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INTRODUCTION

In quantum field theory the vacuum is defined as a state with zero number of quanta. The field

operator and the operator of the number of quanta do not commute and from the uncertainty

relations it follows that in the vacuum state the field fluctuates. These fluctuations are called

vacuum or zero-point fluctuations. The properties of vacuum fluctuations of quantum fields

depend on external fields and on the geometry of the background spacetime. Among the most

interesting effects of this kind is the dependence of the properties of the vacuum on boundary

conditions imposed on a quantum field. The boundary conditions modify the spectrum of vac-

uum fluctuations and, as a result of that, the vacuum expectation values (VEVs) of physical

observables are changed. For the electromagnetic field and in the geometry of two parallel neu-

tral conducting plates this effect was predicted by Casimir in 1948 [1]. Casimir has shown that

for an indealized case of infinite plates they attract by the force per unit surface π2~c/(240a4),

where a is the separation between the plates. The forces acting on constraining boundaries

as a consequence of the change in the spectrum of vacuum fluctuations for quantum fields are

known as Casimir forces. In general, the change in the vacuum properties induced by boundary

conditions is called the Casimir effect. Currently it has been investigated in large number of

the bulk and boundary geometries (for reviews see [2]-[12]).

Among the most popular boundary geometries was the case of a spherical shell. Historically,

the investigation of the corresponding Casimir effect for electromagnetic field was motivated

by the Casimir semiclassical model for a charged particle [13]. In this model, the Casimir

force appears in the role of the stress stabilizing the charged particle against the repulsive

electrostatic forces. Assuming that the Casimir force is attractive (in analogy of the case for

planar boundaries), from the equilibrium condition between the Casimir end electrostatic forces

the fine structure constant is expressed in terms of the coefficient of the Casimir energy for a

conducting sphere. Though the Casimir model was suggested in 1953, the Casimir energy for a

conducting sphere has been evaluated only in 1968 by Boyer [14]. This was conditioned by the

fact that in the case of a spherical boundary the vacuum energy is expressed in terms of series

over the zeros of the Bessel functions. These zeros are given implicitly and the corresponding

3



calculations were more involved compared to the planar geometry. Boyer has shown that for

a perfectly conducting sphere the Casimir energy is positive and, hence, the corresponding

forces are repulsive. Consequently, the Casimir model with a perfectly reflecting sphere does

not work. The Casimir effect for a perfectly conducting sphere has been later reconsidered

by other authors [15]-[17]. New methods have been developed that include direct summation

over the complete set of modes, the generalized zeta function technique [18]-[26], semiclassical

methods [27]-[29], the optical approach [30]-[32], worldline numerics [33]-[35], the path integral

approach [36]-[42], methods based on scattering theory [43]-[53], numerical methods based on

evaluation of the stress tensor via the fluctuation-dissipation theorem [54, 55]. It is also of

interest to consider the dependence of the Casimir energy on the number of spatial dimensions.

For a spherical shell this problem has been analyzed in [56, 57] in the case of a massless scalar

field satisfying Dirichlet and a special type of Robin boundary conditions using the Green’s

function method and in [58, 59] for the electromagnetic, massless scalar and spinor fields with

various boundary conditions on the basis of the zeta function approach. The Casimir effect for a

massive vector field and for a sphere in an arbitrary number of spatial dimensions is considered

in [60].

In the references mentioned above qlobal quantities were considered, such as the vacuum

energy and the force acting on the boundary. It is also of interest to consider local charac-

teristics of the vacuum, for example, the energy density or, more generally, the VEV of the

energy-momentum tensor. The energy density inside a perfectly reflecting spherical shell was

studied in [61],[62]. The distribution of the remaining components for the energy-momentum

tensor of the electromagnetic field inside and outside a shell and in the region between two

concentric spherical shells is considered in [63]-[66]. The corresponding results have been sum-

marized in [67],[68]. For a massive scalar field with Robin boundary conditions on spherical

boundaries in (D + 1)-dimensional Minkowski spacetime the VEV of the energy-momentum

tensor is investigated in [69].

The Casimir effect can be considered as a consequence of the vacuum polarization by bound-

aries. Another kind of vacuum polarization arises in an external gravitational field. Currently

a reliable theory of quantum gravity is absent and the influence of the gravitational field on
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quantum matter is investigated within the framework of semiclassical theory. In this theory

the gravitational field is considered as the classical background and the back reaction of quan-

tum effects is described by quasiclassical Einstein equations with the expectation value of the

energy-momentum tensor for quantum fields in the right-hand side (for reviews see [3],[70]-[76]).

Though the quantum field theory in curved spacetime is not a fundamental theory, it should

have a very broad range of physical applicability, from the smallest distance accessible in exper-

iments to cosmological scales. This hybrid but very useful scheme is an important intermediate

step to the development of quantum gravity. Among the most interesting effects in this field

are the particle production and the vacuum polarization by strong gravitational fields.

The investigation of quantum effects in curved backgrounds is motivated by several reasons.

During the cosmological expansion of the Universe, the back reaction of the particles created

by a time dependent gravitational field at early stages leads to a rapid isotropization of the

expansion. According to the inflationary scenario, the quantum vacuum fluctuations of a scalar

field, amplified by the gravitational field during the quasi-de Sitter like expansion, serve as

seeds for the large scale structure formation in the Universe [77, 78]. The information on the

properties of these fluctuations are encoded in the thermal anisotropies of the cosmic microwave

background which are measured with high accuracy by a number of recent cosmological projects.

An important feature of quantum field theory in curved backgrounds is a possible breakdown

of the energy conditions in the formulations of Hawking-Penrose singularity theorems, by the

expectation value of the energy-momentum tensor of quantum fields. This opens a possibility to

solve the singularity problem within the framework of classical general relativity. An additional

motivation for the study of quantum field theoretical effects in curved backgrounds appeared

recently in condensed matter physics related to various analog models. In particular, the long

wavelength properties of the electronic subsystem in a graphene sheet are well described by the

Dirac-like model with the speed of light replaced by the Fermi velocity. In curved graphene

structures (for example, in fullerenes) the corresponding field theory is formulated on curved

geometry and the curvature effects should be taken into account in the calculations of physical

properties of these structures [79, 80].

An interesting topic in the theory of the Casimir effect is the investigation of the dependence
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of the local characteristics, like the energy density and stresses, on the background gravitational

field. In the corresponding calculations the knowledge of a complete set of the field modes is

required and exact results can be obtained for bulk and boundary geometries having high degree

of symmetry. The vacuum densities induced by spherical boundaries in a curved background

of global monopole and in Rindler-like spacetimes have been discussed in [81]-[87] and [88]-

[90], respectively. The Casimir stresses on spherical boundaries in de Sitter (dS) spacetime

were considered in [91, 92] for a conformally coupled massless scalar field. The corresponding

problem is conformally related to the problem for a sphere in Minkowski spacetime and the

VEVs are generated from those for the Minkowski counterpart with an additional the conformal

factor. The situation is qualitatively different for a spherical shell in dS spacetime in the case of

non-conformal coupling [93]. In this case the curvature of the background spacetime essentially

changes the behavior of sphere-induced VEVs at distances larger than the curvature scale of

dS spacetime. In [94] the Wightman function, the VEVs of the field squared, and the energy-

momentum tensor were investigated for a massive scalar field with general curvature coupling

in a spherically symmetric static background geometry described by two distinct metric tensors

inside and outside a spherical boundary.

The boundary conditions imposed on quantum fields in the Casimir effect may have different

physical natures and can be divided into two main classes. In the first one, the constraints are

induced by the presence of boundaries, like macroscopic bodies in QED, interfaces separating

different phases of a physical system, extended topological defects, horizons in gravitational

physics, branes in high-energy theories with extra dimensions and in string theories. In the

corresponding models the field operator obeys the boundary condition on some spacelike sur-

faces (static or dynamical). In the second class, the boundary conditions on the field operator

are induced by the nontrivial topology of the space. The changes in the properties of the

vacuum state generated by this type of conditions are referred to as the topological Casimir

effect. The importance of this effect is motivated by that the presence of compact dimensions is

an inherent feature in many high-energy theories of fundamental physics, in cosmology and in

condensed matter physics. In particular, supergravity and superstring theories are formulated

in spacetimes having extra compact dimensions. The compactified higher-dimensional models
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provide a possibility for the unification of known interactions. Models of a compact universe

with nontrivial topology may also play an important role by providing proper initial conditions

for inflation in the early stages of the Universe expansion [95]. In condensed matter physics,

a number of planar systems in the low-energy sector are described by an effective field theory.

The compactification of these systems leads to the change in the ground state energy which

is the analog of the topological Casimir effect. A well-known example of this type of systems

is a graphene sheet. In the long wavelength limit, the dynamics of the quasiparticles for the

electronic subsystem is described in terms of the Dirac-like theory in two-dimensional space

(see [96, 97]). The corresponding effective 3-dimensional relativistic field theory, in addition

to Dirac fermions, involves scalar and gauge fields. The single-walled carbon nanotubes are

generated by rolling up a graphene sheet to form a cylinder and for the corresponding Dirac

model one has the spatial topology R1 × S1. For another class of graphene-made structures,

called toroidal carbon nanotubes, the background topology is a 2-dimensional torus, T 2.

Many authors have investigated the Casimir energies and stresses associated with the pres-

ence of compact dimensions (for reviews see [5, 98]-[103]). In higher-dimensional models the

Casimir energy of bulk fields induces an effective potential for the compactification radius. This

has been used as a stabilization mechanism for the corresponding moduli fields and as a source

for dynamical compactification of the extra dimensions during the cosmological evolution. The

Casimir effect has also been considered as a possible origin for the dark energy in both Kaluza-

Klein-type and braneworld models [104]-[112]. Extra-dimensional theories with low-energy

compactification scale predict Yukawa-type corrections to Newton’s gravitational law and the

measurements of the Casimir forces between macroscopic bodies provide a sensitive test for

constraining the parameters of the corresponding long-range interactions [113]-[116]. The in-

fluence of extra compactified dimensions on the Casimir effect in the classical configuration of

two parallel plates has been recently discussed for scalar [117]-[122], electromagnetic [123]-[127]

and fermionic [128]-[130] fields.

The main part of the works on the influence of the copmactification on the properties of the

quantum vacuum in the Casimir effect has considered global quantities such as the force or the

total energy. More detailed information on the vacuum fluctuations is contained in the local
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characteristics. Among the most important local quantities, because of their close connection

with the structure of spacetime, are the VEVs of the vacuum energy density and stresses. For

charged fields, another important characteristic is the VEV of the current density. Due to the

global nature of the vacuum, this VEV carries information on both global and local properties

of the vacuum state. Besides, the VEV of the current density appears as a source of the

electromagnetic field in semiclassical Maxwell equations, and, hence, it is needed in modeling

a self-consistent dynamics involving the electromagnetic field.

In models with nontrivial topology, the nonzero current densities in the vacuum state may

appear as a consequence of quasiperiodicity conditions along compact dimensions or by the

presence of gauge field fluxes enclosed by these dimensions. Note that the gauge field fluxes

in higher-dimensional models will also generate a potential for moduli fields and this provides

another mechanism for moduli stabilization (for a review see [131]). The VEV of the fermionic

current density in spaces with toroidally compactified dimensions has been considered in [132].

In the special case of a 2-dimensional space, application are given to the electrons in cylindrical

and toroidal carbon nanotubes, described within the framework of the effective field theory in

terms of Dirac fermions. The vacuum currents for charged fields in dS and anti-de Sitter (AdS)

spacetimes with toroidally compact spatial dimensions are investigated in [133, 134]. Finite

temperature effects on the charge density and on the current densities along compact dimensions

have been discussed in [135] and [136] for scalar and fermionic fields, respectively. The changes

in the fermionic vacuum currents induced by the presence of parallel plane boundaries, with the

bag boundary conditions on them, are investigated in [137]. The effects of branes on the vacuum

current density in locally AdS spacetime with toroidally compact dimensions were studied in

[138]-[141].

In addition to spherical boundaries, the investigation of the vacuum effects in geometries

involving cylindrical boundaries was among the most popular directions in the study of the

Casimir effect. The applications include the traditional problems of QED in the presence of

material boundaries (for example conductors), the flux tube models of confinement in QCD

[142, 143], the structure of the vacuum state in interacting field theories [144]. From the

experimental perspective, by taking into account that in cylindrical geometries of boundaries
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the effective area of interaction is larger than that for spherical boundaries, they are among the

most optimal candidates for measurements of the Casimir force [145]-[147].

For a perfectly conducting cylindrical shell the Casimir energy has been evaluated in [148]

by using the Green function technique and an ultraviolet regulator for the coincidence limit

divergences. The result was rederived by a number of other methods such as the zeta function

technique [26, 149] and the direct summation over the modes [150]. A more general problem

with a dielectric-diamagnetic cylinder has been considered as well (see, for example, [151] and

references cited there). The VEV of the energy-momentum tensor for the electromagnetic field

in the geometries of a single and two coaxial conducting cylindrical shells was discussed in

[152]-[155] (see also [67, 68]). The scalar Casimir effect for a single and two coaxial cylindrical

shells with Robin boundary conditions is investigated in [156, 157]. By employing the mode

summation technique, the vacuum energy in the geometry of an arbitrary number of perfectly

conducting coaxial cylindrical shells is evaluated in [158]. The problem with two eccentric

cylinders is considered in [159]-[166]. The Casimir energy for an elliptic cylinder is studied in

[167]-[169]. The Casimir forces in the hybrid geometry of two parallel plates inside a conducting

cylindrical shell are investigated in [170]. Another combined geometry consisting a wedge

and coaxial cylindrical boundary is discussed in [171]-[179]. In most studies of the Casimir

effect with cylindrical boundaries the geometry of the background spacetime is Minkowskian.

Combined effects of a cylindrical boundary and nontrivial topology induced by a cosmic string

are discussed in [180]-[184].

In the present thesis we investigate combined effects of a cylindrical boundary and back-

ground geometry on the local characteristics of the electromagnetic vacuum. As a background

geometry the dS spacetime is considered. This choice is motivated by several reasons. The dS

spacetime has maximal number of symmetries and because of this a large number of physical

problems can be solved exactly on its background. A better understanding of the influence of

classical gravitational field on quantum matter in dS spacetime serves as a way to deal with less

symmetric geometries. The quantum effects in dS bulk play an important role in inflationary

scenarios (see [185]-[189]). Quantum fluctuations of the inflaton field in the inflationary uni-

verse with dS geometry produce density perturbations in the post-inflationary stage. They have
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nearly scale-invariant spectrum and form the base of the currently most popular mechanism for

the generation of large scale structures. The corresponding predictions are in good agreement

with the recent observational data on the temperature anisotropies of the cosmic microwave

background radiation. The importance of dS spacetime as a gravitational background further

increased after the discovery of the accelerating expansion of the Universe at recent epoch

[190]-[197]. Within the framework of general relativity, among the most popular cosmological

models is the one with a positive cosmological constant as a driving source behind the accel-

erating expansion. In this model the dS spacetime is the future attractor for the geometry of

our universe.

The scalar Casimir effect for a massive field with general curvature coupling and with Robin

boundary conditions on planar boundaries in the background of (D+1)-dimensional dS space-

time has been investigated in [198]-[201]. The geometry with a cylindrical boundary with Robin

boundary condition was discussed in [202]. Depending on the mass of the field, at distances

from the boundaries larger than the dS curvature radius, two different regimes are realized

with monotonic or oscillatory decay of the vacuum expectation values. The electromagnetic

Casimir effect for planar boundaries with generalized perfect conductor boundary conditions

in dS bulk, having an arbitrary number of spatial dimensions, has been studied in [203, 204].

The propagators of vector fields on dS background in the absence of boundaries were evaluated

in [205]-[209]. The background geometry of Friedmann-Robertson-Walker cosmologies with

power-law scale factors was discussed in [210].

Another highly symmetric geometry that plays an important role in gravitational physics

is AdS spacetime. It appears in two recent exciting developments of theoretical physics:

AdS/conformal field theory (CFT) duality [211]-[213] and braneworld models with large ex-

tra dimensions [214]. In particular, motivated by the problems of the radion stabilization and

the cosmological constant generation in braneworld models, the Casimir effect for planar bound-

aries in AdS space has been widely discussed [215]-[233]. Higher-dimensional generalizations of

the AdS background having compact internal spaces have been considered as well [234]-[241].

The Casimir effect for a brane perpendicular to AdS boundary has been studied in [242].

As it has been emphasized above, the properties of the quantum vacuum are sensitive
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to both the local and global geometrical characteristics of the background spacetime. In the

thesis we investigate the electromagnetic vacuum polarization sourced by the gravitational field

and by the nontrivial topology due to the presence of a straight cosmic string (for the effects

of inflation on the cosmic strings see, for instance, [243]-[246]). In order to have an exactly

solvable problem, for the cosmic string a simplified model is taken in which the local geometry

outside the core is not changed by the presence of the string: the only effect is the planar angle

deficit depending on the mass density of the string. Though the cosmic strings produced in

phase transitions before or during early stages of inflation are diluted by the expansion to at

most one per Hubble radius, the formation of defects near or at the end of inflation can be

triggered by several mechanisms (see [247] for possible distinctive signals from such models).

They include a coupling of the symmetry breaking field to the inflaton field or to the curvature

of the background spacetime. Moreover, one can have various inflationary stages, with linear

defects being formed in between them [248]. Depending on the underlying microscopic model,

there exist several kinds of cosmic strings. They can be either nontrivial field configurations or

more fundamental objects in superstring theories.

The cosmic strings are among the most popular topological defects formed by the symmetry

breaking phase transitions in the early universe within the framework of the Kibble mechanism

[249]. They are sources of a number of interesting physical effects that include the genera-

tion of gravitational waves, high-energy cosmic rays, and gamma ray bursts. Among the other

signatures are the gravitational lensing and the creation of small non-Gaussianities in the cos-

mic microwave background. The cosmic superstrings, which are fundamental quantum strings

stretched to cosmological scales, were first considered in [250]. More recently, a mechanism for

the generation of this type of objects with low values of the string tensions is proposed within

the framework of brane inflationary models [247, 251, 252]. In these models the accelerated

expansion of the universe is a consequence of the motion of branes in warped and compact

extra dimensions.

Although the specific properties of cosmic strings are model-dependent, they produce sim-

ilar gravitational effects. In the simplified model with the string induced planar angle deficit,

the nontrivial spatial topology results in the distortion of the vacuum fluctuations spectrum of

11



quantized fields and induces shifts in vacuum expectation values (VEVs) of physical character-

istics of the vacuum state such as the field squared and the energy-momentum tensor. Explicit

calculations of this effect have been done for scalar, fermion and vector fields. For charged

fields, another important characteristic of the vacuum state is the VEV of the current density.

The analysis of the vacuum polarization effects induced by a cosmic string in dS spacetime

for massive scalar and fermionic fields has been presented in [253, 254, 255]. Here we will be

concerned with the combined effects of the background gravitational field and of a cosmic string

on the correlators for the electric and magnetic fields and on the VEVs of the energy density

and squared electric and magnetic fields. The problem will be considered on the bulk of dS

spacetime with an arbitrary number of spatial dimensions D. This is motivated by several rea-

sons. In discussions of cosmic superstrings, depending on the compactification scheme of extra

dimensions, one can have 3 6 D 6 9. In particular, this is the case for superstrings formed at

the end of brane inflation. The consideration of electrodynamics in spatial dimensions D > 3 is

a natural way to break the conformal invariance of the D = 3 theory. The breaking of conformal

invariance is required in inflationary models for the generation of large scale magnetic fields.

Usually this is done by adding additional couplings of the electromagnetic field (for example,

to the inflaton field) [256]-[259]. A mechanism for the generation of cosmological magnetic

fields, based on the dynamics of electromagnetic fluctuations in models with D > 3, has been

discussed in [260]. The consideration of quantum field theories in spatial dimensions other than

3 is also required in dimensional regularization procedure for the ultraviolet divergences.

The aim of the thesis is the investigation of combined effects of constraining boundaries,

background geometry and nontrivial topology on the local properties of the vacuum state for

scalar and electromagnetic fields. We have studied:

• Wightman function, the VEVs of the field squared and of the energy-momentum tensor

for a quantum scalar field on the background of a negatively curved constant curvature

space in the presence of a spherical boundary with Robin boundary condition on it,

• Effect of two parallel plane boundaries on the VEV of the current density for a charged

scalar field in flat spacetime with toroidally compactified spatial dimensions,
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• Electromagnetic field modes, the VEVs of the electric and magnetic fields squared and of

the energy-momentum tensor inside and outside a cylindrical shell in dS spacetime,

• Influence of a cosmic string on the vacuum fluctuations of the electromagnetic field in

background of dS spacetime.

Scientific novelty. The Wightman function, the mean field squared and the VEV of the

energy-momentum tensor are evaluated for a scalar field with Robin boundary condition on a

spherical shell in the background of a constant negative curvature space. For the coefficient in

the boundary condition there is a critical value above which the scalar vacuum becomes unsta-

ble. At distances from the sphere larger than the curvature scale of the background space the

suppression of the vacuum fluctuations in the gravitational field corresponding to the negative

curvature space is stronger compared with the case of the Minkowskian bulk. The Hadamard

function and the VEV of the current density are investigated for a charged scalar field in the

geometry of flat boundaries with an arbitrary number of toroidally compactified spatial dimen-

sions and in the presence of a constant gauge field. The latter induces Aharonov-Bohm-type

effect on the VEVs. The vacuum stability condition depends on the lengths of compact dimen-

sions and is less restrictive than that for background with trivial topology. Complete set of

cylindrical modes is constructed for the electromagnetic field inside and outside a cylindrical

shell in the background of dS spacetime and the VEVs of the electric field squared and of the

energy-momentum tensor are evaluated. The vacuum energy-momentum tensor has a nonzero

off-diagonal component that corresponds to the energy flux. For a cosmic string in dS space-

time, the electromagnetic field correlators are presented in the form with explicitly separated

topological parts. Near the string the VEVs are dominated by the topological contributions and

the effects induced by the gravitational field are small. At distances from the string larger than

the curvature radius of the background geometry, the pure dS parts in the VEVs dominate.

Practical importance. The methods used in the thesis can be used for the investigation

of the VEVs of local physical observables for other geometries of background spacetime. In

particular, they include spaces with spherical bubbles and for cosmological models with negative

curvature spaces. The expressions for the two-point functions can be used for the study of the

response of Unruh-de Witt type particle detectors in a given state of motion. The generalized
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Abel-Plana-type summation formula for series over the zeros of the linear combination of the

associated Legendre function and its derivative can be used in other problems of mathematical

physics on background of negatively curved space.

Basic results to be defended:

1. For a scalar field with Robin boundary condition on a spherical shell in the background of

a constant negative curvature the boundary-induced parts are explicitly extracted from

the VEVs of the field squared and of the energy-momentum tensor. At large distances

from the sphere the decay of those parts is stronger compared with the case of a sphere

in Minkowski bulk. Depending on the coefficient in the boundary condition, the vacuum

energy density can be either positive or negative.

2. In spacetimes with toroidally compactified spatial dimensions, the nontrivial phases in

quasiperiodicity conditions for a charged scalar field and a constant gauge field induce

vacuum currents along compact dimensions. The current density is a periodic function

of the magnetic flux, enclosed by compact dimensions, with the period equal to the flux

quantum. Depending on the boundary conditions, the presence of planar boundaries may

decrease or increase the VEV of the current density.

3. In both the problems with spherical and planar boundaries, there is a region in the space

of the parameters in Robin boundary conditions where the vacuum state is unstable. The

stability condition depends on the background geometry and topology.

4. For a cylindrical shell in dS spacetime, the boundary-induced contribution in the VEV

of the electric field squared is positive for both the interior and exterior regions and the

corresponding Casimir-Polder forces are directed toward the shell. The vacuum energy

density, as a function of the distance from the shell, may change the sign. The presence

of the cylindrical shell induces an energy flux directed from the shell.

5. For the electromagnetic field around a cosmic string in dS spacetime, the topological con-

tributions in the local characteristics of the vacuum are explicitly separated. At distances

from the string smaller than the dS curvature radius the influence of the gravitational
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field is weak and those contributions dominate in the VEVs. At larger distances from the

string the effect of the gravity is essential and the behavior of the VEVs may crucially

differ from that for a string in Minkowski bulk. Depending on the planar angle deficit

induced by the string, the vacuum energy density can be either positive or negative.

The structure of the remaining part of the thesis is the following.

In Chapter 1 we investigate the influence of background gravitational field and of a spheri-

cal shell with Robin boundary condition on local properties of the vacuum for a scalar field with

general curvature coupling parameter. In Section 1.1, the bulk and boundary geometries are

described and a complete sets of mode functions are presented in both the interior and exterior

regions. For the interior geometry with a negative constant curvature space, the eigenmodes

of a quantum scalar field with Robin boundary condition are expressed in terms of the zeros

of the associated Legendre function with respect to its order. The positive-frequency Wight-

man function is evaluated for the boundary-free space and in the regions inside and outside the

sphere. Having decomposed the Wightman function into the boundary-free and sphere-induced

contributions, the renormalization of the VEVs in the coincidence limit is reduced to the one

in the boundary-free geometry. In Section 1.2, the sphere-induced contribution in the VEV

of the field squared is evaluated and its properties are investigated in asymptotic regions of

the parameters. The expectation value of the energy-momentum tensor is studied in Section

1.3 for the both interior and exterior regions. In Section 1.4, we consider the background

spacetime with the geometry described by distinct metric tensors inside and outside a spherical

boundary. Two cases are investigated. In the first one the interior geometry is described by a

general spherically symmetric static metric and the exterior metric corresponds to a constant

negative curvature space. An example is considered with an interior Minkowskian geometry.

In the second case, a constant curvature space is realized in the interior region whereas the

exterior geometry is the Minkowski one. In Section 1.4.2, we discuss the properties of the zeros

of the associated Legendre function with respect to its order. The expression of the Wightman

function inside the spherical shell contains the summation over these zeros. In Section 1.4.2,

by making use of the generalized Abel-Plana formula, a summation formula is derived for the

series of this type.
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In Chapter 2 the combined effects of nontrivial topology and boundaries on the vacuum

current density for a charged scalar field are studied. As a background geometry we take a

flat spacetime with toroidally compact spatial dimensions and the boundaries are presented by

two planar parallel plates on which the field obeys Robin boundary conditions with, in general,

different coefficients. In Section 2.1, the complete set of modes is specified and on the base

of that the Hadamard function is evaluated. In the region between the plates, the latter is

presented in the form of the sum of three terms. The first one corresponds to the Hadamard

function in the geometry without boundaries, the second one is induced by a single boundary

and the third one is generated by the presence of the second boundary. By using the expression

for the Hadamard function, in Section 2.2, we evaluate the current density in the geometry

of a single plate. The corresponding asymptotics are discussed in various limiting cases and

numerical results are presented. In Section 2.3 the current density is investigated in the region

between two plates. An alternative representation of the Hadamard function is given in Section

2.4.

Chapter 3 is devoted to the study of the effects of gravitational field and of a cylindrical

shell on local characteristics of the electromagnetic vacuum. As a background geometry we

take the dS spacetime and on the cylindrical shell a boundary condition is imposed which is a

generalization of the perfect conductor boundary condition for an arbitrary number of spatial

dimensions. The complete set of the electromagnetic field cylindrical modes are sepciefied and

on the base of them, in Section 3.2, the VEV of the electric field squared inside the shell is

evaluated. Various asymptotic regions of the parameters are discussed. The corresponding

VEV of the energy-momentum tensor is studied in section 3.3. The VEVs of the electric field

squared and of the energy-momentum tensor in the exterior region are investigated in section

3.4. In Section 3.4.2 the cylindrical modes in (D + 1)-dimensional Minkowski spacetime are

discussed. The integrals, appearing in the expressions for the VEVs for the special case D = 4,

are evaluated in Section 3.4.2. In the numerical evaluations of the VEVs we consider this special

case.

In Chapter 4 the electromagnetic field vacuum fluctuations are investigated around a

straight cosmic string in background of dS spacetime. By using the corresponding set of elec-
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tromagnetic modes, realizing the Bunch-Davies vacuum state, the two-point functions for the

vector potential and for the electric field strength are evaluated. The VEV of the electric field

squared is discussed in Section 4.3. The part induced by the nontrivial topology of the cosmic

string is explicitly separated and its asymptotic behavior in various limiting regions is inves-

tigated. The two-point functions corresponding to the Lagrangian density and the magnetic

field are considered in Section 4.4. The topological contributions in the VEVs of the squared

magnetic field and of the vacuum energy density are investigated. In Section 4.5 we present

the main steps for the evaluation of the integrals appearing in the expressions for the two-point

functions.
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1 CHAPTER: VACUUM DENSITIES FOR A ROBIN

SPHERE IN A CONSTANT CURVATURE SPACE

We evaluate the Wightman function, the mean field squared and the vacuum expectation value

of the energy-momentum tensor for a scalar field with Robin boundary condition on a spherical

shell in the background of a constant negative curvature space. For the coefficient in the

boundary condition there is a critical value above which the scalar vacuum becomes unstable.

In both interior and exterior regions, the vacuum expectation values are decomposed into the

boundary-free and sphere-induced contributions. For the latter, rapidly convergent integral

representations are provided. In the region inside the sphere, the eigenvalues are expressed in

terms of the zeros of the combination of the associated Legendre function and its derivative and

the decomposition is achieved by making use of the Abel-Plana type summation formula for

the series over these zeros. The sphere-induced contribution to the vacuum expectation value

of the field squared is negative for Dirichlet boundary condition and positive for Neumann

one. At distances from the sphere larger than the curvature scale of the background space the

suppression of the vacuum fluctuations in the gravitational field corresponding to the negative

curvature space is stronger compared with the case of the Minkowskian bulk. In particular, the

decay of the vacuum expectation values with the distance is exponential for both massive and

massless fields. The corresponding results are generalized for spaces with spherical bubbles and

for cosmological models with negative curvature spaces.

1.1 Wightman function

1.1.1 Geometry of the problem

We consider a quantum scalar field φ(x) with the curvature coupling parameter ξ in a (D+1)-

dimensional spacetime with the metric tensor gik and the Ricci scalar R. The most important

special cases of this parameter ξ = 0 and ξ = ξc, with

ξc =
D − 1

4D
,
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correspond to minimally and conformally coupled scalars, respectively. The field dynamics is

described by the Klein-Gordon equation in curved spacetime (in natural units ~ = 1 and c = 1)

[70]

(∇l∇l +m2 + ξR)φ(x) = 0, (1.1)

where m is the mass of the field quanta, the covariant d’Alembertian is given by ∇l∇l =

(1/
√
|g|)∂l

(√
|g|glk∂k

)
and g is the determinant of the metric tensor.

In this Chapter the background geometry is described by the line element

ds2 = dt2 − a2(dr2 + sinh2 rdΩ2
D−1), (1.2)

with a constant a and with dΩ2
D−1 being the line element on the (D − 1)-dimensional sphere

with unit radius, SD−1. The corresponding angular coordinates we denote by (ϑ, ϕ) with

ϑ = (θ1, . . . , θn), n = D − 2, and 0 6 θk 6 π, k = 1, . . . , n, 0 6 ϕ 6 2π. The spatial part of

the line element (1.2) describes a constant negative curvature space. The spaces with negative

curvature play a significant role in cosmology and in holographic theories. For the Ricci scalar

corresponding to (1.2) one has

R = −D(D − 1)

a2
. (1.3)

Note that in Eq. (1.1) the curvature coupling term appears in the form of the effective mass

squared m2 −D(D− 1)ξ/a2. Depending on the value of the curvature coupling parameter, the

latter can be either negative or positive.

Quantum effects on the background of constant curvature spaces have been widely discussed

in the literature (see, for instance, [3, 5, 7, 70, 99, 100]). These effects play an important role in

the physics of the early Universe, in inflationary models, and in a number of condensed matter

systems described by effective curved geometries. Here we are interested in combined effects of

the background gravitational field and boundaries on the properties of the quantum vacuum

for a scalar field. As a boundary geometry we consider a spherical shell with the radius r = r0

on which the field operator obeys Robin boundary condition

(
A+Bnl∇l

)
φ(x) = 0, (1.4)

where A and B are constants, and nl is the unit inward normal to the sphere. In the geometry
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under consideration one has

nl = −δ(j)
δl1
a
, j = i, e, (1.5)

with δ(i) = 1 for the interior region (r < r0) and δ(e) = −1 for the exterior region (r > r0). With

this, for B ̸= 0, the boundary condition can also be written in the form
(
β − δ(j)∂r

)
φ(x) = 0,

r = r0, with the notation

β = aA/B. (1.6)

Of course, all the physical results will depend on this ratio. We wrote the condition in the

form (1.4) to keep the transition to special cases of Dirichlet (B = 0) and Neumann (A = 0)

boundary conditions transparent. Robin type conditions appear in a variety of situations,

including the considerations of vacuum effects for a confined charged scalar field in external

fields [261] gauge field theories, quantum gravity and supergravity [72, 262], braneworld models

[218, 223, 263] and in a class of models with boundaries separating the spatial regions with

different gravitational backgrounds [94, 264]. In some geometries, these conditions may be

useful for depicting the finite penetration of the field into the boundary with the ”skin-depth”

parameter related to the coefficient β. It is interesting to note that the quantum scalar field

constrained by Robin condition on the boundary of cavity violates the Bekenstein’s entropy-

to-energy bound near certain points in the space of the parameter β [265].

For a free field theory all the properties of the quantum vacuum are contained in two-point

functions. Here we shall consider the positive-frequency Wightman function defined as the

vacuum expectation value

W (x, x′) = ⟨0|φ(x)φ(x′)|0⟩, (1.7)

where |0⟩ stands for the vacuum state. The expectation values of physical characteristics

bilinear in the field operator, such as the field squared and the energy-momentum tensor, are

obtained from this function in the coincidence limit. In addition to this, the positive-frequency

Wightman function determines the response function for the Unruh–De Witt particle detector

in a given state of motion [70]. Let {φα(x), φ
∗
α(x)} be a complete set of normalized positive- and

negative-energy mode functions obeying the field equation (1.1) and the boundary condition

(1.4). Here, the collective index α is the set of quantum numbers specifying the solutions.

Expanding the field operator in terms of the complete set {φα(x), φ
∗
α(x)} with the annihilation
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and creation operators as coefficients and by using the condition that the vacuum state is

nullified by the annihilation operator, the mode-sum formula

W (x, x′) =
∑
α

φα(x)φ
∗
α(x

′), (1.8)

is obtained. Here
∑

α is understood as summation for discrete components of the collective

index α and as integration for continuous ones. In (1.8) the modes are normalized by the

standard orthonormalization condition∫
dDx

√
|g|φα(x)φ

∗
α′(x) =

δαα′

2E
, (1.9)

where the symbol δαα′ is understood as Kronecker delta for discrete indices and as the Dirac

delta function for continuous ones.

For the problem under consideration, the positive-energy mode functions can be presented

in the factorized form

φα(x) = Rl(r)Y (mk;ϑ, ϕ)e
−iEt, (1.10)

where Y (mk;ϑ, ϕ) is the spherical harmonic of degree l. For the angular quantum numbers one

has l = 0, 1, 2 . . ., mk = (m0 = l,m1, . . . ,mn), where m1, m2,..., mn are integers obeying the

relations

0 6 mn−1 6 mn−2 6 · · · 6 m1 6 l, (1.11)

and −mn−1 6 mn 6 mn−1. By taking into account the equation for the spherical harmonics,

∆(ϑ,ϕ)Y (mk;ϑ, ϕ) = −blY (mk;ϑ, ϕ), (1.12)

with

bl = l(l +D − 2), (1.13)

from the field equation (1.1) for the radial function Rl(r) one gets

1

sinhD−1 r

d

dr

(
sinhD−1 r

dRl

dr

)
+

[
(E2 −m2)a2 +D(D − 1)ξ − bl

sinh2 r

]
Rl(r) = 0. (1.14)

Introducing a new function fl(r) = sinhD/2−1(r)Rl(r), we can see that the general solution

for this function is a linear combination of the associated Legendre functions of the first and
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second kinds, P−µ
iz−1/2(cosh r) and Q

−µ
iz−1/2(cosh r) (here the definition of the associated Legendre

functions follows that of [266]) with the order and degree determined by

µ = l +D/2− 1, z2 = E2a2 − z2m. (1.15)

Here and in what follows we use the notation

zm =
√
m2a2 −D(D − 1) (ξ − ξc). (1.16)

For a conformally coupled field one gets zm = ma. The relative coefficient in the linear combi-

nation depends on the spatial region under consideration and will be determined below. Now,

as a set of quantum numbers α, specifying the mode functions in Eq. (1.10), we can take α =

(z, l,m1, . . . ,mn). The energy is expressed in terms of z by the formula

E(z) = a−1
√
z2 + z2m. (1.17)

Below we shall assume that z2m > 0. In particular, this condition is satisfied in the most

important special cases of minimally and conformally coupled fields. If it is not obeyed there

are modes with imaginary values of the energy which signal the vacuum instability. Note

that the condition z2m > 0 is different from the non-negativity condition for the effective mass

squared m2 −D(D − 1)ξ/a2.

In order to investigate the effects induced by the spherical boundary it is convenient to

separate from the Wightman function the part corresponding to the boundary-free geometry

when the spherical boundary is absent.

1.1.2 Wightman function in the boundary-free geometry

For the boundary-free geometry with 0 ≤ r < ∞, the solution of the radial equation (1.14),

regular at the origin, is given in terms of the associated Legendre function of the first kind.

The corresponding positive-energy mode functions have the form

φ(0)
α (x) = A(0)

α p−µ
iz−1/2(u)Y (mk;ϑ, ϕ)e

−iEt, (1.18)

with 0 6 z <∞ and with the notations

p−µ
ν (u) =

P−µ
ν (u)

(u2 − 1)(D−2)/4
, u = cosh r. (1.19)
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From the property P−µ
iz−1/2(u) = P−µ

−iz−1/2(u) it follows that the radial function in (1.18) is real.

In the case z = z′ the normalization integral (1.9), with the integration over r ∈ [0,∞),

diverges and, hence, the main contribution comes from large values r. By using the asymptotic

formula for the associated Legendre function for large values of the argument, we can see that∫ ∞

1

duP−µ
iz−1/2(u)P

−µ
iz′−1/2(u) =

π

z sinh(πz)

δ(z − z′)

|Γ(µ+ 1/2 + iz)|2
, (1.20)

where Γ(x) is the Euler gamma function. With this result, for the normalization coefficient in

(1.18) one finds

|A(0)
α |2 = z sinh(πz)

2πN(mk)aDE
|Γ(µ+ 1/2 + iz)|2. (1.21)

Here we have used the result
∫
dΩ |Y (mk;ϑ, ϕ)|2 = N(mk) (the specific form for N(mk) is given

in Ref. [267] and will not be required in the following discussion). For D = 3, the modes (1.18)

with the coefficient (1.21) reduce to the ones discussed in Refs. [3, 268].

Substituting the functions (1.18) into the mode-sum (1.8), we use the addition theorem

∑
mk

Y (mk;ϑ, ϕ)

N(mk)
Y ∗(mk;ϑ

′, ϕ′) =
2l + n

nSD

C
n/2
l (cos θ), (1.22)

where SD = 2πD/2/Γ(D/2) is the surface area of the unit sphere in D-dimensional space,

C
n/2
l (cos θ) is the Gegenbauer polynomial and θ is the angle between the directions determined

by (ϑ, ϕ) and (ϑ′, ϕ′). For the corresponding Wightman function we find the formula

W0(x, x
′) =

a−D

2πnSD

∞∑
l=0

(2l + n)C
n/2
l (cos θ)

∫ ∞

0

dz z sinh(πz)

×|Γ(iz + µ+ 1/2)|2p−µ
iz−1/2(u)p

−µ
iz−1/2(u

′)
e−iE(z)∆t

E(z)
. (1.23)

with u′ = cosh r′ and with E(z) given by Eq. (1.17).

1.1.3 Wightman function inside the sphere

In the presence of a spherical shell with the radius r0, the mode functions for the interior region

r < r0, regular at the origin, are written in the form similar to Eq. (1.18):

φα(x) = Aαp
−µ
iz−1/2(u)Y (mk;ϑ, ϕ)e

−iE(z)t. (1.24)
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Now we should impose the boundary condition (1.4) on these modes. From that condition it

follows that the eigenvalues for the quantum number z are solutions of the equation

P̄−µ
iz−1/2(u0) = 0, u0 = cosh r0. (1.25)

Here and in the following discussion of this chapter, for a given function F (u) we use the

notation

F̄ (u) = A(u)F (u) +B(u)F ′(u), (1.26)

with the coefficients

A(u) = A
√
u2 − 1 + (D/2− 1)δ(j)

B

a
u, B(u) = −δ(j)

B

a
(u2 − 1). (1.27)

An equivalent expression for the function in the left-hand side of (1.25) is obtained by using

the recurrence relation for the associated Legendre function:

P̄−µ
iz−1/2(u) =

(
A
√
u2 − 1− δ(j)l

B

a
u

)
P−µ
iz−1/2(u)

+δ(j)
B

a

[
(1/2 + µ)2 + z2

]√
u2 − 1P−µ−1

iz−1/2(u). (1.28)

For given r0 and l, the equation (1.25) has an infinite set of positive roots with respect to z. We

shall denote them, arranged in ascending order of magnitude, as z = zk, k = 1, 2, . . .. Note that

these roots do not depend on the curvature coupling parameter and on the mass of the field.

As is discussed in appendix 1.4.2, in addition to the real roots with respect to z, depending on

the value of β, a purely imaginary root may appear. First we consider the case when all the

roots are real. This case is realized for β < β
(1)
0 (u0) (see appendix 1.4.2).

Substituting the mode functions (1.24) into the orthonormalization condition, with the

integration over the region inside the spherical shell, for the normalization coefficient one finds

|Aα|−2 = 2EaDN(mk)

∫ u0

1

du |P−µ
iz−1/2(u)|

2. (1.29)

The integral is evaluated by using the integration formula∫ b

1

du [P−µ
iz−1/2(u)]

2 =
b2 − 1

2z
{[∂zP−µ

iz−1/2(b)]∂bP
−µ
iz−1/2(b)− P−µ

iz−1/2(b)∂z∂bP
−µ
iz−1/2(b)}. (1.30)

For the roots of Eq. (1.25), z = zk, and for b = u0, the expression in the figure braces is equal

to −P−µ
iz−1/2(u0)∂zP̄

−µ
iz−1/2(u0)/B(u0). With this result, the normalization coefficient is written

24



in terms of Tµ(z, u), defined by (1.128) in appendix 1.4.2, by the expression

|Aα|2 =
eiµπzTµ(z, u0)

πaDN(mk)E(z)
Γ(µ+ iz + 1/2)Γ(µ− iz + 1/2), (1.31)

with z = zk.

Having determined the normalized mode functions, we turn to the evaluation of the Wight-

man function in the region inside the sphere with the help of Eq. (1.8). Substituting the

eigenfunctions, one finds

W (x, x′) =
a−D

πnSD

∞∑
l=0

(2l + n)C
n/2
l (cos θ)eiµπ

∞∑
k=1

zkTµ(zk, u0)

×|Γ(izk + µ+ 1/2)|2p−µ
izk−1/2(u)p

−µ
izk−1/2(u

′)
e−iE(zk)∆t

E(zk)
, (1.32)

where u′ = sinh r′ and ∆t = t − t′. The roots zk are given implicitly and the representation

(1.32) is not convenient for the evaluation of the vacuum expectation values of the field squared

and the energy-momentum tensor. Additionally, the terms with large k are highly oscillatory.

Both these difficulties are avoided by applying to the series over k the summation formula

(1.125) with the function

h(z) = zΓ(µ+ iz + 1/2)Γ(µ− iz + 1/2)P−µ
iz−1/2(u)P

−µ
iz−1/2(u

′)
e−iE(z)∆t

E(z)
. (1.33)

The corresponding conditions are obeyed if r + r′ +∆t/a < 2r0. Note that the function (1.33)

has branch points z = ±izm.

The part in the Wightman function obtained from the first integral in the right-hand side

of Eq. (1.125) coincides with the boundary-free function W0(x, x
′). In the second integral, the

part over the interval (0, zm) vanishes and for the Wightman function we find

W (x, x′) = W0(x, x
′) +Ws(x, x

′), (1.34)

where for the sphere-induced part one has

Ws(x, x
′) = − a1−D

πnSD

∞∑
l=0

(2l + n)C
n/2
l (cos θ)e−iµπ

∫ ∞

zm

dz z

×
Q̄µ

z−1/2(u0)

P̄−µ
z−1/2(u0)

p−µ
z−1/2(u)p

−µ
z−1/2(u

′)
cosh(

√
z2 − z2m∆t/a)√
z2 − z2m

. (1.35)
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In deriving this formula we have used the relation [266]

Q−µ
z−1/2(u) = e−2iµπΓ(z − µ+ 1/2)

Γ(z + µ+ 1/2)
Qµ

x−1/2(u), (1.36)

for the associated Legendre function. Formula (1.35) provides our final expression for the

sphere-induced part of the Wightman function in the interior region. In this form the knowledge

of the roots zk is not required and for r + r′ +∆t/a < 2r0 the integrand exponentially decays

in the upper limit. In the special case D = 3 and for Dirichlet boundary condition, by taking

into account Eq. (1.36), we see that Eq. (1.35) is reduced to the expression given in [175].

We have considered the case when all the zeros zk of the function P̄−µ
iz−1/2(u0) are real.

As is noticed in appendix 1.4.2, for given r0 and l, started from some critical value of β, for

β > β
(1)
l (cosh r0), a single purely imaginary zero z = iηl, ηl > 0, appears. This zero first

appears for the angular mode l = 0 and, hence, for a given r0 the purely imaginary zeros are

absent if β < β
(1)
0 (cosh r0). In order to have a stable vacuum state we assume that E(iηl) > 0

or ηl < zm. In the left panel of figure 1, for the spatial dimension D = 3, we have plotted the

critical value β
(1)
l (cosh r0) for the Robin coefficient, at which the purely imaginary zero appears,

as a function of the sphere radius r0 for l = 0, 1, 5 (the numbers near the curves).
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Figure 1: The critical values of the Robin coefficient for the appearance of the purely imaginary

roots of the eigenvalue equation (1.25) in the interior region (left panel) and for the appearance

of the bound states in the exterior region (right panel) versus the radius of the sphere. The

graphs are plotted for the spatial dimension D = 3.

In the presence of the imaginary eigenmode, the corresponding contribution in the Wight-
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man function should be added to the expression (1.32). This contribution is evaluated in a way

similar to that we have used for the modes with real z and has the form

W (im)(x, x′) =
∞∑
l=0

(2l + n)

nSDaD
C

n/2
l (cos θ)

u20 − 1

ηlB(u0)

E(iηl)

p−µ
ηl−1/2(u)p

−µ
ηl−1/2(u

′)e−iE(iηl)∆t

P−µ
ηl−1/2(u0)∂ηP̄

−µ
η−1/2(u0)|η=ηl

. (1.37)

In the part of the Wightman function corresponding to the contribution of the modes with

real z, given by Eq. (1.32), again we apply the summation formula (1.125). But now, as is

explained in appendix 1.4.2, in the right-hand side of this formula we should add the term

(1.131). By taking into account the expression (1.33) for the function h(z), we can see that this

term exactly cancels the contribution (1.37). Hence, the expression for the Wightman function

given by Eq. (1.35) is also valid in the presence of the purely imaginary zeros for the function

P̄−µ
iz−1/2(u0) with ηl < zm.

As an additional check of Eq. (1.35) let us consider the Minkowskian limit which corresponds

to large values of a with fixed ar = ρ, where ρ is the Minkowskian radial coordinate. Firstly

we introduce in Eq. (1.35) a new integration variable y = z/a and then use the asymptotic

formulae

P−µ
ν [cosh(x/ν)] ≈ Iµ(x)

νµ
, Qµ

ν [cosh(x/ν)] ≈ eiµπνµKµ(x), (1.38)

valid for ν ≫ 1. By taking also into account that for large a one has zm = am, we can see that

from Eq. (1.35) the expression for the Wightman function is obtained inside a Robin sphere in

Minkowski spacetime with the radius ρ0 = ar0 (see [69]).

1.1.4 Exterior region

In the region outside the sphere, r > r0, the radial part of the mode functions is a linear combi-

nation of the two linear independent solutions of the Legendre equation. As such solutions it is

convenient to take the functions Q−µ
iz−1/2(cosh r) and Q

−µ
−iz−1/2(cosh r). The relative coefficient

of the linear combination of these functions is determined from the boundary condition (1.4)

and the mode functions are written in the form

φα(x) = Bα
Z−µ

iz (u)Y (mk;ϑ, ϕ)

(u2 − 1)(D−2)/4
e−iE(z)t, (1.39)

where, as before, u = cosh r, and

Z−µ
iz (u) = Q̄−µ

iz−1/2(u0)Q
−µ
−iz−1/2(u)− Q̄−µ

−iz−1/2(u0)Q
−µ
iz−1/2(u). (1.40)
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The notation with the bar is defined by Eq. (1.26) with the coefficients given in Eq. (1.27). In

addition to the modes with real z, depending on the values of the coefficients in Robin boundary

condition, the modes can be present with purely imaginary z. These modes correspond to bound

states. First we consider the case when the bound states are absent.

From the normalization condition (1.9), for the modes (1.39) we have

B2
α

∫ ∞

u0

duZ−µ
iz (u)[Z−µ

iz′ (u)]
∗ =

δ(z − z′)

2aDN(mk)E(z)
. (1.41)

The u-integral diverges in the upper limit for z = z′ and, hence, the main contribution comes

from large values u. So, we can replace the associated Legendre functions with the arguments

u by their asymptotic expressions for large values of the argument. To find this asymptotic we

use the expression of the associated Legendre function in terms of the hypergeometric function,

Q−µ
iz−1/2(cosh r) =

√
π
Γ(1/2 + iz − µ)

eiµπΓ(1 + iz)

e−(iz+1/2)r

(1− e−2r)µ

×F (1/2− µ, 1/2 + iz − µ; 1 + iz; e−2r). (1.42)

From here, for large values u to the leading order we find

Q−µ
iz−1/2(u) ≈

√
π
Γ(1/2 + iz − µ)

eiµπΓ(1 + iz)

e−iz ln(2u)

√
2u

(
1 +O(1/u2)

)
. (1.43)

Substituting this asymptotic into the integral (1.41), for the normalization coefficient one finds

B2
α =

V −2(z)

2π2aDN(mk)E
, (1.44)

where

V (z) =

∣∣∣∣eiµπQ̄−µ
iz−1/2(u0)

Γ(1/2− iz − µ)

Γ(1− iz)

∣∣∣∣ . (1.45)

By using the mode functions (1.39) with the normalization coefficient (1.44), from the

mode-sum formula (1.8) for the Wightman function in the exterior region we find

W (x, x′) =
a−D

2π2nSD

∞∑
l=0

(2l + n)C
n/2
l (cos θ)

(sinh r sinh r′)D/2−1

∫ ∞

0

dz
e−iE∆t

E(z)V 2(z)
Z−µ

iz (u)[Z−µ
iz (u′)]∗. (1.46)

Introducing instead of the function Q−µ
−iz−1/2(u) the function P

−µ
iz−1/2(u) and using the properties

of the gamma function, the Wightman function is also expressed in the form

W (x, x′) =
a−D

2πnSD

∞∑
l=0

(2l + n)C
n/2
l (cos θ)

(sinh r sinh r′)D/2−1

∫ ∞

0

dz z sinh(πz)

×|Γ(iz + µ+ 1/2)|2
Y −µ
iz−1/2(u)[Y

−µ
iz−1/2(u

′)]∗

Q̄−µ
iz−1/2(u0)[Q̄

−µ
iz−1/2(u0)]

∗

e−iE(z)∆t

E(z)
, (1.47)
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where

Y −µ
ν (u) = P−µ

ν (u)Q̄−µ
ν (u0)− P̄−µ

ν (u0)Q
−µ
ν (u). (1.48)

Here we are interested in the part of the Wightman function induced by the spherical shell.

To obtain this contribution we subtract from the function (1.47) the Wightman function for

the geometry without boundaries which is given by Eq. (1.23). For the further evaluation of

the difference we use the identity

Y −µ
iz−1/2(u)[Y

−µ
iz−1/2(u

′)]∗

Q̄−µ
iz−1/2(u0)[Q̄

−µ
iz−1/2(u0)]

∗
− P−µ

iz−1/2(u)P
−µ
iz−1/2(u

′) =
eiµπ

πi sinh(πz)

×
∑
s=±1

s cos[π(siz − µ)]
P̄−µ
iz−1/2(u0)

Q̄−µ
siz−1/2(u0)

Q−µ
siz−1/2(u)Q

−µ
siz−1/2(u

′). (1.49)

Substituting this in the expression for the part of the Wightman function induced by the sphere,

we rotate the integration contour over z by the angle π/2 for the term with s = −1 and by the

angle −π/2 for the term with s = 1. This leads to the following result:

Ws(x, x
′) = − a1−D

πnSD

∞∑
l=0

(2l + n)C
n/2
l (cos θ)e−iµπ

∫ ∞

zm

dz z

×
P̄−µ
z−1/2(u0)

Q̄µ
z−1/2(u0)

qµz−1/2(u)q
µ
z−1/2(u

′)
cosh(∆t

√
z2 − z2m)√

z2 − z2m
, (1.50)

with the notation

qµν (u) =
Qµ

ν (u)

(u2 − 1)(D−2)/4
. (1.51)

Here, once again, we have used Eq. (1.36). Comparing the expression (1.50) with Eq. (1.35),

we see that the sphere-induced parts in the Wightman function for interior and exterior regions

are obtained from each other by the replacements P−µ
z−1/2 � Qµ

z−1/2.

Now, let us turn to the case when bound states are present. For these states z = iη, η > 0,

and the mode functions are given by the expression

φα(x) = Bbαq
−µ
η−1/2(u)Y (mk;ϑ, ϕ)e

−iE(iη)t, (1.52)

with the energy E(iη) = a−1
√
z2m − η2. In order to have a stable vacuum state we assume that

η < zm. From the boundary condition (1.4) we see that, for a given r0, the possible bound

states are solutions of the equation

Q̄−µ
η−1/2(u0) = 0. (1.53)
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Note that this equation does not involve the field mass and the curvature coupling parameter.

The numerical analysis shows that there are no bound states for β 6 (D− 1)/2. With fixed r0

and l, a single bound state appears started from some critical value β
(b)
l (r0) > (D − 1)/2. We

shall denote the corresponding root by η = η(b)l. This critical value increases with increasing

l. In the right panel of figure 1, for the D = 3 case, we have plotted β
(b)
l (r0) as a function of

the sphere radius r0 for several values of l (numbers near the curves). From the asymptotic

expression for the function Q−µ
η−1/2(u0) it can be seen that β

(b)
l (r0) → (D − 1)/2 for r0 → ∞.

In order to find the normalization coefficient in Eq. (1.52) we use the integration formula∫ ∞

u

dx [Q−µ
η−1/2(x)]

2 =
u2 − 1

2η
{[∂ηQ−µ

η−1/2(u)]∂uQ
−µ
η−1/2(u)−Q−µ

η−1/2(u)∂η∂uQ
−µ
η−1/2(u)}. (1.54)

This formula is obtained by making use of the differential equation for the associated Legendre

function. For the roots of Eq. (1.53) from Eq. (1.54) we get∫ ∞

u0

dx [Q−µ
η−1/2(x)]

2 =
1− u20
2ηB(u0)

Q−µ
η−1/2(u0)∂ηQ̄

−µ
η−1/2(u0)|η=η(b)l . (1.55)

By using this result, the normalization coefficient for the bound states is presented in the form

|Bbα|2 =
a−DηB(u0)

N(mk)E(η)

(1− u20)
−1

Q−µ
η−1/2(u0)∂ηQ̄

−µ
η−1/2(u0)

|η=η(b)l . (1.56)

With this coefficient, for the contribution of the bound states to the Wightman function one

gets

W (bs)(x, x′) =
∞∑
l=0

(2l + n)

nSDaD
B(u0)C

n/2
l (cos θ)

E(η) (1− u20)

ηq−µ
η−1/2(u)q

−µ
η−1/2(u

′)

Q−µ
η−1/2(u0)∂ηQ̄

−µ
η−1/2(u0)

e−iE(iη)∆t|η=η(b)l . (1.57)

In the presence of the bound states, the contribution to the Wightman function from the

modes with real z is still given by Eq. (1.47). Again, for this expression we use the identity

(1.49). The difference from the previous case arises at the step when one rotates the integration

contour over z. Now, the integrands have simple poles on the imaginary axis corresponding

to the zeros of the functions Q̄−µ
siz−1/2(u0) in the denominator of Eq. (1.49). Rotating the

integration contours for the terms with s = −1 and s = 1, we escape these poles by semicircles

of small radius in the right-half plane. The integrals over these semicircles combine in the

residue at the point z = eπi/2η(b)l. As a result, for the part in the Wightman function coming

from the modes with real z we get the expression (1.50) plus the contribution coming from
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the residue at the pole z = eπi/2η(b)l. Now, it can be seen that the latter is exactly canceled

by the contribution from the bound state, given by Eq. (1.57). Hence, we conclude that the

expression (1.50) for the shell-induced Wightman function in the exterior region is valid in the

presence of bound states as well.

Similarly to the case of the interior region, we can see that in the limit a→ ∞ from (1.50)

the corresponding expression is obtained for the sphere in Minkowski spacetime.

1.2 Vacuum expectation value of the field squared

Among the most important local characteristics of the vacuum state are the vacuum expecta-

tion values of the field squared and the energy-momentum tensor. We start with the mean field

squared. It is obtained from the Wightman function in the coincidence limit of the arguments.

This limit is divergent and a renormalization procedure is required. In curved backgrounds the

structure of divergences is determined by the local geometry. In the problem under considera-

tion, for points away from the sphere, the local geometry is the same as in the boundary-free

case and, hence, the divergences in the local physical characteristics are the same as well. From

here it follows that the renormalization procedure for these characteristics is the same as that

in the boundary-free geometry. In the expressions given above for the both interior and ex-

terior regions we have explicitly decomposed the Wightman function into the boundary-free

and sphere-induced parts. For points outside the sphere, the renormalization is needed for

the boundary-free vacuum expectation values only and the sphere-induced parts are directly

obtained from the corresponding Wigthman function in the coincidence limit.

For the renormalized mean field squared we get

⟨φ2⟩ = ⟨φ2⟩0 + ⟨φ2⟩s, (1.58)

where ⟨φ2⟩0 is the renormalized vacuum expectation value in the boundary-free space and the

part ⟨φ2⟩s is induced by the sphere. For the latter, by taking into account that

C
n/2
l (1) =

Γ(l + n)

Γ(n)l!
, (1.59)

in the interior region from Eq. (1.35) one finds

⟨φ2⟩s = −a
1−D

πSD

∞∑
l=0

Dle
−iµπ

∫ ∞

zm

dz z
Q̄µ

z−1/2(u0)

P̄−µ
z−1/2(u0)

[p−µ
z−1/2(u)]

2√
z2 − z2m

. (1.60)
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Here

Dl = 2µ
Γ(l +D − 2)

Γ(D − 1)l!
, (1.61)

is the degeneracy of the angular mode with given l. For the functions in the integrand, we

have numerically checked that e−iµπQ̄µ
z−1/2(u0) > 0 in both special cases of Dirichlet and

Neumann boundary conditions, whereas P̄−µ
z−1/2(u0) > 0 for Dirichlet boundary condition and

P̄−µ
z−1/2(u0) < 0 for Neumann one. Consequently, the sphere-induced vacuum expectation value

of the field squared is negative for Dirichlet boundary condition and positive for Neumann

boundary condition.

By using the asymptotic formulas

P−µ
z−1/2(u) ≈ z−µ−1/2erz√

2π sinh r
(1 +O(1/z)),

Qµ
z−1/2(u) ≈ eiµπ

πzµ−1/2e−rz

√
2π sinh r

(1 +O(1/z)), (1.62)

valid for z ≫ 1, we see that the integrand behaves as e2z(r−r0)/z. Hence, the sphere-induced

vacuum expectation value (1.60) diverges on the boundary. In order to find the leading term

in the asymptotic expansion over the distance from the sphere, we note that for points close

to the boundary the dominant contribution in Eq. (1.60) comes from large values of z and l.

In this case, instead of Eq. (1.62), we need to use the uniform asymptotic expansions for the

associated Legendre functions for large values of both z and µ. The latter can be obtained

from Eq. (1.38) by making use of the uniform asymptotic expansions for the modified Bessel

functions (see, for instance, [266]). In this way, to the leading order, we get

⟨φ2⟩s ≈ − a1−DΓ((D − 1)/2)δB
(4π)(D+1)/2(r0 − r)D−1

(1 +O(r0 − r)), (1.63)

with δB = 2δ0B−1. As is seen, near the sphere the boundary-induced vacuum expectation value

has opposite signs for Dirichlet and non-Dirichlet boundary conditions. By taking into account

that a(r0 − r) is the proper distance from the sphere, we see that the leading term coincides

with that for the sphere in Minkowski bulk. Of course, this is natural, because near the sphere

the contribution of the modes with the wavelengths smaller than the curvature radius dominate

and they are relatively insensitive to the background geometry.

At the sphere center, by taking into account the asymptotic p−µ
z−1/2(u) ≈ 2−µrl/Γ(µ+ 1) for
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r → 0, we see that the l = 0 mode contributes only:

⟨φ2⟩s|r=0 =
(2a)1−De−iπD/2

πD/2+1Γ(D/2)

∫ ∞

zm

dz
z√

z2 − z2m

Q̄
D/2−1
z−1/2 (u0)

P̄
1−D/2
z−1/2 (u0)

. (1.64)

Near the center the contribution of the modes with higher l decays as r2l. Note that Eq. (1.64)

is further simplified for D = 3. By taking into account the formulas

P
−1/2
z−1/2(u) =

2 sinh(zr)

z
√
2π sinh r

, Q
1/2
z−1/2(u) =

iπe−zr

√
2π sinh r

, (1.65)

we obtain
Q̄

1/2
z−1/2(u0)

P̄
−1/2
z−1/2(u0)

=
iπz

β+u0−z
β+u0+z

e2zr0 − 1
. (1.66)

Hence, for D = 3, Eq. (1.64) is reduced to

⟨φ2⟩s|r=0 = −a
−2

2π2

∫ ∞

zm

dz
z2√

z2 − z2m

1
β+u0−z
β+u0+z

e2zr0 − 1
, (1.67)

with z2m = m2a2 + 1− 6ξ.

In the discussion below we shall also need the covariant Dalambertian of the boundary-

induced part:

∇p∇p⟨φ2⟩s =
2a−1−D

πSD

∞∑
l=0

Dle
−iµπ

∫ ∞

zm

dz z
Q̄µ

z−1/2(u0)

P̄−µ
z−1/2(u0)

F [p−µ
z−1/2(u)]√
z2 − z2m

. (1.68)

In this formula we have introduced the function

F [f(u)] =
1

2

[
(u2 − 1)∂2u +Du∂u

]
f 2(u)

= (u2 − 1)f ′2(u) +

[
bl

u2 − 1
− (D − 1)2

4
+ z2

]
f 2(u). (1.69)

In the second expression, in order to exclude the second order derivative, we have used the

differential equation obeyed by the function p−µ
z−1/2(u).

In the exterior region, the shell-induced contribution in the vacuum expectation value of

the field squared is obtained from Eq. (1.50) in the coincidence limit:

⟨φ2⟩s = −a
1−D

πSD

∞∑
l=0

Dle
−iµπ

∫ ∞

zm

dz z
P̄−µ
z−1/2(u0)

Q̄µ
z−1/2(u0)

[qµz−1/2(u)]
2√

z2 − z2m
. (1.70)

This quantity is negative for Dirichlet boundary condition and positive for Neumann boundary

condition. For points near the sphere, the leading term in the asymptotic expansion of this
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expectation value is given by Eq. (1.63) with r0− r replaced by r− r0. In this limit, the effects

of the background gravitational field are small. The curvature effects are crucial at distances

from the sphere larger than the curvature radius of the background space. This corresponds to

the limit of large r with a fixed value of the sphere radius r0. For r ≫ 1 we use the approximate

formula

qµz−1/2(u) ≈ 2D/2−1 e
iµπ

√
πΓ(z + 1/2 + µ)

Γ(z + 1)e(z+(D−1)/2)r
(1 +O(1/u2)). (1.71)

With this asymptotic, the dominant contribution in the integral of Eq. (1.70) comes from the

region near the lower limit of the integration. For zm > 0, assuming that zmr ≫ 1, to the

leading order we get

⟨φ2⟩s ≈ −
2D−3

√
πzm/r

SDaD−1e(2zm+D−1)r

∞∑
l=0

Dl

P̄−µ
zm−1/2(u0)

Q̄µ
zm−1/2(u0)

×eiµπΓ
2(zm + l +D/2)

Γ2(zm + 1)
(1 +O(1/r)). (1.72)

The boundary-induced vacuum expectation value is exponentially small and the suppression

factor depends on the curvature coupling parameter. For zm = 0 the leading term in the

asymptotic expansion at large distance takes the form

⟨φ2⟩s ≈ − 2D−3a1−D

SDre(D−1)r

∞∑
l=0

Dle
iµπ

P̄−µ
−1/2(u0)

Q̄µ
−1/2(u0)

Γ2(l +D/2)(1 +O(1/r)). (1.73)

In this case the decay is weaker, though, again exponential. In particular, for both minimally

and conformally coupled massless scalars the suppression of the boundary induced vacuum

expectation values at large distances is exponential.

For a spherical boundary in Minkowski bulk and for a massive field the vacuum expectation

value at large distances is suppressed by the factor e−2mρ with ρ being the Minkowskian radial

coordinate. In this case the suppression factor does not depend on the curvature coupling. For a

massless field in Minkowski spacetime, the dominant contribution at large distances comes from

the angular mode l = 0 and the decay of the expectation value is of power-law, like 1/ρ2D−3

for D > 3. This shows that the suppression of the vacuum fluctuations in the gravitational

field corresponding to the negative curvature space is stronger compared with the case of the

Minkowskian bulk. A similar feature is observed in the geometry of planar boundaries on anti-

de Sitter bulk (see Ref. [217]), then yielding another example of a negative curvature space.
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For de Sitter geometry, having a positive curvature, the situation is essentially different: the

boundary-induced contributions in the local vacuum expectation values decay at large distances

as a power-law for both massive and massless fields.

1.3 Energy-momentum tensor

For the evaluation of the vacuum expectation value of the energy-momentum tensor we use the

formula

⟨Tik⟩ = lim
x′→x

∂i′∂kW (x, x′) + [(ξ − 1/4) gik∇p∇p − ξ∇i∇k − ξRik] ⟨φ2⟩, (1.74)

where Rik is the Ricci tensor. For the geometry under consideration one has (no summation

over p) Rp
p = −(D − 1)/a2 for p = 1, . . . , D, and the remaining components vanish. In the

right-hand side of Eq. (1.74) we have used the expression for the energy-momentum tensor for

a scalar field which differs from the standard one by the term which vanishes on the solutions of

the field equation and does not contribute to the boundary-induced vacuum expectation value

(see [270]).

By taking into account the expressions for the Wightman function and for the expectation

value of the field squared from the previous section, the vacuum energy-momentum tensor is

presented in the decomposed form

⟨Tik⟩ = ⟨Tik⟩0 + ⟨Tik⟩s, (1.75)

where the first and second terms in the right-hand side correspond to the boundary-free and

sphere-induced contributions. Again, for points away the sphere, the renormalization is needed

for the first term only.

In the interior region, after straightforward calculations, we find that the vacuum expec-

tation value of the energy-momentum tensor is diagonal with the components (no summation

over k)

⟨T k
k ⟩s =

a−1−D

πSD

∞∑
l=0

Dle
−iµπ

∫ ∞

zm

dz z
Q̄µ

z−1/2(u0)

P̄−µ
z−1/2(u0)

F (k)[p−µ
z−1/2(u)]√
z2 − z2m

, (1.76)
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where we have introduced the notations

F (0)[f(u)] = 2 (ξ − 1/4)F [f(u)] + (z2 − z2m)f
2(u),

F (1)[f(u)] =
1

2
F [f(u)] + 2(D − 1)ξuf(u)f ′(u)

−
[
(D − 1)ξ +

bl
u2 − 1

− (D − 1)2

4
+ z2

]
f 2(u), (1.77)

F (k)[f(u)] = 2(ξ − 1/4)F [f(u)]− 2ξuf(u)f ′(u)

+
1

D − 1

[
bl

u2 − 1
− (D − 1)2ξ

]
f 2(u),

with F [f(u)] defined in Eq. (1.69) and k = 2, 3, . . . , D in the last expression.

We can check that the part in the vacuum expectation value of the energy-momentum tensor

induced by the spherical shell satisfies the covariant conservation equation ∇k⟨T k
i ⟩s = 0, which

for the geometry under consideration takes the form

(u2 − 1)
∂

∂u
⟨T 1

1 ⟩s + (D − 1)u
(
⟨T 1

1 ⟩s − ⟨T 2
2 ⟩s

)
= 0. (1.78)

In addition, it can be seen that the boundary-induced parts in the vacuum expectation values

satisfy the trace relation

⟨T k
k ⟩s = D(ξ − ξD)∇p∇p⟨φ2⟩s +m2⟨φ2⟩s. (1.79)

In particular, for a conformally coupled massless scalar field the boundary-induced part in

the expectation value of the energy-momentum tensor is traceless. The trace anomalies are

contained in the boundary-free part.

The sphere-induced contribution in the vacuum expectation value of the energy-momentum

tensor diverges on the boundary. The leading terms in the expansion over the distance from

the sphere for the energy density and parallel stresses are found in a way similar to that we

have used for the field squared. They are given by (no summation over k)

⟨T k
k ⟩s ≈

DΓ((D + 1)/2)(ξ − ξD)

2Dπ(D+1)/2[a(r0 − r)]D+1
δB(1 +O(r0 − r)), (1.80)

for the components k = 0, 2, . . .. Again, these leading terms coincide with those for a sphere in

the Minkowski bulk. The leading term for the radial stress vanishes and the next to the leading
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terms in the relations (1.38) should be kept. Easier way is to use the continuity equation (1.78)

with the result

⟨T 1
1 ⟩s ≈

(
1− 1

D

)
u0(r0 − r)√

u20 − 1
⟨T 0

0 ⟩s, (1.81)

with ⟨T 0
0 ⟩s from Eq. (1.80).

At the sphere center only the terms with l = 0, 1 contribute, and one has (no summation

over k)

⟨T k
k ⟩s =

a−1−D

πSD

∫ ∞

zm

dz
z√

z2 − z2m

1∑
l=0

Dle
−iµπF

(k)
l

22µΓ2(µ+ 1)

Q̄µ
z−1/2(u0)

P̄−µ
z−1/2(u0)

, (1.82)

where

F
(0)
0 = 2

(
ξ − 1

4

)[
z2 − (D − 1)2

4

]
+ z2 − z2m,

F
(k)
0 =

[
2

(
1− 1

D

)
ξ − 1

2

] [
z2 − (D − 1)2

4

]
− (D − 1)ξ, (1.83)

and

F
(0)
1 = 2D (ξ − 1/4) ,

F
(k)
1 = 2(D − 1)ξ −D/2 + 1. (1.84)

In Eqs. (1.83) and (1.84), k = 1, 2, . . . , D and the stresses are isotropic at the center. For

D = 3, Eq. (1.82) is further simplified by using Eq. (1.66). The functions P
−3/2
z−1/2(u) and

Q
3/2
z−1/2(u) in the l = 1 term of Eq. (1.82) are expressed in terms of the hyperbolic functions by

using Eq. (1.65) and the recurrence relations for the associated Legendre functions.

For the shell-induced contribution in the vacuum expectation value of the energy-momentum

tensor in the exterior region, r > r0, we get

⟨T k
k ⟩s =

a−1−D

πSD

∞∑
l=0

Dle
−iµπ

∫ ∞

zm

dz z
P̄−µ
z−1/2(u0)

Q̄µ
z−1/2(u0)

F (k)[qµz−1/2(u)]√
z2 − z2m

. (1.85)

For points near the sphere the corresponding asymptotic for the energy density and parallel

stresses are given by Eq. (1.80) with the replacement (r0 − r) → (r − r0). Hence, for a

non-conformally coupled field, near the boundary these components have the same sign in the

exterior and interior regions. For the radial stress we have the same relation (1.81) and for a

non-conformally coupled field it has opposite signs inside and outside the sphere.
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Now we turn to the asymptotic behavior of the vacuum energy-momentum tensor at large

distances from the sphere. In this limit we use Eq. (1.71). The dominant contribution to the

integral in Eq. (1.85) comes form the region near the lower limit. For zm > 0, to the leading

order we get (no summation over k)

⟨T k
k ⟩s ≈

2D−3
√
πzm/rF

(k)(zm)

SDaD+1e(2zm+D−1)r

∞∑
l=0

Dle
iµπ

×
P̄−µ
zm−1/2(u0)

Q̄µ
zm−1/2(u0)

Γ2(zm + 1/2 + µ)

Γ2(zm + 1)
(1 +O(1/r)), (1.86)

where we have defined the functions

F (0)(z) = (4ξ − 1) z[z + (D − 1)/2],

F (1)(z) = −1

2
(D − 1) [(4ξ − 1) z + 2D (ξ − ξD)] , (1.87)

and F (k)(z) = 2zF (1)(z)/(1−D) for k = 2, . . . , D. For minimally and conformally coupled fields

F (0)(z) < 0 and from Eq. (1.86) it follows that the sphere-induced contribution to the vacuum

energy of these fields is negative for Dirichlet boundary condition and positive for Neumann

boundary condition.

For zm = 0, the leading term in the asymptotic expansion at large distances has the form

(no summation over k)

⟨T k
k ⟩s ≈

2D−3DF
(k)
(e) e

−(D−1)r

SDaD+1r2−δk1

∞∑
l=0

Dle
iµπ
Q̄µ

−1/2(u0)

P̄−µ
−1/2(u0)

Γ2(1/2 + µ)(1 +O(1/r)), (1.88)

with the coefficients

F
(0)
(e) = ξD (4ξ − 1) ,

F
(1)
(e) = (1−D) (ξ − ξD) , F

(k)
(e) = ξ − ξD, (1.89)

and with k = 2, . . . , D in the last expression. In this case, for non-conformally coupled fields

one has |⟨T 1
1 ⟩s| ≫ |⟨T 0

0 ⟩s|. Again, at large distances we have an exponential suppression for

both massive and massless fields. For minimally and conformally coupled fields the energy

density corresponding to Eq. (1.88) is negative for Dirichlet boundary condition and positive

for Neumann one. Note that for a sphere in Minkowski bulk the Casimir densities for massive

fields are suppressed by the factor e−2mρ. For non-conformally coupled massless fields, at large

38



distances the contribution of the l = 0 mode dominates and all the diagonal components of the

vacuum energy-momentum tensor in Minkowski bulk are of the same order. In this case the

vacuum expectation values decay as 1/ρ2D−1 for D > 3 and as 1/(ρ3 ln ρ) for D = 2 (see [69]).

In figure 2, for a minimally coupled massless field, we have plotted the sphere-induced

contribution in the vacuum energy density inside (left panel) and outside (right panel) the

D = 3 spherical shell versus the radial coordinate r for the values of the radius r0 = 1, 1.5, 2

(numbers near the curves). The full/dashed curves correspond to Dirichlet/Neumann boundary

conditions.
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Figure 2: The sphere-induced vacuum energy density for a minimally coupled D = 3 massless

scalar field as a function of the radial coordinate. The graphs are plotted for several values of

the sphere radius (r0 = 1, 1.5, 2, numbers near the curves). The left/right panel corresponds

to the interior/exterior regions and the full and dashed curves are for Dirichlet and Neumann

boundary conditions, respectively.

In figure 3, the sphere-induced contribution in the vacuum energy is displayed as a function

of the parameter β in Robin boundary condition for fixed value of r (numbers near the curves)

and for D = 3 sphere with the radius r0 = 2. Again, the graphs are plotted for a minimally

coupled massless field.

Here we have considered the vacuum expectation value of the bulk energy-momentum tensor.

On manifolds with boundaries and for a scalar field with Robin boundary condition there is also

a surface energy-momentum tensor located on the boundary. In the general case of bulk and

boundary geometries the expression for the latter is given in [270] (see also the discussion in Ref.
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Figure 3: The sphere-induced vacuum energy density versus the coefficient in the Robin bound-

ary condition in the case of a minimally coupled D = 3 massless field. For the sphere radius one

has r0 = 2 and the numbers near the curves correspond to the values of the radial coordinate

r.

[271]-[274]). The expectation value of the surface energy-momentum tensor can be evaluated

by making use of the corresponding mode-sum with the eigenfunctions given above. However,

in this case the renormalization procedure is not reduced to the one in the boundary-free space

and additional subtractions are necessary. This procedure can be realized, for example, by

using the generalized zeta function technique and will be discussed elsewhere with the total

Casimir energy.

For a conformally coupled massless scalar field, the generalization of the the results given

above for the Friedmann-Robertson-Walker backgrounds, described by Eq. (1.2) with a time-

dependent scale factor a = a(t), is straightforward. For that, in the expressions for the Wight-

man function and for the vacuum expectation values of the field squared and the energy-

momentum tensor one should make the replacement a → a(t). For non-conformally coupled

fields the problem is more complicated. In particular, similar to the case of de Sitter background,

we expect that in addition to the diagonal components, the vacuum energy-momentum tensor

will have an off-diagonal component describing the energy flux along the radial direction.
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1.4 Casimir densities induced by spherical bubbles

In this section we consider the background spacetime with the geometry described by distinct

metric tensors inside and outside a spherical boundary. The interior and exterior gravitational

backgrounds may correspond to different vacuum states of a physical system. In this case

the sphere serves as a thin-wall approximation of a domain wall interpolating between two

coexisting vacua [275]. In what follows we shall refer the interior region as a bubble.

1.4.1 Bubble in a constant curvature space

First we consider the geometry described by the line element (1.2) in the region r > r0 and by

ds2 = e2u(r)dt2 − a2[e2v(r)dr2 + e2w(r)dΩ2
D−1], (1.90)

in the region r < r0, assuming that the corresponding metric tensor is regular. For generality,

the presence of the surface energy-momentum tensor with nonzero components τ 00 and τ 22 =

· · · = τDD , located at r = r0, will be assumed. The continuity of the metric tensor at the

separating boundary gives

u(r0) = 0, v(r0) = 0, w(r0) = ln(sinh r0). (1.91)

From the Israel matching conditions on the sphere r = r0 we get (no summation over k =

2, 3, . . . , D)

8πGaτ 00 = (D − 1) [w′(r0)− coth r0] ,

8πGaτ kk = u′(r0) + (D − 2) [w′(r0)− coth r0] . (1.92)

where G is the gravitational constant. For the trace of the surface energy-momentum tensor

one has

8πG

D − 1
aτ = u′(r0) + (D − 1)[w′(r0)− coth r0]. (1.93)

A general problem for the Casimir densities in spherically symmetric spaces with bubbles is

considered in [94]. In that paper the exterior metric was assumed to be asymptotically flat.

The latter is not the case for the problem under consideration. However, the main steps for

the evaluation are similar and we omit the details.
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The mode functions for a scalar field in the interior and exterior regions are presented in

the form (1.10). We denote the regular solution of the equation for the radial function in

the interior region by R(i) l(r, E) taking it being real. By taking into account that the energy

appears in the equation for the radial function in the form E2, we shall also assume that

R(i) l(r,−E) = const ·R(i) l(r, E). For the radial function in the exterior region one has

Rl(r) = A1q
−µ
iz−1/2(u) + A2q

−µ
−iλ−1/2(u). (1.94)

The radial functions are continous at r = r0 and for their derivatives one has the jump condition

[94]

R′
l(r0 + 0)−R′

l(r0 − 0) =
16πGξ

D − 1
aτR(r0). (1.95)

This jump comes from the delta function term in the field equation (1.1) contained in the Ricci

scalar. From these matching conditions, for the radial functions in the geometry at hand one

gets

Rl(r) = CαV
−µ
iz (u), r > r0, (1.96)

where

V −µ
iz (u) = q̂−µ

−iz−1/2(u0)q
−µ
iz−1/2(u)− q̂−µ

iz−1/2(u0)q
−µ
−iz−1/2(u), (1.97)

and

Cα =
R(i) l(r0, E)

W
(12)
l (r0)

. (1.98)

In Eq. (1.97), the notation with hat is defined as

F̂ (u) =
√
u2 − 1F ′(u)−

[
R′

(i) l(r0, E)

R(i) l(r0, E)
+

16πGξ

D − 1
aτ

]
F (u), (1.99)

where R′
(i) l(r0, E) = ∂rR(i) l(r, E)|r=r0 , and

W
(12)
l (r) =

√
u2 − 1W{q−µ

iz−1/2(u), q
−µ
−iz−1/2(u)}, (1.100)

with W{f(u), g(u)} being the Wronskian for the enclosed functions. In the normalization

condition, similar to Eq. (1.9), the integration goes over both the interior and exterior regions.

However, the dominant contribution comes from large values of r. By using the asymptotic for

the associated Legendre function, similar to the case of the region outside a spherical boundary
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with Robin boundary condition, one gets

C2
α =

|q̂−µ
iz−1/2(u0)|−2|Γ(1− iz)|2

2π2aDN(mk)E(z)|Γ(1/2− iz − µ)|2
. (1.101)

Now substituting the exterior mode functions with the normalization coefficient (1.101) into

the mode-sum for the Wightman function, in the exterior region we get the formula

W (x, x′) =
∞∑
l=0

(2l + n)C
n/2
l (cos θ)

2πnSDaD

∫ ∞

0

dz z sinh(πz)

×|Γ(iz + µ+ 1/2)|2
y−µ
iz−1/2(u)[y

−µ
iz−1/2(u

′)]∗

q̂−µ
iz−1/2(u0)[q̂

−µ
iz−1/2(u0)]

∗

e−iE(z)∆t

E(z)
, (1.102)

with the function

y−µ
iz−1/2(u) = q̂−µ

iz−1/2(u0)p
−µ
iz−1/2(u)− p̂−µ

iz−1/2(u))q
−µ
iz−1/2(u). (1.103)

In deriving Eq. (1.102) we have used the relation

V −µ
iz (u) = −iπ e

−iµπ sinh(πz)

cos[π(iz + µ)]
y−µ
iz−1/2(u). (1.104)

Now by comparing Eq. (1.102) with the expression (1.47) for the corresponding function outside

the Robin sphere, we see that Eq. (1.102) differs from Eq. (1.47) by the replacement

β → −
R′

(i) l(r0, E)

R(i) l(r0, E)
− 16πGξ

D − 1
aτ. (1.105)

The further evaluation of the Wightman function is similar to that we have given in section

1.1 for the exterior region. The only difference is that, after using the identity (1.49) in the

integral representation (1.47), in the rotation of the contours of the integrations we should take

into account that now the effective Robin coefficient depends on z through E = E(z) (see Eq.

(1.105)). Because of our choice of the interior radial function, the logarithmic derivative in Eq.

(1.105) is an even function of the energy and the dependence on z gives no additional difficulties

in the evaluation process. As a result, the bubble-induced part in the Wightman function is

given by Eq. (1.50) where now, in the notation (1.26), we should make the replacement

β → −
R′

(i) l(r0, e
πi/2

√
z2 − z2m)

R(i) l(r0, eπi/2
√
z2 − z2m)

− 16πGξ

D − 1
aτ, (1.106)

where the second term in the right-hand side is given by Eq. (1.93). With the same replacement

in Eqs. (1.70) and (1.85), we obtain the vacuum expectation values of the field squared and

the energy-momentum tensor.
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Similar to the case of the Robin sphere, in the geometry of the bubble under consideration,

the expectation values of the field squared and the energy-momentum tensor diverge on the

separating boundary. It can be seen that (see also [94]), because of the dependence of the

effective Robin coefficient in Eq. (1.106) on the integration variable z, the leading terms in the

asymptotic expansion of the vacuum expectation values over the distance from the boundary

vanish and the divergences are weaker compared to the case of the Robin sphere. In particular,

the expectation value of the field squared diverges as (r−r0)2−D and the energy density behaves

as (r − r0)
−D.

As a simple application of the general results, consider a bubble with the Minkowskian

interior with the functions v(r) = 0 and w(r) = ln r in Eq. (1.90). For the surface energy

density one finds

τ 00 =
D − 1

8πGa
(1/r0 − coth r0) , (1.107)

and for the stresses we get (no summation over k = 2, . . . , D) τ kk = (D − 2)τ 00 /(D − 1). Note

that −1 < 1/r0 − coth r0 6 0 for ∞ > r0 > 0 and the corresponding energy density is always

negative. In this special case for the regular radial function in the interior region one has

R(i) l(r, E) =
const

rn/2
Jl+n/2(ar

√
E2 −m2), (1.108)

with Jν(x) being the Bessel function. Hence, the Casimir densities in the region r > r0,

induced by the interior Minkowskian geometry are given by Eqs. (1.70) and (1.85), making the

replacement

β → − 1

r0

[
y
I ′l+n/2(y)

Il+n/2(y)
− n

2
+ 2ξ(D − 1) (1− r0 coth r0)

]
, (1.109)

with the notation

y = r0
√
z2 − z2m +m2a2, (1.110)

and with the modified Bessel function Iν(x). For the example of a minimally coupled massless

scalar field we have checked that there are no bound states in the geometry under consideration.

1.4.2 Bubble of a constant curvature in Minkowski spacetime

Now we consider a background geometry with the line element (1.2) in the region r < r0

and with the Minkowskian spacetime in the region r > r0. The components of the surface
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energy-momentum tensor are given by Eq. (1.107) with the opposite signs. In particular, the

corresponding energy density is always positive. The Casimir densities in the exterior region are

obtained from the general results of [94] for the special interior geometry under consideration.

For the Wightman function one has the decomposition

W (x, x′) = WM(x, x′) +Wb(x, x
′), (1.111)

where WM(x, x′) is the Wightman function in the Minkowski spacetime and the part

Wb(x, x
′) = −

∞∑
l=0

(2l + n)C
n/2
l (cos θ)

πnSDaD−1 (rr′)n/2

∫ ∞

ma

dz z
Ĩl+n/2(zr0, z)

K̃l+n/2(zr0, z)

×cosh((∆t/a)
√
z2 −m2a2)√

z2 −m2a2
Kl+n/2(zr)Kl+n/2(zr

′), (1.112)

is induced by the constant curvature bubble. In Eq. (1.112), we have defined the notation

F̃ (y, z) = y∂yF (y)−

[
r0 sinh r0

p−µ′
w(z)−1/2(u0)

p−µ
w(z)−1/2(u0)

+ 2ξ(D − 1) (r0 coth r0 − 1) +
n

2

]
F (y), (1.113)

with

w(z) =
√
z2 −m2a2 + z2m. (1.114)

Note that under the condition z2m > 0 the function w(z) is real and the Minkowskian vacuum

in the exterior region is stable. The corresponding Casimir densities in the exterior region are

obtained from the expressions in [94] by the replacements F̃ (y) → F̃ (y, z) with Eq. (1.113)

and F = Il+n/2, Kl+n/2.

Appendix A1: On the eigenvalues inside a sphere

As has been shown in section 1.1, the eigenvalues of the quantum number z in the region inside

a spherical shell with the boundary condition (1.4) are zeros of the function P̄−µ
iz−1/2(u) for a

given value of u > 1. The corresponding positive roots we have denoted by zk, k = 1, 2, . . ..

From the relation P̄−µ
iz−1/2(u) = P̄−µ

−iz−1/2(u) it follows that z = −zk are zeros of the function

P̄−µ
iz−1/2(u) as well. Note that the latter can also be written in the form

P̄−µ
iz−1/2(u) = (u2 − 1)D/4p̃−µ

iz−1/2(u), (1.115)

where, for a given function F (u) we have defined the notation

F̃ (u) = AF (u)− δ(j)
B

a

√
u2 − 1∂uF (u), (1.116)
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and for the interior region δ(j) = 1. From (1.115) we see that for u > 1 the points z = zk are

the zeros of the function p̃−µ
iz−1/2(u). First of all let us show that these zeros are simple.

By taking into account that the function Rl(r) = p−µ
iz−1/2(cosh r) is a solution of Eq. (1.14),

the following integration formula can be obtained∫ u

1

dx (x2 − 1)D/2−1[p−µ
iz−1/2(x)]

2 =
(u2 − 1)D/2

2z

×{[∂zp−µ
iz−1/2(u)]∂up

−µ
iz−1/2(u)− p−µ

iz−1/2(u)∂z∂up
−µ
iz−1/2(u)}. (1.117)

From here, for z = zk one gets∫ u

1

dx (x2 − 1)D/2−1[p−µ
iz−1/2(x)]

2 =
(u2 − 1)(D−1)/2

2zB1/a
p−µ
iz−1/2(u)∂zp̃

−µ
iz−1/2(u)|z=zk . (1.118)

The left-hand side of this relation is positive (recall that p−µ
iz−1/2(x) is a real function) and,

hence, ∂zp̃
−µ
iz−1/2(u)|z=zk ̸= 0. This shows that the zeros zk are simple.

The asymptotic expression for large positive zeros is found by using the asymptotic formula

P−µ
iz−1/2(u) ∼

√
2

π

z−µ−1/2

√
u2 − 1

sin(z arccoshu− πµ/2 + π/4)(1 +O(1/z2)), (1.119)

for z ≫ 1. From here we see that

zk ≈ π
2k + µ+ 1/2− δ0B

2 arccoshu
+O(1/k). (1.120)

Now let us discuss possible purely imaginary zeros. With fixed u and l, the function

P̄−µ
iz−1/2(u) has no purely imaginary zeros for sufficiently small values of the ratio β = Aa/B.

With increasing β, started from some critical value β
(1)
l (u), a pair of purely imaginary zeros

z = ±iη, η > 0, appears. The critical value β
(1)
l (u) increases with increasing l and, hence, the

purely imaginary zero first appears for the mode l = 0 (see the left panel of figure 1, where in

the case D = 3 the critical value is plotted versus r0 = arccoshu for different values of l). By

taking into account that for r ≫ 1 one has

P−µ
z−1/2(cosh r) ≈

Γ(z)e(z−1/2)r

√
πΓ(1/2 + z + µ)

, (1.121)

it is seen that for large values of u we have η ≈ β + (D − 1)/2 and β
(1)
l (u) → −(D − 1)/2 for

u → ∞. There are no purely imaginary zeros for β < −(D − 1)/2. With the further increase

of β > β
(1)
l (u) the value of η increases and for the second critical value β = β

(2)
l (u) the energy

of the corresponding mode becomes zero. This corresponds to η = zm. For β > β
(2)
l (u) the

energy of the mode becomes imaginary which signals the instability of the vacuum.
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Appendix B1: Summation formula

In this appendix, by making use of the generalized Abel-Plana formula [276] (see also, [67, 68]),

we derive a summation formula for the series over the zeros of the function

P̄−µ
iz−1/2(u) = A(u)P−µ

iz−1/2(u) +B(u)∂uP
−µ
iz−1/2(u), (1.122)

with respect to z, for given u > 1 and µ > 0. In general, the functions A(u) and B(u) can be

different from those in Eq. (1.27). We shall denote the positive zeros, arranged in ascending

order, by zk, k = 1, 2, . . ., assuming that they are simple. The summation formula can be

obtained in a way similar to that used in Ref. [269] for the special case A(u) = 1 and B(u) = 0

and we shall outline the main steps only (for the summation formula over the zeros of the

combination of the associated Legendre functions of the first and second kinds see [277]).

We substitute in the generalized Abel-Plana formula

f(z) = sinh(πz)h(z),

g(z) =
eiµπh(z)

πiP̄−µ
iz−1/2(u)

∑
j=±

cos[π(µ− jiz)]Q̄−µ
jiz−1/2(u), (1.123)

where the function h(z) is analytic in the right-half plane of the complex variable z = x + iy.

The function g(z) has simple poles at z = zk. For functions obeying the condition

|h(z)| < ε(x) exp(cy arccoshu), |z| → ∞, (1.124)

with c < 2, ε(x)eπx → 0 for x→ +∞, the following formula is obtained

∞∑
k=1

Tµ(zk, u)h(zk) =
e−iµπ

2

∫ ∞

0

dx sinh(πx)h(x)

− 1

2π

∫ ∞

0

dx
Q̄−µ

x−1/2(u)

P̄−µ
x−1/2(u)

cos[π(µ+ x)]
∑
j=±

h(xejπi/2). (1.125)

Here we have introduced the notation

Tµ(z, u) =
Q̄−µ

iz−1/2(u)

∂zP̄
−µ
iz−1/2(u)

cos[π(µ− iz)]. (1.126)

Formula (1.125) is also valid for some functions having branch-points on the imaginary axis,

for example, in the case of functions of the form h(z) = F (z)/(z2 + z20)
1/2, with F (z) being
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an analytic function. Note that, in the physical problem we have considered the branch points

correspond to z = ±izm. Adding the corresponding residue terms in the right-hand side, the

formula (1.125) can be generalized for functions h(z) having poles in the right-half plane.

An equivalent expression for Tµ(z, u) is obtained by using the relation

Q̄−µ
iz−1/2(u) =

B(u)e−iµπΓ(iz − µ+ 1/2)

Γ(iz + µ+ 1/2)(1− u2)P−µ
iz−1/2(u)

, (1.127)

with z = zk. This formula follows from the Wronskian relation for the associated Legendre

functions. Now, from Eq. (1.126) for z = zk one gets

Tµ(z, u) =
πe−iµπB(u)|Γ(µ+ iz + 1/2)|−2

(1− u2)P−µ
iz−1/2(u)∂zP̄

−µ
iz−1/2(u)

. (1.128)

Formula (1.125) can be generalized for the case when the function P̄−µ
iz−1/2(u) has purely

imaginary zeros at the points z = ±iyk, yk > 0, k = 1, 2, . . ., under the assumption that the

function h(z) obeys the condition

h(z) = −h(ze−πi) + o(z − iyk), z → iyk. (1.129)

Assuming that the zeros are simple, in this case, on the right-hand side of Eq. (1.125) we have

to add the term

−i
∑
k

Q̄−µ
y−1/2(u)

∂yP̄
−µ
y−1/2(u)

cos[π(µ− y)]h(iy)|y=yk , (1.130)

at these poles and take the principal value of the second integral on the right-hand side. The

latter exists due to the condition (1.129). By using the relation (1.127) the term (1.130) can

also be written in the form

i
∑
k

πB(u)e−iµπ

P−µ
y−1/2(u)∂yP̄

−µ
y−1/2(u)

(u2 − 1)−1h(iy)

Γ(µ+ y + 1/2)Γ(µ− y + 1/2)
|y=yk . (1.131)

A physical example with purely imaginary modes using this result is discussed in section 1.1.

1.5 Summary

In this chapter we have investigated the properties of the scalar vacuum in a constant negative

curvature space induced by a spherical boundary on which the field operator obeys Robin

boundary condition. General values of the spatial dimension and of the curvature coupling
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parameter are considered. For the coefficient in the Robin boundary condition there is a critical

value above which the scalar vacuum becomes unstable. The properties of the quantum vacuum

are encoded in two-point functions. We have considered the positive-frequency Wightman

function and the other function can be evaluated in a similar way. In order to evaluate the

Wightman function we employed the direct summation over the complete set of modes. In the

region inside the sphere, the eigenmodes of the field are expressed in terms of the zeros of the

combination of the associated Legendre function and its derivative with respect to the order

(see Eq. (1.25)). In the mode-sum for the Wightman function, for the summation of the series

over these zeros we have used the formula (1.125), derived from the generalized Abel-Plana

formula. This allowed us to separate the part corresponding to the boundary-free geometry

and to present the sphere-induced part in terms of a rapidly convergent integral. In this form

the explicit knowledge of the eignemodes is not required. In addition, with the decomposition

into the boundary-free and boundary-induced contributions, the renormalization of the vacuum

expectation values in the coincidence limit is reduced to the one for the boundary-free geometry.

We have provided a similar decomposition for the exterior region as well.

As an important local characteristic of the vacuum state, in section 1.2 we consider the

vacuum expectation value of the field squared. The corresponding expressions for the sphere-

induced parts in the interior and exterior regions are given by Eqs. (1.60) and (1.70). These

parts are negative for Dirichlet boundary condition and positive for Neumann boundary con-

dition. The expectation value of the field squared diverges on the boundary. The leading term

in the asymptotic expansion over the distance from the sphere is given by Eq. (1.63) and coin-

cides with that for a sphere in Minkowski bulk. In this limit the dominant contribution comes

from the wavelengths smaller than the curvature radius of the background and the effects of

the gravitational field are small. In the opposite limit of large distances, the effects of gravity

are decisive. The asymptotic behavior in this region depends on whether the parameter zm,

defined by Eq. (1.16), is zero or not. For zm > 0, the leading term is given by Eq. (1.72)

and the boundary-induced vacuum expectation value is exponentially suppressed. For zm = 0

the leading term is given by Eq. (1.73). The decay in this case is again exponential, though

relatively weaker. Consequently, for both massive and massless fields the suppression of the
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boundary-induced vacuum expectation values at large distances is exponential. This is in con-

trast to the case of Minkowskian bulk, where the decay for massless fields has a power-law

behavior.

Another important characteristic of the vacuum is the vacuum expectation value of the

energy-momentum tensor. This expectation value is diagonal and the expressions for the sphere-

induced contributions are given by Eqs. (1.76) and (1.85) for the interior and exterior regions,

respectively. Near the sphere, the leading term in the energy density and parallel stresses

is given by Eq. (1.80). Once again, this term coincides with the corresponding asymptotic

for a spherical shell in flat spacetime. For the leading term in the normal stress one has

the expression (1.81) and the corresponding divergence is weaker. The asymptotics at large

distances are given by Eqs. (1.86) and (1.88) for the cases zm > 0 and zm = 0, respectively. In

both cases the vacuum expectation values are suppressed by the factor e−(2zm+D−1)r. At large

distances and for non-conformally coupled fields one has |⟨T 1
1 ⟩s| ≫ |⟨T 0

0 ⟩s|. Again, in contrast

to the Minkowskian case, the expectation values are exponentially suppressed for both massive

and massless fields. This feature is observed also in the Casimir problems on the background

of anti-de Sitter spacetime, which presents another example of a negative curvature space. In

de Sitter spacetime, having a positive curvature, the situation is opposite: at large distances

from the boundary the local vacuum expectation values for both massive and massless fields

exhibit a power-law behavior.

We have generalized the results for the vacuum expectation values to the backgrounds

described by two distinct spherically symmetric metric tensors in the regions separated by a

spherical boundary. The geometry of one region affects the properties of the vacuum in the

other region leading to the gravitationally induced Casimir effect. We have considered the

interior geometry described by the line element (1.90) and the exterior geometry, as before,

corresponds to a constant curvature space. In addition, we have assumed the presence of the

surface energy-momentum tensor located on the separating boundary. The corresponding jump

conditions on the normal derivatives of the metric tensor are obtained from the Israel matching

conditions, whereas the boundary conditions on the field operator are obtained from the field

equation. In this way, we have shown that the bubble-induced contributions in the Wightman
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function and in the vacuum expectation values of the field squared and the energy-momentum

tensor are obtained from the expressions for the spherical shell with Robin boundary condition

by the replacement (1.106) of the coefficient. As an example of the exterior geometry we have

considered the case of the Minkowskian bubble. In this case the replacement needed is given

by Eq. (1.109). Note that in the geometry with bubbles the divergences on the boundary are

weaker compared with the case of the Robin sphere. We have also considered a bubble with a

negative constant curvatures space in the Minkowski bulk. The corresponding expressions for

the local characteristics are obtained from the general formulas in [94] with the notation with

tilde defined by Eq. (1.113).

The generalization of the results given above for the Friedmann-Robertson-Walker cosmo-

logical models with a time-dependent scale factor is straightforward in the case of a conformally

coupled massless field. This requires the replacement a→ a(t) in the expressions for the Wight-

man function and for the vacuum expectation values. In the special case D = 2, the results

obtained can be applied to negatively curved graphene structures (for this type of structures

see [80]), described in the long-wavelength regime by an effective 3-dimensional relativistic field

theory. The latter, in addition to the well-known Dirac fermions describing the low-energy exci-

tations of the electronic subsystem, involves scalar and gauge fields originating from the elastic

properties and describing disorder phenomena, like the distortions of the graphene lattice and

structural defects. In this setup, the spherical boundary models the edge of a negatively curved

graphene sheet. The boundary condition we have used ensures the zero flux of a scalar field

through the boundary.
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2 CHAPTER: VACUUM CURRENT DENSITIES IN

TOPOLOGICALLY NONTRIVIAL SPACES

The Hadamard function and the VEV of the current density are investigated for a charged scalar

field in the geometry of flat boundaries with an arbitrary number of toroidally compactified

spatial dimensions. The field operator obeys the Robin conditions on the boundaries and

quasiperiodicity conditions with general phases along compact dimensions. In addition, the

presence of a constant gauge field is assumed. The latter induces Aharonov-Bohm-type effect on

the VEVs. There is a region in the space of the parameters in Robin boundary conditions where

the vacuum state becomes unstable. The stability condition depends on the lengths of compact

dimensions and is less restrictive than that for background with trivial topology. The vacuum

current density is a periodic function of the magnetic flux, enclosed by compact dimensions,

with the period equal to the flux quantum. It is explicitly decomposed into the boundary-

free and boundary-induced contributions. In sharp contrast to the VEVs of the field squared

and the energy-momentum tensor, the current density does not contain surface divergences.

Moreover, for Dirichlet condition it vanishes on the boundaries. The normal derivative of the

current density on the boundaries vanish for both Dirichlet and Neumann conditions and is

nonzero for general Robin conditions. When the separation between the plates is smaller than

other length scales, the behavior of the current density is essentially different for non-Neumann

and Neumann boundary conditions. In the former case, the total current density in the region

between the plates tends to zero. For Neumann boundary condition on both plates, the current

density is dominated by the interference part and is inversely proportional to the separation.

2.1 Formulation of the problem and the Hadamard function

Compact spatial dimensions appear in a number of models in high-energy physics (Kaluza-

Klein type models, supergravity, string theories) and in condensed matter physics (carbon

nanotubes and nanoloops, topological insulators). In this chapter we consider the simplest case

of toroidal compactification that does not change the local geometrical characteristics. Namely,
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we consider (D+1)-dimensional flat spacetime with coordinates (x0, x1, . . . , xD) having a spatial

topology Rp+1 × T q, p+ q + 1 = D, where T q stands for a q-dimensional torus (for a review of

quantum field-theoretical effects in toroidal topology see [103]). The set of coordinates in the

uncompactified subspace Rp+1 will be denoted by xp+1 = (x1, ..., xp+1) and for the compactified

coordinates we denote xq = (xp+2, ..., xD). One has −∞ < xl < ∞ for l = 1, .., p, and

0 6 xl 6 Ll for l = p+ 2, ..., D, where Ll is the length of the lth compact dimension.

We are interested in the VEV of the current density for a quantum scalar field φ(x). The

mass and the charge of the field quanta will be denoted by m and e, respectively. In the

presence of an abelian gauge field Aµ the field equation reads

(
gµνDµDν +m2

)
φ = 0, (2.1)

where gµν = diag(1,−1, . . . ,−1) and Dµ = ∂µ + ieAµ is the gauge extended derivative. The

background geometry is flat and the related Ricci scalar becomes zero, R = 0. Consequently,

the nonminimal curvature coupling term is absent in (2.1). We assume the presence of two

parallel flat boundaries placed at xp+1 = a1 and xp+1 = a2. On the boundaries the field obeys

Robin boundary conditions (compare with (1.4))

(1 + βjn
µ
jDµ)φ(x) = 0, xp+1 ≡ z = aj, (2.2)

with constant coefficients βj, j = 1, 2, and with nµ
j being the inward pointing normal to the

boundary at xp+1 = aj. Here, for the further convenience we have introduced a special notation

z = xp+1 for the (p + 1)th spatial dimension. Note that Robin boundary conditions in the

form (2.2) are gauge invariant (for the discussion of various types of gauge invariant boundary

conditions see [72]). In what follows we will consider the region between the plates, a1 6 z 6 a2.

For this region one has nµ
j = (−1)j−1δµp+1. The expressions for the VEVs in the regions z 6 a1

and z > a2 are obtained by the limiting transitions. The results for Dirichlet and Neumann

boundary conditions are obtained from those for the condition (2.2) in the limits βj → 0 and

βj → ∞, Aµ = 0, respectively.

In addition to the boundary conditions on the plates, for the theory to be completely defined,

we should also specify the periodicity conditions along the compact dimensions. Different

conditions correspond to topologically inequivalent field configurations [278]. Here, we consider
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generic quasiperiodicity conditions,

φ(t, x1, . . . , xl + Ll, . . . , x
D) = eiαlφ(t, x1, . . . , xl, . . . , xD), (2.3)

with constant phases αl, l = p+ 2, . . . , D. The special cases of the condition (2.3) with αl = 0

and αl = π correspond to the most frequently discussed cases of untwisted and twisted scalar

fields, respectively. As it will be seen below, one of the effects of nontrivial phases in (2.3)

is the appearance of nonzero vacuum currents along compact dimensions (for a discussion of

physical effects of phases in periodicity conditions along compact dimensions see [279]-[285] and

references therein).

For a scalar field, the operator of the current density is given by the expression

jµ(x) = ie[φ+(x)Dµφ(x)− (Dµφ(x))
+φ(x)], (2.4)

where the cross stands for the hermitian conjugate. Its VEV is obtained from the Hadamard

function

G(x, x′) = ⟨0|φ(x)φ+(x′) + φ+(x′)φ(x)|0⟩, (2.5)

with |0⟩ being the vacuum state, by using the formula

⟨0|jµ(x)|0⟩ ≡ ⟨jµ(x)⟩ =
i

2
e lim
x′→x

(∂µ − ∂′µ + 2ieAµ)G(x, x
′). (2.6)

In the discussion below we will assume a constant gauge field Aµ. Though the correspond-

ing field strength vanishes, the nontrivial topology of the background spacetime leads to the

Aharonov-Bohm-like effects on physical observables. A constant gauge field Aµ can be excluded

from the field equation and from the expression for the VEV of the current density by the gauge

transformation Aµ = A′
µ + ∂µχ, φ(x) = e−ieχφ′(x), with the function χ = Aµx

µ. In the new

gauge one has A′
µ = 0. However, unlike to the case of trivial topology, here the constant vec-

tor potential does not completely disappear from the problem. It appears in the periodicity

conditions for the new field operator:

φ′(t, x1, . . . , xl + Ll, . . . , x
D) = eiα̃lφ′(t, x1, . . . , xl, . . . , xD), (2.7)

where now the phases are given by the expression

α̃l = αl + eAlLl. (2.8)
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In the discussion below we shall consider the problem in the gauge (φ′(x), A′
µ = 0) omitting

the prime. For this gauge, in (2.1), (2.2), (2.4) one has Dµ = ∂µ and in the expressions (2.6)

the term with the vector potential is absent.

As it is seen from (2.8), the presence of a constant gauge field is equivalent to the shift in

the phases of the periodicity conditions along compact dimensions. The shift in the phase is

expressed in terms of the magnetic flux Φl enclosed by the lth compact dimension as

eAlLl = −eAlLl = −2πΦl/Φ0, (2.9)

where Φ0 = 2π/e is the flux quantum and Al is the lth component of the spatial vector

A = (−A1, . . . ,−AD). In the discussion below the physical effects of a constant gauge field

will appear through the phases α̃l. In particular, the VEVs of physical observables are periodic

functions of these phases with the period 2π. In terms of the magnetic flux, this corresponds

to the periodicity of the VEVs, as functions of the magnetic flux, with the period equal to the

flux quantum.

Expanding the field operator in terms of the annihilation and creation operators, in a way

similar to that for (1.8), the expression of the Hadamard function is preented in the form

G(x, x′) =
∑
k

∑
s=±

φ
(s)
k (x)φ

(s)∗
k (x′), (2.10)

where φ
(±)
k (x) form a complete set of normalised positive- and negative-energy solutions to the

classical field equation obeying the boundary conditions of the model. In the region between

the plates, introducing the wave vectors kp = (k1, . . . , kp) and kq = (kp+2, . . . , kD), these mode

functions can be written in the form

φ
(±)
k (x) = Ck cos [kp+1 (z − aj) + γj(kp+1)] e

ik∥·x∥∓iωkt, (2.11)

where k∥ = (kp,kq), k = (kp, kp+1,kq), ωk =
√
k2 +m2, and x∥ stands for the coordinates

parallel to the plates. For the momentum components along the dimensions xi, i = 1, . . . , p,

one has −∞ < ki < +∞, whereas the components along the compact dimensions are quantized

by the periodicity conditions (2.7):

kl =
2πnl + α̃l

Ll

, nl = 0,±1,±2, . . . ., (2.12)
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with l = p + 2, ..., D. We will denote by ω0 the smallest value for the energy in the compact

subspace,
√
k2
q +m2 > ω0. Assuming that |α̃l| 6 π, we have

ω0 =

√∑D

l=p+2
α̃2
l /L

2
l +m2. (2.13)

This quantity can be considered as the effective mass for the field quanta.

Now we should impose on the modes (2.11) the boundary conditions (2.2) with Dµ = ∂µ.

From the boundary condition on the plate at z = aj, for the function γj(kp+1) in (2.11) one

gets

e2iγj(kp+1) =
ikp+1βj(−1)j + 1

ikp+1βj(−1)j − 1
. (2.14)

The boundary condition on the second plate determines the eigenvalues for kp+1. They are

solutions of the transcendental equation

e2iy =
1 + ib2y

1− ib2y

1 + ib1y

1− ib1y
, (2.15)

where we have defined

y = kp+1a, bj = βj/a, (2.16)

and a = a2 − a1 is the separation between the plates. In terms of dimensionless quantity y,

equation (2.15) is rewritten in the form

(
1− b1b2y

2
)
sin y − (b2 + b1)y cos y = 0. (2.17)

Unlike to the cases of Dirichlet and Neumann conditions, for Robin boundary condition the

eigenvalues of kp+1 are given implicitly, as solutions of the equation (2.17). The latter has an

infinite number of positive roots which will be denoted by y = λn, n = 1, 2, . . ., and for the

corresponding eigenvalues of kp+1 one has kp+1 = λn/a. For bj 6 0 or {b1 + b2 > 1, b1b2 6 0}

there are no other roots in the right-half plane of a complex variable y, Re y > 0 (see [273]). In

the remaining region of the plane (b1, b2), the equation (2.17) has purely imaginary roots ±iyl,

yl > 0. Depending on the values of bj, the number of yl can be one or two. In the presence

of purely imaginary roots, under the condition ω0 < yl, there are modes of the field for which

the energy ωk becomes imaginary. This would lead to the instability of the vacuum state. In

the discussion below we will assume that ω0 > yl. Note that in the corresponding problem
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on background of spacetime with trivial topology the stability condition is written as m > yl.

Now, by taking into account that ω0 > m, we conclude that the compactification, in general,

enlarges the stability range in the space of parameters of Robin boundary conditions.

Having specified the parameters in the mode functions, it remains to determine the coeffi-

cient Ck in (2.11). It is found from the orthonormalization condition∫
dDxφ

(λ)
k (x)φ

(λ′)∗
k′ (x) =

δλλ′

2ωk

δ(kp − k′
p)δnn′δnp+2,n′

p+2
....δnD,n′

D
, (2.18)

with the integration over xp+1 in the region between the plates. Substituting the functions

(2.11), after the standard integrations, one gets

|Ck|2 =
{1 + cos[y + 2γ̃j(y)] sin(y)/y}−1

(2π)paVqωk

, (2.19)

where y is a root of the equation (2.17) and Vq = Lp+1....LD is the volume of the compact

subspace. The function γ̃j(y) is defined by the relation

e2iγ̃j(y) =
iybj − 1

iybj + 1
. (2.20)

First we shall consider the case when all the roots of (2.17) are real and y = λn.

Substituting the modes φ
(±)
k (x) in the mode-sum (2.10), the expression for the Hadamard

function takes in the form

G(x, x′) =
1

aVq

∫
dkp

(2π)p

∑
nq

∞∑
n=1

1

ωk

gj(z, z
′, λn/a)

× λn cos(ωk∆t)e
ikp·∆xp+ikq ·∆xq

λn + cos [λn + 2γ̃j(λn)] sinλn
, (2.21)

where ∆xp= xp − x′
p, ∆xq= xq − x′

q, ∆t = t − t′, and nq = (np+2, . . . , nD), −∞ < nl < +∞.

In (2.21), the energy for the mode with a given k is written as

ωk =
√

k2
p + λ2n/a

2 + ω2
nq
, (2.22)

and

ωnq =
√

k2
q +m2, k2

q =
D∑

l=p+2

(
2πnl + α̃l

Ll

)2

. (2.23)

The summation over nq is understood as
∑

nq
=

∑+∞
np+2=−∞ · · ·

∑+∞
nD=−∞. In (2.21) and in what

follows we use the notation

gj(z, z
′, u) = cos (u∆z) +

1

2

∑
s=±1

esiy|z+z′−2aj | iuβj − s

iuβj + s
. (2.24)
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Note that gj(z, z
′,−y) = gj(z, z

′, y) and gj(z, z
′, 0) = 0.

The eigenvalues λn are given implicitly and the expression (2.21) is not convenient for the

evaluation of the VEVs. In order to obtain an expression in which the explicit knowledge of λn

is not required, we apply to the series over n the Abel-Plana-type summation formula [273, 68]

∞∑
n=1

πλnf(λn)

λn + cos[λn + 2γ̃j(λn)] sinλn
= − πf(0)/2

1− b2 − b1
+

∫ ∞

0

duf(u)

+i

∫ ∞

0

du
f(iu)− f(−iu)
c1(u)c2(u)e2u − 1

, (2.25)

where, for the further convenience, the notation

cj(u) =
bju− 1

bju+ 1
(2.26)

is introduced. In (2.25) we have assumed that bj 6 0. The changes in the evaluation procedure

in the case bj > 0 will be discussed below. In order to evaluate the series in (2.21), we take in

the summation formula

f(λn) =
cos(ωk∆t)

ωk

gj(z, z
′, λn/a). (2.27)

For this function one has f(0) = 0 and the first term in the right-hand side of (2.25) becomes

zero.

Applying the summation formula (2.25) with (2.27), the Hadamard function is decomposed

into the following separate contributions:

G(x, x′) = Gj(x, x
′) +

2

πVq

∫
dkp

(2π)p

∑
nq

∫ ∞

aωk∥

du gj(z, z
′, iu/a)

× eikp·∆xp+ikq ·∆xq

c1(u)c2(u)e2u − 1

cosh(∆t
√
u2/a2 − ωk∥)√

u2 − a2ωk∥

, (2.28)

where ωk∥ =
√

k2
p + ω2

nq
. The first term in the right-hand side, given by

Gj(x, x
′) =

1

πVq

∫
dkp

(2π)p

∑
nq

eikp·∆xp+ikq ·∆xq

×
∫ ∞

0

dkp+1
cos(ωk∆t)

ωk

gj(z, z
′, kp+1), (2.29)

comes from the first integral in the right-hand side of (2.25) and corresponds to the Hadamard

function in the geometry of a single plate at xp+1 = aj when the second plate is absent. This
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follows from the fact that the last term in 2.28 tends to zero for a fixed location z = aj of the

plate when the location of the second plate tends to infinity.

The Hadamard function (2.29) is further decomposed by taking into account that the part

in (2.24) coming from the first term in the right-hand side of (2.24),

G0(x, x
′) =

1

Vq

∫
dkp+1

(2π)p+1

∑
nq

eikp+1·∆xp+1+ikq ·∆xq
cos(ωk∆t)

ωk

, (2.30)

is the corresponding function for the boundary-free geometry. After the integration over the

components of the momentum along uncompactified dimensions, this function can be presented

in the form

G0(x, x
′) =

2V −1
q

(2π)p/2+1

∑
nq

eikq ·∆xqωp
nq
fp/2(ωnq

√
|∆xp+1|2 − (∆t)2), (2.31)

with the notations

fν(x) = Kν(x)/x
ν , (2.32)

where Kν(x) is the Macdonald function.

Consequently, the Hadamard function in the geometry of a single plate is written as

Gj(x, x
′) = G0(x, x

′) +
1

2πVq

∫
dkp

(2π)p

∑
nq

eikp·∆xp+ikq ·∆xq

×
∑
s=±1

∫ ∞

0

dkp+1
cos(ωk∆t)

ωk

esikp+1|z+z′−2aj | ikp+1βj − s

ikp+1βj + s
, (2.33)

where the second term in the right-hand side is induced by the presence of the plate at xp+1 = aj.

For the further transformation of the boundary-induced part in (2.33) we rotate the integration

contour over kp+1 by the angle sπ/2. In the summation over s the integrals over the intervals

(0,±iωk∥) cancel each other and we get

Gj(x, x
′) = G0(x, x

′) +
1

πVq

∫
dkp

(2π)p

∑
nq

eikp·∆xp+ikq ·∆xq

×
∫ ∞

ωk∥

du
cosh(∆t

√
u2 − ω2

k∥
)√

u2 − ω2
k∥

uβj + 1

uβj − 1
e−u|z+z′−2aj |. (2.34)

This expression is well suited for the investigation of the current density. With the repre-

sentation (2.34), the Hadamard function in the region between the plates, given by (2.28), is
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decomposed into the boundary-free, single plate-induced and second plate-induced contribu-

tions. An alternative expression for the Hadamard function is obtained in Appendix A2.

In deriving (2.28) and (2.34) we have assumed that βj 6 0. In the case βj > 0, the quantum

scalar field in the geometry of a single plate at z = aj has modes with kp+1 = i/βj for which

the dependence on the coordinate xp+1 has the form e−zj/βj . In the case 1/βj > ω0, for a part

of these modes the energy is imaginary and the vacuum is unstable. In order to have a stable

vacuum, in what follows, for non-Dirichlet boundary conditions, we shall assume that 1/βj < ω0

and the mode with kp+1 = i/βj corresponds to a bound state. For βj > 0 and in the absence

of purely imaginary roots of (2.17), in the right-hand side of the summation formula (2.25) the

residue terms at u = ±i/bj should be added (see [273]). Now the integrand in (2.33) has a

simple pole at kp+1 = is/βj and after the rotation the contribution of the residue at that pole

should be added. This contribution cancels the additional residue term in the right-hand side

of (2.25). In the case when the equation (2.17) has purely imaginary roots the corresponding

contributions have to be added to the mode-sum (2.21) for the Hadamard function. But the

corresponding contributions should also be added in the left-hand side of (2.25) and the further

evaluation procedure remains the same. Hence, the expressions (2.28) and (2.34) are valid for

all values of the coefficients in the Robin boundary conditions. The only restrictions come

from the stability of the vacuum state: 1/βj < ω0 and yl < ω0. In the presence of compact

dimensions with α̃l ̸= 0 one has ω0 > m and these conditions are less restrictive than those in

the case of trivial topology.

The current density in the boundary-free geometry is obtained by using the Hadamard

function (2.31) and has been investigated in [135]. The corresponding charge density and the

current densities along uncompact dimensions vanish. As it can be seen from (2.28) and (2.34),

the same holds in the case of the boundary-induced contributions in the VEVs. Hence, the

only nonzero components correspond to the current density along compact dimensions.

2.2 Vacuum currents in the geometry of a single plate

In this section we investigate the VEV of the vacuum current density in the geometry of a

single plate at xp+1 = aj. This VEV is obtained with the help of the formula (2.6) by using the
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Hadamard function from (2.34). The component of the VEV of the current density along the

lth compact dimension is presented in the decomposed form

⟨jl⟩j = ⟨jl⟩0 + ⟨jl⟩(1)j , (2.35)

where ⟨jl⟩0 is the current density in the boundary-free geometry and ⟨jl⟩(1)j is the contribution

induced by the presence of the plate.

The current density in the boundary-free geometry has been investigated in [135] and for

the completeness we will recall the main results. The current density is given by the formula

⟨jl⟩0 =
4eLlm

D+1

(2π)(D+1)/2

∞∑
nl=1

nl sin(nlα̃l)
∑
nq−1

cos(nq−1 · α̃q−1)fD+1
2
(mgnq(Lq)), (2.36)

where α̃q−1 = (α̃p+2, . . . , α̃l−1, α̃l+1, . . . , α̃D), nq−1 = (np+2, . . . , nl−1, nl+1, . . . , nD), and gnq(Lq) =

(
∑D

i=p+2 n
2
iL

2
i )

1/2. The current density ⟨jl⟩0 is an odd periodic function of α̃l with the period

2π and an even periodic function of α̃r, r ̸= l, with the same period. This corresponds to the

periodicity in the magnetic flux with the period of flux quantum. An alternative expression for

the current density in the boundary-free geometry is given by the formula [135]

⟨jl⟩0 =
4eLl/Vq

(2π)(p+3)/2

∞∑
n=1

sin (nα̃l)

(nLl)p+2

∑
nq−1

g p+3
2
(nLlωnq−1), (2.37)

where we have defined the function

gν(x) = xνKν(x), (2.38)

and

ω2
nq−1

= ω2
nq

− k2l . (2.39)

In the model with a single compact dimension (q = 1) the representations (2.36) and (2.37) are

identical.

When the length of the lth compact dimension, Ll, is much larger than the other length

scales, the behavior of the current density crucially depends whether the parameter

ω0l =
(∑D

i=p+2,̸=l
α̃2
i /L

2
i +m2

)1/2

, (2.40)

is zero or not. For ω0l = 0, which is realised for a massless field with α̃i = 0, i ̸= l, to the

leading order we have

⟨jl⟩0 ≈
2eΓ((p+ 3)/2)

π(p+3)/2Lp+1
l Vq

∞∑
n=1

sin(nα̃l)

np+2
. (2.41)
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In this case, the leading term in the expansion of Vq⟨jl⟩0/Ll coincides with the current density

in (p+2)-dimensional space with a single compact dimension of the length Ll. For ω0l ̸= 0 and

for large values of Ll one has

⟨jl⟩0 ≈
2eV −1

q sin(α̃l)ω
p/2+1
0l

(2π)p/2+1L
p/2
l

e−Llω0l , (2.42)

and the current density is exponentially suppressed. In the opposite limit of small values for

Ll, to the leading order we get

⟨jl⟩0 ≈
2eΓ((D + 1)/2)

π(D+1)/2LD
l

∞∑
n=1

sin(nα̃l)

nD
. (2.43)

The leading term does not depend on the mass and on the lengths of the other compact

dimensions and coincides with the current density for a massless scalar field in the space with

topology RD−1 × S1.

Now we turn to the investigation of the plate-induced contribution in the current density.

By using the expression for the corresponding part in the Hadamard function from (2.34), we

get the following expression

⟨jl⟩(1)j =
eCp

2pVq

∑
nq

kl

∫ ∞

ωnq

dy (y2 − ω2
nq
)(p−1)/2e−2yzj

yβj + 1

yβj − 1
, (2.44)

with the notations zj = |z − aj| for the distance from the plate and

Cp =
π−(p+1)/2

Γ((p+ 1)/2)
. (2.45)

Recall that, in order to have a stable vacuum state with ⟨φ⟩ = 0, we have assumed that 1/βj <

ω0. Under this condition, the integrand in (2.44) is regular everywhere in the integration range.

The integral in (2.44) is evaluated in the special cases of Dirichlet and Neumann boundary

conditions with the result

⟨jl⟩(1)j = ∓ 2e/Vq
(2π)p/2+1

∑
nq

klω
p
nq
fp/2(2ωnqzj), (2.46)

where the upper and lower signs correspond to Dirichlet and Neumann boundary conditions,

respectively. Note that, in the problem with a fermionic field, obeying the bag boundary

condition on the plate, the boundary-induced contribution vanishes for a massless field [137].
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Let us consider the behavior of the plate-induced contribution in asymptotic regions of the

parameters. At large distances from the plate, zj ≫ Li, one has zjωnq ≫ 1. Assuming that

|α̃i| < π, the dominant contribution in (2.44) comes from the region near the lower limit of the

integration and from the term with ni = 0, i = p+ 2, . . . , D. To the leading order we find

⟨jl⟩(1)j ≈ eα̃lω
(p−1)/2
0 e−2ω0zj

(4π)(p+1)/2VqLlz
(p+1)/2
j

ω0βj + 1

ω0βj − 1
, (2.47)

and the current density is exponentially small. Note that the suppression is exponential for

both massive and massless field.

For points close to the plate, zj ≪ Li, in (2.44) the contribution of the terms with large

values of |ni| dominates and this formula is not convenient for the asymptotic analysis and for

numerical evaluations. In the case βj 6 0, an alternative expression is obtained by using the

representation (2.93) for the Hadamard function. The first term in the right-hand side of this

representation corresponds to the geometry with uncompactified lth dimension and does not

contribute to the current density along that direction. In the geometry of a single plate at

xp+1 = aj the part in the Hadamard function induced by the compactification is given by the

first term in the figure braces of (2.93). From this part, by making use of (2.6), for the VEV of

the lth component of the current density we get

⟨jl⟩j =
21−p/2eLl

πp/2+2Vq

∞∑
n=1

sin (nα̃l)

(nLl)p+1

∑
nq−1

∫ ∞

0

dy g(zj, y)gp/2+1(nLl

√
y2 + ω2

nq−1
), (2.48)

where we have defined the function

g(zj, y) = gj(z, z, y) = 1 +
1

2

∑
s=±1

e2siyzj
iyβj − s

iyβj + s

= 1−
(1− y2β2

j ) cos(2yzj) + 2yβj sin(2yzj)

1 + y2β2
j

. (2.49)

The part with the first term in the right-side of (2.49) corresponds to the current density in

the boundary-free geometry. In this part the integration over y is done with the help of the

formula ∫ ∞

0

dy g p
2
+1(nLl

√
y2 + b2) =

√
π/2(nLl)

−1g p+3
2
(nLlb), (2.50)

and one gets the expression (2.37).
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Extracing the boundary-free part, for the plate-induced contribution from (2.48) we find

⟨jl⟩(1)j =
2−p/2eLl

πp/2+2Vq

∞∑
n=1

sin (nα̃l)

(nLl)p+1

∑
nq−1

∫ ∞

0

dy g p
2
+1(nLl

√
y2 + ω2

nq−1
)
∑
s=±1

e2siyzj
iyβj − s

iyβj + s
. (2.51)

In the case of single compact dimension one has q = 1, p = D−2, and the corresponding formula

for the plate-induced contribution in the current density is obtained from (2.51) omitting the

summation over nq−1 and putting ωnq−1 = m.

An important issue in quantum field theory with boundaries is the appearance of surface

divergences in the VEVs of local physical observables. Examples of the latter are the VEVs

of the field squared and of the energy density. These divergences are a consequence of the

oversimplification of a model where the physical interactions are replaced by the imposition

of boundary conditions for all modes of a fluctuating quantum field. Of course, this is an

idealization, as real physical systems cannot constrain all the modes (for a discussion of surface

divergences and their physical interpretation see [5],[286]-[294] and references therein). The

appearance of divergences in the VEVs of physical quantities indicates that a more realistic

physical model should be employed for their evaluation on the boundaries. An important

feature, which directly follows from the representation (2.51), is that the VEV of the current

density is finite on the plate. This is in sharp contrast with the behavior of the VEVs for the field

squared and energy-momentum tensor. The finiteness of the current density on the boundary

may be understood from general arguments. The divergences in local physical observables are

determined by the local bulk and boundary geometries. If we consider the model with the

topology Rp+2 × T q−1 with the lth dimension having the topology R1, then in this model the

lth component of the current density vanishes by the symmetry. The compactification of the

lth dimension to S1 does not change both the bulk end boundary local geometries and, hence,

does not add new divergences to the VEVs compared with the model on Rp+2 × T q−1.

In deriving (2.51) we have assumed that βj 6 0. In the case βj > 0 the contribution of the

bound state should be added to (2.51). For 1/βj < ω0l, this contribution is obtained from the

corresponding part in the Hadamard function, given by (2.94), and has the form

⟨jl⟩(1)bj = −22−p/2eLle
−2zj/βj

πp/2+1Vqβj

∞∑
n=1

sin (nα̃l)

(nLl)p+1

∑
nq−1

g p
2
+1(nLl

√
ω2
nq−1

− 1/β2
j ). (2.52)
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In what follows for simplicity we shall consider the case βj 6 0. Recall that, the representation

(2.44) is valid for all values of βj from the range of the vacuum stability.

For Dirichlet and Neumann boundary conditions, after the evaluation of the integral in

(2.51) by using the formula

∫ ∞

0

dy cos(2yzj)g p
2
+1(nLl

√
y2 + b2) =

√
π

2
(nLl)

p+2
g p+3

2
(b
√

4z2j + n2L2
l )

(4z2j + n2L2
l )

(p+3)/2
, (2.53)

one gets

⟨jl⟩(1)j = ∓ 4eL2
l /Vq

(2π)(p+3)/2

∞∑
n=1

n sin (nα̃l)

(4z2j + n2L2
l )

(p+3)/2

∑
nq−1

g p+3
2
(ωnq−1

√
4z2j + n2L2

l ), (2.54)

where the upper and lower signs correspond to Dirichlet and Neumann conditions, respectively.

For a single compact dimension with the length L and with the phase α̃ in the periodicity

condition for a massless field this gives

⟨jl⟩(1)j = ∓2Γ((D + 1)/2)e

π(D+1)/2LD

∞∑
n=1

n sin (nα̃)

(n2 + 4z2j /L
2)(D+1)/2

. (2.55)

Now, combining the expressions (2.37) and (2.54), we see that in the case of Dirichlet boundary

condition the boundary-free and plate-induced parts of the current density cancel each other

for zj = 0 and, hence, the total current vanishes on the plate. For Neumann condition the

current density on the plate is given by

⟨jl⟩j,z=aj = 2⟨jl⟩0 =
8eLl/Vq

(2π)(p+3)/2

∞∑
n=1

sin (nα̃l)

(nLl)p+2

∑
nq−1

g p+3
2
(nLlωnq−1). (2.56)

Note that the normal derivative of the current density on the plate vanishes for both Dirichlet

and Neumann boundary conditions: (∂z⟨jl⟩j)z=aj = 0. This is not the case for general Robin

condition.

Let us consider the behavior of the plate-induced contribution in the current density in the

limit Li ≪ Ll. In this investigation it is more convenient to use the representation (2.51). For∑D
i=p+2,̸=l α̃

2
i ̸= 0, the dominant contribution in the integral of (2.51) comes from the region

near the lower limit of the integration and from the term n = 1, ni = 0, i = p + 2, . . . , D, in

the summation. The argument of the function gp/2+1(x) in the integrand is large and we can

use the asymptotic expression gν(x) ≈
√
π/2xν−1/2e−x. After some intermediate calculations,
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for the leading term we get

⟨jl⟩(1)j ≈
2e(1− 2δ0βj

)

(2π)p/2+1VqL
p/2
l

ω
p/2+1
0l sin α̃l

eLlω0l(1+2z2j /Ll
2)
. (2.57)

Here, we have additionally assumed that Li ≪ |βj| for βj ̸= 0. For α̃i = 0, i = p + 2, . . . , D,

i ̸= l, the dominant contribution in (2.51) comes from the term ni = 0, i = p + 2, . . . , D, with

the leading term

Vq
Ll

⟨jl⟩(1)j ≈ ⟨jl⟩(1)j,Rp+1×S1 =
4e

(2π)p/2+2

∞∑
n=1

sin (nα̃l)

(nLl)p+1

∫ ∞

0

dy

×g p
2
+1(nLl

√
y2 +m2)

∑
s=±1

e2siyzj
iyβj − s

iyβj + s
. (2.58)

Here, ⟨jl⟩(1)j,Rp+1×S1 is the plate-induced contribution in the current density for (p+2)-dimensional

space with topology Rp+1 × S1 (see (2.51) for the case q = 1 and, hence, ωnq−1 = m).

If the length of the ith compact dimension is large, i ̸= l, the dominant contribution to the

sum over ni comes from large values of |ni| and in (2.51) we can replace the summation over

ni by the integration in accordance with

∞∑
ni=−∞

f(|ki|) →
Li

π

∫ ∞

0

dx f(x). (2.59)

The integral over x is evaluated by using the formula (2.50). As a result, from (2.51), to the

leading order, we obtain the current density along the lth compact dimension for the spatial

topology Rp+2×T q−1 with the lengths of the compact dimensions (Lp+2, . . . , Li−1, Li+1, . . . , LD).

Now let us consider the limiting case when Ll is large compared with the other length scales

in the problem, Ll ≫ Li, zj, i ̸= l. The dominant contribution in (2.51) comes from the term

ni = 0, i ̸= l. For ω0l ̸= 0 we find

⟨jl⟩(1)j ≈
2e

(
2δβj ,∞ − 1

)
(2π)p/2+1Vq

sin α̃l

Ll
p/2

ω
p/2+1
0l e−Llω0l , (2.60)

where, for non-Neumann boundary conditions (βj ̸= ∞), we have assumed that βjω0l ≪

(Llω0l)
1/2. For ω0l = 0 the leading term is given by the expression

⟨jl⟩(1)j ≈
2e

(
2δβj ,∞ − 1

)
π(p+3)/2VqL

p+1
l

Γ((p+ 3)/2)
∞∑
n=1

sin (nα̃l)

np+2
. (2.61)

Comparing with the corresponding asymptotics (2.41) and (2.42), we see that for non-Neumann

boundary conditions, in the both cases ω0l ̸= 0 and ω0l = 0, the leading terms in the boundary-

induced and boundary-free parts of the current density cancel each other.
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An equivalent representation for the plate-induced current density is obtained from (2.51)

rotating the integration contour in the complex plane y by the angle π/2 for the term with s = 1

and by the angle −π/2 for the term with s = −1. The integrals over the intervals (0,±iωnq−1)

are cancelled and we find

⟨jl⟩(1)j =
2−p/2eLl

πp/2+1Vq

∞∑
n=1

sin (nα̃l)

(nLl)p+1

∑
nq−1

∫ ∞

ωnq−1

dy

×e−2yzj
yβj + 1

yβj − 1
wp/2+1(nLl

√
y2 − ω2

nq−1
), (2.62)

where

wν(x) = xνJν(x), (2.63)

and Jν(x) is the Bessel function. The equivalence of the representations (2.44) and (2.62) can

also be directly seen by applying to the series over nl in (2.44) the relation

+∞∑
nl=−∞

klg(|kl|) =
2Ll

π

∞∑
n=1

sin(nα̃l)

∫ ∞

0

dx x sin(nLlx)g(x). (2.64)

The latter is a direct consequence of the Poisson’s resummation formula. After using (2.64) in

(2.44), we introduce a new integration variable u =
√
y2 − x2 − ω2

nq−1
and then pass to polar

coordinates in the (u, x)-plane. The integration over the polar angle is expressed in terms of

the Bessel function and the representation (2.62) is obtained.

Another expression is obtained by applying to the series over nl in (2.44) the summation

formula (2.88). For the series in (2.44) one has g(u) = u and the first integral vanishes. As a

result, the plate-induced part in the VEV of the current density is presented as

⟨jl⟩(1)j = −eCpLl sin α̃l

2pπVq

∑
nq−1

∫ ∞

0

dx
x

cosh(Ll
.

√
x2 + ω2

nq−1
)− cos α̃l

×
∫ x

0

dy
(1− y2β2

j ) cos (2yzj) + 2yβj sin (2yzj)

(1 + y2β2
j ) (x

2 − y2)(1−p)/2
. (2.65)

For Dirichlet and Neumann boundary conditions we obtain

⟨jl⟩(1)j = ∓ 2eLl sin α̃l

(4π)p/2+1Vqz
p/2
j

∑
nq−1

∫ ∞

0

dx
xp/2+1 Jp/2(2xzj)

cosh(Ll
.

√
x2 + ω2

nq−1
)− cos α̃l

. (2.66)

In figure 4, for the simplest Kaluza-Klein model with a single compact dimension of the

length L and with the phase α̃ (D = 4), we have plotted the total current density, LD⟨jl⟩j/e,
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for a massless scalar field in the geometry of a single plate as a function of the distance from

the plate and of the phase α̃. The left/right panel correspond to Dirichlet/Neumann boundary

conditions. As has been already noticed before, in the Dirichlet case the total current density

vanishes on the plate.

Figure 4: The total current density, LD⟨jl⟩j/e, in the topology R3 × S1 for a D = 4 massless

scalar field with Dirichlet (left panel) and Neumann (right panel) boundary conditions in the

geometry of a single plate, as a function of the phase in the quasiperiodicity boundary condition

and of the distance from the plate.

For the same model, figure 5 presents the plate-induced contribution to the current density

as a function of the distance from the plate for various values of the coefficients in the Robin

boundary condition (left panel) and as a function of the ratio βj/L (right panel). The numbers

near the curves on the right panel correspond to the value of βj/L. The left panel is plotted

for the fixed value of the relative distance from the plate zj/L = 0.3. On both panels, the

dashed curves are plotted for Dirichlet and Neumann boundary conditions. For the phase in

the quasiperiodicity condition we have taken α̃ = π/2. On the right panel, for the values

of βj/L between the ordinate axis and the vertical dotted line (βj/L = 1/α̃) the vacuum is

unstable.

68



Figure 5: The plate-induced contribution to the current density for the model corresponding

to figure 1 as a function of the distance from the plate (left panel) for different values of the

ratio βj/L (numbers near the curves) and as a function of βj/L (right panel) for zj/L = 0.3.

The dashed curves correspond to Dirichlet and Neumann boundary conditions and the graphs

are plotted for α̃ = π/2.

2.3 Current density between two plates

Now we turn to the geometry of two plates. In the region a1 6 xp+1 6 a2, by using the formula

(2.28) for the Hadamard function, the VEV of the current density is decomposed as

⟨jl⟩ = ⟨jl⟩j +
eCp

2p−1Vq

∑
nq

kl

∫ ∞

ωnq

dy
(y2 − ω2

nq
)(p−1)/2g(zj, iy)

c1(ay)c2(ay)e2ay − 1
. (2.67)

Here, the second term in the right-hand side is induced by the plate at xp+1 = aj′ , j
′ ̸= j.

Extracting from the second term in the right-hand side of (2.67) the part induced by the

second plate when the first one is absent, the current density is written in a more symmetric

form:

⟨jl⟩ = ⟨jl⟩0 +
∑
j=1,2

⟨jl⟩(1)j +∆⟨jl⟩, (2.68)

where the interference part is given by the expression

∆⟨jl⟩ = eCp

2pVq

∑
nq

kl

∫ ∞

ωnq

dy (y2 − ω2
nq
)
p−1
2

2 +
∑

j=1,2 e
−2yzj/cj(ay)

c1(ay)c2(ay)e2ay − 1
. (2.69)

By taking into account the expression for the current density in the geometry of a single plate,
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for the total current density we can also write

⟨jl⟩ = ⟨jl⟩0 +
eCp

2pVq

∑
nq

kl

∫ ∞

ωnq

dy (y2 − ω2
nq
)
p−1
2

×
2 +

∑
j=1,2 cj(ay)e

2yzj

c1(ay)c2(ay)e2ay − 1
. (2.70)

For special cases of Dirichlet and Neumann boundary conditions on both plates the general

formula is simplified to

⟨jl⟩ = ⟨jl⟩0 +
eCp

2pVq

∑
nq

kl

∫ ∞

ωnq

dy (y2 − ω2
nq
)
p−1
2

2∓
∑

j=1,2 e
2yzj

e2ay − 1
, (2.71)

where, as before, the upper and lower signs correspond to Dirichlet and Neumann boundary

conditions, respectively. In particular, for Dirichlet boundary condition the part induced by

the second plate vanishes on the first plate. Note that in the system of two fields with Dirichlet

and Neumann conditions the distribution of the total current density in the region between the

plates is uniform and the current density vanishes in the regions z < a1 and z > a2. Another

form for (2.71) is obtained by making use of the expansion

1

e2ay − 1
=

∞∑
n=1

e−2nay, (2.72)

After the integration over y we get

⟨jl⟩ = ⟨jl⟩0 +
2e/Vq

(2π)p/2+1

∞∑
n=1

∑
nq

klω
p
nq
[2f p

2
(2naωnq)∓

∑
j=1,2

f p
2
(2(na− zj)ωnq)]. (2.73)

A similar representation for the interference part ∆⟨jl⟩ is obtained from (2.73) by the replace-

ment zj → −zj. For Dirichlet boundary condition, on the plates, z = aj, one has

∆⟨jl⟩z=aj =
2e/Vq

(2π)p/2+1

∑
nq

klω
p
nq
f p

2
(2aωnq). (2.74)

Combining this result with the formulas for single plates, we see that in the case of Dirichlet

boundary condition the total current vanishes on the plates: ⟨jl⟩z=aj = 0.

An equivalent representation for the current density in the region between the plates and for

Robin conditions is obtained by using the representation (2.93) for the corresponding Hadamard

function:

⟨jl⟩ = ⟨jl⟩j +
21−p/2eLl

πp/2+1Vq

∞∑
n=1

sin (nα̃l)

(nLl)p+1

∑
nq−1

∫ ∞

ωnq−1

dy

×
wp/2+1(nLl

√
y2 − ω2

nq−1
)

c1(ay)c2(ay)e2ay − 1
g(zj, iy). (2.75)
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Combining the expressions (2.62) and (2.75), for the total current density we find

⟨jl⟩ = ⟨jl⟩0 +
2−p/2eLl

πp/2+1Vq

∞∑
n=1

sin (nα̃l)

(nLl)p+1

∑
nq−1

∫ ∞

ωnq−1

dy

×
2 +

∑
j=1,2 e

2yzjcj(ay)

c1(ay)c2(ay)e2ay − 1
wp/2+1(nLl

√
y2 − ω2

nq−1
). (2.76)

Now, by taking into account the expression (2.62) for the single plate induced part, from (2.75)

for the interference part we get

∆⟨jl⟩ =
2−p/2eLl

πp/2+1Vq

∞∑
n=1

sin (nα̃l)

(nLl)p+1

∑
nq−1

∫ ∞

ωnq−1

dy

×
2 +

∑
j=1,2 e

−2yzj/cj(ay)

c1(ay)c2(ay)e2ay − 1
wp/2+1(nLl

√
y2 − ω2

nq−1
). (2.77)

The equivalence of the representations (2.70) and (2.75) can be seen directly by using the

formula (2.64) in a way similar to that for the geometry of a single plate.

For Dirichlet and Neumann conditions, after using the expansion (2.72), the integral over y

in (2.76) is expressed in terms of the MacDonald function and one gets the representation

⟨jl⟩ =
2(1−p)/2eL2

l

π(p+3)/2Vq

∞∑
n=1

n sin (nα̃l)
∑
nq−1

ωp+3
nq−1

×
∞∑

r=−∞

{
f p+3

2
(ωnq−1

√
4(ra)2 + n2L2

l )

∓f p+3
2
(ωnq−1

√
4(ra− z + a1)2 + n2L2

l )

}
, (2.78)

where we have taken into account the expression (2.37) for the current density in the boundary-

free geometry. In the model with a single compact dimension with the length L and for a

massless field, from (2.78) we find

⟨jl⟩ =
2Γ((D + 1)/2)e

π(D+1)/2LD

∞∑
n=1

∞∑
r=−∞

n sin (nα̃)

×
{[

4(ra/L)2 + n2
]−D+1

2 ∓
[
4(ra− z + a1)

2/L2 + n2
]−D+1

2

}
. (2.79)

In the case of Dirichlet boundary condition on the left plate, xp+1 = a1, and Neumann bound-

ary condition on the right one, xp+1 = a2, the corresponding formulas are obtained from (2.78)

and (2.79) with the upper sign, adding the factor (−1)r in the summation over r. The cor-

responding current density vanishes on the left plate. From (2.78) we can also see that the
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normal derivative of the current density vanishes on the plates for both Dirichlet and Neumann

boundary conditions.

In the limit a ≪ Li, i ̸= l, the dominant contribution to the series over nq−1 in (2.77)

comes from large values of |ni|, i ̸= l, and we can replace the summation by the integration in

accordance with

∑
nq−1

f(ωnq−1) →
2 (4π)(1−q)/2 Vq
Γ((q − 1)/2)Ll

∫ ∞

0

du uq−2 f(
√
u2 +m2). (2.80)

Changing the integration variable y to x =
√
y2 − u2, we introduce polar coordinates in the

(u, x)-plane. After the integration over the polar angle, we get

∆⟨jl⟩ ≈ ∆⟨jl⟩RD×S1 , (2.81)

where ∆⟨jl⟩RD×S1 is the corresponding quantity in the geometry of a single compact dimension

with the length Ll. The expression for ∆⟨jl⟩RD×S1 is obtained from (2.77) taking p = D − 2,

Vq = Ll, ωnq−1 = m, and omitting the summation over nq−1. If, in addition, am≪ 1, one finds

∆⟨jl⟩ ≈ 2e

(2π)D/2 a

∞∑
n=1

sin (nα̃l)

(nLl)D−1

∫ ∞

0

dy
2 +

∑
j=1,2 e

−2yzj/a/cj(y)

c1(y)c2(y)e2y − 1
wD/2(nLly/a). (2.82)

Now let us also assume that a ≪ Li,m
−1, for all i = p + 2, . . . , D. This means that the

separation between the plates is smaller than all other length scales in the problem. In order

to estimate the integral in (2.82), we note that for a fixed b and for λ → +∞, the dominant

contribution to the integral
∫∞
0
dy f(y)e−bywD/2(λy) comes from the region with y . a/L. By

taking into account that∫ ∞

0

dy e−bywD/2(λy) =
2D/2λDΓ((D + 1)/2)
√
π (b2 + λ2)(D+1)/2

, (2.83)

to the leading order we get∫ ∞

0

dy f(y)e−bywD/2(λy) ≈
2D/2

√
πλ

Γ((D + 1)/2)f(0). (2.84)

For the integral in (2.82) we take b = 2 and

f(y) =
2 +

∑
j=1,2 e

−2yzj/a/cj(y)

c1(y)c2(y)− e−2y
. (2.85)
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In the case of non-Neumann boundary conditions one has f(0) = 1 and, hence,

∆⟨jl⟩ ≈ 2eΓ((D + 1)/2)

π(D+1)/2LD

∞∑
n=1

sin (nα̃l)

nD
. (2.86)

Combining this result with the expressions from the previous section for the geometry of a single

plate, we conclude that lima→0⟨jl⟩ = 0, i.e., for non-Neumann boundary conditions the total

current density in the region between the plates tends to zero for small separations between the

plates. For non-Neumann boundary condition on one plate and Neumann boundary condition

on the other we have f(0) = −1 and the corresponding formula is obtained from (2.86) changing

the sign of the right-hand side. In this case we have again lima→0⟨jl⟩ = 0.

For Neumann boundary condition on both plates, for the function in (2.85) we have f(y) ∼

2/y, y → 0. In order to obtain the leading term in the asymptotic expansion for small values of

a it is more convenient to use the expression (2.79) with the lower sign instead of the right-hand

side of (2.82). For small a/L the dominant contribution in (2.79) comes from large values of r

and, to the leading order, we replace the corresponding summation by the integration. For the

leading term this gives

⟨jl⟩ ≈ 2eΓ(D/2)

πD/2LD−1a

∞∑
n=1

sin (nα̃)

nD−1
, (2.87)

and for Neumann boundary condition the current density diverges in the limit a→ 0 like 1/a.

The described features in the behavior of the vacuum current density, LD⟨jl⟩/e, in the region

between the plates located at z = 0 and z = a, as a function of the separation between the

plates, is illustrated in figure 6 for a D = 4 massless scalar field in the model with a single

compact dimension of the length L and of the phase α̃. The graphs are plotted for z = a/2 and

α̃ = π/2, in the cases of Dierichlet (D), Neumann (N) boundary conditions on both plates, for

Dirichlet boundary condition at z = 0 and Neumann boundary condition at z = a (DN), and

for Robin boundary conditions with βj/L = −0.5 and βj/L = −1 (numbers near the curves).

At large separations between the plates, the boundary-induced effects are small and the current

density coincides with that in the boundary-free geometry.

In figure 7, in the model with a single compact dimension of the length L and for a D = 4

massless scalar field with Dirichlet (left panel) and Neumann (right panel) boundary conditions,

we have plotted the total current density as a function of the ratio z/a in the region between the
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Figure 6: The VEV of the current density in the region between the plates evaluated at z = a/2,

as a function of the separation between the plates. The graphs are plotted for Dirchlet and

Neumann boundary conditions on both plates, for Dirichlet condition on the left plate and

Neumann condition on the right one, and for Robin boundary conditions with the values of

βj/L given near the curves. For the phase we have taken the value α̃ = π/2.

plates. The numbers near the curves correspond to the values of a/L and the graphs are plotted

for α̃ = π/2. The features, obtained before on the base of asymptotic analysis, are clearly seen

from the graphs: the current density for Dirichlet/Neumann scalar decreases/increases with

decreasing separation between the plates and for Dirichlet scalar it vanishes on the plates.

The same graphs for Dirichlet boundary condition on the left plate and Neumann condition

on the right one are presented on the left panel of figure 8. The right panel in figure 8 is plotted

for Robin boundary condition on both plates with β1/L = β2/L = −1. In the Robin case, the

current density decreases with the further decrease of the separation between the plates and it

tends to zero in the limit a→ 0, in accordance with the general analysis described above.

2.4 Appendix A2: Alternative representation of the Hadamard

function

In this section we derive an alternative representation for the Hadamard function which is well

suited for the investigation of the near-plate asymptotic of the current density. The starting
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Figure 7: The current density between the plates as a function of the relative distance from the

left plate in the model with a single compact dimension. The graphs are plotted for a massless

field with the parameter α̃ = π/2 and with Dirichlet (left panel) and Neumann (right panel)

boundary conditions. The numbers near the curves correspond to the values of a/L.

Figure 8: The same as in figure 7 for Dirichlet boundary condition on the left plate and Neumann

condition on the right one (left panel). The right panel is plotted for Robin boundary condition

on both plates with β1/L = β2/L = −1.
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point is the representation (2.21). We apply to the corresponding series over nl the summation

formula [132, 295]

2π

Ll

∞∑
nl=−∞

g(kl)f(|kl|) =
∫ ∞

0

du[g(u) + g(−u)]f(u)

+i

∫ ∞

0

du [f(iu)− f(−iu)]
∑
λ=±1

g(iλu)

euLl+iλα̃l − 1
, (2.88)

where kl is given by (2.12). The part in the Hadamard function coming from the first term

in the right-hand side of (2.88) coincides with the Hadamard function for the geometry of two

plates in D-dimensional space with topology Rp+2 × T q−1 and with the lengths of the compact

dimensions (Lp+2, . . . , Ll−1, Ll+1, . . . , LD) (the lth dimension is uncompactified). We will denote

this function by GRp+2×T q−1(x, x′). As a result, under the assumption βj 6 0, the Hadamard

function is decomposed as

G(x, x′) = GRp+2×T q−1(x, x′) +
Ll

πaVq

∫
dkp

(2π)p

∑
nq−1

×
∞∑
n=1

λng(z, z
′, λn/a)e

ikp·∆xp+ikl
q−1·∆xl

q−1

λn + cos [λn + 2γ̃j(λn)] sinλn

×
∫ ∞

ω
(l)
k

du
cosh(∆t

√
u2 − ω

(l)2
k )√

u2 − ω
(l)2
k

∑
λ=±1

e−λu∆xl

euLl+iλα̃l − 1
, (2.89)

where xl
q−1 = (xp+2, ..., xl−1, xl+1, . . . xD), kq−1 = (kp+2, . . . , kl−1, kl+1, . . . , kD), and ω

(l)
k =√

ω2
k − k2l . Here, the second term in the right-hand side vanishes in the limit Ll → ∞ and is

induced by the compactification of the lth dimension from R1 to S1 with the length Ll.

By making use of the relation

∑
λ=±1

e−λu∆xl

euLl+iλα̃l − 1
= 2u

∞∑
r=1

hr(u,∆x
l), (2.90)

with

hr(∆x
l, u) =

e−ruLl

u
cosh

(
u∆xl + irα̃l

)
, (2.91)
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we rewrite the formula (2.89) in the form

G(x, x′) = GRp+2×T q−1(x, x′) +
2Ll

πaVq

∞∑
r=1

∫
dkp

(2π)p

×
∑
nq−1

∫ ∞

0

dy cosh(y∆t)eikp·∆xp+ikl
q−1·∆xl

q−1

×
∞∑
n=1

λng(z, z
′, λn/a)hr(∆x

l,
√
λ2n/a

2 + y2 + ω2
p,nq−1

)

λn + cos [λn + 2γ̃j(λn)] sinλn
, (2.92)

with ωp,nq−1 =
√

k2
p + ω2

nq−1
. Now, by using the summation formula (2.25) for the series over n

we get the final representation

G(x, x′) = GRp+2×T q−1(x, x′) +
2Ll

π2Vq

∞∑
r=1

∫
dkp

(2π)p

∑
nq−1

eikp·∆xp+ikl
q−1·∆xl

q−1

×
∫ ∞

0

dy cosh(∆ty)
{∫ ∞

0

dugj(z, z
′, u)hr(∆x

l,
√
u2 + y2 + ω2

p,nq−1
) (2.93)

+

∫ ∞

√
y2+ω2

p,nq−1

du
gj(z, z

′, iu)

c1(au)c2(au)e2au − 1

∑
s=±1

ihsr(∆x
l, i

√
u2 − y2 − ω2

p,nq−1
)
}
.

In this expression, the part with the first term in the figure braces is the contribution to the

Hadamard function induced by the compactification of the lth dimension for the geometry of a

single plate at xp+1 = aj and the part with the second term in the figure braces is induced by

the second plate. Note that the contribution of the first term in the right-hand side of (2.93)

to current density along the lth dimension vanishes.

In deriving the representation (2.93) we have assumed that βj 6 0. For this case, in the

region between the plates, all the eigenvalues for the momentum kp+1 are real and in the

geometry of a single plate there are no bound states. For βj > 0, in the application of the

summation formula (2.25) to the series over n in (2.92) the contribution from the poles ±i/bj

should be added to the right-hand side of (2.25). This contribution comes from the bound state

in the geometry of a single plate at xp+1 = aj. For this bound state the mode function has the

form φ
(±)
k (x) ∼ e−zj/βjeik∥·x∥∓iω

(b)
k t with ω

(b)
k =

√
k2
p + ω2

nq
− 1/β2

j . Assuming that ω0l > 1/βj,

the contribution from the bound state to the Hadamard function in the geometry of a single

plate is given by the expression

G
(1)
bj (x, x

′) =
4θ(βj)Ll

πVqβj
e−|z+z′−2aj |/βj

∞∑
r=1

∫
dkp

(2π)p

∑
nl
q−1

∫ ∞

0

dx eikp·∆xp+ikl
q−1·∆xl

q−1

× cosh(x∆t)hr(∆x
l,
√
x2 + k2

p + ω2
nq−1

− 1/β2
j ), (2.94)
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where θ(x) is the Heaviside unit step function. In the case ω0l < 1/βj < ω0 the corresponding

expression is more complicated.

2.5 Summary

We have investigated the influence of parallel flat boundaries on the VEV of the current density

for a charged scalar field in a flat spacetime with toroidally compactified spatial dimensions,

assuming the presence of a constant gauge field. The effect of the latter on the current is

similar to the Aharonov-Bohm effect and is caused by the nontrivial topology of the background

space. Along compact dimensions we have considered quasiperiodicity conditions with general

phases. The special cases of twisted and untwisted fields are the configurations most frequently

discussed in the literature. By a gauge transformation, the problem with a constant gauge

field is mapped to the one with zero field, shifting the phases in the periodicity conditions by

an amount proportional to the magnetic flux enclosed by a compact dimension in the initial

representation of the model. On the plates we employed Robin boundary conditions, in general,

with different coefficients on the left and right plates. The Robin boundary conditions for bulk

fields naturally arise in braneworld scenario and the boundaries considered here may serve as

a simple model for the branes.

We considered a free field theory and all the information on the properties of the vacuum

state is encoded in two-point functions. Here we chose the Hadamard function. The VEV of the

current density is obtained from this function in the coincidence limit by using (2.6). For the

evaluation of the Hadamard function we have employed a direct summation over the complete

set of modes. In the region between the plates the eigenvalues of the momentum component

perpendicular to the plates are quantized by the boundary conditions on the plates and are

given implicitly, in terms of solutions of the transcendental equation (2.17). Depending on the

values of the Robin coefficients, this equation may have purely imaginary solutions y = ±iyl.

In order to have a stable vacuum with ⟨φ⟩ = 0, we assume that ω0 > yl. Compared to the

case of the bulk with trivial topology, this constraint in models with compact dimensions is

less restrictive. The eigenvalues of the momentum components along compact dimensions are

quantized by the periodicity conditions and are determined by (2.12). The application of the
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generalized Abel-Plana formula for the summation over the roots of (2.17) allowed us to extract

from the Hadamard function the part corresponding to the geometry with a single plate and to

present the second-plate-induced contribution in the form which does not require the explicit

knowledge of the eigenmodes for kp+1 (see (2.28)). In addition, the corresponding integrand

decays exponentially in the upper limit. A similar representation, (2.34), is obtained for the

Hadamard function in the geometry of a single plate. The second term in the right-hand side of

this representation is the boundary-induced contribution. An alternative representation for the

Hadamard function, (2.93), is obtained in Appendix, by making use of the summation formula

(2.88). The second term in the right-hand side of this representation is the contribution induced

by the compactification of the lth dimension.

The VEVs of the charge density and the components of the current density along uncompact

dimensions vanish. The current density along compact dimensions is a periodic function of the

magnetic flux with the period equal to the flux quantum. The component along the lth compact

dimension is an odd function of the phase α̃l and an even function of the remaining phases α̃i,

i ̸= l. First we have considered the geometry with a single plate. The VEV of the current density

is decomposed into the boundary-free and plate-induced parts. The boundary-free contribution

was investigated in [135] and we have been mainly concerned with the plate-induced part, given

by (2.44). For special cases of Dirichlet and Neumann boundary conditions the corresponding

expression is simplified to (2.46). The plate-induced part has opposite signs for Dirichlet and

Neumann conditions. At distances from the plate larger than the lengths of compact dimensions

the asymptotic is described by (2.47) and the plate-induced contribution is exponentially small.

For the investigation of the near-plate asymptotic of the current density it is more convenient to

use the representation (2.51) for the general Robin case and (2.54) for Dirichlet and Neumann

conditions. From these representations it follows that the current density is finite on the plate.

This property is in sharp contrast with the behavior of the VEVs of the field squared and of

the energy-momentum tensor which diverge on the plate. For Dirichlet boundary condition the

current density vanishes on the plate and for Neumann condition its value on the plate is two

times larger than the current density in the boundary-free geometry. The normal derivative of

the current density vanishes on the plate for both Dirichlet and Neumann conditions. This is
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not the case for general Robin condition. The behavior of the plate-induced part of the current

density along lth dimension, in the limit when the lengths of the other compact dimensions

are much smaller than Ll, crucially depend wether the phases α̃i, i ̸= l, are zero or not. For∑
i̸=l α̃

2
i ̸= 0 one has ω0l ̸= 0 and the corresponding asymptotic expression is given by (2.57).

In this case the plate-induced contribution is exponentially suppressed. For α̃i = 0, i ̸= l, the

leading term in the asymptotic expansion, multiplied by Vq/Ll, coincides with the corresponding

current density for (p + 2)-dimensional space with topology Rp+1 × S1. In the limit when the

length of the lth dimension is much larger than the other length scales of the model, the

behavior of the plate-induced contribution to the current density is essentially different for the

cases ω0l ̸= 0 and ω0l = 0. In the former case the leading term is given by (2.60) and the

current density is suppressed by the factor e−Llω0l . In the second case, for the leading term

one has the expression (2.61) and its behavior, as a function of Ll, is power law. In both cases

and for non-Neumann boundary conditions, the leading terms in the boundary-induced and

boundary-free parts of the current density cancel each other.

For the current density in the region between the plates we have provided various decompo-

sitions ((2.67), (2.68), (2.70) for general Robin boundary conditions and (2.71), (2.73), (2.78)

for special cases of Dirichlet and Neumann conditions). In the case of Dirichlet boundary con-

dition the total current vanishes on the plates. The normal derivative vanishes on the plates

for both Dirichlet and Neumann cases. In the limit when the separation between the plates is

smaller than all the length scales in the problem, the behavior of the current density is essen-

tially different for non-Neumann and Neumann boundary conditions. In the former case, the

total current density in the region between the plates tends to zero. For Neumann boundary

condition on both plates, for small separations the total current density is dominated by the in-

terference part and it diverges inversely proportional to the separation (see (2.87)). The results

of the present paper may be applied to Kaluza-Klein-type models in the presence of branes (for

D > 3) and to planar condensed matter systems (for D = 2), described within the framework of

an effective field theory. In particular, in the former case, the vacuum currents along compact

dimensions generate magnetic fields in the uncompactified subspace. The boundaries discussed

above can serve as a simple model for the edges of planar systems.
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3 CHAPTER: ELECTROMAGNETIC CASIMIR

EFFECT FOR A CYLINDRICAL SHELL

ON DE SITTER SPACE

Complete set of cylindrical modes is constructed for the electromagnetic field inside and outside

a cylindrical shell in the background of (D+1)-dimensional dS spacetime. On the shell, the field

obeys the generalized perfect conductor boundary condition. For the Bunch-Davies vacuum

state, we evaluate the expectation values (VEVs) of the electric field squared and of the energy-

momentum tensor. The shell-induced contributions are explicitly extracted. In this way, for

points away from the shell, the renormalization is reduced to the one for the VEVs in the

boundary-free dS bulk. As a special case, the VEVs are obtained for a cylindrical shell in

the (D + 1)-dimensional Minkowski bulk. We show that the shell-induced contribution in the

electric field squared is positive for both the interior and exterior regions. The corresponding

Casimir-Polder forces are directed toward the shell. The vacuum energy-momentum tensor, in

addition to the diagonal components, has a nonzero off-diagonal component corresponding to

the energy flux along the direction normal to the shell. This flux is directed from the shell

in both the exterior and interior regions. For points near the shell, the leading terms in the

asymptotic expansions for the electric field squared and diagonal components of the energy-

momentum tensor are obtained from the corresponding expressions in the Minkowski bulk

replacing the distance from the shell by the proper distance in the dS bulk. The influence of

the gravitational field on the local characteristics of the vacuum is essential at distances from

the shell larger than the dS curvature radius. The results are extended for confining boundary

conditions of flux tube models in QCD.

3.1 Electromagnetic field modes in dS spacetime

We consider a quantum electromagnetic field in background of a (D+1)-dimensional dS space-

time, in the presence of a perfectly conducting cylindrical shell having the radius a. In ac-

cordance with the problem symmetry, we write the dS line element in cylindrical coordinates
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(r, ϕ, z):

ds2 = dt2 − e2t/α
[
dr2 + r2dϕ2 + (dz)2

]
, (3.1)

where z =
(
z3, ..., zD

)
. The parameter α is expressed in terms of the cosmological constant Λ

through the relation

α2 =
D(D − 1)

2Λ
. (3.2)

Below, in addition to the synchronous time coordinate t we will use the conformal time τ ,

defined as

τ = −αe−t/α, −∞ < τ < 0. (3.3)

In terms of this coordinate the metric tensor takes a conformally flat form gµν = (α/τ)2g(M)µν ,

where g(M)µν = diag(1,−1,−r2,−1, . . . ,−1) is the Minkowskian metric tensor.

We are interested in the changes of the VEVs for the electromagnetic field induced by a

cylindrical boundary r = a in the background of the geometry given by (3.1). In the canonical

quantization procedure a complete orthonormal set of solutions to the classical field equations

is required and, in this section, we present this set for the geometry at hand. For a free

electromagnetic field the Maxwell equations have the form

1√
|g|
∂ν

(√
|g|F µν

)
= 0, (3.4)

where Fµν is the electromagnetic field tensor, Fµν = ∂µAν − ∂νAµ. We assume that on the

surface r = a the field obeys the boundary condition

nν1 ∗Fν1···νD−1
= 0, (3.5)

where nv is the normal to the boundary, ∗Fν1···νD−1
is the dual of the field tensor Fµν . For D = 3

the condition (3.5) reduces to the boundary condition on the surface of a perfect conductor. We

want to find the complete set of solutions to the equation (3.4) in the coordinates (τ, r, ϕ, z).

In the Coulomb gauge one has A0 = 0, ∂l(
√
|g|Al) = 0, l = 1, ..., D. For the geometry under

consideration the latter equation is reduced to

D∑
l=1

∂l(rA
l) = 0, (3.6)

which is the same as that in the Minkowski spacetime. If we present the solution in the

factorized form, Aµ(τ, x
l) = T (τ)Sµ(x

l), then it can be shown that the parts of the mode
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functions corresponding to Sµ(x
l) are found in a way similar to that for the (D+1)-dimensional

Minkowski bulk. The corresponding modes are presented in appendix 3.4.2. From the field

equations (3.4) for the function T (τ) one gets T (τ) = ηD/2−1ZD/2−1(ωη), where η = |τ | and

Zν(x) is a cylinder function of the order ν. It can be taken as a linear combination of the Hankel

functions H
(1,2)
ν (x). The relative coefficient in the linear combination depends on the vacuum

state under consideration. We assume that the field is prepared in the Bunch-Davies vacuum

[296] for which Zν(x) = H
(1)
ν (x). Among a one-parameter family of maximally symmetric

vacuum states in dS spacetime the Bunch-Davies vacuum is the only one with the Hadamard

singularity structure.

As a result, by taking into account the expressions for the Minkwoskian modes (3.93) and

(3.103), for the modes in dS spacetime realizing the Bunch-Davies vacuum state one finds the

expressions

A(β)µ = cβη
D/2−1H

(1)
D/2−1(ωη)(0, im/r,−r∂r, 0, . . . , 0)Cm(γr)e

imϕ+ik·z, (3.7)

for the polarization σ = 1, and

A(β)µ = ωcβη
D/2−1H

(1)
D/2−1(ωη)

(
0, ϵσl + iω−2k · ϵσ∂l

)
Cm(γr)e

imϕ+ik·z, (3.8)

for the remaining polarizations σ = 2, . . . , D − 1, with l = 1, . . . , D. Here, m = 0,±1,±2, . . .,

Cm(x) is a cylinder function, k · z =
∑D

l=3 klz
l, k · ϵσ =

∑D
l=3 klϵσl, and

ω =
√
γ2 + k2, (3.9)

with k2 =
∑D

l=3 k
2
l . For the polarization vectors ϵσl one has ϵσ1 = ϵσ2 = 0 and the relations

(3.99), (3.100). The set of quantum numbers specifying the modes is reduced to β = (γ,m,k, σ).

It can be easily checked that the modes (3.7) and (3.8) obey the gauge condition (3.6).

The eigenvalues for the quantum number γ are determined by the boundary condition (3.5).

First we consider the region inside the cylindrical shell, r < a. From the regularity condition

at r = 0 it follows that

Cm(γr) = Jm(γr), (3.10)

with Jm(x) being the Bessel function. For the mode σ = 1 the allowed values for γ are roots of

the equation

J ′
m(γa) = 0, (3.11)
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where the prime means the derivative with respect to the argument of the function. For the

modes σ = 2, . . . , D − 1, the radial derivative enters in the expression for the component A1

only. For these modes the boundary condition is reduced to

Jm(γa) = 0. (3.12)

In what follows we will denote the eigenmodes by γa = γ
(λ)
m,n, n = 1, 2, ..., where λ = 1 for σ = 1

and λ = 0 for σ = 2, 3, . . . , D − 1. Hence, one has J
(λ)
m (γ

(λ)
m,n) = 0, with f (0)(x) = f(x) and

f (1)(x) = f ′(x).

The normalization coefficients cβ in (3.7) and (3.8) are determined from the orthonormal-

ization condition for the vector potential:∫
dDx

√
|g|[A∗

(β′)ν(x)∇0Aν
β(x)−∇0A∗

(β′)ν(x)A
ν
(β)(x)] = 4iπδββ′ , (3.13)

where the integration over the radial coordinate goes over the region inside the cylinder and

δββ′ is understood as the Kronecker symbol for the discrete components of the collective index

β and the Dirac delta function for the continuous ones. By using the relation (3.99) it can be

seen that the modes (3.8) are orthogonal. From (3.13) one finds

|cβ|2 =
Tm(γ

(λ)
m,n)

2(2πα)D−3γ
(λ)
m,n

, (3.14)

for σ = 1, . . . , D − 1, where we have introduced the notation

Tm(x) = x
[
x2J ′2

m(x) +
(
x2 −m2

)
J2
m(x)

]−1
. (3.15)

Having the complete set of mode functions (3.7) and (3.8) we can evaluate the VEV of

any physical quantity F{Aµ(x), Aν(x)} bilinear in the field. By expanding the operator of the

vector potential in terms of the modes (3.7) and (3.8) and using the commutation relations for

the annihilation and creation operators, the following mode-sum formula is obtained

⟨0|F{Aµ(x), Aν(x)}|0⟩ =
∑
β

F{A(β)µ(x), A
∗
(β)ν(x)}, (3.16)

where |0⟩ stands for the vacuum state,
∑

β includes the summation over the discrete quantum

numbers and the integration over the continuous ones. The expression in the right-hand side

of (3.16) is divergent and requires a regularization with the subsequent renormalization. The
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regularization can be done by introducing a cutoff function or by the point splitting. The

consideration below does not depend on the specific regularization scheme and we will not

specify it.

3.2 VEV of the electric field squared

As a local characteristic of the vacuum state we consider the VEV of the squared electric field.

This VEV is obtained by making use of the mode-sum formula

⟨0|E2(x)|0⟩ ≡ ⟨E2(x)⟩ = −g00gil
∑
β

∂0A(β)i(x)∂0A
∗
(β)l(x). (3.17)

Note that the VEV of the electric field squared determines the Casimir-Polder potential between

the shell and a polarizable particle with a frequency-independent polarizability. Substituting

the eigenfunctions (3.7) and (3.8), after the summation over σ with the help of (3.100), for the

VEV inside the shell we find

⟨E2⟩ =
26ADη

D+2

αD+1a4

∞∑′

m=0

∫ ∞

0

dkkD−3
∑
λ=0,1

∞∑
n=1

Tm(γ
(λ)
m,n)

×γ(λ)3m,nF
(λ)
m [k, Jm(γ

(λ)
m,nr/a)]LD/2−2(ω

(λ)
m,nη), (3.18)

where ω
(λ)
m,n =

√
γ
(λ)
m,n/a2 + k2, the prime on the sign of the sum means that the term m = 0

should be taken with the coefficient 1/2,

AD =
1

(4π)D/2Γ(D/2− 1)
, (3.19)

and we have used the notation

Lν(x) = Kν(xe
−iπ/2)Kν(xe

iπ/2). (3.20)

Here, instead of the Hankel functions we have introduced the Macdonald function Kν(x). The

function F
(λ)
m [k, f(x)] is defined by the relations

F (λ)
m [k, f(x)] =


k2r2

x2

[
f ′2(x) + m2

x2 f
2(x)

]
+
[
(D − 3)

(
1 + k2r2

x2

)
+ 1

]
f 2(x), λ = 0,

(1 + k2r2

x2 )
[
f ′2(x) + m2

x2 f
2(x)

]
, λ = 1.

(3.21)

The eigenvalues γ
(λ)
m,n are given implicitly and the representation (3.18) is not convenient for

the further investigation of the VEV. For the further evaluation of the mode-sum in (3.18), we
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apply to the series over n the generalized Abel-Plana summation formula [68]

∞∑
n=1

Tm(γ
(λ)
m,n)f(γ

(λ)
m,n) =

1

2

∫ ∞

0

dxf (x) +
π

4
Resz=0f (z)

Y
(λ)
m (z)

J
(λ)
m (z)

− 1

2π

∫ ∞

0

dz
K

(λ)
m (z)

I
(λ)
m (z)

[
e−mπif(zeiπ/2) + emπif(ze−iπ/2)

]
, (3.22)

where Ym (z) is the Neumann function and Im (x) is the modified Bessel function of the first

kind. In (3.22) it is assumed that the function f (z) is analytic in the right half plane of the

complex variable z. For the series in (3.18), the corresponding function f (z) is given by

f (x) = x3LD/2−2(η
√
x2/a2 + k2)F (λ)

m [k, Jm (xr/a)] . (3.23)

Note that this function has branch points x = ±ika on the imaginary axis. For the function

(3.23) one has the relation

∑
j=−1,1

ejmπif(ze−jiπ/2) = ie−mπiz3F (λ)
m

[
k, Jm

(
zeiπ/2r/a

)]
×

∑
j=−1,1

jLD/2−2(η
√
z2e−jiπ/a2 + k2), (3.24)

with ∑
j=−1,1

jLν(η
√
z2e−jiπ/a2 + k2) = iπ

 0, z < ka

fν(η
√
z2/a2 − k2), z > ka

. (3.25)

Here and in what follows we use the notation

fν(x) = Kν (x) [I−ν (x) + Iν (x)] . (3.26)

After the application of the summation formula (3.22), the VEV of the electric field squared

is decomposed as

⟨E2⟩ = ⟨E2⟩dS + ⟨E2⟩b. (3.27)

Here, the first term in the right-hand side comes from the first integral in (3.22). It does not

depend on the shell radius a and corresponds to the VEV in dS spacetime in the absence of

boundaries:

⟨E2⟩dS =
25ADη

D+2

αD+1

∞∑′

m=0

∫ ∞

0

dk kD−3

∫ ∞

0

dx x3Fm[k, Jm (xr)]LD/2−2(η
√
k2 + x2), (3.28)
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where

Fm [k, f(x)] =

(
1 + 2

k2r2

x2

)[
f ′2(x) +

m2

x2
f 2(x)

]
+

[
(D − 3)

(
1 +

k2r2

x2

)
+ 1

]
f 2(x). (3.29)

The part of the VEV ⟨E2⟩b is the contribution of the last integral in (3.22). This part is induced

by the presence of the cylindrical boundary and is given by the expression

⟨
E2

⟩
b

=
25AD

αD+1

∞∑′

m=0

∑
λ=0,1

∫ ∞

0

dx xD+1K
(λ)
m (xa/η)

I
(λ)
m (xa/η)

×
∫ 1

0

ds s
(
1− s2

)D/2−2
G(λ)

m [s, Im (xr/η)] fD/2−2 (xs) , (3.30)

with the notation

G(λ)
m [s, f(x)] =

 (1− s2) [f ′2(x) +m2f 2(x)/x2] + [s2 (D − 3) + 1] f 2(x), λ = 0,

−s2 [f ′2(x) +m2f 2(x)/x2] , λ = 1.
(3.31)

In deriving (3.30), after using (3.24) and (3.25), we have introduced a new integration variable

u in accordance with z =
√
u2 + a2k2 and then passed to polar coordinates in the plane (u, ak).

The representation (3.30) is valid for all even values of D and for D < 7 in the case of odd

D. The shell-induced contribution (3.30) depends on the variables η, a, r in the form of the

ratios a/η and r/η. This feature is a consequence of the maximal symmetry of dS spacetime.

Note that the combination αa/η is the proper radius of the cylindrical shell and, hence, a/η is

the proper radius measured in units of the dS curvature scale α. Similarly, the ratio r/η is the

proper distance from the cylinder axis measured in units of α.

As is seen from (3.28) and (3.30), in the new representation of the VEV the explicit knowl-

edge of the eigenvalues γ
(λ)
m,n is not required. Another advantage is that we have explicitly

separated the part corresponding to the boundary-free dS spacetime. The presence of the

boundary does not change the local geometry for points outside the shell. This means that at

those points the divergences are the same in both the problems, in the absence and in the pres-

ence of the cylindrical shell. From here it follows that the divergences in (3.27) are contained in

the part ⟨E2⟩dS only, whereas the boundary-induced contribution ⟨E2⟩b is finite for points away

from the boundary and the regularization, implicitly assumed in the discussion above, can be

safely removed in that part. Hence, the renormalization is required for the boundary-free part
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only. Note that the expression for the latter can be further simplified after the summation over

m by using the standard result for the series involving the square of the Bessel function.

Let us consider the properties of the boundary-induced contribution in the VEV of the

field squared. First of all, by taking into account that for D > 3 one has G
(0)
m [s, f(x)] > 0,

G
(1)
m [s, f(x)] < 0, and the function fD/2−2(x) is positive for the values of D for which the

representation (3.30) is valid, from (3.30) it follows that ⟨E2⟩b is always positive. The VEV

of the electric field squared inside a cylindrical shell in Minkowski spacetime is obtained by

the limiting transition α → ∞ for a fixed value of t. In this limit one has η ≈ α − t and,

hence, η is large. Passing to a new integration variable y = x/η, we see that η appears in the

argument of the function fD/2−2 (ysη). By taking into account that for large arguments one

has fD/2−2 (u) ≈ 1/u, after the integration over s, we get limα→∞ ⟨E2⟩b = ⟨E2⟩(M)
b , where

⟨
E2

⟩(M)

b
=

4(4π)(1−D)/2

Γ((D + 1)/2)

∞∑′

m=0

∑
λ=0,1

∫ ∞

0

dx xD
K

(λ)
m (ax)

I
(λ)
m (ax)

G
(λ)
(M)m [Im (rx)] , (3.32)

with

G
(λ)
(M)m [f (x)] =

 (D − 2) [f ′2(x) + (m2/x2 + 2)f 2(x)] , λ = 0,

−f ′2(x)−m2f 2(x)/x2, λ = 1,
(3.33)

is the VEV of the electric field squared inside a cylindrical shell in the Minkowski bulk.

In the special case of 4-dimensional dS spacetime one has D = 3 and f−1/2(u) = 1/u. After

the integration over s in (3.30), we find

⟨
E2

⟩
b
= (η/α)4

⟨
E2

⟩(M)

b
, (3.34)

where ⟨E2⟩(M)
b is given by (3.32) withD = 3. In this case, the VEV of the field squared is related

to the corresponding result in Minkowski spacetime by standard conformal transformation

with the conformal factor (η/α)4. This is a direct consequence of the conformal invariance

of the electromagnetic field in D = 3 spatial dimensions and of the conformal flatness of the

background geometry. The VEV of the electric field squared for a conducting cylindrical shell

coaxial with a cosmic string in 4-dimensional spacetime (D = 3) is investigated in [297]. In the

absence of planar angle deficit, the corresponding expression is reduced to (3.32) with D = 3.

The corresponding Casimir-Polder forces were discussed in [298, 299].
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On the axis of the shell, r = 0, the only nonzero contribution to the boundary-induced VEV

comes from the terms in (3.30) with m = 0, 1:

⟨
E2

⟩
b,r=0

=
24AD

αD+1

(η
a

)D+2
∫ ∞

0

dx xD+1

∫ 1

0

ds s
(
1− s2

)D/2−2
fD/2−2 (xsη/a)

×
[
((D − 3) s2 + 1)

K0 (x)

I0 (x)
+ (1− s2)

K1 (x)

I1 (x)
− s2

K ′
1 (x)

I ′1 (x)

]
. (3.35)

The shell-induced VEV diverges on the cylindrical boundary. The surface divergences in the

VEVs of local physical observables are well-known in the theory of the Casimir effect [5]. Near

the shell the dominant contribution to the VEV comes from large values of m. For m ̸= 0,

introducing in (3.30) a new integration variable y = x/m, we use the uniform asymptotic

expansions for the modified Bessel functions with the order m and the asymptotic for the

function fD/2−2 (u) for large arguments (see, for instance, [266]). To the leading order one finds

⟨
E2

⟩
b
≈ 3 (D − 1) Γ((D + 1)/2)

2Dπ(D−1)/2[α (a− r) /η]D+1
. (3.36)

Note that the combination α (a− r) /η is the proper distance from the boundary. The leading

term (3.36) is obtained from that for the cylindrical shell with the radius a in Minkowski space-

time by the replacement (a− r) → α (a− r) /η. For points near the boundary the contribution

of the modes with small wavelengths dominate and at distances from the shell smaller than the

curvature radius of the dS spacetime the influence of the gravitational field is small.

For the numerical evaluations we have taken the model with D = 4. In this case for the

function fν(y) in (3.30) one has

fν(y) = 2Iν(y)Kν(y), (3.37)

and the integrals over s are of the form

In,ν(x) =

∫ 1

0

ds snfν(xs), (3.38)

with n = 1, 3. These integrals are evaluated in appendix 3.4.2. For the shell-induced part one

gets

⟨
E2

⟩
b

=
2

π2α5

∞∑′

m=0

∑
λ=0,1

∫ ∞

0

dx x5
K

(λ)
m (xa/η)

I
(λ)
m (xa/η)

×
{[
I ′2m(y) +

(
m2/y2 + 1

)
I2m(y)

]
δ0λI1,0(x)

−
[
I ′2m(y) +

(
m2/y2 − δ0λ

)
I2m(y)

]
I3,0(x)

}
y=xr/η

, (3.39)
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with I1,0(x) and I3,0(x) given by (3.104), (3.110). In figure 9, this contribution is plotted versus

the proper distance from the shell axis, measured in units of α. For the proper radius of the

shell, in the same units, we have taken a/η = 2. The corresponding Casimir-Polder force is

expressed in terms of the derivative ∂r ⟨E2⟩b. This force is directed toward the cylindrical shell.

Figure 9: Shell-induced contribution in the VEV of the squared electric field versus the proper

distance from the shell axis for the D = 4 model. For the corresponding value of the shell

radius we have taken a/η = 2.

3.3 VEV of the energy-momentum tensor

Another important local characteristic of the vacuum state is the VEV of the energy-momentum

tensor. This VEV is evaluated by using the mode-sum formula

⟨T ν
µ ⟩ =

1

16π
δνµg

ρlgσm
∑
β

F(β)ρσF
∗
(β)lm − 1

4π
gνκgρσ

∑
β

F(β)µρF
∗
(β)κσ, (3.40)

where F(β)µρ = ∂µA(β)ρ−∂ρA(β)µ is the field strength corresponding to the mode functions (3.7)

and (3.8). By using the expressions for the mode functions, the mode-sums for the diagonal

components of the VEV are presented in the form (no summation over i)

⟨T i
i ⟩ =

2BDη
D+2

αD+1a2

∞∑′

m=0

∫ ∞

0

dkkD−3
∑
λ=0,1

∞∑
n=1

γ(λ)m,n

×Tm(γ(λ)m,n)
∑
l=0,1

t
(i)
λl [k, γ

(λ)
m,n/a, Jm(γr)]LD/2−1−l(ω

(λ)
m,nη), (3.41)
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where

BD =
22−D

πD/2+1Γ(D/2− 1)
. (3.42)

Here we have used the notations

t
(i)
λl [k, γ, f(y)] = (a

(i)
λl k

2 + b
(i)
λl γ

2)Z(i)
m [f(y)] + ((D − 3) c

(i)
λl k

2 + d
(i)
λl γ

2)f 2(y), (3.43)

and

Z(i)
m [f(y)] = f ′2(y) +m2f 2(y)/y2, i = 0, 3, . . . , D,

Z(i)
m [f(y)] = f ′2(y)−m2f 2(y)/y2, i = 1, 2. (3.44)

For the energy density the coefficients in (3.43) are given by the expressions

a
(0)
λl =

 1 1

1 1

 , b
(0)
λl =

 D − 2 0

0 1

 ,

c
(0)
λl =

 1 1

0 0

 , d
(0)
λl =

 0 D − 2

1 0

 , (3.45)

where the rows and columns are numbered by λ = 0, 1 and l = 0, 1, respectively. For the

coefficients in the radial and azimuthal components one has

a
(1)
λl =

 −1 1

1 −1

 , c
(1)
λl =

 1 −1

0 0

 , (3.46)

and a
(2)
λl = −a(1)λl , b

(2)
λl = −b(1)λl = b

(0)
λl , c

(2)
λl = c

(1)
λl , d

(1)
λl = d

(2)
λl = −d(0)λl . For the axial components,

i = 3, . . . , D, we get

a
(i)
λl =

1

D − 2

 D − 4 2−D

D − 4 2−D

 , b
(i)
λl =

 D − 4 0

0 −1

 ,

c
(i)
λl =

1

D − 2

 D − 6 4−D

0 0

 , d
(i)
λl =

 0 4−D

1 0

 . (3.47)

In addition to the diagonal component, the VEV of the energy-momentum tensor has a

nonzero off-diagonal component

⟨T 1
0 ⟩ =

23−DiηD+2

πDαD+1a3

∞∑′

m=0

∫
dk

∞∑
n=1

∑
λ=0,1

(−1)λNλTm(γ
(λ)
m,n)ω

(λ)
m,nγ

(λ)2
m,n

×KD/2−2(ω
(λ)
m,nηe

− iπ
2 )KD/2−1(ω

(λ)
m,nηe

iπ
2 )Jm(γ

(λ)
m,nr/a)J

′
m(γ

(λ)
m,nr/a). (3.48)
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where N0 = D − 2, N1 = 1. This component describes energy flux along the radial direction

(along the direction normal to the boundary).

After the application of the summation formula (1.125), with the function

f(x) = xLD/2−1−l(η
√
x2/a2 + k2)t

(i)
λl [k, x/a, Jm(xr/a)], (3.49)

to the series over n in (3.41), the VEV of the energy-momentum tensor is presented in the form

⟨T ν
µ ⟩ = ⟨T ν

µ ⟩dS + ⟨T ν
µ ⟩b, (3.50)

where ⟨T ν
µ ⟩dS is the corresponding VEV in the boundary-free dS spacetime and the contribu-

tion ⟨T ν
µ ⟩b is induced by the presence of the cylindrical shell. The boundary-free contribution

corresponds to the first integral in the right-hand side of the formula (3.22) and the boundary-

induced contribution comes from the second integral. For points outside the cylindrical shell

the boundary-induced contribution in (3.50) is finite and the renormalization is reduced to

the one for the boundary-free part. From the maximal symmetry of the Bunch-Davies vac-

uum state it follows that the latter does not depend on the spacetime point and has the form

⟨T ν
µ ⟩dS = const · δνµ.

With the help of the transformations similar to those we have used for the VEV of the field

squared, for the boundary-induced parts in the diagonal components we get (no summation

over i)

⟨T i
i ⟩b =

BD

αD+1

∞∑′

m=0

∑
λ=0,1

∫ ∞

0

dx xD+1K
(λ)
m (ax/η)

I
(λ)
m (ax/η)

∫ 1

0

ds s

×
(
1− s2

)D/2−2
∑
l=0,1

P
(i)
λl [s, Im(xr/η)]fD/2−1−l(xs), (3.51)

where we have defined the functions

P
(i)
λl [s, f(y)] = (A

(i)
λl +B

(i)
λl s

2)Z(i)
m [f(y)] + (C

(i)
λl + (D − 3)D

(i)
λl s

2)f 2(y), (3.52)

with Z
(i)
m [f(y)] given by (3.44). For the energy density the coefficients in (3.52) are given by

the expressions

A
(0)
λl = C

(0)
λl =

 3−D 1

1 0

 , B
(0)
λl = −

 1 1

1 1

 , D
(0)
λl =

 1 1

0 0

 . (3.53)
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For the radial and azimuthal stresses one has

A
(i)
λl = (−1)iC

(i)
λl = − (−1)i

 D − 3 1

1 0

 ,

B
(i)
λl = (−1)i

 −1 1

1 −1

 , D
(i)
λl =

 1 −1

0 0

 , (3.54)

with i = 1, 2. And finally, for the axial stresses (i = 3, . . . , D) we get:

A
(i)
λl =

1

D − 2

 (D − 4) (3−D) 2−D

D − 4 0

 , B
(i)
λl =

1

D − 2

 4−D D − 2

4−D D − 2

 ,

C
(i)
λl =

1

D − 2

 (3−D) (D − 6) 4−D

D − 2 0

 , D
(i)
λl =

1

D − 2

 D − 6 4−D

0 0

 .(3.55)

Note that, unlike to the case of the Minkowski bulk (see below), for the dS bulk the axial

stresses do not coincide with the energy density.

For the off-diagonal component (3.48), the contribution of the first integral in (3.22) to the

VEV vanishes. This directly follows from the relations
∑′∞

m=0 Jm(x)J
′
m(x) = (1/2)∂x

∑′∞
m=0 J

2
m(x)

and
∑′∞

m=0 J
2
m(x) = 1/2. The nonzero part is induced by the presence of the shell and is given

by the expression

⟨T 1
0 ⟩b = − 2BD

αD+1

∞∑′

m=0

∫ ∞

0

dx xD+1

[
(D − 2)

Km(xa/η)

Im(xa/η)
− K ′

m(xa/η)

I ′m(xa/η)

]
Im(xr/η)I

′
m(xr/η)

×
∫ 1

0

ds s2
(
1− s2

)D/2−2 [
KD/2−1 (y) I2−D/2 (y)−KD/2−2 (y) ID/2−1 (y)

]
y=xs

.(3.56)

In the special case D = 3 the off-diagonal component vanishes. For other values of D, for which

the representation (3.56) is valid both the functions in the square brackets are positive and,

hence, ⟨T 1
0 ⟩b < 0 for 0 < r < a. On the axis, the energy flux vanishes, ⟨T 1

0 ⟩b,r=0 = 0. Similar

to the case of the field squared, the boundary-induced VEVs (3.51) and (3.56) depend on η, a,

r in the form of the ratios a/η and r/η.

With the expressions (3.51) and (3.56), we can see that the boundary-induced contributions

obey the covariant continuity equation ∇ν⟨T ν
µ ⟩b = 0. For the geometry at hand, this equation
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is reduced to the following relations between the VEVs:(
∂η −

D + 1

η

)
⟨T 0

0 ⟩b =

(
∂r +

1

r

)
⟨T 1

0 ⟩b −
1

η
⟨T k

k ⟩b,(
∂η −

D + 1

η

)
⟨T 1

0 ⟩b =
1

r
⟨T 2

2 ⟩b −
(
∂r +

1

r

)
⟨T 1

1 ⟩b. (3.57)

Let us denote by Eb,r6r0 the shell-induced contribution in the vacuum energy in the region

r 6 r0 < a, per unit coordinate lengths along the directions z3, . . . , zD:

Eb,r6r0 = 2π (α/η)D
∫ r0

0

dr r⟨T 0
0 ⟩b. (3.58)

By taking into account the first equation in (3.57), the corresponding derivative with respect

to the synchronous time coordinate t is expressed as

∂tEb,r6r0 =
2π

α
(α/η)D

∫ r0

0

dr r
D∑
l=1

⟨T l
l ⟩b − 2πr0 (α/η)

D−1 ⟨T 1
0 ⟩b,r=r0 . (3.59)

This relation shows that ⟨T 1
0 ⟩b is the energy flux per unit proper surface area. The quantity

−⟨T l
l ⟩b is the shell-induced contribution to the vacuum pressure along the l-th direction and the

first term in the right-hand side of (3.59) is the work done by the surrounding on the selected

volume. The last term in (3.59) is the energy flux through the surface r = r0. Inside the shell

one has ⟨T 1
0 ⟩b < 0 and the flux is directed from the shell to the axis r = 0.

Let us discuss special cases of the general expressions for the VEVs of the energy-momentum

tensor components. First we consider the Minkowskian limit, corresponding to α→ ∞. Intro-

ducing in (3.51) a new integration variable y = x/η, we see that the argument of the functions

fν(u) is large and we can use the asymptotic expression fν(u) ≈ 1/u. After the integration over

s, to the leading order we get ⟨T i
i ⟩b ≈ ⟨T i

i ⟩
(M)
b , where for the VEVs on the Minkowski bulk one

has (no summation over i)

⟨T i
i ⟩

(M)
b =

2(4π)−(D+1)/2

Γ((D + 1)/2)

∞∑′

m=0

∑
λ=0,1

∫ ∞

0

dxxD
K

(λ)
m (ax)

I
(λ)
m (ax)

{
A

(i)
λ Z

(i)
m [Im(rx)] +B

(i)
λ I2m(rx)

}
, (3.60)

with the coefficients

A
(0)
0 = (2−D) (D − 3), A

(0)
1 = D − 3,

B
(0)
0 = (2−D) (D − 5) , B

(0)
1 = D − 1,

A
(l)
λ = (−1)lB

(l)
λ , B

(l)
0 = (2−D) (D − 1) , B

(l)
1 = 1−D, (3.61)
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for l = 1, 2. For the stresses along the directions i = 3, . . . , D we have ⟨T i
i ⟩

(M)
b = ⟨T 0

0 ⟩
(M)
b . In the

special case D = 3, from (3.60) we obtain the results previously derived in [152]. As is seen,

for the Minkowski bulk the axial stresses are equal to the energy density. This result could

be directly obtained on the base of the invariance of the problem with respect to the Lorentz

boosts along the directions of the axis xi, i = 3, . . . , D. The off-diagonal component vanishes in

the Minkowskian limit. For the leading term in the corresponding asymptotic expansion from

(3.56) we find

⟨T 1
0 ⟩b ≈ 3−D

α

21−Dπ−(D+1)/2

Γ((D − 1)/2)

∞∑′

m=0

∫ ∞

0

dx xD−1

[
(D − 2)

Km(ax)

Im(ax)
− K ′

m(ax)

I ′m(ax)

]
Im(xr)I

′
m(xr).

(3.62)

In the special case D = 3 the off-diagonal component of the vacuum energy-momentum

tensor vanishes, ⟨T 1
0 ⟩b = 0, and the diagonal components are connected to the corresponding

quantities for a cylindrical shell in the Minkowski bulk by the relation (no summation over i)

⟨T i
i ⟩b = (η/α)4⟨T i

i ⟩
(M)
b . (3.63)

In this special case A
(i)
λ = 0 for i = 0, 3, and B

(i)
0 = B

(i)
1 for all i. Note that the Casimir

self-stress for an infinite perfectly conducting cylindrical shell in background of 4-dimensional

Minkowski spacetime has been evaluated in [148] on the base of a Green’s function technique.

The corresponding Casimir energy was investigated by using the zeta function technique in

[149] and the mode-by-mode summation method in [150]. The geometry of a cylindrical shell

coaxial with a cosmic string was considered in [180, 182, 184].

Near the cylindrical shell, the asymptotic expressions for the components of the energy-

momentum tensor are found in the way similar to that for the VEV of the electric field squared,

by using the uniform asymptotic expansions for the modified Bessel functions. The leading

terms are given by the expressions (no summation over i)

⟨T i
i ⟩b ≈ −(D − 1) (D − 3)Γ((D + 1)/2)

2(4π)(D+1)/2[α (a− r) /η]D+1
, (3.64)

for i = 0, 2, . . . , D, and

⟨T 1
0 ⟩b ≈ a− r

η
⟨T 0

0 ⟩b, ⟨T 1
1 ⟩b ≈ a− r

Da
⟨T 0

0 ⟩b. (3.65)
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The leading terms for the diagonal components coincide with those for a cylindrical shell in

Minkowski bulk with the distance from the shell replaced by the proper distance α (a− r) /η. In

the special case D = 3 the leading terms vanish. The latter feature is related to the conformal

invariance of the electromagnetic field in D = 3.

In the special case D = 4, the integrals over s in (3.51) are evaluated in appendix 3.4.2.

The expression for the diagonal components takes the form (no summation over i)

⟨T i
i ⟩b =

α−5

4π3

∞∑′

m=0

∑
λ=0,1

∫ ∞

0

dxx5
K

(λ)
m (ax/η)

I
(λ)
m (ax/η)

×
∑
l=0,1

{
(A

(i)
λl I1,1−l(x) + B

(i)
λl I3,1−l(x))Z

(i)
m [Im(xr/η)]

+(C
(i)
λl I1,1−l(x) +D

(i)
λl I3,1−l(x))I

2
m(xr/η)

}
, (3.66)

where the coefficients are given by (3.53), (3.54) and (3.55) with D = 4. In the expression

(3.56) for the energy flux, with D = 4, the integral over s is evaluated by using the formulas

(3.106) and (3.107). This leads to the following result:

⟨T 1
0 ⟩b = −α

−5

2π3

∞∑′

m=0

∫ ∞

0

dx x4
[
2
Km(ax/η)

Im(ax/η)
− K ′

m(ax/η)

I ′m(ax/η)

]
×Im(xr/η)I ′m(xr/η)I1 (x)K1 (x) . (3.67)

In figure 10 we have plotted the boundary-induced contribution in the energy density and

the energy flux as functions of the proper distance from the shell axis, measured in units of the

dS curvature scale α. For the corresponding value of the shell radius we have taken a/η = 2. As

is seen, in the interior region the energy density is negative near the shell and positive near the

axis of the shell. The energy flux is negative inside the shell. This means that the energy flux

is directed from the shell. The corresponding energy density in the Minkowski bulk is negative

everywhere.

3.4 Exterior region

In the region outside the shell, r > a, the radial functions Cm(x) in (3.7) and (3.8) are linear

combinations of the Bessel and Neumann functions. The relative coefficients in the linear

combinations are determined from the boundary condition (3.5) on the cylindrical surface
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Figure 10: Shell-induced contribution in the VEV of the energy density (panel (a)) and the

energy flux (panel (b)) as functions of the ratio r/η in the D = 4 model. The graphs are plotted

for a/η = 2.

r = a. In this way we can see that

Cm(γr) = g(λ)m (γa, γr) = Jm(γr)Y
(λ)
m (γa)− Ym(γr)J

(λ)
m (γa), (3.68)

for the modes λ = 0, 1. Now, in the normalization condition (3.13) the integration over the

radial coordinate goes over the region a 6 r <∞ and in the right-hand side the delta symbol for

the quantum number γ is understood as the Dirac delta function δ(γ−γ′). As the normalization

integral diverges for γ′ = γ, the main contribution to the integral comes from large values of

r. By making use of the asymptotic formulas for the Bessel and Neumann functions with large

arguments, for the normalization coefficients in (3.7) and (3.8) one gets

|cβ|2 =
[J

(λ)2
m (γa) + Y

(λ)2
m (γa)]−1

4 (2πα)D−3 γ
. (3.69)

Similar to the case of the interior region, we consider the VEVs of the field squared and energy-

momentum tensor separately.
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3.4.1 VEV of the field squared

For the VEV of the electric field squared, by using the mode-sum formula (3.17), one finds

⟨E2⟩ =
25ADη

D+2

αD+1

∞∑′

m=0

∫ ∞

0

dkkD−3

∫ ∞

0

dγ

×γ3
∑
λ=0,1

G
(λ)
m [k, g

(λ)
m (γa, γr)]

J
(λ)2
m (γa) + Y

(λ)2
m (γa)

LD/2−2(ωη), (3.70)

with the same notations as in (4.15). With the help of the identity

G
(λ)
m [k, g

(λ)
m (γa, γr)]

J
(λ)2
m (γa) + Y

(λ)2
m (γa)

= G(λ)
m [Jm(γr)]−

1

2

∑
j=0,1

J
(λ)
m (γa)

H
(j)(λ)
m (γa)

G(λ)
m [k,H(j)

m (γr)], (3.71)

the VEV is presented in the decomposed form (3.27) where the shell-induced contribution is

given by the expression

⟨E2⟩b = −24ADη
D+2

αD+1

∞∑′

m=0

∫ ∞

0

dkkD−3
∑
j=0,1

×
∑
λ=0,1

∫ ∞

0

dγγ3
J
(λ)
m (γa)

H
(j)(λ)
m (γa)

LD/2−2(ωη). (3.72)

For the further transformation, in (3.72), we rotate the contour of integration in the complex

plane γ by the angle π/2 for the term with j = 1 and by the angle −π/2 for j = 2. Introducing

the modified Bessel functions, the expression (3.72) takes the form

⟨E2⟩b =
25AD

αD+1

∞∑′

m=0

∑
λ=0,1

∫ ∞

0

dx xD+1 I
(λ)
m (ax/η)

K
(λ)
m (ax/η)

×
∫ 1

0

dss
(
1− s2

)D/2−2
G(λ)

m [s,Km (xr/η)] fD/2−2 (xs) , (3.73)

where the functions G
(λ)
m [s, f(x)] are defined by the formulae (3.31). Comparing this result

with (3.30), we see that the expressions for the interior and exterior regions are related by

the interchange Im � Km. In particular, the result in the Minkowskian limit is obtained

from (3.32) by the same replacements. In the special case D = 3 the electromagnetic field is

conformally invariant and we have the relation (3.34). Similar to the case of the interior region,

the shell-induced contribution (3.72) in the VEV of the electric field squared is positive. For

points near the shell, the leading term in the asymptotic expansion over the distance from the

boundary is obtained from (3.36) by the replacement a− r → r − a.
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At large proper distances from the shell compared with the dS curvature radius, we have

r/η ≫ 1. Introducing in (3.72) a new integration variable y = xr/η and assuming that r ≫ a,

we use the expansions of the functions I
(λ)
m (ya/r) /K

(λ)
m (ya/r) and fD/2−2 (ysη/r) for small

values of the arguments. The leading contribution comes from the term with λ = 0 and m = 0.

For even D > 4 one gets

⟨E2⟩b ≈ 4 (4D2 − 3D − 4) Γ3(D/2 + 1)

πD/2D(D − 4)Γ(D + 2)(αr/η)D+2

α

ln(r/a)
. (3.74)

In the case D = 4 the leading term is given by

⟨E2⟩b ≈ 16π−2α(αr/η)−6

5 ln(r/a) ln(r/η)
. (3.75)

For D = 3 and D = 5 we find

⟨E2⟩b ≈ 2(αr/η)−4

3π ln(r/a)
, D = 3,

⟨E2⟩b ≈ 7(αr/η)−6

10π2 ln(r/a)
, D = 5. (3.76)

At large distances, the total VEV is dominated by the boundary-free part ⟨E2⟩dS. For a cylin-

drical shell in the Minkowski bulk, at large distances, r ≫ a, one has the following asymptotic

behavior: ⟨
E2

⟩(M)

b
≈ (D − 2) (3D − 1)

π(D−1)/2rD+1 ln(r/a)

Γ3((D + 1)/2)

(D − 1) Γ(D + 1)
, (3.77)

for all values D > 3. Note that for D = 3, 5 the leading term (3.77) is obtained from (3.76) by

the replacement of the proper distance from the axis, αr/η → r.

For the special case D = 4, the shell-induced contribution in the VEV of the squared electric

field, for the exterior region, is presented in figure 1 as a function of the ratio r/η. Similar to

the region inside the shell, the corresponding Casimir-Polder force is directed toward the shell.

3.4.2 Energy-momentum tensor

Now let us consider the VEV of the energy-momentum tensor outside the cylindrical shell.

By using the mode-sum formula (3.40) with the exterior modes, for the VEV of the diagonal

99



components we get the following representation (no summation over i)

⟨T i
i ⟩ =

BDη
D+2

αD+1

∞∑′

m=0

∫ ∞

0

dkkD−3
∑
λ=0,1

∫ ∞

0

dγγ

×
∑
l=1,2

t
(i)
λl [k, γ, g

(λ)
m (γa, γr)]

J
(λ)2
m (γa) + Y

(λ)2
m (γa)

LD/2−1−l(ωη), (3.78)

with the notation (3.43). The expression for the off-diagonal component has the form

⟨T 1
0 ⟩ =

2iBDη
D+2

αD+1

∞∑′

m=0

∫ ∞

0

dkkD−3

∫ ∞

0

dγγ
∑
λ=0,1

(−1)λNλωγ
2

×KD/2−2(ωηe
− iπ

2 )KD/2−1(ωηe
iπ
2 )
g
(λ)
m (γa, γr)g

(λ)′
m (γa, γr)

J
(λ)2
m (γa) + Y

(λ)2
m (γa)

, (3.79)

where g
(λ)′
m (x, y) = ∂yg

(λ)
m (x, y).

Further transformation of the VEVs is similar to that we have used for the field squared.

In the case of the diagonal components we employ the relation

t
(i)
λl [k, γ, g

(λ)
m (γa, γr)]

J
(λ)2
m (γa) + Y

(λ)2
m (γa)

= t
(i)
λl [k, γ, Jm(γr)]−

1

2

∑
j=1,2

J
(λ)
m (γa)

H
(j)(λ)
m (γa)

t
(i)
λl [k, γ,H

(j)
m (γr)], (3.80)

The part with the first term in the right-hand side coincides with the VEV in the boundary-free

dS spacetime. In the part corresponding to the last term in (3.80) we rotate the integration

contours by the angle π/2 for the term with j = 1 and by the angle −π/2 for j = 2. In this

way for the boundary-induced contributions in the VEVs of the diagonal components we find

(no summation over i)

⟨T i
i ⟩b =

BD

αD+1

∞∑′

m=0

∑
λ=0,1

∫ ∞

0

dxxD+1 I
(λ)
m (ax/η)

K
(λ)
m (ax/η)

∫ 1

0

ds s

×
(
1− s2

)D/2−2
∑
l=0,1

P
(i)
λl [s,Km(xr/η)]fD/2−1−l(xs). (3.81)

In a similar way, the expression for the VEV of the off-diagonal component is presented as

⟨T 1
0 ⟩b = − 2BD

αD+1

∞∑′

m=0

∫ ∞

0

dx xD+1

[
(D − 2)

Im(xa/η)

Km(xa/η)
− I ′m(xa/η)

K ′
m(xa/η)

]
Km(xr/η)K

′
m(xr/η)

×
∫ 1

0

ds s2
(
1− s2

)D/2−2 [
KD/2−1 (y) I2−D/2 (y)−KD/2−2 (y) ID/2−1 (y)

]
y=xs

.(3.82)

For D > 4, in the range of validity of this representation one has ⟨T 1
0 ⟩b > 0. The corresponding

energy flux is directed from the cylindrical shell to the infinity. Again, we can see that the

shell-induced contributions obey the relations (3.57).
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The VEVs in the Minkowskian limit, α → ∞, are obtained in the way similar to that for

the interior region. In this limit the energy flux vanishes and the corresponding expressions

for the diagonal components are obtained from (3.60) by the replacements Im � Km. In the

special case D = 3, the VEVs in the dS and Minkowski bulks are connected by the conformal

relation (3.63).

For points near the shell, the leading terms in the asymptotic expansions over the distance

from the boundary for the components ⟨T i
i ⟩b with i ̸= 1 are given by (3.64) with the replacement

a− r → r − a. For the normal stress and the energy flux we have the relations (3.65). Hence,

near the shell and for D > 3, the boundary-induced contribution in the energy density has the

same sign in the exterior and interior regions, whereas the normal stress and the energy flux

have opposite signs.

Let us consider the asymptotics of the boundary-induced contributions at large distances

from the shell. Introducing in (3.81) and (3.82) a new integration variable y = xr, we see

that for r ≫ a, η the arguments of the functions I
(λ)
m , K

(λ)
m and fD/2−1−l are small. By using

the corresponding asymptotic expressions one can show that the dominant contribution comes

from the term m = 0 and λ = 0. For even values of D > 4, to the leading order one gets the

following expressions (no summation over i)

⟨T i
i ⟩b ≈ 2D−2Γ2(D/2 + 1)Γ2(D/2)

(D − 2) (D − 4) Γ(D + 2)

αBDC
(i)
D

(αr/η)D+2 ln(r/a)
,

⟨T 1
0 ⟩b ≈ 2D−4DΓ4(D/2)BD

Γ(D)(αr/η)D+1 ln(r/a)
, (3.83)

with the coefficients

C
(0)
D = D(D − 1) (6−D)− 6,

C
(1)
D = D (D − 6) + 2,

C
(2)
D = D2 (3−D)− 2,

C
(l)
D = D2 (6−D)− 8D − 6, (3.84)

l = 3, . . . , D. The corresponding energy density is positive. by taking into account that near

the shell the energy density is negative for D > 4, we conclude that at some intermediate value

of the radial coordinate the boundary-induced contribution in the energy density vanishes. The
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asymptotic (3.83) for the energy flux is valid in the case D = 4 as well. For D = 4, the leading

term in the expansion of the diagonal components is given by (no summation over i)

⟨T i
i ⟩b ≈ α ln(r/η)C

(i)
4

20π3(αr/η)6 ln(r/a)
, (3.85)

where C
(0)
4 = −C(2)

4 = 3, and C
(i)
4 = −1 for i = 1, 3, 4. For the Minkowski bulk, the large

distance asymptotic is given by (no summation over i)

⟨T i
i ⟩

(M)
b ≈ π−(D+1)/2 (2−D) Γ3((D + 1)/2)

4rD+1 ln(r/a) (D − 1) Γ(D + 1)
C

(i)
(M), (3.86)

where

C
(0)
(M) = D2 − 4D + 1, i = 0, 3, . . . , D,

C
(1)
(M) = 1−D, C

(2)
(M) = D(D − 1). (3.87)

The corresponding energy density is positive for D = 3 and negative for D > 4.

The shell-induced contribution to the energy density and the energy flux in the exterior

region are plotted in figure 2 for the D = 4 model. The large distance asymptotic is given

by (3.85) and the energy density is positive. For points near the shell we have the asymptotic

behavior (3.64), with the replacement a− r → r − a, and the energy density is negative. Note

that for the D = 4 Minkowski bulk the corresponding energy density is negative everywhere.

For the D = 3 model, the energy density is positive in the exterior region and negative in the

interior region.

In the discussion above we have considered the boundary condition (3.5) that generalizes

the condition at the surface of a conductor for arbitrary number of spatial dimensions. Another

type of boundary conditions for a gauge field is used in bag models of hadrons and in flux tube

models of confinement in quantum chromodynamics (see, for instance, [142, 143, 300]). This

boundary condition has the form

nµFµν = 0, (3.88)

on the boundary of a volume inside of which the gluons are confined. In flux tube models the

gauge field is confined inside a cylinder. The corresponding Casimir densities inside and outside

a cylindrical shell are investigated in a way similar to that we have described above. The mode
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functions still have the form (3.7) and (3.8). Imposing the boundary condition (3.88), we can

see that, in the interior region, eigenvalues for γ are roots of the equation (3.12) for the mode

σ = 1 and the roots of (3.11) for σ = 2, . . . , D − 1. The final expressions for the VEVs are

obtained from those given above by the replacement

K
(λ)
m (xa/η)

I
(λ)
m (xa/η)

→ K
(1−λ)
m (xa/η)

I
(1−λ)
m (xa/η)

, (3.89)

in both the interior and exterior regions. In particular, the VEV of the squared electric field is

negative in these regions.

Appendix A3: Cylindrical modes in Minkowski spacetime

In this section we consider the cylindrical modes for the electromagnetic field in (D + 1)-

dimensional Minkowski spacetime. For the electromagnetic field one has D − 1 polarization

states specified by σ = 1, 2, . . . , D − 1. The vector potential for the polarization σ will be

denoted by Aσµ, µ = 0, 1, . . . , D. We will impose the gauge condition∇(M)µA
µ
σ = 0, where∇(M)µ

is the covariant derivative operator associated with the Minkowskian metric tensor g(M)µν =

diag(1,−1,−r2,−1, . . . ,−1). From the field equation ∇(M)µF
µν = 0 one gets(

∆− ∂20
)
Aσµ = 0, (3.90)

for µ = 0, 3, . . . , D, and (
∂20 −∆

)
Aσ1 +

Aσ1

r2
+

2

r3
∂2Aσ2 = 0,

∂20Aσ2 −∆Aσ2 +
2

r
∂1Aσ2 −

2

r
∂2Aσ1 = 0, (3.91)

for the radial and azimuthal components. Here

∆ =
1

r
∂1 (r∂1) +

1

r2
∂22 +

D∑
l=3

∂2l . (3.92)

For the polarization σ = 1 we take

Aσµ = (0,−r−1∂2, r∂1, 0, . . . , 0)ψσ, σ = 1. (3.93)

It can be easily checked that this function obeys the gauge condition. The field equations (3.91)

are satisfied if the function ψσ obeys the equation(
∆− ∂20

)
ψσ = 0. (3.94)
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For the polarizations σ = 2, . . . , D − 1 we present the vector potential in the form

Aσµ = ϵσµψσ, σ = 2, . . . , D − 1, (3.95)

with scalar functions ψσ and ϵσ1 = ϵσ2 = 0. From the field equations (3.90) it follows that the

functions ψσ obey the wave equation (3.94). The gauge condition is reduced to

gµν(M)ϵσµ∂νψσ = 0. (3.96)

The solutions for the scalar functions ψσ, σ = 1, 2, . . . , D − 1, have the form

ψσ = Cm(γr)e
i(mϕ+k·z−ωt), (3.97)

where Cm(x) is a cylinder function of the order m = 0,±1,±2, . . ., k · z =
∑D

l=3 klz
l, and ω is

given by (3.9). We will normalize the polarization vectors in accordance with the relation

gµν(M)ϵσµϵσ′ν = −γ
2

ω2
δσσ′ . (3.98)

From the gauge condition one has ϵσ0 = −k · ϵσ/ω, where k · ϵσ =
∑D

l=3 klϵσl. Combining with

(3.98) the following relations are obtained:

D∑
l,n=3

(
ω2δnl − klkn

)
ϵσlϵσ′n = γ2δσσ′ , (3.99)

and
D−1∑
σ=2

ϵσlϵσn = ω−2(klkn + γ2δln), (3.100)

for l, n = 3, . . . , D.

An alternative form for the cylindrical modes (3.95) with the polarizations σ = 2, . . . , D−1

is obtained by making the gauge transformation

A′
σµ = Aσµ + ∂µfσ, (3.101)

with the function

fσ = iω−2k · ϵσψσ. (3.102)

In the new gauge the scalar potential vanishes, A′
σ0 = 0, and one has

A′
σµ =

(
0,
(
ϵσl + iω−2k · ϵσ∂l

)
ψσ

)
, l = 1, . . . , D. (3.103)
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Hence, for (D + 1)-dimensional Minkowski spacetime the cylindrical modes for the elec-

tromagnetic field in the gauge Aσ0 = 0, ∂l(rA
l) = 0 are given by (3.93) and (3.103), where

for the scalar function ψσ one has the expression (3.97). The radial function Cm(γr) is a lin-

ear combination of the Bessel and Neumann functions. The relative coefficient in this linear

combination depends on the specific problem. For example, inside a cylindrical shell one has

Cm(γr) ∼ Jm(γr). In the special case D = 3, the modes (3.93) and (3.103) are reduced to

the well known TE and TM modes in cylindrical waveguides (see, for instance, [301]). In the

(D + 1)-dimensional case we have a single mode of the TE type and D − 2 modes of the TM

type. The corresponding boundary conditions are discussed in section 4.1.

Appendix B3: Evaluation of the integrals in the model D = 4

In this section we evaluate the integrals of the form (3.38) appearing in the expressions for the

VEVs in the special case D = 4. First of all, by using the integration formula from [302] we

can see that

I1,0(x) =
1

2
[f0(x) + f1(x)] ,

I1,1(x) = I1,0(x)−
2

x
I1(x)K0(x). (3.104)

Our starting point in the evaluation of the remaining integrals is the formula (see, for instance,

[302]) ∫ 1

0

ds sI0 (xs)K0 (ys) = −xI1 (x)K0 (y) + bI0 (x)K1 (y)− 1

y2 − x2
. (3.105)

Applying the operator − limy→x ∂y on the left and right hand sides of this formula we find∫ 1

0

ds s2I0 (xs)K1 (xs) =
f1 (x) + 1

4x
. (3.106)

Next, combining with the relation I0 (x)K1 (x) = 1/x− I1 (x)K0 (x) one gets∫ 1

0

dss2I1 (xs)K0 (xs) =
1− f1 (x)

4x
. (3.107)

For the evaluation of the integral I3,1(x) we apply the operator −2 limy→x ∂x∂y on the left-

and right-hand sides of (3.105). This gives

I3,1(x) =
2

3x2
[1− 2xI1 (x)K0 (x)] +

1

6

[
f0 (x) +

(
1− 4/x2

)
f1 (x)

]
. (3.108)
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Integrating by parts the integral
∫ 1

0
ds s3I ′0 (xs)K

′
0 (xs) we can see that

I3,0(x) = I3,1(x)−
2

x
I0 (x) K1 (x) +

4

x

∫ 1

0

dss2I0 (sx)K1 (sx) . (3.109)

By taking into account the relations (3.106) and (3.108) we obtain

I3,0(x) =
1

3x2
[2xI1 (x)K0 (x)− 1] +

1

6

[
f0 (x) +

(
1 + 2/x2

)
f1 (x)

]
. (3.110)

3.5 Summary

In the investigations of the Casimir effect the cylindrically symmetric boundaries are among

the most popular geometries. In the present paper we have investigated the local Casimir

densities for the electromagnetic field inside and outside a cylindrical shell in background of

(D+1)-dimensional dS spacetime. On the shell, the field tensor obeys the boundary condition

(3.5). In the special case D = 3 this corresponds to the perfect conductor boundary condition.

The procedure, we employed for the evaluation of the VEVs bilinear in the field, is based on the

mode-sum formula (3.16). In this procedure the complete set of cylindrical mode functions for

the electromagnetic field, obeying the boundary condition, is required. In the problem under

consideration one has a single mode of the TE type and D− 2 modes of the TM type. For the

Bunch-Davies vacuum state the corresponding vector potentials are given by the expressions

(3.7) and (3.8) with the radial functions (3.10) and (3.68) for the exterior and interior regions,

respectively.

We have investigated the combined effects of a cylindrical boundary and background grav-

itational field on the VEVs of the electric field squared and of the energy-momentum tensor.

In the interior region the eigenvalues of the quantum number γ are expressed in terms of the

zeros of the Bessel function Jm(x) for the TM modes and in terms of the zeros of the deriva-

tive J ′
m(x) in the case of the TE mode. For the summation of the series over these zeros we

have used the generalized Abel-Plana summation formula (1.125). This allowed us to extract

from the VEVs the parts corresponding to the boundary-free dS spacetime and to present the

shell-induced contributions in terms of strongly convergent integrals, for points away from the

boundary. With this separation, the renormalization of the VEVs is reduced to the one for the

boundary-free geometry. As a result, inside the shell, the VEVs are decomposed as (3.27) and
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(3.50) with the shell-induced parts given by (3.30) for the electric field squared and by (3.51) for

the diagonal components of the energy-momentum tensor. A similar decomposition is provided

for the exterior region. The expressions for the shell-induced parts in this region differ from

the ones inside the shell by the replacements Im � Km of the modified Bessel functions (see

(3.73) and (3.81)). For both the interior and exterior regions the shell-induced contributions to

the VEV of the electric field squared are positive. In addition to the diagonal components, the

VEV of the energy-momentum tensor has nonzero off-diagonal component ⟨T 1
0 ⟩. It corresponds

to the energy flux along the radial direction and is given by the expressions (3.56) and (3.82)

for the exterior and interior regions. The off-diagonal component is negative inside the shell

and positive in the exterior region. This means that the energy flux is directed from the shell

in both the regions. On the axis of the shell the flux vanishes.

We have considered various special cases of general formulas. In the limit α → ∞, the

VEVs inside and outside a cylindrical shell in the background of (D+1)-dimensional Minkowski

spacetime are obtained. The corresponding expressions generalize the results previously known

forD = 3 to an arbitrary number of spatial dimensions. Note that forD = 3 the electromagnetic

field is conformally invariant and the shell-induced VEVs in the dS bulk are obtained from

those in Minkowski spacetime by the standard conformal transformation. For points near

the cylindrical boundary the contribution of small wavelengths dominates in the shell-induced

VEVs. The leading terms in the corresponding asymptotic expansions for the field squared and

diagonal components of the energy-momentum tensor coincide with those for a cylindrical shell

in the Minkowski bulk with the distance from the shell replaced by the proper distance in dS

bulk. The leading term in the energy flux is given by the relation (3.65). The effects of the

background gravitational field on the shell-induced VEVs are essential at distances from the

boundary larger than the curvature radius of the dS spacetime. In particular, for the numerical

example considered by us in the case D = 4, at large distances the shell-induced contribution to

the vacuum energy density is negative for the Minkowski bulk and positive for dS background.

Near the shell, the energy density is negative in both these cases. As a consequence, for the dS

bulk it vanishes for some intermediate value of the radial coordinate.

Another boundary condition, used for the confinement of gauge fields in bag models of
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hadrons and in flux tube models of QCD, is the one given by (3.88). The corresponding

expressions for the VEVs of the field squared and energy-momentum tensor are obtained from

those for generalized perfect conductor boundary condition by the replacement (3.89). In this

case, the boundary-induced contribution on the VEV of the squared electric field is neagtive in

both the interior and exterior regions.
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4 CHAPTER: ELECTROMAGNETIC VACUUM

FLUCTUATIONS AROUND A COSMIC

STRING IN DE SITTER SPACETIME

The electromagnetic field correlators are evaluated around a cosmic string in background of

(D + 1)-dimensional dS spacetime assuming that the field is prepared in the Bunch-Davies

vacuum state. The correlators are presented in the decomposed form where the string-induced

topological parts are explicitly extracted. With this decomposition, the renormalization of the

local VEVs in the coincidence limit is reduced to the one for dS spacetime in the absence of the

cosmic string. The VEVs of the squared electric and magnetic fields, and of the vacuum energy

density are investigated. Near the string they are dominated by the topological contributions

and the effects induced by the background gravitational field are small. In this region, the

leading terms in the topological contributions are obtained from the corresponding VEVs for a

string on the Minkowski bulk multiplying by the conformal factor. At distances from the string

larger than the curvature radius of the background geometry, the pure dS parts in the VEVs

dominate. In this region, for spatial dimensions D > 3, the influence of the gravitational field

on the topological contributions is crucial and the corresponding behavior is essentially different

from that for a cosmic string on the Minkowski bulk. There are well-motivated inflationary mod-

els which produce cosmic strings. We argue that, as a consequence of the quantum-to-classical

transition of super-Hubble electromagnetic fluctuations during inflation, in the postinflationary

era these strings will be surrounded by large scale stochastic magnetic fields. These fields could

be among the distinctive features of the cosmic strings produced during the inflation and also

of the corresponding inflationary models.

4.1 Cylindrical electromagnetic modes

We consider (D+1)-dimensional locally dS background geometry described in cylindrical spatial

coordinates (r, ϕ, z), z =
(
z3, ..., zD

)
, by the interval

ds2 = (α/τ)2 [dτ 2 − dr2 − r2dϕ2 − (dz)2], (4.1)
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with the conformal time coordinate τ , −∞ < τ < 0. The corresponding synchronous time t is

expressed as t = −α ln(|τ | /α), −∞ < t < +∞. For the remaining coordinates we assume that

0 6 r < ∞, 0 6 ϕ 6 ϕ0, −∞ < zl < +∞, l = 3, . . . , D. For ϕ0 = 2π the geometry is reduced

to the standard dS one given in inflationary coordinates. In the case ϕ0 < 2π, though the

local geometrical characteristics for r ̸= 0 remain the same, the global properties are different.

The special case D = 3 corresponds to a straight cosmic string with the core along the axis

z3 and with the planar angle deficit 2π− ϕ0 determined by the linear mass density of the

string. In [303, 304] it has been shown that the vortex solution of the Einstein-Abelian-Higgs

equations in the presence of a cosmological constant induces a deficit angle into dS spacetime.

The cosmological constant Λ is expressed in terms of the parameter α in the line element (4.1)

by the relation Λ = D(D − 1)/(2α2).

The presence of the angle deficit gives rise to a number of interesting topological effect in

quantum field theory. Here we are interested in the influence of the cosmic string on the vacuum

fluctuations of the electromagnetic field. The properties of these fluctuations are encoded in the

two-point functions which describe the correlations of the fluctuations at different spacetime

points. These correlators are VEVs of bilinear combinations of the vector potential operator

Aµ(x), where x = (τ, r, ϕ, z) stands for the spacetime point. By expanding this operator in

terms of a complete set {A(β)µ, A
∗
(β)µ} of solutions to the classical Maxwell equations and by

using the definition of the vacuum state |0⟩, we can see that for a given bilinear combination

f(Aµ(x), Aν(x
′)) the corresponding VEV is presented in the form of the mode sum

⟨0|f(Aµ(x), Aν(x
′))|0⟩ =

∑
β

f(A(β)µ(x), A
∗
(β)ν(x

′)). (4.2)

Here, the set of quantum numbers β specifies the electromagnetic mode functions and in the

right-hand side
∑

β is understood as a summation over discrete quantum numbers and an

integration over continuous ones. Hence, as the first stage, we need to find the complete set of

cylindrical electromagnetic modes on dS bulk in the presence of the cosmic string.

It is convenient to fix the gauge degrees of the freedom by the Coulomb gauge with A0 = 0

and ∂l(
√

|g|Al) = 0 for l = 1, ..., D. For the metric tensor

gµν = (α/τ)2 diag(1,−1,−r2,−1, . . . ,−1), (4.3)
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the latter equation is reduced to ∂l(rA
l) = 0 and coincides with the corresponding equation

in the Minkowski bulk. The procedure to find the complete set of solutions to the Maxwell

equations is similar to that for the bulk in the absence of the cosmic string. The only difference

is in the periodicity condition along the azimuthal direction ϕ. The corresponding part in the

mode functions is given by eiqmϕ with q = 2π/ϕ0 and m = 0,±1,±2, . . .. This leads to the

dependence of the mode functions on the radial coordinate in terms of the Bessel function

Jq|m|(γr) with 0 6 γ <∞. The time-dependence appears in the form of the linear combination

of the functions ηD/2−1H
(1)
D/2−1(ωη) and η

D/2−1H
(2)
D/2−1(ωη), where η = |τ | = αe−t/α and H

(l)
ν (y),

l = 1, 2, are the Hankel functions. The relative coefficient in the linear combination depends on

the choice of the vacuum state under consideration. Here we assume that the field is prepared

in the state that is the analog of the Bunch-Davies vacuum state for a scalar field. For this

state the coefficient of the function H
(2)
D/2−1(ωη) is zero.

In (D + 1)-dimensional spacetime, the electromagnetic field has D − 1 polarization states.

In what follows we specify them by the quantum number σ = 1, . . . , D−1. For the polarization

σ = 1 the cylindrical electromagnetic modes corresponding to the Bunch-Davies vacuum are

presented as

A(β)µ(x) = cβη
D/2−1H

(1)
D/2−1(ωη)

(
0,
iqm

r
,−r∂r, 0, . . . , 0

)
Jq|m|(γr)e

iqmϕ+ik·z, (4.4)

and for the polarizations σ = 2, . . . , D − 1 we get

A(β)µ(x) = cβωη
D/2−1H

(1)
D/2−1(ωη)

(
0, ϵσl + i

k · ϵσ
ω2

∂l

)
Jq|m|(γr)e

iqmϕ+ik·z, (4.5)

with l = 1, . . . , D. Here, k = (k3, . . . , kD), ω =
√
γ2 + k2 and k2 =

∑D
l=3 k

2
l . For the scalar

products one has k · z =
∑D

l=3 klz
l and k · ϵσ =

∑D
l=3 klϵσl. The spatial components in (4.4)

and (4.5) are given in cylindrical coordinates (r, ϕ, z). For the components of the polarization

vector we have ϵσ1 = ϵσ2 = 0, σ = 2, . . . , D − 1, and the relations

D∑
l,n=3

(
ω2δnl − klkn

)
ϵσlϵσ′n = γ2δσσ′ ,

ω2

D−1∑
σ=2

ϵσnϵσl − knkl = γ2δnl, (4.6)

for l, n = 3, ..., D. The mode functions are specified by the set of quantum numbers β =
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(γ,m,k, σ) and in (4.2) ∑
β

=
D−1∑
σ=1

∞∑
m=−∞

∫
dk

∫ ∞

0

dγ. (4.7)

We have a single mode of the TE type (σ = 1) and D − 2 modes of the TM type (σ =

2, . . . , D − 1).

The mode functions for vector fields are orthonormalized by the condition∫
dDx

√
|g|g00[A∗

(β′)ν(x)∇0A
ν
(β)(x)− (∇0A

∗
(β′)ν(x))A

ν
(β)(x)] = 4iπδββ′ , (4.8)

where ∇µ stands for the covariant derivative and δββ′ is understood as the Kronecker symbol

for discrete components of the collective index β (m and σ) and the Dirac delta function for

the continuous ones (γ and k). From (4.8) for the normalization coefficient cβ we get

|cβ|2 =
q

4(2πα)D−3γ
, (4.9)

for all the polarizations σ = 1, . . . , D − 1.

The Minkowskian limit of the problem under consideration corresponds to α → ∞ for a

fixed value of the proper time t. In this limit one has η = αe−t/α ≈ α− t and, up to the phase

(that can be absorbed into the normalization coefficient cβ), the function ηD/2−1H
(1)
D/2−1(ωη) is

reduced to
√

2/(πω)α(D−3)/2e−iωt. As a result, from (4.4) and (4.5) one gets the corresponding

mode functions for a string in background of (D + 1)-dimensional Minkowski spacetime. The

case D = 3 has been considered previously in [297]. The electromagnetic field is conformally

invariant in D = 3 and the modes (3.7) and (3.8) coincide with the Minkowskain modes having

the time dependence e−iωη.

4.2 Two-point functions

We consider a free field theory (the only interaction is with the background gravitational field)

and all the information about the vacuum state is encoded in two-point functions. Given the

complete set of normalized mode functions for the vector potential, we can evaluate the two-

point function ⟨0|Al(x)Am(x
′)|0⟩ ≡ ⟨Al(x)Am(x

′)⟩ for the electromagnetic field by using the

mode-sum formula (4.2):

⟨Al(x)Am(x
′)⟩ =

∑
β

A(β)l (x)A
∗
(β)m (x′) , (4.10)
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with
∑

β from (4.7). Substituting the functions (4.4), (4.5) and using the relation (4.6), the

two-point function is presented in the form

⟨Al(x)Ap(x
′)⟩ =

q (ηη′)D/2−1

π2 (2πα)D−3

∞∑
m=−∞

eimq∆ϕ

∫
dk eik·∆z

×
∫ ∞

0

dγ
γ

ω2
KD/2−1(e

−iπ/2ηω)KD/2−1(e
iπ/2η′ω)flp (k, γ, r, r

′) , (4.11)

where ∆ϕ = ϕ − ϕ′, ∆z = z − z′ and instead of the Hankel function we have introduced the

Macdonald function Kν(x). In (4.11), the functions of the radial coordinates are defined by the

expressions

f11 (k, γ, r, r
′) = k2J ′

q|m|(γr)J
′
q|m|(γr

′) +
(
k2 + γ2

) q2m2

γ2rr′
Jq|m|(γr)Jq|m|(γr

′),

f12 (k, γ, r, r
′) = −iqm

γr

[
rk2J ′

q|m|(γr)Jq|m|(γr
′) + r′ω2J ′

q|m|(γr
′)Jq|m|(γr)

]
,

f22 (k, γ, r, r
′) =

q2m2

γ2
k2Jq|m|(γr)Jq|m|(γr

′) + rr′ω2J ′
q|m|(γr)J

′
q|m|(γr

′), (4.12)

and

f1l (k, γ, r, r
′) = iklγJ

′
q|m|(γr)Jq|m|(γr

′),

f2l (k, γ, r, r
′) = −qmklJq|m|(γr)Jq|m|(γr

′),

flp (k, γ, r, r
′) =

(
ω2δlp − klkp

)
Jq|m|(γr)Jq|m|(γr

′), (4.13)

with l, p = 3, . . . , D − 1. The remaining nonzero components are found by using the relation

flp (k, γ, r, r
′) = f ∗

pl (k, γ, r
′, r) . (4.14)

Having the two-point functions we can evaluate the VEVs of the squared electric and mag-

netic fields. For the VEV of the squared electric field one has

⟨E2⟩ = lim
x′→x

CE(x, x
′), (4.15)

where the corresponding two-point function is expressed as

CE(x, x
′) = −g00′(x, x′)glp′(x, x′)∂0∂′0⟨Al(x)Ap(x

′)⟩, (4.16)

with the parallel propagator gµν
′
(x, x′). For the geometry under consideration the nonzero
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components of the latter are given by

g00
′
(x, x′) = −gll′(x, x′) = ηη′

α2
,

g11
′
(x, x′) = rr′g22

′
(x, x′) = −ηη

′

α2
cos∆ϕ,

rg21
′
(x, x′) = −r′g12′(x, x′) = ηη′

α2
sin∆ϕ, (4.17)

where l = 3, . . . , D.

By taking into account the representation (4.11) we find the expression

CE(x, x
′) =

8q (ηη′)D/2+1

(2π)D−1 αD+1

∞∑′

m=0

{
cos(mq∆ϕ)

[
(D − 2)J (0,2)

D/2−2 + (D − 3)J (1,1)
D/2−2

]
+

[
cos(mq∆ϕ) cos∆ϕ

(
∂r∂r′ +

q2m2

rr′

)
+
qm

rr′
sin(mq∆ϕ) sin∆ϕ

× (r∂r + r′∂r′)]
(
J (0,1)

D/2−2 + 2J (1,0)
D/2−2

)}
, (4.18)

where

J (n,p)
ν =

∫
dk eik·∆z

∫ ∞

0

dγ k2nγ2p−1Kν(e
−iπ/2ωη)Kν(e

iπ/2ωη′)Jqm(γr)Jqm(γr
′). (4.19)

The prime on the summation sign in (4.18) means that the term m = 0 should be taken with

an additional coefficient 1/2. The integrals (4.19) for n = 0, 1 and p = 0, 1, 2 are evaluated

in Appendix. By using the corresponding results (4.81), (4.83) and (4.84), the correlator is

presented as

CE(x, x
′) =

16q (ηη′)D/2+1

πD/2αD+1

∫ ∞

0

du uD/2eu(η
2+η′2−|∆z|2)KD/2−2(2ηη

′u)

×
{[
∂ww + 2

(
D/2− 1− |∆z|2u

)] [
cos∆ϕ (∂w + b)− 1

w
sin∆ϕ∂∆ϕ

]
(4.20)

+(D − 2)∂ww + (D − 3)
(
D/2− 1− |∆z|2u

)} ∞∑′

m=0

cos(mq∆ϕ)e−bwIqm(w),

with the notations

w = 2rr′u, b =
r2 + r′2

2rr′
. (4.21)

For the further transformation of the expression (4.20) we use the formula [134]

∞∑′

m=0

cos(qm∆ϕ)Iqm (w) =
1

2q

∑
l

ew cos(2lπ/q−∆ϕ) − 1

4π

∑
j=±1

∫ ∞

0

dy
sin(qπ + jq∆ϕ)e−w cosh y

cosh(qy)− cos(qπ + jq∆ϕ)
,

(4.22)
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where the summation in the first term on the right-hand side goes under the condition

−q/2 + q∆ϕ/(2π) 6 l 6 q/2 + q∆ϕ/(2π). (4.23)

If −q/2 + q∆ϕ/(2π) or q/2 + q∆ϕ/(2π) are integers, then the corresponding terms in the first

sum on the right-hand side of (4.22) should be taken with the coefficient 1/2. The application

of (4.22) leads to the expression

CE(x, x
′) = C

(1)
E (x, x′) + sin∆ϕ∂∆ϕC

(2)
E (x, x′). (4.24)

Here and below we use the notation

C
(i)
J (x, x′) =

8 (ηη′)D/2+1

πD/2αD+1

[∑
l

g
(i)
J (x, x′,− cos(2lπ/q −∆ϕ))

− q

2π

∑
j=±1

∫ ∞

0

dy
sin(qπ + jq∆ϕ)g

(i)
J (x, x′, cosh y)

cosh(qy)− cos(qπ + jq∆ϕ)

]
, (4.25)

for i = 1, 2 and J = E,M . The function with J =M will appear in the expression for the VEV

of the squared magnetic field. The functions g
(i)
J (x, x′, y) in (4.25) have the representation

g
(i)
J (x, x′, y) =

∫ ∞

0

du uD/2eu(η
2+η′2−|∆z|2−r2−r′2−2rr′y)KνJ (2ηη

′u)h
(i)
J (y, u), (4.26)

where

νJ =

 D/2− 2, J = E

D/2− 1, J =M
. (4.27)

For the electric field, the functions in the integrand of (4.26) are given by the expressions

h
(1)
E (y, u) = (D − 2− y cos∆ϕ)

[
1− u

(
r2 + r′2 + 2rr′y

)]
+(D − 3− 2y cos∆ϕ)

(
D/2− 1− |∆z|2u

)
,

h
(2)
E (y, u) =

1

2rr′u

[
u
(
r2 + r′2 + 2rr′y

)
− 2

(
D/2− 1− |∆z|2u

)]
. (4.28)

The functions h
(i)
M (y, u) for the magnetic field will be defined below.

The contribution of the l = 0 term in (4.25) to the function (4.24) corresponds to the

correlator in dS spacetime in the absence of the cosmic string (for the two-point functions of

vector fields, including the massive ones, see [205]). It is simplified to

C
(dS)
E (x, x′) =

2(D − 1)

(2π)D/2αD+1

∫ ∞

0

du uD/2euZ(x,x′)

(
D − u

|∆x|2

ηη′

)
KD/2−2(u), (4.29)
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where |∆x|2 = r2 + r′2 − 2rr′ cos∆ϕ + |∆z|2 is the square of the spatial distance between the

points x and x′ and we have defined the dS invariant quantity

Z(x, x′) = 1 +
(∆η)2 − |∆x|2

2ηη′
. (4.30)

For the latter one has Z(x, x′) = cos[σ(x, x′)/α], with σ(x, x′) being the proper distance along

the shortest geodesic connecting the points x and x′ if they are spacelike separated. The integral

in (4.29) is expressed in terms of the hypergeometric function. Separating the l = 0 terms in

the expressions for C
(1)
E (x, x′) and C

(2)
E (x, x′), the remaining part in (4.24) corresponds to the

contribution induced by the presence of the cosmic string.

For points x and x′ close to each other, the dominant contribution to the integral in (4.29)

comes from large values of u and we can use the corresponding asymptotic for the function

KD/2−2(u). To the leading order, for the pure dS part this gives

C
(dS)
E (x, x′) ≈ 2(D − 1)Γ((D + 1)/2)

π(D−1)/2σD+1(x, x′)

[
D − (D + 1)|∆x|2

|∆x|2 − (∆η)2

]
. (4.31)

In this limit the effects of the background curvature are small. Note that, for points outside the

cosmic string core, r ̸= 0, the divergences in the coincidence limit of CE(x, x
′) are contained in

the pure dS part C
(dS)
E (x, x′) only. This is related to the fact that in our simplified model the

presence of the cosmic string does not change the local geometry at those points.

4.3 VEV of the squared electric field

The VEV of the squared electric field is obtained from (4.24) in the coincidence limit. Separating

the pure dS part C
(dS)
E (x, x′), the remaining topological contribution is finite in that limit

for r ̸= 0. Consequently, the renormalization is reduced to the one in dS spacetime. The

contribution of the last term in (4.24) to the cosmic string induced part in the VEV of the

field squared vanishes. As a result, the VEV of the squared electric field is presented in the

decomposed form

⟨E2⟩ = ⟨E2⟩dS +
8α−D−1

(2π)D/2

[q/2]∑
l=1

gE(r/η, sl)−
q

π
sin(qπ)

∫ ∞

0

dy
gE(r/η, cosh y)

cosh(2qy)− cos(qπ)

 , (4.32)

where [q/2] is the integer part of q/2. In (4.32), ⟨E2⟩dS is the renormalized VEV in the absence

of the cosmic string and the remaining part is induced by the cosmic string (topological part).
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Here and in what follows we use the notation sl = sin(πl/q) and

gE(x, y) =

∫ ∞

0

du uD/2KD/2−2(u)e
u−2x2y2u

[
2ux2y2

(
2y2 −D + 1

)
+ (D − 1)

(
D/2− 2y2

)]
.

(4.33)

If the parameter q is equal to an even integer the term l = q/2 in (4.32) should be taken with an

additional coefficient 1/2. The VEV (4.32) depends on r and η in the form of the combination

r/η. The latter property is a consequence of the maximal symmetry of dS spacetime. Note

that, for a given η, the ratio αr/η is the proper distance from the string. Hence, r/η is the

proper distance measured in units of the dS curvature scale α. From the maximal symmetry

of dS spacetime and of the Bunch-Davies vacuum state we expect that the pure dS part does

not depend on the spacetime point and ⟨E2⟩dS = const · α−D−1.

For odd values of D the integral in (4.33) is expressed in terms of elementary functions. In

particular, for D = 3 and D = 5 one has

gE(x, y) = −
√
π

2

1

4x4y4
, D = 3,

gE(x, y) = −
√
π

2

1 + y2

2x6y6
, D = 5. (4.34)

In these cases, the topological part in the squared electric field is written in terms of the function

cn(q) =

[q/2]∑
l=1

s−n
l − q

π
sin(qπ)

∫ ∞

0

dy
cosh−n y

cosh(2qy)− cos(qπ)
. (4.35)

For even n, this function can be found by using the recurrence scheme described in [181]. In

particular, one has c2(q) = (q2 − 1)/6 and

c4(q) =
q2 − 1

90

(
q2 + 11

)
,

c6(q) =
q2 − 1

1890
(2q4 + 23q2 + 191). (4.36)

As a result, the corresponding VEVs are presented as

⟨E2⟩ = ⟨E2⟩dS −
(q2 − 1) (q2 + 11)

180π(αr/η)4
, (4.37)

for D = 3 and

⟨E2⟩ = ⟨E2⟩dS −
(q2 − 1) (q4 + 22q2 + 211)

1890π2 (αr/η)6
, (4.38)
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for D = 5. In the case D = 3 the electromagnetic field is conformally invariant and the topo-

logical part in (4.37) is obtained from the corresponding result for a cosmic string in Minkowski

bulk by the standard conformal transformation. The latter is reduced to the multiplication of

the Minkowskian result by the factor (η/α)4.

As it has been mentioned before, the Minkowskian limit corresponds to α → ∞ for a fixed

value of the time coordinate t. In this case one has η ≈ α − t and η is large. Hence, we

need the asymptotic of the function (4.33) for small values of x. In this limit the dominant

contribution to the integral comes from large values of u and using the asymptotic expression

for the Macdonald function for large argument, to the leading order we find

gE(x, y) ≈ −
√
π

Γ ((D + 1) /2)

2D/2+2xD+1yD+1

[
2 (D − 3) y2 +D − 1

]
. (4.39)

As a consequence, for a string in the Minkowski bulk one gets

⟨E2⟩(M) = − 2Γ ((D + 1) /2)

(4π)(D−1)/2rD+1

[
(D − 3) cD−1(q) +

D − 1

2
cD+1(q)

]
. (4.40)

For D = 3, this result is conformally related to the topological part in (4.37). It is of interest

to note that, though the electromagnetic field is not conformally invariant for D = 5, the latter

property is valid in this case as well: ⟨E2⟩(M) = (⟨E2⟩ − ⟨E2⟩dS) (α/η)D+1, for D = 3, 5.

Now let us consider the asymptotic behavior of the VEV (4.32) at large and small distances

from the string. At large distances, r/η ≫ 1, we need the asymptotic expressions for the

function gE(x, y) in the limit x≫ 1. In this limit the dominant contribution to the integral in

(4.33) comes from the region near the lower limit of the integration. By using the asymptotic

expression for the Macdonald function for small argument, to the leading order we get

gE(x, y) ≈
2D/2−5

y6x6
Γ

(
D

2
− 2

)[
(D − 1)

(
D

2
− 3

)
+ 2 (4−D) y2

]
, (4.41)

for D > 4 and gE(x, y) ≈ −3 ln(yx)/(2y6x6) for D = 4. In the case D > 4 this gives

⟨E2⟩ ≈ ⟨E2⟩dS +
Γ (D/2− 2)

4πD/2αD+1 (r/η)6

[
2 (4−D) c4(q) + (D − 1)

(
D

2
− 3

)
c6(q)

]
, (4.42)

with the functions (4.36). Note that for D = 5 the asymptotic (4.42) coincides with the exact

result (4.38). For D = 4 the large distance asymptotic is given by

⟨E2⟩ ≈ ⟨E2⟩dS −
(q2 − 1) ln(r/η)

630π2α5(r/η)6
(2q4 + 23q2 + 191). (4.43)
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Hence, at large distances from the string, r/η ≫ 1, the topological part in the VEV of the

electric field squared decays as (η/r)4 for D = 3, as ln(r/η)(η/r)6 for D = 4 and as (η/r)6

for D > 4. The pure dS part ⟨E2⟩dS is a constant and it dominates in the total VEV at large

distances. Note that at large distances from the string the influence of the gravitational field on

the VEV is essential. In the Minkowskian case the decay of the VEV is as 1/rD+1 (see (4.40))

and depends on the number of spatial dimension. For the dS bulk the VEV behaves as 1/r6

for all spatial dimensions D > 4.

At proper distances from the string smaller than the dS curvature radius one has r/η ≪ 1

and the dominant contribution to the integral in (4.33) comes from large values of u. The topo-

logical part dominates near the string and by calculations similar to those for the Minkowskian

limit we get

⟨E2⟩ ≈ (η/α)D+1⟨E2⟩(M), r/η ≪ 1, (4.44)

with ⟨E2⟩(M) given by (4.40). This result is natural because near the string the dominant con-

tribution to the VEV comes from the fluctuations with wavelengths smaller than the curvature

radius and the influence of the background gravitational field on the corresponding modes is

weak.

The VEV of the electric field squared determines the Casimir-Polder interaction energy

between the cosmic string and a neutral polarizable microparticle placed close to the string,

U(r) = −αP ⟨E2⟩, where αP is the polarizability of the particle (in the absence of dispersion).

The correlators of the electromagnetic field and the Casimir-Polder potential in the geometry

of cosmic string on background of D = 3 Minkowski spacetime were investigated in [298, 299].

4.4 Magnetic field correlators and VEV of the energy density

As a next characteristic of the vacuum state we consider the VEV of the Lagrangian density:

⟨L⟩ = − 1

16π
gµρgνσ⟨FµνFρσ⟩. (4.45)

Note that the quantity gµρgνσ⟨FµνFρσ⟩ is the Abelian analog of the gluon condensate in quantum

chromodynamics. The VEV (4.45) is presented as the coincidence limit

⟨L⟩ = lim
x′→x

CL(x, x
′), (4.46)
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with the corresponding correlator

CL(x, x
′) = − 1

16π
gµρ

′
(x, x′)gνσ

′
(x, x′)⟨Fµν(x)Fρσ(x

′)⟩. (4.47)

The latter is decomposed into the electric and magnetic parts as

CL(x, x
′) =

1

8π
[CE(x, x

′)− CM(x, x′)] , (4.48)

where the magnetic part is given by the expression

CM(x, x′) =
1

2
glm

′
(x, x′)gnp

′
(x, x′)⟨Fln(x)Fmp(x

′)⟩

=
[
glm

′
(x, x′)gnp

′
(x, x′)− gnm

′
(x, x′)glp

′
(x, x′)

]
∂l∂m′⟨An(x)Ap′(x

′)⟩. (4.49)

with the summation over the spatial indices l,m, n, p = 1, 2, . . . , D (for a scheme to measure

the correlation functions for cosmological magnetic fields based on TeV blazar observations see

[305]).

By using (4.11), after long calculations, the magnetic part is presented in the form

CM(x, x′) =
2q (ηη′)D/2+1

π2 (2π)D−3 αD+1

∞∑′

m=0

×
{[

cos(mq∆ϕ) cos∆ϕ

(
∂r∂r′ +

q2m2

rr′

)
+
qm

rr′
sin(mq∆ϕ) sin∆ϕ (r∂r + r′∂r′)

]
×
(
(D − 2)J (0,1)

D/2−1 + 2J (1,0)
D/2−1

)
+ cos(mq∆ϕ)

[
J (0,2)

D/2−1 + (D − 3)J (1,1)
D/2−1

]}
.(4.50)

By taking into account the representations for the functions J (n,p)
ν given in Appendix, for the

correlator one gets

CM(x, x′) =
16q (ηη′)D/2+1

πD/2αD+1

∫ ∞

0

du uD/2eu(η
2+η′2−|∆z|2)KD/2−1(2ηη

′u)

×
{[

(D − 2)∂ww + 2
(
D/2− 1− |∆z|2u

)] [
cos∆ϕ (∂w + b)− 1

w
sin∆ϕ∂∆ϕ

]
+∂ww + (D − 3)

(
D/2− 1− |∆z|2u

)} ∞∑′

m=0

cos(mq∆ϕ)e−bwIqm(w). (4.51)

The further transformation is similar to that employed for the electric field correlator. By

using the formula (4.22) we find

CM(x, x′) = C
(1)
M (x, x′) + sin∆ϕ∂∆ϕC

(2)
M (x, x′), (4.52)
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where the functions C
(i)
M (x, x′) are defined in (4.25) with J =M . In the corresponding definition

the function g
(i)
M (x, x′, y) is given by the expression (4.26) with the functions in the integrand

h
(1)
M (y, u) = [1− (D − 2) y cos∆ϕ]

[
1− u

(
r2 + r′2 + 2rr′y

)]
+(D − 3− 2y cos∆ϕ)

(
D/2− 1− |∆z|2u

)
, (4.53)

and h
(2)
M (y, u) = h

(2)
E (y, u). The contributions of the l = 0 terms in (4.25) to (4.52) correspond

to the correlator in dS spacetime in the absence of the cosmic string (q = 1):

C
(dS)
M (x, x′) =

2(D − 1)

(2π)D/2αD+1

∫ ∞

0

du uD/2euZ(x,x′)

(
D − u

|∆x|2

ηη′

)
KD/2−1(u), (4.54)

For D = 3 the electric and magnetic correlators coincide and, hence, the correlator for the

Lagrangian density vanishes. For close points x and x′, the leading term in the corresponding

asymptotic expansion coincides with that for the correlator of the electric field, C
(dS)
M (x, x′) ≈

C
(dS)
E (x, x′), and is given by (4.31).

In (4.52), separating the l = 0 terms in the expressions (4.25) for the functions C
(i)
M (x, x′),

the remaining part is the contribution induced by the cosmic string. For r ̸= 0, the latter

is finite in the coincidence limit. The renormalization is required for the pure dS part only.

Hence, for the VEV of the squared magnetic field,

⟨B2⟩ = lim
x′→x

CM(x, x′), (4.55)

one finds the decomposition

⟨B2⟩ = ⟨B2⟩dS +
8α−D−1

(2π)D/2

[q/2]∑
l=1

gM(r/η, sl)−
q

π
sin(qπ)

∫ ∞

0

dy
gM(r/η, cosh y)

cosh(2qy)− cos(qπ)

 , (4.56)

with the function

gM(x, y) =

∫ ∞

0

du uD/2KD/2−1(u)e
u−2x2y2u {(D − 1)D/2

−4(D − 2)y2 + 2x2y2u
[
2(D − 2)y2 −D + 1

]}
. (4.57)

Similar to (4.32), if q/2 is an integer, the term l = q/2 in (4.56) should be taken with an

additional coefficient 1/2. Note that for D > 3 the magnetic part of the field tensor is not a

spatial vector. In (4.56), ⟨B2⟩dS is the corresponding renormalized quantity in the absence of
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the cosmic string and, because of the maximal symmetry of dS spacetime, does not depend on

the spacetime point. From the dimensional arguments we expect that ⟨B2⟩dS = const · α−D−1.

For D = 3, the VEV of the squared magnetic field has been investigated in [306] by using

the adiabatic renormalization procedure. In this special case ⟨B2⟩dS = 19/(40πα4) (note the

different units used here and in [306]).

For odd D, the function gM(x, y) is expressed in terms of the elementary functions. In

particular, for D = 3 it coincides with gE(x, y), given by (4.34), and for D = 5 one has

gM(x, y) =

√
π

2

(3 + x2) y2 − 1

2x6y6
, D = 5. (4.58)

In the latter case, the VEV of the squared magnetic field is presented as

⟨B2⟩ = ⟨B2⟩dS +
(3 + r2/η2) c4(q)− c6(q)

2π2 (αr/η)6
, (4.59)

where the functions c4(q) and c6(q) are defined in (4.36).

Let us consider the asymptotic behavior of the VEV (4.56) at large and small distances from

the string. If the proper distance from the string is much smaller than the curvature radius

of the dS spacetime one has r/η ≪ 1. For small x the dominant contribution to (4.57) comes

from large values of u. By using the corresponding asymptotic for the Macdonald function, to

the leading order we get

⟨B2⟩ ≈ (η/α)D+1 ⟨B2⟩(M), (4.60)

where

⟨B2⟩(M) =
2Γ ((D + 1) /2)

(4π)(D−1)/2rD+1

[
(D − 3) (D − 2)cD−1(q)−

D − 1

2
cD+1(q)

]
, (4.61)

is the corresponding VEV for the cosmic string in Minkowski bulk. In particular, for D = 3

one has ⟨B2⟩(M) = ⟨E2⟩(M) with ⟨E2⟩(M) given by the last term in the right-hand side of (4.37).

At large distances from the string, r/η ≫ 1, we need the asymptotic of the function gM(x, y)

for large x. In this limit, the dominant contribution to the integral in (4.57) comes from the

region near the lower limit of the integration and for the leading term one finds

gM(x, y) ≈ 2D/2−5

y4x4
(D − 1) (D − 4) Γ(D/2− 1). (4.62)
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For D = 4 the leading term vanishes and we need to consider the next to the leading contribu-

tion:

gM(x, y) ≈ y2 − 3/4

y6x6
. (4.63)

By taking into account (4.36) and (4.62), at distances r/η ≫ 1 one gets

⟨B2⟩ ≈ ⟨B2⟩dS +
(D − 1) (D − 4) Γ(D/2− 1)

360πD/2αD+1(r/η)4
(
q2 − 1

) (
q2 + 11

)
, (4.64)

for D ̸= 4 and

⟨B2⟩ ≈ ⟨B2⟩dS +
4c4(q)− 3c6(q)

2π2α5 (r/η)6
, (4.65)

for D = 4. In the special case D = 3, the asymptotic (4.64) coincides with the exact result.

In figure 11 we have plotted the topological contributions in the VEVs of the squared

electric and magnetic fields, ⟨F 2⟩t = ⟨F 2⟩ − ⟨F 2⟩dS, F = E,B, for q = 2.5 and for spatial

dimensions D = 3, 4, 5 (the numbers near the curves). The full/dashed curves correspond to

the electric/magnetic fields. In the case D = 3 one has ⟨E2⟩t = ⟨B2⟩t. Note that for D = 4, 5

the VEVs of the squared electric and magnetic fields have opposite signs. The Casimir-Polder

forces acting on a polarizable particle are attractive.
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Figure 11: Topological contributions in the VEVs of the squared electric and magnetic fields for

q = 2.5 and for spatial dimensions D = 3, 4, 5 (the numbers near the curves). The full/dashed

curves correspond to the electric/magnetic fields.
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Among the most interesting features of the inflation is the transition from quantum to clas-

sical behavior of quantum fluctuations during the quasiexponential expansion of the universe.

An important example of this type of effects is the classicalization of the vacuum fluctuations of

the inflaton field which underlies the most popular models of generation of large-scale structure

in the universe. A similar effect of classicalization should take place for the electromagnetic fluc-

tuations. In [306], the quantum-to-classical transition of super-Hubble magnetic modes during

inflation has been considered as a possible mechanism for the generation of galactic and galaxy

cluster magnetic fields (see also [307, 308] for the further discussion). As it has been discussed

above, the presence of cosmic string induces shifts in the VEVs of the squared electric and

magnetic fields. As a consequence of the quantum-to-classical transition of the corresponding

fluctuations during the dS expansion, after inflation these shifts will be imprinted as classical

stochastic fluctuations of the electric and magnetic fields surrounding the cosmic string. In

the post inflationary radiation dominated era the conductivity is high and the currents in the

cosmic plasma eliminate the electric fields whereas the magnetic counterparts are frozen. As a

consequence, the cosmic strings will be surrounded by large scale magnetic fields. These fields

would be among the distinctive features of the cosmic strings produced during the inflation and

also of the corresponding inflationary models. Note that various types of mechanisms for the

generation of primordial magnetic fields from cosmic strings in the post-inflationary era have

been discussed in the literature (see, for instance, [309]-[316]). For cosmic strings carrying a

nonzero magnetic flux in the core, azimuthal currents for charged fields are generated around

the string (see [134] and references therein). These currents provide another mechanism for the

generation of magnetic fields by the cosmic strings.

Having the VEVs for the squared electric and magnetic fields, we can find the VEV of the

energy density ε as

⟨ε⟩ = ⟨E2⟩+ ⟨B2⟩
8π

. (4.66)

It is decomposed into the pure dS part, ⟨ε⟩dS, and the topological contribution:

⟨ε⟩ = ⟨ε⟩dS +
2α−D−1

(2π)D/2+1

[q/2]∑
l=1

g0(r/η, sl)−
q

π
sin(qπ)

∫ ∞

0

dy
g0(r/η, cosh y)

cosh(2qy)− cos(qπ)

 , (4.67)

with g0(x, y) = gE(x, y) + gM(x, y). If q is equal to an even integer, the term l = q/2 in (4.67)
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is taken with an additional coefficient 1/2. From the maximal symmetry of the dS spacetime it

follows that ⟨ε⟩dS = const/αD+1. In the special case D = 3 the latter is completely determined

by the conformal anomaly (see, for instance, [70]): ⟨ε⟩dS = 31/(480π2α4). Combining this with

the result for ⟨B2⟩dS we can find the VEV of the squared electric field: ⟨E2⟩dS = 1/(24πα4). In

this case, the contributions of the electric and magnetic parts to the topological term in the VEV

of the energy density are the same and the VEV is conformally related to the corresponding

result on the Minkowski bulk found in [317].

Near the string, r/η ≪ 1, the VEV of the energy density is dominated by the topological

part and to the leading order one has

⟨ε⟩ ≈ Γ ((D + 1) /2)

(4π)(D+1)/2(αr/η)D+1

[
(D − 3)2 cD−1(q)− (D − 1) cD+1(q)

]
. (4.68)

The corresponding VEV in the Minkowski bulk is obtained from the right hand side multiplying

by the factor (α/η)D+1. Depending on the parameters D and q, the energy density (4.68) can

be either negative or positive. For D = 3 it is always negative. At large distances from the

cosmic string and for D > 4 the topological contribution in the energy density is dominated

by the magnetic part and decays as (η/r)4. For D = 4 and at large distances the electric

part dominates and the energy density decays like (η/r)6 ln(r/η). In figure 12 we display the

dependence of the topological contribution in the vacuum energy density as a function of the

proper distance from the string (measured in units of dS curvature scale). The graphs are

plotted for spatial dimensions D = 3, 4, 5. As is seen, in general, the energy density is not a

monotonic function of the distance from the string. Moreover, in the case D = 5 the energy

density changes the sign: it is negative near the string (the electric part dominates) and positive

at large distances from the string (the magnetic contribution dominates).

4.5 Appendix A4: Evaluation of the integrals

Here we describe the evaluation of the integrals (4.19) appearing in the expressions of the

two-point functions for the electromagnetic field. By using the integral representation [319]

Kν(e
−iπ/2ηω)Kν(e

iπ/2η′ω) =
1

2

∫ +∞

−∞
dy e−2νy

∫ ∞

0

du

u
e−u/2−ω2β/(2u), (4.69)
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Figure 12: Topological contributions in the VEV of the energy density in spatial dimensions

D = 3, 4, 5 (the numbers near the curves) for q = 2.5.

with the notation

β = 2ηη′ cosh(2y)− η2 − η′2, (4.70)

and redefining the integration variable u/(2β) → u, one gets

J (n,p)
ν =

1

2

∫
dk eik·∆z

∫ +∞

−∞
dy e−2νy

∫ ∞

0

du

u
e−uβ

×
∫ ∞

0

dγk2nγ2p−1e−ω2/4uJqm(γr)Jqm(γr
′). (4.71)

The integration over k is done with the help of the formula∫
dk k2neik·∆z−k2/4u = (4π)D/2−1uD/2−1

[
4u

(
D/2− 1− |∆z|2u

)]n
e−|∆z|2u, (4.72)

where n = 0, 1. Next, the integral over y is expressed in terms of the function Kν(2ηη
′u) and

we find

J (n,p)
ν =

1

2
(4π)D/2−1

∫ ∞

0

du uD/2−2
[
4u

(
D/2− 1− |∆z|2u

)]n
eu(η

2+η′2−|∆z|2)

×Kν(2ηη
′u)

∫ ∞

0

dγγ2p−1e−γ2/4uJqm(γr)Jqm(γr
′). (4.73)

For p = 1, 2 the integration over γ is done by using the formula [302]∫ ∞

0

dγγ2p−1e−γ2/4uJqm(γr)Jqm(γr
′) = 2

(
4u2∂u

)p−1
[ug(r, r′, u)] , (4.74)

126



with the function

g(r, r′, u) = e−(r2+r′2)uIqm(2rr
′u). (4.75)

For the evaluation of the integral in (4.73) with p = 0 we use the integral representation

e−γ2/4u = γ2
∫ ∞

1/4u

dt e−tγ2

, (4.76)

and then apply the formula (4.74) with p = 1 for the γ-integral. In this way, we can see that∫ ∞

0

dγ
e−γ2/4u

γ
Jqm(γr)Jqm(γr

′) =
1

2

∫ u

0

dx

x
g(r, r′, x). (4.77)

The corresponding integral in the two-point function (4.18) is acted by the operators with the

results

(r∂r + r′∂r′)

∫ u

0

dx

x
g(r, r′, x) = 2e−bwIqm(w), (4.78)

and (
∂r∂r′ +

q2m2

rr′

)∫ u

0

dx

x
g(r, r′, x) = 4ue−bw∂wIqm(w), (4.79)

with the notations (4.21). In addition we have(
∂r∂r′ +

q2m2

rr′

)
g(r, r′, u) = 4u∂w

(
we−bw∂wIqm(w)

)
. (4.80)

Hence, we get the following results

J (n,p)
ν = (4π)D/2−1

∫ ∞

0

du uD/2−2
[
4u

(
D/2− 1− |∆z|2u

)]n
eu(η

2+η′2−|∆z|2)

×Kν(2ηη
′u)

(
4u2∂w

)p−1 [
we−bwIqm(w)

]
, (4.81)

for p = 1, 2 and

J (1,0)
ν =

1

4
(4π)D/2−1

∫ ∞

0

du uD/2−2
[
4u

(
D/2− 1− |∆z|2u

)]n
eu(η

2+η′2−|∆z|2)

×Kν(2ηη
′u)

∫ u

0

dx

x
g(r, r′, x). (4.82)

The results for the latter integral after the action of the operators, appearing in (4.18), read

(r∂r + r′∂r′)J (1,0)
ν =

1

2
(4π)D/2−1

∫ ∞

0

du uD/2−2
[
4u

(
D/2− 1− |∆z|2u

)]n
×eu(η2+η′2−|∆z|2)Kν(2ηη

′u)e−bwIqm(w), (4.83)
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and (
∂r∂r′ +

q2m2

rr′

)
J (1,0)

ν = (4π)D/2−1

∫ ∞

0

du uD/2−1
[
4u

(
D/2− 1− |∆z|2u

)]n
×eu(η2+η′2−|∆z|2)Kν(2ηη

′u)∂w
[
we−bw∂wIqm(w)

]
. (4.84)

with w and b defined by (4.21).

4.6 Summary

We have investigated the influence of the cosmic string on the vacuum fluctuations of the

electromagnetic field in background of (D + 1)-dimensional dS spacetime, assuming that the

field is prepared in the state which is the analog of the Bunch-Davies vacuum state for a scalar

field. In the problem under consideration the only interaction of the quantum electromagnetic

field is with the background gravitational field and the information on the vacuum fluctuations

is encoded in the two-point functions. As such we have considered the Wightman function.

For the evaluation of the latter we have used the direct summation over the complete set of

electromagnetic cylindrical modes. The corresponding mode functions for separate polarizations

are given by (4.4) and (4.5).

Among the most important characteristics of the electromagnetic vacuum are the VEVs

of the squared electric and magnetic fields. The corresponding two-point functions are given

by (4.24) and (4.51), respectively, with the function C
(i)
J (x, x′) defined in (4.25). One of the

advantages for these representations is that the contribution corresponding to dS spacetime in

the absence of the cosmic string is explicitly extracted. In the model of the cosmic string under

consideration the local geometrical characteristics outside the string core are not changed by

the presence of the string. Consequently, the divergences and the renormalization procedure

for the VEVs are the same as those in pure dS spacetime. The topological parts do not require

a renormalization. The renormalized VEVs for the squared electric and magnetic fields are

presented in the decomposed form, Eqs. (4.32) and (4.56), respectively, where the first terms

in the right-hand sides correspond to the renormalized VEVs in dS spacetime in the absence

of the cosmic string. As a consequence of the maximal symmetry of dS spacetime and of the

Bunch-Davies vacuum state these contributions do not depend on the spacetime coordinates.
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The topological parts in the VEVs depend on the time and the radial coordinate through

the ratio r/η which presents the proper distance from the string measured in units of the

dS curvature radius. Near the string, the dominant contribution to the VEVs comes from

the fluctuations with short wavelengths and the VEVs coincide with those for the string in

Minkowski bulk with the distance from the string replaced by the proper distance αr/η. The

influence of the gravitational field on the topological contributions in the VEVs is crucial at

proper distances larger than the curvature radius of the background geometry. This contribution

in the electric field squared decays as (η/r)4 for D = 3, as ln(r/η)(η/r)6 for D = 4 and as (η/r)6

for D > 4. For the squared magnetic field the topological contribution decays as (η/r)4 for

D > 3. The exception is the case D = 4 where the corresponding coefficient vanishes and the

next term in the expansion should be kept. In this case the topological term falls off as (η/r)6.

In the Minkowskian bulk the decay of the VEVs is as 1/rD+1 for both the electric and magnetic

fields.

The modifications of the electromagnetic field vacuum fluctuations during the dS expansion

phase, we have discussed here, will be imprinted in large-scale stochastic perturbations of the

electromagnetic fields surrounding the cosmic string in the post-inflationary radiation domi-

nated era. The magnetic fields will be frozen in the cosmic plasma whereas the electric fields

will be eliminated by the induced currents.

We have also investigated the VEV of the electromagnetic energy density, induced by a

cosmic string. Near the string the topological contribution dominates in the total VEV and

the energy density behaves as (η/r)D+1. At distances from the string larger than the curvature

radius of the dS spacetime and for spatial dimensions D > 4, the topological part in the energy

density is dominated by the magnetic contribution and decays as (η/r)4. For D = 4 the electric

field contribution dominates and at large distances the string-induced energy density behaves

as (η/r)6 ln(r/η). For D = 3 the topological contribution in the energy density is negative and

decays as (η/r)4 for all distances. For other spatial dimensions the energy density, in general,

is not a monotonic function of the distance from the string. For example, in the case D = 5 the

energy density is negative near the string and positive at large distances. It has a maximum

for some intermediate value of the distance from the string.
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CONCLUSIONS

1. For a scalar field with Robin boundary condition on a spherical shell in the background

of a constant negative curvature space the Wightman function, the mean field squared

and the VEV of the energy-momentum tensor are decomposed into the boundary-free

and sphere-induced contributions. This reduces the renormalization procedure to the one

for the space without boundaries. The corresponding results are generalized for spaces

with spherical bubbles and for cosmological models with negative curvature spaces. For

the coefficient in the boundary condition there is a critical value above which the scalar

vacuum becomes unstable.

2. At distances from the sphere larger than the curvature scale of the background space

the suppression of the vacuum fluctuations in the gravitational field corresponding to the

negative curvature space is stronger compared with the case of the Minkowskian bulk.

The decay of the VEVs with the distance is exponential for both massive and massless

fields.

3. For a charged scalar field in spacetimes with toroidally compactified spatial dimensions

and in the presence of planar boundaries, the nontrivial phases in quasiperiodicity condi-

tions along compact dimensions and a constant gauge field induce vacuum current density.

It is a periodic function of the magnetic flux, enclosed by compact dimensions, with the

period equal to the flux quantum.

4. The current density does not contain surface divergences and for Dirichlet condition it

vanishes on the boundaries. The normal derivative of the current density on the bound-

aries vanishes for both Dirichlet and Neumann conditions. There is a region in the space

of the parameters in Robin boundary conditions where the vacuum state becomes unsta-

ble. The stability condition depends on the lengths of compact dimensions and is less

restrictive than that for background with trivial topology.

5. Complete set of cylindrical modes is constructed for the electromagnetic field inside and

outside a cylindrical shell in the background of (D + 1)-dimensional dS spacetime and
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the VEVs of the electric field squared and of the energy-momentum tensor are evalu-

ated for the Bunch-Davies vacuum state. The shell-induced contribution in the electric

field squared is positive for both the interior and exterior regions and the correspond-

ing Casimir-Polder forces are directed toward the shell. The vacuum energy-momentum

tensor, in addition to the diagonal components, has a nonzero off-diagonal component

corresponding to the energy flux along the direction normal to the shell. The flux is

directed from the shell in both the exterior and interior regions. The results are extended

for confining boundary conditions of flux tube models in quantum chromodynamics.

6. The electromagnetic field correlators around a cosmic string in dS spacetime are presented

in the form where the string-induced topological parts are explicitly extracted. With this

decomposition, the renormalization of the local VEVs in the coincidence limit is reduced to

the one for dS spacetime in the absence of the cosmic string. Near the string the VEVs of

the squared electric and magnetic fields, and of the vacuum energy density are dominated

by the topological contributions and the effects induced by the gravitational field are

small. At distances from the string larger than the curvature radius of the background

geometry, the pure dS parts in the VEVs dominate. In this region the influence of

the gravitational field on the topological contributions is crucial and the corresponding

behavior is essentially different from that for a cosmic string on the Minkowski bulk.

7. It is argued that, as a consequence of the quantum-to-classical transition of super-Hubble

electromagnetic fluctuations during cosmological inflation, in the postinflationary era

these strings will be surrounded by large scale stochastic magnetic fields. These fields

could be among the distinctive features of the cosmic strings produced during the infla-

tion and also of the corresponding inflationary models.
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[240] R. Linares, H.A. Morales-Técotl, O. Pedraza, Casimir force for a scalar field in warped

brane worlds, Phys. Rev. D 77, 066012 (2008).

[241] M. Frank, N. Saad, I. Turan, Casimir force in Randall-Sundrum models with q + 1 di-

mensions, Phys. Rev. D 78, 055014 (2008).

[242] E.R. Bezerra de Mello, A.A. Saharian, M.R. Setare, Vacuum densities for a brane inter-

secting the AdS boundary, Phys. Rev. D 92, 104005 (2015).

[243] R. Basu, A. Vilenkin, Evolution of topological defects during inflation, Phys. Rev. D 50,

7150 (1994).

[244] C.J.A.P. Martins, E.P.S. Shellard, Quantitative string evolution, Phys. Rev. D 54, 2535

(1996).

[245] C.J.A.P. Martins, E.P.S. Shellard, Extending the velocity-dependent one-scale string evo-

lution model, Phys. Rev. D 65, 043514 (2002).

[246] P.P. Avelino, C.J.A.P. Martins, E.P.S. Shellard, Effects of inflation on a cosmic string

loop population, Phys. Rev. D 76, 083510 (2007).

[247] M. Hindmarsh, Signals of inflationary models with cosmic strings, Prog. Theor. Phys.

Suppl. 190, 197 (2011); C. Ringeval, Cosmic strings and their induced non-Gaussianities

in the cosmic microwave background, arXiv:1005.4842.

153



[248] A. Vilenkin, Towards the theory of reheating after inflation, Phys. Rev. D 56, 3258 (1997).

[249] A. Vilenkin, E.P.S. Shellard, Cosmic Strings and Other Topological Defects (Cambridge

University Press, Cambridge, England, 1994).

[250] E. Witten, Cosmic superstrings, Phys. Lett. B 153, 243 (1985).

[251] D.F. Chernoff, S.-H. Henry Tye, Inflation, string theory and cosmic strings, Int. J. Mod.

Phys. D 24, 1530010 (2015).

[252] E.J. Copeland, L. Pogosian, T. Vachaspati, Seeking string theory in the cosmos, Class.

Quantum Grav. 28, 204009 (2011).

[253] E.R. Bezerra de Mello, A.A. Saharian, Fermionic vacuum polarization by a flat boundary

in cosmic string spacetime, J. High Energy Phys. JHEP04(2009)046.

[254] E.R. Bezerra de Mello, A.A. Saharian, Fermionic vacuum polarization by a cosmic string

in de Sitter spacetime, J. High Energy Phys. JHEP08(2010)038.

[255] A. Mohammadi, E.R. Bezerra de Mello, A.A. Saharian, Induced fermionic currents in de

Sitter spacetime in the presence of a compactified cosmic string, Class. Quantum Grav.

32, 135002 (2015).

[256] P.P. Kronberg, Extragalactic magnetic fields, Rep. Prog. Phys. 57, 325 (1994).

[257] M. Giovannini, The Magnetized Universe, Int. J. Mod. Phys. D 13, 391 (2004).

[258] A. Kandusa, K.E. Kunze, C.G. Tsagas, Primordial magnetogenesis, Phys. Rep. 505, 1

(2011).

[259] R. Durrer, A. Neronov, Cosmological Magnetic Fields: Their Generation, Evolution and

Observation, Astron. Astrophys. Rev. 21, 62 (2013).

[260] M. Giovannini, Magnetogenesis and the dynamics of internal dimensions, Phys. Rev. D

62, 123505 (2000).

[261] J. Ambjorn, S. Wolfram, Properties of the vacuum. 2. Electrodynamic, Ann. Phys. (N.Y.)

147, 33 (1983).

154



[262] H. Luckock, Mixed boundary conditions in quantum field theory, J. Math. Phys. 32, 1755

(1991).

[263] T. Gherghetta, A. Pomarol, Bulk Fields and Supersymmetry in a Slice of AdS, Nucl.

Phys. B 586, 141 (2000).

[264] A.A. Saharian, V.F. Manukyan, N.A. Saharyan, Electromagnetic Casimir densities for a

cylindrical shell on de Sitter space, Int. J. Mod. Phys. A 31, 1650183 (2016).

[265] S.N. Solodukhin, Boundary conditions and the entropy bound, Phys. Rev. D 63, 044002

(2001).

[266] Handbook of Mathematical Functions, edited by M. Abramowitz and I. A. Stegun (Dover,

New York, 1972).
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