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INTRODUCTION

Actuality of the subject. It is a classic problem in mathematics to estimate the value of a

function at certain points from known values at other points. The process of reconstructing a

function, curve, surface from certain known data is called interpolation. In some sense, polyno-

mials are the simplest type of interpolants to work with, as their definition only involves a finite

number of additions, subtractions, and multiplications. Also they can be easily differentiated

or integrated.

Univariate polynomial interpolation is a classical subject, with a long history and a well

settled theory. It dates back to the Newton and the Lagrange fundamental solutions of the

interpolation problem.

Compared to that, the multivariate counterpart is much more complicated. It has only

been systematically considered in the second half of the 20th century due to the development

of computers. Another reason for the interest of multivariate problems was the emergence of

new mathematical methods, as cubature formulae, finite element methods. Another connection

is Algebraic Geometry, since the solvability of a multivariate interpolation problem relies on

the fact that the interpolation points do not lie on an algebraic surface of a certain degree.

These days, applications of multivariate polynomial interpolation range over many different

fields of pure and applied mathematics. Interpolation theory finds applications in many prob-

lems, as numerical differentiation and integration, numerical solution of differential equations,

evaluation of transcendental functions, typography, and the computer-aided geometric design

of cars, ships, and airplanes.

Purpose and goals of the thesis. The thesis consists of two parts. The first part is

dedicated to the factorization of the fundamental polynomials of two and three variables.

In the second part we provide an adjustment to the formulation and then prove a conjecture
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proposed by V. Bayramyan and H. Hakopian in a recent paper. The conjecture characterizes

the number of usages of a line in a GC set, provided that the Gasca-Maeztu conjecture is true.

The object of research. Multivariate polynomial spaces, n-independent and n-poised

sets, GCn sets, maximal lines, Gasca-Maeztu conjecture, general principal lattices, Chung-Yao

lattices, Carnicer-Gasca lattices.

The methods of research. The methods of univariate and multivariate polynomial in-

terpolations are used. Also some methods of linear algebra and algebraic geometry are used.

Scientific novelty. Necessary and sufficient conditions are provided for the factorization

of fundamental polynomials of node sets in R2 of cardinality ≤ 2n+ [n/2] + 1 and of node sets

in R3 of cardinality ≤ 3n+ 1. A new simple proof of the Gasca-Maeztu conjecture for the case

of n = 4 is provided. Then a correct formulation of a property established by V. Bayramyan

and H. Hakopian on the usage of n-node lines in GCn sets is provided and then proved. Finally,

an adjustment to the formulation of a conjecture proposed by V. Bayramyan and H. Hakopian

on the usage of k-node lines in GCn sets, 2 ≤ k ≤ n + 2, is provided and then proved. Also

counterexamples for the cases when the lines are not used at all are presented.

Practical significance. Main results in the thesis are of theoretical nature but at the

same time some of them can have practical application. For instance finding fundamental

polynomials in the simplest possible form is significant from the point of view of applications.

The characterization of independent and poised sets can be used in the mathematical problems

where multivariate polynomial interpolation is considered.

The following provisions are presented for the defence.

- Necessary and sufficient conditions are provided for the factorization of fundamental poly-

nomials of node sets in R2 of cardinality not exceeding 2n + [n/2] + 1 as a product of

factors of at most second degree.

- Independence of node sets with 3n+1 nodes in R3. Necessary and sufficient conditions are

provided for the factorization of fundamental polynomials of such node sets as a product

of linear factors.

- A correction of a property on the usage of n-node lines in GCn sets established by V.
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Bayramyan and H. Hakopian.

- An adjustment of the formulation of a conjecture proposed by V. Bayramyan and H.

Hakopian on the usage of k-node lines in GCn sets, 2 ≤ k ≤ n + 2, is provided and then

proved. Namely, by assuming that the Gasca-Maeztu conjecture is true, we prove that

any k-node line ` is not used at all, or it is used by exactly
(
s
2

)
nodes, where s satisfies

the condition 2k − n− 1 ≤ s ≤ k.

The approbation of obtained results. The results of the thesis were reported in

- the scientific seminars held in the department of Numerical Analysis of the Faculty of

Informatics and Applied Mathematics of Yerevan State University,

- the International Conference Dedicated to 90th Anniversary of Sergey Mergelyan, 20-25

May 2018, Yerevan, Armenia, Abstracts, pp. 37-38 ([30]).

- the Emil Artin International Conference, Dedicated to 120th Anniversary Emil Artin, 29

May - 02 June, Yerevan, Armenia, Abstracts p. 67, Yerevan, 2018 ([31]).

- the International Conference Harmonic Analysis and Approximations VII, Dedicated to

90th Anniversary of Alexander Talalyan, 16-22 September, 2018, Tsaghkadzor, Armenia,

Abstracts pp. 45-47. ([32]).

Publications. The results of the thesis were published in 4 scientific articles [25], [27], [28],

[29] and reported in 3 international conferences [30], [31], [32].

The structure and the content of thesis. The thesis consists of introduction, two parts

each of which contains three chapters, summary and bibliography. The puplications of the

author are [25], [27], [28], [29], [30], [31], [32]. The paper [26] is accepted for publication. The

number of references is 32. The content of the thesis is 102 pages.

THE CONTENT OF THE THESIS

In Chapter 1 we present univariate and multivariate interpolation and some basic known facts.
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Denote

x = (x1, x2, . . . , xd) ∈ Rd, α = (α1, α2, . . . , αd) ∈ Zd+

xα = x1
α1 · x2

α2 · · · · · xdαd , |α| = α1 + α2 + · · ·+ αd.

Let Πd
n be the space of polynomials of d variables of total degree at most n :

Πd
n =

∑
|α|≤n

aαxα : aα ∈ Rd

 .

The dimension of this space is given by

N(n, d) := dim Πd
n =

(
n+ d

d

)
.

Below we state the Lagrange multivariate interpolation problem. Suppose we have a set of

s distinct nodes Xs = {x1,x2, . . . ,xs} ⊂ Rd and s arbitrary values c1, c2, . . . cs. The problem of

finding a (unique) polynomial satisfying the following conditions:

p(xi) = ci, i = 1, 2, . . . s, (1.2.1)

is called interpolation problem. The conditions (1.2.1) are called interpolation conditions.

A polynomial p ∈ Πd
n is called an n-fundamental polynomial for a node A = xk ∈ Xs if

p(xi) = δik, i = 1, . . . , s, where δ is the Kronecker symbol. We denote this fundamental

polynomial by p?k = p?A = p?A,Xs
.

Definition 1.2.1. A set of nodes X is called n-independent if all its nodes have fundamental

polynomials. Otherwise, X is called n-dependent.

Fundamental polynomials are linearly independent. Therefore, a necessary condition of n-

independence is |X | ≤ N(n, d). Having fundamental polynomials of all nodes of X we get a

solution of the interpolation problem (1.2.1) by using the Lagrange formula:

p(x) =
s∑
i=1

cip
?
i (x). (1.2.2)
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Thus we get that the node set Xs is n-independent if and only if it is n-solvable, meaning that

for any data {c1, . . . , cs} there exists a (not necessarily unique) polynomial p ∈ Πd
n satisfying

the conditions (1.2.1).

Definition 1.2.2. The set of nodes Xs is called n-poised if for any data {c1, . . . , cs} there exists

a unique polynomial p ∈ Πd
n, satisfying the conditions (1.2.1).

A necessary condition for n-poisedness of the set Xs is

s = |Xs| = N(n, d). (1.2.3)

Let us mention that in the univariate case the condition (1.2.3) is also sufficient for n-

poisedness. In the multivariate case the condition is no longer sufficient, unless the case n = 0.

We also have that a set Xs, with s = N(n, d) is n-poised if and only if it is n-independent.

In Section 1.2.2 we present basic known results on bivariate interpolation.

For the brevity we denote the space of bivariate polynomials of total degree at most n by

Πn := Π2
n. Similarly we set

N := N(n, 2) =

(
n+ 2

2

)
.

We have

Proposition 1.2.3. The set of nodes XN is n-poised if and only if the following condition

holds:

p ∈ Πn, p(xi, yi) = 0, i = 1, . . . , N =⇒ p = 0. (1.2.4)

A plane algebraic curve is the zero set of some bivariate polynomial. To simplify notation,

we shall use the same letter, say p, to denote the polynomial p of degree n ≥ 1 and the curve

(of the same degree) given by the equation p(x, y) = 0.

We get from Proposition 1.2.3 the following geometric interpretation of n-poisedness.

Proposition 1.2.4. The set of nodes XN is not n-poised if and only if there is an algebraic

plane curve of degree n passing through all the nodes of XN .

As it follows from Proposition 1.2.4 the construction of a set XN which is not n-poised is

very easy. One just needs to choose an algebraic curve p of degree n and locate all the nodes
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of XN in that curve. While the construction of an n-poised set XN is more difficult, since the

n-poisedness means that there is no curve p of degree n passing through all the nodes of XN .

A general construction of n-poised sets was introduced by Berzolari [3] and Radon [23].

This construction is described in Section 1.2.2.

Next, we bring some known results on n-independence.

In Chapter 2 we start the presentation of the results of this thesis.

First the factorization of fundamental polynomials is studied. In the case of univariate

interpolation fundamental polynomials can be presented as products of linear factors. But in the

case of bivariate interpolation this is not always possible. Here we characterize n-independent

node sets for which all fundamental polynomials are products of lines or conics.

Theorem 2.1.1 ([27]). Let X be an n-independent set of nodes with |X | ≤ 2n + 1. Then for

each node of X there is an n-fundamental polynomial, which is a product of lines. Moreover,

this statement is not true in general for n-independent node sets X with |X | ≥ 2n+ 2.

In Section 2.3 we present the main result of Chapter 2:

Theorem 2.3.1 ([27]). Let X be an n-independent set of nodes with |X | ≤ 2n + [n/2] + 1.

Then for each node of X there is an n-fundamental polynomial, which is a product of lines

and conics. Moreover, this statement is not true in general for n-independent node sets X with

|X | ≥ 2n+ [n/2] + 2 and n ≥ 3.

We bring a counterexample to prove the “Moreover” part of this Theorem.

In Chapter 3 we present our results concerning factorization of trivariate fundamental poly-

nomials. We provide the following

Proposition 3.1.1 ([28]). Let X be a set of knots in R2 with |X | = 3n − k, where k, n ≥ 1

and A ∈ X . Suppose that the following three conditions hold:

i) No n+ 1 knots of X \ {A} are collinear together with A;

ii) If n+ 1 knots of X \ {A} are collinear and are lying in a line α, A /∈ α, then no n knots

of X \ α are collinear together with A;

iii) No 2n+ 1 knots of X \ {A} belong to an irreducible conic together with A.
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Then there exists a fundamental polynomial of A of form p?A,X = α1α2...αkq, where α1, ..., αk

are lines and q ∈ Πn−k.

We denote by Πn(L) the set of restrictions of polynomials of total degree at most n on a

plane L.

Bellow we present the main results of Chapter 3.

Proposition 3.2.2 ([28]). Let X be a set of knots in R3 with |X | ≤ 3n+ 1 and A ∈ X . Then

the knot A has an n-fundamental polynomial, which is a product of linear factors, if and only

if the following two assertions hold:

i) No n+ 1 knots of X \ {A} are collinear together with A;

ii) If at least 2n+ 1 of X \ {A} knots are lying in a plane LA passing through A then all the

knots of X ∩ LA different from A lie in n lines not passing through A.

In Section 3.3 we prove the following

Theorem 3.3.1 ([28]). Let X be a set of non-coplanar knots in R3 with |X | ≤ 3n + 1. Then

X is n-independent if and only if the following three statements hold:

i) No n+ 1 knots of X \ {A} are collinear together with A;

ii) There are no 2n+2 coplanar knots of X , which belong to a conic(reducible or irreducible);

iii) If 3n knots belong to a plane L, then there are no curves σn ∈ Πn(L) and γ ∈ Π3(L) such

that X ∩ L = σn ∩ γ.

At the end of Section 3.3 we present the following

Corollary 3.3.4 ([28]). Let X be a set of knots in R3 with |X | ≤ 3n + 1. Then X is n-

independent if and only if for any plane L the set X ∩ L is n-independent.

Part II of the thesis is devoted to GCn sets, i.e, n-poised sets where each node possesses a

fundamental polynomial which is a product of n lines.

In Chapter 4 we define GCn sets, present their classification and bring some known results.
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Definition 4.1.1. Given an n-poised set X . We say that a node A ∈ X uses a line ` ∈ Π1, if

p?A = `q, where q ∈ Πn−1.

Next, we bring the following proposition concerning the factorization of polynomials van-

ishing at some points of lines.

Proposition 4.1.2. Suppose that a polynomial p ∈ Πn vanishes at n + 1 points of a line `.

Then we have that p = `r, where r ∈ Πn−1.

As it follows from Proposition 4.1.2, at most n + 1 nodes of an n-poised set X can be

collinear. Thus we arrive to the following

Definition 4.1.3 ([4]). A line passing through n+ 1 nodes is called a maximal line.

Clearly, in view of Proposition 4.1.2 a maximal line λ is used by all the nodes in X \ λ.

In Section 4.1, we define GC sets introduced by K.C. Chung and T.H. Yao.

Definition 4.1.6 ([14]). An n-poised set X is called GCn set (or GC set) if the n-fundamental

polynomial of each node A ∈ X is a product of n linear factors.

So, GCn sets are n-poised sets such that each of its nodes uses exactly n lines.

Next, the Gasca-Maeztu conjecture, briefly called GM conjecture is presented:

Conjecture 4.1.7 ([16], Sect. 5). Any GCn set possesses a maximal line.

Until now, this conjecture has been confirmed to be true for the degrees n ≤ 5 (see [5], [19]).

For a generalization of the Gasca-Maeztu conjecture to maximal curves see [20].

The following important result is due to Carnicer and Gasca

Theorem 4.1.8 ([8], Thm. 4.1). If the Gasca-Maeztu conjecture is true for all k ≤ n, then

any GCn set possesses at least three maximal lines.

This yields, in view of Proposition 4.1.2, that each node of a GCn set X uses at least one

maximal line.

Denote by µ = µ(X ) the number of maximal lines of a node set X . Thus, we have for any

GCn set X :

3 ≤ µ(X ) ≤ n+ 2, (4.1.2)
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where for the first inequality it is assumed that GM conjecture is true.

In Section 4.2, we start consideration of the results of Carnicer, Gasca, and Godés, concern-

ing the classification of GCn sets according to the number of maximal lines the sets possess.

Theorem 4.2.1 ([12]). Let X be a GCn set with µ(X ) maximal lines. Suppose also that GM

conjecture is true for the degrees not exceeding n. Then µ(X ) ∈ {3, n− 1, n, n+ 1, n+ 2} .

We define N` and X` sets and present some known results which will be used in the sequel.

Definition 4.3.1 ([7]). Given an n-poised set X and a line `. Then

(i) X` is the subset of nodes of X which use the line `;

(ii) N` is the subset of nodes of X which do not use the line ` and do not lie in `.

It is easy to see that

X` ∪N` = X \ `. (4.3.1)

Note that the previously mentioned statement on maximal lines can be expressed as follows

X` = X \ `, if ` is a maximal line. (4.3.2)

Suppose that λ is a maximal line of X and ` 6= λ is any line. Then we have that

X` \ λ = (X \ λ)`. (4.3.3)

Let X be an n-poised set and ` be a line with |` ∩ X | ≤ n. We call a maximal line λ

`-disjoint if

λ ∩ ` ∩ X = ∅. (4.3.4)

Let X be an n-poised set and ` be a line with |`∩X | ≤ n.We call two maximal lines λ′, λ′′

`-adjacent if

λ′ ∩ λ′′ ∩ ` ∈ X . (4.3.6)

Next, we introduce the concept of an `-reduction of a GCn set and `-proper GCm subsets.
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Definition 4.3.5. Let X be a GCn set, ` be a k-node line, k ≥ 2. We say that a set Y ⊂ X is

an `-reduction of X , and briefly denote this by X ↘` Y , if

Y = X \ (C0 ∪ C1 ∪ · · · ∪ Cs) ,

where

(i) C0 is an `-disjoint maximal line of X , or C0 is the union of a pair of `-adjacent maximal

lines of X ;

(ii) Ci is an `-disjoint maximal line of the GC set Yi := X \ (C0 ∪ C1 ∪ · · · ∪ Ci−1), or Ci is the

union of a pair of `-adjacent maximal lines of Yi, i = 1, . . . s;

(iii) ` passes through at least 2 nodes of Y .

Definition 4.3.6. Let X be a GCn set, ` be a k-node line, k ≥ 2. We say that the set X` is an

`-proper GCm subset of X if there is a GCm+1 set Y such that

(i) X ↘` Y ;

(ii) The line ` is a maximal line in Y .

The following result immediately follows from Definitions 4.3.5 and 4.3.6.

Proposition 4.3.7. Suppose that X is a GCn set. If X ↘` Y and Y` is an `-proper GCm

subset of Y then X` is an `-proper GCm subset of X .

At the end of Chapter 4 we present a new, simple proof of the Gasca-Maeztu conjecture

for the case n = 4. The Conjecture was proposed in 1981 by Gasca and Maeztu [16]. Until

now, this has been confirmed only for the values n ≤ 5. The case n = 5 was proven in 2014 by

Hakopian, Jetter, and Zimmermann, in [19]. So far that is the only proof for n = 5. In addition,

it is very long and complicated. In our opinion a simple proof of the Gasca-Maeztu conjecture

for smaller values of n greatly simplifies its generalization for higher values. We believe that

this is a way in trying to prove the Conjecture for the values n ≥ 6.

In Chapter 5 we consider the main result of the paper [1] by V. Bayramyan and H. Hakopian,

stating that any n-node line of GCn set is used either by exactly
(
n
2

)
nodes or by exactly

(
n−1

2

)
nodes, provided that the Gasca-Maeztu conjecture is true.
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Here we show that this result is not correct in the case n = 3. Namely, we bring an example

of a GC3 set and a 3-node line there which is not used at all. The proof of the result in [1] is

inductive and based on the case n = 3. For this reason we needed to consider a new proof of

the result. Then we were able to establish that this is the only possible counterexample, i.e.,

the above mentioned result is true for all n ≥ 4.

Theorem 5.1.1 ([25]). Assume that Conjecture 4.1.7 holds for all degrees up to n. Let X be

a GCn set, n ≥ 4, and ` be an n-node line. Then we have that

|X`| =
(
n

2

)
or

(
n− 1

2

)
.

Moreover, the following hold:

(i) |X`| =
(
n
2

)
if and only if there is a maximal line λ0 such that λ0 ∩ ` ∩ X = ∅. In this case

we have that X` = X \ (` ∪ λ0). Hence it is a GCn−2 set;

(ii) |X`| =
(
n−1

2

)
if and only if there are two maximal lines λ′, λ′′, such that λ′ ∩ λ′′ ∩ ` ∈ X .

In this case we have that X` = X \ (` ∪ λ′ ∪ λ′′). Hence it is a GCn−3 set.

We also characterize the exclusive case n = 3 and present some new results on the maximal

lines and the usage of n-node lines in GCn sets.

Proposition 5.1.3 ([25]). Let X be a GC3 set and ` be a 3-node line. Then we have that

|X`| = 3, 1, or 0.

Moreover, the following hold:

(i) |X`| = 3 if and only if there is a maximal line λ0 such that λ0 ∩ ` ∩ X = ∅. In this case

we have that X` = X \ (` ∪ λ0). Hence it is a GC1 set.

(ii) |X`| = 1 if and only if there are two maximal lines λ′, λ′′, such that λ′ ∩ λ′′ ∩ ` ∈ X . In

this case we have that X` = X \ (` ∪ λ′ ∪ λ′′);

(iii) |X`| = 0 if and only if there are exactly three maximal lines in X and they intersect ` at

three distinct nodes.
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Furthermore, if the node set X possesses exactly three maximal lines then any 3-node line ` is

either used by exactly three nodes or is not used at all:

|X`| = 3 or 0.

In Section 5.2, we present the proof of Theorem 5.1.1.

Next, we present the following simple but interesting by itself proposition.

Proposition 5.2.2 ([25]). Let X be a GCn set and ` be an n-node line, where n ≥ 4. Suppose

that there are n maximal lines passing through n distinct nodes in `. Then there exists at least

one more maximal line in X .

At the end of Section 5.2 we present the following

Corollary 5.2.4 ([25]). Assume that Conjecture 4.1.7 holds for all degrees up to n. Let X be

a GCn set with exactly three maximal lines, where n ≥ 4. Then there are exactly three n-node

lines in X and each of them is used by exactly
(
n
2

)
nodes from X .

Remark 5.2.5. It is worth mentioning that Corollary 5.2.4 is not valid in the case n =

3. Indeed, the GC3 set X ? and the 3-node lines `1, `2, `3 and `? (see Fig. 5.1.1) give us a

counterexample for this.

In Chapter 6 we consider a conjecture proposed in the paper [1] by V. Bayramyan and H.

Hakopian, concerning the usage of any k-node line in GCn sets, 2 ≤ k ≤ n + 1. Here we make

an adjustment in the mentioned conjecture and then prove it. Namely, by assuming that the

Gasca-Maeztu conjecture is true, we prove that for any GCn set X and any k-node line ` the

following statement holds:

The line ` is not used at all, or it is used by exactly
(
s
2

)
nodes of X , where s satisfies the

condition k − δ ≤ s ≤ k, δ = n + 1 − k. If in addition k − δ ≥ 3 and µ(X ) > 3 then the first

case here is excluded, i.e., the line ` is necessarily a used line.

In Section 6.2, we formulate an adjusted version of the conjecture proposed by V. Bayramyan

and H. Hakopian in [1] (Conj. 3.7) as:
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Theorem 6.2.1 ([26], [31]). Let X be a GCn set, and ` be a k-node line, k ≥ 2. Assume that

GM Conjecture holds for all degrees up to n. Then we have that

X` = ∅, or (6.2.1)

X` is an `-proper GCs−2 subset of X , hence |X`| =
(
s

2

)
, (6.2.2)

for some k − δ ≤ s ≤ k and δ = n+ 1− k.

Moreover, if k − δ ≥ 3 and µ(X ) > 3 then X` 6= ∅, i.e., (6.2.2) holds with s ≥ 2. Furthermore,

in the case X` 6= ∅ we have for any maximal line λ :

|λ ∩ X`| = 0 or |λ ∩ X`| = s− 1.

Next, we present the following proposition, which shows that Theorem 6.2.1 is true for the

node set X if µ(X ) = 3.

Proposition 6.2.5 ([26], [31]). Let X be a GCn set with µ(X ) = 3 and ` be a k-node line,

k ≥ 2. Assume that GM Conjecture holds for all degrees up to n− 3. Then we have that

X` = ∅, or X` is an `-proper GCk−2 subset of X , hence |X`| =
(
k

2

)
.

Moreover, if k ≤ n and X` 6= ∅ then for a maximal line λ1 of X we have that λ1 ∩ ` /∈ X and

|λ1 ∩ X`| = 0.

For the remaining two maximal lines we have that |λ ∩ X`| = k − 1.

Furthermore, if the line ` intersects each maximal line at a node then X` = ∅.

At the end of Section 6.2 we provide a result on the presence and usage of (n−1)-node lines

in GCn sets with µ(X ) = n− 1.

Proposition 6.2.6 ([26], [31]). Let X be a GCn set with µ(X ) = n−1, and ` be an (n−1)-node

line, where n ≥ 4. Assume also that through each node of ` there passes exactly one maximal

line. Then we have that either n = 4 or n = 5. Moreover, in both these cases we have that

X` = ∅.

We characterize the case k−δ = 2, µ(X ) > 3. For each n and k, with k−δ = 2k−n−1 = 2,
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we bring two constructions of GCn sets and a non-used k-node line in each case. The following

proposition shows that these are the only constructions with the mentioned property.

Proposition 6.4.1 ([26], [31]). Let X be a GCn set and ` be a k-node line with k − δ :=

2k − n − 1 = 2 and µ(X ) > 3. Suppose that the line ` is a non-used line. Then we have that

either X = X̄ ∗, ` = ¯̀∗
4, or X = Ȳ∗, ` = ¯̀∗

3.
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Part I

FACTORIZATION OF FUNDAMENTAL

POLYNOMIALS
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Chapter 1

MULTIVARIATE INTERPOLATION

1.1 Univariate Polynomial Interpolation

Let πn be the space of univariate polynomials of total degree at most n :

πn =

{∑
i≤n

aix
i : ai ∈ R

}
.

We have that

dim πn = n+ 1.

Consider a set of distinct points on the number line

Xs = {x0, . . . , xs} ⊂ R.

The problem of finding a polynomial p ∈ πn which satisfies the conditions

p(xi) = ci, i = 0, . . . s, (1.1.1)

where ci ∈ R, i = 0, . . . s are arbitrary numbers, is called a univariate interpolation problem.

The polynomial p is called interpolation polynomial, and the points x0, . . . , xs interpolation

points.

The conditions (1.1.1) form a system of s+ 1 linear equations in n+ 1 variables, where the
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variables are the coefficients of the polynomial.

A necessary and sufficient condition for unisolvence is s = n.

Theorem 1.1.1. For arbitrary chosen values c0, . . . , cn, there is a unique polynomial p ∈ πn,

such that

p(xi) = ci, i = 0, . . . n. (1.1.2)

Newton and Lagrange have the two main approaches for the solution of interpolation prob-

lem.

A polynomial p ∈ πn is called an n-fundamental polynomial for a node xk ∈ Xs if

p(xi) = δik, i = 0, . . . , s,

where δ is the Kronecker symbol. We denote this fundamental polynomial by pk. It is easy to

see that the fundamental polynomial of the point xk can be presented by the following formula:

pk(x) =
n∏

i=0,i 6=k

x− xi
xk − xi

, k = 0, . . . , n.

Having fundamental polynomials for all the points we can write the Lagrange formula for the

the interpolation polynomial:

p(x) =
n∑
k=0

ckpk(x).

In view of Theorem 1.1.1 we can state that this is a unique solution of the interpolation problem.

The Newton solution is based on the following representation of interpolation polynomial:

p(x) = γ0 + γ1(x− x0) + ...+ γn(x− x0)(x− x1)...(x− xn−1).

Here γi, i = 0, . . . , n, are consecutively chosen constants such that the corresponding i-th

condition of (1.1.2), i.e., the condition at xi is satisfied.

Let us define divided differences by the following recurrent formula:

[x0, x1, . . . , xn]f =
[x1, x2, . . . , xn]f − [x0, x1, . . . , xn−1]f

xn − x0

.
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[x0]f = f(x0),

For a given function f and knots xi, i = 0, . . . , n, the polynomial p ∈ πn satisfying the

following conditions

p(xi) = f(xi)

is called an interpolation polynomial of function f and is denoted by pf (x).

The Newton formula is the following:

pf (x) =
n∑
i=0

[x0, x1, . . . , xi]f(x− x0) . . . (x− xi−1).

1.2 Multivariate Polynomial Interpolation

Let us start with some notation. Denote

x = (x1, . . . , xd) ∈ Rd, α = (α1, . . . , αd) ∈ Zd+

xα = x1
α1 · · · · · xdαd , |α| = α1 + · · ·+ αd.

Let Πd
n be the space of polynomials of d variables of total degree at most n :

Πd
n =

∑
|α|≤n

aαxα : aα ∈ Rd

 .

We have that

N(n, d) := dim Πd
n =

(
n+ d

d

)
.

Consider a set of distinct nodes (points)

Xs = {x1, . . . ,xs} ⊂ Rd.

Let ci, i = 1, . . . s, be pregiven numbers. The problem of finding a polynomial p ∈ Πd
n which

satisfies the conditions

p(xi) = ci, i = 1, . . . s, (1.2.1)
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is called interpolation problem.

1.2.1 Poised and Independent sets

A polynomial p ∈ Πd
n is called an n-fundamental polynomial for a node A = xk ∈ Xs if

p(xi) = δik, i = 1, . . . , s,

where δ is the Kronecker symbol. We denote the fundamental polynomial of the node A by

p?k = p?A = p?A,Xs
. Sometimes we call fundamental also a polynomial that vanishes at all nodes

of X but one, since it is a nonzero constant times a fundamental polynomial.

Definition 1.2.1. A set of nodes X is called n-independent if all its nodes have fundamental

polynomials. Otherwise, X is called n-dependent.

Fundamental polynomials are linearly independent. Therefore a necessary condition of n-

independence is |X | ≤ N(n, d). Having fundamental polynomials of all nodes of X we get a

solution of general interpolation problem (1.2.1) by using the Lagrange formula:

p(x) =
s∑
i=1

cip
?
i (x). (1.2.2)

Thus we get readily that the node set Xs is n-independent if and only if it is n-solvable,

meaning that for any data {c1, . . . , cs} there exists a (not necessarily unique) polynomial p ∈ Πd
n

satisfying the conditions (1.2.1).

Definition 1.2.2. The set of nodes Xs is called n-poised if for any data {c1, . . . , cs} there exists

a unique polynomial p ∈ Πd
n, satisfying the conditions (1.2.1).

The interpolation conditions (1.2.1) give a system of s linear equations with N(n, d) un-

knowns, which are the coefficients of polynomial p. Therefore a necessary condition for n-

poisedness of the set Xs is

s = |Xs| = N(n, d). (1.2.3)

Thus from now on we will consider sets X = XN(n,d) when n-poisedness is studied.
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Let us mention that in the univariate case the condition (1.2.3) is also sufficient for n-

poisedness. In the multivariate case the condition is no longer sufficient, unless the case n = 0

stands.

We also have that a set XN(n,d) is n-poised if and only if it is n-independent.

1.2.2 Bivariate interpolation

In this section we present some known basic results on bivariate interpolation.

For the brevity we denote the space of bivariate polynomials of total degree at most n by

Πn := Π2
n.

Similarly we set

N := N(n, 2) =

(
n+ 2

2

)
.

The following proposition is based on an elementary Linear Algebra argument.

Proposition 1.2.3. The set of nodes XN is n-poised if and only if the following condition

holds:

p ∈ Πn, p(xi, yi) = 0, i = 1, . . . , N =⇒ p = 0. (1.2.4)

A plane algebraic curve is the zero set of some bivariate polynomial. To simplify notation,

we shall use the same letter, say p, to denote the polynomial p of degree n ≥ 1 and the curve (if

the same degree) given by the equation p(x, y) = 0. More precisely, suppose p is a polynomial

without multiple factors. Then the algebraic curve defined by the equation p(x, y) = 0 shall

also be denoted by p. So lines, conics, and cubics are equivalent to polynomials of degree 1, 2,

and 3, respectively; a reducible conic is a pair of lines, and a reducible cubic is a triple of lines

or consists of a line and an irreducible conic. We denote lines, conics and cubics by α, β and

γ, respectively.

Thus, (1.2.4) gives the following geometric interpretation of n-poisedness.

Proposition 1.2.4. The set of nodes XN is not n-poised if and only if there is an algebraic

plane curve of degree n passing through all the nodes of XN .
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As it follows from Proposition 1.2.4 the construction of a set XN which is not n-poised is

very easy. One just needs to choose an algebraic curve p of degree n and locate all the nodes

of XN in that curve. While the construction of an n-poised set XN is more difficult, since the

n-poisedness means that there is no curve p of degree n passing through all the nodes of XN .

Figure 1.2.1: Berzolari-Radon construction for n = 4

A general construction of n-poised sets was introduced by Berzolari [3] and Radon [23] (see

Fig. 1.2.5).

Definition 1.2.5. Suppose `1, ..., `n+1 are distinct lines. The set of nodes N is called Berzolari-

Radon set, if

n+ 1 nodes are lying on `1,

n nodes are lying on `2 \ `1,
...

1 node is lying on `n+1 \ (`1 ∪ · · · ∪ `n).

Proposition 1.2.6. A set of nodes XN satisfying the Berzolari-Radon construction is an n-

poised set.

Let us mention that the proof of this proposition is based on the forthcoming Lemma 1.2.12.
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Now let us bring some results on n-independence we shall use in the sequel. Let us start

with the following important result of Severi:

Theorem 1.2.7 ([24]). Any set X , with |X | ≤ n+ 1, is n-independent.

It is worth mentioning the following

Remark 1.2.8. For each node A ∈ X here we can find n-fundamental polynomial which is a

product of |X | − 1 ≤ n lines, each of which passes through a respective node of X \ {A} and

does not pass through A.

Next two results extend the Severi theorem to the cases of sets with no more than 2n + 1

and 3n nodes, respectively.

Theorem 1.2.9 ([15], Prop. 1). Any set X , with |X | ≤ 2n + 1, is n-dependent, if and only if

n+ 2 nodes of X are collinear.

Theorem 1.2.10 ([17], Thm. 5.3). Let X be a set of nodes with |X | ≤ 3n. Then the set X is

n-dependent if and only if, at least one of the following assertions holds:

i) n+ 2 nodes of X are collinear,

ii) 2n+ 2 nodes of X are lying on a conic,

iii) |X | = 3n and there are curves γ ∈ Π3 and p ∈ Πn such that γ ∩ p = X .

This result was generalized to the case of Rk in [22].

Theorem 1.2.11 ([22]). Let X be a set of knots in Rk, with |X | ≤ 3n. Then the set X is

n-dependent if and only if one the following conditions holds:

i) n+ 2 knots of X are collinear,

ii) 2n+ 2 coplanar knots of X are lying on a conic,

iii) if |X | = 3n, then X is coplanar and there are curves γ ∈ Π3 and σn ∈ Πn such that

γ ∩ σn = X .
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Next, we bring the following proposition concerning the factorization of polynomials van-

ishing at some points of lines.

Proposition 1.2.12 ([18] Prop. 1.3). Suppose that α is a line. Then for any polynomial

p ∈ Πn vanishing at n+ 1 points of α we have that

p = αq, where q ∈ Πn−1.

Next two lemmas concern the similar factorization in the case of reducible and irreducible

conics, respectively.

Lemma 1.2.13 ([17]). Suppose that αi, i = 1, 2, are two lines. Then for any polynomial p ∈ Πn

vanishing at n+ 1 points of α1 and n points of α2 \ α1 we have that

p = α1α2q, where q ∈ Πn−2.

Lemma 1.2.14 ([17]). Suppose that β is an irreducible conic. Then for any polynomial p ∈ Πn

vanishing at 2n+ 1 points of β we have that

p = βq, where q ∈ Πn−2.

Following theorem is a special case of Cayley-Bacharach theorem from [15].

Theorem 1.2.15 ([15]). Let γ ∈ Π3 and σn ∈ Πn be curves such that γ∩σn = X and |X | = 3n.

Then any curve of degree n containing all but one knot of X , contains all of X .
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Chapter 2

FACTORIZATION OF BIVARIATE

FUNDAMENTAL POLYNOMIALS

In view of the Lagrange formula (1.2.2) it is important to find n-independent sets for which

the fundamental polynomials have the simplest possible forms. In Section 2.1 we characterize

n-independent sets for which all fundamental polynomials are products of lines. It is worth

mentioning that for the natural lattice, introduced by Chung and Yao in [14], the fundamental

polynomials have the mentioned forms. But in this case the configuration of nodes is very

special. Namely, they are intersection points of some n + 2 given lines in general position.

In our characterization (see forthcoming Theorem 2.1.1, Proposition 2.1.2) the restrictions on

the node set are minimal. In Sections 2.2-2.5 we consider a more involved problem. There we

characterize n-independent node sets for which all fundamental polynomials are products of

lines or conics.

2.1 The fundamental polynomials as products of lines

Theorem 2.1.1 ([27]). Let X be an n-independent set of nodes with |X | ≤ 2n + 1. Then for

each node of X there is an n-fundamental polynomial, which is a product of lines. Moreover,

this statement is not true in general for n-independent node sets X with |X | ≥ 2n+ 2.

First, let us present a counterexample for the last statement. Let X consist of 2n+ 2 nodes

such that they all do not belong to a conic and no three are collinear. For example, we can take
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2n+ 1 nodes on an irreducible conic and a node outside the conic such that it does not belong

to any line passing through two nodes on the conic. Then, according to Theorem 1.2.10, X is

n-independent. Now, notice that no node A ∈ X has an n-fundamental polynomial, which is a

product of lines. Indeed, each line passes through at most two nodes of X , hence n lines pass

through at most 2n nodes of X . But there are 2n+ 1 nodes in X \ {A}.

The first statement of Theorem follows from the following result, which covers wider a

setting.

Proposition 2.1.2 ([27]). Let X be a set of nodes with |X | ≤ 2n + 1 and A ∈ X . Then the

following three statements are equivalent:

i) The node A has an n-fundamental polynomial;

ii) The node A has an n-fundamental polynomial, which is a product of linear factors;

iii) No n+ 1 nodes of X \ {A} are collinear together with the node A.

Proof. Evidently ii) implies i). In view of Proposition 1.2.12 we get that i) implies iii). Indeed,

suppose by way of contradiction that a line passes through A and n+1 other nodes of X . Then

the fundamental polynomial pA,X vanishes at those n + 1 nodes. Therefore, by Proposition

1.2.12, it vanishes at all points of the line including A, which is a contradiction. Thus it

remains to prove the implication iii) ⇒ ii). We will use induction on n. The case n = 1, is

evident. Now suppose that the statement is true for n−1, and let us prove it for n. Suppose αA

is a line passing through A and k other nodes of X , with maximal possible k, where 1 ≤ k ≤ n.

Consider a node B 6= A from αA and a node C from outside of αA. Note, that if there is no

such node then we have that |X | ≤ k+1 ≤ n+1. Therefore the statement follows from Remark

1.2.8.

Denote by α the line passing through B and C. Denote also X ′ := X \ α. We have that

|X ′| ≤ 2(n− 1) + 1. Let us show that the condition iii) of Proposition is satisfied for the node

set X ′ and n− 1, i.e., no n = (n− 1) + 1 nodes of X ′ are collinear together with the node A.

Assume to the contrary that there is a line α′A passing through A and n other nodes of X ′.

Then k = n, according to the choice of the line αA. Therefore the number of nodes of X on the

lines αA and α′A is k+n+ 1 = 2n+ 1, where 1 stands for the node A. Now notice that we took
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the node C from outside of αA is outside of α′A too, since otherwise we would have A and n+ 1

other nodes on α′A. Hence, the number of nodes of X is at least 2n + 2 = (2n + 1) + 1, where

the last 1 stands for the node C. This is a contradiction. Thus the condition iii) is satisfied for

X ′ and n − 1 and, by using the induction hypothesis, we can take p?A,X = αp?A,X ′ , where p?A,X ′

is an (n− 1)-fundamental polynomial in form of product of lines.

2.2 The fundamental polynomials as products of lines and

conics

Let us start with the following result of Radon:

Lemma 2.2.1 ([23]). Let X be a set of 6 nodes, three of which belong to a line α and other

three are outside of α and noncollinear. Then the node set X is 2-poised, i.e., there is no conic

passing through all the nodes.

Indeed, suppose, in view of Proposition 1.2.3, that p ∈ Π2 vanishes at these 6 nodes. Then, by

using Lemma 1.2.13 we get p = αα1, where α1 ∈ Π1 vanishes at the three noncollinear nodes.

Therefore α1 = 0 and hence p = 0. �

The following lemma will be used frequently in the sequel.

Lemma 2.2.2 ([27]). The following statements hold:

i) There is a conic through any 5 points;

ii) Any 5 points determine a unique conic passing through them if and only if no 4 of them

are collinear;

iii) Any 5 points determine an irreducible conic passing through them if and only if no 3 of

them are collinear.

Proof. Notice, for i), that the conditions p ∈ Π2, p(xi, yi) = 0, i = 1, . . . , 5, give a system of 5

linear homogeneous equations with 6 unknowns (the coefficients of p), which has a nontrivial

solution. Suppose, for ii), a set of 5 points X is given, 4 of which are collinear. Then evidently

there are infinitely many conics, in form of pairs of lines, passing through all 5 points. For the
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inverse implication, for ii), suppose, a set of 5 points X is given, no 4 of which are collinear.

First, let us show that we can add a sixth point A to X such that the conditions of Lemma

2.2.1 are satisfied. Indeed, if there are three collinear points in X , lying in a line α then we

take a point A outside of α such that A and the two points of X \ α are not collinear. Next,

suppose there are no three collinear points in X . Consider the set of 10 lines passing through

any two points of X . Then we add A such that it belongs to only one such line. Now, suppose

by way of contradiction, that there are two different conics: β1 and β2 that pass through all

5 points of X . Then we can choose a scalar c such that the conic β1 + cβ2 passes through the

point A, besides the points of X . This is a contradiction in view of Proposition 1.2.3. Finally,

for iii) notice that if a reducible conic β = α1α2 passes through 5 points then 3 of them belong

to a line αi, i = 1, 2. Conversely, if a conic β passes through 5 points, 3 of which belong to a

line α then, in view of Proposition 1.2.12, α is a factor of β.

Lemma 2.2.3 ([27]). Suppose 5 points: A,B,C,D and E determine a unique conic which does

not pass through a point F. Then the points B,C,D,E and F determine a conic, which does

not pass through the point A.

Proof. Clearly it suffices to verify only that the set of points X := {B,C,D,E, F} determines a

conic, since then the second statement is obvious. Suppose by way of contradiction, that there

are two different conics: β1 and β2 that pass through all 5 points of X . Then we can choose a

scalar c such that the conic β1 + cβ2 passes through the point A besides the points of X . This

is a contradiction, since there is just one conic passing through the points A,B,C,D,E, which

is not passing through F.

At the end we bring a lemma which will be used later in Section 2.4 (Step 2).

Lemma 2.2.4 ([27]). Let X be a set of 6 points, no 5 of which are collinear. Then we can

divide the point set X into two noncollinear triples.

Proof. We will divide X into two triples by pointing out only the nodes of a noncollinear triple.

In each case it is evident that the remaining three nodes also are noncollinear. First, suppose

that there are 4 nodes in X belonging to a line α. Then we divide X by choosing a triple in the

following way: we take two nodes from α and one from outside. Now suppose that no 4 nodes
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of X are collinear. Suppose also that 3 nodes of X belong to a line α1 and other 3 nodes belong

to another line α2. In this case we choose a triple in the following way: we take two nodes from

α1 and one node from α2. Then, suppose that there is a line α that contains exactly 3 nodes

of X and the other 3 nodes are not collinear. Then we take two nodes from α and one node

A from outside. Besides, if there is a line passing through the third node of α and two nodes

from outside of α then we take one of these two as A. Finally, suppose that no 3 nodes of X

are collinear. In this case we divide X into any two triples.

2.3 The main theorem and proposition

Theorem 2.3.1 ([27]). Let X be an n-independent set of nodes with |X | ≤ 2n + [n/2] + 1.

Then for each node of X there is an n-fundamental polynomial, which is a product of lines and

conics. Moreover, this statement is not true in general for n-independent node sets X with

|X | ≥ 2n+ [n/2] + 2 and n ≥ 3.

First, let us present a counterexample for the last statement. Suppose that X consists of

2n + [n/2] + 2 nodes no three of which are collinear and no six of which belong to a conic. In

the cases n = 3, 4 in addition we assume that all the nodes of X do not belong to any cubic.

Then, according to Theorem 1.2.10, X is n-independent. Now let us verify that no node has

an n-fundamental polynomial, which is a product of lines and conics.

Suppose by way of contradiction that a fundamental polynomial of a node A ∈ X is a

product of ν lines and µ conics with ν + 2µ ≤ n. Each line passes through at most two nodes

of X , and each conic passes through at most five nodes of X . Hence pA,X vanishes at most at

2ν + 5µ nodes. We will show that 2ν + 5µ ≤ |X | − 2, which is a contradiction.

Indeed, in case of even n = 2k we have that |X | = 5k + 2 and 2ν + 5µ ≤ 2(ν + 2µ) + µ ≤

2n + µ ≤ 4k + k = 5k = |X | − 2. While in case of odd n = 2k + 1 we have that |X | = 5k + 4

and 2ν + 5µ ≤ 2(ν + 2µ) + µ ≤ 2n+ µ ≤ (4k + 2) + k = 5k + 2 = |X | − 2.

The first statement of Theorem follows from the following result, which covers a wider

setting.
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Proposition 2.3.2 ([27]). Let X be a set of nodes with |X | ≤ 2n+ [n/2] + 1 and A ∈ X . Then

the following three statements are equivalent:

i) The node A has an n-fundamental polynomial;

ii) The node A has an n-fundamental polynomial, which is a product of lines and conics;

iii) a) No n+ 1 nodes of X \ {A} are collinear together with A;

b) If n+ 1 nodes of X \ {A} are collinear and are lying in a line α then no n nodes of

X \ (A ∪ α) are collinear together with A;

c) No 2n+ 1 nodes of X \ {A} are lying on an irreducible conic together with A.

Evidently the condition ii) implies i). Then, i) implies the condition a) of iii), in the same

way as in Proposition 2.1.2. Now, let us show that i) implies the condition b) of iii). Indeed,

suppose by way of contradiction that a line α passes through n+ 1 nodes of X and another line

αA passes through A and n nodes of X \ α. Then the fundamental polynomial pA,X vanishes

at these n + 1 and n nodes. Therefore, by Lemma 1.2.13, it vanishes at all the points of the

lines α and αA, including A, which is a contradiction. Finally, let us verify that i) implies the

condition c) of iii). Indeed, assume on the contrary that an irreducible conic β passes through

A and 2n+1 other nodes of X . Then the fundamental polynomial pA,X vanishes at those 2n+1

nodes and therefore, by Lemma 1.2.14, it vanishes at all the points of β, including A, which is

a contradiction.

Thus to prove Proposition 2.3.2 it remains to prove the implication iii) ⇒ ii).

Remark 2.3.3. From now on, without loss of generality, we may assume that |X | = 2n +

[n/2] + 1 in the conditions of Proposition 2.3.2.

Indeed, it suffices to verify that if |X | < 2n + [n/2] + 1 then we can add a node B to X

such that the set X ′ := X ∪ {B} satisfies the conditions a), b), and c), with X replaced with

X ′. For this purpose consider the set of the lines passing through any two nodes of X and the

set of the conics passing through any five nodes of X , no 4 of which are collinear. Note that

the both sets are finite. Then one can check readily that as a desired node B can be chosen as

any node which does not belong to these lines and conics. �
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From now on, to indicate that a fundamental polynomial is a product of lines and conics,

we will use the notation

p
\0
A := p?A.

To show that a fundamental polynomial is a product of lines and conics we either bring a

precise formula for it, or, more often, we use the so called 1-, 1?-, and 2- reductions presented

below.

Definition 2.3.4 ([27]). We say that a line α is a 1-reduction of the node set X with respect

to A ∈ X \ α and n if it is passing through at least 3 nodes of X and for the set X ′ := X \ α

the conditions a), b), and c) are satisfied with n replaced by n− 1, i.e.,

a’) No n nodes of X ′ are collinear together with A;

b’) If n nodes of X ′ \ {A} are collinear and are lying in a line α then no n− 1 nodes of X ′ \α

are collinear together with A, α then no n nodes of X \ (A ∪ α) are collinear together

with A;

c’) No 2n− 1 nodes of X ′ are lying in an irreducible conic together with A.

We say that a line α, with A /∈ α, is an 1?-reduction of the node A with respect to X , if the

condition a′) holds and it is passing through at least [n/2] + 2 nodes of X , i.e., we have that

|X ′| ≤ 2n− 1.

Definition 2.3.5 ([27]). We say that a conic β is a 2-reduction of the node set X with respect

to A ∈ X \ β and n if it is passing through at least 5 nodes of X and for the set X ′′ := X \ β

the conditions a), b), and c) are satisfied with n replaced by n− 2, i.e.,

a”) No n− 1 nodes of X ′′ are collinear together with A;

b”) If n− 1 nodes of X ′′ \ {A} are collinear and are lying in a line α, then no n− 2 nodes of

X \ α are collinear together with A;

c”) No 2n− 3 nodes of X ′′ are lying in an irreducible conic together with A.

Below we describe how one can apply the 1-, 1?-, and 2- reductions.
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Lemma 2.3.6 ([27]). Suppose that X is a node set with |X | ≤ 2n′+ [n′/2] + 1 and Proposition

2.3.2 is true for any node set and n ≤ n′ − 1. Then Proposition 2.3.2 is true for the node set

X and n′ if at least one of the following two conditions holds:

a) There is a line α which is an 1-reduction, or an 1?-reduction, of the node set X with

respect to A ∈ X and n = n′.

b) There is a conic β which is a 2-reduction of the node set X with respect to A ∈ X and n′.

Proof. Recall that we need only to verify the implication iii) ⇒ ii) of Proposition 2.3.2. Now,

if the first condition holds, set X ′ := X \α. Notice that we have |X ′| ≤ |X |− 3 ≤ 2n′+ [n′/2] +

1− 3 ≤ 2(n′ − 1) + [(n′ − 1)/2] + 1. Hence, we get

p?A,X = αp
\0
A,X ′ ,

where the right hand side (n′ − 1)-fundamental polynomial we have by Proposition 2.3.2, or

Proposition 2.1.2, if the line α is an 1-reduction, or a 1?-reduction, respectively.

If the second condition holds, set X ′′ := X \ β. Notice that we have |X ′′| ≤ |X | − 5 ≤

2n′ + [n′/2] + 1− 5 ≤ 2(n′ − 2) + [(n′ − 2)/2] + 1. Hence, we get

p
\0
A,X = βp

\0
A,X ′′ ,

where the right hand side (n′− 2)-fundamental polynomial we have by Proposition 2.3.2, since

the conic β is a 2-reduction.

Now, we are in a position to start the proof of the main Proposition 2.3.2.

Let us mention that, along with 1- and 1?- reductions, we will use mainly 2-reduction, for

which two points are important:

◦ Finding a conic β determined by 5 nodes of X , which is not passing through the node

A ∈ X .

◦ For the node set X ′′ = X \β the conditions a”), b”), and c”) of Definition 2.3.5 are satisfied,

meaning that there are no lines, reducible and irreducible conics passing through the node A

and "too many" other nodes of X ′′.
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For this purpose we identify such lines and conics in X beforehand and call them critical.

Thus a critical line αA passes through A and at least n−1 nodes of X . A critical reducible conic

has form ααA, where the line α, with A /∈ α, passes through at least n − 1 other nodes of X

and the line αA passes through A and other n− 2 nodes of X \α. Finally, a critical irreducible

conic βA passes through A and at least 2n− 3 nodes of X . Then, we are trying to choose the 5

nodes determining the conic β on the critical lines and conics, in order to neutralize them, by

decreasing the number of nodes of the set X ′′ = X \ β they pass through. In this way we are

trying to make the conic β 2-reduction, i.e., to fulfill the above mentioned conditions a”), b”),

and c”).

To neutralize a critical line α or irreducible conic β we should choose necessarily 1 + sα or

1 + sβ nodes from α and β, respectively, where sα and sβ stand for a number of extra nodes

in the critical line and conic. That is why we are assuming that αA and βA pass through

n− 1 + sα and 2n− 3 + sβ nodes, respectively. Note that, according to the conditions a) and c)

of Proposition 2.3.2, we have that sα ≤ 1 and sβ ≤ 3. Note also that to neutralize a reducible

conic it is enough to neutralize only a line component of it.

2.4 The proof of main proposition for n ≤ 4

Lemma 2.4.1 ([27]). Proposition 2.3.2, i.e., the implication iii) ⇒ ii), is valid for the values

n = 1, 2, 3, 4.

The case n = 1 is evident. Let n = 2. Assume, in view of Remark 2.3.3, that |X | = 6.

According to the condition c) iii) of Proposition 2.3.2, the six nodes do not belong to any

irreducible conic. Consider the case when they belong to a reducible conic β , where β = αAα

and A ∈ αA. Then we get readily from the condition a) that |{X ∩ αA}| ≤ 3 and therefore

A /∈ α. Now, according to b), X ′ := X \ α contains at most one node B of X different of A. So

we can take p\0A,X = αα′, where the last line passes through B but not A. Now, we may assume

that the six nodes do not belong to any conic. So we can take p\0A,X = β, where β is the conic

passing through the five nodes of X \ {A}.

Next, let n = 3. Then we have |X | = 8. Suppose first that there is a line α, A /∈ α, passing
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through 4 nodes of X . Then we get readily that α is a 1?-reduction of X . The condition a′) is

satisfied in view of the condition b).

Now let us choose a conic βA determined by A and other 4 nodes of X in the following way.

Suppose that there are exactly k lines passing through A and at least two other nodes of X

and k ≥ 1. Notice that there can be at most three such lines, i.e., k ≤ 3.

Now, we choose A and all the nodes on these k lines except one node on each line. The

number of all chosen nodes is less than or equal to 5 if 2 ≤ k ≤ 3, and 3 if k = 1. We add nodes

to complete the 5 arbitrarily.

Then, in view of Lemma 2.2.2 ii), the conic βA is determined by these nodes, i.e., by A

and other 4 nodes. According to the condition c), the set X \ βA contains at least one node

B. Now, consider the conic β passing through B and the 4 nodes. In view of Lemma 2.2.3, β

does not pass through A. Finally, we can take p\0A,X = αβ, where α is a line passing through the

remaining two nodes different from A. Note that these nodes do not belong to the same line

from the k mentioned. Hence the line α is not passing through A.

Finally assume that n = 4. Then |X | = 11. The proof of this case consists of 6 steps.

Step 1. Suppose that there is a line α, A /∈ α, passing through at least 5 nodes of X . Then,

in view of the condition b), we get readily that α is an 1?-reduction of X .

Step 2. Suppose that there is a line αA passing through A and at least 4 other nodes of X .

In view of the condition a) αA passes through exactly 4 other nodes and the set X1 := X \ αA

contains exactly 6 nodes. In view of Step 1 and the condition b), we have that no 5 of these

6 nodes are collinear. Then, by using Lemma 2.2.4, we can divide the node set X1 into two

noncollinear triples. Now, we can take p\0A,X = ββ′, where β is a conic passing through two

nodes of αA \ {A} and a noncollinear triple and β′ is the conic passing through the remaining

2 nodes of αA \ {A} and another noncollinear triple. Note that, in view of Lemma 2.2.1, the

conics β and β′ do not pass through A.

Step 3. Suppose that there is a line α, A /∈ α, passing through exactly 4 nodes of X . Then,

in view of Step 2, α is an 1?-reduction of X .

Step 4. Now suppose that there is a line α, A /∈ α, passing through exactly 3 nodes of X ,

denoted by B,C,D. Denote also X ′ := X \α, |{X ′}| = 8. Notice that, in view of Steps 2 and 3,
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the conditions a′) and b′) of Definition 2.3.4 are satisfied, respectively, for the line α and node

set X ′. Now, if the condition c′) is satisfied too, then the line α is a 1-reduction.

Thus, it remains to consider the case where the condition c′) is not satisfied, i.e., all 8

nodes of the set X ′ belong to an irreducible conic, which we denote by βA. Then there are no

4 collinear nodes in X \ {A} and therefore, in view of Lemma 2.2.2 ii), any five nodes of X ′

determine a conic uniquely. Next, according to c), at most one node from the three of α belongs

to βA. Suppose first that a node, say B, belongs to βA. Then we take p\0A,X = β1β2, where β1

is a conic passing through 4 nodes from βA \ A and C, and β2 is the conic passing through 4

other nodes from βA \ A and D. Note that in view of Lemma 2.2.3, these conics do not pass

through A.

It remains to consider the case where no node from α belongs to βA. Then let us fix any three

nodes E,F,G on βA different from A. Next, we show that we can choose a node from {C,D}

such that the conic passing through this node and the nodes E,F,G,B, does not pass through

A. Indeed, consider the conic β3 passing through A,E, F,G,B. Then, in view of Lemma 2.2.1,

β3 does not pass through both C and D. Suppose, without loss of generality, that β3 does not

pass through C. Finally, in this case we can take p\0A,X = β4β5, where the conic β5 passes through

the 4 nodes of βA \ {A} and D. Note that, in view of Lemma 2.2.3, these conics do not pass

through A.

Step 5. Suppose that there is an irreducible conic βA passing through A and k other nodes

of X , where k ≥ 5. According to the condition c) there can be at most eight such nodes, i.e.,

k ≤ 8. Let us call a conic of s-type, 1 ≤ s ≤ 4, if it passes through at least s nodes of βA \ {A}

and 5− s nodes from outside of βA.

In this case we can take p\0A,X = β1β2, where β1 is of (k − 4)-type conic, k = 5, 6, 7, 8 and

therefore β2 is of 4-type conic passing the remaining 5 nodes of X \ {A}. Notice that, in view

of Lemma 2.2.3, 4-type conics do not pass through A. Thus, we only need to choose the nodes

of the s := (k − 4)-type conic such that it does not pass through A, where k = 5, 6, 7, i.e.,

s = 1, 2, 3.

For this purpose consider first a conic β3, which passes through A, and certain 4 nodes.

Namely, s−1 nodes of βA and 5− s nodes from outside of βA. Let A,B,C,D,E be the 5 nodes
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determining β3.

According to the condition c) there is a node F ∈ βA such that β3 does not pass through

it. Therefore, according to Lemma 2.2.3, the conic passing through the nodes {B,C,D,E, F}

does not pass through A. It remains to notice that this latter conic is of s-type.

Step 6. Let us divide the set X \ {A} into 2 sets of 5 nodes: X \ {A} = X1 ∪ X2. We may

assume that none of them contains 3 nodes which are collinear together with A. Indeed, if both

they contain such a triple then we just exchange one node from them. If only one set, say X1,

contains such triple, say T , then we exchange a node B ∈ T , with a node C ∈ X2, requiring

only that the triple [X1 ∪ {B}] \ T is not collinear together with A. Now, in view of Lemma

2.2.2 ii), the sets X1 and X2 determine the above mentioned conics β1 and β2, respectively.

Notice that both these conics are irreducible. Indeed, any reducible conic, in view of Steps 2

and 4, has a line component passing through A and exactly 3 other nodes. Note that, in view

of Step 5, these conics do not pass through A.

2.5 The proof of the main proposition for n ≥ 5

We will use induction on n. First step of induction is included in Lemma 2.4.1. Now suppose

that n ≥ 5 and the statement is true for all natural numbers not exceeding n− 1. Let us prove

it for n.

First, in the subsequent 3 subsections, we will prove 3 lemmas, respectively.

2.5.1 The case of a critical reducible conic

Lemma 2.5.1 ([27]). Proposition 2.3.2 is valid if there is a critical reducible conic, i.e., a pair

of two lines α and αA, where α is passing through at least n − 1 nodes of X and not passing

through A, while αA is passing through A and at least n− 2 other nodes of X \ α.

Proof. Step 1. We show that there is a line that passes through A and n other nodes of X \ α.

Indeed, otherwise, in view of Definition 2.3.4, the line α is a 1?-reduction, since n−1 ≥ [n/2]+2,

if n ≥ 5. Notice that, according to the condition b), the line α passes through at most n nodes

of X .
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Thus from now on we may assume that the line αA passes through exactly n nodes of

X \ {A}.

Step 2. Let us verify that there is no irreducible critical conic βA, i.e., passing through A and

2n−3 other nodes of X . Indeed, otherwise we have at least 1+n+(n−1)+(2n−3)−1−2 = 4n−6

nodes in X , where −1 and −2 stand for a possible intersection nodes of βA with αA and α,

respectively. But we have that

2n+ [n/2] + 1 < 4n− 6 if n ≥ 5. (2.5.1)

Step 3. Let us show that there can be at most one line α′A, α′A 6= αA, passing through A

and at least n− 2 other nodes of X \ α. Indeed, otherwise, if there are 2 such lines, then there

would be at least 1 + 2(n− 2) + n+ (n− 1) = 4n− 4 nodes in X , where 1 stands for A. This,

in view of (2.5.1), is a contradiction.

Step 4. Next, let us verify that if there is a line α′A then it passes through A and at most

n − 1 other nodes of X . Indeed, otherwise, if it passes through n other nodes of X , then we

have at least 1 + 2n+ (n− 1)− 1 = 3n− 1 nodes in X , where second −1 stands for a possible

intersection node of α′A and α. But we have that

2n+ [n/2] + 1 < 3n− 1 if n ≥ 5. (2.5.2)

Step 5. Next, we consider the case when there is a second line α′ 6= α passing through at

least n−1 nodes and not passing through A. Then we have at least 1+n+2(n−1)−1 = 3n−2

nodes in X , where −1 stands for a possible intersection node of α and α′. We do not count a

possible intersection of αA and α′, since if these lines intersect at a node from X then, as in

Step 1, the line α′ is a 1?-reduction, or there is another line α′A passing through A and n other

nodes, which was excluded in Step 4.

Now, we have that 2n+ [n/2] + 1 < 3n− 2 if n ≥ 7 and 2n+ [n/2] + 1 = 3n− 2 if n = 5, 6.

From here we conclude that n = 5 or 6 and in each of this cases all the nodes of X are located

on the lines αA, α, and α′. The line αA passes through A and other n nodes, while the lines α

and α′ pass through n−1 nodes and intersect in a node of X . In this case we set p\0A,X = βp
\0
A,X ′ ,
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where X ′ := X \ β and β is a conic passing through two nodes from αA, different from A, and

3 noncollinear nodes from α ∪ α′. In other words, here β is a 2-reduction.

Step 6. Thus in this final step we have to deal with the critical line αA, possibly also α′A

and the line α. In this case we set p\0A,X = βp
\0
A,X ′ , where X ′ := X \ β and β is a conic passing

through two nodes from αA, different from A, 2 nodes from α, and a node from α′A, different

from A, if there is such a line. Otherwise, if there is no such line then the fifth node of β is any

node outside of αA and α. There is a such node since otherwise there are at most 1 + n + n

nodes in X , which is a contradiction in view of Remark 2.3.3.

2.5.2 The case of a critical irreducible conic

From now on we may assume that there is no reducible critical conic for X .

Lemma 2.5.2 ([27]). Proposition 2.3.2 is valid if there is an irreducible critical conic, i.e., a

conic passing through A and at least 2n− 3 other nodes of X .

Proof. First, assume that there is exactly 1 irreducible conic, denoted by βA.

Step 1. Let us show that there is at most one critical line αA - passing through A and at

least n− 1 other nodes of X . Indeed, otherwise, if there are 2 such lines, then there are at least

1 + 2(n− 1) + (2n− 3)− 2 = 4n− 6 nodes in X , where −2 stands for two possible intersection

nodes of the conic and the two lines. This, in view of (2.5.1), is a contradiction.

Step 2. Let us verify that there can be at most 2 extra nodes in the critical conic βA and

the possible critical line αA, except those mentioned, i.e., n− 1 and 2n− 3. Indeed, otherwise

there are at least 1 + (n − 1) + (2n − 3) − 1 + 3 = 3n − 1 nodes in X , where −1 stands for a

possible intersection node of the conic and the line. This, in view of (2.5.2), is a contradiction.

Step 3. Finally, in this case let us consider a 2-reduction conic β - passing through 3 nodes

from βA \ αA, and 2 nodes from αA, different from A, if there is such a line. If not, then we

make the conic β pass through 4 nodes from the conic βA different from A and a node from

outside. Note that, according to Lemmas 2.2.2 and 2.2.3, the conic β does not pass through A.

Next, assume that there are exactly 2 critical irreducible conics, denoted by βA and β′A.

Let us verify that except the node A and 2n− 3 nodes on each of βA and β′A there can be

at most one extra node (on the conics or outside). Indeed, if there are 2 such extra nodes, then
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there are at least 1 + 2(2n− 3) + 2− 3 = 4n− 6 nodes, where 3 stands for intersection nodes

of the two conics. This, in view of (2.5.1), is a contradiction. Then, notice that there is no

critical line. Indeed, any line passing through A passes through at most 3 (≤ n − 2 if n ≥ 5)

other nodes, 2 of which are intersection nodes with the conics and 1 is the possible extra node.

In this case let us consider that we have a 2-reduction conic β - passing through 4 nodes from

βA \{A}, and a node from βA \β′A. Note that, in view of Lemma 2.2.3, β does not pass through

A.

Finally, assume that there are at least 3 critical irreducible conics, denoted by βA, β′A, and

β′′A.

Figure 2.5.1: The case of 3 conics

In this case let us verify first that n ≤ 5. Indeed, there are at least 1 + 3(2n− 3)− 9 nodes,

where 9 = 3+3+3 stands for the maximal number of pairwise intersection nodes of the conics,

different from A. Therefore

1 + 3(2n− 3)− 9 ≤ 2n+ [n/2] + 1. (2.5.3)

This reduces to 4n ≤ [n/2] + 18 and hence we get n ≤ 5. In view of Lemma 2.4.1 we may

consider the case n = 5 only. Then we have that |X | = 13. Notice that we have equality in

(4.3.5) when n = 5. Therefore in this case any two conics must intersect in exactly 3 nodes,
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different from A and all 9 such intersection nodes must be distinct (see Fig. 2.5.1). Also, we get

that each conic passes through A and exactly 7(= 2n− 3) other nodes. Notice that 6(= 3 + 3)

out of these are intersection nodes with 2 other conics and seventh is not such a node. Now,

let us show that there is no other, i.e., fourth critical irreducible conic passing through A and 7

other nodes. Assume on the contrary that there is such a conic β̃′′A. Consider the three conics

βA, β′A and β̃′′A. According to what we showed above β̃′′, as well as β′′A, does not pass through

the 3 intersection nodes of the conics βA and β′A, different from A. There are 5 nodes of X

outside of β′′A, which include the mentioned 3 nodes. Therefore β̃′′A can pass through at most 2

nodes outside of β′′A. So the remaining 6 nodes of β̃′′A belong to β′′A, thus according to Lemma

2.2.2 iii) β̃′′A coincides with β′′A.

Then, notice that there is no critical line. Indeed, any line passing through A passes through

at most 3 (≤ n − 2 if n ≥ 5) other nodes, namely the possible intersection nodes of the line

with the 3 conics.

Finally let us find a 2-reduction conic β, by choosing a set of 5 nodes. Note that to neutralize

the 3 critical conics it is enough to choose at least a node from each conic, since there are no

extra nodes. For this purpose, we choose any 4 intersection nodes, different from A, of one of

the conics, say βA, and a node from outside. Note that at most 3 of these 4 belong to one of the

conics β′A and β′′A. Therefore the 4 nodes include at least one node from each of the 3 conics.

To complete the proof notice that, in view of Lemma 2.2.3, β does not pass through A.

2.5.3 The case of a critical line

Now we may assume that there is no critical conic (reducible or not) for X .

Lemma 2.5.3 ([27]). Proposition 2.3.2 is valid if there is a critical line, i.e., a line αA passing

through A and at least n− 1 other nodes of X .

Proof. Step 1. Let us start by showing that there can be at most three critical lines. Indeed,

otherwise, if there are 4 such lines, then there are at least 1 + 4(n − 1) = 4n − 3 nodes in X ,

where 1 stands for A. In view of (2.5.1), this is a contradiction.

Step 2. Let us verify that if there are three critical lines αA, α′A, α′′A, then there is at most

one extra node. Indeed, otherwise we have at least 1+3(n−1)+2 = 3n−1 nodes in X , which,
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in view of (2.5.2), is a contradiction. If there is an extra node in the lines then we will assume

that it is in αA.

Step 3. Next, let us find a 2-reduction conic β, determined by a set of 5 nodes of X \ {A}.

Assume first that there are at least 2 critical lines. Then for the set of 5 nodes we choose two

nodes from each of αA and α′A, and a node from the third critical line α′′A, if there is such a

line. Otherwise, we choose the fifth node from outside of αA and α′A. Note that there is such a

node in view of Remark 2.3.3. Finally assume that there is just one critical line: αA. Then we

choose two nodes from this line and any triple of noncollinear nodes from outside. If there is

no such triple, then all the nodes of X \ αA belong to a line α which clearly is a 1?-reduction.

It remains to notice that, in view of Lemma 2.2.1, β does not pass through the node A.

2.5.4 Completion of the proof

Now, we may suppose, in view of Lemmas 5.1-5.3, that there are no critical lines or conics for

X . Thus, to find a 2− reduction, it suffices to choose a set of five nodes in X \ {A}, such that

the conic β determined by them does not pass through A.

For this purpose first we choose 3 nodes such that no 2 of them are collinear together with

A. There are such 3 nodes since otherwise all the nodes of X belong to 2 lines passing through

A. This contradicts the condition iii) a) of Proposition 2.3.2. Next, we may suppose that these 3

nodes are not collinear. Indeed, if they belong to a line α then clearly the latter is a 1-reduction.

Now, we choose any fourth node from X \ {A}. Then, in view of Lemma 2.2.1, these 4 nodes

together with A determine a conic βA. Now, to complete the proof, we choose a node B outside

of the conic βA. Note that, in view of Lemma 2.2.3, the node B together with the 4 chosen

nodes makes the desired set. �
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Chapter 3

FACTORIZATION OF TRIVARIATE

FUNDAMENTAL POLYNOMIALS

In this Chapter we bring necessary and sufficient conditions for the set X ∈ R3 with cardinality

not exceeding 3n+1, such that all its knots have n-fundamental polynomials in form of products

of linear factors. We bring also necessary and sufficient conditions for n-independence of non-

coplanar knot sets in R3 of the mentioned cardinality.

Let Π3
n be the space of polynomials of three variables and total degree at most n :

Π3
n =

{ ∑
i+j+k≤n

aijkx
iyjzk : aijk ∈ R

}
.

We have that

N := dim Πn =

(
n+ 3

3

)
.

In case of two variables the corresponding space we denote by Πn.

We denote by Πn(L) the set of restrictions of polynomials of total degree at most n on a

plane L. Notice that if the plane L is not perpendicular to the XY coordinate plane then we

may assume that polynomial p ∈ Πn(L) is given by the equation q(x, y) = 0, where q ∈ Πn.

Indeed, in this case L is given by an equation z = ax + by + c and we have for the restriction

of p ∈ Π3
n on L: p|L = p(x, y, ax+ by + c) =: q(x, y).
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3.1 A result on factorization of bivariate fundamental poly-

nomials

In this section we prove the following, interesting in itself, proposition which in the Section 3.3

will be used to establish a result on n-independence of knot sets in R3.

Proposition 3.1.1 ([28]). Let X be a set of knots in R2 with |X | = 3n − k, where k, n ≥ 1

and A ∈ X . Suppose that the following three conditions hold:

i) No n+ 1 knots of X \ {A} are collinear together with A;

ii) If n+ 1 knots of X \ {A} are collinear and are lying in a line α, A /∈ α, then no n knots

of X \ α are collinear together with A;

iii) No 2n+ 1 knots of X \ {A} belong to an irreducible conic together with A.

Then there exists a fundamental polynomial of A of form p?A,X = α1α2...αkq, where α1, ..., αk

are lines and q ∈ Πn−k.

Proof. The cases n = 1, 2 are evident. Let us prove the case n = 3.

First assume that k = 1. In this case we have 8 knots in X . Therefore |X | = 1 + 2n+ [n/2].

Thus according to the conditions i), ii), iii) of the Lemma and Proposition 2.3.2, A has a

fundamental polynomial which is a product of lines and conics. Since n is odd there is a line

factor.

For the cases k ≥ 2 we have |X | ≤ 1 + 2n and so according to Theorem 2.1.1 the knot A

has a fundamental polynomial which is a product of lines.

Thus we may assume from now on that n ≥ 4.

Let us now use induction on n+k. Assume that the statement is true for all natural numbers

n′ and k′, such that n′ + k′ ≤ n+ k− 1. Let us prove it for n′ = n and k′ = k. Notice that it is

enough to find a line α0, A /∈ α0 passing through two knots of X such that the conditions i),ii)

and iii) hold for the knot set X ′ := X \ α0, with n− 1.

Indeed, after the choice of such a line we will have at most 3(n− 1)− (k − 1) = 3n− k − 2

knots in X ′. Therefore in view of induction assumption there exists a fundamental polynomial of
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form p?A,X ′,n−1 = α1...αk−1q, where αi is a line and q ∈ Πn−k. Thus we get a desired fundamental

polynomial p?A,X ,n = α0α1...αk−1q.

Notice that if there is a line α passing through n+ 1 knots of X \ {A}, then it can be taken

as a desired line. Thus we may assume from now on that any line not passing through A, passes

through at most n knots of X .

Now assume that the set X satisfies the conditions i), ii) and iii) with n replaced by n− 1,

i.e.,

i’) no n knots of X \ {A} are collinear together with A,

ii’) if n knots of X \ {A} are collinear and are lying in a line α, A /∈ α, then no n− 1 knots

of X \ α are collinear together with A,

iii’) no 2n− 1 knots of X \ {A} belong to a conic together with A.

Then it is easily seen that in this case as desired line we can take any line α0, A /∈ α0,

passing through two knots of X . two knots we can take any two knots of X , such that they are

not collinear together with A.

The remaining cases we consider in three steps.

Step 1. Suppose that there is an irreducible conic β passing through A and at least 2n− 1

other knots of X . Notice that there can not be more than one such conic. Indeed, if there

are two such conics, then we have at least 1 + 2(2n − 1) − 3 = 4n − 4 knots in X , where 3

stands for the possible intersection knots of the two conics different from A. On the other hand

4n− 4 > |X | = 3n− k, if n ≥ 4, where k ≥ 1.

Notice that according to the condition iii) the conic β contains at most 2n knots of X

different from A.

Now suppose that the condition i’) is not satisfied - there is a line αA passing through A and

n other knots. Then let us verify that the following three conditions are satisfied: the line αA

and the conic β intersect at two knots of X , the conic β contains exactly 2n−1 knots of X \{A}

and k = 1. Indeed, in this case we have that X contains at least 1 + n+ (2n− 1)− 1 = 3n− 1

knots, where the last −1 in the left hand side of the equality means that the line and the conic

intersect at another knot B, besides A.
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It is easily seen that in this case as our desired line we can take any line passing through B

and any other knot from β, different from A.

Finally suppose that ii’) is not satisfied. Therefore there is a line α,A /∈ α, passing through

exactly n knots of X . Then we can verify that α intersects β at at least one knot of X and all

the knots of X , except possibly a knot, lie in α ∪ β. Indeed, as in the previous case we have

that X contains at least 1 +n+ (2n− 1)− 1 = 3n− 1 knots, where the last −1 in the left hand

side of the equality means that α and β intersect at a knot in X .

It is easily seen that here α is a desired line.

Step 2. Suppose that there is a line α,A /∈ α, passing through exactly n knots and a line

αA is passing through at least n− 1 knots of X \α together with A. Let us consider two cases.

First suppose that αA passes through A and n other knots of X \ α. Note that outside of

these two lines there are at most n − 2 knots. Therefore if there is a second line α′, A /∈ α′,

passing through n knots, then it intersects the lines α and αA at two different knots. Therefore

in this case α′ is a desired line. If there is no such a line α′, then it is easily seen that we can

take as a desired line α0 a line passing through one knot from αA and another from α.

Next suppose αA passes through A and exactly n− 1 other knots of X \ α. It is easily seen

that α is a desired line. Note that since there are at most n− 1 knots outside of these two lines

the conditions i’) and ii’) are satisfied.

Step 3. Suppose that there is a line αA passing through A and n other knots of X . Notice

that there can be at most 2 such lines. Then it is easily seen that in this case as a desired line

α0,A /∈ α0, we can take any line that intersects each line at a knot different from A. Otherwise

if there is only one line αA then we take one knot from αA and a knot from outside of αA.

3.2 On factorization of trivariate fundamental polynomials

Let us start this section by proving Theorem 1.2.10 in a more general setting.

Proposition 3.2.1 ([28]). Let X be a set of knots in a plane L with |X | ≤ 3n. Then a node

A ∈ X has an n-fundamental polynomial in L if and only if the following four statements hold:
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i) No n+ 1 knots of X \ {A} are collinear together with A;

ii) If n+ 1 knots of X \ {A} are collinear and are lying in a line α then no n knots of X \α

are collinear together with A;

iii) If n+ 1 knots of X \ {A} are collinear and are lying in a line α then no n knots of X \α

are collinear together with A;

iv) If |X | = 3n, then there are no curves γ ∈ Π3(L) and σn ∈ Πn(L) such that X = σn ∩ γ.

Proof. Let us start with the ’only if’ part of Proposition. Suppose that the knot A has an

n-fundamental polynomial and let us prove that the conditions of Proposition hold.

First we show that the condition i) is satisfied. Indeed, suppose by way of contradiction

that a line passes through A and n + 1 other knots of X . Then the fundamental polynomial

p?A,X vanishes at those n+1 knots. Therefore, by Proposition 1.2.12, it vanishes at all the knots

of the line including A, which is a contradiction.

Next we show that ii) and iii) take place. Indeed, suppose by way of contradiction that a

line α passes through n + 1 knots of X and another line αA passes through A and n knots of

X \αA. Then the fundamental polynomial p?A,X vanishes at these n+1 and n knots. Therefore,

by Lemma 1.2.13, it vanishes at all the knots of the lines α and αA, including A, which is a

contradiction. Now assume on the contrary that an irreducible conic β passes through A and

2n + 1 other knots of X . Then the fundamental polynomial p?A,X vanishes at those 2n + 1

knots and therefore, by Lemma 1.2.14, it vanishes at all the knots of β, including A, which is

a contradiction.

Finally we show that iv) is satisfied. Indeed, suppose by way of contradiction that |X | = 3n,

and there are curves γ ∈ Π3(L) and σn ∈ Πn(L) such that X = σn ∩ γ. Then the fundamental

polynomial p?A,X vanishes at all 3n − 1 knots of X different from A. Therefore according to

Theorem 1.2.15 it vanishes at all the knots of X , including A, which is a contradiction.

Now let us prove the ’if’ part. We are going to verify that the conditions i) and ii) of

Theorem 1.2.10 are satisfied. Let us do this in two steps.

Step 1. Suppose there are n+1 knots, belonging to a line α and A is not in α. Then we take

p?A,X ,n = α′p?A,X ′,n−1, where X ′ = X \ α. Here the existence of p?A,X ′,n−1 follows from Theorem
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2.1.1, since |X ′| ≤ 2n − 1 = 1 + 2(n − 1) and according to condition iii) of Proposition no n

knots are collinear together with A.

Step 2. Suppose there are 2n + 2 knots, belonging to an irreducible conic β′ and A /∈ β′.

Then we take as the fundamental polynomial p?A,X ,n = β′p?A,X ′,n−2, where X ′ = X \ β′. Here

p?A,X ′,n−2 exists because |X ′| ≤ n− 2.

Notice that in view of Step 1 we may assume that there is no line passing through n + 1

knots and not passing through A, and according to the condition i) there is no line passing

through A and n + 1 other knots. Therefore there is no reducible conic (pair of lines) passing

through 2n+ 2 knots.

Now in view of Step 1 and Step 2 we can assume that no n+ 2 knots of X are collinear and

no 2n+ 2 knots belong to a conic. Therefore according to Theorem 1.2.10 X is n-independent.

Hence the knot A has an n-fundamental polynomial.

Next we present a main result of the thesis.

Proposition 3.2.2 ([28]). Let X be a set of knots in R3 with |X | ≤ 3n+ 1 and A ∈ X . Then

the knot A has an n-fundamental polynomial, which is a product of linear factors, if and only

if

i) no n+ 1 knots of X \ {A} are collinear together with A,

ii) if at least 2n+ 1 of X \ {A} knots are lying in a plane LA passing through A then all the

knots of X ∩ LA different from A lie in n lines not passing through A.

Proof. Without lose of generality we can suppose that |X | = 3n+1. Indeed, it suffices to verify

that if |X | < 3n+ 1 then we can add a knot B to X such that the set X ′ := X ∪ {B} satisfies

the conditions i) and ii) with X replaced by X ′. For this purpose we can consider all the lines

passing through any two knots of X and all the planes passing through any three non-collinear

knots of X . Note that both these sets are finite. Then it is easily seen that as a desired knot

B one can choose any knot which does not belong to the considered lines and planes.

Let us start with the ’only if’ part. Suppose that the knot A has an n-fundamental poly-

nomial, which is a product of linear factors: p?A,X = L1L2...Ln. Then a line passing through A
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can intersect each plane Li, i = 1, 2, ..., n in at most one knot. Thus there is no line passing

through A and n+ 1 other knots of X , since all the knots of X lie in the planes L1, L2, ..., Ln.

Therefore the condition i) is satisfied.

Next suppose that L is a plane passing through A and at least 2n + 1 other knots of X .

Then the linear factors of the fundamental polynomial of the knot A will intersect with L in

at most n lines. Thus all the knots of X ∩ L different from A lie in at most n lines not passing

through A. Therefore the condition ii) holds.

Now we will prove the ’if’ part in following steps.

Step 1. First consider the case when there are at least 2n knots that belong to a plane LA

together with A. Let us show that all these knots lie in n lines in LA not passing through A.

Indeed, if the number of these knots is greater than 2n then this follows from the condition

ii). On the other hand if there are exactly 2n knots in the plane LA, then this follows from

Proposition 2.1.2 by taking into account the condition i) of Proposition. Thus in Step 1 we

can take p?A,X as a product of n planes each passing through one of the considered n lines and

a knot from outside LA. Note that in this case there are at most n knots outside of LA, i.e.,

|(X \ LA)| ≤ n. Notice that if there are less than n knots outside of LA, then we can take any

other point from R3 \ LA.

Step 2. Now consider the case when there is a plane LA passing through A and exactly

2n−1 other knots. Therefore there are exactly n+ 1 knots in X \ LA. We want to choose three

non-collinear knots - a knot from LA \A and two knots from outside of LA such that the plane

L passing through them is not passing through A, and for the remaining knots in LA there are

no n knots collinear together with A. Note that after we chose such three knots we will have

for the knot set X ′ := X \ L, |X ′| ≤ 3(n− 1) + 1 and the following conditions are satisfied:

1) there are at most 2(n− 1) + 1 knots in LA,

2) no n knots are collinear together with A,

3) there are at most n− 1 knots outside of LA.

Thus by using Theorem 2.1.1, as in the Step 1, we can construct a fundamental polynomial

of A with respect to X ′: p?A,X ′ in form of product of planes. Finally notice that we can take

p?A,X = Lp?A,X ′ .
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Now let us describe the choice of the mentioned three knots. Notice that in view of Step 1

we may suppose that there is at most one line passing through A and n other knots, because

otherwise we would have a plane passing through A and at least 2n other knots. Let us consider

two cases. First suppose that there is such a line lA in LA. In this case we chose the first knot

B any knot from lA different from A. The other two knots C and D we chose such that the

knots A,B,C and D are not coplanar. This will not be possible only if all the n + 1 knots of

X \ LA belong to a plane L′ that passes through lA. This case was considered in Step 1, since

there are 2n+ 1 knots in L′ different from A.

Step 3. Now we may assume that no 2n − 1 knots belong to a plane together with A. In

this case we will use induction on n.

In the case n = 1 we have 4 knots in X . If they are not coplanar then we will take p?A,X = L,

where L is the plane passing through the 3 knots different from A. Otherwise if the 4 knots are

coplanar then according to ii) the 3 knots different from A are lying in a line. Therefore as a

plane L we can take any plane passing through that line and not passing through A.

Now suppose the proposition is true for n − 1 and let us prove it for n. Notice that it is

enough to find a plane L passing through 3 knots of X which is not passing through A and for

X ′ := X \L the conditions i) and ii) hold with n− 1. Indeed, then we will take p?A,X = Lp?A,X ′ ,

where in view of induction hypothesis, p?A,X ′ is a product of (n− 1) planes. Now let us describe

the choice of the mentioned three knots. In view of Step 1 and 2 we may suppose that there

are no 2(n−1)+1 knots coplanar together with A, therefore ii) holds for the set X ′ and (n−1).

Thus to complete the proof it remains to note that if there is a line lA passing through A and

n other knots then we can take one of these three knots from lA different from A. Notice that

the choice of the mentioned three knots will not be possible only if the whole set X is coplanar.

3.3 Independence of 3n + 1 knots in R3

Theorem 3.3.1 ([28]). Let X be a set of non-coplanar knots in R3 with |X | ≤ 3n + 1. Then

X is n-independent if and only if the following three statements hold:
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i) No n+ 1 knots of X \ {A} are collinear together with A;

ii) There are no 2n+2 coplanar knots of X , which belong to a conic(reducible or irreducible);

iii) If 3n knots belong to a plane L, then there are no curves σn ∈ Πn(L) and γ ∈ Π3(L) such

that X ∩ L = σn ∩ γ.

The statement of Theorem readily follows from the following result which covers wider

setting.

Proposition 3.3.2 ([28]). Let X be a set of non-coplanar knots in R3 with |X | ≤ 3n+ 1. Then

a knot A ∈ X has an n-fundamental polynomial if and only if the following four statements

hold:

i) No n+ 1 knots of X \ {A} are collinear together with A;

ii) If n+ 1 knots of X \ {A} are collinear and are lying in a line α, A /∈ α, then no n knots

of X \ α are collinear together with A;

iii) If 2n + 1 knots of X \ {A} are coplanar together with A and belong to a plane L, then

there is no conic in the plane passing through A and 2n+ 1 other knots of X ∩ L;

iv) If A and 3n−1 other knots belong to a plane L, then there are no curves σn ∈ Πn(L) and

γ ∈ Π3(L) such that X ∩ L = σn ∩ γ.

First let us prove the following lemma.

Lemma 3.3.3 ([28]). Let L be plane in R3, and q be a curve of degree n in L: q ∈ Πn(L).

Then for any point B outside of L, there exists a surface p ∈ Π3
n passing through B, such that

p|L = q.

Proof. Without lose of generality assume that the curve in L is given by an equation q(x, y) = 0.

Then we can take p in form: p(x, y, z) = q(x, y) + cL(x, y, z), where the constant c is chosen

such that p(A) = 0.

Now let us turn to the proof of Proposition 3.3.2.
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Proof. The ’only if’ part is obvious. Let us prove the ’if’ part. If there is no plane passing

through A and at least 2n+ 1 other knots, then the Proposition follows from Proposition 3.2.2.

Thus assume that there is a plane L passing through A and at least 2n+1 other knots. Assume

that there are k + 1 knots outside of L: 1 ≤ k + 1 ≤ n− 1.

First suppose that k = 0. Denote by B the knot outside of L. According to Proposition

3.2.1 A has a fundamental polynomial q ∈ Πn(L). Thus in view of Lemma 3.3.3 we can take

p?A,X = p, where p ∈ Π3
n is a surface, such that p|L = q and p(B) = 0.

Next suppose that k ≥ 1, then according to Lemma 3.1.1 we have for the fundamental

polynomial p?A,Y ∈ Πn(L): p?A,Y = α1α2...αkq, where αi ∈ Π1(L), q ∈ Πn−k(L) and Y = X ∩ L.

So here we can take p?A,X = L1L2...Lkp, where Li is a plane passing through the lines αi and

a knot from outside of L, and p is a surface passing through q and the last knot from outside,

given in Lemma 3.3.3.

The following corollary readily follows from Theorem 3.3.1

Corollary 3.3.4 ([28]). Let X be a set of knots in R3 with |X | ≤ 3n + 1. Then X is n-

independent if and only if for any plane L the set X ∩ L is n-independent.
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Part II

THE LINES IN GC SETS
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Chapter 4

GEOMETRIC CHARACTERIZATION

SETS: GC SETS

In this chapter we define a GCn set and present its classification according to the number of

maximal lines. Also we present the Gasca-Maeztu conjecture. Some known results are cited

that will be used in the next two chapters.

4.1 GCn sets and the Gasca-Maeztu conjecture

Definition 4.1.1. Given an n-poised set X . We say that a node A ∈ X uses a line ` ∈ Π1, if

p?A = `q, where q ∈ Πn−1.

Since in Part II we frequently use Proposition 1.2.12 it is convenient to state it here as

Proposition 4.1.2. Suppose that a polynomial p ∈ Πn vanishes at n + 1 points of a line `.

Then we have that p = `r, where r ∈ Πn−1.

As it follows from Proposition 4.1.2, at most n+ 1 nodes of an n-poised set X can be collinear.

Definition 4.1.3. [ [4]] A line passing through n+ 1 nodes is called a maximal line.

Clearly, in view of Proposition 4.1.2, a maximal line λ is used by all the nodes in X \ λ.

Next let us bring two corollaries due to Carnicer and Gasca:
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Corollary 4.1.4 ([8], Prop. 2.3). Let λ be a maximal line of an n-poised set X . Then the set

X \ λ is an (n− 1)-poised set. Moreover, for any node A ∈ X \ λ we have that

p?A,X = λp?A,{X\λ}. (4.1.1)

Corollary 4.1.5 ([6], Prop. 2.1). Let X be an n-poised set. Then we have that

(i) Any two maximal lines of X intersect necessarily at a node of X ;

(ii) Any three maximal lines of X cannot be concurrent.

(iii) X possesses at most n+ 2 maximal lines.

Now let us consider a special type of n-poised sets satisfying a geometric characterization

(GC) property introduced by K.C. Chung and T.H. Yao:

Definition 4.1.6 ([14]). An n-poised set X is called GCn set (or GC set) if the n-fundamental

polynomial of each node A ∈ X is a product of n linear factors.

So, GCn sets are n-poised sets such that each of its nodes uses exactly n lines.

Next we present the Gasca-Maeztu conjecture, briefly called GM conjecture:

Conjecture 4.1.7 ([16], Sect. 5). Any GCn set possesses a maximal line.

Until now, this conjecture has been confirmed to be true for the degrees n ≤ 5 (see [5], [19]).

For a generalization of the Gasca-Maeztu conjecture to maximal curves see [20].

Let us mention the following important result of Carnicer and Gasca:

Theorem 4.1.8 ([8], Thm. 4.1). If the Gasca-Maeztu conjecture is true for all k ≤ n, then

any GCn set possesses at least three maximal lines.

This yields, in view of Corollary 4.1.5 (ii) and Proposition 4.1.2, that each node of a GCn

set X uses at least one maximal line.

Denote by µ = µ(X ) the number of maximal lines of a node set X . Thus, in view of Corollary

4.1.5, (iii), we have for any GCn set X :

3 ≤ µ(X ) ≤ n+ 2, (4.1.2)
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where for the first inequality it is assumed that GM conjecture is true.

In Chapter 5 we will use the following

Lemma 4.1.9 ([10], Lem. 3.4). Suppose that the Gasca-Maeztu conjecture is true for all k ≤ n.

Suppose also that X is a GCn set with exactly three maximal lines and λ is a maximal line.

Then the GCn−1 set X \ λ also possesses exactly three maximal lines.

The following proposition, which covers a wider setting, will be used in Chapter 6.

Proposition 4.1.10 ([8], Crl. 3.5). Let λ be a maximal line of a GCn set X such that µ(X\λ) ≥

3. Then we have that

µ(X \ λ) = µ(X ) or µ(X )− 1.

4.2 Classification of GCn sets - I

Here we will consider the results of Carnicer, Gasca, and Godés, concerning the classification

of GCn sets according to the number of maximal lines the sets possess. Let us start with

Theorem 4.2.1 ([12]). Let X be a GCn set with µ(X ) maximal lines. Suppose also that GM

conjecture is true for the degrees not exceeding n. Then µ(X ) ∈ {3, n− 1, n, n+ 1, n+ 2} .

1. Lattices with n+ 2 maximal lines - the Chung-Yao natural lattices.

Let a set M of n + 2 lines be in general position, i.e., no two lines are parallel and no

three lines are concurrent, n ≥ 0. Then the Chung-Yao set is defined as the set X of all
(
n+2

2

)
intersection points of these lines. Note that the black nodes in Fig. 4.2.1 form a Chung-Yao

lattice for n = 3. We have that the n+ 2 lines ofM are maximal for X . Each fixed node here is

lying in exactly 2 lines and does not belong to the remaining n lines. Observe that the product

of the latter n lines gives the fundamental polynomial of the fixed node. Thus X is a GCn set.

Let us mention that any n-poised set X , with µ(X ) = n+ 2, clearly forms a Chung-Yao lattice.

Recall that there are no n-poised sets with more maximal lines (Proposition 4.1.5, (iii)).

2. Lattices with n+ 1 maximal lines - the Carnicer-Gasca lattices.

Let a setM of n + 1 lines be in general position, n ≥ 2. Then the Carnicer-Gasca lattice

X is defined as X := X (2) ∪ X (1), where X (2) is the set of all intersection nodes of these n + 1

57



lines, and X (1) is a set of other n + 1 non-collinear nodes, one in each line, to make the line

maximal. Note that the black and white nodes in Fig. 4.2.1 form a Carnicer-Gasca lattice for

n = 4. We have that |X | =
(
n+1

2

)
+ (n + 1) =

(
n+2

2

)
. It is easily seen that X is a GCn set and

has exactly n+ 1 maximal lines, i.e., the lines ofM. Let us mention that any n-poised set X ,

with µ(X ) = n+ 1, clearly forms a Carnicer-Gasca lattice (see [6], Proposition 2.4).

3. Lattices with n maximal lines.

Let a setM of n lines be in general position, n ≥ 3. Then consider the lattice X defined as

X := X (2) ∪ X (1) ∪ X (0), (4.2.1)

where X (2) is the set of all intersection nodes of these n lines, X (1) is a set of other 2n nodes,

two in each line, to make the line maximal and X (0) consists of a single node, denoted by O,

which does not belong to any line from M (see Fig. 4.2.2). Correspondingly, we have that

|X | =
(
n
2

)
+ 2n+ 1 =

(
n+2

2

)
.

Figure 4.2.1: A GC3 and a GC4 sets. Figure 4.2.2: A lattice with n maximals

In the sequel we will need the following characterization of GCn set X , with µ(X ) = n, due

to Carnicer and Gasca (see Fig. 6.4.1):

Proposition 4.2.2 ([6], Prop. 2.5). A node set X is a GCn set with the set of maximal

linesM, |M| = n, if and only if the representation (4.2.1) holds with the following additional

properties:

(i) There are 3 lines `o1, `o2, `o3 concurrent at the node O : O = `o1 ∩ `o2 ∩ `o3 such that X (1) ⊂

`o1 ∪ `o2 ∪ `o3;
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(ii) No line `oi , i = 1, 2, 3, contains n+ 1 nodes of X .

4.3 The sets N` and X`

Definition 4.3.1 ([7]). Given an n-poised set X and a line `. Then

(i) X` is the subset of nodes of X which use the line `;

(ii) N` is the subset of nodes of X which do not use the line ` and do not lie in `.

Notice that

X` ∪N` = X \ `. (4.3.1)

Note that the previously mentioned statement on maximal lines can be expressed as follows

X` = X \ `, if ` is a maximal line. (4.3.2)

Suppose that λ is a maximal line of X and ` 6= λ is any line. Then in view of the relation

(4.1.1) we have that

X` \ λ = (X \ λ)`. (4.3.3)

The following proposition, due to Carnicer and Gasca, describes an important property of

the set N` :

Theorem 4.3.2 ([7], Prop. 2.1). Let X be an n-poised set and ` be a line. Then the set N` is

(n− 1)-dependent, provided that it is not empty.

In the sequel we will use frequently the following two lemmas of Carnicer and Gasca.

Let X be an n-poised set and ` be a line with |` ∩ X | ≤ n. We call a maximal line λ

`-disjoint if

λ ∩ ` ∩ X = ∅. (4.3.4)

Lemma 4.3.3 ([8], Lemma 4.4). Let X be an n-poised set and ` be a line with |` ∩ X | ≤ n.

Suppose also that a maximal line λ is `-disjoint. Then we have that

X` = (X \ λ)`. (4.3.5)
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Moreover, if ` is an n-node line then we have that X` = X \(λ∪`), hence X` is an (n−2)-poised

set.

Let X be an n-poised set and ` be a line with |`∩X | ≤ n.We call two maximal lines λ′, λ′′

`-adjacent if

λ′ ∩ λ′′ ∩ ` ∈ X . (4.3.6)

Lemma 4.3.4 ([8], proof of Thm. 4.5). Let X be an n-poised set and ` be a line with 3 ≤

|` ∩ X | ≤ n. Suppose also that two maximal lines λ′, λ′′ are `-adjacent. Then we have that

X` = (X \ (λ′ ∪ λ′′))`. (4.3.7)

Moreover, if ` is an n-node line then we have that X` = X \ (λ′ ∪ λ′′ ∪ `), hence X` is an

(n− 3)-poised set.

Next, by the motivation of above two lemmas, let us introduce the concept of an `-reduction

of a GCn set.

Definition 4.3.5. Let X be a GCn set, ` be a k-node line, k ≥ 2. We say that a set Y ⊂ X is

an `-reduction of X , and briefly denote this by X ↘` Y , if

Y = X \ (C0 ∪ C1 ∪ · · · ∪ Cs) ,

where

(i) C0 is an `-disjoint maximal line of X , or C0 is the union of a pair of `-adjacent maximal

lines of X ;

(ii) Ci is an `-disjoint maximal line of the GC set Yi := X \ (C0 ∪ C1 ∪ · · · ∪ Ci−1), or Ci is the

union of a pair of `-adjacent maximal lines of Yi, i = 1, . . . s;

(iii) ` passes through at least 2 nodes of Y .

We get immediately from Lemmas 4.3.3 and 4.3.4 that

X ↘` Y ⇒ X` = Y`. (4.3.8)
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Notice that we cannot do any further `-reduction with the set Y if the line ` is a maximal line

here. For this situation we have the following

Definition 4.3.6. Let X be a GCn set, ` be a k-node line, k ≥ 2. We say that the set X` is an

`-proper GCm subset of X if there is a GCm+1 set Y such that

(i) X ↘` Y ;

(ii) The line ` is a maximal line in Y .

In view of the relations (4.3.8) and (4.3.2) we have that

X` = Y \ ` = X \ (C0 ∪ C1 ∪ · · · ∪ Cs ∪ `) ,

where the sets Ci satisfy conditions listed in Definition 4.3.5.

Let us mention that, in view of Corollary 4.1.4, the above `-proper GCm subset X` is indeed

a GCm set, with m = n −
∑s

i=0 δi − 1, where δi ∈ {1, 2} is the number of the maximal lines

contained in Ci.

Note that if ` is an n-node line then the node set X` in Lemma 4.3.3 or in Lemma 4.3.4 is

an `-proper GCn−2 or GCn−3 subset of X , respectively.

We immediately get from Definitions 4.3.5 and 4.3.6 the following

Proposition 4.3.7. Suppose that X is a GCn set. If X ↘` Y and Y` is an `-proper GCm

subset of Y then X` is an `-proper GCm subset of X .

Let us formulate the following useful (cf. [1], Corollary 3.4)

Corollary 4.3.8. Let X be an n-poised set and ` be an n-node line.

(i) Suppose that a maximal line λ0 satisfies the condition (4.3.4). Then all other maximal

lines λ, λ 6= λ0, intersect the line ` at distinct nodes and |λ ∩ X`| = n− 1;

(ii) Suppose that maximal lines λ′ and λ′′ satisfy the condition (4.3.6). Then all other other

maximal lines λ, λ 6= λ′, λ 6= λ′′, intersect the line ` at distinct nodes and |λ∩X`| = n−2.

Proof. The cases n = 1, 2, are evident. Thus suppose that n ≥ 3. Notice that the conditions

(4.3.4) and (4.3.6) can not hold simultaneously, since then, by Lemmas 4.3.3 and 4.3.4, the

conditions (4.3.5) and (4.3.7) hold simultaneously, which is a contradiction.
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(i) We get from Lemma 4.3.3 that X` = X \(`∪λ0). The maximal line λ intersects the lines `

and λ0 at two distinct nodes. Therefore we obtain |λ∩X`| = |λ∩[X\(`∪λ0)]| = (n+1)−2 = n−1.

(ii) In this case, according to Lemma 4.3.4, we have that X` = X \ (` ∪ λ′ ∪ λ′′). The

maximal line λ intersects the lines `, λ′ and λ′′ at three distinct nodes. Therefore we obtain

|λ ∩ X`| = |λ ∩ [X \ (` ∪ λ′ ∪ λ′′)]| = (n+ 1)− 3 = n− 2.

Finally, let us bring a result on n-node lines we are going to use in the next Chapter.

Proposition 4.3.9 ([1], Prop. 2.1). Let X be an n-poised set and ` be an n-node line. Then

the following hold:

(i) |X`| ≤
(
n
2

)
;

(ii) If |X`| ≥
(
n−1

2

)
+ 1 then |X`| =

(
n
2

)
. Moreover, X` is an (n − 2)-poised set and X` =

X \ (` ∪ λ), where λ is a maximal line such that λ ∩ ` ∩ X = ∅;

(iii) If
(
n−1

2

)
≥ |X`| ≥

(
n−2

2

)
+ 2 then |X`| =

(
n−1

2

)
. Moreover, X` is an (n− 3)-poised set and

X` = X \(`∪β), where β ∈ Π2 is a conic such that N` = (β\`)∩X , and |N`| = 2n. Besides

these 2n nodes the conic may contain at most one extra node, which necessarily belongs

to `. Furthermore, if the conic β is reducible: β = `1`2 then we have that |`i ∩ (X \ `)| =

n, i = 1, 2.

4.4 The Gasca-Maeztu conjecture for n = 4

In this Section we present a simple, short, and clear proof of the Gasca-Maeztu conjecture for

the case n = 4. The Conjecture was proposed in 1981 by Gasca and Maeztu [16]. Until now, this

has been confirmed only for the values n ≤ 5. The case n = 5 was proven in 2014 by Hakopian,

Jetter, and Zimmermann, in [19]. So far that is the only proof for n = 5. In addition, it is

very long and complicated. In our opinion a simple proof of the Gasca-Maeztu conjecture for

smaller values of n greatly simplifies its generalization for higher values. We believe that this

is a way in trying to prove the Conjecture for the values n ≥ 6.

The following formulation of the Theorem 4.3.2 we will use in this section.

Theorem 4.4.1 ([7]). Suppose, that we have a line ` and an n-poised set X . Then the following

hold:
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(i) If the set N` is nonempty, then it is (n − 1)-dependent and for no node A ∈ N`, there

exists a fundamental polynomial p?A,N`
in Πn−1.

(ii) N` = ∅ if and only if ` passes through n+ 1 nodes in X .

Since the fundamental polynomial of an n-poised set is unique we get (see e.g. [18], Lemma

2.5)

Lemma 4.4.2 ([18]). Suppose X is a poised set and a node A ∈ X uses a line ` : p?A = `q, q ∈

Πn−1. Then ` passes through at least two nodes from X , at which q does not vanish.

Next we formulate the Gasca-Maeztu conjecture for n = 4 as:

Theorem 4.4.3 ([29]). Any GC4-set X of 15 nodes possesses a maximal line, i.e., a line passing

through 5 nodes.

To prove the theorem assume by way of contradiction the following.

Assumption 4.4.4. The set X is a GC4-set without any maximal line.

We call a line k-node line if it passes through exactly k nodes of the set X . In the next

subsection we discuss the problem: Given a 2, 3 or 4-node line. By how many nodes in X it

can be used at most.

The following lemma is in ([18], Lemma 4.1). We bring it here for the sake of completeness.

Lemma 4.4.5. Any 2 or 3-node line can be used by at most one node of X .

Proof. Assume by contradiction that ` is a 2 or 3-node line used by two points A,B ∈ X .

Consider the fundamental polynomial p?A. The node A uses the line ` and three more lines,

which contain the remaining ≥ 11 nodes of X \ (`∪{A}), including B. Since there is no 5-node

line, we get

p?A = ``=4`
′

=4`≥3.

Here the subscript = 4 means that the corresponding line is a 4-node line, while the subscript

≥ 3 means that except the 3 nodes the corresponding line may also pass through some nodes

belonging to the other lines. First suppose that B belongs to one of the 4-node lines, say to

`
′
=4. We also have

p?B = `q, where q ∈ Π3.
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Notice that q vanishes at 4 nodes of `=4 and 3 nodes of `′=4 (i.e., except B). Therefore by using

Proposition 4.1.2 twice we get that q = `=4r, r ∈ Π2 and r = `
′
=4s, s ∈ Π1. Thus p?B = ``=4`

′
=4s.

Hence p?B vanishes at B (B ∈ `′=4), which is a contradiction.

Now assume that B belongs to the line `≥3. Then q vanishes at 4 nodes of `=4, 4 (≥ 3)

nodes of `′=4 and at least 2 nodes of `≥3. Therefore again, as above, by consecutive usage of

Proposition 4.1.2 we get that p?B = ``=4`
′
=4`≥3. Hence again p?B vanishes at B (B ∈ `≥3), which

is a contradiction.

The following lemma is in ([2], Lemma 2.6). Here we bring a very brief proof of it.

Lemma 4.4.6 ([29]). Any 4-node line can be used by at most three nodes of X .

Proof. Assume by contradiction that ` is a 4-node line used by four points from X . Therefore

we have |N`| ≤ 15 − 4 − 4 = 7. In view of Theorem 4.4.1 N` 6= ∅ is (essentially) 3-dependent.

According to Theorem 1.2.9 a set of ≤ 2× 3 + 1 = 7 nodes is 3-dependent if and only if there

is a 5-node line, which contradicts Assumption 4.4.4.

Now we are in a position to prove the Gasca-Maeztu conjecture for n = 4.

Let us start with an observation from ([19], Section 3.2). Fix any node A ∈ X , and consider

all the lines through the node A and some other node(s) of X . Denote this set of lines by LA.

Let nm(A) be the number of m-node lines from LA. In view of Assumption 4.4.4 we have

1n2(A) + 2n3(A) + 3n4(A) = |
(
X \ {A}

)
| = 14. (4.4.1)

Denote by M(A) the total number of uses of the lines passing through A. By Lemma 4.4.2

each of 14 nodes of X \ {A} uses at least one line from LA. On the other hand, we get from

Lemmas 4.4.5 and 4.4.6 that

14 ≤M(A) ≤ 1n2(A) + 1n3(A) + 3n4(A).

Comparing this with (4.4.1), we conclude that necessarilyM(A) = 14 and n3(A) = 0, i.e., there

is no 3-node line in LA.
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Thus we have

n2(A) + 3n4(A) = 14. (4.4.2)

Therefore each 4-node line in LA is used exactly three times and each 2-node line is used

exactly once. From here we conclude easily that n2(A) ≥ 2. Next we show that actually

n2(A) = 2.

Consider two 2-node lines passing through A. Suppose that besides A they pass through B

and C, respectively. Denote these two lines by `B and `C , respectively (see Fig 6.2.1).

Figure 4.4.1: The lines of LA

Next, we will prove that B uses `C . Let us verify that in this case the node C uses `B.

Indeed, if B uses `C we have p?B = `Cq, where q is a product of three lines. Notice that the

polynomial `Bq is the fundamental polynomial of the node C, which means that C uses `B.

Now, suppose by way of contradiction that B does not use `C . Therefore C does not use `B.

Thus, there are two nodes D and E in the 12 nodes of X \ {A,B,C} using the lines `B and

`C respectively. In this case, we have p?D = `Bq1 and p?E = `Cq2, where q1 and q2 are polynomials

of degree 3.

Since q1 and q2 have 10 common nodes we get from the Bezout theorem that they have

common linear factor α, passing through at most 4 nodes. So we can write q1 = αβ1 and
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q2 = αβ2, where β1 and β2 have at least 6 common nodes. Therefore, β1 and β2 have common

linear factor α1, passing through at most 4 nodes.

Now, we have for the following presentations of the fundamental polynomials: p?D = `Bαα1α2

and p?E = `Cαα1α2
′
. Therefore α2 and α2

′ have at least two common nodes, which means that

they coincide. We have that E ∈ α ∪ α1 ∪ α2 and thus come to a contradiction, which proves

that B uses `C .

Note that `C was an arbitrary 2-node line, which means that B uses all 2-node lines different

from `B. It is easy to see that any node from X can use at most one 2-node line, since otherwise

if some node uses two 2-node lines the remaining ≥ 10 nodes have to lie on two lines. Therefore,

we conclude that there are no 2-node lines other than `B and `C , i.e., n2(A) = 2. From here

and the equality (4.4.2) we get n4(A) = 4.

Thus, the 12 nodes of X \ {A,B,C} lie on four 4-node lines passing through A. We denote

these lines by `1, ..., `4.

Finally, by taking p(x, y) = `1`2`3`4, in the Lagrange formula (1.2.2), we obtain

`1`2`3`4 = λ1p
?
B + λ2p

?
C , (4.4.3)

since `1`2`3`4 vanishes in X \ {B,C}. Now recall that p?B = `Cq and p?C = `Bq, where q is a

product of three 4-node lines passing through the 12 nodes of X \ {A,B,C}. Thus we get

`1`2`3`4 = q(λ1`C + λ2`B).

Clearly none of the lines `i here are factors of q. Hence this leads to a contradiction, which

proves Theorem 4.4.3.
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Chapter 5

ON A CORRECTION OF A PROPERTY

OF GC SETS

In this chapter we consider the main result of the paper [1] by V. Bayramyan and H. Hakopian.,

stating that any n-node line of GCn set is used either by exactly
(
n
2

)
nodes or by exactly

(
n−1

2

)
nodes, provided that the Gasca-Maeztu conjecture is true.

Here we show that this result is not correct in the case n = 3. Namely, in Subsection 5.1.1,

we bring an example of a GC3 set and a 3-node line there which is not used at all. The proof of

the result in [1] is inductive and based on the case n = 3. For this reason we needed to consider

a new proof of the result. Fortunately, we were able to establish that the above mentioned

result is true for all n ≥ 4 (see the forthcoming Theorem 5.1.1).

We also characterize the exclusive case n = 3 (Proposition 5.1.3) and present some new

results on the maximal lines and the usage of n-node lines in GCn sets. Let ` be an n-node

line in a GCn set X , where n ≥ 4. Namely, we prove that if there are n maximal lines passing

through n distinct nodes in ` then there is at least one more maximal line in X (Proposition

5.2.2). We also prove that if X has exactly three maximal lines then there are exactly three

n-node lines and each is used by exactly
(
n
2

)
nodes (Corollary 5.2.4).
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5.1 On n-node lines in GCn sets

First of all let us present the corrected version of the main result of the paper [1] by V.

Bayramyan and H. Hakopian:

Theorem 5.1.1 ([25]). Assume that Conjecture 4.1.7 holds for all degrees up to n. Let X be

a GCn set, n ≥ 4, and ` be an n-node line. Then we have that

|X`| =
(
n

2

)
or

(
n− 1

2

)
. (5.1.1)

Moreover, the following hold:

(i) |X`| =
(
n
2

)
if and only if there is a maximal line λ0 such that λ0 ∩ ` ∩X = ∅. In this case

we have that X` = X \ (` ∪ λ0). Hence it is a GCn−2 set;

(ii) |X`| =
(
n−1

2

)
if and only if there are two maximal lines λ′, λ′′, such that λ′ ∩ λ′′ ∩ ` ∈ X .

In this case we have that X` = X \ (` ∪ λ′ ∪ λ′′). Hence it is a GCn−3 set.

In [1] this result is stated for all n ≥ 1. Note that the cases n = 1, 2, are obvious (see [1]).

In the next subsection we bring a counterexample showing that Theorem 5.1.1 is not correct

in the case n = 3.

Let us mention now that the converse implications in the assertions (i) and (ii) of Theorem

5.1.1 follow from Lemmas 4.3.3 and 4.3.4, respectively. The same is true in the case of the

forthcoming Proposition 5.1.3 (the case n = 3).

Remark 5.1.2. Note that the conclusions in the statements (i) and (ii) of Corollary 4.3.8 can

be subjoined to the statements (i) and (ii) of Theorem 5.1.1, respectively. The same is true

with Theorem 5.1.1 replaced by Proposition 5.1.3 (the case n = 3).

5.1.1 A counterexample

Let us start with a counterexample. Consider a GC3 set X ? with exactly three maximal lines:

λ1, λ2, λ3 (see Fig. 5.1.1). We have that in such sets nine nodes are lying in the maximal lines

and one - O is outside of them. Also there are three 3-node lines `1, `2, `3 passing through the
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node O (see Fig. 6.4.1 and Case 2 of the proof of Proposition 5.1.3, below). In the set X ? we

have a fourth 3-node line: `? which is not passing through the node O.

As we will see in the next proposition such a line cannot be used by any node in X . It is

worth mentioning that this could also be verified directly.

Figure 5.1.1: A non-used 3-node line `? in the GC3 set X ?.

Before starting the proof of Theorem 5.1.1 let us characterize the exclusive case n = 3.

5.1.2 On 3-node lines in GC3 sets

Proposition 5.1.3 ([25]). Let X be a GC3 set and ` be a 3-node line. Then we have that

|X`| = 3, 1, or 0. (5.1.2)

Moreover, the following hold:

(i) |X`| = 3 if and only if there is a maximal line λ0 such that λ0 ∩ ` ∩ X = ∅. In this case

we have that X` = X \ (` ∪ λ0). Hence it is a GC1 set.

(ii) |X`| = 1 if and only if there are two maximal lines λ′, λ′′, such that λ′ ∩ λ′′ ∩ ` ∈ X . In

this case we have that X` = X \ (` ∪ λ′ ∪ λ′′);

(iii) |X`| = 0 if and only if there are exactly three maximal lines in X and they intersect ` at

three distinct nodes.
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Furthermore, if the node set X possesses exactly three maximal lines then any 3-node line ` is

either used by exactly three nodes or is not used at all:

|X`| = 3 or 0. (5.1.3)

Proof. The proofs of the assertion (iii) and the direct implications (i) and (ii) are divided into

cases, depending on the number µ(X ). Recall that, according to the relation (4.1.2), we have

that 3 ≤ µ(X ) ≤ 5.

Case 1. Suppose that µ(X ) = 4, or 5. The line ` is a 3-node line. Therefore either there

is a maximal line λ such that λ ∩ ` ∩ X = ∅ or there are two maximal lines λ′, λ′′, such that

λ′∩λ′′∩` ∈ X . Thus the result holds in this case since the converse implications in the assertions

(i) and (ii) are valid.

Case 2. Suppose that there are exactly 3 maximal lines in X : λ1, λ2, λ3 (see Fig. 6.4.1).

By Corollary 4.1.5 these lines form a triangle and the vertices A,B,C, are nodes in X . There

Figure 5.1.2: The case of GC3 set with exactly three maximal lines.

are 6 more nodes, called “free", 2 in each maximal line. The tenth node - O is outside of the

maximal lines. We find readily that the 6 “free" nodes are located also in 3 lines: `1, `2, `3,

passing through O, 2 in each line (see Fig. 6.4.1).

To prove the result in this case it suffices to verify the following assertions:

(a) The lines `1, `2, `3, are 3-node lines;
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(b) For each line `1, `2, `3, there is a maximal line in X which does not intersect it at a node;

(c) Each of the lines `1, `2, `3, is used by exactly 3 nodes in X ;

(d) Except of the lines `1, `2, `3, there is no other used 3-node line in X .

(e) Through each node of any non-used 3-node line there pass a maximal line.

Let us start the verification.

(a) Note that the lines `1, `2, `3, are 3-node lines, i.e., they do not contain any more nodes,

except O and intersection nodes with two maximal lines. Indeed, otherwise they would

become a maximal line and make the number of maximal lines of X more than three.

(b) In view of (a) we get readily that the maximal line λi does not intersect the line `i at a

node, i = 1, 2, 3.

(c) In view of (b) and converse implication of the statement (i) we get readily that the line

`i is used by the 3-nodes of the set X \ (`i ∪ λi), i = 1, 2, 3.

(d) To verify this item let us specify all the used lines in X and see that except of the lines

`1, `2, `3, there is no other used 3-node line in X .

First notice that all the nodes of the set X , except the vertices A,B,C, use only the

maximal lines and the three 3-node lines `1, `2, `3 (see Fig. 6.4.1). Then observe that

each of the vertices A,B,C, uses, except a maximal line and a 3-node line `1, `2, `3 also

a 2-node line. Namely, these vertices use the lines `′1, `′2, `′3, respectively (see Fig. 6.4.1).

Note that the latter lines infact are 2-node lines. Indeed, say the line `′1 obviously does

not pass through any more nodes from the two maximal lines that pass through the vertex

A, since each of these maximal lines intersects `′1 at one of its two nodes. The line `′1 does

not pass also through the remaining three nodes. Indeed, they belong to the lines `2, `3

that intersect the line `′1 at one of its two nodes.

(e) Suppose that there is a 3-node line different from `1, `2, `3 (as `? in Fig. 5.1.1). Then

clearly it is not passing through the vertices or the node O. Thus the three nodes of `

belong to the maximal lines λi, i = 1, 2, 3, one node to each. Note that such a 3-node

line is not used since it is not among the used lines we specified in the item (d).
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Finally, for the part “Furthermore”, it suffices to observe that the case (ii), i.e., |X`| = 1,

cannot happen if the node set X has exactly three maximal lines. Indeed, as it was mentioned in

the item (e), it is easily seen that there cannot be a 3-node line passing through any intersection

node of maximal lines, i.e., through A,B,C (see Fig. 6.4.1).

Let us mention that the first statement of Proposition 5.1.3 (without “Moreover" and “Fur-

thermore" parts) for 3-node lines in n-poised sets was proven in [21], Corollary 6.1.

5.2 The proof of the main theorem

The original version of Theorem 5.1.1 was proven in [1] by induction on n. As the first step of

the induction the case n = 3 was used. We have already verified that in this case the statement

is not valid. Thus we start with the special case n = 4 of Theorem 5.1.1:

Proposition 5.2.1 ([25]). Let X be a GC4 set, hence |X | = 15, and ` be a 4-node line. Then

we have that

|X`| = 6 or 3. (5.2.1)

Moreover, the following hold:

(i) |X`| = 6 if and only if there is a maximal line λ0 such that λ0 ∩ ` ∩ X = ∅. In this case

we have that X` = X \ (` ∪ λ0). Hence it is a GC2 set;

(ii) |X`| = 3 if and only if there are two maximal lines λ′, λ′′, such that λ′ ∩ λ′′ ∩ ` ∈ X . In

this case we have that X` = X \ (` ∪ λ′ ∪ λ′′). Hence it is a GC1 set.

First we will prove the following

Proposition 5.2.2 ([25]). Let X be a GCn set and ` be an n-node line, where n ≥ 4. Suppose

that there are n maximal lines passing through n distinct nodes in `. Then there exists at least

one more maximal line in X .

Proof. Suppose by way of contradiction that the node set X possesses exactly n maximal lines

denoted by λ1, . . . , λn. Then the characterization of Proposition 4.2.2 with (4.2.1) holds. Now

notice that the line ` does not pass through an intersection node of two maximal lines. Indeed,
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in this case two maximal lines intersect ` at a node and there remain only n− 2 maximal lines

to intersect ` at other n − 1 nodes. Thus clearly the hypothesis of the Proposition cannot be

satisfied. Therefore the line ` may pass through only the “free" nodes Ai, A′i, i = 1, . . . , n, and

the outside node O (see (4.2.1)). Thus, in view of Proposition 4.2.2, the n nodes of the line ` are

lying in the three lines `∗1, `∗2, `∗3. Since n ≥ 4 we deduce that ` coincides with a line `∗i , i = 1, 2, 3.

On the other hand none of these three lines intersects n maximal lines at nodes of X , since

otherwise it would become a maximal line. This contradiction completes the proof.

Remark 5.2.3. It is worth mentioning that Proposition 5.2.2 is not valid in the case n = 3.

Indeed, the GC3 set X ? and the 3-node line `? (see Fig. 5.1.1) give us a counterexample for

this.

Now we are in a position to start

The proof of Proposition 5.2.1. The proof of the direct implications is divided into cases, de-

pending on the number µ(X ). Recall that, according to the relation (4.1.2), 3 ≤ µ(X ) ≤ 6.

Case 1. Assume that µ(X ) ≥ 5. The line ` is a 4-node line. Therefore either there is

a maximal line λ such that λ ∩ ` ∩ X = ∅ or there are two maximal lines λ′, λ′′, such that

λ′ ∩ λ′′ ∩ ` ∈ X . Therefore the result holds in this case since the converse implications in the

assertions (i) and (ii) are valid.

Case 2. Assume that there are exactly 4 maximal lines in X . In view of Case 1 we may

suppose that the four maximal lines intersect ` in four distinct nodes. Now, in view of the

case n = 4 of Proposition 5.2.2, we conclude that there is a fifth maximal line for X , which

contradicts our assumption.

Case 3. Assume that there are exactly 3 maximal lines in X .

Notice that as above, in view of the converse implications in the assertions (i) and (ii), we

may assume that 3 maximal lines intersect ` at 3 distinct nodes, say first three: A1, A2, A3 (see

Fig.6.2.2). Let us prove that this case is impossible. To this end it is enough to prove the

following statements in this case.

(a) There is a node that uses the line `, i.e |X`| ≥ 1;

(b) If a node uses the line `, then there are at least 5 nodes using it;
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Figure 5.2.1: The case of 3 maximal lines.

(c) If five nodes use the line `, then there is a forth maximal of the node set X .

Obviously the statement (c) contradicts our assumption.

Now let us start with the statement (a). Assume, by way of contradiction, that ` is not used

by any node of X . Let us consider the set X1 = X \ λ1. We have, in view of Lemma 4.1.9, that

there are exactly 3 maximal lines in X1. Namely, λ2, λ3, and a third maximal line denoted by

λ′1, which clearly does not intersect λ1 at a node. Indeed, otherwise, we would have 4 maximal

lines in the node set X . Now since ` is not used also in X1 we obtain, in view of Proposition

5.1.3, (iii), that in the node set X1 the third maximal line λ′1 passes through the fourth node

A4 of ` (see Fig.6.2.2). In a similar way the third maximal lines: λ′2, λ′3 in the sets X2 = X \ λ2

and X3 = X \ λ3 pass through the node A4 and do not intersect the maximal lines λ2, λ3 at

nodes, respectively. Next consider the GC1 set X \ (λ1 ∪ λ2 ∪ λ3). Here the lines λ′1, λ′2 and λ′3

have each two nodes and thus are maximal, which contradicts Corollary 4.1.5 (ii).

Now let us prove the statement (b). Denote by A the node that uses `. Since the 3 maximal

lines are not concurrent we can choose a maximal line not passing through A. Suppose, without

loss of generality, that it is the line λ1. Consider the GC3 set X1. As we mentioned above there

are exactly 3 maximal lines in X1. Note that the node A ∈ X1 uses the line `. On the other hand,

by Proposition 5.1.3, part “Furthermore", the line ` can be used here either by 3 or by no node

in X1. Thus we conclude that (X1)` consists of three noncollinear nodes. On the other hand,
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we get from Corollary 4.3.8, (i), (or Remark 5.1.2) that there are two nodes in the maximal

line λ2 (as well as in λ3) that use the line `. Next, there is a node in the node set X2 that uses

the line `, since the three nodes of (X1)` are noncollinear. Thus we may repeat discussion of

the node set X1 with X2 and obtain that |(X2)`| = 3. Now we have that

|X`| = |(X2)`|+ |λ2 ∩ X`| ≥ 3 + 2 = 5.

The first equality above follows from the relation (4.3.3).

Next let us prove the statement (c). Consider the set N`. In view of the relation (4.3.1) we

get

|N`| ≤ 15− (4 + 5) = 6.

By Theorem 4.3.2 we have that the set N` is 3-dependent. Now, Theorem 1.2.9 implies that 5

points from N` are collinear, i.e., they are in a maximal line. This maximal line cannot coincide

with the three maximal lines of X , since each of them intersects ` at a node and hence has only

4 nodes in the set N`. Thus we get a fourth maximal line.

Now we are in a position to prove the theorem for n ≥ 5. Let us mention that the proof

here is similar to one from [1], Section 3.4. But it is much shorter due to the fact that the first

step of the induction here is the case n = 4.

Thus let us prove Theorem 5.1.1 by induction on n. Assume that Theorem is true for all

degrees less than n and let us prove that it is true for the degree n, where n ≥ 5.

First assume that |X`| ≥
(
n−1

2

)
+ 1. Then by Proposition 4.3.9, (ii), we get that |X`| =

(
n
2

)
and the direct implication in the assertion (i) holds.

Thus to prove Theorem 5.1.1 it suffices to assume that

|X`| ≤
(
n− 1

2

)
(5.2.2)

and to prove that |X`| =
(
n−1

2

)
and the direct implication in the assertion (ii) holds, i.e., there

are two maximal lines λ′, λ′′, such that λ′ ∩ λ′′ ∩ ` ∈ X . Indeed, this will complete the proof in

view of Lemma 4.3.4.
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Now let us show that there is a maximal line λ such that

|λ ∩ X`| ≥ 2. (5.2.3)

Indeed, we have at least three maximal lines, denoted by λ1, λ2, λ3 for the node set X . In view

of Lemmas 4.3.3 and 4.3.4 we may suppose that they intersect the line ` at three distinct nodes.

Now consider the GCn−1 set X1 := X \ λ1. Here, the maximal lines λ2, λ3, intersect ` at two

distinct nodes. Therefore, in view of Corollary 4.3.8 and the induction hypothesis, for one of

them, denoted by λ, we have |λ ∩ (X1)`| = (n − 1) − 1, or (n − 1) − 2. Since n ≥ 5 hence the

inequality (5.2.3) holds.

Now notice that, in view of (4.3.3), we have that

|X`| = |(X \ λ)`|+ |λ ∩ X`|.

Hence, by making use of (5.2.3) and the induction hypothesis applied to the GCn−1 set X \ λ,

we obtain that

|X`| ≥ |(X \ λ)`|+ 2 ≥
(
n− 2

2

)
+ 2. (5.2.4)

Therefore, in view of the condition (5.2.2) and Proposition 4.3.9, (iii), we conclude that

|X`| =
(
n− 1

2

)
and N` ⊂ β ∈ Π2, |N`| = 2n.

Let us use the induction hypothesis. By taking into account the first equality above and (5.2.3),

we deduce that

|(X \ λ)`| =
(
n− 2

2

)
.

Then we get that 2(n − 1) nodes in N` ∩ (X \ λ) are located in two maximal lines denoted

by λ′ and λ′′, which intersect at a node A ∈ `. Since n ≥ 5 each of these two maximal lines

passes through 4 nodes of N` ⊂ β. Thus each of them divides β and we get β = λ′λ′′. Finally,

according to Proposition 4.3.9, (iii), each of these lines passes through exactly n nodes of X \ `.

Therefore, since A ∈ λ′ ∩ λ′′, we get that each of these lines is maximal also for the set X .
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Hence the direct implication in the assertion (ii) holds. �

At the end let us present

Corollary 5.2.4 ([25]). Assume that Conjecture 4.1.7 holds for all degrees up to n. Let X be

a GCn set with exactly three maximal lines, where n ≥ 4. Then there are exactly three n-node

lines in X and each of them is used by exactly
(
n
2

)
nodes from X .

Proof. Suppose that λ1, λ2 and λ3 are the three maximal lines of X and ` is any n-node line.

Let us call the intersection nodes

A := λ1 ∩ λ2, B := λ2 ∩ λ3, C := λ3 ∩ λ1,

vertices. Let us prove first that the case (i) of Theorem 5.1.1 takes place here, in particular

we have that |X`| =
(
n
2

)
. Assume by way of contradiction that the case (ii) holds, i.e., ` passes

through a vertex, say A. Observe first that ` intersects also the maximal line λ3 at a node.

Indeed, otherwise in the GCn−1 set X3 := X \ λ3 the maximal lines λ1, λ2 and ` are concurrent

at A.

Now let us consider the set X1 := X \ λ1. We have, in view of Lemma 4.1.9, that there

are exactly 3 maximal lines in X1. Namely, λ2, λ3, and a third maximal line denoted by λ′1. Of

course λ′1 intersects λ2 and λ3 at nodes different from vertices. Also λ′1 does not intersect λ1 at

a node. Indeed, otherwise, λ′1 would be a fourth maximal line in the node set X .

In a similar way the third maximal lines λ′2 and λ′3 in the sets X2 := X \ λ2 and X3 do

not intersect the maximal lines λ2 and λ3 at nodes, respectively. Also λ′2 intersects λ1 and λ3

at nodes different from the vertices and λ′3 intersects λ1 and λ2 at nodes different from the

vertices. From these intersection properties we conclude that the lines λ′1, λ′2, λ′3 are distinct n-

node lines in X . We have also that the lines λ′1, λ′2, λ′3 are different from `, since only ` from

these lines passes through a vertex.

Next consider the GCn−3 set X \ (λ1 ∪ λ2 ∪ λ3). Observe that here we have four maximal

lines: λ′1, λ′2, λ′3, and `, which contradicts Lemma 4.1.9.

Consequently the case (i) of Theorem 5.1.1 takes place. Hence, for a maximal line λi, 1 ≤

i ≤ 3, we have that λi ∩ ` ∩ X = ∅. Therefore ` is a maximal line in the node set Xi = X \ λi
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and clearly it coincides with the n-node line λ′i there. Thus the lines λ′1, λ′2, λ′3, are the only

n-node lines in X .

Remark 5.2.5. It is worth mentioning that Corollary 5.2.4 is not valid in the case n =

3. Indeed, the GC3 set X ? and the 3-node lines `1, `2, `3 and `? (see Fig. 5.1.1) give us a

counterexample for this.
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Chapter 6

ON THE USAGE OF LINES IN GC

SETS

It was proven in previous Chapter (and in [1] and [25]) that an n-node line in a GCn set X ,

where n ≥ 4, is used either by exactly
(
n
2

)
or by

(
n−1

2

)
nodes. Also a conjecture was proposed

in the paper [1] by V. Bayramyan and H. Hakopian, concerning the usage of any k-node line in

GCn sets, 2 ≤ k ≤ n+ 1. In this Chapter we make an adjustment in the mentioned conjecture

and then prove it. Namely, by assuming that the Gasca-Maeztu conjecture is true, we prove

that for any GCn set X and any k-node line ` the following statement holds:

The line ` is not used at all, or it is used by exactly
(
s
2

)
nodes of X , where s satisfies the

condition k − δ ≤ s ≤ k, δ = n + 1 − k. If in addition k − δ ≥ 3 and µ(X ) > 3 then the first

case here is excluded, i.e., the line ` is necessarily a used line. Here µ(X ) denotes the number

of maximal lines of X . We also prove that the subset of nodes of X that use the line ` forms a

GCs−2 set if it is not an empty set. Moreover, we prove that actually it is an `-proper subset

of X , meaning that it can be obtained from X by removing the nodes in subsequent maximal

lines, which do not intersect the line ` at a node of X or the nodes in pairs of maximal lines

intersecting ` at the same node of X . At the last step, when the line ` becomes maximal, the

nodes in ` are removed (see the forthcoming Definition 4.3.6).

At the end, we bring a characterization for the usage of k-node lines in GCn sets when

k − δ = 2 and µ(X ) > 3.

Let us mention that earlier Carnicer and Gasca proved that a k-node line ` can be used by

79



at most
(
k
2

)
nodes of a GCn set X and in addition there are no k collinear nodes that use `,

provided that GM conjecture is true (see [8], Theorem 4.5).

6.1 Classification of GCn sets - II

In this section, we present the characterization of GCn sets according to the number of maximal

lines, in the cases µ(X ) = n− 1 and µ(X ) = 3.

1. Lattices with n− 1 maximal lines.

Let a set M = {λ1, . . . , λn−1} of n − 1 lines be in general position, n ≥ 4. Then consider

the lattice X defined as

X := X (2) ∪ X (1) ∪ X (0), (6.1.1)

where X (2) is the set of all intersection nodes of these n− 1 lines, X (1) is a set of other 3(n− 1)

nodes, three in each line, to make the line maximal and X (0) consists of exactly three nodes,

denoted by O1, O2, O3, which do not belong to any line fromM. Correspondingly, we have that

|X | =
(
n−1

2

)
+3(n−1)+3 =

(
n+2

2

)
. Note that all the nodes of X (k) belong to exactly k maximal

lines and are called km-nodes, k = 0, 1, 2.

Clearly, the three 0m-nodes O1, O2, O3 are non-collinear. Indeed, otherwise the set X is

lying in n lines, which are the n− 1 lines ofM and the line passing through the three nodes.

This, in view of Proposition 1.2.3, contradicts the n-poisedness of X .

Denote by `ooi , 1 ≤ i ≤ 3, the line passing through the two 0m-nodes in {O1, O2, O3} \ {Oi}.

We call this lines OO lines. Suppose that X (1) = {A1
i , A

2
i , A

3
i ∈ λi : 1 ≤ i ≤ n − 1} (see Fig.

6.1.1).

In the sequel we will need the following characterization of GCn set X , with µ(X ) = n− 1,

due to Carnicer and Godés, see Fig. 6.2.1, 6.2.4 (see [13], Section 5, Case d=3, for a proof

detail):

Proposition 6.1.1 ([11], Thm. 3.2). A set X is a GCn set with exactly n − 1 maximal lines

λ1, . . . , λn−1, where n ≥ 4, if and only if, with some permutation of the indexes of the maximal

lines and 1m-nodes, the representation (6.1.1) holds with the following additional properties:

(i) X (1) \ {A1
1, A

2
2, A

3
3} ⊂ `oo1 ∪ `oo2 ∪ `oo3 ;
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(ii) Each line `ooi , i = 1, 2, 3, passes through exactly (n − 2) 1m-nodes (and through two 0m-

nodes). Moreover, `ooi ∩ λi /∈ X , i = 1, 2, 3;

(iii) The triples {O1, A
2
2, A

3
3}, {O2, A

1
1, A

3
3}, {O3, A

1
1, A

2
2} are collinear.

2. Lattices with 3 maximal lines - generalized principal lattices.

A principal lattice is defined as an affine image of the set (see Fig. 6.1.2)

PLn :=
{

(i, j) ∈ N2
0 : i+ j ≤ n

}
.

Let us set I = {0, 1, . . . , n + 1}. Observe that the following 3 set of n + 1 lines, namely

{x = i : i ∈ I}, {y = j : j ∈ I}, and {x + y = k : k ∈ I}, intersect at PLn. We have

that PLn is a GCn set. Moreover, the following is the fundamental polynomial of the node

(i0, j0) ∈ PLn :

p?i0j0(x, y) =
∏

0≤i<i0, 0≤j<j0, 0≤k<k0

(x− i)(y − j)(x+ y − n+ k), (6.1.2)

where k0 = n− i0 − j0.

Next let us bring the definition of the generalized principal lattice due to Carnicer, Gasca

and Godés (see [9], [10]):

Definition 6.1.2 ([10]). A node set X is called a generalized principal lattice, briefly GPLn,

if there are 3 sets of lines each containing n+ 1 lines

`ji (X )i∈{0,1,...,n}, j = 0, 1, 2, (6.1.3)

such that the 3n+ 3 lines are distinct,

`0
i (X ) ∩ `1

j(X ) ∩ `2
k(X ) ∩ X 6= ∅ ⇐⇒ i+ j + k = n

and

X =
{
xijk | xijk := `0

i (X ) ∩ `1
j(X ) ∩ `2

k(X ), 0 ≤ i, j, k ≤ n, i+ j + k = n
}
.

81



Observe that if 0 ≤ i, j, k ≤ n, i+j+k = n then the three lines `0
i (X ), `1

j(X ), `2
k(X ) intersect

at a node xijk ∈ X . This implies that each node of X belongs to only one line of each of the

three sets of n+ 1 lines. Therefore |X | = (n+ 1)(n+ 2)/2.

One can find readily, as in the case of PLn, the fundamental polynomial of each node

xijk ∈ X , i+ j + k = n :

p?i0j0k0 =
∏

0≤i<i0, 0≤j<j0, 0≤k<k0

`0
i (X )`1

j(X )`2
k(X ). (6.1.4)

Thus X is a GCn set.

Figure 6.1.1: A lattice with (n− 1)maximals Figure 6.1.2: A principal lattice PL5.

Let us bring a characterization for GPLn set due to Carnicer and Godés:

Theorem 6.1.3 ([10], Thm. 3.6). Assume that GM Conjecture holds for all degrees up to n−3.

Then the following statements are equivalent:

(i) X is generalized principal lattice of degree n;

(ii) X is a GCn set with µ(X ) = 3.

6.2 The main result

In this Section we formulate an adjusted version of the conjecture proposed by V. Bayramyan

and H. Hakopian in ([1], Conj. 3.7) as:
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Theorem 6.2.1 ([26], [31]). Let X be a GCn set, and ` be a k-node line, k ≥ 2. Assume that

GM Conjecture holds for all degrees up to n. Then we have that

X` = ∅, or (6.2.1)

X` is an `-proper GCs−2 subset of X , hence |X`| =
(
s

2

)
, (6.2.2)

for some k − δ ≤ s ≤ k and δ = n+ 1− k.

Moreover, if k − δ ≥ 3 and µ(X ) > 3 then X` 6= ∅, i.e., (6.2.2) holds with s ≥ 2. Furthermore,

in the case X` 6= ∅ we have for any maximal line λ :

|λ ∩ X`| = 0 or |λ ∩ X`| = s− 1.

Let us mention that (6.2.1) was missed in the original conjecture in [1] and the possibility

that the set X` may be empty was associated only with the case k − δ ≤ 1, i.e., with the

possibility of the equality |X`| =
(

1
2

)
= 0 in (6.2.2). Thus we assume that a GCs−2 subset with

s < 2 is empty set.

Note that we added here the statement that X` is an `-proper GC subset.

In the last subsection we characterize constructions of GCn sets for which there is a non-used

k-node line with k − δ = 2 and µ(X ) > 3.

6.2.1 Some preliminaries for the proof of the main theorem

First, let us mention that, in view of the relation (4.3.2), Theorem 6.2.1 is true if the line ` is

a maximal line (δ = 0).

Theorem 6.2.1 is also true in the case when GCn set X is a Chung -Yao lattice. Indeed, in

this lattice the only used lines are the maximal lines. Next, for any k-node line ` with k ≤ n

we have that 2k ≤ µ(X ) = n+ 2, since through any node there pass two maximal lines. Thus

for ` we have k − δ ≤ 1 (see [1]) and the fact X` = ∅ is in accordance with Theorem 6.2.1.

Next proposition reveals a rich structure of the Carnicer-Gasca lattice.

Proposition 6.2.2 ([1], Prop. 3.8). Let X be a Carnicer-Gasca lattice of degree n and ` be a
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k-node line, k ≥ 2. Then we have that

X` is an `-proper GCs−2 subset of X , hence |X`| =
(
s

2

)
, (6.2.3)

where k − δ ≤ s ≤ k and δ = n+ 1− k.

Moreover, in the case X` 6= ∅ we have for any maximal line λ :

|λ ∩ X`| = 0 or |λ ∩ X`| = s− 1.

Furthermore, for each n, k, and s, with k − δ ≤ s ≤ k there is a Carnicer-Gasca lattice X of

degree n and a k-node line ` such that (6.2.3) is satisfied.

Note that the phrase “`-proper" is not present in the formulation of Proposition in [1] but

it follows readily from the proof there.

The following result is due to Carnicer and Gasca (see also [1], eq. (1.4)).

Proposition 6.2.3 ([8], Prop. 4.2). Let X be a GCn set and ` be a 2-node line, then |X`| =

1 or 0.

Let us complement this with the following

Lemma 6.2.4. Let X be a GCn set, ` be a 2-node line, and |X`| = 1. Assume that GM

Conjecture holds for all degrees up to n. Then X` is an `-proper GC0 subset.

Proof. Indeed, suppose that X` = {A} and ` passes through the nodes B,C ∈ X . The node

A uses a maximal (n + 1)-node line in X which we denote by λ0. Next, A uses a maximal

n-node line in X \ λ0 which we denote by λ1. Continuing this way we find consecutively the

lines λ2, λ3, . . . , λn−1 and obtain that

{A} = X \ (λ0 ∪ λ1 ∪ · · · ∪ λn−1).

To finish the proof it suffices to show that λn−1 = ` and the remaining lines λi, i = 0, . . . , n− 2

are `-disjoint. Indeed, the node A uses ` and since it is a 2-node line it may coincide only with

the last maximal line λn−1. Now, suppose conversely that a maximal line λk, 0 ≤ k ≤ n − 2,
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intersects ` at a node, say B. Then consider the polynomial of degree n :

p = `A,C
∏

i∈{0,...,n−1}\{k}

λi,

where `A,C is the line through A and C. Clearly p passes through all the nodes of X which

contradicts Proposition 1.2.3.

Now, in view of Proposition 6.2.3 and Lemma 6.2.4, we conclude that Theorem 6.2.1 is true

for the case of 2-node lines in any GCn sets.

Now let us show that Theorem 6.2.1 is true for the node set X if µ(X ) = 3.

Proposition 6.2.5 ([26], [31]). Let X be a GCn set with µ(X ) = 3 and ` be a k-node line,

k ≥ 2. Assume that GM Conjecture holds for all degrees up to n− 3. Then we have that

X` = ∅, or X` is an `-proper GCk−2 subset of X , hence |X`| =
(
k

2

)
. (6.2.4)

Moreover, if k ≤ n and X` 6= ∅ then for a maximal line λ1 of X we have that λ1 ∩ ` /∈ X and

|λ1 ∩ X`| = 0.

For the remaining two maximal lines we have that |λ ∩ X`| = k − 1.

Furthermore, if the line ` intersects each maximal line at a node then X` = ∅.

Proof. According to Theorem 6.1.3 the set X is a generalized principal lattice of degree n with

some three sets of n+ 1 lines: `ji (X )i∈{0,1,...,n}, j = 0, 1, 2, (6.1.3). Then we obtain from (6.1.4)

that the only used lines in X are the lines `rs(X ), where 0 ≤ s < n, r = 0, 1, 2. Therefore

the only used k-node lines are the lines `rn−k+1(X ), r = 0, 1, 2. Consider the line, say with

r = 0, i.e., ` ≡ `0
n−k+1(X ). It is used by all the nodes xijl ∈ X with i > n − k + 1, i.e.,

i = n − k + 2, n − k + 3, . . . , n. Thus, ` is used by exactly
(
k
2

)
= (k − 1) + (k − 2) + · · · + 1

nodes. This implies also that X` = X \ (`0
0 ∪ `0

1 ∪ · · · ∪ `0
n−k+1). Hence X` is an `-proper GCk−2

subset of X . The part “Moreover" also follows readily from here. Now it remains to notice that

the part “Furthermore" is a straightforward consequence of the part “Moreover".

Next statement is on the presence and usage of (n− 1)-node lines in GCn sets with µ(X ) =

n− 1 (cf. Proposition 4.2, [25]).
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Proposition 6.2.6 ([26], [31]). Let X be a GCn set with µ(X ) = n−1, and ` be an (n−1)-node

line, where n ≥ 4. Assume also that through each node of ` there passes exactly one maximal

line. Then we have that either n = 4 or n = 5. Moreover, in both these cases we have that

X` = ∅.

Proof. Consider a GCn set with µ(X ) = n− 1. In this case we have the representation (6.1.1),

i.e., X := X (2) ∪ X (1) ∪ X (0) satisfying the conditions of Proposition 6.1.1. Here X (k) is the set

of all km-nodes, i.e., nodes belonging exactly to k maximal lines. Recall that X (0) consists of

three non-collinear nodes: X (0) = {O1, O2, O3} outside the maximal lines.

Let ` be an (n− 1)-node line. First notice that, according to the hypothesis of Proposition,

all the nodes of the line ` are 1m-nodes. Therefore ` does not coincide with any OO line, i.e.,

line passing through two 0m-nodes.

From Proposition 6.1.1, (i), we have that all the nodes of X (1), except the three nodes

A1
1, A

2
2, A

3
3, which are called here special nodes, belong to the three OO lines. We have also, in

view of Proposition 6.1.1, (iii), that the nodes A1
1, A

2
2, A

3
3 are not collinear. Therefore there are

three possible cases:

(i) ` does not pass through any special node,

(ii) ` passes through two special nodes,

(iii) ` passes through one special node.

In the first case ` may pass only through nodes lying in three OO lines. Then it may pass

through at most three nodes, i.e., n ≤ 4. Therefore, in view of the hypothesis n ≥ 4, we get

that n = 4 and µ(X ) = 3. Now, in view of Proposition 6.2.5, part “Furthermore", we get that

X` = ∅.

Next, consider the case when ` passes through two special nodes. Then, according to

Proposition 6.1.1, (iii), it passes through an 0m-node. Recall that this case is excluded since `

passes through 1m-nodes only.

Finally, consider the third case when ` passes through exactly one special node. Then it may

pass through at most three other 1m-nodes lying in OO lines. Therefore ` may pass through at

most four nodes.
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First suppose that ` passes through exactly 3 nodes. Then again we obtain that n =

4, µ(X ) = 3 and X` = ∅.

Next suppose that ` passes through exactly 4 nodes. Then we have that n = 5. Without

loss of generality we may assume that the special node ` passes through is, say, A1
1. Next let

us show first that |X`| ≤ 1. Here we have exactly 4 = n − 1 maximal lines. Consider the

maximal line λ4, for which, in view of Proposition 6.1.1, the intersection with each OO line

is a node in X (see Fig. 6.2.1). Denote B := ` ∩ λ4. Assume that the node B belongs to

the line ∈ `ooi , 1 ≤ i ≤ 3, i.e., the line passing through {O1, O2, O3} \ {Oi} (i = 2 in Fig.

6.2.1). According to the condition (ii) of Proposition 6.1.1 we have that `ooi ∩ λi /∈ X . Denote

C := λi ∩ λ4. Now let us prove that X` ⊂ {C} which implies |X`| ≤ 1.

Figure 6.2.1: A GCn set with n− 1 maximals for n = 5 and a 4-node line

Consider the GC4 set Xi = X \λi. Here we have two maximal lines intersecting at the node

B ∈ `, i.e., λ4 and `ooi . Therefore we conclude from Lemma 4.3.4 that no node from these two

maximal lines uses ` in Xi. Thus, in view of (4.3.3), no node from λ4, except possibly C, uses `

in X . Now consider the GC4 set X4 = X \ λ4. Observe, on the basis of the characterization of

Proposition 6.1.1, that X4 has exactly 3 maximal lines. On the other hand here the line ` inter-

sects each maximal line at a node. Therefore, in view of Proposition 6.2.5, part "Furthermore",

we have that (X4)` = ∅. Hence, in view of (4.3.3), we conclude that X` ⊂ {C}.
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Now, to complete the proof it suffices to show that the node C does not use `. Let us

determine the lines the node C uses. Since C = λi ∩ λ4 first of all it uses the two maxmal lines

in {λ1, λ2, λ3}\{λi}. It is easily seen that the next two lines C uses are OO lines: {`oo1 , `oo2 , `oo3 }\

{`ooi }. Now notice that, the two nodes, except C, which do not belong to the four used lines are

B and the special node Aii. Hence the fifth line used by C is the line passing through the latter

two nodes. Now observe that this line coincides with ` if and only if i = 1. Note that Fig. 6.2.1

depicts the case X` = ∅ with i 6= 1 (n = 2) and is not valid for the later discussion.

In the final and most interesting part of the proof we will show that in the case i = 1, i.e.,

when the special node ` passes is A1
1 and B = ` ∩ λ4 ∩ `oo1 , the node C can not use the line `.

Figure 6.2.2: The case i = 1.

More precisely, we will do the following. By assuming that (see Fig. 6.2.2)

(i) the maximal lines λi, i = 1, . . . , 4, and the three O1, O2, O3 are given, D := λ2∩λ3, hence

D ∈ X (2),

(ii) the two OO lines `oo2 , `oo3 do not pass through the nodes of X (2),

E := ` ∩ λ3 ∩ `oo2 , F := ` ∩ λ2 ∩ `oo3 , and

(iii) the conditions in Proposition 6.1.1, (iii), are satisfied, i.e., the line through the two special

nodes in {A1
1, A

2
2, A

3
3} \ {Aii} passes through the node Oi for each i = 1, 2, 3,
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we will prove that the third OO line `oo1 passes necessarily through the node D ∈ X (2), which

contradicts Proposition 6.1.1, (ii).

To this end, we simplify Fig. 6.2.2 by deleting from it the maximal lines λ1 and λ4 to obtain

the following Fig. 6.2.3. Let us now apply the well-known Pappus hexagon theorem for the

Figure 6.2.3: The set X without the maximal lines λ1 and λ4.

pair of triple collinear nodes here

A1
1, E, F ;

O1, A2
2, A3

3.

Now observe that

`(A1
1, A

2
2) ∩ `(E,O1) = O3, `(E,A

3
3) ∩ `(F,A2

2) = D, `(A1
1, A

3
3) ∩ `(F,O1) = O2,

where `(A,B) denotes the line passing through the points A and B. Thus, according to the

Pappus theorem we get that the triple of nodes D,O2, O3 is collinear, leading to contradiction.

Remark 6.2.7. Let us show that the case of non-used 4-node line in Figure 6.2.1 is possible

nevertheless. The problem with this is that we have to confirm that the three conditions in

Proposition 6.1.1, are satisfied. More precicely:
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(i) `ooi ∩ λi = ∅ for each i = 1, 2, 3;

(ii) The line through the two special nodes in {A1
1, A

2
2, A

3
3} \ {Aii} passes through the outside

node Oi for each i = 1, 2, 3.

Figure 6.2.4: A non-used 4-node line `∗4 in a GC5 set X ∗

Let us outline how one can get a desired figure (see Fig. 6.2.4). Let us start the figure

with the three maximal lines (non-concurrent) λ1, λ2, λ3. Then we choose two OO lines `oo1 , `oo3

through the outside node O2, which intersect the three maximal lines at 6 distinct points. Next

we get the line `∗4 which passes through the points B and C, where B = `oo1 ∩λ3 and C = `oo3 ∩λ2.

Now we find the special node A1
1 := `∗4∩λ1. By intersecting the line through O2 and A1

1 with the

maximal line λ3 we get the special node A3
3. Then we choose a node on the maximal line λ2 as

A2
2. This enables to determine the two remaining 0m-nodes: O1, O3. Namely we have that O1 is

the intersection point of the line through A2
2 and A3

3 with the line `oo3 and O3 is the intersection

point of the line through A2
2 and A1

1 with the line `oo1 . Thus we get the line `oo2 which passes

through the nodes O1, O3. Next we get the points of intersection of the line `oo2 with the three

maximal lines as well as the point of intersection with the line `∗4 denoted by D. Now, we choose

the maximal line λ4 passing through D and intersecting the remaining maximal lines and the

three OO lines at 6 new distinct nodes. Finally, all the specified intersection points in Fig.

6.2.4 we declare as the nodes of X ∗.
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6.3 Proof of the main theorem

Let us start the proof with a list of the major cases in which Theorem 6.2.1 is true.

Step 1. Theorem 6.2.1 is true in the following cases:

(i) The line ` is a maximal line.

Indeed, as we have mentioned already, in this case we have X` = X \ ` and all the

conclusions of Theorem can be readily verified.

(ii) The line ` is an n-node line, n ∈ N.

In this case Theorem 6.2.1 is valid by virtue of Theorem 5.1.1 (for n ∈ N \ {3}) and

Proposition 5.1.3 (for n = 3).

(iii) The line ` is a 2-node line.

In this case Theorem 6.2.1 follows from Proposition 6.2.3 and Lemma 6.2.4.

Now, let us prove Theorem by complete induction on n - the degree of the node set X .

Obviously Theorem is true in the cases n = 1, 2. Note that this follows also from Step 1 (i) and

(ii).

Assume that Theorem is true for any node set of degree not exceeding n − 1. Then let us

prove that it is true for the node set X of degree n. Suppose that we have a k-node line `.

Step 2: Suppose additionally that there is an `-disjoint maximal line λ. Then we get from

Lemma 4.3.3 that

X` = (X \ λ)`. (6.3.1)

Therefore by using the induction hypothesis for the GCn−1 set X ′ := X \ λ we get the relation

(6.2.2), i.e., k − δ′ ≤ s ≤ k and δ′ = δ(X ′, `) = (n − 1) + 1 − k = n − k = δ − 1. Thus we get

k − δ + 1 ≤ s ≤ k. Next we use Proposition 4.3.7 in checking that X` is an `-proper subset of

X .

Now let us verify the part "Moreover". Suppose that k−δ = 2k−n−1 ≥ 3, i.e. 2k ≥ n+4,

and µ(X ) > 3. For the line ` in the GCn−1 set X ′ we have k − δ′ = k − δ + 1 ≥ 4. Thus if

µ(X ′) > 3 then, by the induction hypothesis, we have that (X ′)` 6= ∅. Therefore we get, in

view of (6.3.1), that X` 6= ∅. It remains to consider the case µ(X ′) = 3. In this case, in view
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of Proposition 4.1.10, we have that µ(X ) = 4, which, in view of Theorem 4.2.1, implies that

4 ∈ {n− 1, n, n+ 1, n+ 2}, i.e., 2 ≤ n ≤ 5.

The case n = 2 was verified already. Now, since 2k ≥ n + 4 we deduce that either k ≥ 4 if

n = 3, 4, or k ≥ 5 if n = 5. These cases follow from Step 1 (i) or (ii). The part "Furthermore"

follows readily from the relation (6.3.1).

Step 3: Suppose additionally that there is a pair of `-adjacent maximal lines λ′, λ′′. Then we

get from Lemma 4.3.4 that

X` = (X \ (λ′ ∪ λ′′))`. (6.3.2)

Therefore by using the induction hypothesis for the GCn−2 set X ′′ := X \(λ′∪λ′′)) we get the

relation (6.2.2), i.e., k−1−δ′′ ≤ s ≤ k−1 and δ′′ = δ(X ′′, `) = (n−2)+1−(k−1) = n−k = δ−1.

Thus we get k − δ ≤ s ≤ k − 1. Next we use Proposition 4.3.7 to check that X` is an `-proper

subset of X .

Now let us verify the part "Moreover". Suppose that k − δ = 2k − n − 1 ≥ 3, i.e. 2k ≥

n + 4, and µ(X ) > 3. The line ` is (k − 1)-node line in the GCn−2 set X ′′ and we have that

k − 1 − δ′′ = k − δ ≥ 3. Thus if µ(X ′′) > 3 then, by the induction hypothesis, we have that

(X ′′)` 6= ∅ and therefore we get, in view of (6.3.2), that X` 6= ∅. It remains to consider the case

µ(X ′′) = 3. Then, in view of Proposition 4.1.10, we have that µ(X ) = 4 or 5, which, in view of

Theorem 4.2.1, implies that 4 or 5 ∈ {n− 1, n, n+ 1, n+ 2, } i.e., 2 ≤ n ≤ 6.

The cases 2 ≤ n ≤ 5 were considered in the previous step. Thus suppose that n = 6. Then,

since 2k ≥ n+ 4, we deduce that k ≥ 5. In view of Step 1, (ii), we may suppose that k = 5.

Now the set X ′′ is a GC4 and the line ` is a 4-node line there. Thus, in view of Step 1 (ii) we

have that (X ′′)` 6= ∅. Therefore we get, in view of (6.3.2), that X` 6= ∅. The part "Furthermore"

follows readily from the relation (6.3.2).

Step 4. Now consider any k-node line ` in a GCn set X . In view of Step 1 (iii) we may assume

that k ≥ 3. In view of Theorem 4.2.1 and Propositions 5.1.3 and 6.2.5 we may assume also that

µ(X ) ≥ n− 1 and n ≥ 4.

Next suppose that k ≤ n− 2. Since then µ(X ) > k we necessarily have either the situation

of Step 2 or Step 3.

92



Thus we may assume that k ≥ n − 1. Then, in view of Step 1 (i) and (ii), it remains to

consider the case k = n−1, i.e., ` is an (n−1)-node line. Again if µ(X ) ≥ n then we necessarily

have either the situation of Step 2 or Step 3. Therefore we may assume also that µ(X ) = n−1.

By the same argument we may assume that each of the n−1 nodes of the line ` is an intersection

node with one of the n− 1 maximal lines.

Therefore the conditions of Proposition 6.2.6 are satisfied and we arrive to the two cases:

n = 4, k = 3, k − δ = 1 or n = 5, k = 4, k − δ = 2. In both cases we have that X` = ∅ and

k − δ ≤ 2. Thus in this case Theorem is true. �

From the above proof we get immediately

Corollary 6.3.1. Let X0 be a GCn set, with µ(X0) > 3 and n ≥ 6. Let also ` be a k-node line,

2 ≤ k ≤ n. Assume that GM Conjecture holds for all degrees up to n. Then there is either

`-disjoint maximal line or a pair of `-adjoint maximal lines.

Indeed, assume conversely that the conclusion here is not true. Then in the above proof for

the set X0 and the k-node line ` we arrive necessarily to Step 4. Next, in Step 4, as above, we

conclude that n = 4, or n = 5, which contradict the condition n ≥ 6.

6.4 The characterization of the case k − δ = 2, µ(X ) > 3

Here, for each n and k, with k − δ = 2k − n − 1 = 2, we bring two constructions of GCn sets

and a non-used k-node line in each case. At the end (see forthcoming Proposition 6.4.1) we

prove that these are the only constructions with the mentioned property.

Let us start with a counterexample in the case n = k = 3 (see [25], Section 3.1). Consider

a GC3 set Y∗ of 10 nodes with exactly three maximal lines: λ1, λ2, λ3 (see Fig. 6.4.1). This set

is of the form (4.2.1) and satisfies the conditions listed in Proposition 4.2.2. Now observe that

the 3-node line `∗3 here intersects all the three maximal lines at nodes. Therefore, in view of

Proposition 5.1.3, (iii), the line `∗3 is non-used, i.e., (Y∗)`∗3 = ∅.

Let us outline how one can get Fig. 6.4.1. We start the mentioned figure with the three lines

`o1, `
o
2, `

o
3 through O, i.e., the 0m-node. Then we choose the maximal lines λ1, λ2, intersecting

`o1, `
o
2 at 4 distinct points. Let Ai := λi∩ `oi , i = 1, 2. We choose the points A1 and A2 such that
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Figure 6.4.1: A GCn set Y∗ with n maximals for n = 3 and a 3-node line `∗3

the line through them: `∗3 intersects the line `o3 at a point A3. Next we choose a third maximal

line λ3 passing through A3. Let us mention that we choose the maximal lines such that they

are not concurrent and intersect the three lines through O at nine distinct points. Finally, all

the specified intersection points in Fig. 6.4.1 we declare as the nodes of Y∗.

In the general case of k − δ = 2k − n − 1 = 2 we set k = m + 3 and obtain n = 2m + 3,

where m = 0, 1, 2, . . .. Let us describe how the previous GC3 node set Y∗ together with the

3-node line `∗3 can be modified to GCn node set X̄ ∗ with a k-node line ¯̀∗
3 such that (Ȳ∗)¯̀

3
= ∅.

Figure 6.4.2: A non-used k-node line ¯̀∗
3 in a GCn set Ȳ∗ with k − δ = 2 (m = 2)
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For this end we just leave the line `∗3 unchanged, i.e., ¯̀∗
3 ≡ `∗3 and extend the set Y∗ to

a GCn set Ȳ∗ in the following way (see Fig. 6.4.2). We fix m points: Bi, i = 1, . . . ,m, in

`∗3 different from A1, A2, A3 (m = 2 in Fig. 6.4.2). Then we add m pairs of (maximal) lines

λ′i, λ
′′
i , i = 1, . . . ,m, intersecting at these m points, respectively: λ′i ∩ λ′′i = Bi, i = 1, . . . ,m.

We assume that the following condition is satisfied:

(i) The 2m lines λ′i, λ′′i , i = 1, . . . ,m, together with λ1, λ2, λ3 are in general position, i.e., no

two lines are parallel and no three lines are concurrent;

(ii) The mentioned 2m+ 3 lines intersect the lines `o1, `o2, `o3 at distinct 3(2m+ 3) points.

Now all the points of the intersections of the 2m + 3 lines λ′i, λ′′i , i = 1, . . . ,m, together with

λ1, λ2, λ3 are declared as the nodes of the set Ȳ∗. Next for each of the lines λ′i, λ′′i , i = 1, . . . ,m,

also two from the three intersection points with the lines `1, `2, `3, are declared as (1m-) nodes.

After this the lines λ1, λ2, λ3 and the lines λ′i, λ′′i , i = 1, . . . ,m, become (2m+ 4)-node lines, i.e.,

maximal lines.

Now one can verify readily that Ȳ∗ is a GCn set of form (4.2.1) and satisfies the conditions in

Proposition 4.2.2 with n = 2m+ 3 maximal lines: λ′i, λ′′i , i = 1, . . . ,m, together with λ1, λ2, λ3.

Finally, in view of Lemma 4.3.4 and the relation (4.3.7), applied m times with respect to the

pairs λ′i, λ′′i , i = 1, . . . ,m, gives: (Ȳ∗)¯̀∗
3

= (Y∗)`∗3 = ∅.

Let us call the set Ȳ∗ an m-modification of the set Y∗. In the same way we could define

X̄ ∗ as an m-modification of the set X ∗ from Fig. 6.2.1, with the 4-node non-used line `∗4 (see

Remark 6.2.7). The only differences from the previous case here are:

(i) Now k = m+ 4, n = 2m+ 5,m = 0, 1, 2, . . . (again k − δ = 2);

(ii) We have 2m+ 4 maximal lines: λ′i, λ′′i , i = 1, . . . ,m, and the lines λ1, λ2, λ3, λ4;

(iii) The lines `o1, `o2, `o3 are replaced with the lines `oo1 , `oo2 , `oo3 ;

(iv) For each of the lines λ′i, λ′′i , i = 1, . . . ,m, all three intersection points with the lines

`oo1 , `
oo
2 , `

oo
3 , are declared as (1m-) nodes.

Now one can verify readily that the set X̄ ∗ is a GCn set of the form (6.1.1) and satisfies the

conditions in Proposition 6.1.1 with n− 1 = 2m+ 4 maximal lines. In the same way as above
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we get: (X̄ ∗)¯̀∗
4

= (X ∗)`∗4 = ∅. Thus we obtain another construction of GCn sets, with non-used

k-node lines, where k = m+ 4, n = 2m+ 5 and k − δ = 2.

At the end let us prove the following

Proposition 6.4.1 ([26], [31]). Let X be a GCn set and ` be a k-node line with k − δ :=

2k − n − 1 = 2 and µ(X ) > 3. Suppose that the line ` is a non-used line. Then we have that

either X = X̄ ∗, ` = ¯̀∗
4, or X = Ȳ∗, ` = ¯̀∗

3.

Proof. Notice that n is an odd number and n ≥ 3. In the case n = 3 Proposition 6.4.1 follows

from Proposition 5.1.3.

Thus suppose that n ≥ 5. Since µ(X ) > 3, we get, in view of Theorem 4.2.1, that

µ(X ) ≥ n− 1. (6.4.1)

Now, let us prove that there is no `-disjoint maximal line λ in X .

Suppose conversely that λ is a maximal line with λ ∩ ` /∈ X . Denote by X ′ := X \ λ. Since

X` = ∅ therefore, by virtue of the relation (4.3.3), we obtain that (X ′)` = ∅. Then we have that

k − δ′ := k − δ(X ′, `) = k − [(n− 1) + 1− k) = 2k − n = 3. By taking into account the latter

two facts, i.e., (X ′)` = ∅ and k − δ′ = 3, we conclude from Theorem 6.2.1, part “Moreover",

that µ(X ′) = 3. Next, by using (6.4.1) and Proposition 4.1.10, we obtain that that µ(X ) = 4.

By applying again (6.4.1) we get that 4 ≥ n − 1, i.e., n ≤ 5. Therefore we arrive to the case:

n = 5. Since k − δ = 2 we conclude that k = 4. Then observe that the line ` is 4-node line in

the GC4 set X ′. By using Theorem 5.1.1 we get that (X ′)` 6= ∅, which is a contradiction.

Next let us prove Proposition in the case n = 5. As we mentioned above then k = 4. We

have that there is no `-disjoint maximal line. Suppose also that there is no pair of `-adjacent

maximal lines. Then, in view of (6.4.1), we readily get that µ(X ) = 4 and through each of the

four nodes of the line ` there passes a maximal line. Therefore, Proposition 6.1.1 yields that X

coincides with X ∗ (or, in other words, X is a 0-modification of X ∗) and ` coincides with `∗4.

Next suppose that there is a pair of `-adjacent maximal lines: λ′, λ′′. Denote by X ′′ :=

X \ (λ′ ∪ λ′′). Then we have that ` is a 3-node non-used line in X ′′. Thus we conclude readily

that X coincides with Ȳ∗ and ` coincides with ¯̀∗
3 (with m = 1).
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Now let us continue by using induction on n. Assume that Proposition is valid for all degrees

up to n− 1. Let us prove it in the case of the degree n. We may suppose that n ≥ 7. It suffices

to prove that there is a pair of `-adjacent maximal lines: λ′, λ′′. Indeed, in this case we can

complete the proof just as in the above case n = 5.

Suppose by way of contradiction that there is no pair of `-adjacent maximal lines. Also we

have that there is no `-disjoint maximal line. Therefore we have that µ(X ) ≤ k. Now, by using

(6.4.1), we get that k ≥ n − 1. Therefore 2 = k − δ = 2k − n − 1 ≥ 2n − 2 − n − 1 = n − 3.

This implies that n− 3 ≤ 2, i.e., n ≤ 5, which is a contradiction.
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SUMMARY

VAHAGN VARDANYAN

ON THE USAGE OF LINES IN GC SETS

The following main results are obtained in the thesis:

- Necessary and sufficient conditions are provided for the factorization of fundamental

polynomials of node sets in R2 of cardinality not exceeding 2n + [n/2] + 1 as a product

of factors of at most second degree.

- Independence of node sets with 3n+1 nodes in R3. Necessary and sufficient conditions

are provided for the factorization of fundamental polynomials of such node sets as a

product of linear factors.

- A correction of a property on the usage of n-node lines in GCn sets established by V.

Bayramyan and H. Hakopian.

- An adjustment of the formulation of a conjecture proposed by V. Bayramyan and H.

Hakopian on the usage of k-node lines in GCn sets, 2 ≤ k ≤ n + 2, is provided and then

proved. Namely, by assuming that the Gasca-Maeztu conjecture is true, we prove that

any k-node line ` is not used at all, or it is used by exactly
(
s
2

)
nodes, where s satisfies

the condition 2k − n− 1 ≤ s ≤ k.
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