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GENERAL DESCRIPTION OF WORK

The Actuality of the thesis. Multylayered plates and shells are parts of the modern
engineering constructions, machines, aeroplanes, rockets: They are often made of
anisotropic composite materialsThe study oft he questions of stability, vibrations and
optimal design oft hin-walled constructions represents a great interest and is an object of
studies nowdays.In case of application of composite materials the problem, in which the
anisotropic and inhomogeneous properties of the constructions are taken into account,
are of great importance. The questions, related to the existence and equivalence of the
problems solutions and the development of the solutions new methods, are one of the
important themes of the optimal project theory.

The thesis is devoted to one of the modern themes of Mechanica of deformable solid
body - to the thin-walled constructions stability, vibrations and optimal design problems
which have both theoretical and applied significance. In the paper on the base of the
main provisions oft he optimal design modern theory a lot of problems of applied
nature are solved.

In these problems the values characterizing the mass, rigidness, or stability are the
perfection criteria of the shells, plates.

The goal of the thesis. To research:

e The problem of a rectangular plate stability in case of arbitrarily distributed
forces, the problem of multilayered composite viscoelastic plate stability, the problems
of rectangular plate and layered plate stability, taking into account transverse shears.

e Problems of shells optimal design, problems of diminishing, as much as possible,
three-layered, one-layered shells masses, when a restriction is imposed on the basic
frequency value of the shells free vibrations, bars optimization problem.

e Rectangular layered plate free vibrations problem, when all the sides of the plate
are jointly fastened, plate vibrations and stability problems, taking into account the
transverse shear.

e Problems of stability, free vibrations and optimal management of layered
composite plates, made on the base of fiber filler material.

The scientific novelty of the work.

e One-layered rectangular plate stability problem in case of arbitrarilily distributed
forces, composite viscoelastic multilayered rectangular plate stability problem, in case of
the different arrangement of the layers towards the coordinate plane, when on both
sides of the plate equally pressing forces are acting and two problems of the layered plate
stability, taking into account the transverse shears.

e In cases of external axisymmetric arbitrary normal load, freely supported
boundary and floating fastening boundary conditions, the problem of the cylinder shell
stability is solved and the stability critical parameters are determined.

e Problems of a homogeneous anisotropic one-layered cylindrical shell with
changing thickness, one-layered homogeneous orthotropic rotation shell with changing
thickness and the optimal design of the open cylindrical shell, are solved. Problems of
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bending, forced vibrations, stability and optimal management of plates, made of
multilayered composite material, are solved.

The practical significance. The rectangular plates and shells are widely applied in
modern engineering constructions and in other fields of technology. In the thesis the
obtained results are up-to-date and can be applied in the new peoblems of multilayered
rectangles and plates, as well as for design and calculation of engineering constructions,
bridges, hydraulic constructions, aeroplanes, rockets, ships, machines parts, etc.

Approbation of the thesis results. The thesis main results have been reported and
discussed:

e Modern problems of Mechanics of solid invironment in the IV international
conference. Tsakhkadzor, Armenia (September, 21-26, 2015):

e In the I and II international conferences Iran-Armenia. Yerevan, Armenia
(September, 16-17, 2011, June, 24-25, 2013):

e In the seminar “Engineering Mechanics” of the faculty of Mechanics, Tehran
University (March, 2014):

e In the Mechanics department seminar of the faculty of Mathematics and
Mechanics, Yerevan State University, Yerevan, Armenia (March,2011):

e In “Thin-walled systems Mechanics” department session and scientific seminar,
Inst. Of Mechanics, NAS RA (December, 2018).

e In the seminar of the Inst. Of Mechanics, NAS RA (March, 2019).

Publications of the Author. On the theme of the thesis ten scientific papers have been
published. The reference is attached to the end of the summary.

The structure and the volume of the work. The paper consists of the introduction, four
chapters, conclusion and reference. The thesis contains 136 pages, 45 pictures, and 1
table.

Brief Content of the Work

In the introduction the thesis modernity and scientific novelty is justified, the main
stages of stability, vibration and optimal design theory development is described, the
role and significance of that theory is clarified.

The first chapter is devoted to one of the most significant problems of Mechanics of a
deformable solid body- stability, vibration and optimal design problems of constructions.
The main definitions and affiliations are brought and in case of the arbitrarily
distributed forces, problems of rec tangular plate stability, multilayered composite
viscoelstic plate stability, rectangular and layered plate stability, taking into account the
transverse shears are studied. The optimal design problem of a three-layered anisotropic
inhomogeneous plate is studied.

In the first paragraph the rectangular plate stability problem in case of arbitrary
normally distributed forces with different boundary conditions is solved. Using the plate

8% A

%w . A% 8w
DiyGy +2(Diz + 2Dg) 5y + Daa g + PO 5 = 0 (1)




. \ h? s . .
bended surface equation, where Dy; = B;; -, are the rigidities of the anisotropic plate and
from the following boundary conditions

a) Hinge fastening

w=0, M,= =0, whenx=0and x=a (2)

w=0, M,= =0, whenv=0andv =250

b) two edges are hinge and on the other two ones the following boundary conditions

are given

w=0, M, = Z =0, whenx=0and x=a 3)
dw 3w

a—y—&—_g—ﬂ,when}- = Oandy =5,

The critical values of the forces are determined:
In case of the hinge boundary conditions w searchable bending is searched in the
form of

W = 5ind,x Yoe, fin Sinp, v, (4)

T

where 4,, = — i bn = ?, and p(v) function is represented in the form of series
: o e
p(y) = iz @u cosmy, e =~ (5)

Putting (4) and (5) into equation (1) we get an infinite equations system, the
determinant of which being zero determines the critical value of p(y) force.
In case of (3) boundary condition w bend is searched in the following form

W = sind,,x ¥ " f, cosu,y ©)

In the edges forces distribution two private cases, when the external forces change by
parabol law, is observed.

In the second paragraph the problem of a rectangular plate stability, made of
viscoelastic materials, when equally pressing by two sides forces p act on it. In this case
the stability equation has got
pea

4 W
Du—+2mlﬂ +2DE_E_] +DM = — DyT*A’w— 2D, r oy -+P— =0 (7)

ot o
st —-
ox: oy
For viscoelastic materials stress-strain contact is expressed in the form of the

the form, where' A - %

following formula
Gy —A18 +A.L2 y’G _AZZ8 +A22 y' '%6 Xy (8)
Aut=Ag(A-T")f, " = Dje’“("”f (t)dt, D =(1—%]0¢ 9)

The problem for a plate supported freely is solved, the formulae for the calculation of
instant and prolonged critical forces are obtained. The instant criticalforce is equal to
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er:-, = A{Dll_'_ Dj_: + EDEG}-’A = % (10)

And the prolonged critical force

B =BS"—2(2D, +D,)D (11)

In the third paragraph the problem of a rectangular plate stability, taking into account
the transverse shear is observed. The following simple model is admitted

U, =UFTZP, Uy =V+ZYP, Uy =W (12)

Two problems are observed.

The first one is the problem of a plate stability, when on two opposite sides equally
distributed p forces act, and the second one is the problem of a layered plate stability,
when on its external planes oppositely directed tangential stresses of S intensity act.

In the first problem for a uniformal (cylindrical bend) problem a simple solution is
obtained

Pkp = Dlljlz (1 - %31:) (13)

From here it is seen that the calculation of the transverse shears brings to the
minimization of the critical force and when (ss— o we get P, = Dyjy4," result by
classical theory.

In the second problem, the preliminary of which is momentary, the critical force is
determined with the following formula

Sh=%/0110y1 4 (14)

In fact, in a uniformal problem the account of the tranverse shears does not bring to
the value change, obtained by classical theory.

In the fourth paragraph an optimal design problem is observed: to find such three-
layered plate h,, thickness, in case of which the plate mass gets the smallest value, and
the value of free vibrations basic frequency is wg: It is admitted that the edges of the
plate are hingely fastened.

The equation, describing the free plate vibrations, is

00 S+ 0, 4 D T + 2. (0, T+ 0, T 4D T +

+£ (Dy %"‘ Dy, % + Dza%) = 2(pohg+p,.h,) aa% (15)
The problem to find the smallest value of the plate mass is brought

J= f; Jr; h,(x,v) dedy (16)

1

To the problem of finding the functional smallest value. We should find & (x, v)
such a value which satisfies equation (15), (2) boundary conditions and incase of w = wy
informs the smallest value to functional (16). The problem is solved by variation
method. It is brought to non-linear differential equations system with partial derivatives



W, h, towards the unknown functions. The system is solved by numerical method —
using Matlab program. The results are reflected in the form of graphs.

The second chapter is devoted to the problems of the shells optimal design. Problems
of three-layered and one-layered shells masses as much as possible minimization, when
a restriction is set on the basic frequency value of the shells free vibrations. The
optimization problem of bars is observed, too. As an example the problem of as much as
possible minimization of a circular bar biggest bending under a concentrated force
action is observed. The solution of the anisotropic cylindrical shells optimal design
problem is brought to non-linear differential equations system, which is solved by a
numerical method, using Mutlub program.

In the first paragraph the problem of cylindrical shells stability in case of external
axisymmetric arbitrarily normal load is studied. The equation system, corresponding to
the preliminary state, will be

(1 2+ 52 =0 (17)
d*w, d
Dy, dxf 1 0 o d + (s R}—z{x}

Stability state equations

8% J.E'u 8%

[J_J.a +(i'[aa ;"+[e.5'[ aa]_ﬂ
CesGt 59 + (i o+ (2 .+ia—“}—ﬂ (18)
DS+ 201 +2D6) 3o + D TS 43 [ T+ (o A+ D - (R T -2 (BT = 0

Two case of boundary conditions have been discussed.

1)w=%=5‘1=u={] when x= 0 and x=1 (19)
2)%: Zif:u:s:ﬂ when x= 0 and x=1 (20)

The first boundary conditions correspond to the classic free supported case, and the
second one — to the case of “floating fastening”
The solution of the first boundary problem is searched in the form of

v = sing, v 2o sind  x (21)

Ligy=1 Ui

W = mg;in_vz_,’_f!:i w, sind, x, A, =—., W, =

And in case of the second boundary problem it has the form
U = COSU, Y Xom_y U, Sind, x, (22)
v = sing, Vo COSA, X, W = COS[,V Xy W,, COSA, X

1 = ""'114 il Y1

It is admitted that forces 7" and T; have got the folloing form
T = Niney b cosdyx , TS =%, a,cosl,x (23)

The critical parameters of stability are determined.



In the second paragraph the optimal design problem of homogeneous anisotropic one-
layered cylindrical shell of changing thickness is observed and the purpose is to find
such a thickness of the shell in order to have the smallest value for the plate mass. The
free vibrations of such a shell are described by the system of classical differential

equations.
It is assumed that in @ = 0, @ = L borders one of the following conditions takes place:
a) free edge.
_ . dU W av _ _ AU w av _
=0+ 0 +Ce—=0, 53 =Ce—+ 0 +Clee-=0, (24)
d*W | 2D dV M
MlE_DllF-i_T_EE:ﬂ’ NJ'Ed_ﬂ_zﬂ
b) hinge fastened edge
U=0, V=0, W=0, M, =0 (25)

c) hinge fastened but free edge in the tangential direction
T,=0, V=0, W=0, M, =0 (26)
The shell mass with the exactness of a constant multiplier is given with the help of
functional

J = [ h{a)da (27)

The problem is solved by the variation method. It is brought to a close system of non-
linear equations Uf{a), V{a), W{a), h(a) towarda the unknown functions and this system
is solved with the numerical method — with the help of Matlab program.

In the third paragraph a problem of minimizing as much as possible the biggest bent
of a bar bending with circular cut under the action of a concentrated force. The circular
bar of 2! length is hingely fastened at x=%! edges and on it at x =0 point the
concentrated force g = P - (x), where &(x)-is Dirac function, acts.

The following problem of a bar optimization having circular cross-section with r(x)
changing radius is observed: to find such i(x) = r*(x) function describing the changing
cut of the circular bar cross-section, in the case of which the biggest bent of the bar has
got the smallest possible value, and the bar volume accepts a predetermined value (r(x)-
is the radius of the cross-section).

With the help of 2(x) function 5(x) surface and D = EI (x) rigidity of the circular

bar cross-section is determined

S(x) = mr? = mh(x) = B:h(x), El(x) = r* = Zh2(x) = Ah%(x) (28)

where B;=m A4, = E—:, I(x)-is the moment of the section inertia, E-is Young module of

the bar material.
The basic concerns of the formulated problem are written in the following form:

(DW, ), =0, W|

x==I

- DWXX|X=-_0-I =0 ,j‘S(x)dx:Vo (29)



|
J= j W (X)3(x)dx =W (0) ——>min

o
where W(x)-is the function of the bar bent, /-is the goal fuctional.

In the formulated problem it is required to find the bar cross-section changing cut
characterizing such a law, that the biggest bent of the bar could get the smallest value,
and the volume could accept the beforehand given value. Formulae of the bar bent and
optimal thickness is obtained.

In the fourth paragraph the optimal design problem of one-layered i with changing
thickness and with r radius of homogeneous orthotropic rotation shell is observed — to
find such thickness of the shell, in case of which the shell mass gets the smallest value.

On § =35, and S =S5, borders of the shell the following conditions take place.

w(s)=W _y(s)-=o, (30)
ds

where Ula), W(a)-are the displacements. The shell mass with the constant factor

exactness is equivalent to the following integral.

S
J = [rhds (31)
So

The problem is solved with a variation method. Non-linear differential equations
system, which is solved with numerical method — Matlab program, and the results are
illustrated in the form of grapghs, is obtained.

In the fifth paragraph the problem of an open cylindrical shell optimal design is
observed: to find such shell h(a,ﬂ) thichness, in case of which with free vibrations

basic w, fixed frequency value the shell mass obtains the smallest value: a =0,

a=a,f =0, =bin the borders one of the following boundary conditions is given.
a) free edge

H oHy, _
T, =0, 812+f=0’ N, + aﬂl =0, M, =0 (32)

b) hingely fastened edge
U=0, V=0, W=0, M,=0 (33)
c) hinge, in tangential direction free edge

V=0 W=0 T, =0 M=0 (34)

d) hinge in normal direction free edge

oH
M, =0 N, + 812

=0, Uv=0, V=0 (35)

e) rigidly fastened edge

u:o,vzo,wzo,éz—%zo (36)
oo



The shell mass with the multiplier exactness is given with the help of the following
functional:

h(a, B)dpda (37)

[
o‘—.m
O e T

The problem is solved by the variation method. As in previous problems, the non-
linear equation system, which is solved by the numerical method, is obtained.

In the third chapter the problems of the shells free vibrations and stability are
studied. The problem of rectangular layered plate free vibrations, when all the sides are
hingely fastened. Problems of a layered orthotropic rectangular plate stability, when all
the sides of the plate are hingely fastened, and when two opposite sides are hingely
fastened, and on the other two sides arbitrary boundary conditions are given, are
studied. The problem of plate vibrations and stability, taking into account of the
transverse shears, is observed. The problems of plate dynamic stability and bent
problems are solved, too.

In the first paragraph the problem of free vibrations of a rectangular layered plate
with axb sizes, when all the sides of the plate are hingely fastened. The equation of a
layered plate free vibrations is:

a4,

ER L 8%w
Dn Fpe EEDI" EDE.E.) + D, 3y ez = 0 (38)

E-. .- E'I-.-..

Here p-is the density of the material, h-is the thickness of one layer, N —is the
number of the layers.
The case, when all the sides of the rectangular plate are hingely fastened, the
boundary conditions are given by formulae (2), is studied. w bent should satisfy the
following initial conditions, too

. a 3 N
W = Hrﬂ{-xl t} 5 ﬂ_t = L:IE'{."X’-.I t}:

where wyg, vg-are the initial bent and velocity.
Bent w, satisfying conditions (2) is searched in the following form

: ) ) mm n
W= ﬁmzezursnmmx SINULY, Ay = = Hp = B (39)

For free vibrations frequencies we have

.1?:|'

el o \JDM(”‘) + 2(Dy; + 2D )n? (’”] + Dy, € =1 (40)

mi‘ﬂi‘! =

Ina private case, for a square (a = b) plate, when ¢ =1,

Z‘T_

Jzmen ¥ /Dy ym* + 2(Dy, + 2D, )m?n? + Do,n? (41)
a4 2np

Wmn =

And the first smallest frequency will be

: ¢
Z_ J 2nph ¥ 'Dyy +2(Dy3 +2Dgg) + Dy (42)

by =
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In the second paragraph, taking into account the transverse shears, two problems of a
layered plate stability are observed.

I. We have got with four sides hingely fastened rectangular plate, which is subjected
to compressionP by unformly distributed normal forces. The critical force is
determined by the equation

8w 8% 8% a%w
Dyg ¥ 2035+ D2 s+ P =0 (43)

dx2

When four sides of the plate are hingely fastened, the solution of equation (43) is
searched in the form of

. . ) _mn _mm
W= ﬁmzsnljmxmnﬂu}', Am = ?: Hp = ? (44)

(43) is not the exact zero solution of boundary problem (2)

P(Z) =n2 [py(Z) + 204(Z2) +0a(2) ] (45)

P- value, determined by formula (45), according to »n will be minimum, whenn =1

u'%(?): t et u"i:i(i):] where < =

o D De
WA a

hI

II. When the opposite sides of the plate are hingely fastened, and on the other two
sides arbitrary conditions are given, then the solution of equation (42) is searched in the
form of

w = f(y) sindpx, (jlm = E) (46)
where f(y)-is an unknown function. For the determination of the unknown function
fy) we get
Dof"—2A3,Daf + (DA%, —P)AL, f =0 (47)

The differential equation, the characteristic equation roots of which are +ik,, tik,,
where

> |'
DV .. Du4Ds .- J

'i'*lzqul';lf.'n \‘II(D) m _._‘Am:'i'*"_\.ll m \J( ) Am — Dy Am+ E_'= (48)

Therefore, the solution of equation (47) will have the following form
f(v) = Achk,v + Bshk,v + (C cosk,y + Dsink,y (49)

Satisfying the boundary conditions given on y = 0 and y = b sides for A B,C and D
constants we obtain homogeneous equations system, by solvable condition of which the
critical force volume P is determined.

In a private case, when all the sides are fastened

w:?:ﬂ, wnen x=0 and x=a

L

urz?zﬂ, wnen v=0 and v=0b (50)
}_
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In order to find P critical force a transcentend equation is obtained

thi b thk,b = k2 (1 - — 1 ) (51)

Lt RN chi. b coskgb/

(N7

III. When four sides of the plate are under the action of an external load, particularly,
on x= 0 and x =a edges p, uniformly distributed forces act, and on ¥y = 0 and v = b
edges p; uniformly distributed forces, then the perturbed state bent should satisfy the
following equation

S % 8w 8%w

% %
Dyg +2Dag s+ D g+ g Hpa s =0 (52)

From hinge boundary conditions we shall have

e n 2 - m 4 mn 2 n e
p (%) +:(5) =”‘[Di(:) +205(77) + D:(;)] (53)
For the certainty of the problem setting additional conditions p, and p; for the forces

should be given. Some private cases are observed.
1. p, and p; forces are different, but relationship is constant

pL=4,p2=Aa (54)

In that case 4 the critical value is equal to

2Dy (%}‘+ 2D3::=+" Dz[ﬂzaz*

A= =
b= 1-a {%} n2

(55)

2. Ifin x = 0 and x = a edges uniformly distributed compressing 4 forces act, and on
y=0 and v =b edges p -stretching forces, moreover, the volume of the compressing
forces can change, but the volume of the stretching forces cannot change, the action of
the stretching forces can be estimated. In that case from (53) we shall have

_= m 2 : CARIPRNY- S -
A= b2 [Dl(ﬂ) +2D3n" + Dy {m) e = (m) n ] (56)
The smallest value of A -will be obtained, whenn =1, and ¢ = ———— |'—D-m =— U
W D_: +-'-'=ﬂ"_
2t B2 Dy
‘H'kp = F\Il Dl.D: (Jl + .‘:;D- + fﬁ) (57)

In the third paragraph the problem of plate vibration, taking into account the
transverse shears, is observed. The tranverse shears and displacement components,
according to the hight of the plate, change by the following laws

L. = f(De(uyt), 1, = f(2P(xy.t), u, =w(xyt) (58)
u, = wlx,y,t) —z ZT_ e % [MT - z?] @, u, =vl(x,yt) - :Z— + -:‘[;_;_% [MT —i\]w

Let’s consider the plate free vibrations, which are represented by the following
system

d d hE 2w
e _"f"z_ h

dx By 1z a2
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h:

B -
Bll a_‘:_ + {_Biﬂ + 2566} P gz BJ_J_ + BEG + ﬂ-44{BJ_H + BEG} + o= 0 (59)
Bx dx B} 10 dx Ei

Pwr R 8%y B0 _
B:: ﬁ + {_Blﬂ + 2566] E!.r-El;, - E [ﬂ.44( Bﬂﬂ_+ BGG Ax _) + aEE{Blﬂ + BE&G} _] + i,t' ﬂ

Let’s consider the case, when all four sides of the plate are hingely fastened
w=M,=¢9=0, when x=0and x=a
w=M,=¢=0, when y=10and y=5 (60)

The solution of system (59) is searched in the following form
W = fnnSNAmX STty r:smm,zt’ P = PmpCOSAyX SINU,Y COSWyt (61)

. . mm nm
Y = P SINA X COS[L,Y COSWME, Ay = ) Hp = B

For the frequency we obtain
Wmn = If"-‘]:IE!IJ'I:'z "~'|ll —d (62)
Here w},, - is the frequency of the free vibrations obtained from classical theory

M : - E—4
If"-:’:'I]IJ'I;'z = \‘llp_h [Dll*‘l?n + 2{.}312 + Eﬂﬁﬁ}ﬂ;'_n#n D"".Iun]l"_ ’ = = l:g (63)

As 0<d <1, we obtain that, taking into account with shears, the frequency is small
from the determined one with classical theory.

In the fourth paragraph the problem of the rectangular plate stability, taking into
account the transverse shears, determined by the beforehand stress-strain state

=-p Tzo =-4p (64)

For the determination of the plate critical load we use the second and third equation
of system (60) and equation

S+ -p(GE+253) =0 (65)

dy®
The solution of the system is searched in the form of (61), and the boundary conditions
are given with formulae (60). The critical value of the load is determined
Pmn = p:'[;m vi—d (66)
By the formula, where when 0<d <1, and

]U‘l} _ Dy Afn+20 Dot 2D ) AR ufi+ Do u
TN "1:"'_‘,”+ i#ﬁ

(67)

From formula (66) it is seen, that calculated by the precised theory the value of the
critical force is smaller from the obtained value of the problem by classical setting. In
the private case, when 4 =0

1+4
p:li;m = [Dll*qm + 2{ J1--JJ." + EDEG}‘A?J“I#?! + D .Iu:lz]m (68)

In the fifth paragraph the problem of the plate dynamic stability, when on its plane
acting force is periodical function of time T," = —p(t).

13



The system studying the dynamic stability will be
(E'.r * M) p{t} a;: =0 (69)

33}]_%:[&55(5“5 +BE~E~.§| )+ﬂ44{5p+5‘55} :|+'-‘P=ﬂ

] E [ﬂ‘”(BM Ay ?‘b+ Bes a ¢)+ﬂ55{51" +Bae}—]+l,l') =0

(B2 + (B, + 2B4)

[Bgﬂ—+{5lﬂ +2Beg) 5o

The boundary conditions are represented by formula (60). The solution is searched in
the following form

W= ﬁ]"li'! {I’-} II;!’l:”"'q'i':l"l“x’- Sl?llu ?!J’?

{p = {pi‘ﬂi‘! 1:I’-.\JI":G‘g"q'i'll"l‘lx’- Sl?l#?!}‘ bl ]II’I‘] = lII’I‘.II'J"II'I {t}‘gl?d?ﬂx CGSH?!}? (70)

When p(t)- is a periodical function p(t) = pp — p,cosét, then for the determination of
f. (t) We get

d” Fmnlt)

e + 'ﬂ:l:mz{:l - Eﬁ:nrz':ﬂs'?t}ﬁmz =0 (71)

The differential equation, where
172

) B =g (72)

:'-pmn_iul:l:'

1-p(t)
Pmn

‘ﬂ?ﬂ?! = m?]"li'! (

Equation (71) is a well-known Matier equation, for which stability and unstability
areas are well-known.
When pp =0, —p(t) = pycosét, then equation (71) will have

d” Fmnlt)

T+ R (1= 20O fing = 0, fpyy = T8 (73)

<Pmn

Here w;,, is determined by formulae (62), (63), and p, is determined by formulae
(66) and (67).
Such values of frequencies, in case of which unstability takes place, are obtained.

In the sixth paragraph the problem of plate bent, taking into account the shares, is

studied. The case, when the external normal load changes only in one direction, is
am 4w

considered. We shall have Du P ~ +2(Dy; + EDE..g} s D-—a_4 =q(y) (74)
W= Z:: =0, when y=0andv=5b (75)
The solution of equation (74) is searched
w=wolyv) +wy(x,v) (76)
in the form, where w; satisfies equation
Surg :

D3, aﬂ}4 =q(v) (77)
and wc.'[:ﬂ} = w,(0) = wg.'[:b} = w[',:{:b} = 0 conditions, and w,(x,¥) - equation

Dyy 52+ 2(Dys + 2Dee) sty + Dy T2 = 0 (78)

in case of boundary conditions w,(y) will have the following form
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B2 [ ) nw
= ﬂ ;.;:j_u_: SN, v, (jJ n = ?) (79)

Wy
The unknow function w;(x, ¥) will be searched in the following form

wy = I3, X, (x)sinu, v (80)

and for the determination of the unkown function X, (x) we get differential equation

Dy Xy — 2(Dy; + 2Dgg)up X, + Dpppin X, = 0 (81)

the characteristic equation of which may have roots of three types. Particularly, when
the roots are real and are equal to each other k, (k = 0), then the corresponding solution
X, (x) is equal to

X, (x)=(A, + B, x)chu kx+ (C, + D, x)shu, kx (82)

For the bent we shall have the following expression

Rnb:
e ak

Wy = I:l?:=l + 1::"J"!:'z + B,zx}chy”kx + {:[u + an}";h.lunkx) SI‘J‘]}J,!}’ (83)

Having expression w;, it is possible to obtain the expressions of the rest of the physical
values.

Some private cases are considered. In case of different boundary conditions, the
formulae for the calculation of the bents are obtained.

In the fourth chapter multilayered plates theory general provisions are described,
formulae, which are necessary for the solution of plates bent, obligatory vibration and
stability problems, are derived. Problems of optimal management, free vibrations and
layered composite plates stability made on the base of fiber filler are considered.
Optimal management problem for the plate bending vibrations under the action of the
changing load, applied on the plate surface made of multilayered composite material is
studied. A numerical example is considered, the results of the solution are illustrated in
the form of graphs.

In the first paragraph for the calculations of the multilayered anisotropic composite
plate, made of fibers, the formulae, which are necessary for the solution of plate
bending, obligatory vibrations, stability problems, are derived. It is assumed that all the
layers of the plate are of the same h thickness and have the same properties. The general
thickness of the plate is equal to H =2Nh. The fibers of each layer are in the plane
parallel to XOY coordinate plane and towards the axis 0X they make ¢, angle. The
direction of the layers fibers towards OX axis can be directed towards XOY plane
symmetric or nonsymmetric.

The equation of a multilayered rectangular plate obligatory vibration in case of
orthotropic materials is described by the equation

-

8% 8% 84w 8%w -
D‘l‘lﬁ T EDE PRI T ‘I-D: Fpn - R FPE: s EN.”.JOF— Q(}.’J ¥, f:l =0 (84)
and
w = wylx,v), % = vy(x.v), when =0, (85)
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by initial conditions. Here p is the longitudinal force, acting on the medium surface
(plane), g is the thickness of the material, @ (x,v,t) is the transverse changing force.

A system, consisting of two equations, with the plates fibers directions, with
unknown ¢, angles, in case of which the collateral rigidities of the plate anisotropic
layers D, and D, will be equal to zero. Certain problems, when the fibers are made of
bioplast, the number of layers is equal to four, six, eight, are conserved.

When N =1, then the plate consists of only two layers with 2h thickness and in ¢,
direction of the fibers.

For the plates consisting of four layers system (N =2) consists of two homogeneous
equations.

sin2¢y + 75in2¢, =0
sindg, + 7sindgp, =0, (86)

Which has the following four solutions.

a) Zero solution @, =@, =0, b) ¢, =0, @, = 1/2,

c) @2=0, ¢,= /2, d) the angles are equal to ¢, = ¢, = 7/2:

In the same way the case of the plates, consisting of six (N=3) and eight (N=4)
layers have been considered.

In the second paragraph multilayered composite plates free bending vibrations, which
are described by equation, (84) when p = 0and Q(x,y.t) = 0:

8w 8w 4w , 8%w
Dig T 203552 T Doags T2Nph 7 =0 (87)

the soloution of equation (87) is searched in the following form
w = (A coswt + Bsinwt)W(x,v) (88)

Putting (88) into (87) for, W(x,y) we shall have the following equation

g w i w oW
Dy et © 2D, Bx3gy® | D A

— w*2NphW =0 (89)

For the study of the free vibrations question, it is necessary to solve this equation in
case of certain conditions. In case of a fastened, supported or free edge for W the
boundary conditions do not differ from the conditions for w. The requirement, that
function W should satisfy the boundary conditions and be the solution of equation (89),
brings to homogeneous equations system for the unknown constants.

Let the plate bending vibrations W,,, private function satisfy equation (89) and the
plate free support boundary conditions (2).

The solution of equation (89) is searched in the following form

. mmnx ., nmy
W,,,, = sin—sin—
mn a b (90)

We shall have

-

Dn( ’””)4 + 233(’”"::)' + D::(?f — w2 2nhp =0

o iz
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3 |—

I \I-?!hp '-.,ID“ (m) + 2Dyn? (?): + Dyon*, c=a/b: 91)

mi‘]‘li‘! -

The frequency of the basic mode is determined by the same equation, when m=1 and
n=1
2 1 /

(g = —
1= a2 -.J Znhp

{DJ_J_+2DECE+D::C4} (92)

Particulary, for a square plate (b =a,c=1)

= |
a2 -.J nhp

g = 'DJ_J_+2D3 +Dﬂﬂ (93)

The plate layers D,,, D,,, D, rigidities depend on the direction of the fibers
classification in the plate layers.

Composite plates transverse vibrations frequency characteristics, depending on the
relation of the plate sides and the direction of the fibers classification in its layers, when
the fiber is made of boroplast, the number of the layers is equal to four, six and eight, are
studied. The results are illustrated in the form of graphs.

In the third paragraph the stability problem of a layered plate, consisting of composite
layers, is considered and this problem, in case of the orthotropic plate (Dy¢ = Dye = 0), is
described with equation (87), when p =0, @(x,v,t) = 0. It has the following form

e A4 A4 8%wr
D“_a 4+2E'3Ew__ +D__a_4+paxd—ﬂ (94)

The plate sides are highly fastened, the boundary conditions are described by equations
(2). The solution of equation (94), satisfying condition (2) is searched in the form of
Wian = Amn 5”1_5”1 ”:} (95)

where 4,,, are the constant coefficients, and m,n are the constant numbers. Putting (95)
into (94) we get

Ao 4021 (2) + 203(%) "+ 02s () ] -m* (%) ) = (%)

Non-zero solution is obtained by equalizing the expression in the figured bracket to
zero. From here we find.

_ mDuDee [ Do () 20 [Psz (Y’ 4]
p= BI ».,Jlﬂl::{c) + JD1:Dzz st ~,1||D-_-_ (m) n 97)

When n =1, we obtain the well-known solutions

w2 [DiiDaz [ [Dos fmy* 2Dg A
Pep = B2 \‘llﬂ_“(:) + J/P11Dgz + JEI_{;) ] (98)
or
_ n*/Diibm i Dys (m 2D; Do fc 3]

Pep = B2 K, Ko JD_,_,( ) + JD11Dzz * quﬂ;; (m)

When Dy, = D;; = D; = D, that is, the plate is made of isotropic material, from (98) we
shall have
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P =30 (2+2) 99)

which corresponds to the well-known formula.

The critical forces, depending on the sides relationship and the layers fiber direction,
in case of which the plane balanced state looses its stability, are determined.

Certain examples, when the fiber is of boroplast, the number of the layers is equal to
four, six and eight, are considered. The results are illustrated in the form of a graphs.

In the fourth paragraph we consider optimal management of a plate made of
multilayerd composite material for the plate bending vibrations under the action of the
changing load normally applied on the plate plane.

The differential on the plate of the anisotropic plate forced vibrations in case of the
transverase load zero value is given by equation

atw 3w Pt A% A%
= (Du ot 45153 i+ 2(Diz + 2Dge) 3 + 4Dz o + D )+

dxtay? 22544
A% 1 )
If Dy = D2 = 0, than equation (100) admits the form
Dua - +2(Dy +2D5‘5}a PN .+D::%+P Z? =Q(x, 1) (101)

The plate sides are hingely fastened. The initial conditions are
=A(xy), Z=Flxy), when t=0 (t,=0) (102)
The management problem lies in finding such a solution, in the case of which at t =1t;
moment of time, the displacement of the plate medium surface and the displacement
velocity are brought to a new state with ®,(x,y) and ®.(x,y) functions.

Aweynt)

wix,y,t) = @,(x,y), = @,(x,y) when t=t (103)

gt

a requirement should be added to this condition
J =I5 0y 3 Q2 dxdyadt (104)

In order to have minimal value | = J,.;», for the functional extreme
The solution of the equation will be represented in the following form
wlx, v, t) = B =1 fon () sindpx sing,y , Ay = wnx/a, p, =mnx/b (105)
In order to find the unknown functions f.(t), in the left part of equation (101) we
install (105), and in the right part Q(x,y,t)

Q =X =1 Gon (D)SINAdpx siNY,Y (106)
Fourier series of function

+ fﬂ?!{t} QJJ"I?! {t} (107)

d” f‘n'l' ?':'

As a result we have differential equation where

. 1, : o
Wmnn = ;{. Dyydg + 2(Dyz + 2Dgg) A7 5 + Do) (108)
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The solution of equation (107) has got the following form.
Jﬁﬂ?! {t} = A mn Casm?:ﬂ?! t + B?J"I:'! Si?lm?ﬂ?! t + ; .J"[:- I:]I?J"Ii'! {T} SE'TJ m?]"li'! {t - T}d? (109)

mn

The transverse forces, bringing the plate from the initial state to the final state at the
denoted time, are found. On the load an additional requirement is set - minimization of
the functional, depending on its value square. The problem is solved by Fourier method.

As a final result we obtain

===}
1

Don 1
wix,v,t) = Z (@, cOSwWE +—— sinwt + — — (3, . witcoswt —
» Shpe?
m=1n=1
—(B, + {t_,m-:ursmcurjjjngx sin—y (110)

(==}

w,(x, v, t) = Z (—a,,, wsinwt + b, coswt + — (B wecoswt —

‘1-;’1,0-:0

m=1lmn=1

MIT mit
—w( By + Ay wisinwt) — wla,,, 6, wt)sinwt)))sin—x sin— v

Numerical calculation is fulfilled, too.

Conclusion. The thesis is devoted to one of the modern themes of mechanics of
deformable solid body- to the thin-walled constructions stability, vibration, and optimal
design problems, which have both theoretical and applied great significance. In the thesis,
particularly, the following result is obtained.

1. The author has solved one-layered rectangular plate stability problem in case of the
arbitrarily distributed forces, composite viscoelastic multilayered rectangular plate
stability problem towards the coordinate plane in case of the the layers different
arrangement, when on two sides of the plate uniformly compressing forces and two
layered plate stability problem taking into account the transverse shear, act.

2. Symmetric three-layered anisotropic inhomogeneous plate optimal design problem is
solved. In the fixed case of the plate free vibrations basic frequency we found such plate
thickness, in case of which the mass obtains the smallest value. Non - linear equations
system, which is solved by numberical method, using Matlab program, is obtained.

3. Cylindrical shell stability problem, in case of external axis-symmetric arbitrarily
normal load, freely supported edge and “Floating fastening” boundary conditions is
solved. The stability critical paramenters are determined.

4. Optimal design problems of a homogneous anisotropic one-layered cylindrical shell
of changing thickness, one-layered homogeneous orthotropic torsion shell of changing
thickness and open cylindrical shell are solved. Such cylinder thickness, in case of which
the shell mass obtains the smallest value, is found.

5. The optimal design problem of a bar, having a circular changing cross-section, is
solved: to find the cross-section changing cut characterizing such a law, when the
biggest bending of the bar gets the smallest value, and the bar volume obtains the
beforehand given value. Formulae of rod bent and optimal thickness are obtained.
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6. Plate bent, vibrations and stability problems, taking into account the transverse
shares, are solved. It is shown, that, taking into account the shears, plate vibration
frequency and the critical load value are small from the determined by classical theory.

7. The plate dynamic stability problem, when the force, acting on its plane is a
periodical function depending on time. Such values of frequencies, which cause
unstability, are obtained.

8. Bent, obligatory vibration, stability and optimal management problems of the plate,
made of multilayered composite material, are solved. In the vibration problem the basic
frequency behavior, depending on the relationship of its sides and the direction of the
fibers, is studied. The critical forces are determined. The transverse forces which bring
the plate from the initial state to the final state in the denoted time, are found. For the
considered problems numerical calculations are done, the results of the calculations are
illustrated in the form of graphs.
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Bqpuiljugnipiniu

Unttwpinumpniip whpdws L gednpldwugynn whun dwpduh dEjuwthluygh
wpnhwlut  phdwibphg  dkhht  pupwluwyun  jupenyggubph  Juyniinpjui,
nwnuinudutph b oyynhdw] twhiwgsdwt jpunhpukpht, npnup niukt phk® nbuwlul,
pt® Jhpuwnwlwt dks trwbwlnipnii: Unbkhwjununipjut dby, dwubtwynpuytbuy,
unnwugyws Lt htnlyjuy wpyniupubpp.

1. LnwdJwé Eu dhwpbpunn nipnuulnit vuh Juyniunipjutt punhpp juduwyuljut
puohujués  &Lhgiph phwypmid, Undwynghghnt wpwdqudwénighll pwuqUuokpn
nipnuilnit vwh Juyunipjut jpunhpp Ynnpphtwnwlut huppnipjut tjundwudp
ohpnntph wnwppbp nuuwynpjudnipjutt phwpnud, tpp vwh Eplne Ynndbph Jpu
wqpnid bt hwjuwuwpwswth ubknunn &hgbp b okpunnwynp uwjh Juyunipjut Epynt
hughpubtp' pugyuwjtwlut uvwhptph hwygunnidny:

2. ImdJws L updbnphy bEnwobpn wthgnuipny wthwdwubn vwh owwnhduwy
twhwgddwt puunhp: Uwh wquunn nmwunwiunidubph hhdtwlwt hwdwhunipjut
ubbnws wpdbph phwypbd qunudk] £ vuh wjtyhuh hwuwnnipjni, nph phypnid
uwh quuquép unwind L wdkbwthnpp wpdbp: Uwnwugws E ny géuyhl
hwjuwuwpnidubph hwdwlwpg, npp nddws L pduyhtt dbpnnny, oquuwqnpsdtiny
Uwpup spughpp:

3. Lndjwd b quubwhtt punuiuph Juyniunipjut juunhpp wpunwphtt wpwbhgpu-
uhdbwnphl judwyulwt tnpdw) phinh phypnid, wmquun htudws tqpuyht b «nnnn
wdpwlgnid» Eqpuyhtt wuydwutbph nbypbpniud: Opnodus Eu juyniunipjut Yphwnh-
Juljwt wqupwdbwnpbpp:

4. Tnmdjws Eu thnthnppwljut hwunnipjutt hwdwubn wthgnuupny Jhwobpn
qubuwghtt punuiph, dhwobpn thnthnjpwjut hwunnipjut hwdwubn oppnwnpny
wunundwl punuiph b pug gqquitwjhtt punuiuph oynhdw) twpwgddwb fuunhpubkpp:
QGunijws E punuuph wjbiyhuh hwunnipni, nph ghypnud punuiph quuqduop
unnwinid £ wdkwthnpp wpdtp:

5. Lnmwdjws E oppwbiwghtt thnthnjuwljut juwjtwljutt hwwnnyp niubkgnn dnph
oywmhdw] twhiwgddwt punghp. qutbk] juuwlwt  hwwunyph tohnjuwluwb
Jupuwspp punmipwgpnn wyuwhuh opkup, np dnnh wdkbwdbs gydwsdpp unnwmbw
thnppwqnijt wpdtp, hulj dnnh Swduw pugniuh twhww o upduws wpdtp: Unwugdws
tt Annh dydwsph b oyyinhdw hwunnipyut putiwdbitp:

6. Lnwddws L uwih Sndwl, wwwnwindubph b juynibinipjub  jubughptbp
puyuyuwjut vwhptph hwydunniuny: 8nyg E wmpdws, np vwhpbpny hwydunws
uwh nuwunwbdwt hwdwpnipmniup b Yphnhjuljuit pieh dEdnipniup thnpp Gu
nuuwlwb nkunipjudp npnodwsdhg:

7. Mumdtwuhpywsd b vuh phutwdhjujut Juyniunipjut jpunghpp, Gpp tpu
hwippnipniunid wgnnn &hqp dudwtwlhg wuppkpulwi dntuyghw k: Unwugdus tu
hwdwhimpnitiiph  wjtyhuh  wpdbputp, npnug pbypmd wbknh  nibh
whjuwynitnipynii:

8. Lnwsqws bk puquuobpun Yndwynghghnt tyniphg wuwpwunywsd uvwikph éndwd,
hupjunpuljut nunwidwt, jumniinipjut b oywnhdw] jurwjupdwt juughpubp:
Swunwbdwb pugpnud  nuntdbwuhpuws £ bhhdbwlwt hwdwpwnipjut Juppp
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Jwhidwé upw Ynnubkph hwpwpbpnipniihg b okpnbkpnud dwtipuptih nignnipjniuhg:
Npnodws Lu Yphnhluljwb nidbipp: Fnbudws tu tpduws dudwtwjuhwnygusnid uwyp
uljqpuujutt Jpdwljhg yEpottwjutt Jhdwlhtt phpnn juyuwljub nidbpp: thunwpldws
huughptitph  hwdwp YJwuwpdws G pduhtt  hwoduplubp, hwyduplukph
wipniuptbpp yuwnlbpgws kb gqpubhljubph mbupny:

PE3IOME

nucceptanuu Hapsgap Moxamman XanersepAanueBuy «3aj1adynd yCTOMUUBOCTH, KOJIEOAHUM U

OINTUMAJIBHOT'O ITPOCKTUPOBAHUA MHOT'OCJIOMHBIX IIJJACTUH ¥ 000JI0UEK»

Juccepranusi MOCBAIIEHA OJHOW M3 aKTYyaJbHBIX TE€M MEXAaHUKH JAePOPMUPYEMOTO

TBEPJIOr0 Tejla: YCTOMYMBOCTH, KOJIEOAHHSM M ONTUMAIBHOMY NPOEKTHUPOBAHHUIO TOHKO-
CTEHHBIX KOHCTPYKLHM, UMEIOIIEN KaK TEOPETHYECKOEe, TaK M IPHUKIAJHOE 3HadyeHue. B
JIUCCEpPTAl, B YACTHOCTH, IOJYYEHBI CIEAYIOLINE PE3YIIbTATHI:

1.

Pemenbl 3amadya  yCTOMYMBOCTH  OJHOCIOMHOM  MPSIMOYTOJIBHOW  IUIMTBI  TIPH
IIPOU3BOJIBHBIX PACIPENCIICHHBIX YCUIMAX, 3a/adya YCTOMYMBOCTH KOMITO3ULMOHHOU
BA3KOYIIPYTOM ~ MHOTOCJIOMHOW  IPSAMOYTOJIBHOM IUIMTBI B CIIy4a€ pa3HOro
pacroJI0KEHHUs CI0EB OTHOCUTENIBHO KOOPJAMHATHON IJIOCKOCTH, KOTJja Ha 00€ CTOPOHBI
IUIMTHl IEUCTBYIOT PABHOMEPHO PACIIPENICIICHHBIE CKUMAIOIIUE YCUIINS, U JIBE 3aJauyu
YCTOMYHMBOCTH CJIIOUCTOM IUIUTHI C YUETOM ITONIEPEYHBIX CBUTOB.

Pemena 3amaga ONTUMAIBHOIO IPOCKTUPOBAHUS CUMMETPUYHOM TPEXCIOWHON
AHMU30TPOITHOM, HEOJNHOPOAHOM IIacTUHBI. [Ipu ompeneneHHOM 3HAYEHWH OCHOBHOM
YacTOThl CBOOOJHBIX KOJICOAHUM TIACTUHBI HaWJeHa Takas TOJIIWHA, TPU KOTOPOH
Macca IUIACTHHBI OKasblBaeTcsl HamMeHblied. [lomydeHa cucrteMa HEIMHEMHBIX
YpaBHEHMI, KOTOpas pelIaeTcs YUCICHHO IPH MOMOIIM TporpaMMbl Matiial.

Pemena 3amaya yCcTOWYMBOCTH IMJIMHAPUYECKONW OOOJIOYKH B Cllydae MPOU3BOIHHOU
OCECUMMETPUYHON HOPMAJIIBHOW BHEUIHEH HArpy3kd, NpH TPAaHUYHBIX YCJIOBHUAX
CBOOOJHOTO ONMMPAHUs M CKOJb3ALIEeH 3aaenku. OnpeneneHbl KpUTHUECKUE MapaMeTphbl
YCTOWYHUBOCTH.

Pemiensl 3agaum  ONTUMAaIbHOTO MPOEKTUPOBAHUS  OJHOPOJHOM  OJHOCIOMHOM
AHU30TPOMHON IWJIMHAPUYECKONW OO0OJIOYKU TMEPEMEHHOM TOJIIMHBI, OJHOPOIHOM
OJIHOCJIOWHOM OPTOTPOMHON 000JIOYKM BpaleHUs] IEPEMEHHON TOJIIUHBI U OTKPBITON
MATUHAPHYECKON o0onouku. Haliena Tommuaa 000JI09KH, B CiIydae KOTOPOH ee Macca
MMEET HaUMEHbLIEE 3HAUYCHHUE.

Pemena 3agadya ONTHMAJIBHOTO NPOEKTUPOBAHUS KPYIJIOTO CTEPKHS NEPEMEHHON
TOJIIIAHBL: HAUTU 3aKOH XapaKTEPU3YIOEE MEPEMEHHOE IONEPEUYHOE CECUCHUE CTEPIKHS
TaK, 4TOObI MAaKCUMAJLHBIN IPOTHO CTEPXKHSI TOJTyda HauMEHbIIee 3HaYeHue, a 00BEM
CTEp>KHS NMPUHUMAJIO 3apaHee 3a/aHHoe 3HayeHue. [lomyuensl ¢popmynbl i nporuda
CTEPKHS U JJIsI ONTUMAJIBHOM TOJIIIMHBI.

Pemenst 3amaun Ha wu3ru0, KoneOGaHUA W YCTOMYMBOCTH Ui TUIATHHKU C Y4E€TOM
nonepeyHsix caBUroB. [lokazaHo, 4YTO 4YacToTa KOJEOAHWM MJIATUHKA M BEJIMYMHA
KPUTUYECKOW CHJIBI C YYETOM IIONEPEYHBIX CABUIOB MEHBIIE OT TEX, KOTOpbIE
IIOJIYYEHBI 110 KJIACCUYECKON TEOPUHU.

N3yuena mnpoOiemMa IUHAMUYECKONM YCTOMUYMBOCTHU IUIACTUHKHU, KOTJAa CHIIA, Jei-
CTBYIOIIAs Ha €€ MIOCKOCTb, SABISETCS Mepruoanyeckoil pynkuuen Bpemenu. [lomydenst
3HAYEHUS YaCTOTHI, IPU KOTOPBIXUMEETCA HEYCTOMUUBOCTb.
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8. Pemensl 3amaun Ha U3ru0, YyCTOWYMBOCTD, BHIHYX/ICHHBIE KOJEOAHUS M ONTHMAIBLHOE
IIPOEKTUPOBAHUE JJII MHOTOCJIIOMHOM IIACTUHBI U3 KOMIIO3MLIMOHHOTO Marepuana. B
3ajaye KoyieOaHUsl MCCJIENOBAHO IOBEJIECHHWE OCHOBHOW YacTOTHI B 3aBUCUMOCTH OT
OTHOIIIEHHSI €€ CTOPOH M OT HaIlpaBJICHMs BOJIOKOH cioeB. OnpeeneHbl KpUTUIECKUe
cwibl. HaiineHsl nonepeyHsle CUibl, KOTOPBIE B 3aJlaHHOM IPOMEXYTKE BPEMEHHM W3
HA4YaJIbHOTO COCTOSIHMS IUIMTHI INPUBOAAT B OKOHYATENbHOE cOCTOsiHME. B pac-
CMOTPEHHBIX 3a/la4ax CHACJIaHbl YHUCJICHHBIE pAacyeThbl, pPe3yJbTaTbl pPACUYETOB IIpe-
CTaBJICHBI B BUJIE€ rpa)uKOB.
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