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GENERAL DESCRIPTION OF THE WORK

Relevance of topic. The properties of vacuum fluctuations of quantum fields depend
on external fields and on the geometry of the background spacetime. Among the most
interesting effects of this kind is the dependence of the properties of the vacuum on boundary
conditions imposed on a quantum field. The boundary conditions modify the spectrum of
vacuum fluctuations and, as a result of that, the vacuum expectation values (VEVs) of physical
observables are changed. The change in the vacuum properties induced by boundary conditions
is called the Casimir effect. Currently it has been investigated in large number of the bulk and
boundary geometries (see [1,2]). The Casimir effect can be considered as a consequence of the
vacuum polarization by boundaries. Another kind of vacuum polarization arises in an external
gravitational field. An interesting topic in the theory of the Casimir effect is the investigation
of the dependence of the local characteristics, like the energy density and stresses, on the
background gravitational field. In the corresponding calculations the knowledge of a complete
set of the field modes is required and exact results can be obtained for bulk and boundary
geometries having high degree of symmetry.

The investigation of quantum effects in curved backgrounds is motivated by several reasons.
During the cosmological expansion of the Universe, the back reaction of the particles created
by a time dependent gravitational field at early stages leads to a rapid isotropization of the
expansion. According to the inflationary scenario, the quantum vacuum fluctuations of a
scalar field, amplified by the gravitational field during the quasi-de Sitter (dS) like expansion,
serve as seeds for the large scale structure formation in the Universe. The information on
the properties of these fluctuations are encoded in the thermal anisotropies of the cosmic
microwave background which are measured with high accuracy by a number of recent
cosmological projects. An important feature of quantum field theory in curved backgrounds is a
possible breakdown of the energy conditions in the formulations of Hawking-Penrose singularity
theorems, by the expectation value of the energy-momentum tensor of quantum fields. This
opens a possibility to solve the singularity problem within the framework of classical general
relativity. An additional motivation for the study of quantum field theoretical effects in curved
backgrounds appeared recently in condensed matter physics related to various analog models.
In particular, the long wavelength properties of the electronic subsystem in a graphene sheet are
well described by the Dirac-like model with the speed of light replaced by the Fermi velocity.
In curved graphene structures (for example, in fullerenes) the corresponding field theory is
formulated on curved geometry and the curvature effects should be taken into account in the
calculations of physical properties of these structures [3,4].

The boundary conditions on the field operator can also be induced by nontrivial topology
of the space. The changes in the properties of the vacuum state generated by this type of
conditions are referred to as the topological Casimir effect. The importance of this effect is
motivated by that the presence of compact dimensions is an inherent feature in many high-
energy theories of fundamental physics, in cosmology and in condensed matter physics. In
particular, supergravity and superstring theories are formulated in spacetimes having extra
compact dimensions. The compactified higher-dimensional models provide a possibility for the
unification of known interactions. Models of a compact universe with nontrivial topology may
also play an important role by providing proper initial conditions for inflation in the early stages
of the Universe expansion. In condensed matter physics, a number of planar systems in the low-
energy sector are described by an effective field theory. The compactification of these systems
leads to the change in the ground state energy which is the analog of the topological Casimir



effect. Well-known examples of this type are cylindrical and toroidal carbon nanotubes, having
topologies R' x S* and T? (2-dimensional torus), respectively. These structures are generated
by rolling up a graphene sheet.

The aim of the thesis is the investigation of combined effects of constraining boundaries,
background geometry and nontrivial topology on the local properties of the vacuum state for
scalar and electromagnetic fields. We have studied:

- Wightman function, the VEVs of the field squared and of the energy-momentum tensor
for a quantum scalar field on the background of a negatively curved constant curvature
space in the presence of a spherical boundary with Robin boundary condition on it,

- Effect of two parallel plane boundaries on the VEV of the current density for a charged
scalar field in flat spacetime with toroidally compactified spatial dimensions,

- Electromagnetic field modes, the VEVs of the electric and magnetic fields squared and of
the energy-momentum tensor inside and outside a cylindrical shell in dS spacetime,

- Influence of a cosmic string on the vacuum fluctuations of the electromagnetic field in
background of dS spacetime.

Scientific novelty. The Wightman function, the mean field squared and the VEV of the
energy-momentum tensor are evaluated for a scalar field with Robin boundary condition on a
spherical shell in the background of a constant negative curvature space. For the coefficient
in the boundary condition there is a critical value above which the scalar vacuum becomes
unstable. At distances from the sphere larger than the curvature scale of the background
space the suppression of the vacuum fluctuations in the gravitational field corresponding to
the negative curvature space is stronger compared with the case of the Minkowskian bulk. The
Hadamard function and the VEV of the current density are investigated for a charged scalar
field in the geometry of flat boundaries with an arbitrary number of toroidally compactified
spatial dimensions and in the presence of a constant gauge field. The latter induces Aharonov-
Bohm-type effect on the VEVs. The vacuum stability condition depends on the lengths of
compact dimensions and is less restrictive than that for background with trivial topology.
Complete set of cylindrical modes is constructed for the electromagnetic field inside and outside
a cylindrical shell in the background of dS spacetime and the VEVs of the electric field squared
and of the energy-momentum tensor are evaluated. The vacuum energy-momentum tensor
has a nonzero off-diagonal component that corresponds to the energy flux. For a cosmic
string in dS spacetime, the electromagnetic field correlators are presented in the form with
explicitly separated topological parts. Near the string the VEVs are dominated by the topological
contributions and the effects induced by the gravitational field are small. At distances from the
string larger than the curvature radius of the background geometry, the pure dS parts in the
VEVs dominate.

Practical importance. The methods used in the thesis can be used for the investigation
of the VEVs of local physical observables for other geometries of background spacetime. In
particular, they include spaces with spherical bubbles and for cosmological models with negative
curvature spaces. The expressions for the two-point functions can be used for the study of the
response of Unruh-de Witt type particle detectors in a given state of motion. The generalized
Abel-Plana-type summation formula for series over the zeros of the linear combination of the
associated Legendre function and its derivative can be used in other problems of mathematical
physics on background of negatively curved space.
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Basic results to be defended:

1. For a scalar field with Robin boundary condition on a spherical shell in the background of
a constant negative curvature the boundary-induced parts are explicitly extracted from
the VEVs of the field squared and of the energy-momentum tensor. At large distances
from the sphere the decay of those parts is stronger compared with the case of a sphere
in Minkowski bulk. Depending on the coefficient in the boundary condition, the vacuum
energy density can be either positive or negative.

2. In spacetimes with toroidally compactified spatial dimensions, the nontrivial phases in
quasiperiodicity conditions for a charged scalar field and a constant gauge field induce
vacuum currents along compact dimensions. The current density is a periodic function
of the magnetic flux, enclosed by compact dimensions, with the period equal to the flux
quantum. Depending on the boundary conditions, the presence of planar boundaries may
decrease or increase the VEV of the current density.

3. In both the problems with spherical and planar boundaries, there is a region in the space
of the parameters in Robin boundary conditions where the vacuum state is unstable. The
stability condition depends on the background geometry and topology.

4. For a cylindrical shell in dS spacetime, the boundary-induced contribution in the VEV
of the electric field squared is positive for both the interior and exterior regions and the
corresponding Casimir-Polder forces are directed toward the shell. The vacuum energy
density, as a function of the distance from the shell, may change the sign. The presence
of the cylindrical shell induces an energy flux directed from the shell.

5. For the electromagnetic field around a cosmic string in dS spacetime, the topological
contributions in the local characteristics of the vacuum are explicitly separated. At
distances from the string smaller than the dS curvature radius the influence of the
gravitational field is weak and those contributions dominate in the VEVs. At larger
distances from the string the effect of the gravity is essential and the behavior of the VEVs
may crucially differ from that for a string in Minkowski bulk. Depending on the planar
angle deficit induced by the string, the vacuum energy density can be either positive or
negative.

Approbation of the work. The results of the thesis were reported at the conferences
"Modern Physics of Compact Stars and Relativistic Gravity" (Yerevan, 2017), "Casimir Effect:
Theory and Applications" (Trondheim, Norway, 2018), "Verao Quantico 2019" (Ubu-Anchieta,
Brazil, 2019) and have been discussed at the seminars of the Chair of theoretical physics of
Yerevan State University, of the INFN National Laboratory of Frascati (Frascati, Italy) and of
the Federal University of Paraiba (Joao Pessoa, Brazil).

Publications. Seven papers are published on the topic of the thesis.

Structure of the thesis. The thesis consists of Indroduction, four Chapters, Conclusion and
the list of references. It contains 159 pages, including 11 figures.

CONTENT OF THE THESIS

In Introduction the scientific literature related to the topic of the thesis is reviewed, the
relevance of the topic is argued, the aim of the work, the scientific novelty and the practical
value are presented, the basic results to be defended are given.
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In Chapter 1 the influence of background gravitational field and of a spherical shell on local
properties of the vacuum for a scalar field is investigated. The field dynamics is described by
the Klein-Gordon equation

(ViV 4+ m? 4+ ER)p(x) = 0, (1)

where R is the Ricci scalar, V, is the covariant derivative operator, ¢ is the curvature coupling
parameter. The background geometry is described by the line element

ds* = dt* — a*(dr? + sinh® rdQ%,_,), 2)

with a constant a and with d2% _, being the line element on the (D — 1)-dimensional sphere
with unit radius, SP~!. The spatial part of the line element (2) describes a constant negative
curvature space. The spaces with negative curvature play a significant role in cosmology and in
holographic theories. As a boundary geometry we consider a spherical shell with radius » =
on which the field operator obeys Robin boundary condition

(A+ Bn'V)) p(z) =0, 3)
where A and B are constants, and ' is the unit inward normal to the sphere, n' = —4;)6! /a,
J = i,e, with §;y = 1 for the interior region and 4.,y = —1 for the exterior region.

For a free field theory all the properties of the quantum vacuum are contained in two-point
functions. As such the positive-frequency Wightman function is considered, defined as the VEV
W (z,2") = (0]p(z)p(x")|0), where |0) corresponds to the vacuum state. The expectation values
of physical characteristics bilinear in the field operator are obtained from this function in the
coincidence limit. In addition to this, the positive-frequency Wightman function determines
the response function for the Unruh-De Witt particle detector in a given state of motion. In
order to evaluate the Wightman function we employ the direct summation over the complete
set of modes. In the region inside the sphere, the eigenmodes of the field are expressed in
terms of the zeros of the combination of the associated Legendre function and its derivative
with respect to the order. In the mode-sum for the Wightman function, for the summation
of the series over these zeros we apply the formula, derived from the generalized Abel-Plana
formula. This allowed to separate the part corresponding to the boundary-free geometry and
to present the sphere-induced part in terms of a rapidly convergent integral. In that form the
explicit knowledge of the eignemodes is not required. In addition, with the decomposition into
the boundary-free and boundary-induced contributions, the renormalization of the VEVs in the
coincidence limit is reduced to the one for the boundary-free geometry. A similar decomposition
for the exterior region, r > r, is provided.

In Section 1.2, as an important local characteristic of the vacuum state, the VEV of the field
squared is considered. It is decomposed as (p?) = (©?)o+ (p?)s, Wwhere (©?) is the renormalized
VEV in the boundary-free space and the part {?), is induced by the sphere. In the region inside
the sphere, r < ro, the latter is given by

() — alP iDle”‘” /oo o ‘Z_Ml/Q(cosh To) .[Pz[ié?(COSh r)|? |
mSp 4= o P jp(coshro) sinh™ =7y /2% — 22,

where Sp = 27P/2/T'(D/2) is the surface area of the unit sphere in D-dimensional space,
P p(u) and Q7 ,(u) are the associated Legendre functions,

(4)

I(l+ D —2)
I'(D—1)l"

w=10+D/2—1, D;=2u Zm = \/m2a2 — D(D — 1) (£ = &), (5)
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§. = (D—1)/(4D) is the curvature coupling parameter for a conformally coupled field. Here, for
a given function F'(u) we use the notation F'(u) = A(u)F (u) + B(u)F'(u), with the coefficients

Alu) = AVu? — 1+ (D/2 — 1)50)?% B(u) = —(5(j)§(u2 —1). (6)

The expressions for the sphere-induced part in the exterior region (r > ) is obtained from (4)
by the replacements P = () of the associated Legendre functions. For both the interior and
exterior regions the sphere-induced VEV of the field squared is negative for Dirichlet boundary
condition (B = 0) and positive for Neumann boundary condition (A = 0). The expectation value
of the field squared diverges on the boundary. The leading term in the asymptotic expansion
over the distance from the sphere behaves as 1/|r, —r|P~! and coincides with that for the sphere
in Minkowski bulk. This is natural, because near the sphere the contribution of the modes with
the wavelengths smaller than the curvature radius dominate and they are relatively insensitive
to the background geometry. In the opposite limit of large distances, the effects of gravity are
decisive and the VEV decays as (p?), oc e~(2*m+P=1r_ For both massive and massless fields the
suppression of the boundary-induced VEV at large distances is exponential. This is in contrast
to the case of Minkowskian bulk, where the decay for massless fields has a power-law behavior.

In Section 1.3 the VEV of the energy-momentum tensor is investigated. It is presented in
decomposed form (7T};) = (Tix)o + (Tix)s, Where the first and second terms in the right-hand
side correspond to the boundary-free and sphere-induced contributions. The vacuum energy-
momentum tensor is diagonal and the expressions for the sphere-induced contributions inside
the sphere are given by (no summation over k)

A 00 QY | (coshr F®) P " (coshr
1) =S pe [ Ca 2y p(coshrn) OIS yleosh r)) o
mSp m P! jp(coshro) sinh™ = ry/22 — 22

=0

—1-D ®

where F®[f(x)], k = 0,1,..., D, are bilinear functions of f(z) and its derivative f'(z). The
VEV outside the sphere is obtained with the replacements P = @ in the integrand of (7). The
part in the VEV of the energy-momentum tensor induced by the spherical shell satisfies the
covariant conservation equation V,(TF¥), = 0. Near the sphere, the leading term in the energy
density and parallel stresses is given by (no summation over k)

 DU((D +1)/2)(€ — &) (2005 — 1)

TF)s ~ 8

< k> 2D7T(D+1)/2 ((l‘?"(] _r’>D+1 ) ( )

for the components k£ = 0,2,.... These leading terms coincide with those for a sphere in the
Minkowski bulk. For the leading term of the radial stress one has

(THs =~ (1 —1/D) (ro — ) coth (T3, 9)

and the corresponding divergence is weaker. At large distances from the sphere the VEVs
are suppressed by the factor e=(#=+P=Ur_ Again, in contrast to the Minkowskian case, the
expectation values are exponentially suppressed for both massive and massless fields.

In Section 1.4 we generalize the results for the VEVs to the backgrounds described by two
distinct spherically symmetric metric tensors in the regions separated by a spherical boundary.
The geometry of one region affects the properties of the vacuum in the other region leading to
the gravitationally induced Casimir effect. We have considered the interior geometry (r < o,
bubble) described by the line element

dSQ _ eQU(r)dtQ — 2 [€2v(r)d,r,2 + €2w(r)dQQD_1], (10)
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with general functions u(r), v(r), w(r), and the geometry in the region r > r, is given by (2).
For generality, the presence of the surface energy-momentum tensor with nonzero components
7 and 73 = - .- = 75, located at r = ry, is assumed. The continuity of the metric tensor at the
separating boundary imples u(ry) = v(rg) = 0, w(ro) = In(sinhry). From the Israel matching
conditions on the sphere r = r, the components of the surface energy-momentum tensor 7
are expressed in terms of «/(rg) and w’(ry). The boundary conditions for the field operator
on the sphere r = r( are obtained from the field equation. In the region r > ry, the bubble-
induced contributions in the Wightman function and in the VEVs of the field squared and the
energy-momentum tensor are obtained from the expressions for the spherical shell with Robin
boundary condition by the replacement

m

g _R(i)z(rm emif2, [% — o2 — 26 {u/ (1) + (D — 1)[w'(rg) — cothrg]}, (1)

m

aA Ry (re. e /E22)

where R;);(r, E) is the real solution of the field equation for the radial function in the interior
region, regular at the bubble center, and E is the corresponding energy. As an example of the
interior geometry we have considered the case of the Minkowskian bubble. In the geometry
with bubbles the divergences on the boundary are weaker compared with the case of the Robin
sphere. We have also considered a bubble with a negative constant curvature space in the
Minkowski bulk.

The generalization of the results for the Friedmann-Robertson-Walker cosmological models
with a time-dependent scale factor is straightforward in the case of a conformally coupled
massless field. This requires the replacement a — a(¢) in the expressions for the Wightman
function and for the vacuum expectation values. In the special case D = 2, the results obtained
can be applied to negatively curved graphene structures, described in the long-wavelength
regime by an effective 3-dimensional relativistic field theory. The latter, in addition to the
well-known Dirac fermions describing the low-energy excitations of the electronic subsystem,
involves scalar and gauge fields originating from the elastic properties and describing disorder
phenomena, like the distortions of the graphene lattice and structural defects (see, for example,
[5,6]). In this setup, the spherical boundary models the edge of a negatively curved graphene
sheet. The boundary condition we have used ensures the zero flux of a scalar field through the
boundary.

In Chapter 2 the influence of parallel flat boundaries on the VEV of the current density is
investigated for a charged scalar field () in a flat spacetime with spatial topology RP x T,
p+q+1 = D, where T stands for a ¢-dimensional torus. In addition, the presence of an abelian
gauge field A4, is assumed. The set of Cartesian coordinates in the subspace R**! will be denoted
by x,11 = (2%, ...,2P™") and the corresponding coordinates on the torus by x, = (z7*2, ..., z).
If L, is the length of the /th compact dimension then one has —oco < 2! < oo forl =1, .., p, and
0<a! < Lforl=p+2,..,D. The field equation has the form (1), where now V,, = 9, +ieA4,,
with e being the charge of the field quanta, and R = 0. We assume the presence of two parallel
flat boundaries placed at 2™ = a; and 2P™' = a,. On the boundaries the field obeys Robin
boundary conditions (compare with (3))

(1+ BnfV,)e(r) =0, 2"t = 2 = ay, (12)

with constant coefficients ;, j = 1,2, and with n/ being the inward pointing normal to the
boundary at 27! = a;. Here, for the further convenience we have introduced a special notation
z = P! for the (p + 1)th spatial dimension. In the region between the plates, a; < 2 < as,
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one has nf = (—~1)’~'4/,,. The expressions for the VEVs in the regions » < a; and z > ay
are obtained by the limiting transitions. In addition to the boundary conditions on the plates,
for the theory to be completely defined, one needs to specify the periodicity conditions along
the compact dimensions. Different conditions correspond to topologically inequivalent field

configurations. We consider generic quasiperiodicity conditions,
o(t,zt,. . ot Ly, 2P = et 2t ot 2P, (13)

with constant phases o, I = p + 2,..., D. The special cases of (13) with oy = 0 and oy = 7
correspond to the most frequently discussed cases of untwisted and twisted scalar fields.

The VEV of the current density is obtained from the Hadamard two-point function G(z, ')
by using the formula

(017,.(2)]0) = (ju(2)) = %e lim (9, — &, + 2ieA,)G(x,a"). (14)

' —x

The Hadamard function is evaluated by mode-sum formula that contains the summation over
the complete set of scalar modes. In the region between the plates, the eigenvalues of the
momentum component normal to the plates are given as roots of transcendental equation. By
using the generalized Abel-Plana formula for summation of the series over those roots, the
Hadamard function is decomposed into boundary-free, single boundary-induced and the second
boundary-induced contributions. In the case 1/3; > wy, where w? = 377 oi2 @7 /L] +m* and
&; = ag+eA; L, there are scalar field modes for which the energy is imaginary and the vacuum is
unstable. In order to have a stable vacuum, for non-Dirichlet boundary conditions, it is assumed
that 1/3; < wy. The physical quantities are periodic functions of &; with the period 27 and in the
definition of wy, we assume that |@;| < 7. The momentum £; along the /th compact dimension is
quantized by the condition (13) and k; = (27n; + &;)/L;, with n; = 0,+1, 42, .... The current
density in the boundary-free geometry has been investigated in [7]. The corresponding charge
density and the current densities along uncompact dimensions vanish. The same holds in the
case of the boundary-induced contributions in the VEVs. Hence, the only nonzero components
correspond to the current density along compact dimensions. The latter is a periodic function
of the magnetic flux with the period equal to the flux quantum. The component along the /th
compact dimension is an odd function of the phase &; and an even function of the remaining
phases &;, i # 1.

In Section 2.2 we investigate the VEV of the vacuum current density in the geometry of a
single plate at 27! = a;. This VEV is obtained with the help of the formula (14) by using the
corresponding Hadamard function. The component of the VEV of the current density along the

Ith compact dimension is presented in the decomposed form ( j yi=0UY%+ @ )( ), where (j')
is the current density in the boundary-free geometry and (j > is the contribution induced by
the presence of the plate. For the latter one gets

—(p+1)/

-] (1)_ k d . (p—1)/2 —2yz]yﬁj+1 15
(7")] 2prp+1 Zz/ y (- i) Y (15)

where V, = L,,....Lp is the volume of the compact subspace, z; = |z — q;| is the distance from
the plate, n, = (n,12,...,np), and wp = S 42 ki +m?. In the special cases of Dirichlet and
Neumann boundary conditions we obtain

, QG/L/
(Gh5Y = WHZW for2(2wn,25), ful()

K, (z)

xl/

: (16)



where the upper and lower signs correspond to Dirichlet and Neumann boundary conditions,
respectively, and K, (x) is the MacDonald function. At large distances from the plate, z; > L;,

the boundary-induced current density behaves as ( j‘>§1) ox g7 2wz z](” /2 The suppression is
exponential for both massive and massless fields.

An important issue in quantum field theory with boundaries is the appearance of surface
divergences in the VEVs of local physical observables. Examples of the latter are the VEVs
of the field squared and of the energy density. These divergences are a consequence of the
oversimplification of a model where the physical interactions are replaced by the imposition
of boundary conditions for all modes of a fluctuating quantum field. Of course, this is an
idealization, as real physical systems cannot constrain all the modes. The appearance of
divergences in the VEVs of physical quantities indicates that a more realistic physical model
should be employed for their evaluation on the boundaries. An important feature in the problem
under consideration is that the VEV of the current density is finite on the plate. This is in sharp
contrast with the behavior of the VEVs for the field squared and energy-momentum tensor. The
finiteness of the current density on the boundary may be understood from general arguments.
The divergences in local physical observables are determined by the local bulk and boundary
geometries. If we consider the model with the topology RF*? x T ! with the /th dimension
having the topology R!, then in this model the /th component of the current density vanishes
by the symmetry. The compactification of the /th dimension to S' does not change both the
bulk end boundary local geometries and, hence, does not add new divergences to the VEVs
compared with the model on RP™? x T !. In the case of Dirichlet boundary condition the
boundary-free and plate-induced parts of the current density cancel each other for z; = 0 and,
hence, the total current vanishes on the plate. For Neumann condition the current density on
the plate is given by (j');.—., = 2(j')o. The normal derivative of the current density on the
plate vanishes for both Dirichlet and Neumann boundary conditions: (9.(j');).—,, = 0. This is
not the case for general Robin condition.

The behavior of the plate-induced part of the current density along /th dimension, in the
limit when the lengths of the other compact dimensions are much smaller than Z,, crucially
depend wether the phases &;, i # [, are zero or not. For 3., a7 # 0 the plate-induced

. . . _ 2 2 ~ ~
contribution is suppressed by the factor e~ Fwo(1+25/11%) " where w3, = wi — a7/ L}. For &; = 0,

i # 1, the leading term in the asymptotic expansion, multiplied by V,/L;, coincides with the
corresponding current density for (p + 2)-dimensional space with topology RP*! x S.

In figure 1, for the simplest Kaluza-Klein model with a single compact dimension of the
length L (D = 4) and with the phase &, we have plotted the total current density, L”(j'),/e,
for a massless scalar field in the geometry of a single plate as a function of the distance from
the plate and of the phase a. The left/right panel correspond to Dirichlet/Neumann boundary
conditions. As has been already noticed before, in the Dirichlet case the total current density
vanishes on the plate.

For the same model, figure 2 presents the plate-induced contribution to the current density
as a function of the distance from the plate for various values of the coefficients in the Robin
boundary condition (left panel) and as a function of the ratio 3;/L (right panel). The numbers
near the curves on the right panel correspond to the value of 5;/L. The left panel is plotted
for the fixed value of the relative distance from the plate z;/L = 0.3. On both panels, the
dashed curves are plotted for Dirichlet and Neumann boundary conditions. For the phase in
the quasiperiodicity condition we have taken & = 7/2. On the right panel, for the values of 3;/L
between the ordinate axis and the vertical dotted line (3;/L = 1/&) the vacuum is unstable.
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Figure 1: The total current density, L” (;'), /e, in the topology R*x S* for a D = 4 massless scalar
field with Dirichlet (left panel) and Neumann (right panel) boundary conditions in the geometry
of a single plate, as a function of the phase in the quasiperiodicity boundary condition and of
the distance from the plate.
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Figure 2: The plate-induced contribution to the current density for the model corresponding to
figure 1 as a function of the distance from the plate (left panel) for different values of the ratio
B;/L (numbers near the curves) and as a function of 3;/L (right panel) for z;/L = 0.3. The
dashed curves correspond to Dirichlet and Neumann boundary conditions and the graphs are
plotted for & = /2.
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In Section 2.3 the VEV of the current density in the region between the plates (a; < z < as)
is investigated. The expression for the component along the ith compact dimension reads

~(p+1)/2 o0 L2430, cilay)e?F
y] 1 em Z 2 9 b1 j=12"%J
7= 2I((p+1)/2)Vq £ l/w,, v =) ci(ay)ea(ay)e*™ — 17 )

q

where a = a; — ay and ¢;(u) = (bju —1)/(bju+1), b; = §;/a. In the case of Dirichlet boundary
condition the total current vanishes on the plates: (j')._,, = 0. The normal derivative vanishes
on the plates for both Dirichlet and Neumann cases. In the limit when the separation between
the plates is smaller than all the length scales in the problem, the behavior of the current density
is essentially different for non-Neumann and Neumann boundary conditions. In the former
case, the total current density in the region between the plates tends to zero. For Neumann
boundary condition on both plates, for small separations the total current density is dominated
by the interference part and it diverges inversely proportional to the separation.

In figure 3, in the model with a single compact dimension of the length L and fora D = 4
massless scalar field with Dirichlet (left panel) and Neumann (right panel) boundary conditions,
the total current density in the region between the plates located at z = 0 and z = « is plotted
as a function of the ratio z/a. The numbers near the curves correspond to the values of a/L
and the graphs are plotted for & = /2. The current density for Dirichlet/Neumann scalar
decreases/increases with decreasing separation between the plates and for Dirichlet scalar it
vanishes on the plates.

015+ r
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i 0.25
010+ 06+
() r © L
3 3 |
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v v r 05 1
U — U 04f |
0.05+ 3 1
I 1 |
02r i
0.00 t 2
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Figure 3: The current density between the plates as a function of the relative distance from the
left plate in the model with a single compact dimension. The graphs are plotted for a massless
field with the parameter @ = 7 /2 and with Dirichlet (left panel) and Neumann (right panel)
boundary conditions. The numbers near the curves correspond to the values of a/L.

The same graphs for Dirichlet boundary condition on the left plate and Neumann condition
on the right one are presented on the left panel of figure 4. The right panel in figure 4 is plotted
for Robin boundary condition on both plates with 8,/L = 5,/L = —1. In the Robin case, the
current density decreases with the further decrease of the separation between the plates and it
tends to zero in the limit « — 0, in accordance with the general analysis described above.
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Figure 4: The same as in figure 4 for Dirichlet boundary condition on the left plate and Neumann
condition on the right one (left panel). The right panel is plotted for Robin boundary condition
on both plates with 3, /L = 8,/L = —1.

The results may be applied to Kaluza-Klein-type models in the presence of branes (for D > 3)
and to planar condensed matter systems (for D = 2), described within the framework of an
effective field theory. In particular, in the former case, the vacuum currents along compact
dimensions generate magnetic fields in the uncompactified subspace. The boundaries discussed
above can serve as a simple model for the edges of planar systems.

Chapter 3 is devoted to the study of the effects of gravitational field and of a cylindrical
shell on local characteristics of the electromagnetic vacuum. As a background geometry we
take (D + 1)-dimensional dS spacetime with the line element

ds® = dt* — e/* [dr? + r?d¢* + (dz)’] (18)

where z = (23, ..., 2”). The parameter « is expressed in terms of the cosmological constant
A as o> = D(D — 1)/(2A). On the cylindrical surface » = a the field obeys the boundary
condition n** *F,,..,, , = 0, where n” is the normal to the boundary, *F,,..,, , is the dual
of the electromagnetic field tensor F,, = 9,4, — 0,A,. For D = 3 that condition reduces
to the boundary condition on the surface of a perfect conductor. The complete set of the
electromagnetic field cylindrical modes are sepciefied inside and outside of the cylindrical shell.
In the special case D = 3 and in the Minkowskian limit they are reduced to the well known
TE and TM modes in cylindrical waveguides. In the (D + 1)-dimensional case one has a single
mode of the TE type and D — 2 modes of the TM type.

As a local characteristic of the vacuum state we consider the VEV of the squared electric
field. This VEV is obtained by making use of the mode-sum over the complete set of the
electromagnetic field mode functions and is decomposed as (E?) = (E?)4s + (FE?)y,, where
(E?)4s corresponds to the VEV in dS spacetime in the absence of boundaries. The part of the
VEV (E?), is induced by the presence of the cylindrical boundary and in the region » < a is
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given by the expression

9 2°(4m) P12 pr1EKm’ (za
<E >b - T(D/2— aD-HZ Z/ d ( 1)

=0 \=0,1 13@/77)

1
« / dss (1— 52”2 GO [s, I, (er/n)] fojas (x5). (19)
0
with the notations n = ae™?, f,(z) = K, (z) [I_, (¥) + I, (v)] and

A _ [ A=) [f2(x) + m? f2(2) /2] + [s° (D = 3) + 1] f(z), A =0,
ng) [s,f(a:)]—{ 52 [f'2( )+ m2f2(x )/x} N=1.

In (19), I,, (2) is the modified Bessel function, Y (2) = I (2), I8 (z) = I/, (z) and the same
for K3 (2). Note that 7 = —n is the conformal time coordinate. The expression for (E?),, in
the region r > «a is obtained from (19) by the interchange 7, = K,,. In both the interior and
exterior regions the shell-induced contributions depend on the variables 7, a, r in the form of
the ratios a/n and /7. This feature is a consequence of the maximal symmetry of dS spacetime.
Note that the combination aa /7 is the proper radius of the cylindrical shell and, hence, a/7 is
the proper radius measured in units of the dS curvature scale «. Similarly, the ratio /7 is the
proper distance from the cylinder axis measured in units of a. The presence of the boundary
does not change the local geometry for points outside the shell. This means that at those points
the divergences are the same in both the problems, in the absence and in the presence of the
cylindrical shell. From here it follows that the divergences are contained in the part (£?)4s only,
whereas the boundary-induced contribution (E?), is finite for points away from the boundary.
Hence, the renormalization is required for the boundary-free part only. It can be shown that
(E?), is always positive.

The VEV of the electric field squared for a cylindrical shell in Minkowski spacetime, <E2>,(DM),
is obtained by the limiting transition & — oo for a fixed value of ¢. In the special case of 4-

dimensional dS spacetime one has D = 3 and we get (E?), = (n/a)? (E2>I(DM). In this case,
the VEV of the field squared is related to the corresponding result in Minkowski spacetime
by standard conformal transformation with the conformal factor (n/«)*. This is a direct
consequence of the conformal invariance of the electromagnetic field in D = 3 spatial dimensions
and of the conformal flatness of the background geometry. Near the shell, to the leading order
one finds

(20)

o . SO -1)T{(D+1)/2)
<E >b ~ 2D7T(D—1)/2|a (a—r) /n|D+1’

(21)

where |« (a — r) /n]| is the proper distance from the boundary. The leading term (21) is obtained
from that for the cylindrical shell with the radius « in Minkowski spacetime by the replacement
(a — 1) — a(a —r) /n. For points near the boundary the contribution of the modes with small
wavelengths dominate and at distances from the shell smaller than the curvature radius of the
dS spacetime the influence of the gravitational field is small.

At large proper distances from the shell compared with the dS curvature radius, we have
r/n > 1. For even D > 4 one gets

4(4D*—=3D —4HT3(D/2+1)  «

(E?) & 7PR2D(D — 4H)T(D + 2)(ar/n)P+21n(r/a)

(22)
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In the cases D = 3,4, 5 the leading terms are given by

2(ar /n)~* 167 2a(ar/n)~° 7(ar/n)~°
3rln(r/a)’ 5In(r/a)In(r/n)’ 1072 1n(r/a)

At large distances, the total VEV is dominated by the boundary-free part (E£?)4s. For a
cylindrical shell in the Minkowski bulk, at large distances, » > a, one has (Ez)foM) x
1/[rP*In(r/a)] for all D > 3. In figure 5, for the model with D = 4 the shell-induced
contribution is plotted versus the proper distance from the shell axis, measured in units of c.
For the proper radius of the shell, in the same units, we have taken a/n = 2. The corresponding
Casimir-Polder force is expressed in terms of the derivative 0, (E?),. This force is directed
toward the cylindrical shell.

(E*)p|p=s = (E*)p|pq = (E*)p|p=s ~

Figure 5: Shell-induced contribution in the VEV of the squared electric field versus the proper
distance from the shell axis for the D = 4 model. For the corresponding value of the shell radius
we have taken a/n = 2.

Another important local characteristic of the vacuum state is the VEV of the energy-
momentum tensor. The VEV of the energy-momentum tensor is presented in the form (7) =
(TV)as + (T} ), where (TV) s is the corresponding VEV in the boundary-free dS spacetime and
the contribution (7}7),, is induced by the presence of the cylindrical shell. For points outside the
cylindrical shell the boundary-induced contribution is finite and the renormalization is reduced
to the one for the boundary-free part. From the maximal symmetry of dS spacetime it follows
that the latter does not depend on the spacetime point and has the form (7})4s = const - §7.
In the region » < a for the boundary-induced parts in the diagonal components we get (no
summation over )

(T = aDHi Z/ dx zP* A)((aw/n)/ ds s

m=0 A=0,1 az/n)
< (1= )" 37 Pls. Ln(r /) foja-1-a(as). (23)
1=0,1
where Bp = 22-Px=P/2=1/)T'(D/2 — 1) and we have defined the functions
Pls, ()] = (A3 + BYS) ZR(F ()] + (CF) + (D = 3) DY) (), (24)
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ZOf W) = fPly)+m*fy)/y*, i=0,3,...,D,
ZOUf )] = fy)—m*fy)/y?, i=1,2. (25)

The numerical coefficients FA(}) in (24), with ' = A, B, C, D depend on the number of spatial
dimensions D only. In addition to the diagonal component, the VEV of the energy-momentum
tensor has a nonzero off-diagonal component (7). This component describes energy flux along
the radial direction (along the direction normal to the boundary). It is induced by the presence
of the shell and in the region r < a is given by the expression

W 2B iy g Kalra/y) Ko
Tk = aDHZ/ doa® |0~ FZEER - TR dutar st

X /0 ds s* (1 — 32)D/2_2 [KD/Q_l (y) Io—py2 (y) — Kpja—2 (y) Inj2—1 (y)}y:m . (26)

In the special case D = 3 the off-diagonal component vanishes. For other values of D, for which
the representation (26) is valid, (7§ ), < 0 for 0 < r < a. On the axis, the energy flux vanishes,
(T} )pr=0 = 0. Similar to the case of the field squared, the boundary-induced VEVs (23) and (26)
depend on 7, a, r in the form of the ratios a/n and r/n. The expressions for the components of
the vacuum energy-momentum tensor in the region > a are obtained from (23) and (26) by
the replacements /,, = K,,.

In the special case D = 3 the off-diagonal component of the vacuum energy-momentum
tensor vanishes, (T3), = 0, and the diagonal components are connected to the corresponding
quantities for a cylindrical shell in the Minkowski bulk by the relation (no summation over 7)

(THy = (n/a) (Ti’)](oM). Near the cylindrical shell, the leading terms are given by the expressions
(no summation over i)
i (D=1 (D=3)I((D+1)/2)
™ = o 2o (1) fyf

fori =0,2,...,D,and (T3 ), ~ (TQ)s(a — 1) /n, (T}, = (I)y(a — 1) /(Da). The leading terms
for the diagonal components coincide with those for a cylindrical shell in Minkowski bulk with
the distance from the shell replaced by the proper distance |« (a — r) /n|. In the special case
D = 3 the leading terms vanish. The latter feature is related to the conformal invariance of the
electromagnetic field in D = 3.

In figure 6 we have plotted the boundary-induced contribution in the energy density and
the energy flux as functions of the proper distance from the shell axis, measured in units of the
dS curvature scale . For the corresponding value of the shell radius we have taken a/n = 2. As
is seen, in the interior region the energy density is negative near the shell and positive near the
axis of the shell. The energy flux is negative inside the shell. This means that the energy flux
is directed from the shell. The corresponding energy density in the Minkowski bulk is negative
everywhere.

Another boundary condition, used for the confinement of gauge fields in bag models of
hadrons and in flux tube models of QCD, is the one given by n*F,, = 0. The corresponding
expressions for the VEVs of the field squared and energy-momentum tensor are obtained from
those for generalized perfect conductor boundary condition by the replacement

(27)

K (wa/n) _ Kn ™ (va/n)
Y (zafn) L8V (za/n)
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Figure 6: Shell-induced contribution in the VEV of the energy density (panel (a)) and the energy
flux (panel (b)) as functions of the ratio r/n in the D = 4 model. The graphs are plotted for

a/n=2.

In this case, the boundary-induced contribution on the VEV of the squared electric field is
neagtive in both the interior and exterior regions.

In Chapter 4 the electromagnetic field vacuum fluctuations are investigated around a
straight cosmic string in background of dS spacetime. Although the specific properties of
cosmic strings are model-dependent, they produce similar gravitational effects. In the simplified
model with the string induced planar angle deficit, the nontrivial spatial topology results in the
distortion of the vacuum fluctuations spectrum of quantized fields and induces shifts in VEVs
of physical characteristics of the vacuum state. The line element of the background geometry
is given by (18) where now 0 < ¢ < ¢,. In the case ¢y < 2, though the local geometrical
characteristics for » # 0 remain the same, the global properties are different. The special case
D = 3 corresponds to a straight cosmic string with the core along the axis 2* and with the planar
angle deficit 2r— ¢, determined by the linear mass density of the string.

By using the summation over the complete set of the electromagnetic field modes, the two-
point functions for the electric and magnetic fields products are evaluated. The contributions
corresponding to dS spacetime in the absence of the cosmic string are explicitly extracted. In
the model of the cosmic string under consideration the local geometrical characteristics outside
the string core are not changed by the presence of the string. Consequently, the divergences
and the renormalization procedure for the VEVs are the same as those in pure dS spacetime.
The topological parts do not require a renormalization. The renormalized VEVs for the squared
electric (F' = F) and magnetic (F' = M) fields are presented in the decomposed form

—p—1 |la/2 00
() = (s + S S )~ Lsintam) [y STt )
(2m)P/2 | = ’ m 0 cosh(2qy) — cos(qm) |’

where ¢ = 27/¢y, s, = sin(nl/q), [q/2] is the integer part of ¢/2. In (29), (F?)4s is the
renormalized VEV in the absence of the cosmic string and the remaining part is induced by
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the cosmic string (topological part) and

ge(x,y) = / du uD/QKD/Q_Q(u)e“’QIzyQ“ [2uz’y® (2y° = D +1) + (D —-1)(D/2 - 2y%)] ,
0

gu(zyy) = / duuD/QKD/g_l(u)e“_QmQy%{(D—1)D/2
0

—4(D = 2)y* 4+ 22%y*u [2(D — 2)y* — D + 1] } . (30)

If the parameter ¢ is equal to an even integer the term [ = ¢/2 in (29) should be taken with an
additional coefficient 1/2. The VEV (29) depends on r and 7 in the form of the combination r /7.
The latter property is a consequence of the maximal symmetry of dS spacetime. Note that, for a
given 7, the ratio ar/n is the proper distance from the string. Hence, /7 is the proper distance
measured in units of the dS curvature scale a. From the maximal symmetry of dS spacetime we
expect that the pure dS part does not depend on the spacetime point and (F?)4s = const-a~P~1,

Figure 7: Topological contributions in the VEV of the energy density in spatial dimensions
D = 3,4,5 (the numbers near the curves) for ¢ = 2.5.

For odd D, the functions gr(z,y), ' = E, M, are expressed in terms of the elementary
functions. In particular, for D = 3 one has

¢ —1)(¢° +11)

2\ /2y (
() = {F s 1807 (ar/n)4 (31)
and for D =5
(B?) = () — LD+ 226 +211)
189072 (ar/n)° ’
(B = (BY L @121+ 11)r?/n — 2q" + 40¢° + 502 3
B 71890 272 (ar /)" :

At large distances from the string, /5 > 1, the topological part in the VEV of the electric field
squared decays as (n/r)* for D = 3, as In(r/n)(n/r)® for D = 4 and as (n/r)% for D > 4. The
VEV of the magnetic field squared decays as (r/5)* for D # 4 and as (r/n)° for D = 4. The pure
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dS part (F?)4g is a constant and it dominates in the total VEV at large distances. Note that at
large distances from the string the influence of the gravitational field on the VEV is essential. In
the Minkowskian case the decay of the VEV is as 1/r”*! and depends on the number of spatial
dimension.

Having the VEVs for the squared electric and magnetic fields, we can find the VEV of the
energy density ¢ as (¢) = ((E?) + (B?))/(87). Depending on the parameters D and ¢, the
topological part in the energy density can be either negative or positive. For D = 3 it is always
negative. At large distances from the cosmic string and for D > 4 the topological contribution
in the energy density is dominated by the magnetic part and decays as (n/r)*. For D = 4 and
at large distances the electric part dominates and the energy density decays like (r/r)® In(r /7).
In figure 7 we display the dependence of the topological contribution in the vacuum energy
density as a function of the proper distance from the string (measured in units of dS curvature
scale). The graphs are plotted for spatial dimensions D = 3,4,5. As is seen, in general, the
energy density is not a monotonic function of the distance from the string. Moreover, in the
case D = 5 the energy density changes the sign: it is negative near the string (the electric part
dominates) and positive at large distances from the string (the magnetic contribution dominates).

CONCLUSIONS

1. For a scalar field with Robin boundary condition on a spherical shell in the background
of a constant negative curvature space the Wightman function, the mean field squared
and the VEV of the energy-momentum tensor are decomposed into the boundary-free
and sphere-induced contributions. This reduces the renormalization procedure to the one
for the space without boundaries. The corresponding results are generalized for spaces
with spherical bubbles and for cosmological models with negative curvature spaces. For
the coefficient in the boundary condition there is a critical value above which the scalar
vacuum becomes unstable.

2. At distances from the sphere larger than the curvature scale of the background space
the suppression of the vacuum fluctuations in the gravitational field corresponding to the
negative curvature space is stronger compared with the case of the Minkowskian bulk.
The decay of the VEVs with the distance is exponential for both massive and massless
fields.

3. For acharged scalar field in spacetimes with toroidally compactified spatial dimensions and
in the presence of planar boundaries, the nontrivial phases in quasiperiodicity conditions
along compact dimensions and a constant gauge field induce vacuum current density. It is
a periodic function of the magnetic flux, enclosed by compact dimensions, with the period
equal to the flux quantum.

4. The current density does not contain surface divergences and for Dirichlet condition
it vanishes on the boundaries. The normal derivative of the current density on the
boundaries vanishes for both Dirichlet and Neumann conditions. There is a region in the
space of the parameters in Robin boundary conditions where the vacuum state becomes
unstable. The stability condition depends on the lengths of compact dimensions and is
less restrictive than that for background with trivial topology.
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5. Complete set of cylindrical modes is constructed for the electromagnetic field inside and
outside a cylindrical shell in the background of (D + 1)-dimensional dS spacetime and
the VEVs of the electric field squared and of the energy-momentum tensor are evaluated
for the Bunch-Davies vacuum state. The shell-induced contribution in the electric field
squared is positive for both the interior and exterior regions and the corresponding
Casimir-Polder forces are directed toward the shell. The vacuum energy-momentum
tensor, in addition to the diagonal components, has a nonzero off-diagonal component
corresponding to the energy flux along the direction normal to the shell. The flux is
directed from the shell in both the exterior and interior regions. The results are extended
for confining boundary conditions of flux tube models in quantum chromodynamics.

6. The electromagnetic field correlators around a cosmic string in dS spacetime are presented
in the form where the string-induced topological parts are explicitly extracted. With this
decomposition, the renormalization of the local VEVs in the coincidence limit is reduced
to the one for dS spacetime in the absence of the cosmic string. Near the string the VEVs of
the squared electric and magnetic fields, and of the vacuum energy density are dominated
by the topological contributions and the effects induced by the gravitational field are
small. At distances from the string larger than the curvature radius of the background
geometry, the pure dS parts in the VEVs dominate. In this region the influence of
the gravitational field on the topological contributions is crucial and the corresponding
behavior is essentially different from that for a cosmic string on the Minkowski bulk.

7. It is argued that, as a consequence of the quantum-to-classical transition of super-Hubble
electromagnetic fluctuations during cosmological inflation, in the postinflationary era
these strings will be surrounded by large scale stochastic magnetic fields. These fields
could be among the distinctive features of the cosmic strings produced during the inflation
and also of the corresponding inflationary models.
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uUeNeuth,

Cunwgnunywd E nuuwluu gpuyhunwghnt nuywh, uwhdwuubtph b ng-niphyhw) wnn-
wnnghwh wqnbgnpniup pjuunwht uinmuh hwnnipymivutph ypu uupup b
Lityunpudwgquhuwuu nuymbtph hwdwp: Cwyqupjuo tu ujupjjwup nuynh dwjpdw-
uh dniulghwi, nuymh punwlynum b Fubipghw-hdwnijuh phtugnph yuinumdwhu dh-
shuutinp hwunwwmniut puguwuwluwu Ynpnipyudp mwpwonipyniumd ubtinuyh ubipunid
npunid: Uwhdwuny dwuuoywd ubpnpnidutiph hwdwp unugywd Gu wpwug qniquidh-
wnn hunbtiqpu) vbpuyugndutin: Spuwyhnwughntu pupnh wgntignieniup Juynimdw-
jht dhohuutinh ypw Fwliwlu E udbipuhg wnmwpwonipjuu Ynpmpjuu wunwynhg dbo
htmwynpnipymuutph ypw: Lhgpwynpywo ufwjjup nuywmh hwdwp nuumduwuhpyuwd
tu Cwnwdwph $muljghwt b hnuwuph junnipjuu Juimndwhu dhohup wnpnhnuy
ndyulunhdhljugywd mwpwowluu swhnnujuunpmuutipny hwpp mwpwowdwudw-
uwlnud, hwunmwnniu mpudwswthwhu nuywmh b hwpp qniquhtin vwhdwuutiph wnlw-
jnipjudp: Undwwlwm suthtiph tpuwyupny nuywmh oybtpuwunnpp pwjwpupnd £ judwyw-
Juiu thnytipny pyughwywppbpujuunipjuu yuwydwuubph, hulj vwhdwuubtiph ypw npynid
tu [knphuh tgpuyhu wuydwuutp: dwlynnmdwht hnuwuph junnipiniup ng-qpnjuljuu
pwnunphsutin niuh dhuyu Yndyuwlun swhtiph ninnnipjudp: Unwugwd tu EjEjunpw-
dwquhuwljuu nuymh guuwhu dnnuutipp ni Uhnintph mwpwonipniunid gjuuwjhu
punuuprh wnjuynpjudp: ‘tpwug hhdwu ypu htmugnunjuwd tu Ejijunpujuu numhp
pwnwlnun b Futipghw-hdwniyuh ptugnph Juyniniduwghu dhohuutiphp: Uhyhuubtipnid
pugwhwjn wnwudtwgywd tu punupeny dujuoywd ubpppnudutipn b putwpyymd £
npuug yuppp nmwpptin uwhdwuwyhu nhyptipnid: Lhnmwgnnywd tu Ljijunpudwuguhuw-
Juu nupywh tpiynwhu $nmuyghwutinp, Lityupuluu n dwquhuwjuu nuonbtiph pw-
nwynwhutiph b Lutinpghwh junmpjuu Juyninidwhu dhohutinn nti Uhnibiph mupw-
onipyniumid Ynudhuywu juph opswjuypnid: 8nyg L npywd, np juphu dnn Ynbpnd
gpuhnwughnt nwnh wqntigngmup Juinniughu dhohutipph Ypw pny) k, dhugntn
mnwnpwonipjwu Ynpnipju gunwynhg dtd htinwynpmipjniuutinh Ypw wyny wqnignipyniup
Lwuu E:

l. Cavnwunniu puguuwluu Ynpnipjudp $nuwyht mwpwonipjniund gunuynn udpb-
puyh Ypuw (knphuh tiqpuyht wuydwuh pudwpupnn ufujjup puynh Yaypdwuh
dnmuyghuwynid, nuomh pwnwyniun b Fubipghw-hdwnijuh phuqnph Junindwyhu
Uhohuutipmd puguwhwyn wnwuduwgywo tu uvwhdwuny dwljwoyws ubipppnudub-
np: Upnyniupnud, yuyninidwyhu dhohuutiph ytpwunpdwynpnidp hwugnid £ npug
Jbtpwiunpdwynpiwup wnwug vwhdwuh Gppuswthnipymund: Suduywunwujuuu
wpryniupubipp punhwupugywo tu udpbiphl ynuowlny nmwpwonipjmiuutiph b pw-
guwuwluwu Ynpnipjudp Ynudninghwfuwu dnpbjutiph hwdwp: Unjuw L Ggqpuhu
wyuwjdwuh gnpowlgh Yphwmhlujwu wpdtp, nphg dbad wpdbputiph whpnypnd
uujwun yuyninudp nunund E wujuyniu:

2. Udtpuyhg’ $nuwyhu mwpudnipju Ynpnipju pupuynhg dtis htinwynpnipnitut-
nh ypw Juinnmduwghu dhohtubpmud vwhdwuny dwjuwoywo ubipnpmidubipp pw-
guwuwluwu Ynpnipjudp nwpwonpniund dagunmd tu qpnjh wyly wpwg, pwu
Uhuynyulynm tpipuwswthnipyniumd: “tpuup ujugmd Gu Epuwynutiughw) optiupny
husytiu quugyuwotn, wjuybu L) qpnyujun quiugywdony nuymbiph hwdwp:

3. Snpnhnuy Yndyuwlumhdhugyuo mwpwowuu swhtipny b hwpp vwhdwuutipny
$nup Ypw thgpufnpywd uljuyjwup nupnh hwdwp jndyuln gwithtiph tpluyupny]
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pYywughwywppbpujuunipyuu yuwydwuubtpnid ny mphyhwy thnybipp b hwunmwwmniu
npuwdwswthwht puynp dujuond tu Julynumdwyht hnuwuph junmnipjmiu: Uju
yuppbpuuwu $mulghw L Yndyulun swhtipny wyupthuywd dwguhuwluu
hnuphg" hnuph pywinhu hwjuwuwp wuppbpnipudp:

. Cnuwuph fumnpniup sh yupmuwynd duybpbnpuht mwupudhmnpniuubp b
gnn £ uwhdwuubiph ypw “thphfuyith yuwydwuh ntypnid: Uwhdwuubiph ypw hn-
uwuph funnpjuu unpdw] wowugjwip qpn £ L “thphuigh b vjdwuh wuwydwuubph
hwdwp: (knphup tqpuyht Wuwydwuutiph upudtinpiph mwupwonmpniund wunju
L whpnyp, npntn Juyninduwghtt Jhowyp nunund £ wuluyniu: bGuyniunipjuu
wuydwip Yufugwo b indujuln swithtiph tpljupniegniuhg b utih poy) b pwi nph-
Jhw mnwyninghwyny mwpwodnipyniuniy:

. Unwugywd tu Eaunpudwuquhuuju nuonh gjuuwyhu dnnpuiutinh jphy nuubipp nb
Uhunwntiph $nuwyhut mwpwowdudwuwlnmd gunuynn qquuwhu punwueh utipunid
n1 npunid, hwpyupyyly Gu Liayunpuuu nuynh punwyniunm b tutipghw-hdwniuh
ptugnph Julinmdwhu dhohuutipp: (Gunuupeny dwujuoywd dwuh ubtipppnuip
Lityunpuluu nupnh punwlnunt dhohunmd npuiwu L husybtu utippht, wjuybu
L] wpunwpht wmhpnyputpmd b hwdwwywunwujuwu Ywghdhp-Nnintiph mdtpp
ninnyuo bu nhiyh punuupp: dwuynimdwyhu tutinpghw-hdwnyuh pbugnpp pugh
wuynuwgowhu pununphsutiphg niuh twb gpnjhg mwppbp ng-wuyniuwugdwjhu
punuinnhy, npp hwdwywnwujuwund £ punuuph unpdwh ninnnipjudp Futinghw-
jh hnuph: <nupp ninnywo £ punuuphg pht wpnwpht b ph utpphu mhpnypub-
nnud: Upnyymuputipu punhwupugywd tu pjuunmwghtt ppndnphuwdhjuynid ogunw-
gnpoynn pwlupnnn btgpuyhu wuwydwuutinh hwdwn:

. tu Uhnnbiph nwpudwdwiwynd Ynudhuyuu juph opowuwypmd Ejkumpw-
dwquhuwlwuu nwywmh Ynpbpywwnpubph  hwdwp unwgwd  Gu wpnw-
hwynnipyniiutin, npnugmd pugwhwyn wnwuduwgywo tu jupny dwludywd
nnynnghwwu utipnpmidutinp: “bpw Yunphhy hwdpuydwu vwhdwund jnjuy Jw-
Jnintdwyhu dhghuutiph ytpuunpdwynpnidp hwugnid £ wnwiug Ynudhljujwu juph
nti Uhnwntiph wnwpwonpmund Jtpuwunpdwynpdwun: Lwpht dnn wmhpnypnd
Eityupuluu n dwquhuwwu nuontiph punwnuhubtiph b Buinpghwh fjumnnipjwu
Juynimduwght dhohutipmu glipwyonnmd Gtu minwninghwljuu dwubipnp, huy gqpuw-
yhnwghntu nwywnh wqnbgmpymup penyp & Lwphg' $nuughu tphpuguhnipjui
Unpnipjuu Jwnwynhg dtd htnwynpnipymuubtph ypw Julinimdwghu dhohuub-
nnud gbipupnnid Gu dwpnip nti Uhnntiph tppusuthnipjudp yuydwbiwynpywo
dwubinp: Uyn wmhpnypnid gpuyhmnmwghnt nuymh wqnbtignipyniup mnwynjnghuyny
yuwjdwiuwynpywd vbipppmudutipmd jupbnp £ b hwdwwywnmwujuwu Juppu fwuybtiu
wnwnppbp E Uhulnuynt $nuh ypw jnudhwluu juph hwdtidwn:

. 8nyg L mpywd, np Ynudninghwjuu huppjughwyh pupwugpnid Ljajunwdwguhuwluu
Pnyummughwitiph’ pJuwinuwhuhg nuuwljui wiugdwu htmbwupny, htnpu$jw-
ghnu thnynud Ynudhfuuwu juptpp opowyumywd Yihubu dhdwdwuymnwp unn-
pwumnhl dwguhuwuwu nuwnbtinny: Uju nupwnbipp jupnn Gu hwunbiu qu npytiu
hudpwghwh pupwgpnid wnwowgwd Ynudhwluwlwu jupbpp, htyybu vl hwdw-
yuwunwujuw hupjughnu dnnbijubipp punipwugpnn wnwuduwhwnnipynivubn:
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CAAPSAH HBAP/I
HEKOTOPBIE KBAHTOBBIE 5®®EKThHI B TPABUTAITMOHHBIX ITOJIAX
3AKJIIOYEHUE
Hccremopano BosfelicTBHe TIPaBHTAMOHHOTO IIOJNA, TPaHMI, M HeTPHBHAIbHOI

TOIIOJIOTHM Ha KBaHTOBbIE CBOMCTBA BaKyyMa /I CKaJIIPHOTO M 3J€KTPOMarHUTHOIO IIOJIE.

Beranicirensr @pynkmusa BalfitMaHa, BakyyMHBIe cpeJjHHe KBajipaTa IOJA M TeH30pa SHePruH-

HMIIyJIbCa BHYTPU U BHe cephl B IPOCTPAHCTBE C MOCTOAHHOII OTpHIIaTeIbHOI KPHBH3HOI.

Jlna MHAYIMpPOBAaHHBIX cdepoil BKIAJOB NOIydYeHBI OBICTPO CXOAANIMecs WHTeTpaIbHbIe

mpejcTapiaeHnsa. BosgelicTeie rpaBUTaIIORHOrO HO/IA Ha BaKyyMHBIe CpeJlHIe CylleCTBeHHO

Ha PaCCTOSHHAX OT cepsI GOIBIINX IO CPaBHEHHIO C PaJIlyCOM KPHBH3HBI IIPOCTpaHCTBa. 1

3apAyKeHHOTO CKaJIApHOTO IIOJA MCCAefoBaHbl QyHKIHA AaZlaMapa H BaKyyMHOe CpefHee

IUIOTHOCTH TOKa B IUIOCKOM IIPOCTPaHCTBe-BpeMEHHM C TOPOMJAJbHO KOMIIAKTHBIMHU

OPOCTPAaHCTBEHHBIMH H3MEpPEeHHAMH MPH HaIWYUK IUIOCKO-Tapa/UIebHBIX TPaHUIl H

IOCTOSHHOTO KaJMOPOBOYHOTO MOJIA. BoTh KOMIDAKTHBIX M3MepeHMIl Ioje yZOBIeTBOpAeT

YCAOBHAM KBasHIIEPHOZUYHOCTH C IPOM3BOIBHBIMHM (asaMHM, a Ha TpPaHHIAX HaJIOKeHBI

rpaHHYHbIe ycaoBud Pobuna. BakyyMHas IIOTHOCTE TOKAa HMeeT HeHYJIeBble KOMIIOHEHTSHI

TOJIBKO BJI0JIb KOMIAKTHBIX M3MepeHMIl. [loqydeHBI 3J1eKTpOMarHUTHbIe IMIIMHApPHYECKHE

MO/l B IpocTpaHCTBe Ze CuTTepa IpH HaAWYMM NUIMHApHYecKoii rparunbl. Ha mx ocHOBe

HCCIeJOBaHbl BaKyyMHBIE CpeJHKe KBajJpaTa 3JI€KTPUYECKOTO IOJd M TEeH30pa SHEepPruu-

UMITyIbca. SIBHO BhbIfleleHBI HHJyIUpOBaHHbIe TIpaHHIell BKIaZbl M PacCMOTPeHO HX

IoBeJleHHe B PasIMYHBIX IIpeJleIbHBIX clydasdx. MlcciaemoBaHbI AByXTo4edHble (PYHKIHH

3JIEKTPOMAarHUTHOTO IIOJIA, BaKyyMHBIE CpeJlHHEe KBaJpaTOB 3JeKTPHYECKOTO0 M MarHUTHOTO

moJIeil, a TaK)Ke IJIOTHOCTH SHEPTUH B OKPECTHOCTH KOCMHUYECKHIi CTPYHBI B IPOCTPAHCTBE e

Currepa. [lokasaHo, 94TO B6IM3U CTPYHSI BO3ZeICTBIE IPAaBUTAHOHHOTO IIOJIA Ha BAKYyMHbIe

CpefHHe ABIgeTCA CIabbIM, TOTZa KaK Ha PaCCTOSHHUAX, OOIBIINX II0 CPAaBHEHUIO C PaJIHyCOM

KPHBH3HBI IIPOCTPAHCTBA, 3TO BO3/EICTBHE CYIIeCTBEHHO.

1. Jlnia ckaagpHOTO IOJNA C TPaHMYHBIM ycaoBHeM PoGuHa Ha cdepe B ImpocTpaHCTBe C
MOCTOAHHON OTPHIATEIBHON KPHBU3HOI ABHO BbIIe/IEHbl HHAYNHPOBaHHBIE TPaHUIIE
BKJIa/ibl B QyHKIMK BaliTMaHa, B BaKyyMHBIX CpeJIHMX KBaJ[paTa IO/ i TeH30pa SHepIHH-
MMIIyabca. B pesyiabraTe, IepeHOPMHpPOBKAa BaKyyMHBIX CpeJHHX CBOJZUTCI K
IepeHOPMHPOBKe B reoMeTpuu Ge3 rpaHUIEL. COOTBETCTBYIONIME peasyaIbTaThl 0600IIeHbI
JJIS TPOCTPaHCTB €O cepHIeCKHMMH IIysBIpAMHU H JJI8 KOCMOJIOTHYeCKHX MoZeleil
OTpHIlaTeIbHON KpHBHM3HONH. /[l1a 3HadeHHii KoapduIMeHTa IPaHHIHOTO YCIOBHA,
GOMBIINX HEKOTOPOTO KPUTHYECKOTO 3HAYeHHd, CKAIIPHBIII BaKyyM CTaHOBHTCS
HEeYCTOMYHBBIM.

2. Ha paccrogHuax oT cdepsl, 60IBIINX IO CPaBHEHUIO C PaZHyCcOM KPHBH3HBI (JOHOBOTO
IPOCTPAHCTBA, HHAYIMPOBaHHbIe IPaHHIeil BKIaZbl CTPeMATCS K HYIIO OBICTpee 4eM B
reomerpur MuHKOBCKOro. OHH YyOBIBAaIOT IO 3KCIOHEHIHAJIPHOMY 3aKOHY KaK /IS
MACCHBHBIX, TaK U /11 6e3MacCOBBIX IOJIef.

3. Jlna ckangpHOro mojid Ha (oHe C TOPOHAAIBPHO KOMIAKTHBIMH IPOCTPAaHCTBEHHBIMH
H3MEepeHHAMH M C IUIOCKHMH TpaHHI[AMM, HeTpHBHaIbHble (ashl B YCIOBHAX
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KBa3sHIEPUOJUYHOCTH U IIOCTOSHHOEe KaaHOpOBOYHOe Hoje HHAYIMPYIOT BaKyyMHYIO
IWIOTHOCTh ToKa. OHa 4BadeTcd IepHOAMYecKoil (yHKIMeli MarHMTHOTO IIOTOKA,
OXBaThIBaeMOT'0 KOMIIAKTHBIMH M3aMepeHHIAMH, C IepHOIOM PaBHBIM KBaHTY IIOTOKA.
IL1oTHOCTP TOKA He COAEP;KUT MOBEPXHOCTHBIX PAaCXOAMMOCTell 1 obpalaeTcsa B HY/Ib Ha
rpaHMIax Ay1g ycrosua JJupicore. HopmanbHadg mpoH3sBoHAaS IJIOTHOCTH TOKA PaBHA HYJIIO
Ha rpaHMIax Aj1g ycaosuii Jlupuxore u Hefimara. B mpocTparcTBe mapameTpoB rpaHHYHBIX
ycnoBuit PobiHa nMeeTcs 0671acTh, T BAKYYMHOE COCTOSHIIEe CTAHOBHTCS HeCTaOUIbHBIM.
YcmoBue cTabGMIBHOCTH 3aBHCHT OT JIHH KOMIAKTHBIX M3MepeHHUIl U gBiageTca Goiee
c1abBIM, 9eM B IPOCTPAHCTBE C TPHBUAIBHOI TOMOIOTHE .

Haiifens! moHbIe CUCTeMBI NUINHAPUIECKHX MO/, 31eKTPOMarHUTHOTO MO/ BHYTPH H
BHe IWIHMHAPHUYECKOIl IIOBepXHOCTH B (OHOBOM IPOCTPaHCTBe-BpeMeHH Je CHTTepa,
BBIYICJIeHBl BaKyyMHbBIe CpeJHIe KBaJpaTa 3JeKTPUIeCKOTO IO U TeH30pa SHepIrHH-
uMIynabca. VIHAyIMpOBaHHBII TpaHMIell BKJIaJ, B CpeJlHee KBajjpaTa IIOJNA SBIA€TCA
IOJIOXHTeIbHBIM KaK BHYTPH, TaK H BHe TPaHHIIBI, a COOTBeTCTBYomue ciasl Kasumupa-
Ilonmepa HampaBleHBI K IpaHHuIe. BakyyMHEII TeH30p SHepruH-HMIIyJIbCa, Hapagy C
AMaroHaJbPHBIMH KOMIOHEHTaMH, HMeeT HeJHaroHaJIbHYI0 KOMIIOHEHTy, KOTopasd
COOTBETCTBYeT IIOTOKY SHepPTUU B HallpaBlIeHUH HOpMaau K rpaHune. [loTok HampaBieH oT
TPaHUIBI KaK BO BHeNIHeif, TAK U BO BHYTPeHHOIT ob61acTax. PesynrbraTel 0600mens! ais
TPaHMYHBIX yCI0BHIl KOH(paliHMeHTa B KBAHTOBOI XPOMOJHHAMHKe.

[l KoppeaaTopoB 3J1eKTPOMarHHTHOTO IO B OKPeCTHOCTH KOCMHYeCKOIl CTPYHBI B
mpocTpaHcTBe Je CHTTepa BbIBeJleHBI BBIPAXeHHMA B KOTOPBIX SBHO BbIJlele€HBI
MHZYIUpOBaHHbIe CTPYHOII ToIloTorudecKye BKIasl. Biaaromapa sTtomy, mepeHopMHpOBKa
JIOKaJIbHBIX BaKYYMHBIX CpPefJHHX B IIpejie/le COBIAJeHUI CBOAUTCA K MIePeHOPMHPOBKE B
mpocTpaHCTBe Ze CHTTepa IIPH OTCYTCTBHH KOCMHYecKOii cTpyHBI. B obGmactu B6mM3H
CTPYHBI, B BaKYyMHBIX CpPeJHUX KBaJpaTOB 3JIeKTPHYECKOTO H MAarHUTHOTO moieil M
IUIOTHOCTH ~ SHEPTMU  JOMHMHHPYIOT  TONOJOTHMYeCKM YacTH, a Bo3jelicTBHe
TPaBUTAMOHHOTO IOJA sABIdeTca caabeiM. Ha paccTogHmax or cTpyHEI, GOIBIINX IIO
CPaBHEHMIO C PaJiycOM KPHUBH3HBI (OHOBOII TeoMeTpHUM, B BaKyyMHBIX CpeJHMX
AOMHHHUPYIOT 4acTH, oOycIoBIeHHBIe 4HCTOIl e CHTTepoBCKoil reomerpmeil. B aroit
obacTH BO3JeiiCcTBHe I'PaBUTAIIOHHOTO IIOJIL Ha OOYCJIOBIE€HHBIE TOIOJIOTHEeI BKIaZbI
ABJISeTCS BAXHBIM M COOTBETCTBYIOIee MOBeleHle CYIeCTBeHHO OTINYHO II0 CPaBHEHUIO
C KOCMHYeCKoii cTpyHoii Ha poHe MUHKOBCKOTO.

IToxaszaHo, dYTO BCIe/CTBHe KBaHTOBO-KJIAaCCHYECKOTO Ilepexoja 3IeKTPOMAarHHTHBIX
brykTyanuii B XoJle KOCMOJOTMYecKoil HMH(IINUM, B IOCTHH(IAMUOHHOI CTajuH
KOCMUYeCKHe CTPYHBI OKPY>XeHBI CTOXaCTHYeCKUMH MAarHHTHBIMH IIOMIAMH. OTH IIOJA
ABJIAIOTCA XapaKTePHBIMH OCOOEHHOCTIMH KOCMHYeCKUX CTPYH, 0OpasyloIuxcs B XOZe
MHQIAIIH, a TAKKe COOTBETCTBYIONIIX HH(DIAIMUOHHBIX MOJeeli.

25



