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INTRODUCTION

The relevance of the topic

A rapid increase of density and capacity in memory IP cores embedded in modern system- 

on-chip (SoC) creates new challenges of preserving test and repair cost while also minimizing 

time-to-market [1]. On-chip infrastructure IP was suggested to maximize test and repair 

efficiency utilizing the memory design knowledge and providing analysis on failure data [2]. 

Considering the increasing complexity of SoC design, it becomes crucial for silicon embedded 

memory test and repair solutions to keep up with the technology advances and to provide 

adequate chip quality and yield consistently [2].

With technology shrinking new types of memory defects and corresponding memory fault 

models for memory test have been observed during post-silicon analysis. That posed new 

challenges in test and diagnosis of embedded memories in an SoC using all-in-one solutions. 

We follow the approach of task distribution between hardware (HW) memory built-in self­

test (MBIST) network and software (SW) automation tools [3], where the management and 

control of test and diagnosis flow are implemented via SW, while actual at-speed basic test 

and diagnostic procedures are performed by the components of MBIST network. This 

approach is implemented in various solutions that are broadly used in the semiconductor 

industry [4].

The interaction between SW and HW sides of this mature solution is managed via the 

creation of test patterns at the SW side, their application to MBIST network via standard 

interfaces and analysis of obtained results/chains from MBIST network at the SW side. Our 

considerations are based on a mature test and diagnosis flow [5] that covers three main 

phases expected from such flows: fault detection, localization, and classification. Each phase 

of the flow requires special test patterns to be created and analyzed so that results can be 

propagated to the next phase preparation step. Specific march test algorithms and march­

like test algorithms should be developed and either embedded into the MBIST or used for 

each phase of test and diagnosis flow for generating the corresponding test patterns, which 

in their turn will be passed to MBIST engine for further at-speed execution.
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With the introduction of FinFET technology new types of memory defects have been 

observed. Test and diagnosis flows designed for faults present in previous designs were not 

applicable as they were not able to provide necessary coverage and required modification of 

detection, classification and localization phases [6]. At the same time, solutions elaborated 

for current designs will face the same issue in the future because of continuous changes in 

memory designs due to technology shrinkage. A natural demand for prediction of new fault 

types and modifications of solutions required for test and diagnosis arose. The issue was 

addressed with the introduction of multidimensional prediction mechanism for memory fault 

classification [7], that systemizes all known memory faults in periodic manner and gives a 

view on impending new faults that may appear in memories with new technology nodes. 

Furthermore, the mechanism offers a general flow for efficient new march test algorithm 

generation for the new faults based on a test algorithm template. This mechanism will be 

used in our considerations too for increasing the effectiveness of patterns and fault model 

verification.

Although the mentioned above patterns for each phase of the considered flow are 

thoroughly verified before applying to the MBISTs for excluding essential time and quality 

losses, to the best of our knowledge there are few publications on methods of verification 

used for MBIST networks post-silicon analysis automation tools. Particularly in [4] the 

verification approach using MBIST engine based on specifically designed customizable 

memory device is proposed. Nevertheless, the verification problem of the post-silicon 

analysis tools on complete MBIST networks remains open. Since it is crucial to ensure the 

correctness of test and diagnosis flow implementation before it is applied to a manufactured 

SoC, a justified fault-inclusive and adequate to MBIST network implementation in SoC 

environment for patterns verification is required for modeling test pattern execution on the 

MBIST network. Accurate models of memory faults corresponding to defects that might be 

present in the memory cores should be described and used within the environment. The 

considered environment should cover necessarily the following 2 requirements:

• fault model generation and injection

• verification of test pattern generation and output chain analysis

6



As usually the Register Transfer Level (RTL) representation of the MBIST network exists, it 

is natural to build the environment over and existing HDL (Verilog [7] or VHDL [8]) 

implementation of MBIST network.

The aim of the thesis

The thesis aims to justify and develop a verification environment for memory test and 

diagnosis flow basing on extension of memory built-in self-test network RTL representation 

with fault models. The environment will allow to analyze the received output chains of test 

patterns applied to the fault-inclusive RTL representation via generation, injection and 

modelling the memory faults.

Objects of the research

The objects of the research are memory fault models, test algorithms and patterns for 

memory built-in self-test systems and methods for fault model generation, injection and test 

pattern verification.

The methods of the research

The methods of theory of automata, test and diagnosis of memory devices, and object- 

oriented design are used.

Scientific novelty

• Extendable fault model for memory internal faults and its implementation in the RTL 

HDL simulation environment.

• Automated generation flow for memory internal fault models based on fault 

periodicity table (FPT).

• Method of test pattern verification in fault-inclusive environment via resulting chain 

analysis and traversed fault model graph comparison.

• Approach for verification of test and diagnosis flow implementation.
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Practical value

The proposed approach allows to increase reliability of test and diagnosis flow 

implementation in post-silicon analysis test automation tools. The suggested fault modeling 

mechanism can be effectively extended for new types of faults.

Implementation

The results of the thesis were implemented in Synopsys Inc. software post-silicon analysis 

automation tool which is currently used by multiple customers.

The following topics are presented for defence

• Extendable fault model for memory internal faults at the Register Transfer Level.

• Approach for fault model injection in the RTL simulation environment.

• A generation flow for memory internal fault models via fault periodicity table.

• Method of generated test patterns verification.

• Approach for verification of test and diagnosis flow implementation.

Presentations

The results of the thesis have been presented and discussed at:

• 11th International Conference on Computer Science and Information Technologies 

(CSIT), Yerevan, Armenia, 2017

• IEEE East-West Design & Test Symposium (EWDTS), Novi Sad, Serbia, 2017

• IEEE East-West Design & Test Symposium (EWDTS), Kazan, Russia, 2018

• A common seminar of IT Educational and Research Center of YSU

Publications

The results of the study were presented in 4 scientific papers. The papers are listed in the 

References section.
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The structure and size of the thesis

The work comprises of introduction, 3 chapters and an appendix. The content of the work 

without appendix is represented in 103 pages. It includes 46 figures, 19 tables and the list of 

references. Total size of the work is 104 pages.
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CHAPTER 1. VERIFICATION OF PATTERNS FOR TEST AND DIAGNOSIS

FLOW IMPLEMENTATION IN POST-SILICON ANALYSIS AUTOMATION 

TOOLS

1.1. Problems of implementation of test and diagnosis flows in post-silicon analysis 

software tools

The main aim of post-silicon test and diagnosis flows for embedded memories is to ensure 

that they possess a high quality and yield. Diverse approaches were proposed, the objectives 

of which are to suggest solutions to the three main essential issues of fault detection, 

localization, and classification that are usually considered after silicon manufacturing. The 

abovementioned approaches are traditionally used for dislocation of the appeared physical 

problems and corresponding memory faults by observing their logical behavior [9].

Authors in [10] proposed memory diagnostic [1] tests that allow single-cell faults to be 

distinguished from multiple-cell faults, while also detecting and localizing them. In [11] 

researchers used March and March-like test algorithms to obtain test syndromes from 

random-access memories (RAMs). Syndromes were used to classify the known traditional 

faults.

In [12], an approach on the physical shape analysis of failures is proposed. The tool also 

considers incomplete data that can be a consequence of intermittent effects of faults or test 

noise. Moreover, a software analysis instrument is used for post-processing the reported 

failure data and providing a hypothesis on memory faults.

The tool essentially leverages memory topological information. The results of the 

conducted experiments have been provided for the 90nm technology automotive-oriented 

SoC.

Proposed test and diagnosis solutions are based on memory built-in infrastructures 

(MBISTs) that are operated via a variety of test patterns[13][14][15], which have an ability to 

cover maturely the mentioned above three problems. It is a well-known fact that 

semiconductor companies put tremendous efforts to make manufacturing tests both cost 

and time effective. This includes test patterns that are mostly designed via post-silicon 

analysis tools during pre-silicon development of SoCs with the objective to cover multiple
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scenarios [16][17]. They essentially depend on a chosen test and diagnosis flow. To the best 

of our knowledge the most complete flow at the moment is suggested in [5] which we are 

considering further in our study.

The test and diagnosis flow that we have chosen for the examination consists of the 

following 7 important phases:

1. Identification of the failed memory instances via running test algorithms on MBIST 

network.

2. Obtaining logical addresses of memory faults, by instructing MBISTs to stop test 

execution on N-th error and output diagnostic information.

3. Recognition of physical addresses of faults, based on logical addresses and memory 

scrambling [3].

4. Identification of physical X and Y coordinates of failing cells based on their physical 

addresses and memory scrambling.

5. Categorization of the defects based on their placement.

6. Classification of the faults, with the execution of individual tests, and analysis of test 

syndromes, for faults reported at step 2.

7. Localization of the faulty memory cells (applicable for coupling faults) which also 

depend on the scrambling information.

The enactment procedure of each phase of the flow in post-silicon analysis software tools 

utilizes the data provided by the previous step. Stage 6 though relies only on the data that 

has been gained in step 2.

Therefore, steps 1, 2, 6, 7 and 1, 2, 3, 4, 5 can be executed separately during the 

implementation. Steps 1, 2, 5, 6, 7 require a generation of test patterns, their application on 

MBIST network and analysis of MBIST network outputs.

Test pattern generation and analysis procedures implemented in post-silicon analysis 

tools require thorough verification at pre-silicon step, since incorrect design of the patterns 

or software related errors can lead to malexecution of test patterns or misinterpretation of 

received output chains on manufactured SoC. Considering the abovementioned test and 

diagnosis flow, an issue present in implementation of one of the phases may lead to an 

inevitable misbehavior of the whole flow.
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1.2. Memory built-in self-test networks

Memory built-in self-test systems, which are also known as MBIST systems represent 

special infrastructures embedded into a given SoC and are used for at-speed testing of 

memory devices[2][4]. Modern processor-based MBIST systems (Figure 1) [18][19] comprise 

memory cores in hierarchical networks referred further as MBIST networks, and are capable 

of parallel at-speed testing of multiple memory cores via MBIST sub-components. Complexity 

of the hierarchy is continuously increasing based on increasing number of memory 

components assembled in SoC. This results in involvement of new supplementary sub­

components and more levels of hierarchy. Interactions with MBIST networks are made via 

binary chains through test access port (TAP)[13][14][15] and the usage of boundary scan. One 

of the initial stages of MBIST network development is their representation in RTL which is 

performed using Verilog or VHDL hardware description languages [21]-[24].

a.

Figure 1. Examples of commercial MBIST network solutions a. DesignWare STAR Memory
System[18] b. Tessent Memory Test[19]

1.2.1. Operating with MBIST network

Instructions are loaded and the information is obtained from MBIST network employing 

the boundary scan technique: "To help ensure that built-in test facilities can be used or that 

preexisting test patterns can be applied, a framework is needed that can be used to convey 

test data to or from the boundaries of individual components so that they can be tested as if 

they were freestanding. This framework will also allow access to and control of built-in test
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facilities of components. A boundary scan coupled with a test access bus provides such a 

framework."[20]. This enables to accessing all the sub-components of the network via single 

input and output.

The example of usage of the boundary scan in IJTAG P1687 standard connected to test- 

access port (TAP) is demonstrated in Figure 2 [25]. The components of SoC in the example 

are attached to Segment Insertion Bits (SIBs) which control the inclusion of corresponding 

component in the boundary scan. SIBs are also directed using boundary scan. Consequently, 

it is possible to state that input with corresponding output chain sizes may diverse from 

execution to execution. This phenomenon can depend on the specific components, which 

have been enabled for scan.

Figure 2 Example of on-chip IEEE P1687 architecture with 3 SIB bits [25]

MBIST networks are comprised of MBISTs for testing memory cores. The main objective 

of the network is to ensure the propagation of the input chains to corresponding MBISTs, for 

starting the memory test, and output chains with test results from MBISTs. As chain 

sequences become more complex it becomes essential to verify these sets before applying 

them on the real MBIST network, i.e. if the chains are correctly constructed to propagate
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commands to MBIST network components. These components are further referred as MBIST. 

Furthermore, the complexity of MBIST networks is necessarily considered during the analysis 

of the output chains in post-silicon software tools.

1.2.2. MBIST types

It is a well-known fact that MBISTs use test algorithms for memory testing, generally, thus, 

it is possible to classify MBISTS into two general categories: FSM-based and microcode-based 

[26]-[28].

FSM-based MBIST uses hardwired finite state machine representation of test algorithms. 

This results in the optimum overhead of occupied silicon area, with drawback of not being 

flexible. Thus, any minor change to test algorithm requires the re-design of MBIST. Even 

though it can cause inconvenience and be time-consuming in case if minor changes will be 

needed, these types of MBISTs are still widely spread and used.

In contrast to FSM-based MBISTs, microcode-based MBISTs are more flexible in terms of 

test algorithms. Having a reasonable area overhead for hardware logic they allow the 

representation of test algorithms in the form of a microcode. MBISTs can be further 

reprogrammed with new test algorithms and/or it is also possible to modify the existing test 

algorithms.

Memory test is not only conducted at the foundry. It is sometimes required for detection 

of faults that were initially skipped during production and were observed in the field. 

Therefore, designing programmable MBISTs is essential [29].

Various MBIST solutions are proposed that combine FSM-based and microcode-based 

approaches while also enabling the programmability of MBISTs through the usage of a test 

pattern generator [30][31][32]. Nevertheless, these MBISTs can be programmed to generate 

a test algorithm only from a list of predefined test algorithms.

With the development of new approaches for MBIST, a design is proposed to provide 

coverage of new types of memory faults [33]. Additional logic is added to MBIST to consider 

faulty behavior of memory cells based on background patterns, which have been 

experimentally proved that provides variation in fault coverage by 35% [34]. The types of 

background patterns are shown in Figure 34. The designed MBIST requires to consider
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memory scrambling to correctly distribute values in the memory array to match the 

background pattern.

Figure 3. Types of background patterns. [34]

Another approach is also proposed for automated generation of test patterns by MBIST 

which requires additional hardware logic [6]. MBIST uses the information on memory faults 

provided on its input. Those faults should be detectable by the resulting generated test 

algorithm. The development of such architecture is currently in progress and the research is 

still being conducted. The solution though shows good perspectives to be implemented in 

future memory built-in self-test systems.

The evolution of MBIST essentially leads to the development of new test algorithms that 

consider additional features of MBISTs. Therefore, the number of feasible test algorithms 

drastically increases. Modern MBIST solutions [35], provide an enhanced level of 

programmability while trying to keep area overhead low. Test algorithms are designed and 

passed to the MBISTs externally via the abovementioned input chains.

1.2.3. Memory scrambling

Scrambling denotes to the way memory addresses and data patterns are observed 

outside of the memory device [34]. Our research is mainly concentrating on two types of 

scrambling which are related to memory array folding and address decoding.
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As data in modern memories are stored as words that are accessed with bit-lines and

word-lines, the need to adjust the ratios of memory array arises to reduce delay times as well 

as capacitances for accessing the array cells. Hence, multiple words may be present in a single 

row of the memory array. The data scrambling, which is generally caused by the alternation 

of the bits of multiple words with the same index is determined by column multiplexing (CM). 

Example CM = 2:

a1 b1 a2 b2 a3 b3 a4 b4

First word: a1, a2, a3, a4 
Second word: b1, b2, b3, b4

Figure 4. Data scrambling

Figure 5. Example of scrambling in address decoder. [34]

Memory arrays are made in the form of a rectangle, and the memory address traditionally 

consists of two parts, where the first part is used for pointing at a row, while the other points 

at a column (furthermore, memories can be represented in the shape of multiple banks). 

Memory address for memories without scrambling is interpreted as row bits followed by 

column bits. A was mentioned the memory array cells are accessed via word-lines and bit­

lines. Mapping logical addresses of words on bit-lines and word-lines for each word separately 

leads to an overhead of design and additional connection. Reuse of links to the signals in
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decoder decreases the number of required connections, while allowing the same level of 

access to the memory cells.

The memory address scrambling information describes the intermixed positions of the 

bits from these two parts (Figure 6). Furthermore, the address can also involve bits for 

memory banks, which in their turn add more complexity to the scrambling.

No address scrambling

r1 r2 r3 c1 c2 c3 c4 c5

Row bits: r1, r2, r3 

Column bits: c1, c2, c3, c4, c5
With address scrambling

r2 c1 c3 r1 c2 c4 r3 c5

Figure 6. Address scrambling

Scrambling information is required to determine physical address of the memory cells 

during the chain analysis. The knowledge of memory scrambling is essential during the 

application of background patterns on memory array or accessing the neighborhood of a 

targeted memory cell.

17



1.3. Test algorithms

Embedded memories are tested through the application of sequences of "write"/"read" 

operations (test algorithms) towards memory cells. These test algorithms require iteration 

over each memory cell at least once to ensure the coverage. Therefore, the complexity of test 

algorithms is defined via number of memory cells in the memory array n and the number of 

operations applied to each memory cell. The complexity of some traditional test algorithms 

used in memory testing is provided in Table 1. The algorithms provided different coverage for 

memory faults, and thus are used to detect different faulty behavior. Some of them are used 

only for detection of the faults the others may also localize the cells involved in the faulty 

behavior.

Table 1. Some traditional test algorithms and their complexity

Test Algorithm Number of Operations Complexity

Zero-One 4n O(n)

Checkerboard 4n O(n)

MATS++ 5n O(n)

March A 15n O(n)

March B 17n O(n)

GALPAT 2(n+2n2) O(n2)

Walking 1/0 2(3n + n2) O(n2)

Sliding Diagonal 6n + 2nVn O(nVn)

Butterfly - O(nlog2n)

The complexity of test algorithms can drastically affect the test time and therefore usage 

of more complex test algorithms is not always reasonable on large memories. For instance, 

test times for 1GHz memory are shown in Table 2.

18



Table 2. Approximate testing times of 1GHz memories based on test algorithm complexity

Memory Size in bits O(n) O(nlog2n) O(nVn) O(n2)

1Kb 1000ns ~9965ns ~31622ns 0.001s

1Mb 0.001s ~0.019s 1s ~16.7min

100Mb 0.1s ~2.657s ~16.7min ~115days

1Gb 1s ~29.8s ~8.7hours ~31.6years

Since memory testing is very costly [16] test algorithms of linear complexity are generally 

being used in production. Nevertheless, some modern programmable MBISTs enable usage 

of non-linear test algorithms for diagnosis. An example representation of such test algorithm 

instructions is provided in (Figure 7).

[81 m [6] 15J ______________________ m i______________________ [21 M [01
E B L B B L E L L B L L B L B + l B -l 0 /1 R /W A

E n d  o f  
B ase  
L o o p

B eg in  
o f  B ase  

L o o p

E n d  o f
L o ca l
L o o p

B eg in  o f  
L oca l 
L o o p

B ase L oca l B ase  +  1 B ase  - 1 D a ta  o r 
D a ta  

In v e rse

R ea d  o r  
W rite

A lg o rith m
In s tru c tio n

( - D

Figure 7. Example of test algorithm instruction representation in programmable MBIST
[35]

1.3.1. March test algorithms

Test algorithms of linear complexity were used since the early 1970s when the first 

embedded memories were launched in mass production. March test algorithms also known 

as March tests were introduced as well during that period of time [36].

March test are represented as a finite sequence of March elements M = {M1, M2, Mk}.

March elements in their turn consist of finite number of test operations Mi = Ai (O1, O2, 

Om).

Ai 6 S ,  $ }  is addressing direction where:

1s- denotes to increasing address order (from address 0 to n -  1),

S -  denotes to decreasing address order (from address n -  1 to 1),

$  - means the addressing direction is irrelevant (either ^  or S  can be used).

Oj 6 {W(0), W(1), R(0), R(1) } is test operation where:

W(0), W(1) - denote to "write" operation with correspondingly 0 and 1 values applied to 

a memory cell,
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R(0), R(1) - denote to "read" operation applied to a memory cell with expected values 

correspondingly 0 and 1.

Each operation of March element is sequentially applied to a memory cell, execution of 

March element is propagated to the next cell, and this action is continuous until all memory 

cells are tested. The execution can be further passed to the next March element, until all 

march elements have been considered. An example of March algorithm (MATS+): {^{W(0)}, 

t{R(0),W (1)}, d/{R(1),W(0)}}.

It was shown that March test notation could be extended to operate with multiple bits 

rather than only single one [37]. For example "write" operation may be represented as W(D1 

, ..., Dn) where n is the variable that determines the length of memory words.

MBISTs may be designed to operate with multiple "read-write" port memories[38]. The 

access to each port is implemented separately in MBIST (Figure 8). This leads to modification 

on test algorithm to consider separate "write" and "read" operations e.g. Wa (0) and Wb (0) 

correspondingly for A and B ports [39].

1.3.2. March-like test algorithms

Faulty behavior in memories occasionally involves more than one memory cell. Some of 

the memory cells may affect the function of other memory cells while behaving as normal 

cells. In order to come to the correct conclusion and to achieve accurate diagnosis these cells 

must be also located. This procedure can be applied after the faulty cell is located using March 

test algorithms. The faulty cell will be further referred as a victim cell.
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Extended notation for March tests is used to describe March-like test algorithms 

[40] [41] [42].

and addressing is used, where [L-H] describes the range of addressing. Wv and Rv 

operations are defined which are applied only on victim cell. An example of March-like test 

algorithm: { t 0 -1 {W(~A)}, {Wv(V)}, t 0 -1 {W(A), Rv(V)}}[41].

March-like algorithms though require additional hardware infrastructure components to 

allow the usage of extended March test notation. Particularly, the physical address of the 

victim cell needs to be stored as well as an additional logic to stop the execution of the March 

element when it reaches the preceding/succeeding memory physical address. In addition, the 

infrastructure must be designed to be aware of memory scrambling information since it is 

operating with memory input/outputs generally via logical addresses.

In sum, modern March and March-like test algorithm have a more complex 

representation. Programmable MBIST use binary representation for test algorithms which 

require verification on being correctly generated before passing them to real MBIST networks 

with input chains.
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1.4. Test patterns and output chain analysis

As long as MBIST networks are operated via input chains (p. 12) post-silicon analysis 

software tools require a convenient representation of these chains. Each input chain has a 

corresponding output chain of the same length.

Test pattern

Pair 1

nput chain

Output chain

Pair 2

nput chain

Output chain

Pair 3

nput chain

Output chain

TDI

TDO

MBIST
Network

Test
Clock

Figure 9. Execution of test pattern on MBIST network 

For that reason, test patterns are typically representations of MBIST network input and 

expected output chains in a sequential form. Their main purpose is to instruct the sub­

components of the MBIST network to start the memory testing and propagate test results to 

the output.

Modern standards for memory testing are based on boundary scan technique, and this is 

the main reason why test pattern represented in the shape of a list of instructions is 

converted to binary chains while operating with MBIST. Thus, it is possible to conclude that, 

verification of the test pattern is the same as a verification of corresponding binary chains. 

Moreover, the verification of analysis of outputs is the same as of the one of output binary 

chains.

Considering that decreasing post-silicon test time is essential, accurate test patterns usage 

on MBIST network allow parallel testing of multiple components. Nevertheless, parallel test
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of all the memory cores at the same time is not always possible based on power consumption 

limitations [44]. Therefore, test patterns are initially enabled and disabling the MBIST network 

components that will be used in further testing.

The chains are being shifted into MBIST network through the test data input pin, while the 

output chain is retrieved from the test data output pin. All these operations are made with 

test clock, it generally takes one test clock cycle to shift in and out 1 bit of data.

Test patterns may additionally be used for propagating the user defined test algorithms 

through the hierarchy for further execution. This leads to development of software tools that 

not only enable designing complex user defined algorithms and converting them into binary 

format, but also embedding them into the input chains passed to the MBIST networks.

Considering the abovementioned diagnosis flow analyzed information is displayed in a 

convenient format for steps 1, 2 and is processed for more details for steps 3, 4, 5, 6, 7.

Software tools are continuously modified to support new test patterns based on 

contemporary test algorithms and a rise in complexity of MBIST networks. Furthermore, the 

examination and reporting flows of those tools are also enhanced to support new types of 

memory faults.

The input chain generation and output chain analysis flows for test patterns must be 

verified before the execution on real silicon. The verification requires an adequate MBIST 

network model to interact, with an ability to define memory defects/faults within.
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1.5. Modeling memory internal defects and faults

Embedded memory devices are widely used in modern integrated circuits. Particularly 

random-access memories (RAMs) are the primary concern of memory testing since they are 

the most common type of memories used in modern SoCs [1]. There are different types of 

embedded RAM memories: static RAMs (SRAMs), dynamic RAMs (DRAMs), magnetoresistive 

RAMs (MRAMs), etc. The RAM devices are comprised of various components such as address 

latches, column and row decoders, write drivers, sense amplifiers, data registers, refresh logic 

(DRAMs).The example is the functional model for SRAM that is demonstrated in Figure 10.

Figure 10. Functional model of SRAM memory 

The embedded memory testing considers defects and faults that may occur in different 

components of the memory device. In addition, we will discuss functional behavior of the 

defect and error affected memory cells further referred as memory internal faults.

1.5.1. Memory defects, faults and their classes

RAM Memory cells are in their turns comprised of various components. Although having 

different representation their aim is to maintain/store 0 and 1 values, that can be accessed 

by reading them or modified by set/reset process.

For example, conventional SRAM memory cells are represented in the form of 6 

transistors (Figure 11), though other types of SRAM memory cell representations with 7, 8, 9, 

10 transistors are also used [43].
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Figure 11. Conventional 6TSRAM cell

DRAM cells use capacitors in their representation which requires to be periodically 

charged.

Defects occasionally occur in memory cells during silicon manufacturing, which alters the 

behavior of the cell. Shortcomings can be present in terms of opens and shorts in memory 

cells [46] 100. The resulting faulty behavior of memory cells varies based on the type and 

location of the defect. The mathematical abstraction of such behavior of memory cells with 

fault primitives (FPs) had been proposed in [37] which was in future extended in [45]. Special 

<S/F/R> notation is used to describe fault primitives, where S is a sequence of fault sensitizing 

operations applied on memory cells, F -  state value of the cell after the fault is sensitized, R 

-  value observed on memory cell if last operation of S was "read". S may be split into subsets 

{S1, Si, Sn}, where each Si is sequence of operations applied on i-th cell. Si on its turn may

be represented as {I, O1(V1), Om(Vm)}, where:

I - is the initial state of the cell.

Oj -  operation from {W,R} applied on the cell.

Vm -  if Oj is "write" operation, then it is the set value. If Oj is "read" operation, then it is 

the expected value.

It is worth noticing, that Vj value of Oj if it is "read" operation should be equal to the last 

"write" operation value, or I if no "write" operation was made, i.e. <0R1/1/0> is incorrect 

notation since if R(1) operation would fail on any fault-free memory cell with 0 value.

First observed memory faults were results of memory incorrect permanent state value. 

Further evolution of faulty behavior of memory cells ranges from one operation activated
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(static fault) to multiple operations enabled (dynamic). List of single-cell static faults is shown 

in Figure 12.
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Figure 12. Single-cell static faults [45]

Single-cell static faults are also referred by their names rather than notation only, i.e.:

SF -  stack-at fault. The memory cell is in a permanent faulty state.

WDF -  write-destructive fault. When a "write" operation is applied to a memory cell with 

a value corresponding to the current memory state, it forces the state of the memory cell to 

invert.

TF -  transition fault. Denotes the case when transition on the memory cell from the given 

state to the opposite cannot be made.

IRF -  incorrect read fault. "Read" operation on the memory cell returns value opposite to 

the state stored in memory cell [47].

DRDF -  deceptive read-destructive fault. "Read" operation inverts the value stored in the 

memory cell at the same time expected "read" value is returned.

RDF -  read-destructive fault. "Read" procedure inverts the value stored in the memory 

cell and the inverted value can be observed with the operation.

Faulty behavior may also involve two memory cells (coupling faults). In this case one 

memory cell (aggressor) affects the functioning of the second memory cell (victim), while
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acting like fault-free in its turn. Coupling faults are conventionally denoted with <Sa; Sv/F/R> 

notation, where Sa is the sequence of operations applied on aggressor cell and Sv is the 

sequence of operations used on a victim cell. As shown in Figure 13 there are overall 36 types 

of static coupling faults. At the best of our knowledge <Sa; Sv/F/R> notations where both Sa 

and Sv are operation sequences are not considered as observable in current memory designs.
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Figure 13. List of static coupling faults [45]

Complex defective behavior that involves multiple FPs and affects one memory cell while 

masking the faulty behavior of each other (linked faults) has also been observed [48].

Linked faults model denotes the condition when multiple defects corresponding to 

different single-cell and/or coupling faults are simultaneously present on the overlapping sets 

of memory cells. These faults are defined in terms of single-cell and coupling faults. The 

notation for these faults is LF = FP1 ^  FP2, where FP1, FP2 are single-cell and/or coupling faults. 

Here FP1 and FP2 affect the same victim cell, and if the fault sensitizing operation sequence 

of FP2 is applied after sensitizing operation sequence of FP1 the fault will be masked. In other 

words, it makes sense to consider linked faults, when the following conditions are met:

1. "Read" operations of FP1 and FP2 do not detect the faults: if any of the two faults would 

be detectable by "read" operation the fault can be viewed as stand-alone out of linked 

faults context.
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2. FP2 masks FPi: F2 = ~Fi.

3. FP2 is compatible with FPi: sequence of operations S2 can be applied after Si, that is, 

the final states of aggressor and/or victim of FPi should be the same as initial states of 

FP2. The presence of linked faults may reduce the fault coverage of tests that are not 

designed to cope with LFs.

In general, there is a classification of 5 types of linked faults which are envisaged in Figure 

i4.

A probability of existence for memory faults that involve more than three cells was also 

studied [37],[49],[50]. These faults are generally referred as neighborhood pattern sensitive 

faults (NPSF).

Two types of NPSF faults are considered. They consist of i  victim cell and 4 or 8 aggressor 

cells correspondingly (Figure i5 ) . Fault primitives for NPSFs have the following notation:

Type-i — FP = <Sn; Sw; Se; Ss; Sb/F/R>.

Type-2 — FP = <Sn; Sw; Se; Ss; Snw; Sne; Ssw; Sse; Sb/F/R>.

Figure 15. a.type-1, b.type-2 NPSF
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Sb denotes the sequence of sensitizing operations applicable on a victim cell, while Sn, Sw, 

Se, Ss, Snw, Sne, Ssw, Sse are the sequences of operations applicable on aggressor cells. Only 

one of Si-s for aggressors can be presented utilizing operation sequence though.

NPSF faults are difficult to detect and require time-consuming test algorithms to be used. 

Due to the mentioned factors, they are usually not considered during memory testing.

The range of probable faults described in terms of FPs and LFs can be infinite if also 

considering dynamic faults. Various researches were conducted to determine the realistic 

dynamic faults and efficient test mechanisms for their detection [51]-[59].

1.5.2. Defect and fault modeling techniques

Fault modeling is an integral part of embedded memory test and diagnosis tools 

development. It is used almost in all the phases.

With the introduction of Fin Field-effect transistor (FinFET) technology new types of faults 

were observed since some of the defects may be present in the transistor (not only in memory 

cell interconnections) and affect its behavior. In today's modern world, major semiconductor 

corporations use the technology [60]-[62], thus, for the further development of the field, it is 

essential to have a complete understanding of the defects and precisely determine the faulty 

behavior that they can cause.

Some latest researches are dedicated to the modeling of memory behavior at transistor 

level while considering transistor defects [63]-[65]. The defect modeling technique is based 

on the usage of Simulation Program with Integrated Circuit Emphasis (SPICE) [66]. Two 

separate simulations are made on memory layout: defect-free and defect-injected. Defect- 

injected branch uses defects from a library for injection in GDS and SPICE netlist. After the 

simulation is made resulting waveforms are compared with the results of the defect-free 

branch.
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New types of dynamic faults were introduced via usage of the abovementioned 

technique, e.g. <0R07/1/0> fault model was determined after resistive fin open defect was 

injected on one of the memory cell transistors (Figure 17), a sequence of "read" and "write" 

operations was applied on the memory cell, and the resulting waveform was analyzed.

Figure 17. Resistive fin open defect and corresponding waveform [63]

It is evident though that SPICE modeling technique is not applicable for modeling MBIST 

network behavior in view of the fact that it requires modeling of all the contained 

components at the transistor level. Even modeling memory behavior is 10-15 times slower in 

SPICE if compared to Verilog.

Another fault modeling technique for automatic march test algorithms generation was 

proposed [67]. It is based on the Mealy state machine representation of the memory array.
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FPs are represented as additional arcs added to the memory model. Each of the inserted arcs 

denotes an Addressed Fault Primitive (AFP), which is represented in a shape of a triple:

AFP = (I, E, O)

• I -  is the initialization state.

• E -  is the list of operations needed to excite the fault.

• O -  is the operation needed to observe the fault.

The number of states of the memory model is determined by the maximum number of 

cells involved in used FPs: 2n where n is the maximum number of cells. Therefore, the memory 

model for single-cell and coupling faults is constructed using 4 states. An example of the 

memory model with FP1 = <0W1; 0/1/-> and FP2 = <0W1; 1/0/-> is shown in Figure 18. The 

model is used for automatic generation of March test algorithms through the medium of 

solving graph iteration problem, where each "faulty" arc must be traversed only once.

Figure 18. Memory model with coupling faults [67]

Authors in [68] proposed a fault model based on Mealy state machine. An example of 

coupling fault <0W1; 0/1/-> is shown in Figure 19.

Representation of fault as state machines allows higher level of abstraction. The model 

can be extended to cover new fault types and be applicable during verification of post-silicon 

analysis tools.
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Figure 19. Mealy state machine for coupling fault [68]

1.5.3. Fault prediction mechanism

Authors [69]-[71] have conducted continuous research on the classification of realistic 

memory faults, determining rules of fault periodicity and developing an approach of test 

algorithm generation based on the accumulated knowledge which resulted in the 

introduction of the fault prediction mechanism [6]. The mechanism is based on two 

constructs: fault periodicity table (FPT) and test algorithm template (TAT).

Fault periodicity table (Figure 20) cumulates FPs of realistic faults in fault groups based on 

the number of affected cells by FPs and sequences of operations required for detection of 

defects with the help of test algorithms. Columns in FPT denote the numbers of memory cells 

affected by FP. Fault groups in each column are combined into fault families based on the 

number of operations required for fault sensitization. FG1(x,S) and FG2(x, S) are referred as 

FG(x, S). FG(x, S) and FG(~x,~S) are positioned in neighboring rows in FPT.

C0 column denotes memory external faults, C1 -  single-cell faults, C2 - coupling faults, C3 

-  three-cell faults.
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Figure 20. Fault periodicity table

Test algorithm template TAT(x, S) is a function that receives FG(x, S) fault group and 

constructs a test algorithm is responsible for the detection of the present faults in that group.

Assuming S = OP1(D1), ..., OPk(Dk), k > 0 and x 6 {0, 1}. Test algorithm template TAT(x, S) 

has the following structure: 

t  (W(-Dk)); 

t  ([R(~Dk)UW(x)L S); 

t  ([R(Dk)UW(~x)L ~S);

^  ([R(~Dk)],[W(x)], S);

^  ([R(Dk)],[W(~x)], ~S);

t  (R(~Dk))

where:

1) ~S = OP1(~D1), ..., OPk(-Dk), if k > 1. ~S = 0, if S = 0.

2) [W(x)] and [W(~x)] are absent, if S / 0 and x =~Dk, otherwise they are present.

3) [R(Dk)] and [R(~Dk)] are absent, if S / 0 and x =~Dk and OP1 = R, otherwise they are 

present.
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4) if S = 0, then consider Dk = x.

The TAT can also be used to construct a combined test algorithm for multiple fault 

groups.

It will be shown further through our work how the realistic linked faults can also be 

grouped in the fault periodicity table. This will finally cumulate all currently known realistic 

memory internal faults that can be described via terms of FP or derived notations in the fault 

periodicity table.

Fault prediction mechanism can be leveraged during both the verification and test 

pattern creation of post-silicon analysis automation tools to decrease exhaustion in the fault 

model through consideration of only realistic memory faults and automated test algorithm 

generation.
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1.6. Problem statement

Post-silicon validation effort consumes more than a half of an SoC's overall design effort 

and therefore different approaches are probed to decrease the gap between pre-silicon and 

post-silicon validation techniques [72]. Verification environments are used for functional 

testing of SoCs, based on either RTL simulation or using accelerators (FPGA boards) that 

follow the unified verification methodology [73] (Figure 21).

Verification flows for tools operating with MBIST networks, though, need to consider not 

only the functional behavior of the SoC, but also probable faulty behavior of memory cells. At 

best of our knowledge there are just a few works dedicated to that topic. Particularly authors 

in [4] proposed an environment for testing MBIST controller and tools that operate with it, 

while using specially designed memory Verilog model (Figure 22). The primary purpose of the 

model is to depict the real structure of the memory device, by individually modeling each 

memory cell along with their interconnections within the device. This approach though might 

be inefficient for verification of MBIST networks with multiple memory devices of different 

size and configuration. Besides, the model should be able to depict the complexity of the 

inner structure of modern memory designs.

In another research, authors used a fault injection framework for exploiting error 

correction code (ECC) functionality of some SRAM memories [74]. The verification 

environment has been implemented in VHDL and currently covers only a small range of faults.

Since memory internal faults cannot be modeled with transistor defects, opens and shorts 

during MBIST verification in RTL or on FPGA, due to a higher level of abstraction used in
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corresponding tools, a fault model based on a special fault FP notation of the faults may be 

considered, instead.

Figure 22. Memory model with fault injection [4]

Summarizing the study presented in this chapter: the need of development of new test 

patterns and corresponding test algorithms, new reporting and analysis flows, rising 

complexity of MBISTs and new types of memory faults, a verification environment must be 

built which will:

• Allow injection of a given fault model or set of fault models into the RTL model 

describing a considered SoC.

• Enable verification of test pattern generation.

• Enable verification of output chain analysis.

Additionally, the environment may consider fault prediction mechanism to decrease the 

exhaustion and automate the process.

The following chapters are dedicated to identification and proposition of solutions for the 

listed above problems.
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Conclusions

1. Test pattern verification problem was outlined as one of the most important 

verification problems in post-silicon analysis of MBIST networks.

2. It is necessary to build a fault-inclusive environment for effective modeling test pattern 

execution on an MBIST network.

3. The fault-inclusive environment should be capable to build extendable fault models.

4. Approaches on verification of test pattern input chain generation and output chain 

analysis must be investigated. It is shown that verification problem is reduced to 

verification of test pattern generation and output chain analysis.
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CHAPTER 2. MEMORY FAULT MODELS AND THEIR GENERATION FLOW
In this chapter we propose a technique for modeling memory internal faults. It uses a 

deterministic finite automata (DFA) based models. An extendable automata fault model 

based on [68] will be developed for RTL HDL representation of MBIST networks, as well as 

provide capabilities on modeling the newly introduced faults based on memory fault 

periodicity.

Formal representation and fault model DFA generation procedures for single-cell and 

coupling faults will be included along with the supporting examples [75],[76]. Linked faults 

model and procedure of its generation will be derived via the mentioned fault models for FPs 

[77].

Finally, an automated FDT generation flow based on fault prediction mechanism will be 

adduced [85].

Requirements for fault model implementation in the HDL representation of the MBIST 

network will be identified as well [78].

2.1. Automata model of memory faults

In this paragraph we introduce a fault-modeling technique for FPs based on deterministic 

finite automata. The structure of the model, as well as its features, are discussed further.

2.1.1. Deterministic finite automaton

We use the formal definition for deterministic finite automata (further DFA) given in [75], 

where DFA is defined as 5-tuple:

A = (Q I ,  5, qo, F)

where:

1. Q is a finite set of DFA states,

2. I  is a finite set of input symbols,

3. 5 or 5 (q, a) = q' is a transition function that takes a state q and an input symbol a 

as arguments and returns a state q'. In DFA 5 must be determined for each q 6  Q 

and each a 6 1, resulting in a transition to a single q' 6  Q.
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4. qo is the start state,

5. F is set of final or accepting states and F 6  Q.

The elements of 5-tuple will be defined for fault model in the following manner:

1. Since FP is determined for n memory cells, with n-1 aggressor cells and 1 victim 

cell, each q 6 Q will be presented as (n+1)-tuple q:=(R, S i , Sn) , where n 

determinant is the number of cells affected by FP and R is the value to be returned 

by "read" operation on the victim cell if applied at DFA state q,

2. Each a 6  X  is an operation that may be applied to one of the n cells. Importantly in 

case if two or more cells are affected by FP, then, they must be distinguishable 

despite the fact that the same operation is being applied to either one of them. For 

instance, "read" operation R can be numbered for each of n cells in X  in the 

following manner Ri , R2, ..., Rn ,

3. 5 (q, a) = q' is a transition from (n+1)-tuple q to q' in a result of operation a applied 

on one of n cells.

4. qo denotes initial state of DFA where all n cells are uninitialized.

5. F set consists of one final state which denotes the activation of the fault.

DFA model can also be depicted in a form of a finite graph or a finite state-machine. This 

ability will be used during the implementation of the model.

2.1.2. The structure of the model

The general structure of the model can be divided into four parts and is presented in the 

following illustration (Figure 23). The four integral segments include: initial state, initialization 

block, fault behavioral block and fault activation state.

2.1.3. Initial state and initialization block

The initial state of fault model, as it has beed already mentioned, represents uninitialized 

memory cells affected by FP. The cell values of (n+1)-tuple are assigned with X value. X values
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"Write" operations

Resetting fault

Figure 23. Fault model structure

of (n+1)-tuple cells are replaced with 0s and 1s during transitions in initialization block. Taking 

into consideration that there is no "write X" operation, at some point X value is eliminated 

from DFA state n-tuples and the transition is made to fault behavioral block.

The purpose of the initial state and initialization block are to model behavior of memory 

cells ar the beginning of the test, when the actual values of memory cells are unknown (can 

be either 0 or 1).

X value is also commonly used to represent unknown value in HDL languages.

2.1.4. Fault behavioral block and fault activation state

Fault behavioral block models the behavior of fault-free memory cells till conditions 

defined by FP are not met. Otherwise, the transition to fault activation state is made. The 

back and forth conversion from fault activation state to fault behavioral block will be further 

supported in case if there is no contradiction and conflict with FP.

Taking into account that some faults may be initiated without being noticed, due to the 

missing "read" operation, it is essential to use the fault activation state as a final stage, in 

order to avoid the possible lacks. The triggering final state is helpful in the additional analysis 

of the test approach for detection of the modeled fault.
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2.1.5. Reset operation

Since dynamic faults are sensitized after the sequence of operations is uninterruptedly 

[79] applied on a memory cell, "reset" operation is added to the model for purpose of being 

used for transitions in cases when the sequence of operations was interrupted. "Reset" 

transition should be explicitly called on the DFA of faulty memory cell each time a switch to 

another cell is made.

2.1.6. Model interpretation as Mealy state machine

Introduced DFA model can be easily converted to Mealy state machine by adding O = {-, 

0 ,1} output alphabet, and A output function A: Q x J  ^  O, for V q 6 Q and V a 6 J ,  such as 

for given 5 (q, a) = q', A on a operations different from "read" returns "-", and returns "0" or 

"1" on "read" operation based on value of:

1. Memory cell state of (n+1)-tuple q' if it is an aggressor cell,

2. "Read" value of (n+1)-tuple q' if it is a victim cell.

Mealy state machine representation will be used during the application of fault 

model.

2.1.7. Fault description table

Throughout this work we will leverage the core ability of DFA to be represented in a form 

of a table (Table 3).

Table 3. Table representation of DFA

State ai ak

qo 5 (qo, ai) 5 (qo, ak)

qm 5 (qm, ai) 5 (qm, ak)

The binary format for the table will be a useful tool during the fault model 

implementation. The illustration is further referred as fault description table (FDT) (Table 4). 

As long as each row of the table corresponds to a DFA state, its index in FDT, counting from 

the top, is converted to a binary address and is bound to that state, 5 (qc, a1)bin := binary (index
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(5 (q0, a1))). The first column is split into (n+1) parts for storing (n+1)-tuple values. Each 5 (q, 

aj) state is replaced with its binary address.

Table 4. Fault Description Table (FDT)

R S1 Sn a1 ak

R0 S10 m 0 5 (q0, a1) bin 5 (q0, ak) bin

Rm S1m mSn 5 (qm, a1) bin 5 (qm, ak) bin

2.1.8. Visualization of fault model

Graphviz open source code Graph Visualization Software [80] will be used further for 

visualization of generated fault FDTs. Illustration of fault FDTs is useful to fix appeared minor 

issues in the implementation of the corresponding generation procedures. It also allows 

observing the behavior of fault model in a convenient format, rather than manually iterating 

through FDT, thus making the implementation of the process faster and more efficient.

Generation of FDT representation in DOT language [81] was implemented in FDT 

generation procedures. An example of <0/1/-> single-cell fault FDT in DOT is provided below: 

digraph G {

size = "7, 10!" ratio = fill; 

label = " (<0/1/->)"

00000000 -> 00000010 [label = R]

00000000 -> 00000010 [label = W0]

00000000 -> 00000010 [label = W1]

00000000 -> 00000010 [label = Reset]

00000000 [label = "Rx\nSx"]

00000001 -> 00000001 [label = R]

00000001 -> 00000001 [label = W0]

00000001 -> 00000010 [label = W1]

00000001 -> 00000001 [label = Reset]

00000001 [label = "R0\nS0"]

00000010 -> 00000010 [label = R]
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00000010 -> 00000010 [label = W1]

00000010 -> 00000010 [label = Reset]

00000010 [label = "R1\nS1\nF"]

00000000 [style = dotted]

00000010 [peripheries = 2]

}

The representation was further depicted in Graphviz using dot.exe.

0 0 0 0 0 0 1 0  ->  0 0 0 0 0 0 1 0  [lab e l = W 0 ]

Figure 24. <0/1/-> stack-at 1 fault DFA visualized with Graphviz
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In this passage we will discuss and concentrate more on the technique of modeling single­

cell, coupling [76] and linked [77] faults with DFA and generation procedures for 

corresponding FDTs [78].

2.2.1. Automata model for single-cell faults

The fault model template is based on <S/F/R> notation for single-cell faults. If we assume 

that the number of operations in S is n, it can be represented as follows:

DFA As in g le -c e ll = (Q, Z, 5, qc ՝, F)

where:

1. Q = qo U {qi := (Ra, S a ) : a £ {0, 1}, i = 1, ..., n+1}fa u it -b e h a v io ra i-b io c k  {qfa u lt -a c t iv a t io n -s ta te  =

(Ra, S 6 ): a £ {0, 1}, 6  £ {0, 1}}, where {...}fa u it -b e h a v io ra i-b io c k is absent in case of stack- 

at faults,

2. Z  = W (0), W(1), R, Reset},

3. A: Q x Z  ^  Q, for V q £ Q and V a £ Z,

4. qo  := (RX, SX),

5. F = {qfa u lt -a c t iv a t io n -s ta te}-

Each state of DFA in the model is a pair (R, S), where R is the value returned by "read" 

operation if applied on a memory cell, while S is actual value of memory cell at that state.

2.2.2. FDT generation procedure of for single-cell fault model

FDT for single-cell FP with <S/F/R> notation is constructed on the basis of the predefined 

FDT of the normal, non-faulty memory cell (Table 5). 4 bits is sufficient memory for addressing 

states of single-cell fault DFA. Indeed, 24=16, and since the number of DFA states is at most 

(n+3) where n is the number of operations in S, n = 16 -  3 = 13. No realistic single-cell FP with 

13 operations is currently observed.

2.2. Generation of fault models for single-cell, coupling and linked faults
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Table 5. Predefined FDT for single-cell faults

R S R W(0) W(1) Reset

X X 0000 0001 0010 0000

0 0 0001 0001 0010 0001

1 1 0010 0001 0010 0010

The second and the third rows will be referred as state-0 and state-1 for convenience.

The flow consists of the following steps:

1. Parsing <S/F/R> notation and storing the results in dedicated constructs. Particularly 

S is represented as a sequence of sensitizing operations in the following format:

5  ֊  I O 1 ( V 1 ) . . . O n ( V n ) )  

where O i  e { W ,  R } , V i  e { 0 ,  1 } , I e  { 0 ,  1 } .

2. In case if n = 0, then it is "stack-at" fault case. No additional state is required to be 

added to the predefined FDT. Instead, based on the I value transitions from initial state are 

set to either state-0 or state-1. All transitions from the last one, in their turn, are modified to 

point the current row.

3. If n > 0, then for each O i operation add a new row to FDT as follows:

a. Vi_Vi_XXXX_XXXX_XXXX_XXXX, if i * n,

b. R_F_XXXX_XXXX_XXXX_XXXX, if i = n and R is present in <S/F/R> notation,

c. F_F_XXXX_XXXX_XXXX_XXXX, if i = n and R is not present in <S/F/-> notation. 

Simultaneously transitions at the preceding row in FDT are updated for Oi if i > 1 or state- 

0/state-1 if i = 1 to point to the newly added row. Transitions in the recently inserted row are 

set to point the state-0 and state-1 for "write" operations and state-0/state-1 based on Vi 

value for "read" and "reset" operations.

4. The changes in the final row are set in the following way if n > 1, "reset" points to 

state-0/state-1 based on F, "read" transition points to the final row if On is "read" operation 

or to state-0/state-1 based on R of <S/F/R>, "write" transitions point to state-0 and state-1 

correspondingly. If n = 1, then:

a. if On is "read" operation, then "read" and "reset" transitions are set to state- 

0/state-1 if Vi = R and R * F, and set to point the final row if Vi = F and R * F. "Write" 

transitions are set to state-0 and state-1 correspondingly.
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b. if On is "write" operation and Vn / I, then W(Vn) transition is set to point to 

the final row of FDT, while W(~Vn) points to state-0/state-1 correspondingly. "Read" 

and "reset" transitions are set to point to the last row.

All added states, besides the final state will be referred further, as fault model 

intermediate states.

Some examples of single-cell faults generated with described flow and visualized through 

Graphviz are presented below (Table 6, Figure 25, Table 7Figure 25.<R0R0R0R0R0/1/1> fault 

visualized with Graphviz.). Notably, the rise in the complexity of representation can be 

observed due to the increase of operations in fault sensitizing sequences in FPs.

Table 6 . FDT for <0/1/-> fault

Rs Ss R W(0) W(1) Reset

X X 0010 0010 0010 0010

0 0 0001 0001 0010 0001

1 1 0010 0001 0010 0010

Figure 25.<R0R0R0R0R0/1/1> fault visualized with Graphviz.
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Table 7. FDTfor <R0R0R0R0R0/1/1> fault

Rs Ss R W(0) W(1) Reset

X X 0000 0001 0010 0000

0 0 0011 0001 0010 0001

1 1 0010 0001 0010 0010

0 0 0100 0001 0010 0001

0 0 0101 0001 0010 0001

0 0 0110 0001 0010 0001

0 0 0111 0001 0010 0001

1 1 0010 0001 0010 0010

2.2.4. Automata model for coupling faults

Coupling fault model template is based on <Sa; Sv/F/R> notation for coupling faults, 

assuming the total number of operations in Sa and Sv is n, it can be represented as follows:

DFA As in g le -c e ll = (Q, f ,  5, q0, F)

where:

1. Q = Q0 U {(RX, Sa0, S vX), (RX, Sa l , S vX), (R1, SaX, S v1), (R0, SaX, S v0)}in it ia liza t io n -b lo c k U {qi

:= (Ra, Sa 6, S va) : a £ {0 , 1 }, 8  £ {0 , 1 }, i = 1 , n+4}fa u lt -b e h a v io ra l-b lo c k  {Qfa u lt -a c t iv a t io n -

sta te  := (Ra, Sa 8, S vY): a £ {0, 1}, 8  £ {0, 1}, y £ {0, 1}},

2. f  = {Wa (0), Wa (1), Ra, Wv (0), Wv (1), Rv, Reset}, where Wa (0), Wa (1), Ra are 

operations that can be applied on the aggressor cell with Wv (0), Wv(1), Rv 

operations for the victim cell correspondingly,

3. A: Q x f  ^  Q, for V q £ Q and V a £ f ,

4. q0  := (RX, SaX, S vX),

5. F = {qfa u lt -a c t iv a t io n -s ta te}.

Each state of DFA is represented in the form of a triplet (R, Sa, Sv), where R is the value 

returned by "read" operation if applied on a victim cell, Sa is the value of aggressor cell and Sv
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is the actual value of the victim cell at that state of DFA. "Read" value of aggressor cell is not 

included, due to the fact that it is the same as Sa.

2.2.5. FDT generation procedure for coupling faults

FDT for coupling fault FP with <Sa; Sv/F/R> notation is constructed similarly to single­

cell faults, yet, with some exceptions. Predefined FDT of normal, non-faulty behavior of two 

memory cells is used as a basis for construction of DFA model (Table 8). As long as the number 

of initial states has increased due to the involvement of an additional cell we use 6 bits for 

transition addressing in FDT for coupling faults.

Table 8 . Predefined FDT for coupling faults

Rs sS a sS v Ra Wa(0) Wa(1) Rv Wv(0) Wv(1) Reset

X X X 000000 000001 000010 000000 000011 000100 000000

X 0 X 000001 000001 000010 000001 000101 000111 000001

X 1 X 000010 000001 000010 000010 000110 001000 000010

0 X 0 000011 000101 000110 000011 000011 000100 000011

1 X 1 000100 000111 001000 000100 000011 000100 000100

0 0 0 000101 000101 000110 000101 000101 000111 000101

0 1 0 000110 000101 000110 000110 000110 001000 000110

1 0 1 000111 000111 001000 000111 000101 000111 000111

1 1 1 001000 000111 001000 001000 000110 001000 001000

We will use state-SaSv for reference of the rows from 1 to 9.

The flow consists of the following steps:

1. Parsing <Sa; Sv/F/R> notation and storing the results in dedicated construct. The Sa 

and S v are parsed in the following manner:

Sa := la O1 (V1) . . . On (Vn)),

S v := IO>1 (V1)...On (Vn))

Since only either Sa or Sv can represent the sequence of operations, Ia/Iv will be 

considered for the second memory cell behavior.
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2. If n = 0, then it is state coupling fault case. All Wa(Ia) transitions set from initial state 

and initialization block states are updated to point the faulty state-IaF. Now additional rows

are required to be added to the FDT.

The resulting DFA model for <0;1/0/-> fault is shown in Figure 26.

Figure 26. <0;1/0/-> coupling fault visualized with Graphviz

3. If n > 0 and the sequence of fault activating operations is defined on aggressor, 

then for each Oi operation add a row to FDT as follows:

a. Iv_Vi_Iv_XXXXXX_XXXXXX_XXXXXX_XXXXXX_XXXXXX_XXXXXX_XXXXXX, if i * 

n,

b. R_Vi_F_XXXXXX_XXXXXX_XXXXXX_XXXXXX_XXXXXX_XXXXXX_XXXXXXif i = n 

and R is present in <Sa; Sv/F/R> notation,

c. F_Vi_F_XXXXXX_XXXXXX_XXXXXX_XXXXXX_XXXXXX_XXXXXX_XXXXXX if i = n 

and R is not present in <Sa; Sv/F/-> notation,
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Simultaneously transitions at preceding row in FDT are updated for Oi if i > 1 or state- 

IaIv if i = 1 to point the newly added row. Transitions in the newly added row are set to point 

to the same states as if it was state-Vilv for "write", "read", "reset" operations.

4. If n > 0 and the sequence of fault activating operations is defined on victim, then 

for each Oi operation add a row to FDT as follows:

d. Vi_Ia_Vi_XXXXXX_XXXXXX_XXXXXX_XXXXXX_XXXXXX_XXXXXX_XXXXXX, if i * 

n,

e. R_Ia_F_XXXXXX_XXXXXX_XXXXXX_XXXXXX_XXXXXX_XXXXXX_XXXXXX if i = n 

and R is present in <Sa; Sv/F/R> notation,

f. F_Ia_F_XXXXXX_XXXXXX_XXXXXX_XXXXXX_XXXXXX_XXXXXX_XXXXXX if i = n 

and R is not present in <Sa; Sv/F/-> notation,

Similarly, simultaneously transitions at preceding row in FDT are updated for Oi if i > 1 

or state-IaIv if i = 1 to point to the newly added row. Transitions in the newly added row are 

set to point to the same states as if it was state-IaVi for "write", "read", "reset" operations.

5. The transitions in the final row are set in the following way if n > 1, "reset | points 

to state-SaF, "read" transition points to the final row if On is "read" operation or to state-SaR 

based on R of <Sa; Sv/F/R>, "write" transitions point to the same states as if from state-SaF. If 

n = 1, then if On is "read" operation, then "read" and "reset" transitions are set to state-SaVi 

if Vi = R and R * F, and set to point the final row if Vi = F and R * F.

All the added states, except the final one, are also referred as intermediate states similarly 

as for single-cell fault model.

2.2.6. Automata model for linked faults

Observed realistic linked faults [82]-[83] present in current memory designs involve at 

most 3 cells, where FP1 and FP2 are either single-cell or coupling faults. Since both FP1 and FP2 

are present in memory, both faults may be sensitized. With given DFA fault model for FP1 and 

FP2 we may reflect on the idea of unified representation for linked fault.

Such unified representation may be obtained with the application of the union operation 

[84] on two DFAs A1 and A2 defined in the same alphabet:

for given
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D F A  A 1 =  ( Q 1  Z  5 1,  q 0 1,  F 1) ,  

D F A  A 2  =  ( Q 2,  Z ,  5 2,  q 0 2,  F 2)

union operation

Au = A 1 U A 2

results in

D F A  A u  =  ( Q ,  Z  5 ,  q 0,  F )

where:

1. Q = Q1 x Q2 is a Cartesian product,

2. X alphabet is the same as for A1 and A2,

3. 5((q1, q2), a) = (51(q1, a), 52(q2, a)), where q1 e Q1, q2 e Q2, (q1, q2) e Q, a e I ,

4. q0 = (q01, q02),

5. F = (F1 x Q2 ) U (Q1 x F2)

The DFA models Afp1 and Afp2 proposed for FP1 and FP2 are not necessarily defined on the 

same alphabets. Therefore, some modifications must be made to Afp1 and Afp2 to comply with 

the preconditions of DFA union operation.

Without any loss of generality, we can take into consideration the example where FP1 and 

FP2 are coupling faults, which contain different aggressor cells, since DFA model for coupling 

faults may be viewed as an extension of DFA model for single-cell faults.

Figure 27. Example a linked fault

The operations on cells should be renamed to include cell identifier, then the following 

assignment should be done: Xfp1, Xfp2 := Xfp1 U I fp2. The resulting alphabets will be: Xfp1 = Xfp2 

= {Wa10, Wa1(1), Wa2(0), Wa2(1), Wv(0), Wv(1), Ra1, Ra2, Rv, Reset}.
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The 5 function must be redefined to include newly added operations for each DFA. Let's 

consider Afp1 (the same is true for Afp2):

1. {V q 6 Qfp1: q is not intermediate state}, operations {Wa2(0 ), Wa2(1 ), Ra2} point to current 

state. Consequently, it is possible to state, that while FP1 is not being sensitized, it does not 

care what operation is applied on the other memory cells.

2. {V q 6 Qfp1: q is intermediate state}, operations {Wa2(0), Wa2(1), Ra2} lead to the same 

state as Reset operation.

After these changes DFA Alf = Afp1 U Afp2 may be constructed using the recently described 

algorithm.

Furthermore, the state parameters of DFAs can also be modified for further convenience:

1. Qf P1 = q0 U {(RX, Sa 10, S vX), (RX, Sa 1 1, S vX), (R1, S a1X, S v1), (R0, Sa1X, S v0)}in it ia liza t io n -b lo c k

U {qi := (Ra, Sa 1 6, S va) : a 6 {0, 1}, 6 6 {0, 1}, i = 1, ..., n+5}fa u lt -b e h a v io ra l-b lo c k U {qfa u lt -

a ct iv a t io n -s ta te  := (Ra, Sa 6, S vY): a 6 {0, 1}, 6 6 {0, 1}, y 6 {0, 1}},

2. Qf P 2= q0 U {(RX, Sa 20, S vX), (RX, Sa 2 1, S vX), (R1, S a2X, S v1), (R0, Sa2X, S v0)}in it ia liza t io n -b lo c k  

U {qi := (R5, Sa 2£, S v5) : 5 6 {0, 1}, £ 6 {0, 1}, i = 1, ..., n+5}fa u lt -b e h a v io ra l-b lo c k U {qfa u lt -

a ct iv a t io n -s ta te  := (R5, Sa 2£, S vZ): 5  6 {0, 1}, £ 6 {0, 1}, Z 6 {0, 1}},

Renaming the parameters will allow us to clarify which victim "read" operation value and 

victim state should be considered when converted to Mealy SM. An interpretation of the 

resulting DFA Alf state (Figure 28) should be done as follows:

Figure 28. State of DFA model for linked coupling faults 

1. Before sensitizing of any of two faults:
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a. For non-final states of the Alf the following statement is true based on pre­

requirements for linked faults:

a = y = § = Z

b. For final states of the Alf three options are possible:

i. Afp1 state is final and Afp2 is not. Sv and R of Afp1 state should be 

considered.

ii. Afp2 state is final and A fp1 is not. Sv and R of Afp2 state should be 

considered.

iii. Both Afp1 and Afp2 states are final. If a / y , then value of R is X. If § / Z, 

then the value of Sv is X.

2. After either FP1 or FP2 has been sensitized, remember the corresponding FP for further 

transitions:

a. For non-final states of the Alf:

i. If FP1 was sensitized consider, Sv and R of Afp1 state should be considered.

ii. If FP2 was sensitized consider, Sv and R of Afp2 state should be considered.

b. For final states of the Alf, the same case as for 1.b

c. After both FP1 and FP2 are sensitized simultaneously than case 1.b.iii applies to 

current Alf state.

2.2.7. FDT generation procedure for linked faults

FDT for linked faults is generated based on the result of union Alf = Afp1 U Afp2. Besides 

the victim cell, aggressor cells of Alf1 and Alf2 may be the same. Therefore, the languages in 

Xfp1 and Xfp2 intersect. Table 9 and Table 10 demonstrate the example of the FDT for linked 

coupling faults FP1 and FP2, with different aggressor cells, which is currently the case with the 

most of involved cells. In the example transitions for victim cell and "reset" operations are 

resulting in one column for both FPs.
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Table 9. FDT for two coupling linked faults with different aggressor cells (1)

Rv1 S 1 Sa S 1 Sv Rv2 s 2Sa s 2Sv Ra1 Wa1(0) Wa1(1) Rv

R0 S 0 Sa S 0 Sv R0 S 0 Sa S 0 Sv (61(q01, (61(q01, (61(q01, ( S W ,
1 1 1 2 2 2 Ra1), Wa1(0)), Wa1(1)), Rv),

62(q02, 62(q02, 62(q02, 62(q02,

Ra1)) bin Wa1(0))) bin Wa1(1))) bin Rv)) bin
"O

CD=3
a

4—»aou
Ri 1 Sai Svi Rj 2 Saj S j (61(q01, (61(qi1, (61(qi1, (S1(qi1,

1 1 2 2 Ra1), Wa1(0)), Wa1(1)), Rv),

62(q02, s 2(qj2, s 2(qj2, 52(qj2,

Ra1)) bin Wa1(0))) bin Wa1(1))) bin Rv)) bin

Table 10. FDT for two coupling linked faults with different aggressor cells (2)

W v (0) W v (1) Ra 2 Wa 2 (0) Wa 2 (1) Reset

(S 1 (q0 1 , (S 1 (q0 1 , (S 1 (q0 1 , (S 1 (q0 1 , (S 1 (q0 1 , (S 1 (q0 1 ,

W v (0)), W v (1)), Ra 2 ), Wa 2 (0)), Wa 2 (1)), Reset),

62 (q0 2 , 62 (q0 2 , 62 (q0 2 , 62 (q0 2 , 62 (q0 2 , §2 (q0 2 ,
"D

CD
=3
a

W v (0))) b in W v (1))) b in Ra 2 )) b in Wa 2 (0))) b in Wa 2 (1))) b in Reset)) b in

4—»
c
o

u

(S 1 (qi 1 , (S 1 (qi 1 , (S 1 (qi 1 , (S 1 (qi 1 , (S 1 (qi 1 , (S 1 (qi 1 ,

W v (0)), W v (1)), Ra 2 ), Wa 2 (0)), Wa 2 (1)), Reset),

52 (qj 2 , 52 (qj 2 , 52 (qj 2 , 52 (qj 2 , 52 (qj 2 , 52 (qj 2 ,

W v (0))) b in W v (1))) b in Ra 2 )) b in Wa 2 (0))) b in Wa 2 (1))) b in Reset)) b in

After the application of Al f  = Af p i  U Af p 2  union operation, when Ql f  is obtained it could be 

sorted considering the final states of A f p i  and A f p 2  that are present in A l f , which results in 

structured FDT.
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Table 11. Structured FDT for linked faults

q0  £ Ql f  initial state

q £ Ql f , where q = (qF P 1 , qF P 2 ) qF P 1  ^ Ff p 1 , qF P 2  ^ Ff p 2

q £ Fl f , where q = (qF P 1 , qF P 2 ) qF P 1  £ Ff p 1 , qF P 2  ^ Ff p 2

q £ Fl f , where q = (qF P 1 , qF P 2 ) qF P 1  ^ Ff p 1 , qF P 2  £ Ff p 2

q £ Fl f , where q = (qF P 1 , qF P 2 ) qF P 1  £ Ff p 1 , qF P 2  £ Ff p 2

The structuration of FDT is made to support further implementation.

2.2.8. Parametrized FDTs for symmetric notations

Since DFA fault model lays on the bases of on <S/F/R> notation it is possible to apply the 

symmetric property that is outlined via fault notation to the DFA model. FDT generation 

procedures are modified to work with symmetric notations to generate DFA templates. A 

template only needs to be filled with exact values during the memory fault injection phase. 

This set of actions eliminates the need to generate DFA model multiple times for each 

member of the symmetric group. The FDT can be generated once and values corresponding 

to each fault may be filled in a separate copy. The FDT generation procedure for single-cell 

faults can be modified to consider {t,T} variables instead of {0,1} values correspondingly on 

the basis of the FDT (Table 12).

Table 12. Predefined parametrized FDT for single-cell faults

Rs Ss R W(t) W(T) Reset

X X 0000 0001 0010 0000

t t 0001 0001 0010 0001

T T 0010 0001 0010 0010

An example of parametrized FDT for <x/~x/-> symmetric notation is provided below (Table 

13).
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Table 13. Parametrized FDTfor <x/~x/->

Rs Ss R W(t) W(T) Reset

X X 0010 0010 0010 0010

t t 0001 0001 0010 0001

T T 0010 0001 0010 0010

Similar to the case of single-cell faults, coupling faults also have the symmetric property. 

FDT generation procedure can also be modified to work with symmetric notations to generate 

a DFA templates. The generation procedure can be modified to consider {t1,T1} and {t2,T2} 

variables instead of {0,1} values correspondingly for the aggressor and victim cells on the basis 

of the FDT, since 0 or 1 value are not used in FDT generation. The predefined FDT for modified 

flow is presented in Table 14.

Table 14. Predefined parametrized FDT for coupling faults

Rs sS a sS v Ra Wa(t1) Wa(T1) Rv Wv(t2) Wv(T2) Reset

X X X 000000 000001 000010 000000 000011 000100 000000

X t1 X 000001 000001 000010 000001 000101 000111 000001

X T1 X 000010 000001 000010 000010 000110 001000 000010

t2 X t2 000011 000101 000110 000011 000011 000100 000011

T2 X T2 000100 000111 001000 000100 000011 000100 000100

t2 t1 t2 000101 000101 000110 000101 000101 000111 000101

t2 T1 t2 000110 000101 000110 000110 000110 001000 000110

T2 t1 T2 000111 000111 001000 000111 000101 000111 000111

T2 T1 T2 001000 000111 001000 001000 000110 001000 001000

Consequently, it becomes obvious that the usage of parametrized FDT generation 

procedure is twice efficient for coupling faults if compared with the one for single-cell faults, 

due to the reason that one parametrized FDT covers twice more FPs (based on values of 

aggressor and victim cell).
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2.5.1. Extending model for NPSF

Although considered theoretical for now, neighborhood pattern sensitive faults (NPSF) can 

also be modeled via proposed approach. This paragraph will outline the main aspects of modeling 

of NPSF DFA model.

FDT generation procedure can be implemented for NPSF with given N (N=5 for type-1, N=9 

for type-2):

1. The rows are extended to contain information of N states, and transitions to other 

states for “read", “write" and “reset" operations,

2. Number of rows of FDT blocks are calculated in the following way 2N for initial states 

with all cell values different from X and (3N -  2N) for initialization,

3. During parsing phase consider SN; SW; SE; SS; SB states or operation sequences for type-

1 and four more for type-2 NPSF.

4. Victim cell SB should be triggerable only when SN; SW; SE; SS conditions (4 more for type-

2 NPSF) are met.

The resulting model has a drawback, which is the increased memory usage with roughly = 3N 

rows of FDT for given N number of cells during implementation. This is because the initialization 

block of FDT contains cells with X state, which is further set to 0 or 1, and can't be X again. 

Generation of such fault models can be time and resource consuming in terms of required 

memory for storage of the model.

Since the increased memory usage is mainly affected by initialization block, which has a 

regular representation from fault to fault, and no transitions back to the X states may be made, 

this block can be replaced with a so called “rewritable state" with some changes made to FDT. 

The resulting changes will result in FDT which will only partially be DFA state transition table, and 

requires additional logic to be implemented to be operated.

Let's consider the case of N = 5 for convenience. We can address the states of the 

corresponding DFA with 8 bits (in case of bigger Ns we should consider more bits). For FDT to 

comply the symmetry property {t1,T1}, {t2,T2}, {t3,T3}, {t4,T4} and {t5,T5} values will be used in 

template. The first row of our FDT table numbered as 00000000 will be rewritable, therefore, 

while at least one state from N states is X, the state of DFA stays at 00000000 changing initial part 

of the row corresponding to the applied operation if necessary, for example if WW(T1) operation 

is applied on W cell, the DFA does not change the state, but XXXXX value in the row is rewritten
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with XTiXXXX. Other rows in predefined parametrized FDT should be modified as shown in table

5. If the first state contains only one X value and “write" operation is applied towards the 

corresponding cell the appropriate row for transition is determined by the following algorithm:

1. For given RSnSwSeSsSb apply the value of the operation to the state, i.e. change 

corresponding bit for the cell in first row of FDT,

2. Remove first R and add 000: 000SnSwSeSSSb,

3. If T1 = 1, T2 = 1, T3 = 1, T4 = 1, T5 = 1, make transition to 000SnSwSeSSSb + 1 state of FDT,

4. If any of T1, T2, T3, T4, T5 = 0, reverse corresponding Sn, Sw, Se, Ss or Sb value and make 

transition to SnSwSeSSSb + 1. For example:

T1 = 1, T2 = 0, T3 = 0, T4 = 1, T5 = 1 and SnSwSeSSSb = 01110. Reversing Sn and Ss bits 

corresponding to T2 and T3, SnSwSeSSSb = 00010. Transition should be made to 00000010 

+ 1 = 00000011 row address. Indeed, if DFA state corresponding to 00000011 is observed 

as t5t1t2t3T4t5 with 0 and 1 values set, the 001110 value is obtained.

To eliminate the issue with state NPSF faults, where the transition to fault activation state is 

done directly from initialization block, a separate construct can be added that will keep 

information on transition to fault activation state. Each time operation is applied to “rewritable 

state" the value of the DFA state should be verified with the added construct. For example, if 

fault is <0; 0; 1; 0; 0/1/->: than transition to the DFA state with value 00101 must be done, the 

address of the corresponding FDT row should be calculated as shown in point 4.

NPSF fault types other than state faults, should be modeled by simply adding new rows to 

FDT, and modifying the transitions from the preceding DFA states as mentioned in the previous 

fault FDT generation procedures.

Table 15. Predefined parametrized FDT for type-1 NPSF

State numbering RSnSwSeSsSb
00000000 XXXXXX
00000001 t1t2t3t4t5t1
00000010 T 1t2t3t4t5T 1
00000011 t1t2t3t4T5t1
00000100 T1t2t3t4T5T1
00000101 t1t2t3T4t5t1
00000110 T1t2t3T4t5T1
00000111 t1t2t3T4T5t1
00001000 T1t2t3T4T5T1

Continued
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2.3. Automated FDT generation flow

This paragraph focuses on the automated FDT generation flow that aims to decrease 

exhaustion for fault modeling. The main argument is that the flow is based on FPT, thus, 

considers only known realistic faults.

The flow uses parametrized FDT, which is generated only once for symmetric faults. Since 

the number of faults cumulated by symmetric notation increases along whit the rise of the 

number of memory cells affected by the fault, the parametrized FDT can be efficiently used 

in generation of linked faults. Originated FDTs may be accumulated for further reuse.

The authors proposed simplified notation for single-cell and coupling faults in FPT:

• Simplified notation for single-cell fault <S/F/R> FPs included in FGi(x, S) sub­

group: (x, S)

• Simplified notation for coupling fault <Sa; Sv/F/R> FPs in FG2(x, S) sub-group: (x, S, 

y), (y, x, S), where y e {0,1}

We extended the simplified notation of single-cell and coupling faults for N-cell faults in 

order to enable the automated fault injection flow to be extendable. We assumed that only 

one memory could have a sequence of sensitizing operations since that the mentioned 

observation is valid for single-cell and coupling faults, and for the discussed theoretical NPSF 

faults as well:

Simplified notation for n-cell fault <Si, ... Sn-i; Sn/F/R> FPs in FGn(x, S) sub-group: (x, S, yi, 

yn-i), (yi, x, S, ..., yn-i),..., (yi, ..., yn-i, x, S), where yi, ..., yn e {0,1}.

Linked faults LF = FPi ^  FP2 may be cumulated in FPT in the following manner:

1. FGi(x, S) contains LF = FPi ^  FP2:

a. FPi e FGi(x, S), FP2 e C i,

2. FG2(x, S) contains LF = FPi ^  FP2:

a. FPi e FG2(x, S), FP2 e C i,

b. FPi e FG2(x, S), FP2 e C2, where aggressor and victim cells of FPi and FP2 are 

defined to be as the same memory cells,

3. FG3(x, S) contains LF = FPi ^  FP2:

a. FPi e FG2(x, S), FP2 e C2, where only victim cells of FPi and FP2 are defined on 

the same memory cells,
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The resulting groups do not intersect.

Two generation sub-flows are proposed to guide through the generation flow of fault 

models for linked and unlinked faults while using FPT. Both sub-flows use the interactive 

procedure of symmetric FP parsing.

The interactive procedure of FP parsing:

1. Input: index j of a cell with sensitizing operation sequence and simplified group (y1, yj-

1, x, S, yj+1, yi-1),

2. Extract FP template < y1; yj-1; xS; yj+1; ...; yi-1 /F/R >

a. If the last operation of S is "write":

i. Resulting FP = < y1; yj-1; xS; yj+1; ...; yi-1 /~x/- >

b. If the last operation of S is "read", suggest the following cases:

i. Is RDF, FP = < y1; yj-1; xS; yj+1; ...; yi-1 /~x/~x >

ii. Is DRDF, FP = < y1; yj-1; xS; yj+1; ...; yi-1 /~x/x >

iii. Is IRF, FP = < y1; yj-1; xS; yj+1; ...; yi-1 /x/~x >

The two sub-flows for linked and unlinked faults are presented below:

1. For unlinked faults:

a. Select a cell FGi(x,S) from one of the {C1, ...,Cn} columns of FPT.

b. Call interactive procedure of symmetric FP parsing.

c. Check if already generated parametrized FDT for FP1 ^  FP-2 exists.

d. If parametrized FDT already exists, reuse.

e. If parametrized FDT does not exist.

i. Generate FDT and store it.

f. Initialize parametrized FDT with values.

2. For linked faults:

a. Select a cell FGi(x,S) from one of the {C1, ...,Cn} columns of FPT.

b. Call interactive procedure of symmetric FP1 parsing.

c. Select a cell FGj(x,S) from the suggested list of columns of FPT. The list also 

excludes non-realistic linked faults.

d. Call interactive procedure of symmetric FP2 parsing.

e. Check if already generated parametrized FDT for FP1 ^  FP2 exists.
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f. If parametrized FDT already exists, reuse.

g. If parametrized FDT does not exist.

i. Apply union operation LF = FP1 U FP2.

ii. Generate FDT and store it.

h. Initialize parametrized FDT with values.

Figure 29. Two idempotent linked faults [82]

The following linked faults are considered non-realistic:

1. Linked faults which include CFins will not be considered since there is no practical 

evidence of their existence [82]. CFins are theoretical coupling inverse faults that are 

represented as < ^ ,^ >  or < ^ ,^ > .  If represented with <S/F/R> notation < ^ ,^ >  = 

<0W1; 0/1/->&<0W1; 1/0/-> and < ^ ,^ >  = <1W0; 0/1/->&<1W0; 1/0/->

2. Linked faults that include two CFids idempotent faults are also considered non­

realistic, based on inconsistent physical causes of the faults. Example of such linked 

faults < ^ ,^ > ji# < ^ ,^ > ji, < ^ ,^ > ik # < ^ ,^ > ik  is shown in Figure 29.

3. Linked faults that include two CFdsts destructive faults are also considered non­

realistic, based on the same reasons as for CFins. <x,^>ji#<y,^>ji, <x,^>ik#<y,^>ik 

where x,y e {R0, R1, W0, W1}.

4. Some dynamic linked faults are also excluded [83] (Figure 30).

a. The LF1 are comprised of two single-cell faults.

b. The LF2av are comprised of coupling and single-cell faults.

c. The LF3aa are comprised of two coupling faults with the same aggressor cell.

d. The LF4 are comprised of two coupling faults with different aggressor cells.
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The knowledge of non-realistic linked faults can help us further to decrease the space of 

considered faults.

Subclass Nonrealistic Faults

LF1

<  x Wy Ry/~y/~y >  * <  xWyRy/y/~ y >
<  x Wy Ry/~y/~y >  * <  x WyRy/~y/y >
<  x Wy Ry/y/ ~ y  >  * <  x Wy Ry/~y/y >
<  xRxRx/~x/~x >  * <xRxRx/x/~x >
<  xRxRx/~x/~x >  * <  xRxRx/~  x/x >
< xRxRx/x/~x >  * <  xRxRx/~x/x >

LF2 av

< x
< x
< x
< x
< x
< x
< x
< x
< x
< x
< x
< x

yW zR z/-z/~z>*<yW  zRz/z/~z >  
y W zRz/~z/~z >  * <  y W zRz/ ~z/z > 
y W zRz/z/~z> * <y W zRz/~z/~z> 
yW zRz/z/~z>*<yW zRz/~z/z> 
yW zRz/~z/z>*<yW zRz/~z/~z> 
yW zRz/~z/z>*<yW zRz/z/~z> 
zR zRz/~z/~z>  * <zRzRz/z/~z> 
zR zRz/~z/~z>  * <zRzRz/~z/z> 
zRzRz/z/~z >  * <  zRzRz/~z/~z >  
zRzRz/z/~z> * <zRzRz/~z/z> 
zRzRz/~z/z> * <zR zR z/~ z/~ z>  
zRzRz/~z/z> * <zRzRz/z/~z>

LF2 aa

< x
< x
< x
< x
< x
< x

yW zRz/~z/~z>*<x; yW zRz/z/~z> 
yW zRz/~z/~z>*<x; yW zRz/~z/z> 
yW zRz/z/~z>*<x; yW zRz/~z/z> 
zR zR z/~z/~z>*<x; zRzRz/z/~z> 
zR zR z/~z/~z>*<x; zRzRz/~z/z> 
zRzRz/z/~z>*<x; zRzRz/~z/z>

LF3

< x
< x
< x
< x
< x
< x

yW zRz/~z/~z>*<t; yW zRz/z/~z> 
yW zRz/~z/~z>*<t; yW zRz/~z/z> 
yW zRz/z/~z>*<t; yW zRz/~z/z> 
zRzRz/~z/~z>*<t; zRzRz/z/~z> 
zRzRz/~z/~z>*<t; zRzRz/~z/z> 
zRzRz/z/~z>*<t; zRzRz/~z/z>

Figure 30. Non-realistic dynamic linked faults [83]
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2.4. Identification of requirements for fault model implementation in HDL 

representation of MBIST network

Since developers of post-silicon analysis and MBIST solutions generally do not have access 

to real memory design used by customers. Therefore, the RTL representation of real memory 

is not always available during the design of MBIST. Instead, an alternative a virtual memory 

device is used, the behavior of which is almost identical to the original memory design.

Since the fault model cannot be used to replace the memory cell directly, it can be placed 

outside the memory device while tracking its inputs and altering the outputs.

2.4.1. Fault model placement in RTL

The real RTL for memory is not always available during design of BIST for that memory. A 

virtual memory device, that behaves close to the original memory is used instead. Therefore, 

since the fault model cannot be used to replace the memory cell directly, it can be placed 

near the memory device in the BIST network (Figure 31). Forcing the fault model directly on 

memory device pins ensures that all components of memory BIST hierarchy have completed 

their part in memory testing flow before accessing it.

It must be bound to the address of memory cell and alter the memory device outputs if 

that specific cell is being accessed. For that purpose, the fault model requires a controller that 

will be responsible for the following functions::

1. Listen to memory pins and ports.

2. Track if changes affect the faulty cell(s).

3. Iterate through FDT.

4. Alter memory device outputs.
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Figure 31. Memory BIST wrapper

The vital component of the fault model injection step includes the precise knowledge of 

memory pins along with their description. The information can be obtained from memory 

description file that is also used during the design of memory BIST system when the Virtual 

Memory Device is created, since the BIST system must also possess the information on 

memory device pins.

2.4.2. Memory configuration information

The memory configuration information may comprise plenty of data on the memory 

device that are being utilized by BIST compilers. Nevertheless, the necessary information 

regarding fault modeling is:

1. Address port.

2. Data input port.

3. Data output port.

4. "Read" operation pin.

5. "Write" operation pin.

6. Information on data scrambling.
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7. Information on address scrambling.

8. Memory bank port.

9. Memory operating clock.

An example of memory configuration information without scrambling:

MemConfig {

addr.Direction = "Input" 

addr.Range = "[9:0]" 

addr.Tag = "Address" 

clk.Direction = "Input" 

clk.Tag = "Clock" 

re.ActiveLevel = true 

re.Direction = "Input" 

re.Tag = "ReadEnable" 

din.Direction = "Input" 

din.Range = "[132:0]" 

din.Tag = "Data" 

dout.Direction = "Output" 

dout.Range = "[132:0]" 

dout.Tag = "Data"

}

After memory information is obtained fault model controller can be created.
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Conclusions

1. An extendable fault model for memory internal faults was proposed.

2. Generation procedures for single-cell, coupling and linked fault models were adduced.

3. Parametrized fault model representation and an automated generation flow for 

realistic faults were derived based on fault prediction mechanism.

4. Requirements for fault model implementation in RTL HDL representations of MBIST 

networks are identified.
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CHAPTER 3. TEST PATTERN VERIFICATION ENVIRONMENT FOR POST­

SILICON ANALYSIS AUTOMATION TOOLS
This chapter will mainly focus on verification of test patterns generated and analyzed via 

post-silicon analysis automation tools. The test patterns will be considered in terms of test 

and diagnosis flow implementation. A verification environment will be constructed based on 

the fault model described in the previous chapter[85].

Firstly, the process of fault injection into memory BIST RTL will be described. Verification 

environment will be constructed, and its components and flows will be reported. Moreover, 

the chapter will provide a verification of each phase of the test and diagnosis flow also It will 

justify the constructed verification environment

Finally, some modifications on test and diagnosis flow implementation will be adduced 

based on fault prediction mechanism.

All the activity diagrams in this chapter were described in Unified Modeling Language [86] 

via StarUML [87] software.

3.1. Fault injection

This paragraph describes the process of inclusion of DFA fault model in RTL code. The RTL 

in SystemVerilog was used since the memory BIST system compilers use Verilog for the 

generation of components.

3.1.1. Making the fault model traversable

Here FDT generation flow was slightly modified to make the fault model DFA traversable. 

Transition flag bits were added after each operation transition in FDT for that purpose as 

shown in (Table 16 and Table 17) that are initialized with 0.

Table 16. Modified coupling fault FDT row

Rs sS a sS v Ra F Wa(t1) F Wa(T1) F Rv F Wv(t2) F Wv(T2) F Reset F

Table 17. Modified single-cell fault FDT row

Rs Ss R F W(t) F W(T) F Reset F
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The FDT table is being updated during the simulation each time a transition in DFA 

occurs as described. The transition flag values of FDT may be displayed in the end of the 

simulation for further analysis.

3.1.2. Fault model controller

Since, the fault model is represented in a form of table FDT, it requires a controller to 

traverse it (Figure 32). The fault model controller is wired to memory pins. It contains a 

pointer to the current fault DFA state (FDT row), information on the final states of DFA, 

information on the memory bank, memory word address, and the bit as the data in memory 

device is represented by words stored in memory banks.

BIST Wrapper Interactions with 
higher level BIST components

Figure 32. Fault model controller injection

These are the functions of the fault model controller for single-cell and coupling faults:

1. The controller listens to the clock and activates with every clock cycle.
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2. The controller traces the value of memory address and bank ports, "write" and "read" 

pins.

3. If an operation is applied on specified memory fault address(es) in specified banks, 

fault model controller determines the transition index in FDT table from which is used 

to allow symmetric FDT generation.

4. Fault model controller makes a transition determined in the previous step to the 

corresponding FDT state by assigning the value, corresponding to the applied 

operation obtained from the current row, to the current state pointer, while also 

setting analogous transition flag to 1.

5. If "read" operation is applied on the memory, then forcing the R value of the current 

row of FDT on corresponding bit memory data output port.

6. If memory address or bank ports change their value and do not match the fault 

address(es), then "reset" transition is made on FDT.

Fault model controller for linked faults additionally tracks the final state of which FP was 

recently sensitized as described in (p. 41). For that purpose, two additional flags are needed, 

as well as the pointers to edges of final state sections (p. 50) in FDT.

3.1.3. Fault injection information and its processing

Fault injection information file (Figure 33) is provided on the input of fault injection flow. 

It includes data on memory fault type, memory cell address and the hierarchical path to the 

memory instance. The gained information is further parsed and processed.

Although other methods for providing the fault injection information may also be 

considered, the points outlined below are mandatory.

Memory data and address must be considered during fault injection, since memory logical 

address used during fault injection is not always the same physical address in the memory 

[11]. This is particularly crucial during the injection of coupling faults, where the two cells 

require to be placed near each other in a specified order.
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server(
[processorl [1]]
MEMORY [1]

// Address in range: [1023 : 0], Virtual banks = 1, Number of Bits = 133 

single cell faults:
ADDR = 3, BIT = 2, VBK = 1, FTYPE = <R0/0/l>
ADBR = 2, BIT = 1, VBK = 1, FTYPE = <0/l/->

coupling faults:
ADBR_A = 836, BIT_A = 5, VBK_A = 1, ADDRV = 837, BIT_V = 5, VBK_V = 1, FTYPE = <lWl;0/l/֊>

[processor2 [2]]
MEMORY2 [1]

// Address in range: [4991 : 0], Virtual banks = 1, Number of Bits = 61

linked faults:
ADDR_A = 843, BIT_A = 3, VBK_A = 1, AI)DR_V = 840, BIT_V = 4, VBK_V = 1, FTYPE_L1 = <0R0R0; l/C l/->  
ADDR_A = 842, BIT_A = 3, VBK_A = 1, ABDR_V = 840, BIT_V = 4, VBK_V = 1, FTYPE_L2 = <1;1R1R1/0/1>

Figure 33. Fault injection information file example

3.1.4. Implementation in SystemVerilog

Usage of SystemVerilog [88] provides better flexibility with multidimensional arrays. Since 

FDT is organized as two-dimensional array, which needs to be dynamically accessed during 

runtime, and MBIST network RTL is presented in Verilog compatible with SystemVerilog, this 

choice looks reasonable.

Fault model controller either for single or coupling faults in SystemVerilog consists of the 

following elements:

1. FDT.

2. Pointer to current state (an index for FDT row).

3. "Read" flag that activates if "read" operation was applied, this flag is necessary for 

modifying memory pins on the next clock cycle, when the corresponding data 

output is normally expected.

4. @always block for fault state transition, listening to memory control pins, 

determining the transition based on operation and making transitions in FDT, 

setting "read" flag on "read" operation, and setting a transition flag for the 

corresponding transition in the current row to 1. If an operation is applied on a 

different address "reset" transition should be called with corresponding transition 

flag set.
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5. @always block for handling "read" operation if the "read" flag is set. The memory 

data output pin corresponding to the faulty bit is assigned with the "read" value of 

the active state.

The fault model controller for linked faults additionally requires the following 

components:

1. Two flags with the purpose of tracking final state of which FP was activated.

2. Three pairs of pointers to the edges of the final state sections of structured FDT.

3. @always block for fault state transition should also track if one or both final states 

of two FPs of LF were reached. If this is the case, corresponding flags should be set 

to zero; otherwise, the flags would be set to 0.

a.

Test bench Test bench

MBIST
1:1 MBIST

Д М  RTL

MBIST
Component

b.

Figure 34. Considered two methods of controller injection in Verilog a) inside the MBIST
network RTL b) outside MBIST network RTL

4. @always block for handling "read" operation should consider final state flags and 

alter the memory data output as described during the FDT generation procedure 

for linked faults (p. 53).
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These two options were considered for fault model controller inclusion in MBIST network 

RTL:

1. Placing the fault model controller between the memory device and connected the 

MBIST network component using multiplexer and demultiplexer (Figure 34 a).

2. Placing the fault model controller outside the MBIST network and forcing the value 

on memory outputs externally using "force" and "release" operations (Figure 34 

b).

The first method requires modification of MBIST network RTL HDL files for injection of 

fault model controller with rewiring of the memory and MBIST network component inputs 

and outputs.

The second method though injects the fault controller into the test bench and does not 

alter the existing RTL HDL files. On each positive edge of the test clock "release" operation is 

applied to the memory output. If the "read" flag was set "force" operation alters the output 

data of memory with a short delay and unsets the "read" flag. The delay may be calculated 

based on the test clock cycle period that can be obtained from the MBIST network 

configuration data.

In this research we followed the second approach that has been described above.

3.1.5. Implementation of fault injection flow

Finally, as all the components of fault injection have been defined, the fault injection flow 

may be implemented (Figure 35).

The flow consists of 10 steps:

1. Firstly, FPT is provided at input.

2. Automated parametrized FDT generation flow is used to create and store 

parametrized FDTs on the basis, of FPT for further reuse.

3. Parametrized FDTs may be stored in file system or any other convenient database.

4. Fault injection information is provided in a form of fault injection data file that contains 

information on fault types, memory instances and their hierarchical paths, fault 

injection addresses.

5. An input data list is constructed based on the provided data.
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For example:

({(0,3,2)}, <R0/0/1>, "server.processorl [1].MEMORY [1]"),

({(0,2,1)}, <0/1/->, "server.processorl [1].MEMORY [1]"),

({(0,836,5), (0,840,5)}, <1W1;0/1/-> ,"server.processor1 [1].MEMORY [1]"), 

({(0,843,3), (0,840,4), (0,842,3), (0,840,4)}, {<1W1;0/1/->, <1;1R1R1/0/1>}, 

"server.processor2 [2].MEMORY2 [1]").

Figure 35. Fault injection flow implementation
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6. For each fault from the input data list its symmetric notation is obtained. Since each 

fault may be described with various forms of symmetric notation (e.g. <0/1/-> may be 

described as <x/~x/-> or <~x/x/->) a standardized approach should be used in this step. 

Symmetric notation for FPs may be represented via either of the following formats:

a. FP = < yx; yj-1; xS; yj+1; y i -1 /F/R >

b. FP = < yi; ...; yi-1; xS /F/R >

In case a. values of F and R are represented via yi-1. In case b. values of F and R are 

represented via x.

Additionally, the fault injection addresses should also be considered for linked faults, 

as they may share the same aggressor cell or be defined on different ones. Therefore, 

they are described via different FDTs.

7. After symmetric notation is obtained it is searched among parametrized FDTs. Based 

on the data cumulated as a result of the search two cases are possible:

a. If there is an existing parametrized FDT, values should be parsed from fault 

notation and the FDT should be initialized. For instance, for the given fault notation 

<0W1; 0/1/-> the {t1,T1} and {t2,T2} variables should be initialized in the following 

manner: T1 = 0, t1 = 1, T2 = 0, t2 = 1. A mapping should be constructed to be passed 

to the fault controller generation phase (Figure 36). Moreover, it should indicate 

which FDT columns are used to describe the transition operation.

Figure 36. Transition mapping used for fault controller generation
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b. If a parametrized FDT does not exist than FDT for the provided fault is 

generated. One of the adduced generation procedures is used for single-cell, 

coupling or linked faults FDT.

8. Memory configuration information is provided for each memory in the MBIST 

network. The memory port and pin names are determined for further wiring with the 

fault model controller. The corresponding memory configuration information can be 

obtained for each memory instance and used for further generation of fault model 

controller.

9. Create an empty file for inclusion in RTL. For each fault:

a. Generate a fault controller using fault injection and memory configuration 

information, the mapping for operation transitions and the FDT.

b. Generate System Verilog representation of a fault model controller and include it 

in the file.

10. Incorporate the data into the test bench.

Figure 37. Verification flow for software post-silicon analysis automation tool.
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3.2. Verification environment for test patterns in manufacturing tools.

Using the fault injection flow described in the previous paragraph and MBSIT RTL a 

verification environment can be constructed and used for the verification of software post­

silicon analysis automation tool (Figure 37).

Figure 38. Verification of test patterns for user defined test algorithms

3.2.1. Verification of test patterns for user defined test algorithms

Considering the fact that test patterns can be used for instructing MBISTs to run user 

defined March test algorithms (March-like test algorithms) on the memory devices, an 

approach of determining whether the test pattern successfully executed or not is to observe 

the behavior of fault model injected into the MBIST network.
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The fault model is traversable through the transition flags in FDT representation. Each 

time a transition from a state occurs the transition flag of current FDT row for corresponding 

operation is set to 1. After the simulation is over the resulting FDT can be compared to a 

reference FDT (Figure 38).

Comparison of two separately traversed FDTs aims to verify two things:

a. If the test algorithm chain was correctly generated in the software tool.

b. If the test algorithm was applied to the intended memory core.

Reference FDT is created on the basis of generated fault model FDT, traversed separately

via the March test algorithm that is used in the test pattern.

3.2.2. FDT tracing software tool

For simulating the execution of the March test algorithms on FDT a simple software tool 

is implemented as part of the mature tool, that takes FDT, March test algorithm and traverses 

the FDT while applying the algorithm. The logical representation of test algorithm is used in 

the tool, i.e. operations are considered instead of their binary codes. Traversed FDT was used 

as a reference FDT in the previous paragraph. The tracing of FDT for single-cell and coupling 

faults in the software is done in the following way:

1. If FDT corresponds to single-cell fault model, typically make a transition on each operation 

of March element and mark the transition flag, if March element changes Reset transition 

must be made.

2. If FDT corresponds to coupling fault model, the relative placement of aggressor a and 

victim v cells needs to be considered. This information is based on fault injection 

addresses. On each March element consider two cases:

a. a < v, apply the operations first to the aggressor than to victim, if addressing is 

ascending, in the opposite sequence if descending,

b. a > v, apply the operations first to aggressor than to victim, if addressing is 

decreasing, in reverse sequence if ascending.

Consider Reset transition for each cell similarly to a single-cell fault.

The traversed FDTs are stored for each fault injected into the MBIST network RTL HDL and 

are compared on conformity with the FDTs traversed via test algorithms by MBISTs.
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Example of traversed FinFET-specific fault graph is provided in Figure 39.

Figure 39. <R0R0R0R0R0/1/1> fault traversed by FFDD and visualized with Graphviz 

3.2.3. Verification of chain analysis

As each test is used for a specific purpose, the chain analysis is also unique for each of 

them. Nevertheless, if the chain analysis is related to test failure, a reference chain may be 

constructed on the base of the fault injection information file. The reference chain is 

compared to the resulting output chain after test pattern input chain is applied on MBIST 

network RTL (Figure 40).
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This verification procedure is individual for each phase of test and diagnosis flow, since 

each phase is specific, i.e. in the detection phase output chain contains only information on 

memories that failed/passed the test, chains for diagnosis phase additionally contain binary 

information on the failed memory address, bit and march test operation.
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3.3. Verification of test and diagnosis flow implementation

Verification of test and diagnosis flow [5] was considered in this work. Since this 

multiphase flow is used in post-silicon analysis and the creation of a test pattern in each phase 

depends on the results of test pattern execution in the previous phase, verification of this 

flow implementation is essential.

3.3.1. Verification of detection phase

Test pattern template generally used in this phase looks like:

SELECT_MEMORY_GROUP 

LOAD_TEST_ALGORITH M [TEST_ALGORITHM]

RUN_BIST

READ_FAILED_MEMORY_INFO

Here the first input chain selects a group of memories that are going to be tested. With 

the second input chain a test algorithm is loaded into MBISTs for further execution. The third 

chain commands MBISTs to run the tests. Information is obtained from MBIST network with 

the last chain and is further analyzed by the manufacturing tool on which memories have 

failed.

Verification of the created test pattern is done in the following way:

a. Choosing the faults that are covered by the test algorithm used in the sample,

b. Injecting the faults on various memories,

c. Traversing the faults as shown at p. 78.

Verification of the output chain for the reported failed memories is based on the 

conformity with memories used for fault injection in fault injection information file (Figure 

41). Furthermore, to verify that test algorithms binary code used in the input chain has been 

correctly generated and if the test algorithms have reached the intended memory cores, the 

FDTs of faults provided with fault injection information are separately traversed via software 

tool and compared to the traversed FDTs reported in the end of MBIST network RTL 

simulation.
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Figure 41. Detection of failed memory cores 

3.3.2. Verification of fault localization phase

Test pattern template used in this phase is similar to the one used in the detection phase: 

SELECT_MEMORY_GROUP 

LOAD_TEST_ALGORITH M [TEST_ALGORITHM]

SET_SONE [SONE_VALUE]

RUN_BIST

READ_DIAGNOSTIC_INFORMATION

The difference is in the additional input chain that sets the value of "stop on n-th error" 

register. Based on that value MBIST will stop the execution of the March test algorithm if the 

n-th error occurs. Finally, the information on memory failure is obtained and reported in 

manufacturing tool.

The reported information contains: memory failed bank, memory failed address, memory 

failed bit, failed March test element and operation.
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SONE_VALUE is set to 1 to report information on the first encountered incorrect "read" 

operation of the test algorithm. If multiple faults are injected in a single memory core, then 

the SONE_VALUE can be incremented till all the faults have been located.

Verification of the reported diagnosis information output chain is based on the conformity 

with banks, addresses and bits provided for the fault injection in corresponding special 

information file. The approach is alike the one used in the detection phase.

3.3.3. Verification of fault classification phase

Assuming the pattern described in the previous phase was verified, it may be used in 

classification phase. At this point, we also presume that a fault was detected, localized and 

needs to be classified.

Test patterns are created, while using fault classification March test algorithms 

respectively designed for this diagnosis phase. Furthermore, fault classification phase can 

leverage the SONE register. n number of pattern executions need to be made while modifying 

the value of the SONE register to ensure that n "read" operations have been applied on the

83



faulty cell, where n is the number of "read" operations present in test algorithm. Test 

syndrome is being generated as a result, which is the n-bit signature, where the order of bits 

corresponds to the sequence of "read" operations in the test algorithm. The faults are 

classified based on the obtained signature using the signature dictionary which must be 

provided with classification test algorithms.

Classification algorithms aim to cover a wide range of faults and distinguish them. As a 

result, unique signature (test syndrome) should be generated for each failure covered by the 

algorithm at the end of the classification phase.

Verification of this phase is done by checking the conformity of classified fault type with 

FP provided in fault injection information file. The flow is described in Figure 42.

3.4.4. Verification of fault localization for aggressor cells

The test pattern template for this phase is as follows:

SELECT_MEMORY_GROUP

APPLY_MARCH_LIKE_TEST_ALGORITHM [TEST_ALGORITHM] 

READ_DIAGNOSTIC_INFORMATION

The test pattern in this phase is generally used with coupling faults for locating the 

aggressor cell. We assume that the victim cell was ascertained in the detection phase, while 

the fault type was determined at the classification phase. An adaptive March-like algorithm 

is being applied to the neighborhood of a memory victim cell (Figure 43). The idea of the 

algorithm is to:

1. Set potential aggressor cells to the state opposite to the activation state of aggressor 

for the coupling fault.

2. Apply sequence of fault activating operations to the potential aggressor cell or victim 

cell depending on the FP.

3. Read the value of the victim cell.

4. If the fault was not triggered then repeat steps 1,2,3 for the next potential aggressor.

5. The algorithm stops when the faulty value is finally observed on the victim cell.
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2 3 4
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8 7 6

Figure 43. Victim cell V with potential aggressors 1, 2, 3, 4, 5, 6, 7, 8

Post-silicon analysis automation tool further generates a report on failed memory 

aggressor cell based on information on failed March test element and test operation.

The reported aggressor cell address, bit and bank are verified in compliance with fault 

injection information for coupling fault.

In some cases, if application of March-like test algorithms is not feasible, but the memory 

scrambling information is present, another approach of aggressor cell allocation may be 

applied. The approach is based on serial execution of each operation on potential aggressor 

and the victim memory cells in the same way as describe above. As long as the execution of 

operations is done manually via memory logical addresses, an additional initial step is 

required for determination of all the potential aggressor cell logical addresses for the given 

victim cell, which logical address was obtained during the previous phases of diagnosis flow. 

This approach cannot be applied though on dynamic faults, since they require at-speed 

execution and the serial access to memory cells is made through SoC inputs/outputs usually 

at much slower clock speed.
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3.5. Justification of verification environment

In this paragraph we will show how the verification environment was justified. It was 

proven on 600 randomly generated MBIST networks created via Synopsys DesignWare STAR 

Memory System line of products. The networks were generated based on 760 different 

memory configurations. Two types of network hierarchies were considered as shown in 

Figure 44, conditionally referred as a. One-level and b. Two-level hierarchies. Components of 

the network are connected in terms of IEEE1500 standard.

TAP
h TAPa

Figure 44. Considered types of MBIST network hierarchies: a. one-level b. two-level

Parameters of the networks were randomly picked from the range shown in Table 18. 

Networks with 0 sub-servers correspond to one-level network hierarchies, while the ones 

with 1+ sub-servers correspond to two-level hierarchies. The upper bound of the total 

number of components used in the system during the simulations was set to 500. Different 

memory configurations were also considered Table 19.

MBIST networks were generated once. Further simulations with or without fault injection 

were made on the same projects. Generation of the projects took approximately 12 hours.
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Table 18. MBIST network configurations

Network Components Minimal configuration Maximal configuration

Sub-servers 0 7

Processors under each (sub-)server 1 30

Wrappers under each processor 1 30

Memories under each wrapper 1 30

Table 19. Memory configurations

Parameter Minimal configuration Maximal configuration

Address scrambling No Yes

Number of words 16 32000

Number of bits in word 4 256

Number of banks 1 4

Column multiplexing 1 64

March FD(35N), VLP1(26N), VLP2(26N), VLP3(22N), FFDD(42N) test algorithms [5] were 

chosen, since the first algorithm covers all simple static faults, VLP1-VLP3 cover all static and 

two-operation faults, FFDD covers all FinFET-specific dynamic faults.

For each network, three test patterns were created:

1. SELECT_MEMORY 

LOAD_TEST_ALGORITHM FD 

RUN_BIST

READ_FAILED_MEMORY_INFO,

2. SELECT_MEMORY 

LOAD_TEST_ALGORITHM VLP1 

RUN_BIST

READ_FAILED_MEMORY_INFO 

LOAD_TEST_ALGORITHM VLP2 

RUN_BIST

READ FAILED MEMORY INFO
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LOAD_TEST_ALGORITHM VLP3 

RUN_BIST

READ_FAILED_MEMORY_INFO,

3. SELECT_MEMORY

LOAD_TEST_ALGORITHM FFDD 

RUN_BIST

READ_FAILED_MEMORY_INFO

For construction of the following test pattern for each network a March LSD (75N) [83] 

test algorithm was used to justify the environment for linked fault models:

SELECT_MEMORY 

LOAD_TEST_ALGORITHM LSD 

RUN_BIST

READ_FAILED_MEMORY_INFO

Corresponding single-cell, coupling and linked faults from FPT (C1, C2, C3 columns) were 

automatically modeled for each test pattern and injected into the test benches. All injected 

faults were detected, traversed and compared with separately traversed FDTs in software 

tool (p. 78).

Furthermore, the abovementioned test algorithms for single-cell and coupling faults were 

used for verification of fault localization and classification step in the matching test pattern 

(p. 82). Simulations were done with one fault injected into each memory core. The faults were 

successfully classified.

Aggressor cell localization flow was verified using simple static faults using March-like 

LD1(2N+O(1)), LD2(41N+O(1)) test algorithms [41].

Simulations on the projects were run with and without fault injection on 350 dedicated 

machines and took approximately 48 hours in both cases; consequently, the fault model has 

not affected the simulation time in any noticeable way.
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3.6. Modifications of test and diagnosis flow implementation and introduction of 

interactive fault injection flow

Particular faults require corresponding test algorithms to be used in test patters during 

test and diagnosis flow. Furthermore, peculiar test algorithms/groups of test algorithms may 

be developed for coverage of a group of faults as seen in paragraph 3.4. To eliminate the 

exhaustion during test algorithm development while considering only realistic faults, a 

modification to test and diagnosis flow is applied to leverage the fault prediction mechanism.

Figure 45. Modification to test pattern creation and verification flow

The modification of test pattern creation flow consists of the following 4 steps:

1. The list of fault groups is picked from FPT.

2. Test algorithm is created based on selected fault groups.

3. Test algorithm may be used in created test patterns instead of a predefined one.
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4. The list of FPs is extracted from inputs and used in fault injection flow for resulting test 

pattern verification.

This allows automatic creation of test algorithms for detection of particular faults and 

their verification.

3.6.1. Using TAT in test pattern templates for memory test and fault detection

Test algorithm template was proposed for implementation in hardware [5] and the 

benefits of such approach were outlined. Nevertheless, the proposed test algorithm template 

can also be used in software tools to support automated test algorithm and test pattern 

generation flows.

Test algorithm for coverage of the particular group of faults is constructed based on test 

algorithm template with the following flow:

1. Based on the list of {FGi(xi, Si), FGi(Xi, Si), FG2(Xi+i, Si+i), ..., FG2(Xn, Sn)} provided at 

input, list of {FG(xi,Si), ..., FG(Xn,Sn)} is constructed,

2. A sequence of operations S is constructed based on the resulting list of {FG(xi,Si), ..., 

FG(Xn,Sn)} in the following manner S = SiW(x2)S2...W(xn)Sn [5],

3. Test algorithm is formed using TAT(xi, S) for the list of given SMS processors,

4. It can now be used in test patterns for test and detection.

Finally, based on the list of provided FPT sub-groups the list of corresponding FPs can be 

extracted and randomly injected in MBIST networks. Fault detection and localization test 

patterns can be generated with the help of acquired test algorithm and further verified using 

the proposed approaches.

3.6.2. Using TAT for fault partial classification

March test algorithms generated with TAT can also be used for fault partial classification. 

During partial classification there is no guarantee that all the faults are uniquely identified as 

some test syndromes may correspond to more than one fault. For example, abovementioned 

VLPi(26N), VLP2(26N), VLP3(22N) are among those algorithms used for partial classification.
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A generated algorithm can be applied on the FDT software model of each fault of FPT 

groups used as input for TAT. The process can benefit from parametrized FDTs that have been 

already generated and stored (p. 73). The resulting test syndromes may be stored along with 

the test algorithm for further use on the MBIST network. The flow is depicted in Figure 46.
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Conclusions

1. The fault injection flow is described for an arbitrary MBIST network configuration.

2. An environment for test pattern verification is built including input chain generation 

and output chain analysis.

3. Over 600 experiments for various MBIST network configurations are conducted to 

justify correctness of the proposed solution.

4. A modification of test and diagnosis implementation is suggested based on fault 

prediction mechanism.
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SUMMARY
During the study:

1. Test pattern verification environment for test and diagnosis flow implementation for 

post-silicon analysis tools is built and experimentally justified.

2. An extendable fault model and fault generation flow are developed.

3. Fault model injection mechanism for memory internal faults is developed.

4. Approach on verification of test pattern input chain generation and output chain 

analysis is suggested.

93



TABLE OF FIGURES
Figure 1. Examples of commercial MBIST network solutions a. DesignWare STAR Memory

System[18] b. Tessent Memory Test[19]...................................................................................... 12

Figure 2 Example of on-chip IEEE P1687 architecture with 3 SIB bits [25].............................. 13

Figure 3. Types of background patterns. [34].............................................................................15

Figure 4. Data scrambling............................................................................................................... 16

Figure 5. Example of scrambling in address decoder. [34]........................................................ 16

Figure 6. Address scrambling......................................................................................................... 17

Figure 7. Example of test algorithm instruction representation in programmable MBIST [35]

........................................................................................................................................................... 19

Figure 8. Multi-port memory BIST example. [38]........................................................................20

Figure 9. Execution of test pattern on MBIST network............................................................. 22

Figure 10. Functional model of SRAM memory...........................................................................24

Figure 11. Conventional 6T SRAM cell.......................................................................................... 25

Figure 12. Single-cell static faults [45].......................................................................................... 26

Figure 13. List of static coupling faults [45].................................................................................. 27

Figure 14. Classification of linked faults [48]................................................................................28

Figure 15. a.type-1, b.type-2 NPSF................................................................................................28

Figure 16. Defect modeling during transistor level simulation [63]........................................... 30

Figure 17. Resistive fin open defect and corresponding waveform [63].................................. 30

Figure 18. Memory model with coupling faults [67].................................................................. 31

Figure 19. Mealy state machine for coupling fault [68].............................................................. 32

Figure 20. Fault periodicity table...................................................................................................33

Figure 21. A unified verification methodology [73].....................................................................35

Figure 22. Memory model with fault injection [4].......................................................................36

Figure 23. Fault model structure...................................................................................................40

Figure 24. <0/1/-> stack-at 1 fault DFA visualized with Graphviz..............................................43

Figure 25.<R0R0R0R0R0/1/1> fault visualized with Graphviz................................................... 46

Figure 26. <0;1/0/-> coupling fault visualized with Graphviz.....................................................49

Figure 27. Example a linked fault..................................................................................................51

94



52Figure 28. State of DFA model for linked coupling faults

Figure 29. Two idempotent linked faults [82].............................................................................62

Figure 30. Non-realistic dynamic linked faults [83].....................................................................63

Figure 31. Memory BIST wrapper.................................................................................................65

Figure 32. Fault model controller injection................................................................................. 69

Figure 33. Fault injection information file example....................................................................71

Figure 34. Considered two methods of controller injection in Verilog a) inside the MBIST

network RTL b) outside MBIST network RTL...............................................................................72

Figure 35. Fault injection flow implementation..........................................................................74

Figure 36. Transition mapping used for fault controller generation....................................... 75

Figure 37. Verification flow for software post-silicon analysis automation tool.....................76

Figure 38. Verification of test patterns for user defined test algorithms................................. 77

Figure 39. <R0R0R0R0R0/1/1> fault traversed by FFDD and visualized with Graphviz.......... 79

Figure 40. Verification of chain analysis...................................................................................... 80

Figure 41. Detection of failed memory cores..............................................................................82

Figure 42. Fault classification flow ................................................................................................83

Figure 43. Victim cell V with potential aggressors 1, 2, 3, 4, 5, 6, 7, 8 ...................................... 85

Figure 44. Considered types of MBIST network hierarchies: a. one-level b. two-level.........86

Figure 45. Modification to test pattern creation and verification flow ................................... 89

Figure 46.Test syndromes for partial fault classification........................................................... 91

95



REFERENCES
[1] "International Technology Roadmap for Semiconductors", www.itrs2.net, 2015

[2] Shoukourian S., Vardanian V. and Zorian Y., "SoC yield optimization via an embedded- 

memory test and repair infrastructure," IEEE Design & Test of Computers, vol. 21, no. 3, 2004, 

pp. 200-207

[3] Zorian Y., Shoukourian S. "Test Solutions for Nanoscale Systems-on-Chip: Algorithms, 

Methods and Test Infrastructure", Selected papers of Ninth International Conference on 

Computer Science and Information Technologies, IEEE, 2013, pp. 1-3

[4] Au A., Pogiel A., Rajski J., Sydow P., Tyszer J., Zawada J. "Quality assurance in memory 

built-in self-test tools", 17th International Symposium on Design and Diagnostics of Electronic 

Circuits & Systems, 2014, pp. 39-44

[5] Harutyunyan G., Martirosyan S., Shoukourian S., Zorian Y. "Memory Physical Aware 

Multi-Level Fault Diagnosis Flow", IEEE Transactions on Emerging Topics in Computing, 2018

[6] Harutyunyan G., Shoukourian S., Zorian Y. "Fault Awareness for Memory BIST 

Architecture Shaped by Multidimensional Prediction Mechanism", IEEE Transactions on 

Computer-Aided Design of Integrated Circuits and Systems, vol. 38, no. 3, 2019, pp. 562-575

[7] "IEEE Standard for Verilog Hardware Description Language" in IEEE Std 1364-2005 

(Revision of IEEE Std 1364-2001), 2006, pp.1-590

[8] "IEEE Standard VHDL Language Reference Manual" in IEEE Std 1076-2008 (Revision of 

IEEE Std 1076-2002), 26 Jan. 2009, pp.1-626

[9] Baltagi Y. et al., "Embedded memory fail analysis for production yield enhancement" 

2011 IEEE/SEMI Advanced Semiconductor Manufacturing Conference, Saratoga Springs, NY, 

2011, pp. 1-5

[10] Bergfeld T. J., Niggemeyer D. and Rudnick E. M., "Diagnostic testing of embedded 

memories using BIST" Proceedings Design, Automation and Test in Europe Conference and 

Exhibition 2000 (Cat. No. PR00537), Paris, France, 2000, pp. 305-309

[11] L iJ.-F ., Cheng K.-L., Huang C.-T. and Wu C.-W., "March-based RAM diagnosis 

algorithms for stuck-at and coupling faults" Proceedings International Test Conference 2001 

(Cat. No.01CH37260), Baltimore, MD, USA, 2001, pp. 758-767

96

http://www.itrs2.net


[12] Carvalho M. et al., "Optimized embedded memory diagnosis" 14th IEEE International 

Symposium on Design and Diagnostics of Electronic Circuits and Systems, Cottbus, 2011, pp. 

347-352

[13] IEEE Standard for Access and Control of Instrumentation Embedded within a 

Semiconductor Device" in IEEE Std 1687-2014, 5 Dec. 2014, pp. 1-283

[14] IEEE Standard Testability Method for Embedded Core-based Integrated Circuits" in 

IEEE Std 1500-2005, 29 Aug. 2005, pp. 1-136

[15] IEEE Standard for Test Access Port and Boundary-Scan Architecture" in IEEE Std

1149.1- 2013 (Revision of IEEE Std 1149.1-2001), 13 May 2013, pp. 1-444

[16] Arslan B. and Orailoglu A., "Aggressive Test Cost Reductions Through Continuous Test 

Effectiveness Assessment", in IEEE Transactions on Computer-Aided Design of Integrated 

Circuits and Systems, vol. 35, no. 12, 2016, pp. 2093-2103

[17] Lee Y., Choi I., Oh K., Ko J. J. and Kang S., "Test item priority estimation for high parallel 

test efficiency under ATE debug time constraints", 2017 International Test Conference in Asia 

(ITC-Asia), Taipei, 2017, pp. 150-154.

[18] DesignWare STAR Memory System, Synopsys, Inc.,

https://www.svnopsvs.com/designware-ip/technical-bulletin/embedded-memorv-test.html

[19] Tessent Memory Test, Mentor, a Siemens Business, 

http://s3.mentor.com/public documents/datasheet/products/silicon- 

yield/products/memorybist-ds.pdf

[20] IEEE Standard for Test Access Port and Boundary-Scan Architecture" in IEEE Std

1149.1- 2013 (Revision of IEEE Std 1149.1-2001), 13 May 2013, p. 3

[21] Cheng C., Huang C.-T., Huang J.-R., Wu C.-W., Wey C.-J. and Tsai M.-C., "BRAINS: a 

BIST compiler for embedded memories," Proceedings IEEE International Symposium on 

Defect and Fault Tolerance in VLSI Systems, Yamanashi, Japan, 2000, pp. 299-307

[22] Haron N. Z., Junos S. A. M. and Aziz A. S. A., "Modeling and simulation of microcode 

Memory Built In Self Test architecture for embedded memories," 2007 International 

Symposium on Communications and Information Technologies, Sydney, NSW, 2007, pp. 

136-139

97

https://www.synopsys.com/designware-ip/technical-bulletin/embedded-memory-test.html
http://s3.mentor.com/public_documents/datasheet/products/silicon-yield/products/memorybist-ds.pdf
http://s3.mentor.com/public_documents/datasheet/products/silicon-yield/products/memorybist-ds.pdf


[23] Haron N. Z., Junos S. A. M., Razak A. H. A. and Idris M. Y. I., "Modeling and 

simulation of finite state machine Memory Built-in Self Test architecture for embedded 

memories," 2007 Asia-Pacific Conference on Applied Electromagnetics, Melaka, 2007, pp. 

1-5.

[24] Joseph P. E. and Antony P. R., "VLSI design and comparative analysis of memory 

BIST controllers," 2014 First International Conference on Computational Systems and 

Communications (ICCSC), Trivandrum, 2014, pp. 372-376

[25] Crouch A., "IEEE P1687 Internal JTAG (IJTAG) taps into embedded instrumentation", 

ASSET InterTech, 2011

[26] Cheng A., "Comprehensive Study on Designing Memory BIST: Algorithms, 

Implementations and Trade-offs", Advanced Computer Architecture Lab Department of 

Electrical Engineering and Computer Science, The University of Michigan, 2002, pp. 5-13

[27] Noor N. Q. M., Yusof Y. and Saparon A., "Low area FSM-based memory BIST for 

synchronous SRAM," 2009 5th International Colloquium on Signal Processing & Its 

Applications, Kuala Lumpur, 2009, pp. 409-412

[28] Dongkyu Y., Taehyung K. and Sungju P., "A microcode-based memory BIST 

implementing modified march algorithm," Proceedings 10th Asian Test Symposium, Kyoto, 

Japan, 2001, pp. 391-395.

[29] Boutobza S., Nicolaidis M., Lamara K. M. and Costa A., "Programmable memory BIST," 

IEEE International Conference on Test, 2005., Austin, TX, 2005, pp. 1-10

[30] Park K., Lee J. and Kang S., "An area efficient programmable built-in self-test for 

embedded memories using an extended address counter," 2010 International SoC Design 

Conference, Seoul, 2010, pp. 59-62

[31] Tsai P.-C., Wang S.-J. and Chang F.-M., "FSM-based programmable memory BIST with 

macro command," 2005 IEEE International Workshop on Memory Technology, Design, and 

Testing (MTDT'05), Taipei, 2005, pp. 72-77

[32] Noor N. M., Saparon A. and Yusof Y., "Programmable MBIST Merging FSM and 

Microcode Techniques Using Macro Commands," 2010 IEEE 25th International Symposium 

on Defect and Fault Tolerance in VLSI Systems, Kyoto, 2010, pp. 115-121

98



[33] Aleksanyan K., Amirkhanyan K., Shoukourian S., Zorian Y., "Memory modeling using an 

intermediate level structural description", US Patent 07768840, issued on August 3, 2010

[34] van de Goor A. J. and Schanstra I., "Address and data scrambling: causes and impact 

on memory tests," Proceedings First IEEE International Workshop on Electronic Design, Test 

and Applications '2002, Christchurch, New Zealand, 2002, pp. 128-136

[35] Du X., Mukherjee N., Cheng W.-T. and Reddy S. M., "Full-speed field-programmable 

memory BIST architecture," IEEE International Conference on Test, 2005., Austin, TX, 2005, 

pp. 1-9

[36] Suk and Reddy, "A March Test for Functional Faults in Semiconductor Random Access 

Memories," in IEEE Transactions on Computers, vol. C-30, no. 12, pp. 982-985, Dec. 1981

[37] van de Goor A. J. "Testing Semiconductor Memories: Theory and Practice", John Wiley 

& Sons, 1991

[38] Yuejian Wu and S. Gupta, "Built-in self-test for multi-port RAMs," Proceedings Sixth 

Asian Test Symposium (ATS'97), Akita, Japan, 1997, pp. 398-403

[39] Zhao J., Irrinki S., Puri M. and Lombardi F. "Detection of inter-port faults in multi-port 

static RAMs," Proceedings 18th IEEE VLSI Test Symposium, Montreal, Quebec, Canada, 2000, 

pp. 297-302

[40] L iJ.-F ., Cheng K.-L., Huang C.-T. and Wu C.-W., "March-based RAM diagnosis 

algorithms for stuck-at and coupling faults," Proceedings International Test Conference 2001 

(Cat. No.01CH37260), Baltimore, MD, USA, 2001, pp. 758-767

[41] Vardanian V. A. and Zorian Y., "A March-based fault location algorithm for static 

random access memories," Proceedings of the 2002 IEEE International Workshop on Memory 

Technology, Design and Testing (MTDT2002), Isle of Bendor, France, 2002, pp. 62-67

[42] Harutunyan G., Vardanian V. A. and Zorian Y., "A March-Based Fault Location 

Algorithm with Partial and Full Diagnosis for All Simple Static Faults in Random Access 

Memories," 2007 IEEE Design and Diagnostics of Electronic Circuits and Systems, Krakow, 

2007, pp. 1-4

[43] Kiran P. N. V. and Saxena N., "Design and analysis of different types SRAM cell 

topologies," 2015 2nd International Conference on Electronics and Communication Systems 

(ICECS), Coimbatore, 2015, pp. 1060-1065

99



[44] Martirosyan L., Harutyunyan G., Shoukourian S. and Zorian Y., "A power based 

memory BIST grouping methodology," 2015 IEEE East-West Design & Test Symposium 

(EWDTS), Batumi, 2015, pp. 1-4

[45] van de Goor A. J. and Al-Ars Z., "Functional memory faults: a formal notation and a 

taxonomy," Proceedings 18th IEEE VLSI Test Symposium, Montreal, Quebec, Canada, 2000, 

pp. 281-289.

[46] Huang R.-F., Chou Y.-F. and Wu C.-W., "Defect oriented fault analysis for SRAM," 2003 

Test Symposium, Xi'an, China, 2003, pp. 256-261

[47] Haron N. Z. and Hamdioui S., "On Defect Oriented Testing for Hybrid CMOS/Memristor 

Memory," 2011 Asian Test Symposium, New Delhi, 2011, pp. 353-358

[48] Hamdioui S., Al-Ars Z., van de Goor A. J. and Rodgers M., "Linked faults in random 

access memories: concept, fault models, test algorithms, and industrial results," in IEEE 

Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 23, no. 5, 

May 2004, pp. 737-757

[49] Huzum C. and Cascaval P., "A multibackground march test for all static simple 

neighborhood pattern-sensitive faults in RAMs," 15th International Conference on System 

Theory, Control and Computing, Sinaia, 2011, pp. 1-6.

[50] Sfikas Y., Tsiatouhas Y. E. and Hamdioui S., "Layout-Based Refined NPSF Model for 

DRAM Characterization and Testing," in IEEE Transactions on Very Large Scale Integration 

(VLSI) Systems, vol. 22, no. 6, June 2014, pp. 1446-1450

[51] Hamdioui S., Al-Ars Z. and van de Goor A.J., "Testing Static and Dynamic Faults in 

Random Access Memories", In Proceedings of IEEE VLSI Test Symposium (VTS), 2002, pp. 395­

400

[52] Hamdioui S., Gaydadjiev G. N. and van de Goor A.J., "A fault primitive based analysis 

of dynamic memory faults", IEEE Workshop on Circuits, Systems and Signal Processing, 2003, 

pp. 84-89.

[53] Dilillo L., P. Girard, S. Pravossoudovitch, A. Virazel, "Dynamic read destructive fault in 

embedded-SRAMs: analysis and march test solution" IEEE European Test Symposium, 2004, 

pp. 140-145.

100



[54] Hamdioui S., Wadsworth R., Reyes J. D., van de Goor A.J., "Importance of Dynamic 

Faults for New SRAM Technologies", IEEE European Test Workshop, 2003, pp. 29-34.

[55] Azimane M., Majhi A. K., Gronthoud G., Lousberg M., et al, "A New Algorithm for 

Dynamic Faults Detection in RAMs", IEEE VLSI Test Symposium, 2005, pp. 177-182.

[56] Ney A., Girard P., Landrault C., Pravossoudovitch S., Virazel A., Bastian M., "Slow Write 

Driver Faults in 65nm SRAM Technology: Analysis and March Test Solution", IEEE Design, 

Automation and Test in Europe, 2007, pp. 528-533.

[57] Ney A., Girard P., Landrault C., Pravossoudovitch S., Virazel A. and Bastian M., 

"Dynamic Two-Cell Incorrect Read Fault due to Resistive-Open Defects in the Sense Amplifiers 

of SRAMs", IEEE European Test Symposium, 2007, pp. 97-104.

[58] Al-Ars Z., Hamdioui S., Gaydadjiev G., "Manifestation of Precharge Faults in High Speed 

DRAM Devices", IEEE Design and Diagnostics of Electronic Circuits and Systems, 2007, pp. 

179-184.

[59] Bosio A., Dilillo L., Girard P., Pravossoudovitch S., Virazel A., "Advanced Test Methods 

for SRAMs: Effective Solutions for Dynamic Fault Detection in Nanoscaled Technologies", 

Springer, 2009.

[60] http://www.samsung.com/global/business/semiconductor/file/media/Samsung Fou 

ndry 14nm FinFET-0.pdf [Online]

[61] http://www.intel.com/content/www/us/en/siliconinnovations/intel-22nm- 

technology.html [Online]

[62] http://www.tsmc.com/english/dedicatedFoundry/services/reference flow.htm 

[Online]

[63] Harutyunyan G., Tshagharyan G., Vardanian V., Zorian Y., "Fault modeling and test 

algorithm creation strategy for FinFET-based memories", VLSI Test Symposium, 2014, pp. 1­

6.

[64] Harutyunyan G., Tshagharyan G., Zorian Y., "Test & Repair Methodology for FinFET- 

Based Memories", IEEE Transactions on Device and Materials Reliability, Vol. 15, No. 1, March 

2015, pp. 3-9.

101

http://www.samsung.com/global/business/semiconductor/file/media/Samsung_Foundry_14nm_FinFET-0.pdf
http://www.samsung.com/global/business/semiconductor/file/media/Samsung_Foundry_14nm_FinFET-0.pdf
http://www.intel.com/content/www/us/en/siliconinnovations/intel-22nm-technology.html
http://www.intel.com/content/www/us/en/siliconinnovations/intel-22nm-technology.html
http://www.tsmc.com/english/dedicatedFoundry/services/reference_flow.htm


[65] Tshagharyan G., Harutyunyan G., Shoukourian S., Zorian Y., "Overview Study on Fault 

Modeling and Test Methodology Development for FinFET-Based Memories", IEEE East-West 

Design and Test Symposium, 2015, pp. 19-22.

[66] Nagel L. W., Pederson D. O., "SPICE (Simulation Program with Integrated Circuit 

Emphasis)", Memorandum No. ERL-M382, University of California, Berkeley, Apr. 1973.

[67] Benso A., Bosio A., Di Carlo S., Di Natale G. and Prinetto P., "Automatic March tests 

generation for static and dynamic faults in SRAMs," European Test Symposium (ETS'05), 

Tallinn, Estonia, 2005, pp. 122-127

[68] Brzozowski J. A. and Jurgensen H., "Composition of multiple faults in RAMs," Records 

of the 1995 IEEE International Workshop on Memory Technology, Design and Testing, San 

Jose, CA, USA, 1995, pp. 123-128

[69] Harutyunyan G., Shoukourian S., Vardanian V. and Zorian Y., "An effective solution for 

building memory BIST infrastructure based on fault periodicity," 2013 IEEE 31st VLSI Test 

Symposium (VTS), Berkeley, CA, 2013, pp. 1-6.

[70] Harutyunyan G., Shoukourian S., Vardanian V. and Zorian Y., "Extending fault 

periodicity table for testing faults in memories under 20nm," Proceedings of IEEE East-West 

Design & Test Symposium (EWDTS 2014), Kiev, 2014, pp. 1-4

[71] Harutyunyan G., "Extending fault periodicity table for testing external memory faults," 

2016 IEEE East-West Design & Test Symposium (EWDTS), Yerevan, 2016, pp. 1-4

[72] Nahir A. et al., "Bridging pre-silicon verification and post-silicon validation," Design 

Automation Conference, Anaheim, CA, 2010, pp. 94-95

[73] Mishra P., Morad R., Ziv A. and Ray S., "Post-Silicon Validation in the SoC Era: A Tutorial 

Introduction," in IEEE Design & Test, vol. 34, no. 3, June 2017, pp. 68-92

[74] Harcha G., Bosio A., Girard P., Virazel A. and Bernardi P., "An effective fault-injection 

framework for memory reliability enhancement perspectives," 2017 12th International 

Conference on Design & Technology of Integrated Systems In Nanoscale Era (DTIS), Palma de 

Mallorca, 2017, pp. 1-6

[75] Hopcroft J., Motwani R., Ullman J. "Introduction to Automata Theory, Languages, and 

Computation" 3rd edition, Addison-Wesley, 2013

102



[76] Hayrapetyan D., Manukyan A. "Modeling dynamic single-cell and coupling faults via 

automata models", Computer Science and Information Technologies (CSIT), Armenia, 2017, 

pp. 65-68

[77] Hayrapetyan D., "Modeling linked faults via automata models", IEEE East-West Design 

and Test Symposium (EWDTS), Serbia, 2017, pp. 237-241

[78] Hayrapetyan D., Manukyan A., Tshagharyan G. "Implementation of Memory Static, 

Coupling and Dynamic Fault Models at the Register Transfer Level", IEEE East-West Design 

and Test Symposium (EWDTS), Russia, 2018, pp. 744-748

[79] Dilillo L., Girard P., Pravossoudovitch S., Virazzel A., "Efficient test of dynamic read 

destructive faults in sram memories", 6th IEEE Latin American Test Workshop, Salvador, 

Bahia, Brazil, 2005, pp. 40-45

[80] Graphviz - Graph Visualization Software, https://www.graphviz.org/ [Online]

[81] The DOT language, https://www.graphviz.org/doc/info/lang.html [Online]

[82] van de Goor A. J., Gaydadjiev G. N., Mikitjuk V. G. and Yarmolik V. N., "March LR: a test 

for realistic linked faults," Proceedings of 14th VLSI Test Symposium, Princeton, NJ, USA, 

1996, pp. 272-280

[83] Harutyunyan G., Shoukourian S., Vardanian V. and Zorian Y., "A New Method for 

March Test Algorithm Generation and Its Application for Fault Detection in RAMs," in IEEE 

Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 31, no. 6, 

2012, pp. 941-949

[84] Sipser M. "Introduction to the Theory of Computation", 2nd edition, Thomson, 2006

[85] Hayrapetyan D. "Verification of Test and Diagnosis Flow Implementation in Software 

Post-Silicon Analysis Automation Tools", Reports of the National Academy of Sciences and the 

State Engineering University of Armenia. Series of Technical Sciences, Yerevan, 2019

[86] Seidl M., Scholz M., Huemer C., Kappel G. "UML @ Classroom: An Introduction to 

Object-Oriented Modeling (Undergraduate Topics in Computer Science)" Springer, 2015

[87] StarUML, http://staruml.io/ [Online]

[88] "IEEE Standard for SystemVerilog--Unified Hardware Design, Specification, and 

Verification Language -  Redline", in IEEE Std 1800-2009 (Revision of IEEE Std1800-2005) - 

Redline, 2009, pp.1-1346

103

https://www.graphviz.org/
https://www.graphviz.org/doc/info/lang.html
http://staruml.io/


APPENDIX: CERTIFICATE OF IMPLEMENTATION

synopsys
№ 115 It §

Ts^NOPSYS
a r n v e n i a *

02236362 / £
֊ՍՒՆՈՓՍՒ1 ԱՐՄԵՆԻՍ» ՓԲԸ

Գլխավոր տնօրեն'

Լ. Մուսայելյան

2019

«Բյուրեղի վրա սխալների առկայությամբ հիշող հանգույցների ներկառուցված  
թեստավորման գործընթացը մողելավոյտղ ծրագրային գործիքի հիմնա վորումն  

մշա կում»թ եմա յով Դւսվիթ Լեոնի Հայրապետյանի  
թեկնա ծուա կա ն ատենախոսության արդյունքների

ՆԵՐԴՐՄԱՆ ԱԿՏ

Դ.Լ. ձայրապեւոյանի տեխնիկական գիտությունների թեկնածուի գիտական աստիճանի 
ատենախոսության կատարման ընթացքում ստացված հետնյալ արդյունքները

-  հիշող սարքերում RTL մակարդակում անսարքությունների մոդելավորման ծրագրային 
համակարգը,

-  հիշող սարքերի ներկառուցված իևքնաթեստավորմաև համակարգում թեստավորման և 
ախտորոշման գործընթացների իրականացումը ստուգող միջավայր,
ներդրվել են «Սինոփսիս» ընկեյաւթյան DesignWare STAR Memory System (SMS) 
արտադրանքի հիշող սարքերի ներկառուցված իևքնաթեստավորմաև համակարգի 
համար նախագծված Yield Accelerator վերլուծական գործիքում և այժմ փորձարկումներ է 
անցնում:

Արդյունքների օգտագործումը բերել է նշված գործիքի արդյունավետության 
բարձրացման, որի արդյունքում

֊  հնարավոր է դարձել նորագույն տեխնոլոգիաներին բնպւոշ անսարքությունների 
մոդելափդտւմը RTL մակարդակում և դրանց հայտնաբերման ու ախտորոշման համար 
նախատեսված թեստայիև նմուշների ստուգումը,

-  բարելավվել է հիշող սարքերի ներկառուցված ինքնաթեստավորման համակարգի համար 
թեստավորման և ախտորոշման գործընթացների իրականացումը նորագույն 
տեխնոլոգիաների ազդեցությունը հաշվի առնելու համար:

Սինոփսիս ընկերության ավագ կառավարիչ, 
ՀՀ ԳԱԱ ակադեմիկոս, ֆ.մ.գ.դ., պրոֆեսոր Ս. Շուքուրյաև

"ՍԻՆՈՓՍԻՍ ԱՐՄԵՆԻՍ" ՓԲԸ "SYNOPSYS ARMENIA" CJSC
0026, ՀՀ, ԵՐԵՎԱՆ, ԱՐՇԱԿՈՒՆՅԱՑ 41 41 ARSHAKUNYATS AVE-, YEREVAN, ARMENIA. 0026
ՀԵՌ. (+374 10) 49 21 00. ՖԱՔՍ (+374 10) 49 26 96 TE L : (+374 10) 49 21 00, FAX: (+374 10) 49 26 96
ՀՎՀՀ 02236362 TAX PAYER’S ID 02236362

104


