 20 (the lower).

It was observed, that when parameter b increases, the absolute value and frequency of

control impacts decrease, and for large values of that parameter the coefficients of sines (lo1k)

in (1.20) dominate those of cosine (lo2k). It was also observed, that the absolute value of the

control function does not signally depend on the point x0, except for singular cases x0 → 0+

and x0 → 1− mentioned above.

Note that all parameters of the system (2.36)–(2.38) were chosen in such manners that the

criterion (1.22) is always positive, so the optimal solution exists.

On the basis of obtained explicit formulas for optimal boundary control a simulation is im-

plemented using the features of COMSOL Multiphysics 5.0 package. The medium is modelled

as a layer of constant thickness h = infinite in two other directions. The dispersion model

is set to K(t) = exp [−at] (Debye model considered for the boundary control problem) with

a = 106 Hz: so the dispersion is nonlinear. Initially the electromagnetic wave along the layer

thickness has the form w(x, 0) = sin(πx). The optimal resolving control is implemented from
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its boundary in order to have w(x, T ) = sin(2πx) at moment T = 10−6 s. The results of

simulation is plotted in Figure 2.8.

For comparison the same boundary input was given to similar layer with constant param-

eters (dielectric permittivity), i.e. linear dispersion. The results of simulation is plotted in

Figure 2.9.

Figure 2.8: The result of simulation: nonlinear (Debye) dispersion. The electric field is plotted

against the thickness of the layer on one cross section (from the left) and in dimensions three

(from the right).

Figure 2.9: The result of simulation: linear dispersion. The electric field is plotted against the

thickness of the layer on one cross section (from the left) and in dimensions three (from the

right).
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CHAPTER 3

MATERIAL DISTRIBUTION, TOPOLOGY AND

STRUCTURAL OPTIMIZATION FOR

DEFORMABLE STRUCTURES

Optimal design problems are traditionally considered in order to minimize or maximize

some parameters (weight, volume, load capacity and etc.) of a design with given structure

[6, 7, 26, 107]. In monograph [26] a wide range of construction optimization problems of three

main kinds: optimization of size, form and structure, are investigated. Recently, so–called

topology optimization problems have begun to be investigated in order to minimize a specific

functional describing the material distribution in the given domain, retaining or even improving

desired properties of the structure. The solution of topology optimization problems, unlike

those of structural optimization, where necessary conditions of optimality have to be solved,

are generally reduced to problem of nonlinear programming [15] (see, for example, [5, 14, 19,

32, 47–50, 52, 59, 60, 72, 73, 76, 82, 87, 96, 106, 121]). Nevertheless, the explicit analytical form

solution in such problems is connected with significant difficulties, and the numerical solution

requires high computational costs.

Such problems have not only practical importance, but stand out with complexity of inves-

tigation, because mathematically they are formulated as nonlinear control systems, therefore

they have also theoretical importance.

In the general statement the topology optimization problems require minimization of given

criterion

κ[u] −→
u

min, u ∈ U ,

usually describing the distribution of the material in design under certain geometrical and
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characteristic constraints.

If, for example, the control problem is considered for a deformable design, equation of its

motion, e.g.

Du[w] = f(x, t), (x, t) ∈ O × (0, T ), (3.1)

(or static equilibrium) may be considered as characteristic (differential) constraints, whereby

x ∈ O ⊂ R3 will be the geometrical constraint. Besides, the solution of (3.1) satisfies given

conditions on boundary:

B[w] = w∂(t), (x, t) ∈ ∂O × [0, T ]. (3.2)

In dynamical problems initial conditions of form

I [w] = 0, x ∈ O,

are given. The main purpose of the control in dynamical problem may be, for instance,

ensuring the given terminal conditions (see [22] and Chapter 2):

T [w] = 0, x ∈ O.

The nonlinear differential operator Du[·] is defined in O×(0, T ), B[·] is a linear or nonlinear

operator, representing the boundary conditions, f : O × (0, T ) → R is a given function

satisfying certain conditions.

Examples of operators Du[·] and B[·] may be found, for instance, in monographs [6, 7, 14,

47, 50, 52, 100, 107] and in articles [10, 17–19, 32, 48, 49, 59, 60, 64, 72–76, 79, 81, 82, 85–87, 96, 99,

104,106,108].

In order to solve the bilinear control problems when B[·] is linear we suggest to use the

Bubnov–Galerkin procedure [91]. Suppose, that we have already constructed a system of

(linearly independent) approximating (also called basis or Galerkin) functions {ϕn(x)}Nn=0, the

first one of which, ϕ0, satisfies non–homogeneous, and the rest– to homogeneous boundary

conditions (3.2). Then the residue, obtained as a result of substitution of approximating

solution

wN(x, t) = ε0(t)ϕ0(x) +
N∑
n=1

εn(t)ϕn(x), (x, t) ∈ O × [0, T ], (3.3)
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into (3.1), will be

RN(x, t) = Du[wN ]− f(x, t), (x, t) ∈ O × [0, T ]. (3.4)

Above the coefficients εn, n ∈ {0, N}, must be determined, and t is considered as a

parameter. According to the Bubnov–Galerkin procedure, the required coefficients εn, n ∈

{0, N}, are determined from orthogonality conditions of basis functions {ϕn(x)}Nn=0 to residual

(3.4): ∫
O
RN(x, t)ϕn(x)dx = 0, t ∈ [0, T ], n ∈ {0;N}. (3.5)

If for some N0 ∈ N the residual (3.4) is identically zero: RN0(x, t) ≡ 0, then corresponding

function wN0(x, t) (3.3) will be the exact solution of boundary–value problem (3.1), (3.2).

Otherwise, increasing number N of approximating functions {ϕn(x)}Nn=0 we may increase the

accuracy of approximation (3.3).

Since the state operator Du[·] is bilinear, (3.5) provides linear equations (differential, in-

tegral, integro-differential, functional, algebraic, etc.). After determining the unknown coef-

ficients εn(t) from the system of linear equations (3.5) and substituting them into (3.3), and

taking into account, that at T given terminal conditions must be satisfied, we will derive the

system of nonlinear restrictions

T [w] = T

[
ε0ϕ0(x) +

N∑
n=1

εnϕn(x)

]
, x ∈ O. (3.6)

which the unknown function u 1 has to be determined from.

Remark 3.1 i) The complexity of the technique application in a particular problem de-

pends on the complexity of operator Du[·] and, especially, its component with respect to

t: it defines the type (algebraic, differential, integral etc.) of equation (3.5). Its solution

from appropriate space can be approximated, for example, by expansion

εn(t) =
∞∑
k=1

εkTk(t).

ii) By all means, the procedure can also be applied in the case when Du[·] is nonlinear in

both control and state functions, which seems to be very complicated.

1Recall Remark 1.2.
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iii) Since (3.6) contains the unknown function only with inclusion in some functional while

the rest parameters of the equality are known, after computation (in most cases numer-

ical) we will be able to obtain the values of that functional, say, J [u] = M. This will

be the system of necessary and sufficient conditions, which the control function must be

determined from.

To be clear let us explain the derivation of controllability conditions (3.6) on a certain

example. Let, for simplicity, (3.1) has the form

Du[w]− 1

c2

∂2w

∂t2
= 0, (x, t) ∈ O × (0, T ).

Then initial and terminal conditions may have the form

w(x, 0) = w0(x),
∂w

∂t

∣∣∣∣
t=0

= w1
0(x), x ∈ O,

w(x, T ) = wT (x),
∂w

∂t

∣∣∣∣
t=T

= w1
T (x), x ∈ O,

respectively. Therefore (3.6) will take the form

wT (x) = ε0(T )ϕ0(x) +
N∑
n=1

εn(T )ϕn(x), w1
T (x) = ε̇0(T )ϕ0(x) +

N∑
n=1

ε̇n(T )ϕn(x),

in which ε̇ denotes its time derivative. Expanding terminal functions into basis functions and

using the linearly independence of those, we will arrive at required restrictions.

The case when the control function does not explicitly depend on time t is covered in the

first two subsections of this chapter, which is based on the articles [60,72–74,106] and contains

solutions to several problems of optimization. First, in Section 3.1, optimal distribution of

viscoelastic material with given characteristics under elastics beams with given geometry and

characteristics is suggested, when the beam is subjected to constant normal load uniformly

passing through its upper bound. In Section 3.2 a two dimensional distribution optimization

problem is considered for elastic material under an elastic rectangular plate subjected to

uniformly moving normal load. The problem of optimization in both cases is the choice of

a distribution providing null terminal state in given time after the load is detached of the

corresponding structure. The last Section 3.3 is devoted to choice of optimal structure for

an infinite layer allowing the propagation of periodic waves with given phase speed in the

direction perpendicular to the structure non–homogeneity.
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3.1 Optimization of Viscoelastic Material Distribution

under Finite Elastic Beam Subjected to Moving

Load

To show how the procedure described above should be applied for solving particular prob-

lems, we consider a finite, elastic beam undergo a constant concentrated load P∗, moving

over the beam uniformly with constant speed v∗ (Figure 3.1). Our aim is to damp the beam

vibrations in required time after the load detaches from the beam. For that purpose we have

only limited quantity of viscoelastic material at our disposal. The material may be distributed

under the beam in several manners: continuously, partially, point-wise etc. As it supposed

to be, we are interested in wasting as less material as possible: it is quite obvious that the

point-wise distribution, corresponding to vibration absorbers (dampers), has minimal volume.

The presence of viscoelastic base will lead to significant change of the beam bending energy:

when it increases, the frequency of the vibrations increases as well, and as soon as the energy

of the beam turns to zero, vibrations damp (it is quite obvious, that it may happen only

after the moving load detaches from the beam). Quantitatively that change will, naturally,

depend on the manner of distribution of the base. Thence, we may achieve our aim by varying

all possible distribution of the base under the beam. Therefore, the achieving of the beam

vibrations damping with as little quantity of the material as possible will be, by all means,

very important.

Let us now construct the mathematical model of the problem described above. Let the

beam is homogeneous and is made of linear–elastic, isotropic material. Suppose also, that the

beam is simply supported. With respect to viscoelastic material we accept the Kelvin–Voigt

model [27] as it is usually done in such problems [39, 103, 112]. This section is based one the

results of [72,73].

Then the bending vibrations of the beam will be described by the following bilinear partial

differential equation [112]

EJ
∂4w∗(x∗, t∗)

∂x4
∗

+ u(x∗)

[
α2
∗
∂w∗(x∗, t∗)

∂t∗
+ β2

∗w∗(x∗, t∗)

]
+ ρS

∂2w∗(x∗, t∗)

∂t2∗
= f∗(x∗, t∗), (3.7)
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Figure 3.1: Illustration of the beam on viscoelastic base.

(x∗, t∗) ∈ (−l, l)× (0, T ),

subjected to the boundary conditions of simply support

w∗(±l, t∗) =
∂2w∗(x∗, t∗)

∂x2
∗

∣∣∣∣
x∗=±l

= 0, t∗ ∈ [0, T ]. (3.8)

Here u(x) is a dimensionless function, describing the distribution of the base under the beam.

The right hand side of (3.7) describes influence of the moving load.

The initial state of the beam is given:

w∗(x∗, 0) = w0∗(x∗),
∂w∗(x∗, t∗)

∂t∗

∣∣∣∣
t∗=0

= w1
0∗(x∗), x∗ ∈ [−l, l]. (3.9)

The moving load detaches from the beam at given (fixed) moment τ∗ = 2l/v∗. Then, the

explicit form of that influence may be represented as follows:

f∗(x∗, t∗) = P∗A[0,τ∗] [δ(x∗ + l − v∗t∗)] , (x∗, t∗) ∈ (−l, l)× (0, T ). (3.10)

In order to be allowed to control over discontinuous (piece-wise, point-wise, step-wise, etc.)

functions, the set of admissible controls is taken to be

U1 =

{
u ∈ D;

∫ x∗

−l
u(ξ)dξ ∈ L1[−l, l]; supp u ⊂ [−l, l], 0 ≤ u ≤ 1

}
Our main aim is to choose an admissible control uo ∈ U1, providing the terminal state

w∗(x∗, T ) = 0,
∂w∗(x∗, t∗)

∂t∗

∣∣∣∣
t∗=T

= 0, x∗ ∈ [−l, l], (3.11)
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as well as minimizing the functional

κ1[u] =

∫ l

−l
u(x∗)dx∗, u ∈ U1. (3.12)

Up to a constant multiplier, the functional κ1[u] describes the mass of viscoelastic material

spent for implementing the distribution u. The natural restriction on control time is τ∗ < T ≤

T0, in which T0 is the time when the bending vibrations of the beam vanish in the case u ≡ 1.

We suppose finally, that the transmission conditions between boundary and initial and

terminal functions are satisfied:

w0∗(−l) = w′′0∗(−l) = w0∗(l) = w′′0∗(l) = 0, w1
0∗(−l) = w1′′

0∗ (−l) = w1
0∗(l) = w1′′

0∗ (l) = 0.

Before proceeding further, let us introduce the dimensionless variables and functions:

x =
x∗
l
, t =

2t∗ − T
T

ϑ, w =
w∗
l
, α2 =

α2
∗l

4

EJ

2ϑ

T
, β2 =

β2
∗ l

4

EJ
, γ2 =

ρSl4

EJ

4ϑ2

T 2
,

P =
P∗l

3

EJ
, v =

v∗
l

T

2ϑ
, τ = τ∗

2ϑ

T
.

Then, the system (3.7)–(3.12) can be written in the following form:

∂4w(x, t)

∂x4
+ u(x)

[
α2∂w(x, t)

∂t
+ β2w(x, t)

]
+ γ2∂

2w(x, t)

∂t2
= f(x, t), (3.13)

(x, t) ∈ (−1, 1)× (−ϑ, ϑ),

f(x, t) = PA[−ϑ,ϑ−τ∗] [δ(x+ 1− v(t+ ϑ))] , (3.14)

w(±1, t) =
∂2w(x, t)

∂x2

∣∣∣∣
x=±1

= 0, t ∈ (−ϑ, ϑ), (3.15)

w(x,−ϑ) = w0(x),
∂w(x, t)

∂t

∣∣∣∣
t=−ϑ

= w1
0(x), x ∈ (−1, 1), (3.16)

w(x, ϑ) = 0,
∂w(x, t)

∂t

∣∣∣∣
t=ϑ

= 0, x ∈ (−1, 1), (3.17)

κ1[u] =

∫ 1

−1

u(x)dx. (3.18)

Now, proceeding to the solution of the problem, we use Butkovskiy‘s generalized method.

Applying the operator A[−ϑ,ϑ][·] to (3.13)–(3.15), we will obtain

∂4w1(x, t)

∂x4
+ u(x)

[
α2∂w1(x, t)

∂t
+ β2w1(x, t)

]
+ γ2∂

2w1(x, t)

∂t2
= G(x, t), (3.19)
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(x, t) ∈ (−1, 1)× R,

G(x, t) = f1(x, t) + α2u(x)w0(x)δ(t+ ϑ) + γ2
[
w0(x)δ′(t+ ϑ) + w1

0(x)δ(t+ ϑ)
]
, (3.20)

w1(±1, t) =
∂2w1(x, t)

∂x2

∣∣∣∣
x=±1

= 0, t ∈ R. (3.21)

Thus, we have a boundary–value problem in D over [−1, 1]×R. Therefore, we may involve

Fourier generalized integral transform with respect to t. Applying the Fourier generalized

distributional to (3.19)–(3.21) we will obtain

d4w1(x, σ)

dx4
+
[(
β2 − iσα2

)
u(x)− σ2γ2

]
w1(x, σ) = G(x, σ), (x, σ) ∈ (−1, 1)× R, (3.22)

G(x, σ) = f 1(x, σ) +
[
γ2
[
w1

0(x)− iσw0(x)
]

+ α2u(x)w0(x)
]

exp [−iσϑ] , (3.23)

w1(±1, σ) =
d2w1(x, σ)

dx2

∣∣∣∣
x=±1

= 0, σ ∈ R. (3.24)

To find the Fourier image of f1(x, t) we take into account the obvious relation

f1(x, t) ≡ A[−ϑ,ϑ][f ] = f(x, t), (x, t) ∈ (−1, 1)× R.

Then

f 1(x, σ) =
P

v
[θ(x+ 1)− θ(x− 1)] exp

[
iσ

(
x+ 1

v
− ϑ
)]

.

Here we have taken into account that vτ = 2.

It is characteristic for (3.22), that the control function is included as in its coefficients,

as well as in its right hand side. However, in particular case when α2
∗ = 0, and therefore

α2 = 0, which corresponds to pure elastic material [60], the control function is included only

in coefficients of (3.22). In the case when β2
∗ = 0, and therefore β2 = 0, which corresponds to

pure viscous material [72], introducing the auxiliary function

w(x, σ) = iσ exp [iσϑ]w1(x, σ) + w0(x),

we may reduce the control function from the right hand side of (3.22) and obtain

d4w(x, σ)

dx4
−
[
σ2γ2 + iσα2u(x)

]
w(x, σ) = G0(x, σ), (x, σ) ∈ [−1, 1]× R,

G0(x, σ) = iσ
[
f 1(x, σ) + γ2w1

0(x)
]

+ wIV0 (x).

Now we are able to involve the Bubnov–Galerkin procedure as described above. In our

case, the system {sin(πnx)}n∈N is orthonormal in [−1, 1] and satisfies the boundary conditions
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(3.24), therefore can be taken as family of approximate functions. The approximating solution

of (3.22)–(3.24) therefore will take the form

w1N(x, σ) =
N∑
n=1

εn(σ) sin(πnx), (x, σ) ∈ [−1, 1]× R. (3.25)

Then, the residual (3.4) we will be

RN(x, σ) =
N∑
n=1

[
(πn)4 +

(
u(x)

(
β2 − iσα2

)
+ γ2

)]
εn(σ) sin(πnx)−G(x, σ).

Taking into account this relation, from (3.5) we will derive the following system of linear

algebraic equations with respect to unknown coefficients εn

N∑
n=1

Λkm(σ)εn(σ) = Ων(σ), ν ∈ {1;N}, (3.26)

where

Λnν(σ) =
[
(πn)4 − σ2γ2

]
δνn +

[
β2 − iσα2

]
Jnν [u],

Ων(σ) =

∫ 1

−1

G(x, σ) sin(πνx)dx,

Jnν [u] = Jνn[u] =

∫ 1

−1

u(x) sin(πnx) sin(πνx)dx.

It is obvious, that Jnn[u] ≥ 0. From the other hand side |Jnν [u]| ≤ κ[u], n, ν ∈ {1;N}.

To apply Butkovskiy‘s generalized technique, let us represent the solution of (3.26) as

follows:

εn(σ) =
∆n(σ)

∆(σ)
, σ ∈ R, (3.27)

and substitute it (3.25):

w1N(x, σ) =
N∑
n=1

∆n(σ)

∆(σ)
sin(πnx). (3.28)

Since w1(x, t) ≡ A[−ϑ,ϑ][w] by the definition is compactly supported in [−ϑ, ϑ], then, ac-

cording to Wiener–Paley–Schwartz theorem, the extension w1(x, σ+ iς) is entire. In the same

way as we did in Section 1.3, from (3.28) we will have

∆1(zk) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

Ω1(zk) Λ12(zk) ... Λ1N(zk)

Ω2(zk) Λ22(zk) ... Λ2N(zk)

... ... ... ...

ΩN(zk) Λn2(zk) ... ΛNN(zk)

∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0, k ∈ {1; 2N}, (3.29)
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as long as

∆(zk) = 0. (3.30)

Remark 3.2 It is easy to see from the expression of Λnν(σ), the determinant ∆(σ) is a

polynomial of degree 2N , therefore (3.30) admits 2N complex roots. But since Re ∆(−σ −

iς) = Re ∆(σ + iς), and Im ∆(−σ − iς) = Im ∆(σ + iς), which means that zk = σk + iςk

and zk = −σk + iςk satisfy (3.30) simultaneously, we conclude that (3.29) contains only N

independent conditions. At this, that number cannot be reduced further.

Solving (3.30) and substituting zk into (3.29), with respect to Jnν [u] we will obtain the

system of restrictions

Jnν [u] =Mnν , n, ν ∈ {1;N},

where the constants Mnν depend on all data of (3.29), and therefore (3.13)–(3.18), except

unknown u.

Thus, the solution of the optimal control problem (3.13)–(3.18) is reduced to minimization

of the functional (3.18) under integral constraints of equality type. Since the kernels of Jnν [u]

are bounded, we can solve the reduced problem by means of problem of moments. According

to Subsection 1.3.12:

uo(x) =
J∑
j=1

δ(x− xoj), x ∈ (−1, 1). (3.31)

The solution obtained corresponds to discrete distribution of viscoelastic material under

the beam. As it was mentioned above, it is the most common model of vibration absorbers

(dampers) [39, 88, 94, 95, 103, 112]: the switching points −1 < xoj < xoj+1 < 1 corresponds to

the placements of the dampers under the beam and are determined from the system [67–74]

J∑
j=1

sin
(
πnxoj

)
sin
(
πνxoj

)
=Mnν , n, ν ∈ {1;n}. (3.32)

It should be noted, that (3.31) is not unique in the sense that the number of dampers J

satisfying
{
xoj
}J
j=1
∈ (−1, 1) may be reduced. This may put a start to study of very important

problem about finding the reasonable number of the dampers ensuring the same result. The

maximum number of dampers under use may be defined as it is done in [90].

2We recall Remarks 1.1, 1.2 once again.
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After determining the optimal resolving controls, we may aim to find also the deflection

of the beam. Applying to (3.25) with substituted uo the Fourier inverse transform, we will

obtain

w1N(x, t) =
N∑
n=1

εn(t) sin(πnx), (x, t) ∈ [−1, 1]× R. (3.33)

Remark 3.3 As the real parts of expressions Λnν(σ) and Ων(σ) are even, and the imaginary

parts are odd:

Re Λnν(−σ) = Re Λnν(σ), Re Ων(−σ) = Re Ων(σ),

Im Λnν(−σ) = −Im Λnν(σ), Im Ων(−σ) = −Im Ων(σ),

it is clear that

Re εn(−σ) = Re εn(σ), Im εn(−σ) = −Im εn(σ).

According to Corollary 1.1 it is necessary and sufficient for εn(t) = F−1
t [εn], and therefore for

w1N(x, t), to be real valued. Then,

εn(t) =
1

π

∫ ∞
0

[Re εn(σ) cos(σt) + Im εn(σ) sin(σt)] dσ = F−1
c [Re εn] + F−1

s [Im εn],

Re εn(σ) =
Re ∆n(σ)Re ∆(σ) + Im ∆m(σ)Im ∆(σ)

(Re ∆(σ))2 + (Im ∆(σ))2 ,

Im εn(σ) = −Re ∆n(σ)Im ∆(σ)− Im ∆n(σ)Re ∆(σ)

(Re ∆(σ))2 + (Im ∆(σ))2 .

We finalize with numerical simulation based on the obtained results. Let N = 3, w0(x) =

sin(πx), w1
0(x) ≡ 0, x ∈ [−1, 1]. Then we get ∆(σ) = Γ1Γ2Γ3 + G4E4 + G5E3 −G6E2,

∆1(σ) = Ω1Γ2Γ3 + E2J23[u] [−Ω1J23[u] + Ω2J13[u] + Ω3J12[u]]−

− E [Ω2Γ3J12[u] + Ω3Γ2J13[u]] ,

∆2(σ) = Ω2Γ1Γ3 + E2J13[u] [Ω1J23[u]− Ω2J13[u] + Ω3J12[u]]−

− E [Ω1Γ3J12[u] + Ω3Γ1J23[u]] ,

∆3(σ) = Ω3Γ1Γ2 + E2J12[u] [Ω1J23[u] + Ω2J13[u]− Ω3J12[u]]−

− E [Ω1Γ2J13[u] + Ω2Γ1J23[u]] ,

where

Ων = (−1)νλνP ·
1− e2iσ

v

λ2
ν − σ2

− iσγ2δν1 + α2J1ν [u], λν = πνv,
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Γν = EJνν [u] + Gν , E = β2 − iσα2, Gν = (πν)4 − γ2σ2, ν ∈ {1; 3},

G4 = J13[u] [J12[u]J23[u] + J13[u]J22[u]] ,

G5 = J23[u] [J11[u]J23[u]− J12[u]J13[u]]− J2
12[u]J33[u],

G6 = G1J
2
23[u] + G2J

2
13[u] + G3J

2
12[u].

It should be taken into account as well the obvious relation J11[u] + J22[u] = 2J13[u].

On the basis of (3.32) the switching points are calculated for different values of parameters

P, v, τ, α2, β2. Some of them are brought in Table 3.1.

P α2 β2 v xoj

100 0.1 100 100 xo1 = −0.87, xo2 = −0.26, xo3 = 0., xo4 = 0.72

200 1 150 50 xo1 = −0.77, xo2 = −0.06, xo3 = 0., xo4 = 0.69

200 5 200 40 xo1 = −0.56, xo2 = −0.26, xo3 = 0.61

Table 3.1: The switching points xoj for γ2 = π4.

On the basis of obtain results a simulation is implemented using the features of COMSOL

Multiphysics 5.0 package and suggested improvements is shown through comparison of the

beam deflection in cases of equidistant and non-equidistant dampers. At this, the placements

of non-equidistant dampers are found by the above method.

First we place a simply supported elastic beam of 1 m length (the width and the height of

the beam cross section are chosen to be 1/50 m and 1/100 m, respectively) on 3 equidistant

viscoelastic dampers. The placements of the dampers, therefore are x1 = 0.25 m, x2 = 0.5

m and x3 = 0.75 m. The beam is made of Steel AISI 4340 (ρ = 7850 kg/m3, ν = 0.28,

E = 1.9 ·1011 N/m2) and initially is in steady state. A normal constant load P∗ starts to move

from the left edge of the beam with constant velocity. In Figures 3.2–3.9 the displacement

field of points ξ1 = 0.65 m, ξ2 = 0.875 m and ξ3 = 0.95 m of the beam is plotted for different

combinations of normal load intensity, velocity and dampers viscoelasticity. The shear and

bulk moduli are taken to be 6.16 · 107; 2.91 · 108 N/m2 and 4 · 108 N/m2, respectively. The

intensity of the load is taken to be P∗ = 105; 2.5 · 105 N, and its velocity– v∗ = 0.1; 0.25 m/s.
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For comparison, in Figures 3.18–3.29 we have plotted the displacement field of particular

points and the state of the beam for the same set of parameters as above, but in the case of

viscoelastic dampers with optimized placements: x1 = 0.35 m, x2 = 0.65 m and x3 = 0.85 m.

The stress state of the beam for both equidistant dampers and dampers with optimized

placements are plotted in Figures 3.10–3.17 and 3.26–3.29, respectively.

As a result of simulation it turned out, that in the case of dampers with optimal placements

the bending vibrations vanish faster than in the case of equidistant dampers. It is obvious

from the first look to presented figures, that the maximal absolute value of the displacement

field of particular points of the beam decreases by factor 10−2. For instance, the relative ratio

of the maximal absolute value of the point ξ2 = 0.875 m for equidistant dampers and that

for dampers with optimized placements is approximately 22. In order to give a quantitative

estimate, in Table 3.2 the maximal absolute values of the vertical displacements with respect

to time and coordinate are brought for different pairs of normal load intensity and velocity in

the case of equidistant dampers, while for comparison in Table 3.3 are brought those in the

case of dampers with optimized placements. The shear moduli of the dampers are 6.16 · 107

N/m2 and 2.91 · 108 N/m2, and the bulk modulus is 4 · 108 N/m2. It can be seen from the

tables that with increase of the load intensity (for the same value of the velocity) the maximal

absolute value of the displacement increases, and with increase of the speed (for the same

value of the load intensity) the the maximal absolute value of the displacement decreases.
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Figure 3.2: The displacement of the points ξ1 = 0.65 m (solid), ξ2 = 0.875 m (dotted) and

ξ3 = 0.95 m (dashed) in the case of P∗ = 105 N, v∗ = 0.1 m/s and equidistant dampers:

x1 = 0.25 m, x2 = 0.5 m and x3 = 0.75 m (distances from the left edge). The shear modulus

of the dampers is 6.16 · 107 N/m2 and the bulk modulus is 4 · 108 N/m2.

Figure 3.3: The displacement of the points ξ1 = 0.65 m (solid), ξ2 = 0.875 m (dotted) and

ξ3 = 0.95 m (dashed) in the case of P∗ = 105 N, v∗ = 0.25 m/s and equidistant dampers:

x1 = 0.25 m, x2 = 0.5 m and x3 = 0.75 m (distances from the left edge). The shear modulus

of the dampers is 6.16 · 107 N/m2 and the bulk modulus is 4 · 108 N/m2.
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Figure 3.4: The displacement of the points ξ1 = 0.65 m (solid), ξ2 = 0.875 m (dotted) and

ξ3 = 0.95 m (dashed) in the case of P∗ = 105 N, v∗ = 0.1 m/s and equidistant dampers:

x1 = 0.25 m, x2 = 0.5 m and x3 = 0.75 m (distances from the left edge). The shear modulus

of the dampers is 2.91 · 108 N/m2 and the bulk modulus is 4 · 108 N/m2.

Figure 3.5: The displacement of the points ξ1 = 0.65 m (solid), ξ2 = 0.875 m (dotted) and

ξ3 = 0.95 m (dashed) in the case of P∗ = 105 N, v∗ = 0.25 m/s and equidistant dampers:

x1 = 0.25 m, x2 = 0.5 m and x3 = 0.75 m (distances from the left edge). The shear modulus

of the dampers is 2.91 · 108 N/m2 and the bulk modulus is 4 · 108 N/m2.
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Figure 3.6: The displacement of the points ξ1 = 0.65 m (solid), ξ2 = 0.875 m (dotted) and

ξ3 = 0.95 m (dashed) in the case of P∗ = 2.5 · 105 N, v∗ = 0.1 m/s and equidistant dampers:

x1 = 0.25 m, x2 = 0.5 m and x3 = 0.75 m (distances from the left edge). The shear modulus

of the dampers is 6.16 · 107 N/m2 and the bulk modulus is 4 · 108 N/m2.

Figure 3.7: The displacement of the points ξ1 = 0.65 m (solid), ξ2 = 0.875 m (dotted) and

ξ3 = 0.95 m (dashed) in the case of P∗ = 2.5 · 105 N, v∗ = 0.25 m/s and equidistant dampers:

x1 = 0.25 m, x2 = 0.5 m and x3 = 0.75 m (distances from the left edge). The shear modulus

of the dampers is 6.16 · 107 N/m2 and the bulk modulus is 4 · 108 N/m2.
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Figure 3.8: The displacement of the points ξ1 = 0.65 m (solid), ξ2 = 0.875 m (dotted) and

ξ3 = 0.95 m (dashed) in the case of P∗ = 105 N, v∗ = 0.1 m/s and equidistant dampers:

x1 = 0.25 m, x2 = 0.5 m and x3 = 0.75 m (distances from the left edge). The shear modulus

of the dampers is 2.91 · 108 N/m2 and the bulk modulus is 4 · 108 N/m2.

Figure 3.9: The displacement of the points ξ1 = 0.65 m (solid), ξ2 = 0.875 m (dotted) and

ξ3 = 0.95 m (dashed) in the case of P∗ = 105 N, v∗ = 0.25 m/s and equidistant dampers:

x1 = 0.25 m, x2 = 0.5 m and x3 = 0.75 m (distances from the left edge). The shear modulus

of the dampers is 2.91 · 108 N/m2 and the bulk modulus is 4 · 108 N/m2.
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Figure 3.10: The stress state of the beam at t = 14.25 s in the case of equidistant dampers.

P∗ = 105 N, v∗ = 0.1 m/s (τ∗ = 10 s) and the shear modulus of the dampers is 6.16 ·107 N/m2.

Figure 3.11: The stress state of the beam at t = 7.5 s in the case of equidistant dampers.

P∗ = 105 N, v∗ = 0.25 m/s (τ∗ = 4 s) and the shear modulus of the dampers is 6.16 ·107 N/m2.
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Figure 3.12: The stress state of the beam at t = 6 s in the case of equidistant dampers.

P∗ = 2.5 · 105 N, v∗ = 0.1 m/s (τ∗ = 10 s) and the shear modulus of the dampers is 6.16 · 107

N/m2.

Figure 3.13: The stress state of the beam at t = 9 s in the case of equidistant dampers.

P∗ = 2.5 · 105 N, v∗ = 0.25 m/s (τ∗ = 4 s) and the shear modulus of the dampers is 6.16 · 107

N/m2.
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Figure 3.14: The stress state of the beam at t = 14.25 s in the case of equidistant dampers.

P∗ = 105 N, v∗ = 0.1 m/s (τ∗ = 10 s) and the shear modulus of the dampers is 2.19 ·108 N/m2.

Figure 3.15: The stress state of the beam at t = 7.5 s in the case of equidistant dampers.

P∗ = 105 N, v∗ = 0.25 m/s (τ∗ = 4 s) and the shear modulus of the dampers is 2.19 ·108 N/m2.
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Figure 3.16: The stress state of the beam at t = 6 s in the case of equidistant dampers.

P∗ = 2.5 · 105 N, v∗ = 0.1 m/s (τ∗ = 10 s) and the shear modulus of the dampers is 2.19 · 108

N/m2.

Figure 3.17: The stress state of the beam at t = 9 s in the case of equidistant dampers.

P∗ = 2.5 · 105 N, v∗ = 0.25 m/s (τ∗ = 4 s) and the shear modulus of the dampers is 2.19 · 108

N/m2.
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Figure 3.18: The displacement of the points ξ1 = 0.65 m (solid), ξ2 = 0.875 m (dotted) and

ξ3 = 0.95 m (dashed) m in the case of P∗ = 105 N, v∗ = 0.1 m/s and optimized placements

of dampers: x1 = 0.35 m, x2 = 0.65 m and x3 = 0.85 m (distances from the left edge). The

shear modulus of the dampers is 6.16 · 107 N/m2 and the bulk modulus is 4 · 108 N/m2.

Figure 3.19: The displacement of the points ξ1 = 0.65 m (solid), ξ2 = 0.875 m (dotted) and

ξ3 = 0.95 m (dashed) m in the case of P∗ = 105 N, v∗ = 0.25 m/s and optimized placements

of dampers: x1 = 0.35 m, x2 = 0.65 m and x3 = 0.85 m (distances from the left edge). The

shear modulus of the dampers is 6.16 · 107 N/m2 and the bulk modulus is 4 · 108 N/m2.

96



Figure 3.20: The displacement of the points ξ1 = 0.65 m (solid), ξ2 = 0.875 m (dotted) and

ξ3 = 0.95 m (dashed) m in the case of P∗ = 2.5 ·105 N, v∗ = 0.1 m/s and optimized placements

of dampers: x1 = 0.35 m, x2 = 0.65 m and x3 = 0.85 m (distances from the left edge). The

shear modulus of the dampers is 6.16 · 107 N/m2 and the bulk modulus is 4 · 108 N/m2.

Figure 3.21: The displacement of the points ξ1 = 0.65 m (solid), ξ2 = 0.875 m (dotted) and

ξ3 = 0.95 m (dashed) m in the case of P∗ = 2.5·105 N, v∗ = 0.25 m/s and optimized placements

of dampers: x1 = 0.35 m, x2 = 0.65 m and x3 = 0.85 m (distances from the left edge). The

shear modulus of the dampers is 6.16 · 107 N/m2 and the bulk modulus is 4 · 108 N/m2.

97



Figure 3.22: The displacement of the points ξ1 = 0.65 m (solid), ξ2 = 0.875 m (dotted) and

ξ3 = 0.95 m (dashed) in the case of P∗ = 105 N, v∗ = 0.1 m/s and optimized placements of

dampers: x1 = 0.35 m, x2 = 0.65 m and x3 = 0.85 m (distances from the left edge). The

shear modulus of the dampers is 2.91 · 108 N/m2 and the bulk modulus is 4 · 108 N/m2.

Figure 3.23: The displacement of the points ξ1 = 0.65 m (solid), ξ2 = 0.875 m (dotted) and

ξ3 = 0.95 m (dashed) in the case of P∗ = 105 N, v∗ = 0.25 m/s and optimized placements

of dampers: x1 = 0.35 m, x2 = 0.65 m and x3 = 0.85 m (distances from the left edge). The

shear modulus of the dampers is 2.91 · 108 N/m2 and the bulk modulus is 4 · 108 N/m2.
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Figure 3.24: The displacement of the points ξ1 = 0.65 m (solid), ξ2 = 0.875 m (dotted) and

ξ3 = 0.95 m (dashed) in the case of P∗ = 2.5 · 105 N, v∗ = 0.1 m/s and optimized placements

of dampers: x1 = 0.35 m, x2 = 0.65 m and x3 = 0.85 m (distances from the left edge). The

shear modulus of the dampers is 2.91 · 108 N/m2 and the bulk modulus is 4 · 108 N/m2.

Figure 3.25: The displacement of the points ξ1 = 0.65 m (solid), ξ2 = 0.875 m (dotted) and

ξ3 = 0.95 m (dashed) in the case of P∗ = 2.5 · 105 N, v∗ = 0.25 m/s and optimized placements

of dampers: x1 = 0.35 m, x2 = 0.65 m and x3 = 0.85 m (distances from the left edge). The

shear modulus of the dampers is 2.91 · 108 N/m2 and the bulk modulus is 4 · 108 N/m2.
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Figure 3.26: The stress state of the beam at t = 7.5 s in the case of the dampers optimized

positions. P∗ = 105 N, v∗ = 0.25 m/s (τ∗ = 4 s) and the shear modulus of the dampers is

6.16 · 107 N/m2.

Figure 3.27: The stress state of the beam at t = 14.25 s in the case of the dampers optimized

positions. P∗ = 2.5 · 105 N, v∗ = 0.1 m/s (τ∗ = 10 s) and the shear modulus of the dampers is

6.16 · 107 N/m2.
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Figure 3.28: The stress state of the beam at t = 6.375 s in the case of the dampers optimized

positions. P∗ = 105 N,v∗ = 0.25 m/s (τ∗ = 4 s) and the shear modulus of the dampers is

2.91 · 108 N/m2.

Figure 3.29: The stress state of the beam at t = 14.5 s in the case of the dampers optimized

positions. P∗ = 2.5 · 105 N,v∗ = 0.1 m/s (τ∗ = 10 s) and the shear modulus of the dampers is

2.91 · 108 N/m2.

101



P∗ · 105 [N] v∗ [m/s] max(x∗,t∗) |w∗(x∗, t∗)| · 10−4 [m]

1 0.1 1.15 0.91

1 0.15 1.13 0.893

1 0.2 1.13 0.896

1 0.25 1.12 0.97

1.5 0.1 1.72 1.36

1.5 0.15 1.68 1.34

1.5 0.2 1.72 1.36

1.5 0.25 1.64 1.28

2 0.1 2.29 1.82

2 0.15 2.24 1.79

2 0.2 2.29 1.8

2 0.25 2.20 1.72

2.5 0.1 2.86 2.27

2.5 0.15 2.81 2.21

2.5 0.2 2.87 2.26

2.5 0.25 2.75 2.15

Table 3.2: The maximal absolute values of the vertical displacements of the beam with equidis-

tant dampers: x1 = 0.25 m, x2 = 0.5 m and x3 = 0.75 m (distances from the left edge). The

shear modulus of the dampers are 6.16 · 107 N/m2 (the first column) and 2.91 · 108 N/m2 (the

second column) the bulk modulus is 4 · 108 N/m2.
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P∗ · 105 [N] v∗ [m/s] max(x∗,t∗) |w∗(x∗, t∗)| · 10−4 [m]

1 0.1 0.73 0.58

1 0.15 0.72 0.58

1 0.2 0.72 0.57

1 0.25 0.71 0.57

1.5 0.1 1.09 0.87

1.5 0.15 1.09 0.87

1.5 0.2 1.08 0.85

1.5 0.25 1.08 0.85

2 0.1 1.46 0.825

2 0.15 1.46 0.825

2 0.2 1.44 0.82

2 0.25 1.44 0.82

2.5 0.1 1.82 1.445

2.5 0.15 1.82 1.44

2.5 0.2 1.8 1.44

2.5 0.25 1.8 1.37

Table 3.3: The maximal absolute values of the vertical displacements of the beam with opti-

mized placements for dampers: x1 = 0.35 m, x2 = 0.65 m and x3 = 0.85 m (distances from

the left edge). The shear modulus of the dampers are 6.16 · 107 N/m2 (the first column) and

2.91 · 108 N/m2 (the second column) the bulk modulus is 4 · 108 N/m2.

103



3.2 Topology Optimization for Elastic Base under Rect-

angular Elastic Plate Subjected to Moving Load

In this section we are going to extend the technique described in the beginning of this

section for a two–dimensional system. For this purpose we will consider an elastic, isotropic,

solid rectangular plate of sufficiently small constant thickness 2h, the middle plane of which

in Cartesian system of coordinates occupies the domain

O∗ = {(x∗, y∗); x∗ ∈ [−l1, l1], y∗ ∈ [−l2, l2]} ⊂ R2, min(l1, l2)� 2h.

Let the plate lies on a linear–elastic one–parametric base, distributed in domain O∗ by a

controlled law. The plate is supposed to be simply supported by edges x∗ = ±l1 and y∗ = ±l2,

as well as subjected to a constant normal load P∗ distributed on the upper surface of the plate

by given law r∗ = r∗(y∗), supp r∗ 6= ∅, and moving along the upper surface of the plate in x∗

direction with constant speed v∗. This section is based one the results of [60,74].

Implying the same considerations as in last section, we suppose that the load detaches from

the plate at a given moment τ∗, so v∗τ∗ = 2l1. In the framework of the Kirchhoff hypothesis,

the vertical displacements of the plate middle plane satisfies

D∆∆w∗(x∗, y∗, t∗) + α2
∗u(x∗, y∗)w∗(x∗, y∗, t∗) + 2ρh

∂2w∗(x∗, y∗, t∗)

∂t2∗
= f∗(x∗, y∗, t∗), (3.34)

(x∗, y∗, t∗) ∈ O∗ × (0, T ),

and boundary conditions of simply support

w∗(±l1, y∗, t∗) =
∂2w∗(x∗, y∗, t∗)

∂x2
∗

∣∣∣∣
x∗=±l1

= 0, (y∗, t∗) ∈ [−l2, l2]× [0, T ],

w∗(x∗,±l2, t∗) =
∂2w∗(x∗, y∗, t∗)

∂y2
∗

∣∣∣∣
y∗=±l2

= 0, (x∗, t∗) ∈ [−l1, l1]× [0, T ].

(3.35)

Above u is the intensity of the elastic base distribution in O∗, f∗(x∗, y∗, t∗) characterizes

the impact of the moving load on the plate and therefore 0 ≤ u:

f∗(x∗, y∗, t∗) = P∗A[0,τ∗][δ(x∗ + l1 − v∗t∗)]r∗(y∗). (3.36)

The initial state of the plate is known:

w∗(x∗, y∗, 0) = w0∗(x∗, y∗),
∂w∗(x∗, y∗, t∗)

∂t∗

∣∣∣∣
t∗=0

= w1
0∗(x∗, y∗), (x∗, y∗) ∈ O∗. (3.37)
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Our main purpose is the determination of an admissible control

uo ∈ U∞ = {u ∈ L∞
(
O∗;R2

)
; supp u = O∗, 0 ≤ u ≤ 1}

providing the following terminal state in required (fixed) time T :

w∗(x∗, y∗, T ) = 0,
∂w∗(x∗, y∗, t∗)

∂t∗

∣∣∣∣
t∗=T

= 0, (x∗, y∗) ∈ O∗, (3.38)

as well as minimizing the functional

κ∞[u] = max
(x∗,y∗)∈O∗

u(x∗, y∗), u ∈ U , (3.39)

which describes the intensity of the elastic base distribution under the plate.

Remark 3.4 i) It is obvious that the plate vibrations may “vanish” solely after the load

detaches from it. Thence restrict ourselves by condition τ∗ < T ≤ T0 where v∗τ∗ = 2l1,

and T0 is the time in which the vibrations would ”vanish” in the case of u ≡ 1.

ii) We realize that, in general, terminal conditions (3.38) may not be provided by any choice

of distribution u (even in the case u ≡ 1) exactly, because there will remain some residual

stresses of very small amplitude inversely proportional to the base stiffness. Thus, we

aim to ensure (3.38) approximately [42].

Let us introduce the dimensionless variables and functions

w =
w∗
h
, r =

r∗
l2
, x =

x∗
l1
, y =

y∗
d
, t =

2t∗ − T
T

ϑ, τ =
2ϑ

T
τ∗, v∗ =

v

l1

T

2ϑ
,

α2 =
α2
∗l

4
1

D
, β2 = 2ρh

l41
D

(
2ϑ

T

)2

, γ =
l1
l2
, P∗ =

Pdl31
Dh

.

Then, from (3.34), (3.35) we will respectively obtain

D[w] + α2u(x, y)w(x, y, t) + β2∂
2w(x, y, t)

∂t2
= f(x, y, t), (x, y, t) ∈ O × (−ϑ, ϑ),

w(±1, y, t) =
∂2w(x, y, t)

∂x2

∣∣∣∣
x=±1

= 0, (y, t) ∈ [−1, 1]× [−ϑ, ϑ],

w(x,±1, t) =
∂2w(x, y, t)

∂y2

∣∣∣∣
y=±1

= 0, (x, t) ∈ [−1, 1]× [−ϑ, ϑ],

D[w] =
∂4w(x, y, t)

∂x4
+ 2γ2∂

4w(x, y, t)

∂x2∂y2
+ γ4∂

4w(x, y, t)

∂y4
, O := (−1, 1)× (−1, 1).
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As a result of the variables change, the expression (3.36) is transformed to

f(x, y, t) = PA[−ϑ,ϑ−τ ] [δ(x+ 1− v(t+ ϑ))] r(y).

Repeating the same procedure as in previous section, with respect to the coefficients of the

approximation

w1n(x, y, σ) =
N∑

m,n=1

εmn(σ) sin(πmx) sin(πny), (x, y, σ) ∈ O × R, (3.40)

we will derive the following system of linear algebraic equations for εmn(σ):

N∑
m,n=1

Λµν
mn(σ)εmn(σ) = Ωµν(σ), µ, ν ∈ {1;N},

Λµν
mn(σ) = Γmnδ

µν
mn + α2Jµνmn[u], Γmn =

[
(πm)2 + γ2(πn)2

]2 − σ2β2,

G(x, y, σ) = f 1(x, y, σ) + β2[ẇ01(x, y)− iσw01(x, y)],

f 1(x, y, σ) =
P

v
[θ(x+ 1)− θ(x− 1)] exp

[
iσ

(
x+ 1

v
+ ϑ

)]
r(y),

Ωµν(σ) =

∫ 1

−1

∫ 1

−1

G(x, y, σ) sin(πµx) sin(πνy)dxdy =

= Yµ(σ)

∫ 1

−1

r(y) sin(πνy)dxdy + β2 [Kµν − iσLµν ] ,

Yµ(σ) =
(−1)µ+1πµ · Pv
σ2 + (πµv)2

[
1− exp

[
2iσ

v

]]
exp [iσϑ] ,

Kµν =

∫ 1

−1

∫ 1

−1

w1
01(x, y) sin(πµx) sin(πνy)dxdy,

Lµν =

∫ 1

−1

∫ 1

−1

w01(x, y) sin(πµx) sin(πνy)dxdy,

Jµνmn[u] =

∫ 1

−1

∫ 1

−1

u(x, y) sin(πmx) sin(πµx) sin(πny) sin(πνy)dxdy.

We have taken into account, that vτ = 2. It is obvious, that Jmnmn [u] ≥ 0, Jµνmn[u] = Jνµnm[u],

m,n, µ, ν ∈ {1;N}.

Remark 3.5 Since the Chebyshev polynomials of the first kind {Tm(x)Tn(y)}m,n∈N are or-

thogonal in O and provide more accuracy of approximation compared with that by trigonometric

system {sin(πmx) sin(πny)}m,n∈N [91], it is more efficient to use them instead. But we take

into account, that the aim is to show that the proposed algorithm works in dimensions two,

and not the accuracy of the approximation.
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Consequently, we will derive the system

Jµνmn[u] =Mµν
mn, m, n, µ, ν ∈ {1; 2N},

which follows from ∆1(z) = 0, as long as ∆0(z) = 0, where ∆0 and ∆11 are the main and the

first auxiliary determinants of the system.

Remark 3.6 i) It is easy to see from the expression of Λµν
mn, the determinant ∆0(σ) is a

polynomial of degree 2N , therefore ∆0(z) = 0 admits 2N complex roots. From the other

hand side Re ∆0(−σ − iς) = Re ∆0(σ + iς), Im ∆0(−σ − iς) = Im ∆0(σ + iς), which

means that zk = σk + iςk and zk = −σk − iςk satisfy ∆0(z) = 0 simultaneously. Then,

since Re ∆11(−σ− iς) = Re ∆11(σ+ iς), Im ∆11(−σ− iς) = Im ∆11(σ+ iς), we conclude

that ∆11(z) = 0 contains only N independent constraints.

ii) Moreover, even though Re ∆0(−σ + iς) = Re ∆0(σ− iς) = Re ∆0(σ + iς), Im ∆0(−σ +

iς) = Im ∆0(σ− iς) = −Im ∆0(σ+ iς), nevertheless ∆11(σ+ iς) does not have the same

property, therefore the number of independent constraints cannot be reduced further.

According to Subsection 1.3.1, the solution will be

uo(x, y) =
J∑
j=1

[
θ
(
x− xoj , y − yoj

)
− θ

(
x− xoj+1, y − yoj+1

)]
, (x, y) ∈ O.

The obtained solution describes the distribution law of the elastic base under the plate, and

the set of points {xoj , yoj}Jj=1 ∈ O underlines the domains where the base exists and depends

on inner and external parameters D, r(y), v, τ, P, α2, β2, γ.

Applying the Fourier inverse transform to (3.40) and repeating the arguments made in the

last subsection, we will obtain

w1N(x, y, t) =
N∑

m,n=1

εmn(t) sin(πmx) sin(πny), (x, y, t) ∈ O × R,

εmn(t) =
1

π

∫ ∞
0

[Re εmn(σ) cos(σt) + Im εmn(σ) sin(σt)] dσ = F−1
c [Re εmn] + F−1

s [Im εmn],

Re εmn(σ) =
Re ∆m(σ)Re ∆0(σ) + Im ∆m(σ)Im ∆0(σ)

(Re ∆0(σ))2 + (Im ∆0(σ))2 ,

Im εmn(σ) = −Re ∆m(σ)Im ∆0(σ)− Im ∆m(σ)Re ∆0(σ)

(Re ∆0(σ))2 + (Im ∆0(σ))2 .
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To demonstrate algorithm we consider an example when N = 3. Let

w0(x, y) = sin(πx) sin(πy), w1
0(x, y) = 0.

Let the moving load has a point support: r(y) = δ(y − y0), y0 ∈ (−1, 1). Then,

Jµνmn[u] =
J∑
j=1

∫ xoj+1

xoj

sin(πmx) sin(πµx)dx

∫ yoj+1

yoj

sin(πny) sin(πνy)dy,

Ωµν(z) =
(−1)µ+1πµ · vP
z2 + (πµv)2

[
1− exp

[
2iz

v

]]
exp [izϑ]·sin(πνy0)−izβ2δµ1 δ

ν
1 , Kµν = 0, Lµν = δµν11 .

Only numerical values ofMµν
mn have been computed. The results are combined in Figures 3.30

and 3.31 and in Tables 3.4–3.6.

Figure 3.30: uo when β2 = 50, γ2 = 0.25, α2 = 0.05, P = 0.5, v = 0.1 and y0 = 0.25.

Figure 3.31: uo when β2 = 25, γ2 = 1, α2 = 0.01, P = 0.5, v = 0.05 and y0 = −0.75.
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3.3 Structural Optimization for Infinite Non–Homoge-

neous Elastic Layer

In this subsection we do some structural optimization. In [6,7] many attractive problems of

inner structure optimization for elastic deformable solids with various purposes are considered.

Some of the purposes are: the maximal rigidity of plates, the maximal strength of three-layered

plates, the optimal cross-section of rods under torsion, the minimization of stress intensity

factor in plates with holes, the optimal shape of holes in bending plates, the optimal shape

of equal stressed holes etc. Optimization problems are concerned isotropic, non-isotropic, as

well as hydroelastic systems. Problems of optimization under lack of information and multi-

purpose optimization are also considered.

In [92] a plane problem of elastic properties determination for middle reinforcing mono-layer

of three-layered elastic infinite layer is considered in order to ensure propagation of harmonic

wave with phase speed equals to that of harmonic wave propagating in a homogeneous layer

with elastic properties (Young‘s modulus and density) as the upper and the lower mono-layers

have. Numerical analysis of the characteristic equation has shown that there exist materials

satisfying the demanded conditions. A relevant problem is considered in [11].

In this subsection we study a bit more general problem about structural optimization of

elastic transversely non–homogeneous layer in order to provide propagation of waves with

given phase speed. Let in Cartesian coordinate system Ox∗z∗ the layer occupies the domain

O∗ = {(x∗, z∗);x∗ ∈ R, z∗ ∈ [−h, h]}.

The surfaces z∗ = ±h of the layer are supposed to be stress free. Assume, that its density

and Young modulus depend on transverse coordinate z∗: ρ∗ = ρ∗(z∗), E∗ = E∗(z∗), and the

Poisson‘s ratio is constant: ν = const. Merely infinitesimal strains of the layer are taken into

account, that is to say, the Cauchy relations between strain and displacements are accepted.

We accept the physically obvious assumption that the density and Young modulus vary

according to the same law, i.e.

ρ∗(z∗) = ρ0u(z∗), E∗(z∗) = E0u(z∗), z∗ ∈ [−h, h],
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where ρ0 and E0 are some gauge density and Young modulus, u = u(z∗) is the unknown

function. This section is based one the results of [106].

Then, the displacement field of the layer obeys the following system of differential equations

(1− 2ν)
∂

∂z∗

[
E∗(z∗)

∂w1∗

∂z∗

]
+

∂

∂z∗

[
E∗(z∗)

∂w2∗

∂z∗

]
+ 2(1− ν)E∗(z∗)

∂2w1∗

∂x2
∗
−

−2νE ′∗(z∗)
∂w2∗

∂x∗
= 2(1 + ν)(1− 2ν)ρ∗(z∗)

∂2w1∗

∂t2∗
,

2(1− ν)
∂

∂z∗

[
E∗(z∗)

∂w2∗

∂z∗

]
+

∂

∂z∗

[
E∗(z∗)

∂w1∗

∂z∗

]
+ (1− 2ν)E∗(z∗)

∂2w2∗

∂x2
∗
−

−(1− ν)E ′∗(z∗)
∂w1∗

∂x∗
= 2(1 + ν)(1− 2ν)ρ∗(z∗)

∂2w2∗

∂t2∗
,

(x∗, z∗, t∗) ∈ O∗ × R+.

The boundary conditions corresponding stress free surfaces of the layer are

σ33(x∗,±h, t∗) =

[
E∗(z∗)

(1 + ν)(1− 2ν)

(
ν
∂w1∗

∂x∗
+ (1− ν)

∂w2∗

∂z∗

)] ∣∣∣∣
z∗=±h

= 0,

σ13(x∗,±h, t∗) =

[
E∗(z∗)

2(1 + ν)

(
∂w1∗

∂z∗
+
∂w2∗

∂x∗

)] ∣∣∣∣
z∗=±h

= 0,

x∗ ∈ R, t∗ > 0.

Above w1∗ and w2∗ are the vertical and the horizontal displacements of the layer, σ33 and σ13

are the normal and the tangential components of the stress tensor.

Introducing dimensionless variables and functions

x =
x∗
h
, z =

z∗
h
, t =

c0t∗
h
, w1 =

w1∗

h
, w2 =

w2∗

h
, c2

0 =
E0

ρ0

,

we can write the equations of motion in the following form:

(1− 2ν)
∂

∂z

[
u(z)

∂w1

∂z

]
+

∂

∂z

[
u(z)

∂w2

∂z

]
+ 2(1− ν)u(z)

∂2w1

∂x2
−

− 2νu′(z)
∂w2

∂x
= 2(1 + ν)(1− 2ν)u(z)

∂2w1

∂t2
,

2(1− ν)
∂

∂z

[
u(z)

∂w2

∂z

]
+

∂

∂z

[
u(z)

∂w1

∂z

]
+ (1− 2ν)u(z)

∂2w2

∂x2
−

− 1

2
2(1− ν)u′(z)

∂w1

∂x
= 2(1 + ν)(1− 2ν)u(z)

∂2w2

∂t2
,

(3.41)

(x, z, t) ∈ O × R+,
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with O := R× [−1, 1]. The boundary conditions will take the form[
u(z)

(1 + ν)(1− 2ν)

(
ν
∂w1

∂x
+ (1− ν)

∂w2

∂z

)] ∣∣∣∣
z=±1

= 0,[
u(z)

2(1 + ν)

(
∂w1

∂z
+
∂w2

∂x

)] ∣∣∣∣
z=±1

= 0,

x ∈ R, t > 0. (3.42)

Our aim is the determination of admissible control function uo ∈ U∞ = {u ∈ L∞[−1, 1];

supp u ⊆ [−1, 1], 0 < u < 1}, ensuring the existence of harmonic solution of bilinear system

(3.41), (3.42) with given phase speed c equals to that of propagating in a homogeneous layer

with ρ0, E0, as well as minimizing the functional

κ∞[u] = sup
z∈[−1,1]

u(z), u ∈ U∞. (3.43)

It is important to reveal, that the control function u is included as in bilinear system (3.41)

by itself and by its first derivative, as well as in boundary conditions (3.42).

According to [97] we the represent the solution of (3.41), (3.42) as follows

w1(x, z, t) =
∂Φ0(x, z, t)

∂x
− ∂ψ0(x, z, t)

∂z
, w2(x, z, t) =

∂Φ0(x, z, t)

∂z
+
∂ψ0(x, z, t)

∂x
,

(x, z, t) ∈ O × R+,

where

Φ0(x, z, t) = [a1 cosh(ζz) + b1 sinh(ζz)] exp [ik(x− c1t)] := Φ(z) exp [ik(x− c1t)] ,

ψ0(x, z, t) = [a2 cosh(ηz) + b2 sinh(ηz)] exp [ik(x− c1t)] := ψ(z) exp [ik(x− c1t)] ,

ζ2 = k2
(
1− c2

ζ

)
, η2 = k2

(
1− c2

η

)
, cζ =

c

cl
, cη =

c

ct
, c1 =

c

c0

.

Substituting them into (3.41) we will derive

u′(z)Γ11(z; k) + u(z)Γ12(z; k) = u(z)Γ13(z; k, c1),

u′(z)Γ21(z; k) + u(z)Γ22(z; k) = u(z)Γ23(z; k, c1),

z ∈ [−1, 1], (3.44)

where

Γ11(z; k) = (1− 2ν)

[
2ik

dΦ(z)

dz
−
(
d2

dz2
+ k2

)
ψ(z)

]
,

Γ12(z; k) =

[
d2

dz2
− k2

] [
2ik(1− ν)Φ(z)− (1− 2ν)

dψ(z)

dz

]
,
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Γ13(z; k, c1) = 2(1− 2ν)(1 + ν)kc1

[
kc1Φ(z) + i

dψ(z)

dz

]
,

Γ21(z; k) =

[
2(1− ν)

d2

dz2
− νk2

]
Φ(z) + i(1 + ν)k

dψ(z)

dz
,

Γ22(z; k) =

[
d2

dz2
− k2

] [
2(1− ν)

dΦ(z)

dz
+ i(1− 2ν)kψ(z)

]
,

Γ23(z; k, c1) = 2(1− 2ν)(1 + ν)kc1

[
i
dΦ(z)

dz
+ kc1ψ(z)

]
.

Above cl and ct are the velocities of longitudinal and transverse wave propagation in the layer,

k = hk∗, k∗ is the wave number, and (from (3.42))

a1 = a2
a22

a21

cosh η

cosh ζ
, b1 = b2

a22

a21

sinh η

cosh ζ
, a2 = −b2

a21a12

a11a22

tanh ζ,

a11 = 2(1− ν)ζ2 + 2νk2, a12 = 2i(1− 2ν)kη, a21 = 2ikζ, a22 = η2 + k2.

Moreover, c satisfies the dispersion equation

a2
11a

2
22 − a2

12a
2
21 = 0,

corresponding to dispersion equation in the case of homogeneous layer with parameters E0, ρ0.

It is quite obvious that (3.44) has not non–trivial solutions in the class of ordinary functions.

Since supp wp(·, z, ·) ⊆ [−1, 1], the coefficients of (3.44) belong to T, then the integrals of its

both sides belong to D and thence are equal almost everywhere. Thus, integrating by parts

we will derive ∫ 1

−1

u(z)Λ1(z; k, c1)dz =M1,

∫ 1

−1

u(z)Λ2(z; k, c1)dz =M2, (3.45)

where

Λp(z; k, c1) =
dΓp1(z; k)

dz
− Γp2(z; k) + Γp3(z; k, c1),

Mp = [u(z)Γp1(z; k)]
∣∣1
−1
, p ∈ {1; 2}.

Separating the real and the imaginary parts of (3.45), we will obtain the following system

of restrictions with respect to unknown control:∫ 1

−1

u(z)ΛRe
1 (z; k, c1)dz =MRe

1 ,

∫ 1

−1

u(z)ΛRe
2 (z; k, c1)dz =MRe

2 ,∫ 1

−1

u(z)ΛIm
1 (z; k, c1)dz =MIm

1 ,

∫ 1

−1

u(z)ΛIm
2 (z; k, c1)dz =MIm

2 ,

(3.46)
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where the superscripts Re and Im denote real and imaginary parts of corresponding expression.

Thus, the optimization problem under investigation is reduced to determination of positive

function uo(z) optimal in the sense (3.43) and satisfying (3.46). Since functions ΛRe
1 (z; k, c1),

ΛRe
2 (z; k, c1) and ΛIm

1 (z; k, c1), ΛIm
2 (z; k, c1) are bounded in [−1, 1], the solution may be con-

structed, for instance, with help of moments problem. Then, the required optimal control func-

tion is piecewise constant with discontinuities in switching points, where its value jumps from

one level to another [22, 77]. Denoting those points by −1 = zo1 < zo2 < ... < zon < zon+1 = 1,

the optimal control, unlike [59], we represent as follows:

uo(z) =
J∑
j=1

uoj
[
θ(z − zoj )− θ(z − zoj+1)

]
, z ∈ [−1, 1]. (3.47)

It is clear that, 0 < uoj < 1, j ∈ {1; J}.

Substituting (3.47) into (3.46) we will derive

J∑
j=1

uoj

∫ zoj+1

zoj

ΛRe
1 (z; k, c1)dz =MRe

1 ,
J∑
j=1

uoj

∫ zoj+1

zoj

ΛRe
2 (z; k, c1)dz =MRe

2 ,

J∑
j=1

uoj

∫ zoj+1

zoj

ΛIm
1 (z; k, c1)dz =MIm

1 ,
J∑
j=1

uoj

∫ zoj+1

zoj

ΛIm
2 (z; k, c1)dz =MIm

2 .

In view of notations made above, this system may be represented also as follows:

uo1 · ΠRe
11 +

J∑
j=2

uojΛ
Re
1j + uoJ · ΠRe

1J = 0, uo1 · ΠRe
21 +

J∑
j=2

uojΛ
Re
2j + uoJ · ΠRe

2J = 0,

uo1 · ΠIm
11 +

J∑
j=2

uojΛ
Im
1j + uoJ · ΠIm

1J = 0, uo1 · ΠIm
21 +

J∑
j=2

uojΛ
Im
2j + uoJ · ΠIm

2J = 0,

(3.48)

where uo1 = uo(−1), uoJ = uo(1),

ΠRe
p1 = ΛRe

p1 + ΓRe
p1 (−1; k), ΠRe

pn = ΛRe
pn − ΓRe

p1 (1; k),

ΠIm
p1 = ΛIm

p1 + ΓIm
p1 (−1; k), ΠIm

pn = ΛIm
pn − ΓIm

p1 (1; k),

ΛRe
pj =

∫ zoj+1

zoj

ΛRe
p (z; k, c1)dz, ΛIm

pj =

∫ zoj+1

zoj

ΛIm
p (z; k, c1)dz, p ∈ {1; 2}, j ∈ {1; J}.

Thus, the structural optimization problem under consideration is reduced to determination

of positive constants uoj and switching points {zoj}Jj=1 ∈ [−1, 1], satisfying (3.50). The problem

can be solved by efficient numerical methods of nonlinear programming [15].
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Let us now consider the procedure of determination of optimal structure for the layer on

a certain example. Let ν = 0.25, then 3c2
ζ = c2

η = 2.5c2
1. When, for simplicity, the arbitrary

constant b2 = 1 and cη < 1, we will obtain

ΛRe
1 (z; k) =

k

2

[
d2

dz2
− 3k

]
ΦRe(z)− k2dψ(z)

dz
, ΛIm

1 (z; k, c1) = −5kc1

4

[
kc1ΦRe(z) +

dψ(z)

dz

]
,

ΛRe
2 (z; k, c1) =

5kc1

4

[
−dΦRe(z)

dz
+ kc1ψ(z)

]
,

ΛIm
2 (z; k) =

5k2

4

dΦRe(z)

dz
+
k

2

[
3

2

d2

dz2
+ k2

]
ψ(z),

ΦRe(z) =
ηk

cosh2 ζ
· cosh ζ cosh η cosh(ζz) + sinh ζ sinh η sinh(ζz)

3ζ2 + k2
,

ψ(z) =
2ζηk2 tanh ζ

(3ζ2 + k2) (η2 + k2)
· cosh(ηz) + sinh(ηz).

After substitution of these results into (3.48) numerical calculations were done, the main

results of which are presented in Tables 3.7–3.9.

k uoj zoj

0.1 uo1 = 0.18, uo2 = 1.31, uo3 = 1.43, uo4 = 0.2 zo2 = −0.6, zo3 = −0.5, zo4 = 0.34

0.5 uo1 = 0.4, uo2 = 1., uo3 = 0.4 zo2 = −0.35, zo3 = 0.2

1 uo1 = 0.2, uo2 = 0.96, uo3 = 0.38 zo2 = −0.42, zo3 = 0.79

π uo1 = 0.36, uo2 = 1.14, uo3 = 0.7, uo4 = 0.53 zo2 = −0.6, zo3 = 0.51,zo4 = 0.91

2π uo1 = 0.7, uo2 = 0.85, uo3 = 0.9, uo4 = 0.27 zo2 = −0.8, zo3 = 0.,zo4 = 0.56

3π uo1 = 0.4, uo2 = 1., uo3 = 0.75 zo2 = −0.43, zo3 = 0.76

Table 3.7: Optimal parameters of the layer when cη = 0.75.

It should be noted, that, for instance, when cη = 0.75, k = 0.5 and cη = 0.87, k = 0.1,

the optimal structure of the layer coincides with the structure of that from [92], but without

geometric symmetry.

117



k uoj zoj

0.1 uo1 = 0.32, uo2 = 1.1, uo3 = 0.32 zo2 = −0.38, zo3 = 0.47

1 uo1 = 0.72, uo2 = 0.98, uo3 = 0.58, uo4 = 0.84 zo2 = −0.3, zo3 = 0.24, zo4 = 0.77

π uo1 = 0.83, uo2 = 1.3, uo3 = 1.67, uo4 = 0.91 zo2 = −0.34, zo3 = 0.53, zo4 = 0.6

2π uo1 = 0.91, uo2 = 1.1, uo3 = 1.5 zo2 = −0.82, zo3 = 0.56

3π uo1 = 1., uo2 = 1.4, uo3 = 0.82, uo4 = 0.91 zo2 = −0.3, zo3 = 0., zo4 = 0.75

Table 3.8: Optimal parameters of the layer when cη = 0.87.

k uoj zoj

0.1 uo1 = 0.27, uo2 = 0.5, uo3 = 0.23 zo2 = −0.44, zo3 = 0.85

0.5 uo1 = 0.72, uo2 = 0.92, uo3 = 0.64, uo4 = 1 zo2 = −0.32, zo3 = 0.68, zo4 = 0.97

2π uo1 = 1.87, uo2 = 1.2, uo3 = 0.91, zo2 = −0.82, zo3 = −0.08, zo4 = 0.13

uo4 = 0.67, uo5 = 1.2, uo6 = 0.12 zo5 = 0.64, zo6 = 0.85

3π uo1 = 0.75, uo2 = 1., uo3 = 1.3 zo2 = −0.81, zo3 = 0., zo4 = 0.13

uo4 = 0.9, uo5 = 1.5, uo6 = 0.36 zo5 = 0.62, zo6 = 0.85

Table 3.9: Optimal parameters of the layer when cη = 0.95.
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Conclusion

Three analytical techniques providing explicit solution, as well as efficient and easily imple-

mentable numerical scheme are developed in this dissertation and applied for solving several

particular problems having an uncertainty in the state operator or boundary conditions.

Butkovskiy‘s generalized method is applied to examine exact controllability and to find

explicit control in

• problems of boundary and distributed control of vibrations in elastic non-homogeneous

bounded and unbounded systems in dimension one; the mathematical model is equivalent

to one-dimensional wave equation with coordinate dependent coefficients in correspond-

ing domains. In the case of finite domain we also deal with the case of boundary and

distributed controls containing given constant delay. Countable system of necessary and

sufficient conditions for controllability as equality type integral restrictions in unknown

function with smooth kernels is derived. A closed form solution requires a particular

solution of special Riccati equation containing the variable parameters of the vibrating

system. The Riccati equation is solved for several non-homogeneities and due to sim-

plicity of the algorithm, numerical analysis is implemented. As a result the parameters

of the optimal control function are computed and plotted.

• problems of control by input signal (boundary control) and signal filter (distributed con-

trol) of one–dimensional electromagnetic signal propagating in dispersive finite medium;

the mathematical model is equivalent to partial integro–differential equation associated

with wave equation. Countable system of necessary and sufficient conditions is derived

for boundary and distributed controllability in terms of the Fourier transform of the ker-

nel of the equation. On the basis of obtained results numerical analysis is implemented

and the behaviour of the control function in time is plotted for different values of the

system parameters.

Butkovskiy‘s generalized method and the Bubnov–Galerkin procedure are applied in turn
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in distribution optimization problems when the unknown function does not explicitly depend

on time parameter. One- and two-dimensional deformable structures are considered. The

general mathematical model is equivalent to bilinear equations (respectively one- and two-

dimensional) of fourth order. In particular,

• the distribution of viscoelastic material with given parameters under simply supported

finite elastic homogeneous beam subjected to concentrated constant normal load mov-

ing uniformly along the beam is optimised in order to ensure vanishing the bending

vibrations of the beam in required time after the load detaches from the beam. The

Kelvin–Voight viscoelastic body model is accepted. Finite system of integral equality

type restrictions with smooth kernels on the control function is derived and it is proved

that the discrete distribution of the material used for our purpose minimizes the rela-

tive volume of the distribution. The determination of the switching points specifying

the dampers placements is reduced to a problem of nonlinear programming. Numerical

experiment implemented on the basis of obtained solutions reveals the dependencies of

the optimal placements against input parameters of the system.

• the in-plane distribution of one–parametric linear–elastic substrate under simply sup-

ported elastic isotropic rectangular homogeneous plate of small constant thickness sub-

jected to a constant normal load uniformly moving along the length of the plate in oder

to ensure vanishing (in some sense) of the bending vibrations in required time after the

load detaches from the plate. The Kirchhoff hypothesis with respect to plate and Win-

kler hypothesis with respect to the base are accepted. Finite system of integral equality

type restrictions with smooth kernels on the control function is derived and it is proved

that the piecewise existing distribution of the base minimizes the maximal value of the

unknown function. The determination of the switching points indicating the existence

areas of the base is reduced to a problem of nonlinear programming. On the basis of

explicit formulas numerical analysis is implemented and the main dependencies of the

optimal control function from the internal and external parameters of the system is

revealed quantitatively, and qualitatively as well.
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In both cases the results are presented via tables and figures.

Applying decomposition of dynamical problem solution via vector and scalar potentials

an efficient numerical scheme is suggested to deal with complicated linear equations (even

coupled system of them). In particular,

• the problem of structural optimization for an isotropic elastic infinite layer with stress–

free boundaries and transverse non-homogeneity is investigated via that approach in

order to ensure propagation in the direction perpendicular to its thickness of periodic

wave with specified phase speed. Assuming that the density and the Young‘s modulus

of the layer are described by the same (unknown) function; the Poisson‘s ratio remains

constant. The problem mathematically is formulated as a two–dimensional system of bi-

linear partial differential equations containing the control function and its first derivative

subjected to boundary conditions also containing the control function. Finite system of

integral equality with smooth kernels is derived and it is obtained that the piece-wise

(layered) non-homogeneity of the layer minimizes the maximal value of the control func-

tion. The problem is reduced to that of nonlinear programming with respect to thickness

and elastic characteristics (Young‘s modulus and density) of each mono–layer. Numer-

ical analysis is done and the optimal parameters of the layer are calculated for various

values of the phase speed and wave number.

Obtained results might be of interest to structural engineers working in the fields such as

input wave (signal) and wave source (signal filter) regulation of different wave-fields, optimiza-

tion of material distribution in prescribed domains subjected to external excitation, structural

optimization of wave-guides, etc.

There remain some results on the topics included, which did not find place in the disserta-

tion. There are also some plans concerning our future investigations in this field. Particularly,

we aim to

• consider control problems for some particular nonlinear equations, including Korteweg–

de Vries equation, equations with square nonlinearity etc.,

• continue the extension of control problems types, which can be solved explicitly. For
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this purpose, we use Green‘s function approach. It is motivated by the fact, that it gives

the explicit solution of initial–boundary value problems (even nonlinear), the analytical

investigation of which is quite complicated,

• continue considering and investigating more attractive and, at the same time, more

concrete problems of topology and structural optimization,

• develop an efficient numerical scheme for well–known problem of mobile (scanning) con-

trol.

We want to end with remembering that the method is much more important that any

particular problem, however complicated, that can be solved by that method.
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